Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/of_device.h>
 
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/regmap.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-fsl-dspi.h>
  21
  22#define DRIVER_NAME			"fsl-dspi"
  23
  24#define SPI_MCR				0x00
  25#define SPI_MCR_MASTER			BIT(31)
  26#define SPI_MCR_PCSIS(x)		((x) << 16)
  27#define SPI_MCR_CLR_TXF			BIT(11)
  28#define SPI_MCR_CLR_RXF			BIT(10)
  29#define SPI_MCR_XSPI			BIT(3)
  30#define SPI_MCR_DIS_TXF			BIT(13)
  31#define SPI_MCR_DIS_RXF			BIT(12)
  32#define SPI_MCR_HALT			BIT(0)
  33
  34#define SPI_TCR				0x08
  35#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  36
  37#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  38#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  39#define SPI_CTAR_CPOL			BIT(26)
  40#define SPI_CTAR_CPHA			BIT(25)
  41#define SPI_CTAR_LSBFE			BIT(24)
  42#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  43#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  44#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  45#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  46#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  47#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  48#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  49#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  50#define SPI_CTAR_SCALE_BITS		0xf
  51
  52#define SPI_CTAR0_SLAVE			0x0c
  53
  54#define SPI_SR				0x2c
  55#define SPI_SR_TCFQF			BIT(31)
  56#define SPI_SR_EOQF			BIT(28)
  57#define SPI_SR_TFUF			BIT(27)
  58#define SPI_SR_TFFF			BIT(25)
  59#define SPI_SR_CMDTCF			BIT(23)
  60#define SPI_SR_SPEF			BIT(21)
  61#define SPI_SR_RFOF			BIT(19)
  62#define SPI_SR_TFIWF			BIT(18)
  63#define SPI_SR_RFDF			BIT(17)
  64#define SPI_SR_CMDFFF			BIT(16)
  65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
  66					SPI_SR_TFUF | SPI_SR_TFFF | \
  67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  68					SPI_SR_RFOF | SPI_SR_TFIWF | \
  69					SPI_SR_RFDF | SPI_SR_CMDFFF)
  70
  71#define SPI_RSER_TFFFE			BIT(25)
  72#define SPI_RSER_TFFFD			BIT(24)
  73#define SPI_RSER_RFDFE			BIT(17)
  74#define SPI_RSER_RFDFD			BIT(16)
  75
  76#define SPI_RSER			0x30
  77#define SPI_RSER_TCFQE			BIT(31)
  78#define SPI_RSER_EOQFE			BIT(28)
  79#define SPI_RSER_CMDTCFE		BIT(23)
  80
  81#define SPI_PUSHR			0x34
  82#define SPI_PUSHR_CMD_CONT		BIT(15)
  83#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  84#define SPI_PUSHR_CMD_EOQ		BIT(11)
  85#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  86#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  87
  88#define SPI_PUSHR_SLAVE			0x34
  89
  90#define SPI_POPR			0x38
  91
  92#define SPI_TXFR0			0x3c
  93#define SPI_TXFR1			0x40
  94#define SPI_TXFR2			0x44
  95#define SPI_TXFR3			0x48
  96#define SPI_RXFR0			0x7c
  97#define SPI_RXFR1			0x80
  98#define SPI_RXFR2			0x84
  99#define SPI_RXFR3			0x88
 100
 101#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 102#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 103#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 104
 105#define SPI_SREX			0x13c
 106
 107#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 108#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 109
 110#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 111
 112struct chip_data {
 113	u32			ctar_val;
 114};
 115
 116enum dspi_trans_mode {
 117	DSPI_EOQ_MODE = 0,
 118	DSPI_XSPI_MODE,
 119	DSPI_DMA_MODE,
 120};
 121
 122struct fsl_dspi_devtype_data {
 123	enum dspi_trans_mode	trans_mode;
 124	u8			max_clock_factor;
 125	int			fifo_size;
 126};
 127
 128enum {
 129	LS1021A,
 130	LS1012A,
 131	LS1028A,
 132	LS1043A,
 133	LS1046A,
 134	LS2080A,
 135	LS2085A,
 136	LX2160A,
 137	MCF5441X,
 138	VF610,
 139};
 140
 141static const struct fsl_dspi_devtype_data devtype_data[] = {
 142	[VF610] = {
 143		.trans_mode		= DSPI_DMA_MODE,
 144		.max_clock_factor	= 2,
 145		.fifo_size		= 4,
 146	},
 147	[LS1021A] = {
 148		/* Has A-011218 DMA erratum */
 149		.trans_mode		= DSPI_XSPI_MODE,
 150		.max_clock_factor	= 8,
 151		.fifo_size		= 4,
 152	},
 153	[LS1012A] = {
 154		/* Has A-011218 DMA erratum */
 155		.trans_mode		= DSPI_XSPI_MODE,
 156		.max_clock_factor	= 8,
 157		.fifo_size		= 16,
 158	},
 159	[LS1028A] = {
 160		.trans_mode		= DSPI_XSPI_MODE,
 161		.max_clock_factor	= 8,
 162		.fifo_size		= 4,
 163	},
 164	[LS1043A] = {
 165		/* Has A-011218 DMA erratum */
 166		.trans_mode		= DSPI_XSPI_MODE,
 167		.max_clock_factor	= 8,
 168		.fifo_size		= 16,
 169	},
 170	[LS1046A] = {
 171		/* Has A-011218 DMA erratum */
 172		.trans_mode		= DSPI_XSPI_MODE,
 173		.max_clock_factor	= 8,
 174		.fifo_size		= 16,
 175	},
 176	[LS2080A] = {
 177		.trans_mode		= DSPI_XSPI_MODE,
 178		.max_clock_factor	= 8,
 179		.fifo_size		= 4,
 180	},
 181	[LS2085A] = {
 182		.trans_mode		= DSPI_XSPI_MODE,
 183		.max_clock_factor	= 8,
 184		.fifo_size		= 4,
 185	},
 186	[LX2160A] = {
 187		.trans_mode		= DSPI_XSPI_MODE,
 188		.max_clock_factor	= 8,
 189		.fifo_size		= 4,
 190	},
 191	[MCF5441X] = {
 192		.trans_mode		= DSPI_EOQ_MODE,
 193		.max_clock_factor	= 8,
 194		.fifo_size		= 16,
 195	},
 196};
 197
 198struct fsl_dspi_dma {
 199	u32					*tx_dma_buf;
 200	struct dma_chan				*chan_tx;
 201	dma_addr_t				tx_dma_phys;
 202	struct completion			cmd_tx_complete;
 203	struct dma_async_tx_descriptor		*tx_desc;
 204
 205	u32					*rx_dma_buf;
 206	struct dma_chan				*chan_rx;
 207	dma_addr_t				rx_dma_phys;
 208	struct completion			cmd_rx_complete;
 209	struct dma_async_tx_descriptor		*rx_desc;
 210};
 211
 212struct fsl_dspi {
 213	struct spi_controller			*ctlr;
 214	struct platform_device			*pdev;
 215
 216	struct regmap				*regmap;
 217	struct regmap				*regmap_pushr;
 218	int					irq;
 219	struct clk				*clk;
 220
 221	struct spi_transfer			*cur_transfer;
 222	struct spi_message			*cur_msg;
 223	struct chip_data			*cur_chip;
 224	size_t					progress;
 225	size_t					len;
 226	const void				*tx;
 227	void					*rx;
 228	u16					tx_cmd;
 229	const struct fsl_dspi_devtype_data	*devtype_data;
 230
 231	struct completion			xfer_done;
 232
 233	struct fsl_dspi_dma			*dma;
 234
 235	int					oper_word_size;
 236	int					oper_bits_per_word;
 237
 238	int					words_in_flight;
 239
 240	/*
 241	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 242	 * individually (in XSPI mode)
 243	 */
 244	int					pushr_cmd;
 245	int					pushr_tx;
 246
 247	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 248	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 249};
 250
 251static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 252{
 253	switch (dspi->oper_word_size) {
 254	case 1:
 255		*txdata = *(u8 *)dspi->tx;
 256		break;
 257	case 2:
 258		*txdata = *(u16 *)dspi->tx;
 259		break;
 260	case 4:
 261		*txdata = *(u32 *)dspi->tx;
 262		break;
 263	}
 264	dspi->tx += dspi->oper_word_size;
 265}
 266
 267static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 268{
 269	switch (dspi->oper_word_size) {
 270	case 1:
 271		*(u8 *)dspi->rx = rxdata;
 272		break;
 273	case 2:
 274		*(u16 *)dspi->rx = rxdata;
 275		break;
 276	case 4:
 277		*(u32 *)dspi->rx = rxdata;
 278		break;
 279	}
 280	dspi->rx += dspi->oper_word_size;
 281}
 282
 283static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 284{
 285	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
 286	dspi->tx += sizeof(u32);
 287}
 288
 289static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 290{
 291	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
 292	dspi->rx += sizeof(u32);
 293}
 294
 295static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 296{
 297	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
 298	dspi->tx += sizeof(u16);
 299}
 300
 301static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 302{
 303	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
 304	dspi->rx += sizeof(u16);
 305}
 306
 307static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 308{
 309	u16 hi = *(u16 *)dspi->tx;
 310	u16 lo = *(u16 *)(dspi->tx + 2);
 311
 312	*txdata = (u32)hi << 16 | lo;
 313	dspi->tx += sizeof(u32);
 314}
 315
 316static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 317{
 318	u16 hi = rxdata & 0xffff;
 319	u16 lo = rxdata >> 16;
 320
 321	*(u16 *)dspi->rx = lo;
 322	*(u16 *)(dspi->rx + 2) = hi;
 323	dspi->rx += sizeof(u32);
 324}
 325
 326/*
 327 * Pop one word from the TX buffer for pushing into the
 328 * PUSHR register (TX FIFO)
 329 */
 330static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 331{
 332	u32 txdata = 0;
 333
 334	if (dspi->tx)
 335		dspi->host_to_dev(dspi, &txdata);
 336	dspi->len -= dspi->oper_word_size;
 337	return txdata;
 338}
 339
 340/* Prepare one TX FIFO entry (txdata plus cmd) */
 341static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 342{
 343	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 344
 345	if (spi_controller_is_slave(dspi->ctlr))
 346		return data;
 347
 348	if (dspi->len > 0)
 349		cmd |= SPI_PUSHR_CMD_CONT;
 350	return cmd << 16 | data;
 351}
 352
 353/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 354static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 355{
 356	if (!dspi->rx)
 357		return;
 358	dspi->dev_to_host(dspi, rxdata);
 359}
 360
 361static void dspi_tx_dma_callback(void *arg)
 362{
 363	struct fsl_dspi *dspi = arg;
 364	struct fsl_dspi_dma *dma = dspi->dma;
 365
 366	complete(&dma->cmd_tx_complete);
 367}
 368
 369static void dspi_rx_dma_callback(void *arg)
 370{
 371	struct fsl_dspi *dspi = arg;
 372	struct fsl_dspi_dma *dma = dspi->dma;
 373	int i;
 374
 375	if (dspi->rx) {
 376		for (i = 0; i < dspi->words_in_flight; i++)
 377			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 378	}
 379
 380	complete(&dma->cmd_rx_complete);
 381}
 382
 383static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 384{
 385	struct device *dev = &dspi->pdev->dev;
 386	struct fsl_dspi_dma *dma = dspi->dma;
 387	int time_left;
 388	int i;
 389
 390	for (i = 0; i < dspi->words_in_flight; i++)
 391		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 392
 393	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 394					dma->tx_dma_phys,
 395					dspi->words_in_flight *
 396					DMA_SLAVE_BUSWIDTH_4_BYTES,
 397					DMA_MEM_TO_DEV,
 398					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 399	if (!dma->tx_desc) {
 400		dev_err(dev, "Not able to get desc for DMA xfer\n");
 401		return -EIO;
 402	}
 403
 404	dma->tx_desc->callback = dspi_tx_dma_callback;
 405	dma->tx_desc->callback_param = dspi;
 406	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 407		dev_err(dev, "DMA submit failed\n");
 408		return -EINVAL;
 409	}
 410
 411	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 412					dma->rx_dma_phys,
 413					dspi->words_in_flight *
 414					DMA_SLAVE_BUSWIDTH_4_BYTES,
 415					DMA_DEV_TO_MEM,
 416					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 417	if (!dma->rx_desc) {
 418		dev_err(dev, "Not able to get desc for DMA xfer\n");
 419		return -EIO;
 420	}
 421
 422	dma->rx_desc->callback = dspi_rx_dma_callback;
 423	dma->rx_desc->callback_param = dspi;
 424	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 425		dev_err(dev, "DMA submit failed\n");
 426		return -EINVAL;
 427	}
 428
 429	reinit_completion(&dspi->dma->cmd_rx_complete);
 430	reinit_completion(&dspi->dma->cmd_tx_complete);
 431
 432	dma_async_issue_pending(dma->chan_rx);
 433	dma_async_issue_pending(dma->chan_tx);
 434
 435	if (spi_controller_is_slave(dspi->ctlr)) {
 436		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 437		return 0;
 438	}
 439
 440	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 441						DMA_COMPLETION_TIMEOUT);
 442	if (time_left == 0) {
 443		dev_err(dev, "DMA tx timeout\n");
 444		dmaengine_terminate_all(dma->chan_tx);
 445		dmaengine_terminate_all(dma->chan_rx);
 446		return -ETIMEDOUT;
 447	}
 448
 449	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 450						DMA_COMPLETION_TIMEOUT);
 451	if (time_left == 0) {
 452		dev_err(dev, "DMA rx timeout\n");
 453		dmaengine_terminate_all(dma->chan_tx);
 454		dmaengine_terminate_all(dma->chan_rx);
 455		return -ETIMEDOUT;
 456	}
 457
 458	return 0;
 459}
 460
 461static void dspi_setup_accel(struct fsl_dspi *dspi);
 462
 463static int dspi_dma_xfer(struct fsl_dspi *dspi)
 464{
 465	struct spi_message *message = dspi->cur_msg;
 466	struct device *dev = &dspi->pdev->dev;
 467	int ret = 0;
 468
 469	/*
 470	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 471	 * dspi_next_xfer_dma_submit
 472	 */
 473	while (dspi->len) {
 474		/* Figure out operational bits-per-word for this chunk */
 475		dspi_setup_accel(dspi);
 476
 477		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 478		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 479			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 480
 481		message->actual_length += dspi->words_in_flight *
 482					  dspi->oper_word_size;
 483
 484		ret = dspi_next_xfer_dma_submit(dspi);
 485		if (ret) {
 486			dev_err(dev, "DMA transfer failed\n");
 487			break;
 488		}
 489	}
 490
 491	return ret;
 492}
 493
 494static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 495{
 496	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 497	struct device *dev = &dspi->pdev->dev;
 498	struct dma_slave_config cfg;
 499	struct fsl_dspi_dma *dma;
 500	int ret;
 501
 502	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 503	if (!dma)
 504		return -ENOMEM;
 505
 506	dma->chan_rx = dma_request_chan(dev, "rx");
 507	if (IS_ERR(dma->chan_rx)) {
 508		dev_err(dev, "rx dma channel not available\n");
 509		ret = PTR_ERR(dma->chan_rx);
 510		return ret;
 511	}
 512
 513	dma->chan_tx = dma_request_chan(dev, "tx");
 514	if (IS_ERR(dma->chan_tx)) {
 515		dev_err(dev, "tx dma channel not available\n");
 516		ret = PTR_ERR(dma->chan_tx);
 517		goto err_tx_channel;
 518	}
 519
 520	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 521					     dma_bufsize, &dma->tx_dma_phys,
 522					     GFP_KERNEL);
 523	if (!dma->tx_dma_buf) {
 524		ret = -ENOMEM;
 525		goto err_tx_dma_buf;
 526	}
 527
 528	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 529					     dma_bufsize, &dma->rx_dma_phys,
 530					     GFP_KERNEL);
 531	if (!dma->rx_dma_buf) {
 532		ret = -ENOMEM;
 533		goto err_rx_dma_buf;
 534	}
 535
 
 536	cfg.src_addr = phy_addr + SPI_POPR;
 537	cfg.dst_addr = phy_addr + SPI_PUSHR;
 538	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 539	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 540	cfg.src_maxburst = 1;
 541	cfg.dst_maxburst = 1;
 542
 543	cfg.direction = DMA_DEV_TO_MEM;
 544	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 545	if (ret) {
 546		dev_err(dev, "can't configure rx dma channel\n");
 547		ret = -EINVAL;
 548		goto err_slave_config;
 549	}
 550
 551	cfg.direction = DMA_MEM_TO_DEV;
 552	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 553	if (ret) {
 554		dev_err(dev, "can't configure tx dma channel\n");
 555		ret = -EINVAL;
 556		goto err_slave_config;
 557	}
 558
 559	dspi->dma = dma;
 560	init_completion(&dma->cmd_tx_complete);
 561	init_completion(&dma->cmd_rx_complete);
 562
 563	return 0;
 564
 565err_slave_config:
 566	dma_free_coherent(dma->chan_rx->device->dev,
 567			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 568err_rx_dma_buf:
 569	dma_free_coherent(dma->chan_tx->device->dev,
 570			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 571err_tx_dma_buf:
 572	dma_release_channel(dma->chan_tx);
 573err_tx_channel:
 574	dma_release_channel(dma->chan_rx);
 575
 576	devm_kfree(dev, dma);
 577	dspi->dma = NULL;
 578
 579	return ret;
 580}
 581
 582static void dspi_release_dma(struct fsl_dspi *dspi)
 583{
 584	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 585	struct fsl_dspi_dma *dma = dspi->dma;
 586
 587	if (!dma)
 588		return;
 589
 590	if (dma->chan_tx) {
 591		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 592				  dma->tx_dma_buf, dma->tx_dma_phys);
 593		dma_release_channel(dma->chan_tx);
 594	}
 595
 596	if (dma->chan_rx) {
 597		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 598				  dma->rx_dma_buf, dma->rx_dma_phys);
 599		dma_release_channel(dma->chan_rx);
 600	}
 601}
 602
 603static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 604			   unsigned long clkrate)
 605{
 606	/* Valid baud rate pre-scaler values */
 607	int pbr_tbl[4] = {2, 3, 5, 7};
 608	int brs[16] = {	2,	4,	6,	8,
 609			16,	32,	64,	128,
 610			256,	512,	1024,	2048,
 611			4096,	8192,	16384,	32768 };
 612	int scale_needed, scale, minscale = INT_MAX;
 613	int i, j;
 614
 615	scale_needed = clkrate / speed_hz;
 616	if (clkrate % speed_hz)
 617		scale_needed++;
 618
 619	for (i = 0; i < ARRAY_SIZE(brs); i++)
 620		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 621			scale = brs[i] * pbr_tbl[j];
 622			if (scale >= scale_needed) {
 623				if (scale < minscale) {
 624					minscale = scale;
 625					*br = i;
 626					*pbr = j;
 627				}
 628				break;
 629			}
 630		}
 631
 632	if (minscale == INT_MAX) {
 633		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 634			speed_hz, clkrate);
 635		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 636		*br =  ARRAY_SIZE(brs) - 1;
 637	}
 638}
 639
 640static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 641			   unsigned long clkrate)
 642{
 643	int scale_needed, scale, minscale = INT_MAX;
 644	int pscale_tbl[4] = {1, 3, 5, 7};
 645	u32 remainder;
 646	int i, j;
 647
 648	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 649				   &remainder);
 650	if (remainder)
 651		scale_needed++;
 652
 653	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 654		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 655			scale = pscale_tbl[i] * (2 << j);
 656			if (scale >= scale_needed) {
 657				if (scale < minscale) {
 658					minscale = scale;
 659					*psc = i;
 660					*sc = j;
 661				}
 662				break;
 663			}
 664		}
 665
 666	if (minscale == INT_MAX) {
 667		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 668			delay_ns, clkrate);
 669		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 670		*sc = SPI_CTAR_SCALE_BITS;
 671	}
 672}
 673
 674static void dspi_pushr_write(struct fsl_dspi *dspi)
 675{
 676	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
 677}
 678
 679static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 680{
 681	/*
 682	 * The only time when the PCS doesn't need continuation after this word
 683	 * is when it's last. We need to look ahead, because we actually call
 684	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 685	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 686	 * word is enough. If there's more to transmit than that,
 687	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 688	 * generate a new PUSHR command with the final word that will have PCS
 689	 * deasserted (not continued) here.
 690	 */
 691	if (dspi->len > dspi->oper_word_size)
 692		cmd |= SPI_PUSHR_CMD_CONT;
 693	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 694}
 695
 696static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 697{
 698	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 699}
 700
 701static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 702{
 703	int num_bytes = num_words * dspi->oper_word_size;
 704	u16 tx_cmd = dspi->tx_cmd;
 705
 706	/*
 707	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 708	 * and cs_change does not want the PCS to stay on), then we need a new
 709	 * PUSHR command, since this one (for the body of the buffer)
 710	 * necessarily has the CONT bit set.
 711	 * So send one word less during this go, to force a split and a command
 712	 * with a single word next time, when CONT will be unset.
 713	 */
 714	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 715		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 716
 717	/* Update CTARE */
 718	regmap_write(dspi->regmap, SPI_CTARE(0),
 719		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 720		     SPI_CTARE_DTCP(num_words));
 721
 722	/*
 723	 * Write the CMD FIFO entry first, and then the two
 724	 * corresponding TX FIFO entries (or one...).
 725	 */
 726	dspi_pushr_cmd_write(dspi, tx_cmd);
 727
 728	/* Fill TX FIFO with as many transfers as possible */
 729	while (num_words--) {
 730		u32 data = dspi_pop_tx(dspi);
 731
 732		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 733		if (dspi->oper_bits_per_word > 16)
 734			dspi_pushr_txdata_write(dspi, data >> 16);
 735	}
 736}
 737
 738static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
 739{
 740	u16 xfer_cmd = dspi->tx_cmd;
 741
 742	/* Fill TX FIFO with as many transfers as possible */
 743	while (num_words--) {
 744		dspi->tx_cmd = xfer_cmd;
 745		/* Request EOQF for last transfer in FIFO */
 746		if (num_words == 0)
 747			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
 748		/* Write combined TX FIFO and CMD FIFO entry */
 749		dspi_pushr_write(dspi);
 750	}
 751}
 752
 753static u32 dspi_popr_read(struct fsl_dspi *dspi)
 754{
 755	u32 rxdata = 0;
 756
 757	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 758	return rxdata;
 759}
 760
 761static void dspi_fifo_read(struct fsl_dspi *dspi)
 762{
 763	int num_fifo_entries = dspi->words_in_flight;
 764
 765	/* Read one FIFO entry and push to rx buffer */
 766	while (num_fifo_entries--)
 767		dspi_push_rx(dspi, dspi_popr_read(dspi));
 768}
 769
 770static void dspi_setup_accel(struct fsl_dspi *dspi)
 771{
 772	struct spi_transfer *xfer = dspi->cur_transfer;
 773	bool odd = !!(dspi->len & 1);
 774
 775	/* No accel for frames not multiple of 8 bits at the moment */
 776	if (xfer->bits_per_word % 8)
 777		goto no_accel;
 778
 779	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 780		dspi->oper_bits_per_word = 16;
 781	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 782		dspi->oper_bits_per_word = 8;
 783	} else {
 784		/* Start off with maximum supported by hardware */
 785		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 786			dspi->oper_bits_per_word = 32;
 787		else
 788			dspi->oper_bits_per_word = 16;
 789
 790		/*
 791		 * And go down only if the buffer can't be sent with
 792		 * words this big
 793		 */
 794		do {
 795			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 796				break;
 797
 798			dspi->oper_bits_per_word /= 2;
 799		} while (dspi->oper_bits_per_word > 8);
 800	}
 801
 802	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 803		dspi->dev_to_host = dspi_8on32_dev_to_host;
 804		dspi->host_to_dev = dspi_8on32_host_to_dev;
 805	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 806		dspi->dev_to_host = dspi_8on16_dev_to_host;
 807		dspi->host_to_dev = dspi_8on16_host_to_dev;
 808	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 809		dspi->dev_to_host = dspi_16on32_dev_to_host;
 810		dspi->host_to_dev = dspi_16on32_host_to_dev;
 811	} else {
 812no_accel:
 813		dspi->dev_to_host = dspi_native_dev_to_host;
 814		dspi->host_to_dev = dspi_native_host_to_dev;
 815		dspi->oper_bits_per_word = xfer->bits_per_word;
 816	}
 817
 818	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 819
 820	/*
 821	 * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
 822	 * We will update CTARE in the portion specific to XSPI, when we
 823	 * also know the preload value (DTCP).
 824	 */
 825	regmap_write(dspi->regmap, SPI_CTAR(0),
 826		     dspi->cur_chip->ctar_val |
 827		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 828}
 829
 830static void dspi_fifo_write(struct fsl_dspi *dspi)
 831{
 832	int num_fifo_entries = dspi->devtype_data->fifo_size;
 833	struct spi_transfer *xfer = dspi->cur_transfer;
 834	struct spi_message *msg = dspi->cur_msg;
 835	int num_words, num_bytes;
 836
 837	dspi_setup_accel(dspi);
 838
 839	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 840	if (dspi->oper_word_size == 4)
 841		num_fifo_entries /= 2;
 842
 843	/*
 844	 * Integer division intentionally trims off odd (or non-multiple of 4)
 845	 * numbers of bytes at the end of the buffer, which will be sent next
 846	 * time using a smaller oper_word_size.
 847	 */
 848	num_words = dspi->len / dspi->oper_word_size;
 849	if (num_words > num_fifo_entries)
 850		num_words = num_fifo_entries;
 851
 852	/* Update total number of bytes that were transferred */
 853	num_bytes = num_words * dspi->oper_word_size;
 854	msg->actual_length += num_bytes;
 855	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 856
 857	/*
 858	 * Update shared variable for use in the next interrupt (both in
 859	 * dspi_fifo_read and in dspi_fifo_write).
 860	 */
 861	dspi->words_in_flight = num_words;
 862
 863	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 864
 865	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
 866		dspi_eoq_fifo_write(dspi, num_words);
 867	else
 868		dspi_xspi_fifo_write(dspi, num_words);
 869	/*
 870	 * Everything after this point is in a potential race with the next
 871	 * interrupt, so we must never use dspi->words_in_flight again since it
 872	 * might already be modified by the next dspi_fifo_write.
 873	 */
 874
 875	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 876				dspi->progress, !dspi->irq);
 877}
 878
 879static int dspi_rxtx(struct fsl_dspi *dspi)
 880{
 881	dspi_fifo_read(dspi);
 882
 883	if (!dspi->len)
 884		/* Success! */
 885		return 0;
 886
 887	dspi_fifo_write(dspi);
 888
 889	return -EINPROGRESS;
 890}
 891
 892static int dspi_poll(struct fsl_dspi *dspi)
 893{
 894	int tries = 1000;
 895	u32 spi_sr;
 896
 897	do {
 898		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 899		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 900
 901		if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
 902			break;
 903	} while (--tries);
 904
 905	if (!tries)
 906		return -ETIMEDOUT;
 907
 908	return dspi_rxtx(dspi);
 909}
 910
 911static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 912{
 913	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 914	u32 spi_sr;
 915
 916	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 917	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 918
 919	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
 920		return IRQ_NONE;
 921
 922	if (dspi_rxtx(dspi) == 0)
 923		complete(&dspi->xfer_done);
 924
 925	return IRQ_HANDLED;
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928static int dspi_transfer_one_message(struct spi_controller *ctlr,
 929				     struct spi_message *message)
 930{
 931	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 932	struct spi_device *spi = message->spi;
 933	struct spi_transfer *transfer;
 
 934	int status = 0;
 935
 936	message->actual_length = 0;
 937
 938	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 939		dspi->cur_transfer = transfer;
 940		dspi->cur_msg = message;
 941		dspi->cur_chip = spi_get_ctldata(spi);
 
 
 
 942		/* Prepare command word for CMD FIFO */
 943		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
 944			       SPI_PUSHR_CMD_PCS(spi->chip_select);
 
 
 945		if (list_is_last(&dspi->cur_transfer->transfer_list,
 946				 &dspi->cur_msg->transfers)) {
 947			/* Leave PCS activated after last transfer when
 948			 * cs_change is set.
 949			 */
 950			if (transfer->cs_change)
 951				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 952		} else {
 953			/* Keep PCS active between transfers in same message
 954			 * when cs_change is not set, and de-activate PCS
 955			 * between transfers in the same message when
 956			 * cs_change is set.
 957			 */
 958			if (!transfer->cs_change)
 959				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 960		}
 961
 962		dspi->tx = transfer->tx_buf;
 963		dspi->rx = transfer->rx_buf;
 964		dspi->len = transfer->len;
 965		dspi->progress = 0;
 966
 967		regmap_update_bits(dspi->regmap, SPI_MCR,
 968				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 969				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 970
 971		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 972				       dspi->progress, !dspi->irq);
 973
 974		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 975			status = dspi_dma_xfer(dspi);
 976		} else {
 977			dspi_fifo_write(dspi);
 978
 979			if (dspi->irq) {
 980				wait_for_completion(&dspi->xfer_done);
 981				reinit_completion(&dspi->xfer_done);
 982			} else {
 983				do {
 984					status = dspi_poll(dspi);
 985				} while (status == -EINPROGRESS);
 986			}
 987		}
 988		if (status)
 989			break;
 990
 991		spi_transfer_delay_exec(transfer);
 
 
 
 992	}
 993
 994	message->status = status;
 995	spi_finalize_current_message(ctlr);
 996
 997	return status;
 998}
 999
1000static int dspi_setup(struct spi_device *spi)
1001{
1002	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 
1003	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 
1004	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1005	struct fsl_dspi_platform_data *pdata;
1006	unsigned char pasc = 0, asc = 0;
1007	struct chip_data *chip;
1008	unsigned long clkrate;
 
1009
1010	/* Only alloc on first setup */
1011	chip = spi_get_ctldata(spi);
1012	if (chip == NULL) {
1013		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1014		if (!chip)
1015			return -ENOMEM;
1016	}
1017
1018	pdata = dev_get_platdata(&dspi->pdev->dev);
1019
1020	if (!pdata) {
1021		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1022				     &cs_sck_delay);
1023
1024		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1025				     &sck_cs_delay);
1026	} else {
1027		cs_sck_delay = pdata->cs_sck_delay;
1028		sck_cs_delay = pdata->sck_cs_delay;
1029	}
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	clkrate = clk_get_rate(dspi->clk);
1032	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1033
1034	/* Set PCS to SCK delay scale values */
1035	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1036
1037	/* Set After SCK delay scale values */
1038	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1039
1040	chip->ctar_val = 0;
1041	if (spi->mode & SPI_CPOL)
1042		chip->ctar_val |= SPI_CTAR_CPOL;
1043	if (spi->mode & SPI_CPHA)
1044		chip->ctar_val |= SPI_CTAR_CPHA;
1045
1046	if (!spi_controller_is_slave(dspi->ctlr)) {
1047		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1048				  SPI_CTAR_CSSCK(cssck) |
1049				  SPI_CTAR_PASC(pasc) |
1050				  SPI_CTAR_ASC(asc) |
1051				  SPI_CTAR_PBR(pbr) |
1052				  SPI_CTAR_BR(br);
1053
1054		if (spi->mode & SPI_LSB_FIRST)
1055			chip->ctar_val |= SPI_CTAR_LSBFE;
1056	}
1057
 
 
 
1058	spi_set_ctldata(spi, chip);
1059
1060	return 0;
1061}
1062
1063static void dspi_cleanup(struct spi_device *spi)
1064{
1065	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1066
1067	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1068		spi->controller->bus_num, spi->chip_select);
1069
1070	kfree(chip);
1071}
1072
1073static const struct of_device_id fsl_dspi_dt_ids[] = {
1074	{
1075		.compatible = "fsl,vf610-dspi",
1076		.data = &devtype_data[VF610],
1077	}, {
1078		.compatible = "fsl,ls1021a-v1.0-dspi",
1079		.data = &devtype_data[LS1021A],
1080	}, {
1081		.compatible = "fsl,ls1012a-dspi",
1082		.data = &devtype_data[LS1012A],
1083	}, {
1084		.compatible = "fsl,ls1028a-dspi",
1085		.data = &devtype_data[LS1028A],
1086	}, {
1087		.compatible = "fsl,ls1043a-dspi",
1088		.data = &devtype_data[LS1043A],
1089	}, {
1090		.compatible = "fsl,ls1046a-dspi",
1091		.data = &devtype_data[LS1046A],
1092	}, {
1093		.compatible = "fsl,ls2080a-dspi",
1094		.data = &devtype_data[LS2080A],
1095	}, {
1096		.compatible = "fsl,ls2085a-dspi",
1097		.data = &devtype_data[LS2085A],
1098	}, {
1099		.compatible = "fsl,lx2160a-dspi",
1100		.data = &devtype_data[LX2160A],
1101	},
1102	{ /* sentinel */ }
1103};
1104MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1105
1106#ifdef CONFIG_PM_SLEEP
1107static int dspi_suspend(struct device *dev)
1108{
1109	struct spi_controller *ctlr = dev_get_drvdata(dev);
1110	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1111
1112	if (dspi->irq)
1113		disable_irq(dspi->irq);
1114	spi_controller_suspend(ctlr);
1115	clk_disable_unprepare(dspi->clk);
1116
1117	pinctrl_pm_select_sleep_state(dev);
1118
1119	return 0;
1120}
1121
1122static int dspi_resume(struct device *dev)
1123{
1124	struct spi_controller *ctlr = dev_get_drvdata(dev);
1125	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1126	int ret;
1127
1128	pinctrl_pm_select_default_state(dev);
1129
1130	ret = clk_prepare_enable(dspi->clk);
1131	if (ret)
1132		return ret;
1133	spi_controller_resume(ctlr);
1134	if (dspi->irq)
1135		enable_irq(dspi->irq);
1136
1137	return 0;
1138}
1139#endif /* CONFIG_PM_SLEEP */
1140
1141static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1142
1143static const struct regmap_range dspi_volatile_ranges[] = {
1144	regmap_reg_range(SPI_MCR, SPI_TCR),
1145	regmap_reg_range(SPI_SR, SPI_SR),
1146	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1147};
1148
1149static const struct regmap_access_table dspi_volatile_table = {
1150	.yes_ranges	= dspi_volatile_ranges,
1151	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1152};
1153
1154static const struct regmap_config dspi_regmap_config = {
1155	.reg_bits	= 32,
1156	.val_bits	= 32,
1157	.reg_stride	= 4,
1158	.max_register	= 0x88,
1159	.volatile_table	= &dspi_volatile_table,
1160};
1161
1162static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1163	regmap_reg_range(SPI_MCR, SPI_TCR),
1164	regmap_reg_range(SPI_SR, SPI_SR),
1165	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1166	regmap_reg_range(SPI_SREX, SPI_SREX),
1167};
1168
1169static const struct regmap_access_table dspi_xspi_volatile_table = {
1170	.yes_ranges	= dspi_xspi_volatile_ranges,
1171	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1172};
1173
1174static const struct regmap_config dspi_xspi_regmap_config[] = {
1175	{
1176		.reg_bits	= 32,
1177		.val_bits	= 32,
1178		.reg_stride	= 4,
1179		.max_register	= 0x13c,
1180		.volatile_table	= &dspi_xspi_volatile_table,
1181	},
1182	{
1183		.name		= "pushr",
1184		.reg_bits	= 16,
1185		.val_bits	= 16,
1186		.reg_stride	= 2,
1187		.max_register	= 0x2,
1188	},
1189};
1190
1191static int dspi_init(struct fsl_dspi *dspi)
1192{
1193	unsigned int mcr;
1194
1195	/* Set idle states for all chip select signals to high */
1196	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1197
1198	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1199		mcr |= SPI_MCR_XSPI;
1200	if (!spi_controller_is_slave(dspi->ctlr))
1201		mcr |= SPI_MCR_MASTER;
1202
1203	regmap_write(dspi->regmap, SPI_MCR, mcr);
1204	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1205
1206	switch (dspi->devtype_data->trans_mode) {
1207	case DSPI_EOQ_MODE:
1208		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1209		break;
1210	case DSPI_XSPI_MODE:
1211		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1212		break;
1213	case DSPI_DMA_MODE:
1214		regmap_write(dspi->regmap, SPI_RSER,
1215			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1216			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1217		break;
1218	default:
1219		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1220			dspi->devtype_data->trans_mode);
1221		return -EINVAL;
1222	}
1223
1224	return 0;
1225}
1226
1227static int dspi_slave_abort(struct spi_master *master)
1228{
1229	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1230
1231	/*
1232	 * Terminate all pending DMA transactions for the SPI working
1233	 * in SLAVE mode.
1234	 */
1235	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1236		dmaengine_terminate_sync(dspi->dma->chan_rx);
1237		dmaengine_terminate_sync(dspi->dma->chan_tx);
1238	}
1239
1240	/* Clear the internal DSPI RX and TX FIFO buffers */
1241	regmap_update_bits(dspi->regmap, SPI_MCR,
1242			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1243			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1244
1245	return 0;
1246}
1247
1248/*
1249 * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1250 * (hardware limitation), so we need to inform the spi_device that larger
1251 * buffers than the FIFO size are going to have the chip select randomly
1252 * toggling, so it has a chance to adapt its message sizes.
1253 */
1254static size_t dspi_max_message_size(struct spi_device *spi)
1255{
1256	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1257
1258	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1259		return dspi->devtype_data->fifo_size;
1260
1261	return SIZE_MAX;
1262}
1263
1264static int dspi_probe(struct platform_device *pdev)
1265{
1266	struct device_node *np = pdev->dev.of_node;
1267	const struct regmap_config *regmap_config;
1268	struct fsl_dspi_platform_data *pdata;
1269	struct spi_controller *ctlr;
1270	int ret, cs_num, bus_num = -1;
1271	struct fsl_dspi *dspi;
1272	struct resource *res;
1273	void __iomem *base;
1274	bool big_endian;
1275
1276	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1277	if (!dspi)
1278		return -ENOMEM;
1279
1280	ctlr = spi_alloc_master(&pdev->dev, 0);
1281	if (!ctlr)
1282		return -ENOMEM;
1283
1284	spi_controller_set_devdata(ctlr, dspi);
1285	platform_set_drvdata(pdev, dspi);
1286
1287	dspi->pdev = pdev;
1288	dspi->ctlr = ctlr;
1289
1290	ctlr->setup = dspi_setup;
1291	ctlr->transfer_one_message = dspi_transfer_one_message;
1292	ctlr->max_message_size = dspi_max_message_size;
1293	ctlr->dev.of_node = pdev->dev.of_node;
1294
1295	ctlr->cleanup = dspi_cleanup;
1296	ctlr->slave_abort = dspi_slave_abort;
1297	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 
1298
1299	pdata = dev_get_platdata(&pdev->dev);
1300	if (pdata) {
1301		ctlr->num_chipselect = pdata->cs_num;
1302		ctlr->bus_num = pdata->bus_num;
1303
1304		/* Only Coldfire uses platform data */
1305		dspi->devtype_data = &devtype_data[MCF5441X];
1306		big_endian = true;
1307	} else {
1308
1309		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1310		if (ret < 0) {
1311			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1312			goto out_ctlr_put;
1313		}
1314		ctlr->num_chipselect = cs_num;
1315
1316		of_property_read_u32(np, "bus-num", &bus_num);
1317		ctlr->bus_num = bus_num;
1318
1319		if (of_property_read_bool(np, "spi-slave"))
1320			ctlr->slave = true;
1321
1322		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1323		if (!dspi->devtype_data) {
1324			dev_err(&pdev->dev, "can't get devtype_data\n");
1325			ret = -EFAULT;
1326			goto out_ctlr_put;
1327		}
1328
1329		big_endian = of_device_is_big_endian(np);
1330	}
1331	if (big_endian) {
1332		dspi->pushr_cmd = 0;
1333		dspi->pushr_tx = 2;
1334	} else {
1335		dspi->pushr_cmd = 2;
1336		dspi->pushr_tx = 0;
1337	}
1338
1339	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1340		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1341	else
1342		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1343
1344	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345	base = devm_ioremap_resource(&pdev->dev, res);
1346	if (IS_ERR(base)) {
1347		ret = PTR_ERR(base);
1348		goto out_ctlr_put;
1349	}
1350
1351	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1352		regmap_config = &dspi_xspi_regmap_config[0];
1353	else
1354		regmap_config = &dspi_regmap_config;
1355	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1356	if (IS_ERR(dspi->regmap)) {
1357		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1358				PTR_ERR(dspi->regmap));
1359		ret = PTR_ERR(dspi->regmap);
1360		goto out_ctlr_put;
1361	}
1362
1363	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1364		dspi->regmap_pushr = devm_regmap_init_mmio(
1365			&pdev->dev, base + SPI_PUSHR,
1366			&dspi_xspi_regmap_config[1]);
1367		if (IS_ERR(dspi->regmap_pushr)) {
1368			dev_err(&pdev->dev,
1369				"failed to init pushr regmap: %ld\n",
1370				PTR_ERR(dspi->regmap_pushr));
1371			ret = PTR_ERR(dspi->regmap_pushr);
1372			goto out_ctlr_put;
1373		}
1374	}
1375
1376	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1377	if (IS_ERR(dspi->clk)) {
1378		ret = PTR_ERR(dspi->clk);
1379		dev_err(&pdev->dev, "unable to get clock\n");
1380		goto out_ctlr_put;
1381	}
1382	ret = clk_prepare_enable(dspi->clk);
1383	if (ret)
1384		goto out_ctlr_put;
1385
1386	ret = dspi_init(dspi);
1387	if (ret)
1388		goto out_clk_put;
1389
1390	dspi->irq = platform_get_irq(pdev, 0);
1391	if (dspi->irq <= 0) {
1392		dev_info(&pdev->dev,
1393			 "can't get platform irq, using poll mode\n");
1394		dspi->irq = 0;
1395		goto poll_mode;
1396	}
1397
1398	init_completion(&dspi->xfer_done);
1399
1400	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1401				   IRQF_SHARED, pdev->name, dspi);
1402	if (ret < 0) {
1403		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1404		goto out_clk_put;
1405	}
1406
1407poll_mode:
1408
1409	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1410		ret = dspi_request_dma(dspi, res->start);
1411		if (ret < 0) {
1412			dev_err(&pdev->dev, "can't get dma channels\n");
1413			goto out_free_irq;
1414		}
1415	}
1416
1417	ctlr->max_speed_hz =
1418		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1419
1420	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1421		ctlr->ptp_sts_supported = true;
1422
1423	ret = spi_register_controller(ctlr);
1424	if (ret != 0) {
1425		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1426		goto out_free_irq;
1427	}
1428
1429	return ret;
1430
 
 
1431out_free_irq:
1432	if (dspi->irq)
1433		free_irq(dspi->irq, dspi);
1434out_clk_put:
1435	clk_disable_unprepare(dspi->clk);
1436out_ctlr_put:
1437	spi_controller_put(ctlr);
1438
1439	return ret;
1440}
1441
1442static int dspi_remove(struct platform_device *pdev)
1443{
1444	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1445
1446	/* Disconnect from the SPI framework */
1447	spi_unregister_controller(dspi->ctlr);
1448
1449	/* Disable RX and TX */
1450	regmap_update_bits(dspi->regmap, SPI_MCR,
1451			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1452			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1453
1454	/* Stop Running */
1455	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1456
1457	dspi_release_dma(dspi);
1458	if (dspi->irq)
1459		free_irq(dspi->irq, dspi);
1460	clk_disable_unprepare(dspi->clk);
1461
1462	return 0;
1463}
1464
1465static void dspi_shutdown(struct platform_device *pdev)
1466{
1467	dspi_remove(pdev);
1468}
1469
1470static struct platform_driver fsl_dspi_driver = {
1471	.driver.name		= DRIVER_NAME,
1472	.driver.of_match_table	= fsl_dspi_dt_ids,
1473	.driver.owner		= THIS_MODULE,
1474	.driver.pm		= &dspi_pm,
1475	.probe			= dspi_probe,
1476	.remove			= dspi_remove,
1477	.shutdown		= dspi_shutdown,
1478};
1479module_platform_driver(fsl_dspi_driver);
1480
1481MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1482MODULE_LICENSE("GPL");
1483MODULE_ALIAS("platform:" DRIVER_NAME);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/platform_device.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/regmap.h>
  20#include <linux/spi/spi.h>
  21#include <linux/spi/spi-fsl-dspi.h>
  22
  23#define DRIVER_NAME			"fsl-dspi"
  24
  25#define SPI_MCR				0x00
  26#define SPI_MCR_HOST			BIT(31)
  27#define SPI_MCR_PCSIS(x)		((x) << 16)
  28#define SPI_MCR_CLR_TXF			BIT(11)
  29#define SPI_MCR_CLR_RXF			BIT(10)
  30#define SPI_MCR_XSPI			BIT(3)
  31#define SPI_MCR_DIS_TXF			BIT(13)
  32#define SPI_MCR_DIS_RXF			BIT(12)
  33#define SPI_MCR_HALT			BIT(0)
  34
  35#define SPI_TCR				0x08
  36#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  37
  38#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  39#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  40#define SPI_CTAR_CPOL			BIT(26)
  41#define SPI_CTAR_CPHA			BIT(25)
  42#define SPI_CTAR_LSBFE			BIT(24)
  43#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  44#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  45#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  46#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  47#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  48#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  49#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  50#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  51#define SPI_CTAR_SCALE_BITS		0xf
  52
  53#define SPI_CTAR0_SLAVE			0x0c
  54
  55#define SPI_SR				0x2c
  56#define SPI_SR_TCFQF			BIT(31)
 
  57#define SPI_SR_TFUF			BIT(27)
  58#define SPI_SR_TFFF			BIT(25)
  59#define SPI_SR_CMDTCF			BIT(23)
  60#define SPI_SR_SPEF			BIT(21)
  61#define SPI_SR_RFOF			BIT(19)
  62#define SPI_SR_TFIWF			BIT(18)
  63#define SPI_SR_RFDF			BIT(17)
  64#define SPI_SR_CMDFFF			BIT(16)
  65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
  66					SPI_SR_TFUF | SPI_SR_TFFF | \
  67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  68					SPI_SR_RFOF | SPI_SR_TFIWF | \
  69					SPI_SR_RFDF | SPI_SR_CMDFFF)
  70
  71#define SPI_RSER_TFFFE			BIT(25)
  72#define SPI_RSER_TFFFD			BIT(24)
  73#define SPI_RSER_RFDFE			BIT(17)
  74#define SPI_RSER_RFDFD			BIT(16)
  75
  76#define SPI_RSER			0x30
  77#define SPI_RSER_TCFQE			BIT(31)
 
  78#define SPI_RSER_CMDTCFE		BIT(23)
  79
  80#define SPI_PUSHR			0x34
  81#define SPI_PUSHR_CMD_CONT		BIT(15)
  82#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  83#define SPI_PUSHR_CMD_EOQ		BIT(11)
  84#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  85#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  86
  87#define SPI_PUSHR_SLAVE			0x34
  88
  89#define SPI_POPR			0x38
  90
  91#define SPI_TXFR0			0x3c
  92#define SPI_TXFR1			0x40
  93#define SPI_TXFR2			0x44
  94#define SPI_TXFR3			0x48
  95#define SPI_RXFR0			0x7c
  96#define SPI_RXFR1			0x80
  97#define SPI_RXFR2			0x84
  98#define SPI_RXFR3			0x88
  99
 100#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 101#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 102#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 103
 104#define SPI_SREX			0x13c
 105
 106#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 107#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 108
 109#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 110
 111struct chip_data {
 112	u32			ctar_val;
 113};
 114
 115enum dspi_trans_mode {
 
 116	DSPI_XSPI_MODE,
 117	DSPI_DMA_MODE,
 118};
 119
 120struct fsl_dspi_devtype_data {
 121	enum dspi_trans_mode	trans_mode;
 122	u8			max_clock_factor;
 123	int			fifo_size;
 124};
 125
 126enum {
 127	LS1021A,
 128	LS1012A,
 129	LS1028A,
 130	LS1043A,
 131	LS1046A,
 132	LS2080A,
 133	LS2085A,
 134	LX2160A,
 135	MCF5441X,
 136	VF610,
 137};
 138
 139static const struct fsl_dspi_devtype_data devtype_data[] = {
 140	[VF610] = {
 141		.trans_mode		= DSPI_DMA_MODE,
 142		.max_clock_factor	= 2,
 143		.fifo_size		= 4,
 144	},
 145	[LS1021A] = {
 146		/* Has A-011218 DMA erratum */
 147		.trans_mode		= DSPI_XSPI_MODE,
 148		.max_clock_factor	= 8,
 149		.fifo_size		= 4,
 150	},
 151	[LS1012A] = {
 152		/* Has A-011218 DMA erratum */
 153		.trans_mode		= DSPI_XSPI_MODE,
 154		.max_clock_factor	= 8,
 155		.fifo_size		= 16,
 156	},
 157	[LS1028A] = {
 158		.trans_mode		= DSPI_XSPI_MODE,
 159		.max_clock_factor	= 8,
 160		.fifo_size		= 4,
 161	},
 162	[LS1043A] = {
 163		/* Has A-011218 DMA erratum */
 164		.trans_mode		= DSPI_XSPI_MODE,
 165		.max_clock_factor	= 8,
 166		.fifo_size		= 16,
 167	},
 168	[LS1046A] = {
 169		/* Has A-011218 DMA erratum */
 170		.trans_mode		= DSPI_XSPI_MODE,
 171		.max_clock_factor	= 8,
 172		.fifo_size		= 16,
 173	},
 174	[LS2080A] = {
 175		.trans_mode		= DSPI_XSPI_MODE,
 176		.max_clock_factor	= 8,
 177		.fifo_size		= 4,
 178	},
 179	[LS2085A] = {
 180		.trans_mode		= DSPI_XSPI_MODE,
 181		.max_clock_factor	= 8,
 182		.fifo_size		= 4,
 183	},
 184	[LX2160A] = {
 185		.trans_mode		= DSPI_XSPI_MODE,
 186		.max_clock_factor	= 8,
 187		.fifo_size		= 4,
 188	},
 189	[MCF5441X] = {
 190		.trans_mode		= DSPI_DMA_MODE,
 191		.max_clock_factor	= 8,
 192		.fifo_size		= 16,
 193	},
 194};
 195
 196struct fsl_dspi_dma {
 197	u32					*tx_dma_buf;
 198	struct dma_chan				*chan_tx;
 199	dma_addr_t				tx_dma_phys;
 200	struct completion			cmd_tx_complete;
 201	struct dma_async_tx_descriptor		*tx_desc;
 202
 203	u32					*rx_dma_buf;
 204	struct dma_chan				*chan_rx;
 205	dma_addr_t				rx_dma_phys;
 206	struct completion			cmd_rx_complete;
 207	struct dma_async_tx_descriptor		*rx_desc;
 208};
 209
 210struct fsl_dspi {
 211	struct spi_controller			*ctlr;
 212	struct platform_device			*pdev;
 213
 214	struct regmap				*regmap;
 215	struct regmap				*regmap_pushr;
 216	int					irq;
 217	struct clk				*clk;
 218
 219	struct spi_transfer			*cur_transfer;
 220	struct spi_message			*cur_msg;
 221	struct chip_data			*cur_chip;
 222	size_t					progress;
 223	size_t					len;
 224	const void				*tx;
 225	void					*rx;
 226	u16					tx_cmd;
 227	const struct fsl_dspi_devtype_data	*devtype_data;
 228
 229	struct completion			xfer_done;
 230
 231	struct fsl_dspi_dma			*dma;
 232
 233	int					oper_word_size;
 234	int					oper_bits_per_word;
 235
 236	int					words_in_flight;
 237
 238	/*
 239	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 240	 * individually (in XSPI mode)
 241	 */
 242	int					pushr_cmd;
 243	int					pushr_tx;
 244
 245	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 246	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 247};
 248
 249static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 250{
 251	switch (dspi->oper_word_size) {
 252	case 1:
 253		*txdata = *(u8 *)dspi->tx;
 254		break;
 255	case 2:
 256		*txdata = *(u16 *)dspi->tx;
 257		break;
 258	case 4:
 259		*txdata = *(u32 *)dspi->tx;
 260		break;
 261	}
 262	dspi->tx += dspi->oper_word_size;
 263}
 264
 265static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 266{
 267	switch (dspi->oper_word_size) {
 268	case 1:
 269		*(u8 *)dspi->rx = rxdata;
 270		break;
 271	case 2:
 272		*(u16 *)dspi->rx = rxdata;
 273		break;
 274	case 4:
 275		*(u32 *)dspi->rx = rxdata;
 276		break;
 277	}
 278	dspi->rx += dspi->oper_word_size;
 279}
 280
 281static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 282{
 283	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
 284	dspi->tx += sizeof(u32);
 285}
 286
 287static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 288{
 289	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
 290	dspi->rx += sizeof(u32);
 291}
 292
 293static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 294{
 295	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
 296	dspi->tx += sizeof(u16);
 297}
 298
 299static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 300{
 301	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
 302	dspi->rx += sizeof(u16);
 303}
 304
 305static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 306{
 307	u16 hi = *(u16 *)dspi->tx;
 308	u16 lo = *(u16 *)(dspi->tx + 2);
 309
 310	*txdata = (u32)hi << 16 | lo;
 311	dspi->tx += sizeof(u32);
 312}
 313
 314static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 315{
 316	u16 hi = rxdata & 0xffff;
 317	u16 lo = rxdata >> 16;
 318
 319	*(u16 *)dspi->rx = lo;
 320	*(u16 *)(dspi->rx + 2) = hi;
 321	dspi->rx += sizeof(u32);
 322}
 323
 324/*
 325 * Pop one word from the TX buffer for pushing into the
 326 * PUSHR register (TX FIFO)
 327 */
 328static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 329{
 330	u32 txdata = 0;
 331
 332	if (dspi->tx)
 333		dspi->host_to_dev(dspi, &txdata);
 334	dspi->len -= dspi->oper_word_size;
 335	return txdata;
 336}
 337
 338/* Prepare one TX FIFO entry (txdata plus cmd) */
 339static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 340{
 341	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 342
 343	if (spi_controller_is_target(dspi->ctlr))
 344		return data;
 345
 346	if (dspi->len > 0)
 347		cmd |= SPI_PUSHR_CMD_CONT;
 348	return cmd << 16 | data;
 349}
 350
 351/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 352static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 353{
 354	if (!dspi->rx)
 355		return;
 356	dspi->dev_to_host(dspi, rxdata);
 357}
 358
 359static void dspi_tx_dma_callback(void *arg)
 360{
 361	struct fsl_dspi *dspi = arg;
 362	struct fsl_dspi_dma *dma = dspi->dma;
 363
 364	complete(&dma->cmd_tx_complete);
 365}
 366
 367static void dspi_rx_dma_callback(void *arg)
 368{
 369	struct fsl_dspi *dspi = arg;
 370	struct fsl_dspi_dma *dma = dspi->dma;
 371	int i;
 372
 373	if (dspi->rx) {
 374		for (i = 0; i < dspi->words_in_flight; i++)
 375			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 376	}
 377
 378	complete(&dma->cmd_rx_complete);
 379}
 380
 381static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 382{
 383	struct device *dev = &dspi->pdev->dev;
 384	struct fsl_dspi_dma *dma = dspi->dma;
 385	int time_left;
 386	int i;
 387
 388	for (i = 0; i < dspi->words_in_flight; i++)
 389		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 390
 391	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 392					dma->tx_dma_phys,
 393					dspi->words_in_flight *
 394					DMA_SLAVE_BUSWIDTH_4_BYTES,
 395					DMA_MEM_TO_DEV,
 396					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 397	if (!dma->tx_desc) {
 398		dev_err(dev, "Not able to get desc for DMA xfer\n");
 399		return -EIO;
 400	}
 401
 402	dma->tx_desc->callback = dspi_tx_dma_callback;
 403	dma->tx_desc->callback_param = dspi;
 404	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 405		dev_err(dev, "DMA submit failed\n");
 406		return -EINVAL;
 407	}
 408
 409	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 410					dma->rx_dma_phys,
 411					dspi->words_in_flight *
 412					DMA_SLAVE_BUSWIDTH_4_BYTES,
 413					DMA_DEV_TO_MEM,
 414					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 415	if (!dma->rx_desc) {
 416		dev_err(dev, "Not able to get desc for DMA xfer\n");
 417		return -EIO;
 418	}
 419
 420	dma->rx_desc->callback = dspi_rx_dma_callback;
 421	dma->rx_desc->callback_param = dspi;
 422	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 423		dev_err(dev, "DMA submit failed\n");
 424		return -EINVAL;
 425	}
 426
 427	reinit_completion(&dspi->dma->cmd_rx_complete);
 428	reinit_completion(&dspi->dma->cmd_tx_complete);
 429
 430	dma_async_issue_pending(dma->chan_rx);
 431	dma_async_issue_pending(dma->chan_tx);
 432
 433	if (spi_controller_is_target(dspi->ctlr)) {
 434		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 435		return 0;
 436	}
 437
 438	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 439						DMA_COMPLETION_TIMEOUT);
 440	if (time_left == 0) {
 441		dev_err(dev, "DMA tx timeout\n");
 442		dmaengine_terminate_all(dma->chan_tx);
 443		dmaengine_terminate_all(dma->chan_rx);
 444		return -ETIMEDOUT;
 445	}
 446
 447	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 448						DMA_COMPLETION_TIMEOUT);
 449	if (time_left == 0) {
 450		dev_err(dev, "DMA rx timeout\n");
 451		dmaengine_terminate_all(dma->chan_tx);
 452		dmaengine_terminate_all(dma->chan_rx);
 453		return -ETIMEDOUT;
 454	}
 455
 456	return 0;
 457}
 458
 459static void dspi_setup_accel(struct fsl_dspi *dspi);
 460
 461static int dspi_dma_xfer(struct fsl_dspi *dspi)
 462{
 463	struct spi_message *message = dspi->cur_msg;
 464	struct device *dev = &dspi->pdev->dev;
 465	int ret = 0;
 466
 467	/*
 468	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 469	 * dspi_next_xfer_dma_submit
 470	 */
 471	while (dspi->len) {
 472		/* Figure out operational bits-per-word for this chunk */
 473		dspi_setup_accel(dspi);
 474
 475		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 476		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 477			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 478
 479		message->actual_length += dspi->words_in_flight *
 480					  dspi->oper_word_size;
 481
 482		ret = dspi_next_xfer_dma_submit(dspi);
 483		if (ret) {
 484			dev_err(dev, "DMA transfer failed\n");
 485			break;
 486		}
 487	}
 488
 489	return ret;
 490}
 491
 492static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 493{
 494	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 495	struct device *dev = &dspi->pdev->dev;
 496	struct dma_slave_config cfg;
 497	struct fsl_dspi_dma *dma;
 498	int ret;
 499
 500	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 501	if (!dma)
 502		return -ENOMEM;
 503
 504	dma->chan_rx = dma_request_chan(dev, "rx");
 505	if (IS_ERR(dma->chan_rx))
 506		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
 
 
 
 507
 508	dma->chan_tx = dma_request_chan(dev, "tx");
 509	if (IS_ERR(dma->chan_tx)) {
 510		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
 
 511		goto err_tx_channel;
 512	}
 513
 514	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 515					     dma_bufsize, &dma->tx_dma_phys,
 516					     GFP_KERNEL);
 517	if (!dma->tx_dma_buf) {
 518		ret = -ENOMEM;
 519		goto err_tx_dma_buf;
 520	}
 521
 522	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 523					     dma_bufsize, &dma->rx_dma_phys,
 524					     GFP_KERNEL);
 525	if (!dma->rx_dma_buf) {
 526		ret = -ENOMEM;
 527		goto err_rx_dma_buf;
 528	}
 529
 530	memset(&cfg, 0, sizeof(cfg));
 531	cfg.src_addr = phy_addr + SPI_POPR;
 532	cfg.dst_addr = phy_addr + SPI_PUSHR;
 533	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 534	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 535	cfg.src_maxburst = 1;
 536	cfg.dst_maxburst = 1;
 537
 538	cfg.direction = DMA_DEV_TO_MEM;
 539	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 540	if (ret) {
 541		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
 
 542		goto err_slave_config;
 543	}
 544
 545	cfg.direction = DMA_MEM_TO_DEV;
 546	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 547	if (ret) {
 548		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
 
 549		goto err_slave_config;
 550	}
 551
 552	dspi->dma = dma;
 553	init_completion(&dma->cmd_tx_complete);
 554	init_completion(&dma->cmd_rx_complete);
 555
 556	return 0;
 557
 558err_slave_config:
 559	dma_free_coherent(dma->chan_rx->device->dev,
 560			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 561err_rx_dma_buf:
 562	dma_free_coherent(dma->chan_tx->device->dev,
 563			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 564err_tx_dma_buf:
 565	dma_release_channel(dma->chan_tx);
 566err_tx_channel:
 567	dma_release_channel(dma->chan_rx);
 568
 569	devm_kfree(dev, dma);
 570	dspi->dma = NULL;
 571
 572	return ret;
 573}
 574
 575static void dspi_release_dma(struct fsl_dspi *dspi)
 576{
 577	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 578	struct fsl_dspi_dma *dma = dspi->dma;
 579
 580	if (!dma)
 581		return;
 582
 583	if (dma->chan_tx) {
 584		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 585				  dma->tx_dma_buf, dma->tx_dma_phys);
 586		dma_release_channel(dma->chan_tx);
 587	}
 588
 589	if (dma->chan_rx) {
 590		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 591				  dma->rx_dma_buf, dma->rx_dma_phys);
 592		dma_release_channel(dma->chan_rx);
 593	}
 594}
 595
 596static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 597			   unsigned long clkrate)
 598{
 599	/* Valid baud rate pre-scaler values */
 600	int pbr_tbl[4] = {2, 3, 5, 7};
 601	int brs[16] = {	2,	4,	6,	8,
 602			16,	32,	64,	128,
 603			256,	512,	1024,	2048,
 604			4096,	8192,	16384,	32768 };
 605	int scale_needed, scale, minscale = INT_MAX;
 606	int i, j;
 607
 608	scale_needed = clkrate / speed_hz;
 609	if (clkrate % speed_hz)
 610		scale_needed++;
 611
 612	for (i = 0; i < ARRAY_SIZE(brs); i++)
 613		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 614			scale = brs[i] * pbr_tbl[j];
 615			if (scale >= scale_needed) {
 616				if (scale < minscale) {
 617					minscale = scale;
 618					*br = i;
 619					*pbr = j;
 620				}
 621				break;
 622			}
 623		}
 624
 625	if (minscale == INT_MAX) {
 626		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 627			speed_hz, clkrate);
 628		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 629		*br =  ARRAY_SIZE(brs) - 1;
 630	}
 631}
 632
 633static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 634			   unsigned long clkrate)
 635{
 636	int scale_needed, scale, minscale = INT_MAX;
 637	int pscale_tbl[4] = {1, 3, 5, 7};
 638	u32 remainder;
 639	int i, j;
 640
 641	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 642				   &remainder);
 643	if (remainder)
 644		scale_needed++;
 645
 646	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 647		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 648			scale = pscale_tbl[i] * (2 << j);
 649			if (scale >= scale_needed) {
 650				if (scale < minscale) {
 651					minscale = scale;
 652					*psc = i;
 653					*sc = j;
 654				}
 655				break;
 656			}
 657		}
 658
 659	if (minscale == INT_MAX) {
 660		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 661			delay_ns, clkrate);
 662		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 663		*sc = SPI_CTAR_SCALE_BITS;
 664	}
 665}
 666
 
 
 
 
 
 667static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 668{
 669	/*
 670	 * The only time when the PCS doesn't need continuation after this word
 671	 * is when it's last. We need to look ahead, because we actually call
 672	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 673	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 674	 * word is enough. If there's more to transmit than that,
 675	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 676	 * generate a new PUSHR command with the final word that will have PCS
 677	 * deasserted (not continued) here.
 678	 */
 679	if (dspi->len > dspi->oper_word_size)
 680		cmd |= SPI_PUSHR_CMD_CONT;
 681	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 682}
 683
 684static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 685{
 686	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 687}
 688
 689static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 690{
 691	int num_bytes = num_words * dspi->oper_word_size;
 692	u16 tx_cmd = dspi->tx_cmd;
 693
 694	/*
 695	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 696	 * and cs_change does not want the PCS to stay on), then we need a new
 697	 * PUSHR command, since this one (for the body of the buffer)
 698	 * necessarily has the CONT bit set.
 699	 * So send one word less during this go, to force a split and a command
 700	 * with a single word next time, when CONT will be unset.
 701	 */
 702	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 703		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 704
 705	/* Update CTARE */
 706	regmap_write(dspi->regmap, SPI_CTARE(0),
 707		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 708		     SPI_CTARE_DTCP(num_words));
 709
 710	/*
 711	 * Write the CMD FIFO entry first, and then the two
 712	 * corresponding TX FIFO entries (or one...).
 713	 */
 714	dspi_pushr_cmd_write(dspi, tx_cmd);
 715
 716	/* Fill TX FIFO with as many transfers as possible */
 717	while (num_words--) {
 718		u32 data = dspi_pop_tx(dspi);
 719
 720		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 721		if (dspi->oper_bits_per_word > 16)
 722			dspi_pushr_txdata_write(dspi, data >> 16);
 723	}
 724}
 725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726static u32 dspi_popr_read(struct fsl_dspi *dspi)
 727{
 728	u32 rxdata = 0;
 729
 730	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 731	return rxdata;
 732}
 733
 734static void dspi_fifo_read(struct fsl_dspi *dspi)
 735{
 736	int num_fifo_entries = dspi->words_in_flight;
 737
 738	/* Read one FIFO entry and push to rx buffer */
 739	while (num_fifo_entries--)
 740		dspi_push_rx(dspi, dspi_popr_read(dspi));
 741}
 742
 743static void dspi_setup_accel(struct fsl_dspi *dspi)
 744{
 745	struct spi_transfer *xfer = dspi->cur_transfer;
 746	bool odd = !!(dspi->len & 1);
 747
 748	/* No accel for frames not multiple of 8 bits at the moment */
 749	if (xfer->bits_per_word % 8)
 750		goto no_accel;
 751
 752	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 753		dspi->oper_bits_per_word = 16;
 754	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 755		dspi->oper_bits_per_word = 8;
 756	} else {
 757		/* Start off with maximum supported by hardware */
 758		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 759			dspi->oper_bits_per_word = 32;
 760		else
 761			dspi->oper_bits_per_word = 16;
 762
 763		/*
 764		 * And go down only if the buffer can't be sent with
 765		 * words this big
 766		 */
 767		do {
 768			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 769				break;
 770
 771			dspi->oper_bits_per_word /= 2;
 772		} while (dspi->oper_bits_per_word > 8);
 773	}
 774
 775	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 776		dspi->dev_to_host = dspi_8on32_dev_to_host;
 777		dspi->host_to_dev = dspi_8on32_host_to_dev;
 778	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 779		dspi->dev_to_host = dspi_8on16_dev_to_host;
 780		dspi->host_to_dev = dspi_8on16_host_to_dev;
 781	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 782		dspi->dev_to_host = dspi_16on32_dev_to_host;
 783		dspi->host_to_dev = dspi_16on32_host_to_dev;
 784	} else {
 785no_accel:
 786		dspi->dev_to_host = dspi_native_dev_to_host;
 787		dspi->host_to_dev = dspi_native_host_to_dev;
 788		dspi->oper_bits_per_word = xfer->bits_per_word;
 789	}
 790
 791	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 792
 793	/*
 794	 * Update CTAR here (code is common for XSPI and DMA modes).
 795	 * We will update CTARE in the portion specific to XSPI, when we
 796	 * also know the preload value (DTCP).
 797	 */
 798	regmap_write(dspi->regmap, SPI_CTAR(0),
 799		     dspi->cur_chip->ctar_val |
 800		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 801}
 802
 803static void dspi_fifo_write(struct fsl_dspi *dspi)
 804{
 805	int num_fifo_entries = dspi->devtype_data->fifo_size;
 806	struct spi_transfer *xfer = dspi->cur_transfer;
 807	struct spi_message *msg = dspi->cur_msg;
 808	int num_words, num_bytes;
 809
 810	dspi_setup_accel(dspi);
 811
 812	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 813	if (dspi->oper_word_size == 4)
 814		num_fifo_entries /= 2;
 815
 816	/*
 817	 * Integer division intentionally trims off odd (or non-multiple of 4)
 818	 * numbers of bytes at the end of the buffer, which will be sent next
 819	 * time using a smaller oper_word_size.
 820	 */
 821	num_words = dspi->len / dspi->oper_word_size;
 822	if (num_words > num_fifo_entries)
 823		num_words = num_fifo_entries;
 824
 825	/* Update total number of bytes that were transferred */
 826	num_bytes = num_words * dspi->oper_word_size;
 827	msg->actual_length += num_bytes;
 828	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 829
 830	/*
 831	 * Update shared variable for use in the next interrupt (both in
 832	 * dspi_fifo_read and in dspi_fifo_write).
 833	 */
 834	dspi->words_in_flight = num_words;
 835
 836	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 837
 838	dspi_xspi_fifo_write(dspi, num_words);
 
 
 
 839	/*
 840	 * Everything after this point is in a potential race with the next
 841	 * interrupt, so we must never use dspi->words_in_flight again since it
 842	 * might already be modified by the next dspi_fifo_write.
 843	 */
 844
 845	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 846				dspi->progress, !dspi->irq);
 847}
 848
 849static int dspi_rxtx(struct fsl_dspi *dspi)
 850{
 851	dspi_fifo_read(dspi);
 852
 853	if (!dspi->len)
 854		/* Success! */
 855		return 0;
 856
 857	dspi_fifo_write(dspi);
 858
 859	return -EINPROGRESS;
 860}
 861
 862static int dspi_poll(struct fsl_dspi *dspi)
 863{
 864	int tries = 1000;
 865	u32 spi_sr;
 866
 867	do {
 868		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 869		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 870
 871		if (spi_sr & SPI_SR_CMDTCF)
 872			break;
 873	} while (--tries);
 874
 875	if (!tries)
 876		return -ETIMEDOUT;
 877
 878	return dspi_rxtx(dspi);
 879}
 880
 881static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 882{
 883	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 884	u32 spi_sr;
 885
 886	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 887	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 888
 889	if (!(spi_sr & SPI_SR_CMDTCF))
 890		return IRQ_NONE;
 891
 892	if (dspi_rxtx(dspi) == 0)
 893		complete(&dspi->xfer_done);
 894
 895	return IRQ_HANDLED;
 896}
 897
 898static void dspi_assert_cs(struct spi_device *spi, bool *cs)
 899{
 900	if (!spi_get_csgpiod(spi, 0) || *cs)
 901		return;
 902
 903	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
 904	*cs = true;
 905}
 906
 907static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
 908{
 909	if (!spi_get_csgpiod(spi, 0) || !*cs)
 910		return;
 911
 912	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
 913	*cs = false;
 914}
 915
 916static int dspi_transfer_one_message(struct spi_controller *ctlr,
 917				     struct spi_message *message)
 918{
 919	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 920	struct spi_device *spi = message->spi;
 921	struct spi_transfer *transfer;
 922	bool cs = false;
 923	int status = 0;
 924
 925	message->actual_length = 0;
 926
 927	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 928		dspi->cur_transfer = transfer;
 929		dspi->cur_msg = message;
 930		dspi->cur_chip = spi_get_ctldata(spi);
 931
 932		dspi_assert_cs(spi, &cs);
 933
 934		/* Prepare command word for CMD FIFO */
 935		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
 936		if (!spi_get_csgpiod(spi, 0))
 937			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
 938
 939		if (list_is_last(&dspi->cur_transfer->transfer_list,
 940				 &dspi->cur_msg->transfers)) {
 941			/* Leave PCS activated after last transfer when
 942			 * cs_change is set.
 943			 */
 944			if (transfer->cs_change)
 945				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 946		} else {
 947			/* Keep PCS active between transfers in same message
 948			 * when cs_change is not set, and de-activate PCS
 949			 * between transfers in the same message when
 950			 * cs_change is set.
 951			 */
 952			if (!transfer->cs_change)
 953				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 954		}
 955
 956		dspi->tx = transfer->tx_buf;
 957		dspi->rx = transfer->rx_buf;
 958		dspi->len = transfer->len;
 959		dspi->progress = 0;
 960
 961		regmap_update_bits(dspi->regmap, SPI_MCR,
 962				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 963				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 964
 965		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 966				       dspi->progress, !dspi->irq);
 967
 968		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 969			status = dspi_dma_xfer(dspi);
 970		} else {
 971			dspi_fifo_write(dspi);
 972
 973			if (dspi->irq) {
 974				wait_for_completion(&dspi->xfer_done);
 975				reinit_completion(&dspi->xfer_done);
 976			} else {
 977				do {
 978					status = dspi_poll(dspi);
 979				} while (status == -EINPROGRESS);
 980			}
 981		}
 982		if (status)
 983			break;
 984
 985		spi_transfer_delay_exec(transfer);
 986
 987		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
 988			dspi_deassert_cs(spi, &cs);
 989	}
 990
 991	message->status = status;
 992	spi_finalize_current_message(ctlr);
 993
 994	return status;
 995}
 996
 997static int dspi_setup(struct spi_device *spi)
 998{
 999	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004	struct fsl_dspi_platform_data *pdata;
1005	unsigned char pasc = 0, asc = 0;
1006	struct chip_data *chip;
1007	unsigned long clkrate;
1008	bool cs = true;
1009
1010	/* Only alloc on first setup */
1011	chip = spi_get_ctldata(spi);
1012	if (chip == NULL) {
1013		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1014		if (!chip)
1015			return -ENOMEM;
1016	}
1017
1018	pdata = dev_get_platdata(&dspi->pdev->dev);
1019
1020	if (!pdata) {
1021		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1022				     &cs_sck_delay);
1023
1024		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1025				     &sck_cs_delay);
1026	} else {
1027		cs_sck_delay = pdata->cs_sck_delay;
1028		sck_cs_delay = pdata->sck_cs_delay;
1029	}
1030
1031	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1032	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1033	 * half a SCK period.
1034	 */
1035	if (cs_sck_delay < quarter_period_ns)
1036		cs_sck_delay = quarter_period_ns;
1037	if (sck_cs_delay < quarter_period_ns)
1038		sck_cs_delay = quarter_period_ns;
1039
1040	dev_dbg(&spi->dev,
1041		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1042		cs_sck_delay, sck_cs_delay);
1043
1044	clkrate = clk_get_rate(dspi->clk);
1045	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1046
1047	/* Set PCS to SCK delay scale values */
1048	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1049
1050	/* Set After SCK delay scale values */
1051	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1052
1053	chip->ctar_val = 0;
1054	if (spi->mode & SPI_CPOL)
1055		chip->ctar_val |= SPI_CTAR_CPOL;
1056	if (spi->mode & SPI_CPHA)
1057		chip->ctar_val |= SPI_CTAR_CPHA;
1058
1059	if (!spi_controller_is_target(dspi->ctlr)) {
1060		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1061				  SPI_CTAR_CSSCK(cssck) |
1062				  SPI_CTAR_PASC(pasc) |
1063				  SPI_CTAR_ASC(asc) |
1064				  SPI_CTAR_PBR(pbr) |
1065				  SPI_CTAR_BR(br);
1066
1067		if (spi->mode & SPI_LSB_FIRST)
1068			chip->ctar_val |= SPI_CTAR_LSBFE;
1069	}
1070
1071	gpiod_direction_output(spi_get_csgpiod(spi, 0), false);
1072	dspi_deassert_cs(spi, &cs);
1073
1074	spi_set_ctldata(spi, chip);
1075
1076	return 0;
1077}
1078
1079static void dspi_cleanup(struct spi_device *spi)
1080{
1081	struct chip_data *chip = spi_get_ctldata(spi);
1082
1083	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1084		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1085
1086	kfree(chip);
1087}
1088
1089static const struct of_device_id fsl_dspi_dt_ids[] = {
1090	{
1091		.compatible = "fsl,vf610-dspi",
1092		.data = &devtype_data[VF610],
1093	}, {
1094		.compatible = "fsl,ls1021a-v1.0-dspi",
1095		.data = &devtype_data[LS1021A],
1096	}, {
1097		.compatible = "fsl,ls1012a-dspi",
1098		.data = &devtype_data[LS1012A],
1099	}, {
1100		.compatible = "fsl,ls1028a-dspi",
1101		.data = &devtype_data[LS1028A],
1102	}, {
1103		.compatible = "fsl,ls1043a-dspi",
1104		.data = &devtype_data[LS1043A],
1105	}, {
1106		.compatible = "fsl,ls1046a-dspi",
1107		.data = &devtype_data[LS1046A],
1108	}, {
1109		.compatible = "fsl,ls2080a-dspi",
1110		.data = &devtype_data[LS2080A],
1111	}, {
1112		.compatible = "fsl,ls2085a-dspi",
1113		.data = &devtype_data[LS2085A],
1114	}, {
1115		.compatible = "fsl,lx2160a-dspi",
1116		.data = &devtype_data[LX2160A],
1117	},
1118	{ /* sentinel */ }
1119};
1120MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1121
1122#ifdef CONFIG_PM_SLEEP
1123static int dspi_suspend(struct device *dev)
1124{
1125	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 
1126
1127	if (dspi->irq)
1128		disable_irq(dspi->irq);
1129	spi_controller_suspend(dspi->ctlr);
1130	clk_disable_unprepare(dspi->clk);
1131
1132	pinctrl_pm_select_sleep_state(dev);
1133
1134	return 0;
1135}
1136
1137static int dspi_resume(struct device *dev)
1138{
1139	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 
1140	int ret;
1141
1142	pinctrl_pm_select_default_state(dev);
1143
1144	ret = clk_prepare_enable(dspi->clk);
1145	if (ret)
1146		return ret;
1147	spi_controller_resume(dspi->ctlr);
1148	if (dspi->irq)
1149		enable_irq(dspi->irq);
1150
1151	return 0;
1152}
1153#endif /* CONFIG_PM_SLEEP */
1154
1155static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1156
1157static const struct regmap_range dspi_volatile_ranges[] = {
1158	regmap_reg_range(SPI_MCR, SPI_TCR),
1159	regmap_reg_range(SPI_SR, SPI_SR),
1160	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1161};
1162
1163static const struct regmap_access_table dspi_volatile_table = {
1164	.yes_ranges	= dspi_volatile_ranges,
1165	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1166};
1167
1168static const struct regmap_config dspi_regmap_config = {
1169	.reg_bits	= 32,
1170	.val_bits	= 32,
1171	.reg_stride	= 4,
1172	.max_register	= 0x88,
1173	.volatile_table	= &dspi_volatile_table,
1174};
1175
1176static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1177	regmap_reg_range(SPI_MCR, SPI_TCR),
1178	regmap_reg_range(SPI_SR, SPI_SR),
1179	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1180	regmap_reg_range(SPI_SREX, SPI_SREX),
1181};
1182
1183static const struct regmap_access_table dspi_xspi_volatile_table = {
1184	.yes_ranges	= dspi_xspi_volatile_ranges,
1185	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1186};
1187
1188static const struct regmap_config dspi_xspi_regmap_config[] = {
1189	{
1190		.reg_bits	= 32,
1191		.val_bits	= 32,
1192		.reg_stride	= 4,
1193		.max_register	= 0x13c,
1194		.volatile_table	= &dspi_xspi_volatile_table,
1195	},
1196	{
1197		.name		= "pushr",
1198		.reg_bits	= 16,
1199		.val_bits	= 16,
1200		.reg_stride	= 2,
1201		.max_register	= 0x2,
1202	},
1203};
1204
1205static int dspi_init(struct fsl_dspi *dspi)
1206{
1207	unsigned int mcr;
1208
1209	/* Set idle states for all chip select signals to high */
1210	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1211
1212	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1213		mcr |= SPI_MCR_XSPI;
1214	if (!spi_controller_is_target(dspi->ctlr))
1215		mcr |= SPI_MCR_HOST;
1216
1217	regmap_write(dspi->regmap, SPI_MCR, mcr);
1218	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1219
1220	switch (dspi->devtype_data->trans_mode) {
 
 
 
1221	case DSPI_XSPI_MODE:
1222		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1223		break;
1224	case DSPI_DMA_MODE:
1225		regmap_write(dspi->regmap, SPI_RSER,
1226			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1227			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1228		break;
1229	default:
1230		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1231			dspi->devtype_data->trans_mode);
1232		return -EINVAL;
1233	}
1234
1235	return 0;
1236}
1237
1238static int dspi_target_abort(struct spi_controller *host)
1239{
1240	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1241
1242	/*
1243	 * Terminate all pending DMA transactions for the SPI working
1244	 * in TARGET mode.
1245	 */
1246	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1247		dmaengine_terminate_sync(dspi->dma->chan_rx);
1248		dmaengine_terminate_sync(dspi->dma->chan_tx);
1249	}
1250
1251	/* Clear the internal DSPI RX and TX FIFO buffers */
1252	regmap_update_bits(dspi->regmap, SPI_MCR,
1253			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1254			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1255
1256	return 0;
1257}
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259static int dspi_probe(struct platform_device *pdev)
1260{
1261	struct device_node *np = pdev->dev.of_node;
1262	const struct regmap_config *regmap_config;
1263	struct fsl_dspi_platform_data *pdata;
1264	struct spi_controller *ctlr;
1265	int ret, cs_num, bus_num = -1;
1266	struct fsl_dspi *dspi;
1267	struct resource *res;
1268	void __iomem *base;
1269	bool big_endian;
1270
1271	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1272	if (!dspi)
1273		return -ENOMEM;
1274
1275	ctlr = spi_alloc_host(&pdev->dev, 0);
1276	if (!ctlr)
1277		return -ENOMEM;
1278
1279	spi_controller_set_devdata(ctlr, dspi);
1280	platform_set_drvdata(pdev, dspi);
1281
1282	dspi->pdev = pdev;
1283	dspi->ctlr = ctlr;
1284
1285	ctlr->setup = dspi_setup;
1286	ctlr->transfer_one_message = dspi_transfer_one_message;
 
1287	ctlr->dev.of_node = pdev->dev.of_node;
1288
1289	ctlr->cleanup = dspi_cleanup;
1290	ctlr->target_abort = dspi_target_abort;
1291	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1292	ctlr->use_gpio_descriptors = true;
1293
1294	pdata = dev_get_platdata(&pdev->dev);
1295	if (pdata) {
1296		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1297		ctlr->bus_num = pdata->bus_num;
1298
1299		/* Only Coldfire uses platform data */
1300		dspi->devtype_data = &devtype_data[MCF5441X];
1301		big_endian = true;
1302	} else {
1303
1304		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1305		if (ret < 0) {
1306			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1307			goto out_ctlr_put;
1308		}
1309		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1310
1311		of_property_read_u32(np, "bus-num", &bus_num);
1312		ctlr->bus_num = bus_num;
1313
1314		if (of_property_read_bool(np, "spi-slave"))
1315			ctlr->target = true;
1316
1317		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1318		if (!dspi->devtype_data) {
1319			dev_err(&pdev->dev, "can't get devtype_data\n");
1320			ret = -EFAULT;
1321			goto out_ctlr_put;
1322		}
1323
1324		big_endian = of_device_is_big_endian(np);
1325	}
1326	if (big_endian) {
1327		dspi->pushr_cmd = 0;
1328		dspi->pushr_tx = 2;
1329	} else {
1330		dspi->pushr_cmd = 2;
1331		dspi->pushr_tx = 0;
1332	}
1333
1334	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1335		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1336	else
1337		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1338
1339	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
1340	if (IS_ERR(base)) {
1341		ret = PTR_ERR(base);
1342		goto out_ctlr_put;
1343	}
1344
1345	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1346		regmap_config = &dspi_xspi_regmap_config[0];
1347	else
1348		regmap_config = &dspi_regmap_config;
1349	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1350	if (IS_ERR(dspi->regmap)) {
1351		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1352				PTR_ERR(dspi->regmap));
1353		ret = PTR_ERR(dspi->regmap);
1354		goto out_ctlr_put;
1355	}
1356
1357	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1358		dspi->regmap_pushr = devm_regmap_init_mmio(
1359			&pdev->dev, base + SPI_PUSHR,
1360			&dspi_xspi_regmap_config[1]);
1361		if (IS_ERR(dspi->regmap_pushr)) {
1362			dev_err(&pdev->dev,
1363				"failed to init pushr regmap: %ld\n",
1364				PTR_ERR(dspi->regmap_pushr));
1365			ret = PTR_ERR(dspi->regmap_pushr);
1366			goto out_ctlr_put;
1367		}
1368	}
1369
1370	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1371	if (IS_ERR(dspi->clk)) {
1372		ret = PTR_ERR(dspi->clk);
1373		dev_err(&pdev->dev, "unable to get clock\n");
1374		goto out_ctlr_put;
1375	}
 
 
 
1376
1377	ret = dspi_init(dspi);
1378	if (ret)
1379		goto out_ctlr_put;
1380
1381	dspi->irq = platform_get_irq(pdev, 0);
1382	if (dspi->irq <= 0) {
1383		dev_info(&pdev->dev,
1384			 "can't get platform irq, using poll mode\n");
1385		dspi->irq = 0;
1386		goto poll_mode;
1387	}
1388
1389	init_completion(&dspi->xfer_done);
1390
1391	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1392				   IRQF_SHARED, pdev->name, dspi);
1393	if (ret < 0) {
1394		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1395		goto out_ctlr_put;
1396	}
1397
1398poll_mode:
1399
1400	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1401		ret = dspi_request_dma(dspi, res->start);
1402		if (ret < 0) {
1403			dev_err(&pdev->dev, "can't get dma channels\n");
1404			goto out_free_irq;
1405		}
1406	}
1407
1408	ctlr->max_speed_hz =
1409		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1410
1411	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1412		ctlr->ptp_sts_supported = true;
1413
1414	ret = spi_register_controller(ctlr);
1415	if (ret != 0) {
1416		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1417		goto out_release_dma;
1418	}
1419
1420	return ret;
1421
1422out_release_dma:
1423	dspi_release_dma(dspi);
1424out_free_irq:
1425	if (dspi->irq)
1426		free_irq(dspi->irq, dspi);
 
 
1427out_ctlr_put:
1428	spi_controller_put(ctlr);
1429
1430	return ret;
1431}
1432
1433static void dspi_remove(struct platform_device *pdev)
1434{
1435	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1436
1437	/* Disconnect from the SPI framework */
1438	spi_unregister_controller(dspi->ctlr);
1439
1440	/* Disable RX and TX */
1441	regmap_update_bits(dspi->regmap, SPI_MCR,
1442			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1443			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1444
1445	/* Stop Running */
1446	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1447
1448	dspi_release_dma(dspi);
1449	if (dspi->irq)
1450		free_irq(dspi->irq, dspi);
 
 
 
1451}
1452
1453static void dspi_shutdown(struct platform_device *pdev)
1454{
1455	dspi_remove(pdev);
1456}
1457
1458static struct platform_driver fsl_dspi_driver = {
1459	.driver.name		= DRIVER_NAME,
1460	.driver.of_match_table	= fsl_dspi_dt_ids,
1461	.driver.owner		= THIS_MODULE,
1462	.driver.pm		= &dspi_pm,
1463	.probe			= dspi_probe,
1464	.remove_new		= dspi_remove,
1465	.shutdown		= dspi_shutdown,
1466};
1467module_platform_driver(fsl_dspi_driver);
1468
1469MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1470MODULE_LICENSE("GPL");
1471MODULE_ALIAS("platform:" DRIVER_NAME);