Linux Audio

Check our new training course

Loading...
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 23
 24#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
 26
 27#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 28#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 29#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 30
 31#define IS_CURSEG(sbi, seg)						\
 32	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 33	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 34	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 35	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 36	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 37	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 38
 39#define IS_CURSEC(sbi, secno)						\
 40	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 41	  (sbi)->segs_per_sec) ||	\
 42	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 43	  (sbi)->segs_per_sec) ||	\
 44	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 45	  (sbi)->segs_per_sec) ||	\
 46	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 47	  (sbi)->segs_per_sec) ||	\
 48	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 49	  (sbi)->segs_per_sec) ||	\
 50	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 51	  (sbi)->segs_per_sec))	\
 52
 53#define MAIN_BLKADDR(sbi)						\
 54	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 55		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 56#define SEG0_BLKADDR(sbi)						\
 57	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 58		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 59
 60#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 61#define MAIN_SECS(sbi)	((sbi)->total_sections)
 62
 63#define TOTAL_SEGS(sbi)							\
 64	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 65		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 66#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 67
 68#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 69#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 70					(sbi)->log_blocks_per_seg))
 71
 72#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 73	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 74
 75#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 76	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 77
 78#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 79#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 80	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 81#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 82	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 83
 84#define GET_SEGNO(sbi, blk_addr)					\
 85	((!__is_valid_data_blkaddr(blk_addr)) ?			\
 86	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 87		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 88#define BLKS_PER_SEC(sbi)					\
 89	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
 90#define GET_SEC_FROM_SEG(sbi, segno)				\
 91	((segno) / (sbi)->segs_per_sec)
 92#define GET_SEG_FROM_SEC(sbi, secno)				\
 93	((secno) * (sbi)->segs_per_sec)
 94#define GET_ZONE_FROM_SEC(sbi, secno)				\
 95	((secno) / (sbi)->secs_per_zone)
 96#define GET_ZONE_FROM_SEG(sbi, segno)				\
 97	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
 98
 99#define GET_SUM_BLOCK(sbi, segno)				\
100	((sbi)->sm_info->ssa_blkaddr + (segno))
101
102#define GET_SUM_TYPE(footer) ((footer)->entry_type)
103#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104
105#define SIT_ENTRY_OFFSET(sit_i, segno)					\
106	((segno) % (sit_i)->sents_per_block)
107#define SIT_BLOCK_OFFSET(segno)					\
108	((segno) / SIT_ENTRY_PER_BLOCK)
109#define	START_SEGNO(segno)		\
110	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111#define SIT_BLK_CNT(sbi)			\
112	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113#define f2fs_bitmap_size(nr)			\
114	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115
116#define SECTOR_FROM_BLOCK(blk_addr)					\
117	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118#define SECTOR_TO_BLOCK(sectors)					\
119	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120
121/*
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
125 */
126enum {
127	ALLOC_RIGHT = 0,
128	ALLOC_LEFT
129};
130
131/*
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135 */
136enum {
137	LFS = 0,
138	SSR
139};
140
141/*
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
145 */
146enum {
147	GC_CB = 0,
148	GC_GREEDY,
149	ALLOC_NEXT,
150	FLUSH_DEVICE,
151	MAX_GC_POLICY,
152};
153
154/*
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
158 */
159enum {
160	BG_GC = 0,
161	FG_GC,
162	FORCE_FG_GC,
163};
164
165/* for a function parameter to select a victim segment */
166struct victim_sel_policy {
167	int alloc_mode;			/* LFS or SSR */
168	int gc_mode;			/* GC_CB or GC_GREEDY */
169	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
170	unsigned int max_search;	/*
171					 * maximum # of segments/sections
172					 * to search
173					 */
174	unsigned int offset;		/* last scanned bitmap offset */
175	unsigned int ofs_unit;		/* bitmap search unit */
176	unsigned int min_cost;		/* minimum cost */
177	unsigned int min_segno;		/* segment # having min. cost */
178};
179
180struct seg_entry {
181	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182	unsigned int valid_blocks:10;	/* # of valid blocks */
183	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184	unsigned int padding:6;		/* padding */
185	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186#ifdef CONFIG_F2FS_CHECK_FS
187	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188#endif
189	/*
190	 * # of valid blocks and the validity bitmap stored in the last
191	 * checkpoint pack. This information is used by the SSR mode.
192	 */
193	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194	unsigned char *discard_map;
195	unsigned long long mtime;	/* modification time of the segment */
196};
197
198struct sec_entry {
199	unsigned int valid_blocks;	/* # of valid blocks in a section */
200};
201
202struct segment_allocation {
203	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204};
205
206#define MAX_SKIP_GC_COUNT			16
207
208struct inmem_pages {
209	struct list_head list;
210	struct page *page;
211	block_t old_addr;		/* for revoking when fail to commit */
212};
213
214struct sit_info {
215	const struct segment_allocation *s_ops;
216
217	block_t sit_base_addr;		/* start block address of SIT area */
218	block_t sit_blocks;		/* # of blocks used by SIT area */
219	block_t written_valid_blocks;	/* # of valid blocks in main area */
220	char *bitmap;			/* all bitmaps pointer */
221	char *sit_bitmap;		/* SIT bitmap pointer */
222#ifdef CONFIG_F2FS_CHECK_FS
223	char *sit_bitmap_mir;		/* SIT bitmap mirror */
224
225	/* bitmap of segments to be ignored by GC in case of errors */
226	unsigned long *invalid_segmap;
227#endif
228	unsigned int bitmap_size;	/* SIT bitmap size */
229
230	unsigned long *tmp_map;			/* bitmap for temporal use */
231	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
232	unsigned int dirty_sentries;		/* # of dirty sentries */
233	unsigned int sents_per_block;		/* # of SIT entries per block */
234	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
235	struct seg_entry *sentries;		/* SIT segment-level cache */
236	struct sec_entry *sec_entries;		/* SIT section-level cache */
237
238	/* for cost-benefit algorithm in cleaning procedure */
239	unsigned long long elapsed_time;	/* elapsed time after mount */
240	unsigned long long mounted_time;	/* mount time */
241	unsigned long long min_mtime;		/* min. modification time */
242	unsigned long long max_mtime;		/* max. modification time */
243
244	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
245};
246
247struct free_segmap_info {
248	unsigned int start_segno;	/* start segment number logically */
249	unsigned int free_segments;	/* # of free segments */
250	unsigned int free_sections;	/* # of free sections */
251	spinlock_t segmap_lock;		/* free segmap lock */
252	unsigned long *free_segmap;	/* free segment bitmap */
253	unsigned long *free_secmap;	/* free section bitmap */
254};
255
256/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
257enum dirty_type {
258	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
259	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
260	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
261	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
262	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
263	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
264	DIRTY,			/* to count # of dirty segments */
265	PRE,			/* to count # of entirely obsolete segments */
266	NR_DIRTY_TYPE
267};
268
269struct dirty_seglist_info {
270	const struct victim_selection *v_ops;	/* victim selction operation */
271	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
272	unsigned long *dirty_secmap;
273	struct mutex seglist_lock;		/* lock for segment bitmaps */
274	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
275	unsigned long *victim_secmap;		/* background GC victims */
276};
277
278/* victim selection function for cleaning and SSR */
279struct victim_selection {
280	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
281							int, int, char);
282};
283
284/* for active log information */
285struct curseg_info {
286	struct mutex curseg_mutex;		/* lock for consistency */
287	struct f2fs_summary_block *sum_blk;	/* cached summary block */
288	struct rw_semaphore journal_rwsem;	/* protect journal area */
289	struct f2fs_journal *journal;		/* cached journal info */
290	unsigned char alloc_type;		/* current allocation type */
291	unsigned int segno;			/* current segment number */
292	unsigned short next_blkoff;		/* next block offset to write */
293	unsigned int zone;			/* current zone number */
294	unsigned int next_segno;		/* preallocated segment */
295};
296
297struct sit_entry_set {
298	struct list_head set_list;	/* link with all sit sets */
299	unsigned int start_segno;	/* start segno of sits in set */
300	unsigned int entry_cnt;		/* the # of sit entries in set */
301};
302
303/*
304 * inline functions
305 */
306static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
307{
308	if (type == CURSEG_COLD_DATA_PINNED)
309		type = CURSEG_COLD_DATA;
310	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
311}
312
313static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
314						unsigned int segno)
315{
316	struct sit_info *sit_i = SIT_I(sbi);
317	return &sit_i->sentries[segno];
318}
319
320static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
321						unsigned int segno)
322{
323	struct sit_info *sit_i = SIT_I(sbi);
324	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
325}
326
327static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
328				unsigned int segno, bool use_section)
329{
330	/*
331	 * In order to get # of valid blocks in a section instantly from many
332	 * segments, f2fs manages two counting structures separately.
333	 */
334	if (use_section && __is_large_section(sbi))
335		return get_sec_entry(sbi, segno)->valid_blocks;
336	else
337		return get_seg_entry(sbi, segno)->valid_blocks;
338}
339
340static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
341				unsigned int segno)
342{
343	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
344}
345
346static inline void seg_info_from_raw_sit(struct seg_entry *se,
347					struct f2fs_sit_entry *rs)
348{
349	se->valid_blocks = GET_SIT_VBLOCKS(rs);
350	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
351	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
353#ifdef CONFIG_F2FS_CHECK_FS
354	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355#endif
356	se->type = GET_SIT_TYPE(rs);
357	se->mtime = le64_to_cpu(rs->mtime);
358}
359
360static inline void __seg_info_to_raw_sit(struct seg_entry *se,
361					struct f2fs_sit_entry *rs)
362{
363	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
364					se->valid_blocks;
365	rs->vblocks = cpu_to_le16(raw_vblocks);
366	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
367	rs->mtime = cpu_to_le64(se->mtime);
368}
369
370static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
371				struct page *page, unsigned int start)
372{
373	struct f2fs_sit_block *raw_sit;
374	struct seg_entry *se;
375	struct f2fs_sit_entry *rs;
376	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
377					(unsigned long)MAIN_SEGS(sbi));
378	int i;
379
380	raw_sit = (struct f2fs_sit_block *)page_address(page);
381	memset(raw_sit, 0, PAGE_SIZE);
382	for (i = 0; i < end - start; i++) {
383		rs = &raw_sit->entries[i];
384		se = get_seg_entry(sbi, start + i);
385		__seg_info_to_raw_sit(se, rs);
386	}
387}
388
389static inline void seg_info_to_raw_sit(struct seg_entry *se,
390					struct f2fs_sit_entry *rs)
391{
392	__seg_info_to_raw_sit(se, rs);
393
394	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
395	se->ckpt_valid_blocks = se->valid_blocks;
396}
397
398static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
399		unsigned int max, unsigned int segno)
400{
401	unsigned int ret;
402	spin_lock(&free_i->segmap_lock);
403	ret = find_next_bit(free_i->free_segmap, max, segno);
404	spin_unlock(&free_i->segmap_lock);
405	return ret;
406}
407
408static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
409{
410	struct free_segmap_info *free_i = FREE_I(sbi);
411	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
412	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
413	unsigned int next;
414
415	spin_lock(&free_i->segmap_lock);
416	clear_bit(segno, free_i->free_segmap);
417	free_i->free_segments++;
418
419	next = find_next_bit(free_i->free_segmap,
420			start_segno + sbi->segs_per_sec, start_segno);
421	if (next >= start_segno + sbi->segs_per_sec) {
422		clear_bit(secno, free_i->free_secmap);
423		free_i->free_sections++;
424	}
425	spin_unlock(&free_i->segmap_lock);
426}
427
428static inline void __set_inuse(struct f2fs_sb_info *sbi,
429		unsigned int segno)
430{
431	struct free_segmap_info *free_i = FREE_I(sbi);
432	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
433
434	set_bit(segno, free_i->free_segmap);
435	free_i->free_segments--;
436	if (!test_and_set_bit(secno, free_i->free_secmap))
437		free_i->free_sections--;
438}
439
440static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
441		unsigned int segno)
442{
443	struct free_segmap_info *free_i = FREE_I(sbi);
444	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
445	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
446	unsigned int next;
447
448	spin_lock(&free_i->segmap_lock);
449	if (test_and_clear_bit(segno, free_i->free_segmap)) {
450		free_i->free_segments++;
451
452		if (IS_CURSEC(sbi, secno))
453			goto skip_free;
454		next = find_next_bit(free_i->free_segmap,
455				start_segno + sbi->segs_per_sec, start_segno);
456		if (next >= start_segno + sbi->segs_per_sec) {
457			if (test_and_clear_bit(secno, free_i->free_secmap))
458				free_i->free_sections++;
459		}
460	}
461skip_free:
462	spin_unlock(&free_i->segmap_lock);
463}
464
465static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
466		unsigned int segno)
467{
468	struct free_segmap_info *free_i = FREE_I(sbi);
469	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
470
471	spin_lock(&free_i->segmap_lock);
472	if (!test_and_set_bit(segno, free_i->free_segmap)) {
473		free_i->free_segments--;
474		if (!test_and_set_bit(secno, free_i->free_secmap))
475			free_i->free_sections--;
476	}
477	spin_unlock(&free_i->segmap_lock);
478}
479
480static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
481		void *dst_addr)
482{
483	struct sit_info *sit_i = SIT_I(sbi);
484
485#ifdef CONFIG_F2FS_CHECK_FS
486	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
487						sit_i->bitmap_size))
488		f2fs_bug_on(sbi, 1);
489#endif
490	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
491}
492
493static inline block_t written_block_count(struct f2fs_sb_info *sbi)
494{
495	return SIT_I(sbi)->written_valid_blocks;
496}
497
498static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
499{
500	return FREE_I(sbi)->free_segments;
501}
502
503static inline int reserved_segments(struct f2fs_sb_info *sbi)
504{
505	return SM_I(sbi)->reserved_segments;
506}
507
508static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
509{
510	return FREE_I(sbi)->free_sections;
511}
512
513static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
514{
515	return DIRTY_I(sbi)->nr_dirty[PRE];
516}
517
518static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
519{
520	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
521		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
522		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
523		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
524		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
525		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
526}
527
528static inline int overprovision_segments(struct f2fs_sb_info *sbi)
529{
530	return SM_I(sbi)->ovp_segments;
531}
532
533static inline int reserved_sections(struct f2fs_sb_info *sbi)
534{
535	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
536}
537
538static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
539{
540	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
541					get_pages(sbi, F2FS_DIRTY_DENTS);
542	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
543	unsigned int segno, left_blocks;
544	int i;
545
546	/* check current node segment */
547	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
548		segno = CURSEG_I(sbi, i)->segno;
549		left_blocks = sbi->blocks_per_seg -
550			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
551
552		if (node_blocks > left_blocks)
553			return false;
554	}
555
556	/* check current data segment */
557	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
558	left_blocks = sbi->blocks_per_seg -
559			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
560	if (dent_blocks > left_blocks)
561		return false;
562	return true;
563}
564
565static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
566					int freed, int needed)
567{
568	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
569	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
570	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
571
572	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
573		return false;
574
575	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
576			has_curseg_enough_space(sbi))
577		return false;
578	return (free_sections(sbi) + freed) <=
579		(node_secs + 2 * dent_secs + imeta_secs +
580		reserved_sections(sbi) + needed);
581}
582
583static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
584{
585	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
586		return true;
587	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
588		return true;
589	return false;
590}
591
592static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
593{
594	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
595}
596
597static inline int utilization(struct f2fs_sb_info *sbi)
598{
599	return div_u64((u64)valid_user_blocks(sbi) * 100,
600					sbi->user_block_count);
601}
602
603/*
604 * Sometimes f2fs may be better to drop out-of-place update policy.
605 * And, users can control the policy through sysfs entries.
606 * There are five policies with triggering conditions as follows.
607 * F2FS_IPU_FORCE - all the time,
608 * F2FS_IPU_SSR - if SSR mode is activated,
609 * F2FS_IPU_UTIL - if FS utilization is over threashold,
610 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
611 *                     threashold,
612 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
613 *                     storages. IPU will be triggered only if the # of dirty
614 *                     pages over min_fsync_blocks. (=default option)
615 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
616 * F2FS_IPU_NOCACHE - disable IPU bio cache.
617 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
618 */
619#define DEF_MIN_IPU_UTIL	70
620#define DEF_MIN_FSYNC_BLOCKS	8
621#define DEF_MIN_HOT_BLOCKS	16
622
623#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
624
625enum {
626	F2FS_IPU_FORCE,
627	F2FS_IPU_SSR,
628	F2FS_IPU_UTIL,
629	F2FS_IPU_SSR_UTIL,
630	F2FS_IPU_FSYNC,
631	F2FS_IPU_ASYNC,
632	F2FS_IPU_NOCACHE,
633};
634
635static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
636		int type)
637{
638	struct curseg_info *curseg = CURSEG_I(sbi, type);
639	return curseg->segno;
640}
641
642static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
643		int type)
644{
645	struct curseg_info *curseg = CURSEG_I(sbi, type);
646	return curseg->alloc_type;
647}
648
649static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
650{
651	struct curseg_info *curseg = CURSEG_I(sbi, type);
652	return curseg->next_blkoff;
653}
654
655static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
656{
657	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
658}
659
660static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
661{
662	struct f2fs_sb_info *sbi = fio->sbi;
663
664	if (__is_valid_data_blkaddr(fio->old_blkaddr))
665		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
666					META_GENERIC : DATA_GENERIC);
667	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
668					META_GENERIC : DATA_GENERIC_ENHANCE);
669}
670
671/*
672 * Summary block is always treated as an invalid block
673 */
674static inline int check_block_count(struct f2fs_sb_info *sbi,
675		int segno, struct f2fs_sit_entry *raw_sit)
676{
677	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
678	int valid_blocks = 0;
679	int cur_pos = 0, next_pos;
680
681	/* check bitmap with valid block count */
682	do {
683		if (is_valid) {
684			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
685					sbi->blocks_per_seg,
686					cur_pos);
687			valid_blocks += next_pos - cur_pos;
688		} else
689			next_pos = find_next_bit_le(&raw_sit->valid_map,
690					sbi->blocks_per_seg,
691					cur_pos);
692		cur_pos = next_pos;
693		is_valid = !is_valid;
694	} while (cur_pos < sbi->blocks_per_seg);
695
696	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
697		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
698			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699		set_sbi_flag(sbi, SBI_NEED_FSCK);
700		return -EFSCORRUPTED;
701	}
702
703	/* check segment usage, and check boundary of a given segment number */
704	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705					|| segno > TOTAL_SEGS(sbi) - 1)) {
706		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
707			 GET_SIT_VBLOCKS(raw_sit), segno);
708		set_sbi_flag(sbi, SBI_NEED_FSCK);
709		return -EFSCORRUPTED;
710	}
711	return 0;
712}
713
714static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
715						unsigned int start)
716{
717	struct sit_info *sit_i = SIT_I(sbi);
718	unsigned int offset = SIT_BLOCK_OFFSET(start);
719	block_t blk_addr = sit_i->sit_base_addr + offset;
720
721	check_seg_range(sbi, start);
722
723#ifdef CONFIG_F2FS_CHECK_FS
724	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
725			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
726		f2fs_bug_on(sbi, 1);
727#endif
728
729	/* calculate sit block address */
730	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
731		blk_addr += sit_i->sit_blocks;
732
733	return blk_addr;
734}
735
736static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
737						pgoff_t block_addr)
738{
739	struct sit_info *sit_i = SIT_I(sbi);
740	block_addr -= sit_i->sit_base_addr;
741	if (block_addr < sit_i->sit_blocks)
742		block_addr += sit_i->sit_blocks;
743	else
744		block_addr -= sit_i->sit_blocks;
745
746	return block_addr + sit_i->sit_base_addr;
747}
748
749static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
750{
751	unsigned int block_off = SIT_BLOCK_OFFSET(start);
752
753	f2fs_change_bit(block_off, sit_i->sit_bitmap);
754#ifdef CONFIG_F2FS_CHECK_FS
755	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
756#endif
757}
758
759static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
760						bool base_time)
761{
762	struct sit_info *sit_i = SIT_I(sbi);
763	time64_t diff, now = ktime_get_boottime_seconds();
764
765	if (now >= sit_i->mounted_time)
766		return sit_i->elapsed_time + now - sit_i->mounted_time;
767
768	/* system time is set to the past */
769	if (!base_time) {
770		diff = sit_i->mounted_time - now;
771		if (sit_i->elapsed_time >= diff)
772			return sit_i->elapsed_time - diff;
773		return 0;
774	}
775	return sit_i->elapsed_time;
776}
777
778static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
779			unsigned int ofs_in_node, unsigned char version)
780{
781	sum->nid = cpu_to_le32(nid);
782	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
783	sum->version = version;
784}
785
786static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
787{
788	return __start_cp_addr(sbi) +
789		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
790}
791
792static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
793{
794	return __start_cp_addr(sbi) +
795		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
796				- (base + 1) + type;
797}
798
799static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
800{
801	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
802		return true;
803	return false;
804}
805
806/*
807 * It is very important to gather dirty pages and write at once, so that we can
808 * submit a big bio without interfering other data writes.
809 * By default, 512 pages for directory data,
810 * 512 pages (2MB) * 8 for nodes, and
811 * 256 pages * 8 for meta are set.
812 */
813static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
814{
815	if (sbi->sb->s_bdi->wb.dirty_exceeded)
816		return 0;
817
818	if (type == DATA)
819		return sbi->blocks_per_seg;
820	else if (type == NODE)
821		return 8 * sbi->blocks_per_seg;
822	else if (type == META)
823		return 8 * BIO_MAX_PAGES;
824	else
825		return 0;
826}
827
828/*
829 * When writing pages, it'd better align nr_to_write for segment size.
830 */
831static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
832					struct writeback_control *wbc)
833{
834	long nr_to_write, desired;
835
836	if (wbc->sync_mode != WB_SYNC_NONE)
837		return 0;
838
839	nr_to_write = wbc->nr_to_write;
840	desired = BIO_MAX_PAGES;
841	if (type == NODE)
842		desired <<= 1;
843
844	wbc->nr_to_write = desired;
845	return desired - nr_to_write;
846}
847
848static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
849{
850	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
851	bool wakeup = false;
852	int i;
853
854	if (force)
855		goto wake_up;
856
857	mutex_lock(&dcc->cmd_lock);
858	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
859		if (i + 1 < dcc->discard_granularity)
860			break;
861		if (!list_empty(&dcc->pend_list[i])) {
862			wakeup = true;
863			break;
864		}
865	}
866	mutex_unlock(&dcc->cmd_lock);
867	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
868		return;
869wake_up:
870	dcc->discard_wake = 1;
871	wake_up_interruptible_all(&dcc->discard_wait_queue);
872}
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 23
 24#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 26
 27#define IS_CURSEG(sbi, seg)						\
 28	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 29	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 30	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 31	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 33	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 34
 35#define IS_CURSEC(sbi, secno)						\
 36	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 37	  sbi->segs_per_sec) ||	\
 38	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 39	  sbi->segs_per_sec) ||	\
 40	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 41	  sbi->segs_per_sec) ||	\
 42	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 43	  sbi->segs_per_sec) ||	\
 44	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 45	  sbi->segs_per_sec) ||	\
 46	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 47	  sbi->segs_per_sec))	\
 48
 49#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
 50#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
 51
 52#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 53#define MAIN_SECS(sbi)	(sbi->total_sections)
 54
 55#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
 56#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
 57
 58#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 59#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
 60					sbi->log_blocks_per_seg))
 61
 62#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 63	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 64
 65#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 66	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 67
 68#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 69#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 70	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 71#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 72	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 73
 74#define GET_SEGNO(sbi, blk_addr)					\
 75	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 76	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 77		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 78#define GET_SECNO(sbi, segno)					\
 79	((segno) / sbi->segs_per_sec)
 80#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 81	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 82
 83#define GET_SUM_BLOCK(sbi, segno)				\
 84	((sbi->sm_info->ssa_blkaddr) + segno)
 85
 86#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 87#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 88
 89#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 90	(segno % sit_i->sents_per_block)
 91#define SIT_BLOCK_OFFSET(segno)					\
 92	(segno / SIT_ENTRY_PER_BLOCK)
 93#define	START_SEGNO(segno)		\
 94	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 95#define SIT_BLK_CNT(sbi)			\
 96	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 97#define f2fs_bitmap_size(nr)			\
 98	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 99
100#define SECTOR_FROM_BLOCK(blk_addr)					\
101	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102#define SECTOR_TO_BLOCK(sectors)					\
103	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104#define MAX_BIO_BLOCKS(sbi)						\
105	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107/*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112enum {
113	ALLOC_RIGHT = 0,
114	ALLOC_LEFT
115};
116
117/*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122enum {
123	LFS = 0,
124	SSR
125};
126
127/*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132enum {
133	GC_CB = 0,
134	GC_GREEDY
135};
136
137/*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142enum {
143	BG_GC = 0,
144	FG_GC,
145	FORCE_FG_GC,
146};
147
148/* for a function parameter to select a victim segment */
149struct victim_sel_policy {
150	int alloc_mode;			/* LFS or SSR */
151	int gc_mode;			/* GC_CB or GC_GREEDY */
152	unsigned long *dirty_segmap;	/* dirty segment bitmap */
153	unsigned int max_search;	/* maximum # of segments to search */
154	unsigned int offset;		/* last scanned bitmap offset */
155	unsigned int ofs_unit;		/* bitmap search unit */
156	unsigned int min_cost;		/* minimum cost */
157	unsigned int min_segno;		/* segment # having min. cost */
158};
159
160struct seg_entry {
161	unsigned short valid_blocks;	/* # of valid blocks */
162	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
163	/*
164	 * # of valid blocks and the validity bitmap stored in the the last
165	 * checkpoint pack. This information is used by the SSR mode.
166	 */
167	unsigned short ckpt_valid_blocks;
168	unsigned char *ckpt_valid_map;
169	unsigned char *discard_map;
170	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
171	unsigned long long mtime;	/* modification time of the segment */
172};
173
174struct sec_entry {
175	unsigned int valid_blocks;	/* # of valid blocks in a section */
176};
177
178struct segment_allocation {
179	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180};
181
182/*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
187
188#define IS_ATOMIC_WRITTEN_PAGE(page)			\
189		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
191struct inmem_pages {
192	struct list_head list;
193	struct page *page;
194	block_t old_addr;		/* for revoking when fail to commit */
195};
196
197struct sit_info {
198	const struct segment_allocation *s_ops;
199
200	block_t sit_base_addr;		/* start block address of SIT area */
201	block_t sit_blocks;		/* # of blocks used by SIT area */
202	block_t written_valid_blocks;	/* # of valid blocks in main area */
203	char *sit_bitmap;		/* SIT bitmap pointer */
204	unsigned int bitmap_size;	/* SIT bitmap size */
205
206	unsigned long *tmp_map;			/* bitmap for temporal use */
207	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
208	unsigned int dirty_sentries;		/* # of dirty sentries */
209	unsigned int sents_per_block;		/* # of SIT entries per block */
210	struct mutex sentry_lock;		/* to protect SIT cache */
211	struct seg_entry *sentries;		/* SIT segment-level cache */
212	struct sec_entry *sec_entries;		/* SIT section-level cache */
213
214	/* for cost-benefit algorithm in cleaning procedure */
215	unsigned long long elapsed_time;	/* elapsed time after mount */
216	unsigned long long mounted_time;	/* mount time */
217	unsigned long long min_mtime;		/* min. modification time */
218	unsigned long long max_mtime;		/* max. modification time */
219};
220
221struct free_segmap_info {
222	unsigned int start_segno;	/* start segment number logically */
223	unsigned int free_segments;	/* # of free segments */
224	unsigned int free_sections;	/* # of free sections */
225	spinlock_t segmap_lock;		/* free segmap lock */
226	unsigned long *free_segmap;	/* free segment bitmap */
227	unsigned long *free_secmap;	/* free section bitmap */
228};
229
230/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
231enum dirty_type {
232	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
233	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
234	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
235	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
236	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
237	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
238	DIRTY,			/* to count # of dirty segments */
239	PRE,			/* to count # of entirely obsolete segments */
240	NR_DIRTY_TYPE
241};
242
243struct dirty_seglist_info {
244	const struct victim_selection *v_ops;	/* victim selction operation */
245	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
246	struct mutex seglist_lock;		/* lock for segment bitmaps */
247	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
248	unsigned long *victim_secmap;		/* background GC victims */
249};
250
251/* victim selection function for cleaning and SSR */
252struct victim_selection {
253	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
254							int, int, char);
255};
256
257/* for active log information */
258struct curseg_info {
259	struct mutex curseg_mutex;		/* lock for consistency */
260	struct f2fs_summary_block *sum_blk;	/* cached summary block */
261	struct rw_semaphore journal_rwsem;	/* protect journal area */
262	struct f2fs_journal *journal;		/* cached journal info */
263	unsigned char alloc_type;		/* current allocation type */
264	unsigned int segno;			/* current segment number */
265	unsigned short next_blkoff;		/* next block offset to write */
266	unsigned int zone;			/* current zone number */
267	unsigned int next_segno;		/* preallocated segment */
268};
269
270struct sit_entry_set {
271	struct list_head set_list;	/* link with all sit sets */
272	unsigned int start_segno;	/* start segno of sits in set */
273	unsigned int entry_cnt;		/* the # of sit entries in set */
274};
275
276/*
277 * inline functions
278 */
279static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
280{
281	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
282}
283
284static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
285						unsigned int segno)
286{
287	struct sit_info *sit_i = SIT_I(sbi);
288	return &sit_i->sentries[segno];
289}
290
291static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
292						unsigned int segno)
293{
294	struct sit_info *sit_i = SIT_I(sbi);
295	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
296}
297
298static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
299				unsigned int segno, int section)
300{
301	/*
302	 * In order to get # of valid blocks in a section instantly from many
303	 * segments, f2fs manages two counting structures separately.
304	 */
305	if (section > 1)
306		return get_sec_entry(sbi, segno)->valid_blocks;
307	else
308		return get_seg_entry(sbi, segno)->valid_blocks;
309}
310
311static inline void seg_info_from_raw_sit(struct seg_entry *se,
312					struct f2fs_sit_entry *rs)
313{
314	se->valid_blocks = GET_SIT_VBLOCKS(rs);
315	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
316	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
317	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
318	se->type = GET_SIT_TYPE(rs);
319	se->mtime = le64_to_cpu(rs->mtime);
320}
321
322static inline void seg_info_to_raw_sit(struct seg_entry *se,
323					struct f2fs_sit_entry *rs)
324{
325	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
326					se->valid_blocks;
327	rs->vblocks = cpu_to_le16(raw_vblocks);
328	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
329	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
330	se->ckpt_valid_blocks = se->valid_blocks;
331	rs->mtime = cpu_to_le64(se->mtime);
332}
333
334static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
335		unsigned int max, unsigned int segno)
336{
337	unsigned int ret;
338	spin_lock(&free_i->segmap_lock);
339	ret = find_next_bit(free_i->free_segmap, max, segno);
340	spin_unlock(&free_i->segmap_lock);
341	return ret;
342}
343
344static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
345{
346	struct free_segmap_info *free_i = FREE_I(sbi);
347	unsigned int secno = segno / sbi->segs_per_sec;
348	unsigned int start_segno = secno * sbi->segs_per_sec;
349	unsigned int next;
350
351	spin_lock(&free_i->segmap_lock);
352	clear_bit(segno, free_i->free_segmap);
353	free_i->free_segments++;
354
355	next = find_next_bit(free_i->free_segmap,
356			start_segno + sbi->segs_per_sec, start_segno);
357	if (next >= start_segno + sbi->segs_per_sec) {
358		clear_bit(secno, free_i->free_secmap);
359		free_i->free_sections++;
360	}
361	spin_unlock(&free_i->segmap_lock);
362}
363
364static inline void __set_inuse(struct f2fs_sb_info *sbi,
365		unsigned int segno)
366{
367	struct free_segmap_info *free_i = FREE_I(sbi);
368	unsigned int secno = segno / sbi->segs_per_sec;
369	set_bit(segno, free_i->free_segmap);
370	free_i->free_segments--;
371	if (!test_and_set_bit(secno, free_i->free_secmap))
372		free_i->free_sections--;
373}
374
375static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
376		unsigned int segno)
377{
378	struct free_segmap_info *free_i = FREE_I(sbi);
379	unsigned int secno = segno / sbi->segs_per_sec;
380	unsigned int start_segno = secno * sbi->segs_per_sec;
381	unsigned int next;
382
383	spin_lock(&free_i->segmap_lock);
384	if (test_and_clear_bit(segno, free_i->free_segmap)) {
385		free_i->free_segments++;
386
387		next = find_next_bit(free_i->free_segmap,
388				start_segno + sbi->segs_per_sec, start_segno);
389		if (next >= start_segno + sbi->segs_per_sec) {
390			if (test_and_clear_bit(secno, free_i->free_secmap))
391				free_i->free_sections++;
392		}
393	}
394	spin_unlock(&free_i->segmap_lock);
395}
396
397static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
398		unsigned int segno)
399{
400	struct free_segmap_info *free_i = FREE_I(sbi);
401	unsigned int secno = segno / sbi->segs_per_sec;
402	spin_lock(&free_i->segmap_lock);
403	if (!test_and_set_bit(segno, free_i->free_segmap)) {
404		free_i->free_segments--;
405		if (!test_and_set_bit(secno, free_i->free_secmap))
406			free_i->free_sections--;
407	}
408	spin_unlock(&free_i->segmap_lock);
409}
410
411static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
412		void *dst_addr)
413{
414	struct sit_info *sit_i = SIT_I(sbi);
415	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
416}
417
418static inline block_t written_block_count(struct f2fs_sb_info *sbi)
419{
420	return SIT_I(sbi)->written_valid_blocks;
421}
422
423static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
424{
425	return FREE_I(sbi)->free_segments;
426}
427
428static inline int reserved_segments(struct f2fs_sb_info *sbi)
429{
430	return SM_I(sbi)->reserved_segments;
431}
432
433static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
434{
435	return FREE_I(sbi)->free_sections;
436}
437
438static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
439{
440	return DIRTY_I(sbi)->nr_dirty[PRE];
441}
442
443static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
444{
445	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
446		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
447		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
448		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
449		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
450		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
451}
452
453static inline int overprovision_segments(struct f2fs_sb_info *sbi)
454{
455	return SM_I(sbi)->ovp_segments;
456}
457
458static inline int overprovision_sections(struct f2fs_sb_info *sbi)
459{
460	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
461}
462
463static inline int reserved_sections(struct f2fs_sb_info *sbi)
464{
465	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
466}
467
468static inline bool need_SSR(struct f2fs_sb_info *sbi)
469{
470	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
471	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
472	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
473						reserved_sections(sbi) + 1);
474}
475
476static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
477{
478	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
479	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
480
481	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482		return false;
483
484	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
485						reserved_sections(sbi));
486}
487
488static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
489{
490	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
491}
492
493static inline int utilization(struct f2fs_sb_info *sbi)
494{
495	return div_u64((u64)valid_user_blocks(sbi) * 100,
496					sbi->user_block_count);
497}
498
499/*
500 * Sometimes f2fs may be better to drop out-of-place update policy.
501 * And, users can control the policy through sysfs entries.
502 * There are five policies with triggering conditions as follows.
503 * F2FS_IPU_FORCE - all the time,
504 * F2FS_IPU_SSR - if SSR mode is activated,
505 * F2FS_IPU_UTIL - if FS utilization is over threashold,
506 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
507 *                     threashold,
508 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
509 *                     storages. IPU will be triggered only if the # of dirty
510 *                     pages over min_fsync_blocks.
511 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
512 */
513#define DEF_MIN_IPU_UTIL	70
514#define DEF_MIN_FSYNC_BLOCKS	8
515
516enum {
517	F2FS_IPU_FORCE,
518	F2FS_IPU_SSR,
519	F2FS_IPU_UTIL,
520	F2FS_IPU_SSR_UTIL,
521	F2FS_IPU_FSYNC,
522};
523
524static inline bool need_inplace_update(struct inode *inode)
525{
526	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
527	unsigned int policy = SM_I(sbi)->ipu_policy;
528
529	/* IPU can be done only for the user data */
530	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
531		return false;
532
533	if (policy & (0x1 << F2FS_IPU_FORCE))
534		return true;
535	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
536		return true;
537	if (policy & (0x1 << F2FS_IPU_UTIL) &&
538			utilization(sbi) > SM_I(sbi)->min_ipu_util)
539		return true;
540	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
541			utilization(sbi) > SM_I(sbi)->min_ipu_util)
542		return true;
543
544	/* this is only set during fdatasync */
545	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
546			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
547		return true;
548
549	return false;
550}
551
552static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
553		int type)
554{
555	struct curseg_info *curseg = CURSEG_I(sbi, type);
556	return curseg->segno;
557}
558
559static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
560		int type)
561{
562	struct curseg_info *curseg = CURSEG_I(sbi, type);
563	return curseg->alloc_type;
564}
565
566static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
567{
568	struct curseg_info *curseg = CURSEG_I(sbi, type);
569	return curseg->next_blkoff;
570}
571
572static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
573{
574	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
575}
576
577static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
578{
579	f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
580					|| blk_addr >= MAX_BLKADDR(sbi));
581}
582
583/*
584 * Summary block is always treated as an invalid block
585 */
586static inline void check_block_count(struct f2fs_sb_info *sbi,
587		int segno, struct f2fs_sit_entry *raw_sit)
588{
589#ifdef CONFIG_F2FS_CHECK_FS
590	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
591	int valid_blocks = 0;
592	int cur_pos = 0, next_pos;
593
594	/* check bitmap with valid block count */
595	do {
596		if (is_valid) {
597			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
598					sbi->blocks_per_seg,
599					cur_pos);
600			valid_blocks += next_pos - cur_pos;
601		} else
602			next_pos = find_next_bit_le(&raw_sit->valid_map,
603					sbi->blocks_per_seg,
604					cur_pos);
605		cur_pos = next_pos;
606		is_valid = !is_valid;
607	} while (cur_pos < sbi->blocks_per_seg);
608	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
609#endif
610	/* check segment usage, and check boundary of a given segment number */
611	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
612					|| segno > TOTAL_SEGS(sbi) - 1);
613}
614
615static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
616						unsigned int start)
617{
618	struct sit_info *sit_i = SIT_I(sbi);
619	unsigned int offset = SIT_BLOCK_OFFSET(start);
620	block_t blk_addr = sit_i->sit_base_addr + offset;
621
622	check_seg_range(sbi, start);
623
624	/* calculate sit block address */
625	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
626		blk_addr += sit_i->sit_blocks;
627
628	return blk_addr;
629}
630
631static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
632						pgoff_t block_addr)
633{
634	struct sit_info *sit_i = SIT_I(sbi);
635	block_addr -= sit_i->sit_base_addr;
636	if (block_addr < sit_i->sit_blocks)
637		block_addr += sit_i->sit_blocks;
638	else
639		block_addr -= sit_i->sit_blocks;
640
641	return block_addr + sit_i->sit_base_addr;
642}
643
644static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
645{
646	unsigned int block_off = SIT_BLOCK_OFFSET(start);
647
648	f2fs_change_bit(block_off, sit_i->sit_bitmap);
649}
650
651static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
652{
653	struct sit_info *sit_i = SIT_I(sbi);
654	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
655						sit_i->mounted_time;
656}
657
658static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
659			unsigned int ofs_in_node, unsigned char version)
660{
661	sum->nid = cpu_to_le32(nid);
662	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
663	sum->version = version;
664}
665
666static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
667{
668	return __start_cp_addr(sbi) +
669		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
670}
671
672static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
673{
674	return __start_cp_addr(sbi) +
675		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
676				- (base + 1) + type;
677}
678
679static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
680{
681	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
682		return true;
683	return false;
684}
685
686static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
687{
688	struct block_device *bdev = sbi->sb->s_bdev;
689	struct request_queue *q = bdev_get_queue(bdev);
690	return SECTOR_TO_BLOCK(queue_max_sectors(q));
691}
692
693/*
694 * It is very important to gather dirty pages and write at once, so that we can
695 * submit a big bio without interfering other data writes.
696 * By default, 512 pages for directory data,
697 * 512 pages (2MB) * 3 for three types of nodes, and
698 * max_bio_blocks for meta are set.
699 */
700static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
701{
702	if (sbi->sb->s_bdi->wb.dirty_exceeded)
703		return 0;
704
705	if (type == DATA)
706		return sbi->blocks_per_seg;
707	else if (type == NODE)
708		return 3 * sbi->blocks_per_seg;
709	else if (type == META)
710		return MAX_BIO_BLOCKS(sbi);
711	else
712		return 0;
713}
714
715/*
716 * When writing pages, it'd better align nr_to_write for segment size.
717 */
718static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
719					struct writeback_control *wbc)
720{
721	long nr_to_write, desired;
722
723	if (wbc->sync_mode != WB_SYNC_NONE)
724		return 0;
725
726	nr_to_write = wbc->nr_to_write;
727
728	if (type == DATA)
729		desired = 4096;
730	else if (type == NODE)
731		desired = 3 * max_hw_blocks(sbi);
732	else
733		desired = MAX_BIO_BLOCKS(sbi);
734
735	wbc->nr_to_write = desired;
736	return desired - nr_to_write;
737}