Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
 
   8#include <linux/debugfs.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/of_platform.h>
 
  16#include <linux/pinctrl/consumer.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19#include <linux/spi/spi.h>
  20
  21#define DRIVER_NAME "spi_stm32"
  22
  23/* STM32F4 SPI registers */
  24#define STM32F4_SPI_CR1			0x00
  25#define STM32F4_SPI_CR2			0x04
  26#define STM32F4_SPI_SR			0x08
  27#define STM32F4_SPI_DR			0x0C
  28#define STM32F4_SPI_I2SCFGR		0x1C
  29
  30/* STM32F4_SPI_CR1 bit fields */
  31#define STM32F4_SPI_CR1_CPHA		BIT(0)
  32#define STM32F4_SPI_CR1_CPOL		BIT(1)
  33#define STM32F4_SPI_CR1_MSTR		BIT(2)
  34#define STM32F4_SPI_CR1_BR_SHIFT	3
  35#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
  36#define STM32F4_SPI_CR1_SPE		BIT(6)
  37#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
  38#define STM32F4_SPI_CR1_SSI		BIT(8)
  39#define STM32F4_SPI_CR1_SSM		BIT(9)
  40#define STM32F4_SPI_CR1_RXONLY		BIT(10)
  41#define STM32F4_SPI_CR1_DFF		BIT(11)
  42#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
  43#define STM32F4_SPI_CR1_CRCEN		BIT(13)
  44#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
  45#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
  46#define STM32F4_SPI_CR1_BR_MIN		0
  47#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  48
  49/* STM32F4_SPI_CR2 bit fields */
  50#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
  51#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
  52#define STM32F4_SPI_CR2_SSOE		BIT(2)
  53#define STM32F4_SPI_CR2_FRF		BIT(4)
  54#define STM32F4_SPI_CR2_ERRIE		BIT(5)
  55#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
  56#define STM32F4_SPI_CR2_TXEIE		BIT(7)
  57
  58/* STM32F4_SPI_SR bit fields */
  59#define STM32F4_SPI_SR_RXNE		BIT(0)
  60#define STM32F4_SPI_SR_TXE		BIT(1)
  61#define STM32F4_SPI_SR_CHSIDE		BIT(2)
  62#define STM32F4_SPI_SR_UDR		BIT(3)
  63#define STM32F4_SPI_SR_CRCERR		BIT(4)
  64#define STM32F4_SPI_SR_MODF		BIT(5)
  65#define STM32F4_SPI_SR_OVR		BIT(6)
  66#define STM32F4_SPI_SR_BSY		BIT(7)
  67#define STM32F4_SPI_SR_FRE		BIT(8)
 
 
 
 
 
 
 
  68
  69/* STM32F4_SPI_I2SCFGR bit fields */
  70#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
  71
  72/* STM32F4 SPI Baud Rate min/max divisor */
  73#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
  74#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
  75
  76/* STM32H7 SPI registers */
  77#define STM32H7_SPI_CR1			0x00
  78#define STM32H7_SPI_CR2			0x04
  79#define STM32H7_SPI_CFG1		0x08
  80#define STM32H7_SPI_CFG2		0x0C
  81#define STM32H7_SPI_IER			0x10
  82#define STM32H7_SPI_SR			0x14
  83#define STM32H7_SPI_IFCR		0x18
  84#define STM32H7_SPI_TXDR		0x20
  85#define STM32H7_SPI_RXDR		0x30
  86#define STM32H7_SPI_I2SCFGR		0x50
  87
  88/* STM32H7_SPI_CR1 bit fields */
  89#define STM32H7_SPI_CR1_SPE		BIT(0)
  90#define STM32H7_SPI_CR1_MASRX		BIT(8)
  91#define STM32H7_SPI_CR1_CSTART		BIT(9)
  92#define STM32H7_SPI_CR1_CSUSP		BIT(10)
  93#define STM32H7_SPI_CR1_HDDIR		BIT(11)
  94#define STM32H7_SPI_CR1_SSI		BIT(12)
  95
  96/* STM32H7_SPI_CR2 bit fields */
  97#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
  98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
 
  99
 100/* STM32H7_SPI_CFG1 bit fields */
 101#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
 102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 103#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
 104#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 105#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 106#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 108#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 
 109#define STM32H7_SPI_CFG1_MBR_MIN	0
 110#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 111
 112/* STM32H7_SPI_CFG2 bit fields */
 113#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
 114#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 115#define STM32H7_SPI_CFG2_COMM_SHIFT	17
 116#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 117#define STM32H7_SPI_CFG2_SP_SHIFT	19
 118#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 119#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 120#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 121#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 122#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 123#define STM32H7_SPI_CFG2_SSM		BIT(26)
 
 124#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 125
 126/* STM32H7_SPI_IER bit fields */
 127#define STM32H7_SPI_IER_RXPIE		BIT(0)
 128#define STM32H7_SPI_IER_TXPIE		BIT(1)
 129#define STM32H7_SPI_IER_DXPIE		BIT(2)
 130#define STM32H7_SPI_IER_EOTIE		BIT(3)
 131#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 132#define STM32H7_SPI_IER_OVRIE		BIT(6)
 133#define STM32H7_SPI_IER_MODFIE		BIT(9)
 134#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 135
 136/* STM32H7_SPI_SR bit fields */
 137#define STM32H7_SPI_SR_RXP		BIT(0)
 138#define STM32H7_SPI_SR_TXP		BIT(1)
 139#define STM32H7_SPI_SR_EOT		BIT(3)
 140#define STM32H7_SPI_SR_OVR		BIT(6)
 141#define STM32H7_SPI_SR_MODF		BIT(9)
 142#define STM32H7_SPI_SR_SUSP		BIT(11)
 143#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
 144#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 145#define STM32H7_SPI_SR_RXWNE		BIT(15)
 146
 147/* STM32H7_SPI_IFCR bit fields */
 148#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 149
 150/* STM32H7_SPI_I2SCFGR bit fields */
 151#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153/* STM32H7 SPI Master Baud Rate min/max divisor */
 154#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 155#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 156
 157/* STM32H7 SPI Communication mode */
 158#define STM32H7_SPI_FULL_DUPLEX		0
 159#define STM32H7_SPI_SIMPLEX_TX		1
 160#define STM32H7_SPI_SIMPLEX_RX		2
 161#define STM32H7_SPI_HALF_DUPLEX		3
 162
 163/* SPI Communication type */
 164#define SPI_FULL_DUPLEX		0
 165#define SPI_SIMPLEX_TX		1
 166#define SPI_SIMPLEX_RX		2
 167#define SPI_3WIRE_TX		3
 168#define SPI_3WIRE_RX		4
 169
 170#define SPI_1HZ_NS		1000000000
 171
 172/*
 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 174 * without fifo buffers.
 175 */
 176#define SPI_DMA_MIN_BYTES	16
 177
 
 
 
 
 178/**
 179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 180 * @reg:		register offset
 181 * @mask:		bitfield mask
 182 * @shift:		left shift
 183 */
 184struct stm32_spi_reg {
 185	int reg;
 186	int mask;
 187	int shift;
 188};
 189
 190/**
 191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 192 * @en: enable register and SPI enable bit
 193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 195 * @cpol: clock polarity register and polarity bit
 196 * @cpha: clock phase register and phase bit
 197 * @lsb_first: LSB transmitted first register and bit
 
 198 * @br: baud rate register and bitfields
 199 * @rx: SPI RX data register
 200 * @tx: SPI TX data register
 
 201 */
 202struct stm32_spi_regspec {
 203	const struct stm32_spi_reg en;
 204	const struct stm32_spi_reg dma_rx_en;
 205	const struct stm32_spi_reg dma_tx_en;
 206	const struct stm32_spi_reg cpol;
 207	const struct stm32_spi_reg cpha;
 208	const struct stm32_spi_reg lsb_first;
 
 209	const struct stm32_spi_reg br;
 210	const struct stm32_spi_reg rx;
 211	const struct stm32_spi_reg tx;
 
 212};
 213
 214struct stm32_spi;
 215
 216/**
 217 * struct stm32_spi_cfg - stm32 compatible configuration data
 218 * @regs: registers descriptions
 219 * @get_fifo_size: routine to get fifo size
 220 * @get_bpw_mask: routine to get bits per word mask
 221 * @disable: routine to disable controller
 222 * @config: routine to configure controller as SPI Master
 223 * @set_bpw: routine to configure registers to for bits per word
 224 * @set_mode: routine to configure registers to desired mode
 225 * @set_data_idleness: optional routine to configure registers to desired idle
 226 * time between frames (if driver has this functionality)
 227 * @set_number_of_data: optional routine to configure registers to desired
 228 * number of data (if driver has this functionality)
 229 * @can_dma: routine to determine if the transfer is eligible for DMA use
 
 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 231 * using DMA
 232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 234 * @transfer_one_irq: routine to configure interrupts for driver
 235 * @irq_handler_event: Interrupt handler for SPI controller events
 236 * @irq_handler_thread: thread of interrupt handler for SPI controller
 237 * @baud_rate_div_min: minimum baud rate divisor
 238 * @baud_rate_div_max: maximum baud rate divisor
 239 * @has_fifo: boolean to know if fifo is used for driver
 240 * @has_startbit: boolean to know if start bit is used to start transfer
 
 
 241 */
 242struct stm32_spi_cfg {
 243	const struct stm32_spi_regspec *regs;
 244	int (*get_fifo_size)(struct stm32_spi *spi);
 245	int (*get_bpw_mask)(struct stm32_spi *spi);
 246	void (*disable)(struct stm32_spi *spi);
 247	int (*config)(struct stm32_spi *spi);
 248	void (*set_bpw)(struct stm32_spi *spi);
 249	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 250	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 251	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 
 
 252	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 253	void (*dma_rx_cb)(void *data);
 254	void (*dma_tx_cb)(void *data);
 255	int (*transfer_one_irq)(struct stm32_spi *spi);
 256	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 257	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 258	unsigned int baud_rate_div_min;
 259	unsigned int baud_rate_div_max;
 260	bool has_fifo;
 
 
 
 261};
 262
 263/**
 264 * struct stm32_spi - private data of the SPI controller
 265 * @dev: driver model representation of the controller
 266 * @master: controller master interface
 267 * @cfg: compatible configuration data
 268 * @base: virtual memory area
 269 * @clk: hw kernel clock feeding the SPI clock generator
 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 271 * @rst: SPI controller reset line
 272 * @lock: prevent I/O concurrent access
 273 * @irq: SPI controller interrupt line
 274 * @fifo_size: size of the embedded fifo in bytes
 275 * @cur_midi: master inter-data idleness in ns
 
 
 276 * @cur_speed: speed configured in Hz
 
 277 * @cur_bpw: number of bits in a single SPI data frame
 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 279 * @cur_comm: SPI communication mode
 280 * @cur_xferlen: current transfer length in bytes
 281 * @cur_usedma: boolean to know if dma is used in current transfer
 282 * @tx_buf: data to be written, or NULL
 283 * @rx_buf: data to be read, or NULL
 284 * @tx_len: number of data to be written in bytes
 285 * @rx_len: number of data to be read in bytes
 286 * @dma_tx: dma channel for TX transfer
 287 * @dma_rx: dma channel for RX transfer
 288 * @phys_addr: SPI registers physical base address
 
 289 */
 290struct stm32_spi {
 291	struct device *dev;
 292	struct spi_master *master;
 293	const struct stm32_spi_cfg *cfg;
 294	void __iomem *base;
 295	struct clk *clk;
 296	u32 clk_rate;
 297	struct reset_control *rst;
 298	spinlock_t lock; /* prevent I/O concurrent access */
 299	int irq;
 300	unsigned int fifo_size;
 
 
 
 
 301
 302	unsigned int cur_midi;
 303	unsigned int cur_speed;
 
 304	unsigned int cur_bpw;
 305	unsigned int cur_fthlv;
 306	unsigned int cur_comm;
 307	unsigned int cur_xferlen;
 308	bool cur_usedma;
 309
 310	const void *tx_buf;
 311	void *rx_buf;
 312	int tx_len;
 313	int rx_len;
 314	struct dma_chan *dma_tx;
 315	struct dma_chan *dma_rx;
 316	dma_addr_t phys_addr;
 
 
 317};
 318
 319static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 320	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 321
 322	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 323	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 324
 325	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 326	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 327	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 328	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 
 329
 330	.rx = { STM32F4_SPI_DR },
 331	.tx = { STM32F4_SPI_DR },
 332};
 333
 334static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 335	/* SPI data transfer is enabled but spi_ker_ck is idle.
 336	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 337	 */
 338	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 339
 340	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 341	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 342
 343	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 344	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 345	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 347		STM32H7_SPI_CFG1_MBR_SHIFT },
 348
 349	.rx = { STM32H7_SPI_RXDR },
 350	.tx = { STM32H7_SPI_TXDR },
 
 
 351};
 352
 353static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 354				      u32 offset, u32 bits)
 355{
 356	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 357		       spi->base + offset);
 358}
 359
 360static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 361				      u32 offset, u32 bits)
 362{
 363	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 364		       spi->base + offset);
 365}
 366
 367/**
 368 * stm32h7_spi_get_fifo_size - Return fifo size
 369 * @spi: pointer to the spi controller data structure
 370 */
 371static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 372{
 373	unsigned long flags;
 374	u32 count = 0;
 375
 376	spin_lock_irqsave(&spi->lock, flags);
 377
 378	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 379
 380	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 381		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 382
 383	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 384
 385	spin_unlock_irqrestore(&spi->lock, flags);
 386
 387	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 388
 389	return count;
 390}
 391
 392/**
 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 394 * @spi: pointer to the spi controller data structure
 395 */
 396static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 397{
 398	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 399	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 400}
 401
 402/**
 
 
 
 
 
 
 
 
 
 
 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 404 * @spi: pointer to the spi controller data structure
 405 */
 406static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 407{
 408	unsigned long flags;
 409	u32 cfg1, max_bpw;
 410
 411	spin_lock_irqsave(&spi->lock, flags);
 412
 413	/*
 414	 * The most significant bit at DSIZE bit field is reserved when the
 415	 * maximum data size of periperal instances is limited to 16-bit
 416	 */
 417	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 418
 419	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 420	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
 421		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
 422	max_bpw += 1;
 423
 424	spin_unlock_irqrestore(&spi->lock, flags);
 425
 426	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 427
 428	return SPI_BPW_RANGE_MASK(4, max_bpw);
 429}
 430
 431/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 433 * @spi: pointer to the spi controller data structure
 434 * @speed_hz: requested speed
 435 * @min_div: minimum baud rate divisor
 436 * @max_div: maximum baud rate divisor
 437 *
 438 * Return baud rate divisor value in case of success or -EINVAL
 439 */
 440static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 441				 u32 min_div, u32 max_div)
 442{
 443	u32 div, mbrdiv;
 444
 445	/* Ensure spi->clk_rate is even */
 446	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
 447
 448	/*
 449	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 450	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 451	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 452	 * no need to check it there.
 453	 * However, we need to ensure the following calculations.
 454	 */
 455	if ((div < min_div) || (div > max_div))
 456		return -EINVAL;
 457
 458	/* Determine the first power of 2 greater than or equal to div */
 459	if (div & (div - 1))
 460		mbrdiv = fls(div);
 461	else
 462		mbrdiv = fls(div) - 1;
 463
 464	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 465
 
 
 466	return mbrdiv - 1;
 467}
 468
 469/**
 470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 471 * @spi: pointer to the spi controller data structure
 472 * @xfer_len: length of the message to be transferred
 473 */
 474static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 475{
 476	u32 fthlv, half_fifo, packet;
 477
 478	/* data packet should not exceed 1/2 of fifo space */
 479	half_fifo = (spi->fifo_size / 2);
 480
 481	/* data_packet should not exceed transfer length */
 482	if (half_fifo > xfer_len)
 483		packet = xfer_len;
 484	else
 485		packet = half_fifo;
 486
 487	if (spi->cur_bpw <= 8)
 488		fthlv = packet;
 489	else if (spi->cur_bpw <= 16)
 490		fthlv = packet / 2;
 491	else
 492		fthlv = packet / 4;
 493
 494	/* align packet size with data registers access */
 495	if (spi->cur_bpw > 8)
 496		fthlv -= (fthlv % 2); /* multiple of 2 */
 497	else
 498		fthlv -= (fthlv % 4); /* multiple of 4 */
 499
 500	if (!fthlv)
 501		fthlv = 1;
 502
 503	return fthlv;
 504}
 505
 506/**
 507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 508 * @spi: pointer to the spi controller data structure
 509 *
 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 511 * tx_buf end.
 512 */
 513static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 514{
 515	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 516				  STM32F4_SPI_SR_TXE)) {
 517		u32 offs = spi->cur_xferlen - spi->tx_len;
 518
 519		if (spi->cur_bpw == 16) {
 520			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 521
 522			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 523			spi->tx_len -= sizeof(u16);
 524		} else {
 525			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 526
 527			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528			spi->tx_len -= sizeof(u8);
 529		}
 530	}
 531
 532	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 533}
 534
 535/**
 536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 537 * @spi: pointer to the spi controller data structure
 538 *
 539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 540 * tx_buf end.
 541 */
 542static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 543{
 544	while ((spi->tx_len > 0) &&
 545		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 546			STM32H7_SPI_SR_TXP)) {
 547		u32 offs = spi->cur_xferlen - spi->tx_len;
 548
 549		if (spi->tx_len >= sizeof(u32)) {
 550			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 551
 552			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 553			spi->tx_len -= sizeof(u32);
 554		} else if (spi->tx_len >= sizeof(u16)) {
 555			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 556
 557			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 558			spi->tx_len -= sizeof(u16);
 559		} else {
 560			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 561
 562			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 563			spi->tx_len -= sizeof(u8);
 564		}
 565	}
 566
 567	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 568}
 569
 570/**
 571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 572 * @spi: pointer to the spi controller data structure
 573 *
 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 575 * rx_buf end.
 576 */
 577static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 578{
 579	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 580				  STM32F4_SPI_SR_RXNE)) {
 581		u32 offs = spi->cur_xferlen - spi->rx_len;
 582
 583		if (spi->cur_bpw == 16) {
 584			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 585
 586			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 587			spi->rx_len -= sizeof(u16);
 588		} else {
 589			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 590
 591			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 592			spi->rx_len -= sizeof(u8);
 593		}
 594	}
 595
 596	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 597}
 598
 599/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 601 * @spi: pointer to the spi controller data structure
 602 * @flush: boolean indicating that FIFO should be flushed
 603 *
 604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 605 * rx_buf end.
 606 */
 607static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 608{
 609	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 610	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 611		     STM32H7_SPI_SR_RXPLVL_SHIFT;
 612
 613	while ((spi->rx_len > 0) &&
 614	       ((sr & STM32H7_SPI_SR_RXP) ||
 615		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 
 616		u32 offs = spi->cur_xferlen - spi->rx_len;
 617
 618		if ((spi->rx_len >= sizeof(u32)) ||
 619		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 620			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 621
 622			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 623			spi->rx_len -= sizeof(u32);
 624		} else if ((spi->rx_len >= sizeof(u16)) ||
 625			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 
 626			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 627
 628			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 629			spi->rx_len -= sizeof(u16);
 630		} else {
 631			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 632
 633			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 634			spi->rx_len -= sizeof(u8);
 635		}
 636
 637		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 638		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 639			 STM32H7_SPI_SR_RXPLVL_SHIFT;
 640	}
 641
 642	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 643		flush ? "(flush)" : "", spi->rx_len);
 644}
 645
 646/**
 647 * stm32_spi_enable - Enable SPI controller
 648 * @spi: pointer to the spi controller data structure
 649 */
 650static void stm32_spi_enable(struct stm32_spi *spi)
 651{
 652	dev_dbg(spi->dev, "enable controller\n");
 653
 654	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 655			   spi->cfg->regs->en.mask);
 656}
 657
 658/**
 659 * stm32f4_spi_disable - Disable SPI controller
 660 * @spi: pointer to the spi controller data structure
 661 */
 662static void stm32f4_spi_disable(struct stm32_spi *spi)
 663{
 664	unsigned long flags;
 665	u32 sr;
 666
 667	dev_dbg(spi->dev, "disable controller\n");
 668
 669	spin_lock_irqsave(&spi->lock, flags);
 670
 671	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 672	      STM32F4_SPI_CR1_SPE)) {
 673		spin_unlock_irqrestore(&spi->lock, flags);
 674		return;
 675	}
 676
 677	/* Disable interrupts */
 678	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 679						 STM32F4_SPI_CR2_RXNEIE |
 680						 STM32F4_SPI_CR2_ERRIE);
 681
 682	/* Wait until BSY = 0 */
 683	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 684					      sr, !(sr & STM32F4_SPI_SR_BSY),
 685					      10, 100000) < 0) {
 686		dev_warn(spi->dev, "disabling condition timeout\n");
 687	}
 688
 689	if (spi->cur_usedma && spi->dma_tx)
 690		dmaengine_terminate_all(spi->dma_tx);
 691	if (spi->cur_usedma && spi->dma_rx)
 692		dmaengine_terminate_all(spi->dma_rx);
 693
 694	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 695
 696	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 697						 STM32F4_SPI_CR2_RXDMAEN);
 698
 699	/* Sequence to clear OVR flag */
 700	readl_relaxed(spi->base + STM32F4_SPI_DR);
 701	readl_relaxed(spi->base + STM32F4_SPI_SR);
 702
 703	spin_unlock_irqrestore(&spi->lock, flags);
 704}
 705
 706/**
 707 * stm32h7_spi_disable - Disable SPI controller
 708 * @spi: pointer to the spi controller data structure
 709 *
 710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 712 * RX-Fifo.
 713 * Normally, if TSIZE has been configured, we should relax the hardware at the
 714 * reception of the EOT interrupt. But in case of error, EOT will not be
 715 * raised. So the subsystem unprepare_message call allows us to properly
 716 * complete the transfer from an hardware point of view.
 717 */
 718static void stm32h7_spi_disable(struct stm32_spi *spi)
 719{
 720	unsigned long flags;
 721	u32 cr1, sr;
 722
 723	dev_dbg(spi->dev, "disable controller\n");
 724
 725	spin_lock_irqsave(&spi->lock, flags);
 726
 727	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 728
 729	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 730		spin_unlock_irqrestore(&spi->lock, flags);
 731		return;
 732	}
 733
 734	/* Wait on EOT or suspend the flow */
 735	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 736					      sr, !(sr & STM32H7_SPI_SR_EOT),
 737					      10, 100000) < 0) {
 738		if (cr1 & STM32H7_SPI_CR1_CSTART) {
 739			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 740				       spi->base + STM32H7_SPI_CR1);
 741			if (readl_relaxed_poll_timeout_atomic(
 742						spi->base + STM32H7_SPI_SR,
 743						sr, !(sr & STM32H7_SPI_SR_SUSP),
 744						10, 100000) < 0)
 745				dev_warn(spi->dev,
 746					 "Suspend request timeout\n");
 747		}
 748	}
 749
 750	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 751		stm32h7_spi_read_rxfifo(spi, true);
 752
 753	if (spi->cur_usedma && spi->dma_tx)
 754		dmaengine_terminate_all(spi->dma_tx);
 755	if (spi->cur_usedma && spi->dma_rx)
 756		dmaengine_terminate_all(spi->dma_rx);
 757
 758	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 759
 760	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 761						STM32H7_SPI_CFG1_RXDMAEN);
 762
 763	/* Disable interrupts and clear status flags */
 764	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 765	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 766
 767	spin_unlock_irqrestore(&spi->lock, flags);
 768}
 769
 770/**
 771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 772 * @master: controller master interface
 773 * @spi_dev: pointer to the spi device
 774 * @transfer: pointer to spi transfer
 775 *
 776 * If driver has fifo and the current transfer size is greater than fifo size,
 777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 778 */
 779static bool stm32_spi_can_dma(struct spi_master *master,
 780			      struct spi_device *spi_dev,
 781			      struct spi_transfer *transfer)
 782{
 783	unsigned int dma_size;
 784	struct stm32_spi *spi = spi_master_get_devdata(master);
 785
 786	if (spi->cfg->has_fifo)
 787		dma_size = spi->fifo_size;
 788	else
 789		dma_size = SPI_DMA_MIN_BYTES;
 790
 791	dev_dbg(spi->dev, "%s: %s\n", __func__,
 792		(transfer->len > dma_size) ? "true" : "false");
 793
 794	return (transfer->len > dma_size);
 795}
 796
 797/**
 798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 799 * @irq: interrupt line
 800 * @dev_id: SPI controller master interface
 801 */
 802static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 803{
 804	struct spi_master *master = dev_id;
 805	struct stm32_spi *spi = spi_master_get_devdata(master);
 806	u32 sr, mask = 0;
 807	unsigned long flags;
 808	bool end = false;
 809
 810	spin_lock_irqsave(&spi->lock, flags);
 811
 812	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 813	/*
 814	 * BSY flag is not handled in interrupt but it is normal behavior when
 815	 * this flag is set.
 816	 */
 817	sr &= ~STM32F4_SPI_SR_BSY;
 818
 819	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 820				 spi->cur_comm == SPI_3WIRE_TX)) {
 821		/* OVR flag shouldn't be handled for TX only mode */
 822		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 823		mask |= STM32F4_SPI_SR_TXE;
 824	}
 825
 826	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 827				spi->cur_comm == SPI_SIMPLEX_RX ||
 828				spi->cur_comm == SPI_3WIRE_RX)) {
 829		/* TXE flag is set and is handled when RXNE flag occurs */
 830		sr &= ~STM32F4_SPI_SR_TXE;
 831		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 832	}
 833
 834	if (!(sr & mask)) {
 835		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 836		spin_unlock_irqrestore(&spi->lock, flags);
 837		return IRQ_NONE;
 838	}
 839
 840	if (sr & STM32F4_SPI_SR_OVR) {
 841		dev_warn(spi->dev, "Overrun: received value discarded\n");
 842
 843		/* Sequence to clear OVR flag */
 844		readl_relaxed(spi->base + STM32F4_SPI_DR);
 845		readl_relaxed(spi->base + STM32F4_SPI_SR);
 846
 847		/*
 848		 * If overrun is detected, it means that something went wrong,
 849		 * so stop the current transfer. Transfer can wait for next
 850		 * RXNE but DR is already read and end never happens.
 851		 */
 852		end = true;
 853		goto end_irq;
 854	}
 855
 856	if (sr & STM32F4_SPI_SR_TXE) {
 857		if (spi->tx_buf)
 858			stm32f4_spi_write_tx(spi);
 859		if (spi->tx_len == 0)
 860			end = true;
 861	}
 862
 863	if (sr & STM32F4_SPI_SR_RXNE) {
 864		stm32f4_spi_read_rx(spi);
 865		if (spi->rx_len == 0)
 866			end = true;
 867		else if (spi->tx_buf)/* Load data for discontinuous mode */
 868			stm32f4_spi_write_tx(spi);
 869	}
 870
 871end_irq:
 872	if (end) {
 873		/* Immediately disable interrupts to do not generate new one */
 874		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 875					STM32F4_SPI_CR2_TXEIE |
 876					STM32F4_SPI_CR2_RXNEIE |
 877					STM32F4_SPI_CR2_ERRIE);
 878		spin_unlock_irqrestore(&spi->lock, flags);
 879		return IRQ_WAKE_THREAD;
 880	}
 881
 882	spin_unlock_irqrestore(&spi->lock, flags);
 883	return IRQ_HANDLED;
 884}
 885
 886/**
 887 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 888 * @irq: interrupt line
 889 * @dev_id: SPI controller master interface
 890 */
 891static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 892{
 893	struct spi_master *master = dev_id;
 894	struct stm32_spi *spi = spi_master_get_devdata(master);
 895
 896	spi_finalize_current_transfer(master);
 897	stm32f4_spi_disable(spi);
 898
 899	return IRQ_HANDLED;
 900}
 901
 902/**
 903 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 904 * @irq: interrupt line
 905 * @dev_id: SPI controller master interface
 906 */
 907static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 908{
 909	struct spi_master *master = dev_id;
 910	struct stm32_spi *spi = spi_master_get_devdata(master);
 911	u32 sr, ier, mask;
 912	unsigned long flags;
 913	bool end = false;
 914
 915	spin_lock_irqsave(&spi->lock, flags);
 916
 917	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 918	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 919
 920	mask = ier;
 921	/* EOTIE is triggered on EOT, SUSP and TXC events. */
 
 
 
 
 922	mask |= STM32H7_SPI_SR_SUSP;
 923	/*
 924	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 925	 * Full-Duplex, need to poll RXP event to know if there are remaining
 926	 * data, before disabling SPI.
 927	 */
 928	if (spi->rx_buf && !spi->cur_usedma)
 929		mask |= STM32H7_SPI_SR_RXP;
 930
 931	if (!(sr & mask)) {
 932		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 933			sr, ier);
 934		spin_unlock_irqrestore(&spi->lock, flags);
 935		return IRQ_NONE;
 936	}
 937
 938	if (sr & STM32H7_SPI_SR_SUSP) {
 939		static DEFINE_RATELIMIT_STATE(rs,
 940					      DEFAULT_RATELIMIT_INTERVAL * 10,
 941					      1);
 
 942		if (__ratelimit(&rs))
 943			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
 944		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 945			stm32h7_spi_read_rxfifo(spi, false);
 946		/*
 947		 * If communication is suspended while using DMA, it means
 948		 * that something went wrong, so stop the current transfer
 949		 */
 950		if (spi->cur_usedma)
 951			end = true;
 952	}
 953
 954	if (sr & STM32H7_SPI_SR_MODF) {
 955		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 956		end = true;
 957	}
 958
 959	if (sr & STM32H7_SPI_SR_OVR) {
 960		dev_warn(spi->dev, "Overrun: received value discarded\n");
 961		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 962			stm32h7_spi_read_rxfifo(spi, false);
 963		/*
 964		 * If overrun is detected while using DMA, it means that
 965		 * something went wrong, so stop the current transfer
 966		 */
 967		if (spi->cur_usedma)
 968			end = true;
 969	}
 970
 971	if (sr & STM32H7_SPI_SR_EOT) {
 972		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 973			stm32h7_spi_read_rxfifo(spi, true);
 974		end = true;
 
 
 975	}
 976
 977	if (sr & STM32H7_SPI_SR_TXP)
 978		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 979			stm32h7_spi_write_txfifo(spi);
 980
 981	if (sr & STM32H7_SPI_SR_RXP)
 982		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 983			stm32h7_spi_read_rxfifo(spi, false);
 984
 985	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
 986
 987	spin_unlock_irqrestore(&spi->lock, flags);
 988
 989	if (end) {
 990		stm32h7_spi_disable(spi);
 991		spi_finalize_current_transfer(master);
 992	}
 993
 994	return IRQ_HANDLED;
 995}
 996
 997/**
 998 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 999 * @master: controller master interface
1000 * @msg: pointer to spi message
1001 */
1002static int stm32_spi_prepare_msg(struct spi_master *master,
1003				 struct spi_message *msg)
1004{
1005	struct stm32_spi *spi = spi_master_get_devdata(master);
1006	struct spi_device *spi_dev = msg->spi;
1007	struct device_node *np = spi_dev->dev.of_node;
1008	unsigned long flags;
1009	u32 clrb = 0, setb = 0;
1010
1011	/* SPI slave device may need time between data frames */
1012	spi->cur_midi = 0;
1013	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015
1016	if (spi_dev->mode & SPI_CPOL)
1017		setb |= spi->cfg->regs->cpol.mask;
1018	else
1019		clrb |= spi->cfg->regs->cpol.mask;
1020
1021	if (spi_dev->mode & SPI_CPHA)
1022		setb |= spi->cfg->regs->cpha.mask;
1023	else
1024		clrb |= spi->cfg->regs->cpha.mask;
1025
1026	if (spi_dev->mode & SPI_LSB_FIRST)
1027		setb |= spi->cfg->regs->lsb_first.mask;
1028	else
1029		clrb |= spi->cfg->regs->lsb_first.mask;
1030
 
 
 
 
 
1031	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032		spi_dev->mode & SPI_CPOL,
1033		spi_dev->mode & SPI_CPHA,
1034		spi_dev->mode & SPI_LSB_FIRST,
1035		spi_dev->mode & SPI_CS_HIGH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037	spin_lock_irqsave(&spi->lock, flags);
1038
1039	/* CPOL, CPHA and LSB FIRST bits have common register */
1040	if (clrb || setb)
1041		writel_relaxed(
1042			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043			 ~clrb) | setb,
1044			spi->base + spi->cfg->regs->cpol.reg);
1045
1046	spin_unlock_irqrestore(&spi->lock, flags);
1047
1048	return 0;
1049}
1050
1051/**
1052 * stm32f4_spi_dma_tx_cb - dma callback
1053 * @data: pointer to the spi controller data structure
1054 *
1055 * DMA callback is called when the transfer is complete for DMA TX channel.
1056 */
1057static void stm32f4_spi_dma_tx_cb(void *data)
1058{
1059	struct stm32_spi *spi = data;
1060
1061	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1062		spi_finalize_current_transfer(spi->master);
1063		stm32f4_spi_disable(spi);
1064	}
1065}
1066
1067/**
1068 * stm32f4_spi_dma_rx_cb - dma callback
1069 * @data: pointer to the spi controller data structure
1070 *
1071 * DMA callback is called when the transfer is complete for DMA RX channel.
1072 */
1073static void stm32f4_spi_dma_rx_cb(void *data)
1074{
1075	struct stm32_spi *spi = data;
1076
1077	spi_finalize_current_transfer(spi->master);
1078	stm32f4_spi_disable(spi);
1079}
1080
1081/**
1082 * stm32h7_spi_dma_cb - dma callback
1083 * @data: pointer to the spi controller data structure
1084 *
1085 * DMA callback is called when the transfer is complete or when an error
1086 * occurs. If the transfer is complete, EOT flag is raised.
1087 */
1088static void stm32h7_spi_dma_cb(void *data)
1089{
1090	struct stm32_spi *spi = data;
1091	unsigned long flags;
1092	u32 sr;
1093
1094	spin_lock_irqsave(&spi->lock, flags);
1095
1096	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1097
1098	spin_unlock_irqrestore(&spi->lock, flags);
1099
1100	if (!(sr & STM32H7_SPI_SR_EOT))
1101		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1102
1103	/* Now wait for EOT, or SUSP or OVR in case of error */
1104}
1105
1106/**
1107 * stm32_spi_dma_config - configure dma slave channel depending on current
1108 *			  transfer bits_per_word.
1109 * @spi: pointer to the spi controller data structure
 
1110 * @dma_conf: pointer to the dma_slave_config structure
1111 * @dir: direction of the dma transfer
1112 */
1113static void stm32_spi_dma_config(struct stm32_spi *spi,
 
1114				 struct dma_slave_config *dma_conf,
1115				 enum dma_transfer_direction dir)
1116{
1117	enum dma_slave_buswidth buswidth;
1118	u32 maxburst;
 
 
1119
1120	if (spi->cur_bpw <= 8)
1121		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1122	else if (spi->cur_bpw <= 16)
1123		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1124	else
1125		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1126
1127	if (spi->cfg->has_fifo) {
1128		/* Valid for DMA Half or Full Fifo threshold */
1129		if (spi->cur_fthlv == 2)
1130			maxburst = 1;
1131		else
1132			maxburst = spi->cur_fthlv;
1133	} else {
1134		maxburst = 1;
1135	}
1136
1137	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1138	dma_conf->direction = dir;
1139	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1140		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1141		dma_conf->src_addr_width = buswidth;
1142		dma_conf->src_maxburst = maxburst;
1143
1144		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1145			buswidth, maxburst);
1146	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1147		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1148		dma_conf->dst_addr_width = buswidth;
1149		dma_conf->dst_maxburst = maxburst;
1150
1151		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1152			buswidth, maxburst);
1153	}
1154}
1155
1156/**
1157 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1158 *				  interrupts
1159 * @spi: pointer to the spi controller data structure
1160 *
1161 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1162 * in progress.
1163 */
1164static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1165{
1166	unsigned long flags;
1167	u32 cr2 = 0;
1168
1169	/* Enable the interrupts relative to the current communication mode */
1170	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1171		cr2 |= STM32F4_SPI_CR2_TXEIE;
1172	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1173				spi->cur_comm == SPI_SIMPLEX_RX ||
1174				spi->cur_comm == SPI_3WIRE_RX) {
1175		/* In transmit-only mode, the OVR flag is set in the SR register
1176		 * since the received data are never read. Therefore set OVR
1177		 * interrupt only when rx buffer is available.
1178		 */
1179		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1180	} else {
1181		return -EINVAL;
1182	}
1183
1184	spin_lock_irqsave(&spi->lock, flags);
1185
1186	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1187
1188	stm32_spi_enable(spi);
1189
1190	/* starting data transfer when buffer is loaded */
1191	if (spi->tx_buf)
1192		stm32f4_spi_write_tx(spi);
1193
1194	spin_unlock_irqrestore(&spi->lock, flags);
1195
1196	return 1;
1197}
1198
1199/**
1200 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1201 *				  interrupts
1202 * @spi: pointer to the spi controller data structure
1203 *
1204 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1205 * in progress.
1206 */
1207static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1208{
1209	unsigned long flags;
1210	u32 ier = 0;
1211
1212	/* Enable the interrupts relative to the current communication mode */
1213	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1214		ier |= STM32H7_SPI_IER_DXPIE;
1215	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1216		ier |= STM32H7_SPI_IER_TXPIE;
1217	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1218		ier |= STM32H7_SPI_IER_RXPIE;
1219
1220	/* Enable the interrupts relative to the end of transfer */
1221	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1222	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1223
1224	spin_lock_irqsave(&spi->lock, flags);
1225
1226	stm32_spi_enable(spi);
1227
1228	/* Be sure to have data in fifo before starting data transfer */
1229	if (spi->tx_buf)
1230		stm32h7_spi_write_txfifo(spi);
1231
1232	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
 
1233
1234	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1235
1236	spin_unlock_irqrestore(&spi->lock, flags);
1237
1238	return 1;
1239}
1240
1241/**
1242 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1243 *					transfer using DMA
1244 * @spi: pointer to the spi controller data structure
1245 */
1246static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1247{
1248	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1249	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1250	    spi->cur_comm == SPI_FULL_DUPLEX) {
1251		/*
1252		 * In transmit-only mode, the OVR flag is set in the SR register
1253		 * since the received data are never read. Therefore set OVR
1254		 * interrupt only when rx buffer is available.
1255		 */
1256		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1257	}
1258
1259	stm32_spi_enable(spi);
1260}
1261
1262/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1264 *					transfer using DMA
1265 * @spi: pointer to the spi controller data structure
1266 */
1267static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1268{
1269	/* Enable the interrupts relative to the end of transfer */
1270	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1271						 STM32H7_SPI_IER_TXTFIE |
1272						 STM32H7_SPI_IER_OVRIE |
1273						 STM32H7_SPI_IER_MODFIE);
 
 
1274
1275	stm32_spi_enable(spi);
1276
1277	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
 
1278}
1279
1280/**
1281 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1282 * @spi: pointer to the spi controller data structure
1283 * @xfer: pointer to the spi_transfer structure
1284 *
1285 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1286 * in progress.
1287 */
1288static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1289				      struct spi_transfer *xfer)
1290{
1291	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1292	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1293	unsigned long flags;
1294
1295	spin_lock_irqsave(&spi->lock, flags);
1296
1297	rx_dma_desc = NULL;
1298	if (spi->rx_buf && spi->dma_rx) {
1299		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1300		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1301
1302		/* Enable Rx DMA request */
1303		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1304				   spi->cfg->regs->dma_rx_en.mask);
1305
1306		rx_dma_desc = dmaengine_prep_slave_sg(
1307					spi->dma_rx, xfer->rx_sg.sgl,
1308					xfer->rx_sg.nents,
1309					rx_dma_conf.direction,
1310					DMA_PREP_INTERRUPT);
1311	}
1312
1313	tx_dma_desc = NULL;
1314	if (spi->tx_buf && spi->dma_tx) {
1315		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1316		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1317
1318		tx_dma_desc = dmaengine_prep_slave_sg(
1319					spi->dma_tx, xfer->tx_sg.sgl,
1320					xfer->tx_sg.nents,
1321					tx_dma_conf.direction,
1322					DMA_PREP_INTERRUPT);
1323	}
1324
1325	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1326	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1327		goto dma_desc_error;
1328
1329	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1330		goto dma_desc_error;
1331
1332	if (rx_dma_desc) {
1333		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1334		rx_dma_desc->callback_param = spi;
1335
1336		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1337			dev_err(spi->dev, "Rx DMA submit failed\n");
1338			goto dma_desc_error;
1339		}
1340		/* Enable Rx DMA channel */
1341		dma_async_issue_pending(spi->dma_rx);
1342	}
1343
1344	if (tx_dma_desc) {
1345		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1346		    spi->cur_comm == SPI_3WIRE_TX) {
1347			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1348			tx_dma_desc->callback_param = spi;
1349		}
1350
1351		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1352			dev_err(spi->dev, "Tx DMA submit failed\n");
1353			goto dma_submit_error;
1354		}
1355		/* Enable Tx DMA channel */
1356		dma_async_issue_pending(spi->dma_tx);
1357
1358		/* Enable Tx DMA request */
1359		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1360				   spi->cfg->regs->dma_tx_en.mask);
1361	}
1362
1363	spi->cfg->transfer_one_dma_start(spi);
1364
1365	spin_unlock_irqrestore(&spi->lock, flags);
1366
1367	return 1;
1368
1369dma_submit_error:
1370	if (spi->dma_rx)
1371		dmaengine_terminate_all(spi->dma_rx);
1372
1373dma_desc_error:
1374	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1375			   spi->cfg->regs->dma_rx_en.mask);
1376
1377	spin_unlock_irqrestore(&spi->lock, flags);
1378
1379	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1380
1381	spi->cur_usedma = false;
1382	return spi->cfg->transfer_one_irq(spi);
1383}
1384
1385/**
1386 * stm32f4_spi_set_bpw - Configure bits per word
1387 * @spi: pointer to the spi controller data structure
1388 */
1389static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1390{
1391	if (spi->cur_bpw == 16)
1392		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1393	else
1394		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395}
1396
1397/**
1398 * stm32h7_spi_set_bpw - configure bits per word
1399 * @spi: pointer to the spi controller data structure
1400 */
1401static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1402{
1403	u32 bpw, fthlv;
1404	u32 cfg1_clrb = 0, cfg1_setb = 0;
1405
1406	bpw = spi->cur_bpw - 1;
1407
1408	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1409	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1410		     STM32H7_SPI_CFG1_DSIZE;
1411
1412	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1413	fthlv = spi->cur_fthlv - 1;
1414
1415	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1416	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1417		     STM32H7_SPI_CFG1_FTHLV;
1418
1419	writel_relaxed(
1420		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1421		 ~cfg1_clrb) | cfg1_setb,
1422		spi->base + STM32H7_SPI_CFG1);
1423}
1424
1425/**
1426 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1427 * @spi: pointer to the spi controller data structure
1428 * @mbrdiv: baud rate divisor value
1429 */
1430static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1431{
1432	u32 clrb = 0, setb = 0;
1433
1434	clrb |= spi->cfg->regs->br.mask;
1435	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1436		spi->cfg->regs->br.mask;
1437
1438	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1439			~clrb) | setb,
1440		       spi->base + spi->cfg->regs->br.reg);
1441}
1442
1443/**
1444 * stm32_spi_communication_type - return transfer communication type
1445 * @spi_dev: pointer to the spi device
1446 * @transfer: pointer to spi transfer
1447 */
1448static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1449						 struct spi_transfer *transfer)
1450{
1451	unsigned int type = SPI_FULL_DUPLEX;
1452
1453	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1454		/*
1455		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1456		 * is forbidden and unvalidated by SPI subsystem so depending
1457		 * on the valid buffer, we can determine the direction of the
1458		 * transfer.
1459		 */
1460		if (!transfer->tx_buf)
1461			type = SPI_3WIRE_RX;
1462		else
1463			type = SPI_3WIRE_TX;
1464	} else {
1465		if (!transfer->tx_buf)
1466			type = SPI_SIMPLEX_RX;
1467		else if (!transfer->rx_buf)
1468			type = SPI_SIMPLEX_TX;
1469	}
1470
1471	return type;
1472}
1473
1474/**
1475 * stm32f4_spi_set_mode - configure communication mode
1476 * @spi: pointer to the spi controller data structure
1477 * @comm_type: type of communication to configure
1478 */
1479static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1480{
1481	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1482		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1483					STM32F4_SPI_CR1_BIDIMODE |
1484					STM32F4_SPI_CR1_BIDIOE);
1485	} else if (comm_type == SPI_FULL_DUPLEX ||
1486				comm_type == SPI_SIMPLEX_RX) {
1487		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1488					STM32F4_SPI_CR1_BIDIMODE |
1489					STM32F4_SPI_CR1_BIDIOE);
1490	} else if (comm_type == SPI_3WIRE_RX) {
1491		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1492					STM32F4_SPI_CR1_BIDIMODE);
1493		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1494					STM32F4_SPI_CR1_BIDIOE);
1495	} else {
1496		return -EINVAL;
1497	}
1498
1499	return 0;
1500}
1501
1502/**
1503 * stm32h7_spi_set_mode - configure communication mode
1504 * @spi: pointer to the spi controller data structure
1505 * @comm_type: type of communication to configure
1506 */
1507static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1508{
1509	u32 mode;
1510	u32 cfg2_clrb = 0, cfg2_setb = 0;
1511
1512	if (comm_type == SPI_3WIRE_RX) {
1513		mode = STM32H7_SPI_HALF_DUPLEX;
1514		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1515	} else if (comm_type == SPI_3WIRE_TX) {
1516		mode = STM32H7_SPI_HALF_DUPLEX;
1517		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1518	} else if (comm_type == SPI_SIMPLEX_RX) {
1519		mode = STM32H7_SPI_SIMPLEX_RX;
1520	} else if (comm_type == SPI_SIMPLEX_TX) {
1521		mode = STM32H7_SPI_SIMPLEX_TX;
1522	} else {
1523		mode = STM32H7_SPI_FULL_DUPLEX;
1524	}
1525
1526	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1527	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1528		     STM32H7_SPI_CFG2_COMM;
1529
1530	writel_relaxed(
1531		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532		 ~cfg2_clrb) | cfg2_setb,
1533		spi->base + STM32H7_SPI_CFG2);
1534
1535	return 0;
1536}
1537
1538/**
1539 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1540 *			       consecutive data frames in master mode
1541 * @spi: pointer to the spi controller data structure
1542 * @len: transfer len
1543 */
1544static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1545{
1546	u32 cfg2_clrb = 0, cfg2_setb = 0;
1547
1548	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1549	if ((len > 1) && (spi->cur_midi > 0)) {
1550		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1551		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1552			       (u32)STM32H7_SPI_CFG2_MIDI >>
1553			       STM32H7_SPI_CFG2_MIDI_SHIFT);
 
 
1554
1555		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1556			sck_period_ns, midi, midi * sck_period_ns);
1557		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1558			     STM32H7_SPI_CFG2_MIDI;
1559	}
1560
1561	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1562			~cfg2_clrb) | cfg2_setb,
1563		       spi->base + STM32H7_SPI_CFG2);
1564}
1565
1566/**
1567 * stm32h7_spi_number_of_data - configure number of data at current transfer
1568 * @spi: pointer to the spi controller data structure
1569 * @nb_words: transfer length (in words)
1570 */
1571static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1572{
1573	u32 cr2_clrb = 0, cr2_setb = 0;
1574
1575	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1576			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1577		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1578		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1579		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1580				~cr2_clrb) | cr2_setb,
1581			       spi->base + STM32H7_SPI_CR2);
1582	} else {
1583		return -EMSGSIZE;
1584	}
1585
1586	return 0;
1587}
1588
1589/**
1590 * stm32_spi_transfer_one_setup - common setup to transfer a single
1591 *				  spi_transfer either using DMA or
1592 *				  interrupts.
1593 * @spi: pointer to the spi controller data structure
1594 * @spi_dev: pointer to the spi device
1595 * @transfer: pointer to spi transfer
1596 */
1597static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1598					struct spi_device *spi_dev,
1599					struct spi_transfer *transfer)
1600{
1601	unsigned long flags;
1602	unsigned int comm_type;
1603	int nb_words, ret = 0;
1604	int mbr;
1605
1606	spin_lock_irqsave(&spi->lock, flags);
1607
1608	spi->cur_xferlen = transfer->len;
1609
1610	spi->cur_bpw = transfer->bits_per_word;
1611	spi->cfg->set_bpw(spi);
1612
1613	/* Update spi->cur_speed with real clock speed */
1614	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1615				    spi->cfg->baud_rate_div_min,
1616				    spi->cfg->baud_rate_div_max);
1617	if (mbr < 0) {
1618		ret = mbr;
1619		goto out;
1620	}
 
1621
1622	transfer->speed_hz = spi->cur_speed;
1623	stm32_spi_set_mbr(spi, mbr);
 
1624
1625	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1626	ret = spi->cfg->set_mode(spi, comm_type);
1627	if (ret < 0)
1628		goto out;
1629
1630	spi->cur_comm = comm_type;
1631
1632	if (spi->cfg->set_data_idleness)
1633		spi->cfg->set_data_idleness(spi, transfer->len);
1634
1635	if (spi->cur_bpw <= 8)
1636		nb_words = transfer->len;
1637	else if (spi->cur_bpw <= 16)
1638		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1639	else
1640		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1641
1642	if (spi->cfg->set_number_of_data) {
1643		ret = spi->cfg->set_number_of_data(spi, nb_words);
1644		if (ret < 0)
1645			goto out;
1646	}
1647
1648	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1649		spi->cur_comm);
1650	dev_dbg(spi->dev,
1651		"data frame of %d-bit, data packet of %d data frames\n",
1652		spi->cur_bpw, spi->cur_fthlv);
1653	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
 
1654	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1655		spi->cur_xferlen, nb_words);
1656	dev_dbg(spi->dev, "dma %s\n",
1657		(spi->cur_usedma) ? "enabled" : "disabled");
1658
1659out:
1660	spin_unlock_irqrestore(&spi->lock, flags);
1661
1662	return ret;
1663}
1664
1665/**
1666 * stm32_spi_transfer_one - transfer a single spi_transfer
1667 * @master: controller master interface
1668 * @spi_dev: pointer to the spi device
1669 * @transfer: pointer to spi transfer
1670 *
1671 * It must return 0 if the transfer is finished or 1 if the transfer is still
1672 * in progress.
1673 */
1674static int stm32_spi_transfer_one(struct spi_master *master,
1675				  struct spi_device *spi_dev,
1676				  struct spi_transfer *transfer)
1677{
1678	struct stm32_spi *spi = spi_master_get_devdata(master);
1679	int ret;
1680
1681	spi->tx_buf = transfer->tx_buf;
1682	spi->rx_buf = transfer->rx_buf;
1683	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685
1686	spi->cur_usedma = (master->can_dma &&
1687			   master->can_dma(master, spi_dev, transfer));
1688
1689	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690	if (ret) {
1691		dev_err(spi->dev, "SPI transfer setup failed\n");
1692		return ret;
1693	}
1694
1695	if (spi->cur_usedma)
1696		return stm32_spi_transfer_one_dma(spi, transfer);
1697	else
1698		return spi->cfg->transfer_one_irq(spi);
1699}
1700
1701/**
1702 * stm32_spi_unprepare_msg - relax the hardware
1703 * @master: controller master interface
1704 * @msg: pointer to the spi message
1705 */
1706static int stm32_spi_unprepare_msg(struct spi_master *master,
1707				   struct spi_message *msg)
1708{
1709	struct stm32_spi *spi = spi_master_get_devdata(master);
1710
1711	spi->cfg->disable(spi);
1712
1713	return 0;
1714}
1715
1716/**
1717 * stm32f4_spi_config - Configure SPI controller as SPI master
1718 * @spi: pointer to the spi controller data structure
1719 */
1720static int stm32f4_spi_config(struct stm32_spi *spi)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&spi->lock, flags);
1725
1726	/* Ensure I2SMOD bit is kept cleared */
1727	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728			   STM32F4_SPI_I2SCFGR_I2SMOD);
1729
1730	/*
1731	 * - SS input value high
1732	 * - transmitter half duplex direction
1733	 * - Set the master mode (default Motorola mode)
1734	 * - Consider 1 master/n slaves configuration and
1735	 *   SS input value is determined by the SSI bit
1736	 */
1737	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738						 STM32F4_SPI_CR1_BIDIOE |
1739						 STM32F4_SPI_CR1_MSTR |
1740						 STM32F4_SPI_CR1_SSM);
1741
1742	spin_unlock_irqrestore(&spi->lock, flags);
1743
1744	return 0;
1745}
1746
1747/**
1748 * stm32h7_spi_config - Configure SPI controller as SPI master
1749 * @spi: pointer to the spi controller data structure
1750 */
1751static int stm32h7_spi_config(struct stm32_spi *spi)
1752{
1753	unsigned long flags;
 
1754
1755	spin_lock_irqsave(&spi->lock, flags);
1756
1757	/* Ensure I2SMOD bit is kept cleared */
1758	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759			   STM32H7_SPI_I2SCFGR_I2SMOD);
1760
1761	/*
1762	 * - SS input value high
1763	 * - transmitter half duplex direction
1764	 * - automatic communication suspend when RX-Fifo is full
1765	 */
1766	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767						 STM32H7_SPI_CR1_HDDIR |
1768						 STM32H7_SPI_CR1_MASRX);
 
 
1769
1770	/*
1771	 * - Set the master mode (default Motorola mode)
1772	 * - Consider 1 master/n slaves configuration and
1773	 *   SS input value is determined by the SSI bit
1774	 * - keep control of all associated GPIOs
1775	 */
1776	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777						  STM32H7_SPI_CFG2_SSM |
1778						  STM32H7_SPI_CFG2_AFCNTR);
 
 
1779
1780	spin_unlock_irqrestore(&spi->lock, flags);
1781
1782	return 0;
1783}
1784
1785static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786	.regs = &stm32f4_spi_regspec,
1787	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788	.disable = stm32f4_spi_disable,
1789	.config = stm32f4_spi_config,
1790	.set_bpw = stm32f4_spi_set_bpw,
1791	.set_mode = stm32f4_spi_set_mode,
1792	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796	.irq_handler_event = stm32f4_spi_irq_event,
1797	.irq_handler_thread = stm32f4_spi_irq_thread,
1798	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800	.has_fifo = false,
 
1801};
1802
1803static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804	.regs = &stm32h7_spi_regspec,
1805	.get_fifo_size = stm32h7_spi_get_fifo_size,
1806	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807	.disable = stm32h7_spi_disable,
1808	.config = stm32h7_spi_config,
1809	.set_bpw = stm32h7_spi_set_bpw,
1810	.set_mode = stm32h7_spi_set_mode,
1811	.set_data_idleness = stm32h7_spi_data_idleness,
1812	.set_number_of_data = stm32h7_spi_number_of_data,
 
 
1813	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814	.dma_rx_cb = stm32h7_spi_dma_cb,
1815	.dma_tx_cb = stm32h7_spi_dma_cb,
 
 
 
1816	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817	.irq_handler_thread = stm32h7_spi_irq_thread,
1818	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820	.has_fifo = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821};
1822
1823static const struct of_device_id stm32_spi_of_match[] = {
 
1824	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
 
1826	{},
1827};
1828MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829
 
 
 
 
 
 
1830static int stm32_spi_probe(struct platform_device *pdev)
1831{
1832	struct spi_master *master;
1833	struct stm32_spi *spi;
1834	struct resource *res;
 
 
 
1835	int ret;
 
 
 
 
 
 
 
1836
1837	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838	if (!master) {
1839		dev_err(&pdev->dev, "spi master allocation failed\n");
 
 
 
1840		return -ENOMEM;
1841	}
1842	platform_set_drvdata(pdev, master);
1843
1844	spi = spi_master_get_devdata(master);
1845	spi->dev = &pdev->dev;
1846	spi->master = master;
 
1847	spin_lock_init(&spi->lock);
1848
1849	spi->cfg = (const struct stm32_spi_cfg *)
1850		of_match_device(pdev->dev.driver->of_match_table,
1851				&pdev->dev)->data;
1852
1853	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854	spi->base = devm_ioremap_resource(&pdev->dev, res);
1855	if (IS_ERR(spi->base)) {
1856		ret = PTR_ERR(spi->base);
1857		goto err_master_put;
1858	}
1859
1860	spi->phys_addr = (dma_addr_t)res->start;
1861
1862	spi->irq = platform_get_irq(pdev, 0);
1863	if (spi->irq <= 0) {
1864		ret = spi->irq;
1865		if (ret != -EPROBE_DEFER)
1866			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1867		goto err_master_put;
1868	}
1869	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1870					spi->cfg->irq_handler_event,
1871					spi->cfg->irq_handler_thread,
1872					IRQF_ONESHOT, pdev->name, master);
1873	if (ret) {
1874		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1875			ret);
1876		goto err_master_put;
1877	}
1878
1879	spi->clk = devm_clk_get(&pdev->dev, NULL);
1880	if (IS_ERR(spi->clk)) {
1881		ret = PTR_ERR(spi->clk);
1882		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1883		goto err_master_put;
1884	}
1885
1886	ret = clk_prepare_enable(spi->clk);
1887	if (ret) {
1888		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1889		goto err_master_put;
1890	}
1891	spi->clk_rate = clk_get_rate(spi->clk);
1892	if (!spi->clk_rate) {
1893		dev_err(&pdev->dev, "clk rate = 0\n");
1894		ret = -EINVAL;
1895		goto err_clk_disable;
1896	}
1897
1898	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1899	if (!IS_ERR(spi->rst)) {
1900		reset_control_assert(spi->rst);
 
 
 
 
 
 
1901		udelay(2);
1902		reset_control_deassert(spi->rst);
1903	}
1904
1905	if (spi->cfg->has_fifo)
1906		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908	ret = spi->cfg->config(spi);
1909	if (ret) {
1910		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1911			ret);
1912		goto err_clk_disable;
1913	}
1914
1915	master->dev.of_node = pdev->dev.of_node;
1916	master->auto_runtime_pm = true;
1917	master->bus_num = pdev->id;
1918	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1919			    SPI_3WIRE;
1920	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1921	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1922	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1923	master->use_gpio_descriptors = true;
1924	master->prepare_message = stm32_spi_prepare_msg;
1925	master->transfer_one = stm32_spi_transfer_one;
1926	master->unprepare_message = stm32_spi_unprepare_msg;
1927	master->flags = SPI_MASTER_MUST_TX;
 
 
1928
1929	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1930	if (IS_ERR(spi->dma_tx)) {
1931		ret = PTR_ERR(spi->dma_tx);
1932		spi->dma_tx = NULL;
1933		if (ret == -EPROBE_DEFER)
1934			goto err_clk_disable;
1935
1936		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1937	} else {
1938		master->dma_tx = spi->dma_tx;
1939	}
1940
1941	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1942	if (IS_ERR(spi->dma_rx)) {
1943		ret = PTR_ERR(spi->dma_rx);
1944		spi->dma_rx = NULL;
1945		if (ret == -EPROBE_DEFER)
1946			goto err_dma_release;
1947
1948		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1949	} else {
1950		master->dma_rx = spi->dma_rx;
1951	}
1952
1953	if (spi->dma_tx || spi->dma_rx)
1954		master->can_dma = stm32_spi_can_dma;
1955
 
 
 
1956	pm_runtime_set_active(&pdev->dev);
 
1957	pm_runtime_enable(&pdev->dev);
1958
1959	ret = devm_spi_register_master(&pdev->dev, master);
1960	if (ret) {
1961		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1962			ret);
1963		goto err_pm_disable;
1964	}
1965
1966	if (!master->cs_gpiods) {
1967		dev_err(&pdev->dev, "no CS gpios available\n");
1968		ret = -EINVAL;
1969		goto err_pm_disable;
1970	}
1971
1972	dev_info(&pdev->dev, "driver initialized\n");
 
1973
1974	return 0;
1975
1976err_pm_disable:
1977	pm_runtime_disable(&pdev->dev);
 
 
 
1978err_dma_release:
1979	if (spi->dma_tx)
1980		dma_release_channel(spi->dma_tx);
1981	if (spi->dma_rx)
1982		dma_release_channel(spi->dma_rx);
1983err_clk_disable:
1984	clk_disable_unprepare(spi->clk);
1985err_master_put:
1986	spi_master_put(master);
1987
1988	return ret;
1989}
1990
1991static int stm32_spi_remove(struct platform_device *pdev)
1992{
1993	struct spi_master *master = platform_get_drvdata(pdev);
1994	struct stm32_spi *spi = spi_master_get_devdata(master);
1995
 
 
 
1996	spi->cfg->disable(spi);
1997
1998	if (master->dma_tx)
1999		dma_release_channel(master->dma_tx);
2000	if (master->dma_rx)
2001		dma_release_channel(master->dma_rx);
 
 
 
 
 
2002
2003	clk_disable_unprepare(spi->clk);
2004
2005	pm_runtime_disable(&pdev->dev);
2006
2007	pinctrl_pm_select_sleep_state(&pdev->dev);
2008
2009	return 0;
2010}
2011
2012#ifdef CONFIG_PM
2013static int stm32_spi_runtime_suspend(struct device *dev)
2014{
2015	struct spi_master *master = dev_get_drvdata(dev);
2016	struct stm32_spi *spi = spi_master_get_devdata(master);
2017
2018	clk_disable_unprepare(spi->clk);
2019
2020	return pinctrl_pm_select_sleep_state(dev);
2021}
2022
2023static int stm32_spi_runtime_resume(struct device *dev)
2024{
2025	struct spi_master *master = dev_get_drvdata(dev);
2026	struct stm32_spi *spi = spi_master_get_devdata(master);
2027	int ret;
2028
2029	ret = pinctrl_pm_select_default_state(dev);
2030	if (ret)
2031		return ret;
2032
2033	return clk_prepare_enable(spi->clk);
2034}
2035#endif
2036
2037#ifdef CONFIG_PM_SLEEP
2038static int stm32_spi_suspend(struct device *dev)
2039{
2040	struct spi_master *master = dev_get_drvdata(dev);
2041	int ret;
2042
2043	ret = spi_master_suspend(master);
2044	if (ret)
2045		return ret;
2046
2047	return pm_runtime_force_suspend(dev);
2048}
2049
2050static int stm32_spi_resume(struct device *dev)
2051{
2052	struct spi_master *master = dev_get_drvdata(dev);
2053	struct stm32_spi *spi = spi_master_get_devdata(master);
2054	int ret;
2055
2056	ret = pm_runtime_force_resume(dev);
2057	if (ret)
2058		return ret;
2059
2060	ret = spi_master_resume(master);
2061	if (ret) {
2062		clk_disable_unprepare(spi->clk);
2063		return ret;
2064	}
2065
2066	ret = pm_runtime_get_sync(dev);
2067	if (ret < 0) {
2068		dev_err(dev, "Unable to power device:%d\n", ret);
2069		return ret;
2070	}
2071
2072	spi->cfg->config(spi);
2073
2074	pm_runtime_mark_last_busy(dev);
2075	pm_runtime_put_autosuspend(dev);
2076
2077	return 0;
2078}
2079#endif
2080
2081static const struct dev_pm_ops stm32_spi_pm_ops = {
2082	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2083	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2084			   stm32_spi_runtime_resume, NULL)
2085};
2086
2087static struct platform_driver stm32_spi_driver = {
2088	.probe = stm32_spi_probe,
2089	.remove = stm32_spi_remove,
2090	.driver = {
2091		.name = DRIVER_NAME,
2092		.pm = &stm32_spi_pm_ops,
2093		.of_match_table = stm32_spi_of_match,
2094	},
2095};
2096
2097module_platform_driver(stm32_spi_driver);
2098
2099MODULE_ALIAS("platform:" DRIVER_NAME);
2100MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2101MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2102MODULE_LICENSE("GPL v2");
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/bitfield.h>
   9#include <linux/debugfs.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/platform_device.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/reset.h>
  21#include <linux/spi/spi.h>
  22
  23#define DRIVER_NAME "spi_stm32"
  24
  25/* STM32F4/7 SPI registers */
  26#define STM32FX_SPI_CR1			0x00
  27#define STM32FX_SPI_CR2			0x04
  28#define STM32FX_SPI_SR			0x08
  29#define STM32FX_SPI_DR			0x0C
  30#define STM32FX_SPI_I2SCFGR		0x1C
  31
  32/* STM32FX_SPI_CR1 bit fields */
  33#define STM32FX_SPI_CR1_CPHA		BIT(0)
  34#define STM32FX_SPI_CR1_CPOL		BIT(1)
  35#define STM32FX_SPI_CR1_MSTR		BIT(2)
  36#define STM32FX_SPI_CR1_BR_SHIFT	3
  37#define STM32FX_SPI_CR1_BR		GENMASK(5, 3)
  38#define STM32FX_SPI_CR1_SPE		BIT(6)
  39#define STM32FX_SPI_CR1_LSBFRST		BIT(7)
  40#define STM32FX_SPI_CR1_SSI		BIT(8)
  41#define STM32FX_SPI_CR1_SSM		BIT(9)
  42#define STM32FX_SPI_CR1_RXONLY		BIT(10)
  43#define STM32F4_SPI_CR1_DFF		BIT(11)
  44#define STM32F7_SPI_CR1_CRCL		BIT(11)
  45#define STM32FX_SPI_CR1_CRCNEXT		BIT(12)
  46#define STM32FX_SPI_CR1_CRCEN		BIT(13)
  47#define STM32FX_SPI_CR1_BIDIOE		BIT(14)
  48#define STM32FX_SPI_CR1_BIDIMODE	BIT(15)
  49#define STM32FX_SPI_CR1_BR_MIN		0
  50#define STM32FX_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  51
  52/* STM32FX_SPI_CR2 bit fields */
  53#define STM32FX_SPI_CR2_RXDMAEN		BIT(0)
  54#define STM32FX_SPI_CR2_TXDMAEN		BIT(1)
  55#define STM32FX_SPI_CR2_SSOE		BIT(2)
  56#define STM32FX_SPI_CR2_FRF		BIT(4)
  57#define STM32FX_SPI_CR2_ERRIE		BIT(5)
  58#define STM32FX_SPI_CR2_RXNEIE		BIT(6)
  59#define STM32FX_SPI_CR2_TXEIE		BIT(7)
  60#define STM32F7_SPI_CR2_DS		GENMASK(11, 8)
  61#define STM32F7_SPI_CR2_FRXTH		BIT(12)
  62#define STM32F7_SPI_CR2_LDMA_RX		BIT(13)
  63#define STM32F7_SPI_CR2_LDMA_TX		BIT(14)
  64
  65/* STM32FX_SPI_SR bit fields */
  66#define STM32FX_SPI_SR_RXNE		BIT(0)
  67#define STM32FX_SPI_SR_TXE		BIT(1)
  68#define STM32FX_SPI_SR_CHSIDE		BIT(2)
  69#define STM32FX_SPI_SR_UDR		BIT(3)
  70#define STM32FX_SPI_SR_CRCERR		BIT(4)
  71#define STM32FX_SPI_SR_MODF		BIT(5)
  72#define STM32FX_SPI_SR_OVR		BIT(6)
  73#define STM32FX_SPI_SR_BSY		BIT(7)
  74#define STM32FX_SPI_SR_FRE		BIT(8)
  75#define STM32F7_SPI_SR_FRLVL		GENMASK(10, 9)
  76#define STM32F7_SPI_SR_FTLVL		GENMASK(12, 11)
  77
  78/* STM32FX_SPI_I2SCFGR bit fields */
  79#define STM32FX_SPI_I2SCFGR_I2SMOD	BIT(11)
  80
  81/* STM32F4 SPI Baud Rate min/max divisor */
  82#define STM32FX_SPI_BR_DIV_MIN		(2 << STM32FX_SPI_CR1_BR_MIN)
  83#define STM32FX_SPI_BR_DIV_MAX		(2 << STM32FX_SPI_CR1_BR_MAX)
  84
  85/* STM32H7 SPI registers */
  86#define STM32H7_SPI_CR1			0x00
  87#define STM32H7_SPI_CR2			0x04
  88#define STM32H7_SPI_CFG1		0x08
  89#define STM32H7_SPI_CFG2		0x0C
  90#define STM32H7_SPI_IER			0x10
  91#define STM32H7_SPI_SR			0x14
  92#define STM32H7_SPI_IFCR		0x18
  93#define STM32H7_SPI_TXDR		0x20
  94#define STM32H7_SPI_RXDR		0x30
  95#define STM32H7_SPI_I2SCFGR		0x50
  96
  97/* STM32H7_SPI_CR1 bit fields */
  98#define STM32H7_SPI_CR1_SPE		BIT(0)
  99#define STM32H7_SPI_CR1_MASRX		BIT(8)
 100#define STM32H7_SPI_CR1_CSTART		BIT(9)
 101#define STM32H7_SPI_CR1_CSUSP		BIT(10)
 102#define STM32H7_SPI_CR1_HDDIR		BIT(11)
 103#define STM32H7_SPI_CR1_SSI		BIT(12)
 104
 105/* STM32H7_SPI_CR2 bit fields */
 
 106#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
 107#define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
 108
 109/* STM32H7_SPI_CFG1 bit fields */
 
 110#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 
 111#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 112#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 113#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 
 114#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 115#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 116#define STM32H7_SPI_CFG1_MBR_MIN	0
 117#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 118
 119/* STM32H7_SPI_CFG2 bit fields */
 
 120#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 
 121#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 
 122#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 123#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 124#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 125#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 126#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 127#define STM32H7_SPI_CFG2_SSM		BIT(26)
 128#define STM32H7_SPI_CFG2_SSIOP		BIT(28)
 129#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 130
 131/* STM32H7_SPI_IER bit fields */
 132#define STM32H7_SPI_IER_RXPIE		BIT(0)
 133#define STM32H7_SPI_IER_TXPIE		BIT(1)
 134#define STM32H7_SPI_IER_DXPIE		BIT(2)
 135#define STM32H7_SPI_IER_EOTIE		BIT(3)
 136#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 137#define STM32H7_SPI_IER_OVRIE		BIT(6)
 138#define STM32H7_SPI_IER_MODFIE		BIT(9)
 139#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 140
 141/* STM32H7_SPI_SR bit fields */
 142#define STM32H7_SPI_SR_RXP		BIT(0)
 143#define STM32H7_SPI_SR_TXP		BIT(1)
 144#define STM32H7_SPI_SR_EOT		BIT(3)
 145#define STM32H7_SPI_SR_OVR		BIT(6)
 146#define STM32H7_SPI_SR_MODF		BIT(9)
 147#define STM32H7_SPI_SR_SUSP		BIT(11)
 
 148#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 149#define STM32H7_SPI_SR_RXWNE		BIT(15)
 150
 151/* STM32H7_SPI_IFCR bit fields */
 152#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 153
 154/* STM32H7_SPI_I2SCFGR bit fields */
 155#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 156
 157/* STM32MP25 SPI registers bit fields */
 158#define STM32MP25_SPI_HWCFGR1			0x3F0
 159
 160/* STM32MP25_SPI_CR2 bit fields */
 161#define STM32MP25_SPI_TSIZE_MAX_LIMITED		GENMASK(9, 0)
 162
 163/* STM32MP25_SPI_HWCFGR1 */
 164#define STM32MP25_SPI_HWCFGR1_FULLCFG		GENMASK(27, 24)
 165#define STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED	0x0
 166#define STM32MP25_SPI_HWCFGR1_FULLCFG_FULL	0x1
 167#define STM32MP25_SPI_HWCFGR1_DSCFG		GENMASK(19, 16)
 168#define STM32MP25_SPI_HWCFGR1_DSCFG_16_B	0x0
 169#define STM32MP25_SPI_HWCFGR1_DSCFG_32_B	0x1
 170
 171/* STM32H7 SPI Master Baud Rate min/max divisor */
 172#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 173#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 174
 175/* STM32H7 SPI Communication mode */
 176#define STM32H7_SPI_FULL_DUPLEX		0
 177#define STM32H7_SPI_SIMPLEX_TX		1
 178#define STM32H7_SPI_SIMPLEX_RX		2
 179#define STM32H7_SPI_HALF_DUPLEX		3
 180
 181/* SPI Communication type */
 182#define SPI_FULL_DUPLEX		0
 183#define SPI_SIMPLEX_TX		1
 184#define SPI_SIMPLEX_RX		2
 185#define SPI_3WIRE_TX		3
 186#define SPI_3WIRE_RX		4
 187
 188#define STM32_SPI_AUTOSUSPEND_DELAY		1	/* 1 ms */
 189
 190/*
 191 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 192 * without fifo buffers.
 193 */
 194#define SPI_DMA_MIN_BYTES	16
 195
 196/* STM32 SPI driver helpers */
 197#define STM32_SPI_HOST_MODE(stm32_spi) (!(stm32_spi)->device_mode)
 198#define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
 199
 200/**
 201 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 202 * @reg:		register offset
 203 * @mask:		bitfield mask
 204 * @shift:		left shift
 205 */
 206struct stm32_spi_reg {
 207	int reg;
 208	int mask;
 209	int shift;
 210};
 211
 212/**
 213 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 214 * @en: enable register and SPI enable bit
 215 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 216 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 217 * @cpol: clock polarity register and polarity bit
 218 * @cpha: clock phase register and phase bit
 219 * @lsb_first: LSB transmitted first register and bit
 220 * @cs_high: chips select active value
 221 * @br: baud rate register and bitfields
 222 * @rx: SPI RX data register
 223 * @tx: SPI TX data register
 224 * @fullcfg: SPI full or limited feature set register
 225 */
 226struct stm32_spi_regspec {
 227	const struct stm32_spi_reg en;
 228	const struct stm32_spi_reg dma_rx_en;
 229	const struct stm32_spi_reg dma_tx_en;
 230	const struct stm32_spi_reg cpol;
 231	const struct stm32_spi_reg cpha;
 232	const struct stm32_spi_reg lsb_first;
 233	const struct stm32_spi_reg cs_high;
 234	const struct stm32_spi_reg br;
 235	const struct stm32_spi_reg rx;
 236	const struct stm32_spi_reg tx;
 237	const struct stm32_spi_reg fullcfg;
 238};
 239
 240struct stm32_spi;
 241
 242/**
 243 * struct stm32_spi_cfg - stm32 compatible configuration data
 244 * @regs: registers descriptions
 245 * @get_fifo_size: routine to get fifo size
 246 * @get_bpw_mask: routine to get bits per word mask
 247 * @disable: routine to disable controller
 248 * @config: routine to configure controller as SPI Host
 249 * @set_bpw: routine to configure registers to for bits per word
 250 * @set_mode: routine to configure registers to desired mode
 251 * @set_data_idleness: optional routine to configure registers to desired idle
 252 * time between frames (if driver has this functionality)
 253 * @set_number_of_data: optional routine to configure registers to desired
 254 * number of data (if driver has this functionality)
 255 * @write_tx: routine to write to transmit register/FIFO
 256 * @read_rx: routine to read from receive register/FIFO
 257 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 258 * using DMA
 259 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 260 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 261 * @transfer_one_irq: routine to configure interrupts for driver
 262 * @irq_handler_event: Interrupt handler for SPI controller events
 263 * @irq_handler_thread: thread of interrupt handler for SPI controller
 264 * @baud_rate_div_min: minimum baud rate divisor
 265 * @baud_rate_div_max: maximum baud rate divisor
 266 * @has_fifo: boolean to know if fifo is used for driver
 267 * @has_device_mode: is this compatible capable to switch on device mode
 268 * @flags: compatible specific SPI controller flags used at registration time
 269 * @prevent_dma_burst: boolean to indicate to prevent DMA burst
 270 */
 271struct stm32_spi_cfg {
 272	const struct stm32_spi_regspec *regs;
 273	int (*get_fifo_size)(struct stm32_spi *spi);
 274	int (*get_bpw_mask)(struct stm32_spi *spi);
 275	void (*disable)(struct stm32_spi *spi);
 276	int (*config)(struct stm32_spi *spi);
 277	void (*set_bpw)(struct stm32_spi *spi);
 278	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 279	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 280	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 281	void (*write_tx)(struct stm32_spi *spi);
 282	void (*read_rx)(struct stm32_spi *spi);
 283	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 284	void (*dma_rx_cb)(void *data);
 285	void (*dma_tx_cb)(void *data);
 286	int (*transfer_one_irq)(struct stm32_spi *spi);
 287	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 288	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 289	unsigned int baud_rate_div_min;
 290	unsigned int baud_rate_div_max;
 291	bool has_fifo;
 292	bool has_device_mode;
 293	u16 flags;
 294	bool prevent_dma_burst;
 295};
 296
 297/**
 298 * struct stm32_spi - private data of the SPI controller
 299 * @dev: driver model representation of the controller
 300 * @ctrl: controller interface
 301 * @cfg: compatible configuration data
 302 * @base: virtual memory area
 303 * @clk: hw kernel clock feeding the SPI clock generator
 304 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 
 305 * @lock: prevent I/O concurrent access
 306 * @irq: SPI controller interrupt line
 307 * @fifo_size: size of the embedded fifo in bytes
 308 * @t_size_max: maximum number of data of one transfer
 309 * @feature_set: SPI full or limited feature set
 310 * @cur_midi: host inter-data idleness in ns
 311 * @cur_speed: speed configured in Hz
 312 * @cur_half_period: time of a half bit in us
 313 * @cur_bpw: number of bits in a single SPI data frame
 314 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 315 * @cur_comm: SPI communication mode
 316 * @cur_xferlen: current transfer length in bytes
 317 * @cur_usedma: boolean to know if dma is used in current transfer
 318 * @tx_buf: data to be written, or NULL
 319 * @rx_buf: data to be read, or NULL
 320 * @tx_len: number of data to be written in bytes
 321 * @rx_len: number of data to be read in bytes
 322 * @dma_tx: dma channel for TX transfer
 323 * @dma_rx: dma channel for RX transfer
 324 * @phys_addr: SPI registers physical base address
 325 * @device_mode: the controller is configured as SPI device
 326 */
 327struct stm32_spi {
 328	struct device *dev;
 329	struct spi_controller *ctrl;
 330	const struct stm32_spi_cfg *cfg;
 331	void __iomem *base;
 332	struct clk *clk;
 333	u32 clk_rate;
 
 334	spinlock_t lock; /* prevent I/O concurrent access */
 335	int irq;
 336	unsigned int fifo_size;
 337	unsigned int t_size_max;
 338	unsigned int feature_set;
 339#define STM32_SPI_FEATURE_LIMITED	STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED	/* 0x0 */
 340#define STM32_SPI_FEATURE_FULL		STM32MP25_SPI_HWCFGR1_FULLCFG_FULL	/* 0x1 */
 341
 342	unsigned int cur_midi;
 343	unsigned int cur_speed;
 344	unsigned int cur_half_period;
 345	unsigned int cur_bpw;
 346	unsigned int cur_fthlv;
 347	unsigned int cur_comm;
 348	unsigned int cur_xferlen;
 349	bool cur_usedma;
 350
 351	const void *tx_buf;
 352	void *rx_buf;
 353	int tx_len;
 354	int rx_len;
 355	struct dma_chan *dma_tx;
 356	struct dma_chan *dma_rx;
 357	dma_addr_t phys_addr;
 358
 359	bool device_mode;
 360};
 361
 362static const struct stm32_spi_regspec stm32fx_spi_regspec = {
 363	.en = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE },
 364
 365	.dma_rx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_RXDMAEN },
 366	.dma_tx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN },
 367
 368	.cpol = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPOL },
 369	.cpha = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPHA },
 370	.lsb_first = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_LSBFRST },
 371	.cs_high = {},
 372	.br = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_BR, STM32FX_SPI_CR1_BR_SHIFT },
 373
 374	.rx = { STM32FX_SPI_DR },
 375	.tx = { STM32FX_SPI_DR },
 376};
 377
 378static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 379	/* SPI data transfer is enabled but spi_ker_ck is idle.
 380	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 381	 */
 382	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 383
 384	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 385	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 386
 387	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 388	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 389	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 390	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
 391	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 392		STM32H7_SPI_CFG1_MBR_SHIFT },
 393
 394	.rx = { STM32H7_SPI_RXDR },
 395	.tx = { STM32H7_SPI_TXDR },
 396};
 397
 398static const struct stm32_spi_regspec stm32mp25_spi_regspec = {
 399	/* SPI data transfer is enabled but spi_ker_ck is idle.
 400	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 401	 */
 402	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 403
 404	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 405	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 406
 407	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 408	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 409	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 410	.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
 411	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 412		STM32H7_SPI_CFG1_MBR_SHIFT },
 413
 414	.rx = { STM32H7_SPI_RXDR },
 415	.tx = { STM32H7_SPI_TXDR },
 416
 417	.fullcfg = { STM32MP25_SPI_HWCFGR1, STM32MP25_SPI_HWCFGR1_FULLCFG },
 418};
 419
 420static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 421				      u32 offset, u32 bits)
 422{
 423	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 424		       spi->base + offset);
 425}
 426
 427static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 428				      u32 offset, u32 bits)
 429{
 430	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 431		       spi->base + offset);
 432}
 433
 434/**
 435 * stm32h7_spi_get_fifo_size - Return fifo size
 436 * @spi: pointer to the spi controller data structure
 437 */
 438static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 439{
 440	unsigned long flags;
 441	u32 count = 0;
 442
 443	spin_lock_irqsave(&spi->lock, flags);
 444
 445	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 446
 447	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 448		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 449
 450	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 451
 452	spin_unlock_irqrestore(&spi->lock, flags);
 453
 454	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 455
 456	return count;
 457}
 458
 459/**
 460 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 461 * @spi: pointer to the spi controller data structure
 462 */
 463static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 464{
 465	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 466	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 467}
 468
 469/**
 470 * stm32f7_spi_get_bpw_mask - Return bits per word mask
 471 * @spi: pointer to the spi controller data structure
 472 */
 473static int stm32f7_spi_get_bpw_mask(struct stm32_spi *spi)
 474{
 475	dev_dbg(spi->dev, "16-bit maximum data frame\n");
 476	return SPI_BPW_RANGE_MASK(4, 16);
 477}
 478
 479/**
 480 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 481 * @spi: pointer to the spi controller data structure
 482 */
 483static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 484{
 485	unsigned long flags;
 486	u32 cfg1, max_bpw;
 487
 488	spin_lock_irqsave(&spi->lock, flags);
 489
 490	/*
 491	 * The most significant bit at DSIZE bit field is reserved when the
 492	 * maximum data size of periperal instances is limited to 16-bit
 493	 */
 494	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 495
 496	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 497	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
 
 
 498
 499	spin_unlock_irqrestore(&spi->lock, flags);
 500
 501	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 502
 503	return SPI_BPW_RANGE_MASK(4, max_bpw);
 504}
 505
 506/**
 507 * stm32mp25_spi_get_bpw_mask - Return bits per word mask
 508 * @spi: pointer to the spi controller data structure
 509 */
 510static int stm32mp25_spi_get_bpw_mask(struct stm32_spi *spi)
 511{
 512	u32 dscfg, max_bpw;
 513
 514	if (spi->feature_set == STM32_SPI_FEATURE_LIMITED) {
 515		dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 516		return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 517	}
 518
 519	dscfg = FIELD_GET(STM32MP25_SPI_HWCFGR1_DSCFG,
 520			  readl_relaxed(spi->base + STM32MP25_SPI_HWCFGR1));
 521	max_bpw = 16;
 522	if (dscfg == STM32MP25_SPI_HWCFGR1_DSCFG_32_B)
 523		max_bpw = 32;
 524	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 525	return SPI_BPW_RANGE_MASK(4, max_bpw);
 526}
 527
 528/**
 529 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 530 * @spi: pointer to the spi controller data structure
 531 * @speed_hz: requested speed
 532 * @min_div: minimum baud rate divisor
 533 * @max_div: maximum baud rate divisor
 534 *
 535 * Return baud rate divisor value in case of success or -EINVAL
 536 */
 537static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 538				 u32 min_div, u32 max_div)
 539{
 540	u32 div, mbrdiv;
 541
 542	/* Ensure spi->clk_rate is even */
 543	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
 544
 545	/*
 546	 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
 547	 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
 548	 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
 549	 * no need to check it there.
 550	 * However, we need to ensure the following calculations.
 551	 */
 552	if ((div < min_div) || (div > max_div))
 553		return -EINVAL;
 554
 555	/* Determine the first power of 2 greater than or equal to div */
 556	if (div & (div - 1))
 557		mbrdiv = fls(div);
 558	else
 559		mbrdiv = fls(div) - 1;
 560
 561	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 562
 563	spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
 564
 565	return mbrdiv - 1;
 566}
 567
 568/**
 569 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 570 * @spi: pointer to the spi controller data structure
 571 * @xfer_len: length of the message to be transferred
 572 */
 573static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 574{
 575	u32 packet, bpw;
 576
 577	/* data packet should not exceed 1/2 of fifo space */
 578	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 579
 580	/* align packet size with data registers access */
 581	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
 582	return DIV_ROUND_UP(packet, bpw);
 
 
 
 
 
 
 
 583}
 584
 585/**
 586 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 587 * @spi: pointer to the spi controller data structure
 588 *
 589 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 590 * tx_buf end.
 591 */
 592static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 593{
 594	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 595				  STM32FX_SPI_SR_TXE)) {
 596		u32 offs = spi->cur_xferlen - spi->tx_len;
 597
 598		if (spi->cur_bpw == 16) {
 599			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 600
 601			writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
 602			spi->tx_len -= sizeof(u16);
 603		} else {
 604			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 605
 606			writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
 607			spi->tx_len -= sizeof(u8);
 608		}
 609	}
 610
 611	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 612}
 613
 614/**
 615 * stm32f7_spi_write_tx - Write bytes to Transmit Data Register
 616 * @spi: pointer to the spi controller data structure
 617 *
 618 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 619 * tx_buf end.
 620 */
 621static void stm32f7_spi_write_tx(struct stm32_spi *spi)
 622{
 623	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 624				  STM32FX_SPI_SR_TXE)) {
 625		u32 offs = spi->cur_xferlen - spi->tx_len;
 626
 627		if (spi->tx_len >= sizeof(u16)) {
 628			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 629
 630			writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
 631			spi->tx_len -= sizeof(u16);
 632		} else {
 633			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 634
 635			writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
 636			spi->tx_len -= sizeof(u8);
 637		}
 638	}
 639
 640	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 641}
 642
 643/**
 644 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 645 * @spi: pointer to the spi controller data structure
 646 *
 647 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 648 * tx_buf end.
 649 */
 650static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 651{
 652	while ((spi->tx_len > 0) &&
 653		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 654			STM32H7_SPI_SR_TXP)) {
 655		u32 offs = spi->cur_xferlen - spi->tx_len;
 656
 657		if (spi->tx_len >= sizeof(u32)) {
 658			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 659
 660			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 661			spi->tx_len -= sizeof(u32);
 662		} else if (spi->tx_len >= sizeof(u16)) {
 663			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 664
 665			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 666			spi->tx_len -= sizeof(u16);
 667		} else {
 668			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 669
 670			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 671			spi->tx_len -= sizeof(u8);
 672		}
 673	}
 674
 675	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 676}
 677
 678/**
 679 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 680 * @spi: pointer to the spi controller data structure
 681 *
 682 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 683 * rx_buf end.
 684 */
 685static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 686{
 687	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
 688				  STM32FX_SPI_SR_RXNE)) {
 689		u32 offs = spi->cur_xferlen - spi->rx_len;
 690
 691		if (spi->cur_bpw == 16) {
 692			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 693
 694			*rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
 695			spi->rx_len -= sizeof(u16);
 696		} else {
 697			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 698
 699			*rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
 700			spi->rx_len -= sizeof(u8);
 701		}
 702	}
 703
 704	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 705}
 706
 707/**
 708 * stm32f7_spi_read_rx - Read bytes from Receive Data Register
 709 * @spi: pointer to the spi controller data structure
 710 *
 711 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 712 * rx_buf end.
 713 */
 714static void stm32f7_spi_read_rx(struct stm32_spi *spi)
 715{
 716	u32 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 717	u32 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
 718
 719	while ((spi->rx_len > 0) && (frlvl > 0)) {
 720		u32 offs = spi->cur_xferlen - spi->rx_len;
 721
 722		if ((spi->rx_len >= sizeof(u16)) && (frlvl >= 2)) {
 723			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 724
 725			*rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
 726			spi->rx_len -= sizeof(u16);
 727		} else {
 728			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 729
 730			*rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
 731			spi->rx_len -= sizeof(u8);
 732		}
 733
 734		sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 735		frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
 736	}
 737
 738	if (spi->rx_len >= sizeof(u16))
 739		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
 740	else
 741		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
 742
 743	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
 744		__func__, spi->rx_len, sr);
 745}
 746
 747/**
 748 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 749 * @spi: pointer to the spi controller data structure
 
 750 *
 751 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 752 * rx_buf end.
 753 */
 754static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
 755{
 756	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 757	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 
 758
 759	while ((spi->rx_len > 0) &&
 760	       ((sr & STM32H7_SPI_SR_RXP) ||
 761		((sr & STM32H7_SPI_SR_EOT) &&
 762		 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 763		u32 offs = spi->cur_xferlen - spi->rx_len;
 764
 765		if ((spi->rx_len >= sizeof(u32)) ||
 766		    (sr & STM32H7_SPI_SR_RXWNE)) {
 767			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 768
 769			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 770			spi->rx_len -= sizeof(u32);
 771		} else if ((spi->rx_len >= sizeof(u16)) ||
 772			   (!(sr & STM32H7_SPI_SR_RXWNE) &&
 773			    (rxplvl >= 2 || spi->cur_bpw > 8))) {
 774			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 775
 776			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 777			spi->rx_len -= sizeof(u16);
 778		} else {
 779			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 780
 781			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 782			spi->rx_len -= sizeof(u8);
 783		}
 784
 785		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 786		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 
 787	}
 788
 789	dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
 790		__func__, spi->rx_len, sr);
 791}
 792
 793/**
 794 * stm32_spi_enable - Enable SPI controller
 795 * @spi: pointer to the spi controller data structure
 796 */
 797static void stm32_spi_enable(struct stm32_spi *spi)
 798{
 799	dev_dbg(spi->dev, "enable controller\n");
 800
 801	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 802			   spi->cfg->regs->en.mask);
 803}
 804
 805/**
 806 * stm32fx_spi_disable - Disable SPI controller
 807 * @spi: pointer to the spi controller data structure
 808 */
 809static void stm32fx_spi_disable(struct stm32_spi *spi)
 810{
 811	unsigned long flags;
 812	u32 sr;
 813
 814	dev_dbg(spi->dev, "disable controller\n");
 815
 816	spin_lock_irqsave(&spi->lock, flags);
 817
 818	if (!(readl_relaxed(spi->base + STM32FX_SPI_CR1) &
 819	      STM32FX_SPI_CR1_SPE)) {
 820		spin_unlock_irqrestore(&spi->lock, flags);
 821		return;
 822	}
 823
 824	/* Disable interrupts */
 825	stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXEIE |
 826						 STM32FX_SPI_CR2_RXNEIE |
 827						 STM32FX_SPI_CR2_ERRIE);
 828
 829	/* Wait until BSY = 0 */
 830	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32FX_SPI_SR,
 831					      sr, !(sr & STM32FX_SPI_SR_BSY),
 832					      10, 100000) < 0) {
 833		dev_warn(spi->dev, "disabling condition timeout\n");
 834	}
 835
 836	if (spi->cur_usedma && spi->dma_tx)
 837		dmaengine_terminate_async(spi->dma_tx);
 838	if (spi->cur_usedma && spi->dma_rx)
 839		dmaengine_terminate_async(spi->dma_rx);
 840
 841	stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE);
 842
 843	stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN |
 844						 STM32FX_SPI_CR2_RXDMAEN);
 845
 846	/* Sequence to clear OVR flag */
 847	readl_relaxed(spi->base + STM32FX_SPI_DR);
 848	readl_relaxed(spi->base + STM32FX_SPI_SR);
 849
 850	spin_unlock_irqrestore(&spi->lock, flags);
 851}
 852
 853/**
 854 * stm32h7_spi_disable - Disable SPI controller
 855 * @spi: pointer to the spi controller data structure
 856 *
 857 * RX-Fifo is flushed when SPI controller is disabled.
 
 
 
 
 
 
 858 */
 859static void stm32h7_spi_disable(struct stm32_spi *spi)
 860{
 861	unsigned long flags;
 862	u32 cr1;
 863
 864	dev_dbg(spi->dev, "disable controller\n");
 865
 866	spin_lock_irqsave(&spi->lock, flags);
 867
 868	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 869
 870	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 871		spin_unlock_irqrestore(&spi->lock, flags);
 872		return;
 873	}
 874
 875	/* Add a delay to make sure that transmission is ended. */
 876	if (spi->cur_half_period)
 877		udelay(spi->cur_half_period);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878
 879	if (spi->cur_usedma && spi->dma_tx)
 880		dmaengine_terminate_async(spi->dma_tx);
 881	if (spi->cur_usedma && spi->dma_rx)
 882		dmaengine_terminate_async(spi->dma_rx);
 883
 884	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 885
 886	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 887						STM32H7_SPI_CFG1_RXDMAEN);
 888
 889	/* Disable interrupts and clear status flags */
 890	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 891	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 892
 893	spin_unlock_irqrestore(&spi->lock, flags);
 894}
 895
 896/**
 897 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 898 * @ctrl: controller interface
 899 * @spi_dev: pointer to the spi device
 900 * @transfer: pointer to spi transfer
 901 *
 902 * If driver has fifo and the current transfer size is greater than fifo size,
 903 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 904 */
 905static bool stm32_spi_can_dma(struct spi_controller *ctrl,
 906			      struct spi_device *spi_dev,
 907			      struct spi_transfer *transfer)
 908{
 909	unsigned int dma_size;
 910	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
 911
 912	if (spi->cfg->has_fifo)
 913		dma_size = spi->fifo_size;
 914	else
 915		dma_size = SPI_DMA_MIN_BYTES;
 916
 917	dev_dbg(spi->dev, "%s: %s\n", __func__,
 918		(transfer->len > dma_size) ? "true" : "false");
 919
 920	return (transfer->len > dma_size);
 921}
 922
 923/**
 924 * stm32fx_spi_irq_event - Interrupt handler for SPI controller events
 925 * @irq: interrupt line
 926 * @dev_id: SPI controller ctrl interface
 927 */
 928static irqreturn_t stm32fx_spi_irq_event(int irq, void *dev_id)
 929{
 930	struct spi_controller *ctrl = dev_id;
 931	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
 932	u32 sr, mask = 0;
 
 933	bool end = false;
 934
 935	spin_lock(&spi->lock);
 936
 937	sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
 938	/*
 939	 * BSY flag is not handled in interrupt but it is normal behavior when
 940	 * this flag is set.
 941	 */
 942	sr &= ~STM32FX_SPI_SR_BSY;
 943
 944	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 945				 spi->cur_comm == SPI_3WIRE_TX)) {
 946		/* OVR flag shouldn't be handled for TX only mode */
 947		sr &= ~(STM32FX_SPI_SR_OVR | STM32FX_SPI_SR_RXNE);
 948		mask |= STM32FX_SPI_SR_TXE;
 949	}
 950
 951	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 952				spi->cur_comm == SPI_SIMPLEX_RX ||
 953				spi->cur_comm == SPI_3WIRE_RX)) {
 954		/* TXE flag is set and is handled when RXNE flag occurs */
 955		sr &= ~STM32FX_SPI_SR_TXE;
 956		mask |= STM32FX_SPI_SR_RXNE | STM32FX_SPI_SR_OVR;
 957	}
 958
 959	if (!(sr & mask)) {
 960		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 961		spin_unlock(&spi->lock);
 962		return IRQ_NONE;
 963	}
 964
 965	if (sr & STM32FX_SPI_SR_OVR) {
 966		dev_warn(spi->dev, "Overrun: received value discarded\n");
 967
 968		/* Sequence to clear OVR flag */
 969		readl_relaxed(spi->base + STM32FX_SPI_DR);
 970		readl_relaxed(spi->base + STM32FX_SPI_SR);
 971
 972		/*
 973		 * If overrun is detected, it means that something went wrong,
 974		 * so stop the current transfer. Transfer can wait for next
 975		 * RXNE but DR is already read and end never happens.
 976		 */
 977		end = true;
 978		goto end_irq;
 979	}
 980
 981	if (sr & STM32FX_SPI_SR_TXE) {
 982		if (spi->tx_buf)
 983			spi->cfg->write_tx(spi);
 984		if (spi->tx_len == 0)
 985			end = true;
 986	}
 987
 988	if (sr & STM32FX_SPI_SR_RXNE) {
 989		spi->cfg->read_rx(spi);
 990		if (spi->rx_len == 0)
 991			end = true;
 992		else if (spi->tx_buf)/* Load data for discontinuous mode */
 993			spi->cfg->write_tx(spi);
 994	}
 995
 996end_irq:
 997	if (end) {
 998		/* Immediately disable interrupts to do not generate new one */
 999		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2,
1000					STM32FX_SPI_CR2_TXEIE |
1001					STM32FX_SPI_CR2_RXNEIE |
1002					STM32FX_SPI_CR2_ERRIE);
1003		spin_unlock(&spi->lock);
1004		return IRQ_WAKE_THREAD;
1005	}
1006
1007	spin_unlock(&spi->lock);
1008	return IRQ_HANDLED;
1009}
1010
1011/**
1012 * stm32fx_spi_irq_thread - Thread of interrupt handler for SPI controller
1013 * @irq: interrupt line
1014 * @dev_id: SPI controller interface
1015 */
1016static irqreturn_t stm32fx_spi_irq_thread(int irq, void *dev_id)
1017{
1018	struct spi_controller *ctrl = dev_id;
1019	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1020
1021	spi_finalize_current_transfer(ctrl);
1022	stm32fx_spi_disable(spi);
1023
1024	return IRQ_HANDLED;
1025}
1026
1027/**
1028 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
1029 * @irq: interrupt line
1030 * @dev_id: SPI controller interface
1031 */
1032static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
1033{
1034	struct spi_controller *ctrl = dev_id;
1035	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1036	u32 sr, ier, mask;
1037	unsigned long flags;
1038	bool end = false;
1039
1040	spin_lock_irqsave(&spi->lock, flags);
1041
1042	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1043	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
1044
1045	mask = ier;
1046	/*
1047	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
1048	 * SUSP to acknowledge it later. TXC is automatically cleared
1049	 */
1050
1051	mask |= STM32H7_SPI_SR_SUSP;
1052	/*
1053	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
1054	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
 
1055	 */
1056	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
1057		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
1058
1059	if (!(sr & mask)) {
1060		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
1061			 sr, ier);
1062		spin_unlock_irqrestore(&spi->lock, flags);
1063		return IRQ_NONE;
1064	}
1065
1066	if (sr & STM32H7_SPI_SR_SUSP) {
1067		static DEFINE_RATELIMIT_STATE(rs,
1068					      DEFAULT_RATELIMIT_INTERVAL * 10,
1069					      1);
1070		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
1071		if (__ratelimit(&rs))
1072			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
1073		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1074			stm32h7_spi_read_rxfifo(spi);
1075		/*
1076		 * If communication is suspended while using DMA, it means
1077		 * that something went wrong, so stop the current transfer
1078		 */
1079		if (spi->cur_usedma)
1080			end = true;
1081	}
1082
1083	if (sr & STM32H7_SPI_SR_MODF) {
1084		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
1085		end = true;
1086	}
1087
1088	if (sr & STM32H7_SPI_SR_OVR) {
1089		dev_err(spi->dev, "Overrun: RX data lost\n");
1090		end = true;
 
 
 
 
 
 
 
1091	}
1092
1093	if (sr & STM32H7_SPI_SR_EOT) {
1094		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1095			stm32h7_spi_read_rxfifo(spi);
1096		if (!spi->cur_usedma ||
1097		    (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
1098			end = true;
1099	}
1100
1101	if (sr & STM32H7_SPI_SR_TXP)
1102		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
1103			stm32h7_spi_write_txfifo(spi);
1104
1105	if (sr & STM32H7_SPI_SR_RXP)
1106		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1107			stm32h7_spi_read_rxfifo(spi);
1108
1109	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
1110
1111	spin_unlock_irqrestore(&spi->lock, flags);
1112
1113	if (end) {
1114		stm32h7_spi_disable(spi);
1115		spi_finalize_current_transfer(ctrl);
1116	}
1117
1118	return IRQ_HANDLED;
1119}
1120
1121/**
1122 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1123 * @ctrl: controller interface
1124 * @msg: pointer to spi message
1125 */
1126static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
1127				 struct spi_message *msg)
1128{
1129	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1130	struct spi_device *spi_dev = msg->spi;
1131	struct device_node *np = spi_dev->dev.of_node;
1132	unsigned long flags;
1133	u32 clrb = 0, setb = 0;
1134
1135	/* SPI target device may need time between data frames */
1136	spi->cur_midi = 0;
1137	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1138		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1139
1140	if (spi_dev->mode & SPI_CPOL)
1141		setb |= spi->cfg->regs->cpol.mask;
1142	else
1143		clrb |= spi->cfg->regs->cpol.mask;
1144
1145	if (spi_dev->mode & SPI_CPHA)
1146		setb |= spi->cfg->regs->cpha.mask;
1147	else
1148		clrb |= spi->cfg->regs->cpha.mask;
1149
1150	if (spi_dev->mode & SPI_LSB_FIRST)
1151		setb |= spi->cfg->regs->lsb_first.mask;
1152	else
1153		clrb |= spi->cfg->regs->lsb_first.mask;
1154
1155	if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
1156		setb |= spi->cfg->regs->cs_high.mask;
1157	else
1158		clrb |= spi->cfg->regs->cs_high.mask;
1159
1160	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1161		!!(spi_dev->mode & SPI_CPOL),
1162		!!(spi_dev->mode & SPI_CPHA),
1163		!!(spi_dev->mode & SPI_LSB_FIRST),
1164		!!(spi_dev->mode & SPI_CS_HIGH));
1165
1166	/* On STM32H7, messages should not exceed a maximum size setted
1167	 * afterward via the set_number_of_data function. In order to
1168	 * ensure that, split large messages into several messages
1169	 */
1170	if (spi->cfg->set_number_of_data) {
1171		int ret;
1172
1173		ret = spi_split_transfers_maxwords(ctrl, msg,
1174						   spi->t_size_max,
1175						   GFP_KERNEL | GFP_DMA);
1176		if (ret)
1177			return ret;
1178	}
1179
1180	spin_lock_irqsave(&spi->lock, flags);
1181
1182	/* CPOL, CPHA and LSB FIRST bits have common register */
1183	if (clrb || setb)
1184		writel_relaxed(
1185			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1186			 ~clrb) | setb,
1187			spi->base + spi->cfg->regs->cpol.reg);
1188
1189	spin_unlock_irqrestore(&spi->lock, flags);
1190
1191	return 0;
1192}
1193
1194/**
1195 * stm32fx_spi_dma_tx_cb - dma callback
1196 * @data: pointer to the spi controller data structure
1197 *
1198 * DMA callback is called when the transfer is complete for DMA TX channel.
1199 */
1200static void stm32fx_spi_dma_tx_cb(void *data)
1201{
1202	struct stm32_spi *spi = data;
1203
1204	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1205		spi_finalize_current_transfer(spi->ctrl);
1206		stm32fx_spi_disable(spi);
1207	}
1208}
1209
1210/**
1211 * stm32_spi_dma_rx_cb - dma callback
1212 * @data: pointer to the spi controller data structure
1213 *
1214 * DMA callback is called when the transfer is complete for DMA RX channel.
1215 */
1216static void stm32_spi_dma_rx_cb(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217{
1218	struct stm32_spi *spi = data;
 
 
 
 
 
 
1219
1220	spi_finalize_current_transfer(spi->ctrl);
1221	spi->cfg->disable(spi);
 
 
 
 
1222}
1223
1224/**
1225 * stm32_spi_dma_config - configure dma slave channel depending on current
1226 *			  transfer bits_per_word.
1227 * @spi: pointer to the spi controller data structure
1228 * @dma_chan: pointer to the DMA channel
1229 * @dma_conf: pointer to the dma_slave_config structure
1230 * @dir: direction of the dma transfer
1231 */
1232static void stm32_spi_dma_config(struct stm32_spi *spi,
1233				 struct dma_chan *dma_chan,
1234				 struct dma_slave_config *dma_conf,
1235				 enum dma_transfer_direction dir)
1236{
1237	enum dma_slave_buswidth buswidth;
1238	struct dma_slave_caps caps;
1239	u32 maxburst = 1;
1240	int ret;
1241
1242	if (spi->cur_bpw <= 8)
1243		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1244	else if (spi->cur_bpw <= 16)
1245		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1246	else
1247		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1248
1249	/* Valid for DMA Half or Full Fifo threshold */
1250	if (!spi->cfg->prevent_dma_burst && spi->cfg->has_fifo && spi->cur_fthlv != 2)
1251		maxburst = spi->cur_fthlv;
1252
1253	/* Get the DMA channel caps, and adjust maxburst if possible */
1254	ret = dma_get_slave_caps(dma_chan, &caps);
1255	if (!ret)
1256		maxburst = min(maxburst, caps.max_burst);
 
1257
1258	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1259	dma_conf->direction = dir;
1260	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1261		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1262		dma_conf->src_addr_width = buswidth;
1263		dma_conf->src_maxburst = maxburst;
1264
1265		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1266			buswidth, maxburst);
1267	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1268		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1269		dma_conf->dst_addr_width = buswidth;
1270		dma_conf->dst_maxburst = maxburst;
1271
1272		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1273			buswidth, maxburst);
1274	}
1275}
1276
1277/**
1278 * stm32fx_spi_transfer_one_irq - transfer a single spi_transfer using
1279 *				  interrupts
1280 * @spi: pointer to the spi controller data structure
1281 *
1282 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1283 * in progress.
1284 */
1285static int stm32fx_spi_transfer_one_irq(struct stm32_spi *spi)
1286{
1287	unsigned long flags;
1288	u32 cr2 = 0;
1289
1290	/* Enable the interrupts relative to the current communication mode */
1291	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1292		cr2 |= STM32FX_SPI_CR2_TXEIE;
1293	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1294				spi->cur_comm == SPI_SIMPLEX_RX ||
1295				spi->cur_comm == SPI_3WIRE_RX) {
1296		/* In transmit-only mode, the OVR flag is set in the SR register
1297		 * since the received data are never read. Therefore set OVR
1298		 * interrupt only when rx buffer is available.
1299		 */
1300		cr2 |= STM32FX_SPI_CR2_RXNEIE | STM32FX_SPI_CR2_ERRIE;
1301	} else {
1302		return -EINVAL;
1303	}
1304
1305	spin_lock_irqsave(&spi->lock, flags);
1306
1307	stm32_spi_set_bits(spi, STM32FX_SPI_CR2, cr2);
1308
1309	stm32_spi_enable(spi);
1310
1311	/* starting data transfer when buffer is loaded */
1312	if (spi->tx_buf)
1313		spi->cfg->write_tx(spi);
1314
1315	spin_unlock_irqrestore(&spi->lock, flags);
1316
1317	return 1;
1318}
1319
1320/**
1321 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1322 *				  interrupts
1323 * @spi: pointer to the spi controller data structure
1324 *
1325 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1326 * in progress.
1327 */
1328static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1329{
1330	unsigned long flags;
1331	u32 ier = 0;
1332
1333	/* Enable the interrupts relative to the current communication mode */
1334	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1335		ier |= STM32H7_SPI_IER_DXPIE;
1336	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1337		ier |= STM32H7_SPI_IER_TXPIE;
1338	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1339		ier |= STM32H7_SPI_IER_RXPIE;
1340
1341	/* Enable the interrupts relative to the end of transfer */
1342	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1343	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1344
1345	spin_lock_irqsave(&spi->lock, flags);
1346
1347	stm32_spi_enable(spi);
1348
1349	/* Be sure to have data in fifo before starting data transfer */
1350	if (spi->tx_buf)
1351		stm32h7_spi_write_txfifo(spi);
1352
1353	if (STM32_SPI_HOST_MODE(spi))
1354		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1355
1356	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1357
1358	spin_unlock_irqrestore(&spi->lock, flags);
1359
1360	return 1;
1361}
1362
1363/**
1364 * stm32fx_spi_transfer_one_dma_start - Set SPI driver registers to start
1365 *					transfer using DMA
1366 * @spi: pointer to the spi controller data structure
1367 */
1368static void stm32fx_spi_transfer_one_dma_start(struct stm32_spi *spi)
1369{
1370	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1371	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1372	    spi->cur_comm == SPI_FULL_DUPLEX) {
1373		/*
1374		 * In transmit-only mode, the OVR flag is set in the SR register
1375		 * since the received data are never read. Therefore set OVR
1376		 * interrupt only when rx buffer is available.
1377		 */
1378		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_ERRIE);
1379	}
1380
1381	stm32_spi_enable(spi);
1382}
1383
1384/**
1385 * stm32f7_spi_transfer_one_dma_start - Set SPI driver registers to start
1386 *					transfer using DMA
1387 * @spi: pointer to the spi controller data structure
1388 */
1389static void stm32f7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1390{
1391	/* Configure DMA request trigger threshold according to DMA width */
1392	if (spi->cur_bpw <= 8)
1393		stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1394	else
1395		stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1396
1397	stm32fx_spi_transfer_one_dma_start(spi);
1398}
1399
1400/**
1401 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1402 *					transfer using DMA
1403 * @spi: pointer to the spi controller data structure
1404 */
1405static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1406{
1407	uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1408
1409	/* Enable the interrupts */
1410	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1411		ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1412
1413	stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1414
1415	stm32_spi_enable(spi);
1416
1417	if (STM32_SPI_HOST_MODE(spi))
1418		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1419}
1420
1421/**
1422 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1423 * @spi: pointer to the spi controller data structure
1424 * @xfer: pointer to the spi_transfer structure
1425 *
1426 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1427 * in progress.
1428 */
1429static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1430				      struct spi_transfer *xfer)
1431{
1432	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1433	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1434	unsigned long flags;
1435
1436	spin_lock_irqsave(&spi->lock, flags);
1437
1438	rx_dma_desc = NULL;
1439	if (spi->rx_buf && spi->dma_rx) {
1440		stm32_spi_dma_config(spi, spi->dma_rx, &rx_dma_conf, DMA_DEV_TO_MEM);
1441		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1442
1443		/* Enable Rx DMA request */
1444		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1445				   spi->cfg->regs->dma_rx_en.mask);
1446
1447		rx_dma_desc = dmaengine_prep_slave_sg(
1448					spi->dma_rx, xfer->rx_sg.sgl,
1449					xfer->rx_sg.nents,
1450					rx_dma_conf.direction,
1451					DMA_PREP_INTERRUPT);
1452	}
1453
1454	tx_dma_desc = NULL;
1455	if (spi->tx_buf && spi->dma_tx) {
1456		stm32_spi_dma_config(spi, spi->dma_tx, &tx_dma_conf, DMA_MEM_TO_DEV);
1457		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1458
1459		tx_dma_desc = dmaengine_prep_slave_sg(
1460					spi->dma_tx, xfer->tx_sg.sgl,
1461					xfer->tx_sg.nents,
1462					tx_dma_conf.direction,
1463					DMA_PREP_INTERRUPT);
1464	}
1465
1466	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1467	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1468		goto dma_desc_error;
1469
1470	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1471		goto dma_desc_error;
1472
1473	if (rx_dma_desc) {
1474		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1475		rx_dma_desc->callback_param = spi;
1476
1477		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1478			dev_err(spi->dev, "Rx DMA submit failed\n");
1479			goto dma_desc_error;
1480		}
1481		/* Enable Rx DMA channel */
1482		dma_async_issue_pending(spi->dma_rx);
1483	}
1484
1485	if (tx_dma_desc) {
1486		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1487		    spi->cur_comm == SPI_3WIRE_TX) {
1488			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1489			tx_dma_desc->callback_param = spi;
1490		}
1491
1492		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1493			dev_err(spi->dev, "Tx DMA submit failed\n");
1494			goto dma_submit_error;
1495		}
1496		/* Enable Tx DMA channel */
1497		dma_async_issue_pending(spi->dma_tx);
1498
1499		/* Enable Tx DMA request */
1500		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1501				   spi->cfg->regs->dma_tx_en.mask);
1502	}
1503
1504	spi->cfg->transfer_one_dma_start(spi);
1505
1506	spin_unlock_irqrestore(&spi->lock, flags);
1507
1508	return 1;
1509
1510dma_submit_error:
1511	if (spi->dma_rx)
1512		dmaengine_terminate_sync(spi->dma_rx);
1513
1514dma_desc_error:
1515	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1516			   spi->cfg->regs->dma_rx_en.mask);
1517
1518	spin_unlock_irqrestore(&spi->lock, flags);
1519
1520	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1521
1522	spi->cur_usedma = false;
1523	return spi->cfg->transfer_one_irq(spi);
1524}
1525
1526/**
1527 * stm32f4_spi_set_bpw - Configure bits per word
1528 * @spi: pointer to the spi controller data structure
1529 */
1530static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1531{
1532	if (spi->cur_bpw == 16)
1533		stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1534	else
1535		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1536}
1537
1538/**
1539 * stm32f7_spi_set_bpw - Configure bits per word
1540 * @spi: pointer to the spi controller data structure
1541 */
1542static void stm32f7_spi_set_bpw(struct stm32_spi *spi)
1543{
1544	u32 bpw;
1545	u32 cr2_clrb = 0, cr2_setb = 0;
1546
1547	bpw = spi->cur_bpw - 1;
1548
1549	cr2_clrb |= STM32F7_SPI_CR2_DS;
1550	cr2_setb |= FIELD_PREP(STM32F7_SPI_CR2_DS, bpw);
1551
1552	if (spi->rx_len >= sizeof(u16))
1553		cr2_clrb |= STM32F7_SPI_CR2_FRXTH;
1554	else
1555		cr2_setb |= STM32F7_SPI_CR2_FRXTH;
1556
1557	writel_relaxed(
1558		(readl_relaxed(spi->base + STM32FX_SPI_CR2) &
1559		 ~cr2_clrb) | cr2_setb,
1560		spi->base + STM32FX_SPI_CR2);
1561}
1562
1563/**
1564 * stm32h7_spi_set_bpw - configure bits per word
1565 * @spi: pointer to the spi controller data structure
1566 */
1567static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1568{
1569	u32 bpw, fthlv;
1570	u32 cfg1_clrb = 0, cfg1_setb = 0;
1571
1572	bpw = spi->cur_bpw - 1;
1573
1574	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1575	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
 
1576
1577	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1578	fthlv = spi->cur_fthlv - 1;
1579
1580	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1581	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
 
1582
1583	writel_relaxed(
1584		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1585		 ~cfg1_clrb) | cfg1_setb,
1586		spi->base + STM32H7_SPI_CFG1);
1587}
1588
1589/**
1590 * stm32_spi_set_mbr - Configure baud rate divisor in host mode
1591 * @spi: pointer to the spi controller data structure
1592 * @mbrdiv: baud rate divisor value
1593 */
1594static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1595{
1596	u32 clrb = 0, setb = 0;
1597
1598	clrb |= spi->cfg->regs->br.mask;
1599	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
 
1600
1601	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1602			~clrb) | setb,
1603		       spi->base + spi->cfg->regs->br.reg);
1604}
1605
1606/**
1607 * stm32_spi_communication_type - return transfer communication type
1608 * @spi_dev: pointer to the spi device
1609 * @transfer: pointer to spi transfer
1610 */
1611static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1612						 struct spi_transfer *transfer)
1613{
1614	unsigned int type = SPI_FULL_DUPLEX;
1615
1616	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1617		/*
1618		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1619		 * is forbidden and unvalidated by SPI subsystem so depending
1620		 * on the valid buffer, we can determine the direction of the
1621		 * transfer.
1622		 */
1623		if (!transfer->tx_buf)
1624			type = SPI_3WIRE_RX;
1625		else
1626			type = SPI_3WIRE_TX;
1627	} else {
1628		if (!transfer->tx_buf)
1629			type = SPI_SIMPLEX_RX;
1630		else if (!transfer->rx_buf)
1631			type = SPI_SIMPLEX_TX;
1632	}
1633
1634	return type;
1635}
1636
1637/**
1638 * stm32fx_spi_set_mode - configure communication mode
1639 * @spi: pointer to the spi controller data structure
1640 * @comm_type: type of communication to configure
1641 */
1642static int stm32fx_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1643{
1644	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1645		stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1646					STM32FX_SPI_CR1_BIDIMODE |
1647					STM32FX_SPI_CR1_BIDIOE);
1648	} else if (comm_type == SPI_FULL_DUPLEX ||
1649				comm_type == SPI_SIMPLEX_RX) {
1650		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1651					STM32FX_SPI_CR1_BIDIMODE |
1652					STM32FX_SPI_CR1_BIDIOE);
1653	} else if (comm_type == SPI_3WIRE_RX) {
1654		stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1655					STM32FX_SPI_CR1_BIDIMODE);
1656		stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1657					STM32FX_SPI_CR1_BIDIOE);
1658	} else {
1659		return -EINVAL;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 * stm32h7_spi_set_mode - configure communication mode
1667 * @spi: pointer to the spi controller data structure
1668 * @comm_type: type of communication to configure
1669 */
1670static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1671{
1672	u32 mode;
1673	u32 cfg2_clrb = 0, cfg2_setb = 0;
1674
1675	if (comm_type == SPI_3WIRE_RX) {
1676		mode = STM32H7_SPI_HALF_DUPLEX;
1677		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1678	} else if (comm_type == SPI_3WIRE_TX) {
1679		mode = STM32H7_SPI_HALF_DUPLEX;
1680		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1681	} else if (comm_type == SPI_SIMPLEX_RX) {
1682		mode = STM32H7_SPI_SIMPLEX_RX;
1683	} else if (comm_type == SPI_SIMPLEX_TX) {
1684		mode = STM32H7_SPI_SIMPLEX_TX;
1685	} else {
1686		mode = STM32H7_SPI_FULL_DUPLEX;
1687	}
1688
1689	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1690	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
 
1691
1692	writel_relaxed(
1693		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1694		 ~cfg2_clrb) | cfg2_setb,
1695		spi->base + STM32H7_SPI_CFG2);
1696
1697	return 0;
1698}
1699
1700/**
1701 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1702 *			       consecutive data frames in host mode
1703 * @spi: pointer to the spi controller data structure
1704 * @len: transfer len
1705 */
1706static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1707{
1708	u32 cfg2_clrb = 0, cfg2_setb = 0;
1709
1710	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1711	if ((len > 1) && (spi->cur_midi > 0)) {
1712		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1713		u32 midi = min_t(u32,
1714				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1715				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1716				 STM32H7_SPI_CFG2_MIDI));
1717
1718
1719		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1720			sck_period_ns, midi, midi * sck_period_ns);
1721		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
 
1722	}
1723
1724	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1725			~cfg2_clrb) | cfg2_setb,
1726		       spi->base + STM32H7_SPI_CFG2);
1727}
1728
1729/**
1730 * stm32h7_spi_number_of_data - configure number of data at current transfer
1731 * @spi: pointer to the spi controller data structure
1732 * @nb_words: transfer length (in words)
1733 */
1734static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1735{
1736	if (nb_words <= spi->t_size_max) {
1737		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
 
 
 
 
 
 
1738			       spi->base + STM32H7_SPI_CR2);
1739	} else {
1740		return -EMSGSIZE;
1741	}
1742
1743	return 0;
1744}
1745
1746/**
1747 * stm32_spi_transfer_one_setup - common setup to transfer a single
1748 *				  spi_transfer either using DMA or
1749 *				  interrupts.
1750 * @spi: pointer to the spi controller data structure
1751 * @spi_dev: pointer to the spi device
1752 * @transfer: pointer to spi transfer
1753 */
1754static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1755					struct spi_device *spi_dev,
1756					struct spi_transfer *transfer)
1757{
1758	unsigned long flags;
1759	unsigned int comm_type;
1760	int nb_words, ret = 0;
1761	int mbr;
1762
1763	spin_lock_irqsave(&spi->lock, flags);
1764
1765	spi->cur_xferlen = transfer->len;
1766
1767	spi->cur_bpw = transfer->bits_per_word;
1768	spi->cfg->set_bpw(spi);
1769
1770	/* Update spi->cur_speed with real clock speed */
1771	if (STM32_SPI_HOST_MODE(spi)) {
1772		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1773					    spi->cfg->baud_rate_div_min,
1774					    spi->cfg->baud_rate_div_max);
1775		if (mbr < 0) {
1776			ret = mbr;
1777			goto out;
1778		}
1779
1780		transfer->speed_hz = spi->cur_speed;
1781		stm32_spi_set_mbr(spi, mbr);
1782	}
1783
1784	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1785	ret = spi->cfg->set_mode(spi, comm_type);
1786	if (ret < 0)
1787		goto out;
1788
1789	spi->cur_comm = comm_type;
1790
1791	if (STM32_SPI_HOST_MODE(spi) && spi->cfg->set_data_idleness)
1792		spi->cfg->set_data_idleness(spi, transfer->len);
1793
1794	if (spi->cur_bpw <= 8)
1795		nb_words = transfer->len;
1796	else if (spi->cur_bpw <= 16)
1797		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1798	else
1799		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1800
1801	if (spi->cfg->set_number_of_data) {
1802		ret = spi->cfg->set_number_of_data(spi, nb_words);
1803		if (ret < 0)
1804			goto out;
1805	}
1806
1807	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1808		spi->cur_comm);
1809	dev_dbg(spi->dev,
1810		"data frame of %d-bit, data packet of %d data frames\n",
1811		spi->cur_bpw, spi->cur_fthlv);
1812	if (STM32_SPI_HOST_MODE(spi))
1813		dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1814	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1815		spi->cur_xferlen, nb_words);
1816	dev_dbg(spi->dev, "dma %s\n",
1817		(spi->cur_usedma) ? "enabled" : "disabled");
1818
1819out:
1820	spin_unlock_irqrestore(&spi->lock, flags);
1821
1822	return ret;
1823}
1824
1825/**
1826 * stm32_spi_transfer_one - transfer a single spi_transfer
1827 * @ctrl: controller interface
1828 * @spi_dev: pointer to the spi device
1829 * @transfer: pointer to spi transfer
1830 *
1831 * It must return 0 if the transfer is finished or 1 if the transfer is still
1832 * in progress.
1833 */
1834static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1835				  struct spi_device *spi_dev,
1836				  struct spi_transfer *transfer)
1837{
1838	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1839	int ret;
1840
1841	spi->tx_buf = transfer->tx_buf;
1842	spi->rx_buf = transfer->rx_buf;
1843	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1844	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1845
1846	spi->cur_usedma = (ctrl->can_dma &&
1847			   ctrl->can_dma(ctrl, spi_dev, transfer));
1848
1849	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1850	if (ret) {
1851		dev_err(spi->dev, "SPI transfer setup failed\n");
1852		return ret;
1853	}
1854
1855	if (spi->cur_usedma)
1856		return stm32_spi_transfer_one_dma(spi, transfer);
1857	else
1858		return spi->cfg->transfer_one_irq(spi);
1859}
1860
1861/**
1862 * stm32_spi_unprepare_msg - relax the hardware
1863 * @ctrl: controller interface
1864 * @msg: pointer to the spi message
1865 */
1866static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1867				   struct spi_message *msg)
1868{
1869	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1870
1871	spi->cfg->disable(spi);
1872
1873	return 0;
1874}
1875
1876/**
1877 * stm32fx_spi_config - Configure SPI controller as SPI host
1878 * @spi: pointer to the spi controller data structure
1879 */
1880static int stm32fx_spi_config(struct stm32_spi *spi)
1881{
1882	unsigned long flags;
1883
1884	spin_lock_irqsave(&spi->lock, flags);
1885
1886	/* Ensure I2SMOD bit is kept cleared */
1887	stm32_spi_clr_bits(spi, STM32FX_SPI_I2SCFGR,
1888			   STM32FX_SPI_I2SCFGR_I2SMOD);
1889
1890	/*
1891	 * - SS input value high
1892	 * - transmitter half duplex direction
1893	 * - Set the host mode (default Motorola mode)
1894	 * - Consider 1 host/n targets configuration and
1895	 *   SS input value is determined by the SSI bit
1896	 */
1897	stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SSI |
1898						 STM32FX_SPI_CR1_BIDIOE |
1899						 STM32FX_SPI_CR1_MSTR |
1900						 STM32FX_SPI_CR1_SSM);
1901
1902	spin_unlock_irqrestore(&spi->lock, flags);
1903
1904	return 0;
1905}
1906
1907/**
1908 * stm32h7_spi_config - Configure SPI controller
1909 * @spi: pointer to the spi controller data structure
1910 */
1911static int stm32h7_spi_config(struct stm32_spi *spi)
1912{
1913	unsigned long flags;
1914	u32 cr1 = 0, cfg2 = 0;
1915
1916	spin_lock_irqsave(&spi->lock, flags);
1917
1918	/* Ensure I2SMOD bit is kept cleared */
1919	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1920			   STM32H7_SPI_I2SCFGR_I2SMOD);
1921
1922	if (STM32_SPI_DEVICE_MODE(spi)) {
1923		/* Use native device select */
1924		cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1925	} else {
1926		/*
1927		 * - Transmitter half duplex direction
1928		 * - Automatic communication suspend when RX-Fifo is full
1929		 * - SS input value high
1930		 */
1931		cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1932
1933		/*
1934		 * - Set the host mode (default Motorola mode)
1935		 * - Consider 1 host/n devices configuration and
1936		 *   SS input value is determined by the SSI bit
1937		 * - keep control of all associated GPIOs
1938		 */
1939		cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1940	}
1941
1942	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1943	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1944
1945	spin_unlock_irqrestore(&spi->lock, flags);
1946
1947	return 0;
1948}
1949
1950static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1951	.regs = &stm32fx_spi_regspec,
1952	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1953	.disable = stm32fx_spi_disable,
1954	.config = stm32fx_spi_config,
1955	.set_bpw = stm32f4_spi_set_bpw,
1956	.set_mode = stm32fx_spi_set_mode,
1957	.write_tx = stm32f4_spi_write_tx,
1958	.read_rx = stm32f4_spi_read_rx,
1959	.transfer_one_dma_start = stm32fx_spi_transfer_one_dma_start,
1960	.dma_tx_cb = stm32fx_spi_dma_tx_cb,
1961	.dma_rx_cb = stm32_spi_dma_rx_cb,
1962	.transfer_one_irq = stm32fx_spi_transfer_one_irq,
1963	.irq_handler_event = stm32fx_spi_irq_event,
1964	.irq_handler_thread = stm32fx_spi_irq_thread,
1965	.baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1966	.baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1967	.has_fifo = false,
1968	.has_device_mode = false,
1969	.flags = SPI_CONTROLLER_MUST_TX,
1970};
1971
1972static const struct stm32_spi_cfg stm32f7_spi_cfg = {
1973	.regs = &stm32fx_spi_regspec,
1974	.get_bpw_mask = stm32f7_spi_get_bpw_mask,
1975	.disable = stm32fx_spi_disable,
1976	.config = stm32fx_spi_config,
1977	.set_bpw = stm32f7_spi_set_bpw,
1978	.set_mode = stm32fx_spi_set_mode,
1979	.write_tx = stm32f7_spi_write_tx,
1980	.read_rx = stm32f7_spi_read_rx,
1981	.transfer_one_dma_start = stm32f7_spi_transfer_one_dma_start,
1982	.dma_tx_cb = stm32fx_spi_dma_tx_cb,
1983	.dma_rx_cb = stm32_spi_dma_rx_cb,
1984	.transfer_one_irq = stm32fx_spi_transfer_one_irq,
1985	.irq_handler_event = stm32fx_spi_irq_event,
1986	.irq_handler_thread = stm32fx_spi_irq_thread,
1987	.baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1988	.baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1989	.has_fifo = false,
1990	.flags = SPI_CONTROLLER_MUST_TX,
1991};
1992
1993static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1994	.regs = &stm32h7_spi_regspec,
1995	.get_fifo_size = stm32h7_spi_get_fifo_size,
1996	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1997	.disable = stm32h7_spi_disable,
1998	.config = stm32h7_spi_config,
1999	.set_bpw = stm32h7_spi_set_bpw,
2000	.set_mode = stm32h7_spi_set_mode,
2001	.set_data_idleness = stm32h7_spi_data_idleness,
2002	.set_number_of_data = stm32h7_spi_number_of_data,
2003	.write_tx = stm32h7_spi_write_txfifo,
2004	.read_rx = stm32h7_spi_read_rxfifo,
2005	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2006	.dma_rx_cb = stm32_spi_dma_rx_cb,
2007	/*
2008	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2009	 * SPI access hence handling is performed within the SPI interrupt
2010	 */
2011	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
2012	.irq_handler_thread = stm32h7_spi_irq_thread,
2013	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2014	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2015	.has_fifo = true,
2016	.has_device_mode = true,
2017};
2018
2019/*
2020 * STM32MP2 is compatible with the STM32H7 except:
2021 * - enforce the DMA maxburst value to 1
2022 * - spi8 have limited feature set (TSIZE_MAX = 1024, BPW of 8 OR 16)
2023 */
2024static const struct stm32_spi_cfg stm32mp25_spi_cfg = {
2025	.regs = &stm32mp25_spi_regspec,
2026	.get_fifo_size = stm32h7_spi_get_fifo_size,
2027	.get_bpw_mask = stm32mp25_spi_get_bpw_mask,
2028	.disable = stm32h7_spi_disable,
2029	.config = stm32h7_spi_config,
2030	.set_bpw = stm32h7_spi_set_bpw,
2031	.set_mode = stm32h7_spi_set_mode,
2032	.set_data_idleness = stm32h7_spi_data_idleness,
2033	.set_number_of_data = stm32h7_spi_number_of_data,
2034	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2035	.dma_rx_cb = stm32_spi_dma_rx_cb,
2036	/*
2037	 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2038	 * SPI access hence handling is performed within the SPI interrupt
2039	 */
2040	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
2041	.irq_handler_thread = stm32h7_spi_irq_thread,
2042	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2043	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2044	.has_fifo = true,
2045	.prevent_dma_burst = true,
2046};
2047
2048static const struct of_device_id stm32_spi_of_match[] = {
2049	{ .compatible = "st,stm32mp25-spi", .data = (void *)&stm32mp25_spi_cfg },
2050	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
2051	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
2052	{ .compatible = "st,stm32f7-spi", .data = (void *)&stm32f7_spi_cfg },
2053	{},
2054};
2055MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
2056
2057static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
2058{
2059	spi_finalize_current_transfer(ctrl);
2060	return 0;
2061}
2062
2063static int stm32_spi_probe(struct platform_device *pdev)
2064{
2065	struct spi_controller *ctrl;
2066	struct stm32_spi *spi;
2067	struct resource *res;
2068	struct reset_control *rst;
2069	struct device_node *np = pdev->dev.of_node;
2070	bool device_mode;
2071	int ret;
2072	const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
2073
2074	device_mode = of_property_read_bool(np, "spi-slave");
2075	if (!cfg->has_device_mode && device_mode) {
2076		dev_err(&pdev->dev, "spi-slave not supported\n");
2077		return -EPERM;
2078	}
2079
2080	if (device_mode)
2081		ctrl = devm_spi_alloc_target(&pdev->dev, sizeof(struct stm32_spi));
2082	else
2083		ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(struct stm32_spi));
2084	if (!ctrl) {
2085		dev_err(&pdev->dev, "spi controller allocation failed\n");
2086		return -ENOMEM;
2087	}
2088	platform_set_drvdata(pdev, ctrl);
2089
2090	spi = spi_controller_get_devdata(ctrl);
2091	spi->dev = &pdev->dev;
2092	spi->ctrl = ctrl;
2093	spi->device_mode = device_mode;
2094	spin_lock_init(&spi->lock);
2095
2096	spi->cfg = cfg;
2097
2098	spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2099	if (IS_ERR(spi->base))
2100		return PTR_ERR(spi->base);
 
 
 
 
 
2101
2102	spi->phys_addr = (dma_addr_t)res->start;
2103
2104	spi->irq = platform_get_irq(pdev, 0);
2105	if (spi->irq <= 0)
2106		return spi->irq;
2107
 
 
 
2108	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
2109					spi->cfg->irq_handler_event,
2110					spi->cfg->irq_handler_thread,
2111					IRQF_ONESHOT, pdev->name, ctrl);
2112	if (ret) {
2113		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
2114			ret);
2115		return ret;
2116	}
2117
2118	spi->clk = devm_clk_get(&pdev->dev, NULL);
2119	if (IS_ERR(spi->clk)) {
2120		ret = PTR_ERR(spi->clk);
2121		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
2122		return ret;
2123	}
2124
2125	ret = clk_prepare_enable(spi->clk);
2126	if (ret) {
2127		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
2128		return ret;
2129	}
2130	spi->clk_rate = clk_get_rate(spi->clk);
2131	if (!spi->clk_rate) {
2132		dev_err(&pdev->dev, "clk rate = 0\n");
2133		ret = -EINVAL;
2134		goto err_clk_disable;
2135	}
2136
2137	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2138	if (rst) {
2139		if (IS_ERR(rst)) {
2140			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
2141					    "failed to get reset\n");
2142			goto err_clk_disable;
2143		}
2144
2145		reset_control_assert(rst);
2146		udelay(2);
2147		reset_control_deassert(rst);
2148	}
2149
2150	if (spi->cfg->has_fifo)
2151		spi->fifo_size = spi->cfg->get_fifo_size(spi);
2152
2153	spi->feature_set = STM32_SPI_FEATURE_FULL;
2154	if (spi->cfg->regs->fullcfg.reg) {
2155		spi->feature_set =
2156			FIELD_GET(STM32MP25_SPI_HWCFGR1_FULLCFG,
2157				  readl_relaxed(spi->base + spi->cfg->regs->fullcfg.reg));
2158
2159		dev_dbg(spi->dev, "%s feature set\n",
2160			spi->feature_set == STM32_SPI_FEATURE_FULL ? "full" : "limited");
2161	}
2162
2163	/* Only for STM32H7 and after */
2164	spi->t_size_max = spi->feature_set == STM32_SPI_FEATURE_FULL ?
2165				STM32H7_SPI_TSIZE_MAX :
2166				STM32MP25_SPI_TSIZE_MAX_LIMITED;
2167	dev_dbg(spi->dev, "one message max size %d\n", spi->t_size_max);
2168
2169	ret = spi->cfg->config(spi);
2170	if (ret) {
2171		dev_err(&pdev->dev, "controller configuration failed: %d\n",
2172			ret);
2173		goto err_clk_disable;
2174	}
2175
2176	ctrl->dev.of_node = pdev->dev.of_node;
2177	ctrl->auto_runtime_pm = true;
2178	ctrl->bus_num = pdev->id;
2179	ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
2180			  SPI_3WIRE;
2181	ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
2182	ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
2183	ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
2184	ctrl->use_gpio_descriptors = true;
2185	ctrl->prepare_message = stm32_spi_prepare_msg;
2186	ctrl->transfer_one = stm32_spi_transfer_one;
2187	ctrl->unprepare_message = stm32_spi_unprepare_msg;
2188	ctrl->flags = spi->cfg->flags;
2189	if (STM32_SPI_DEVICE_MODE(spi))
2190		ctrl->target_abort = stm32h7_spi_device_abort;
2191
2192	spi->dma_tx = dma_request_chan(spi->dev, "tx");
2193	if (IS_ERR(spi->dma_tx)) {
2194		ret = PTR_ERR(spi->dma_tx);
2195		spi->dma_tx = NULL;
2196		if (ret == -EPROBE_DEFER)
2197			goto err_clk_disable;
2198
2199		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
2200	} else {
2201		ctrl->dma_tx = spi->dma_tx;
2202	}
2203
2204	spi->dma_rx = dma_request_chan(spi->dev, "rx");
2205	if (IS_ERR(spi->dma_rx)) {
2206		ret = PTR_ERR(spi->dma_rx);
2207		spi->dma_rx = NULL;
2208		if (ret == -EPROBE_DEFER)
2209			goto err_dma_release;
2210
2211		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
2212	} else {
2213		ctrl->dma_rx = spi->dma_rx;
2214	}
2215
2216	if (spi->dma_tx || spi->dma_rx)
2217		ctrl->can_dma = stm32_spi_can_dma;
2218
2219	pm_runtime_set_autosuspend_delay(&pdev->dev,
2220					 STM32_SPI_AUTOSUSPEND_DELAY);
2221	pm_runtime_use_autosuspend(&pdev->dev);
2222	pm_runtime_set_active(&pdev->dev);
2223	pm_runtime_get_noresume(&pdev->dev);
2224	pm_runtime_enable(&pdev->dev);
2225
2226	ret = spi_register_controller(ctrl);
2227	if (ret) {
2228		dev_err(&pdev->dev, "spi controller registration failed: %d\n",
2229			ret);
2230		goto err_pm_disable;
2231	}
2232
2233	pm_runtime_mark_last_busy(&pdev->dev);
2234	pm_runtime_put_autosuspend(&pdev->dev);
 
 
 
2235
2236	dev_info(&pdev->dev, "driver initialized (%s mode)\n",
2237		 STM32_SPI_HOST_MODE(spi) ? "host" : "device");
2238
2239	return 0;
2240
2241err_pm_disable:
2242	pm_runtime_disable(&pdev->dev);
2243	pm_runtime_put_noidle(&pdev->dev);
2244	pm_runtime_set_suspended(&pdev->dev);
2245	pm_runtime_dont_use_autosuspend(&pdev->dev);
2246err_dma_release:
2247	if (spi->dma_tx)
2248		dma_release_channel(spi->dma_tx);
2249	if (spi->dma_rx)
2250		dma_release_channel(spi->dma_rx);
2251err_clk_disable:
2252	clk_disable_unprepare(spi->clk);
 
 
2253
2254	return ret;
2255}
2256
2257static void stm32_spi_remove(struct platform_device *pdev)
2258{
2259	struct spi_controller *ctrl = platform_get_drvdata(pdev);
2260	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2261
2262	pm_runtime_get_sync(&pdev->dev);
2263
2264	spi_unregister_controller(ctrl);
2265	spi->cfg->disable(spi);
2266
2267	pm_runtime_disable(&pdev->dev);
2268	pm_runtime_put_noidle(&pdev->dev);
2269	pm_runtime_set_suspended(&pdev->dev);
2270	pm_runtime_dont_use_autosuspend(&pdev->dev);
2271
2272	if (ctrl->dma_tx)
2273		dma_release_channel(ctrl->dma_tx);
2274	if (ctrl->dma_rx)
2275		dma_release_channel(ctrl->dma_rx);
2276
2277	clk_disable_unprepare(spi->clk);
2278
 
2279
2280	pinctrl_pm_select_sleep_state(&pdev->dev);
 
 
2281}
2282
2283static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
 
2284{
2285	struct spi_controller *ctrl = dev_get_drvdata(dev);
2286	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2287
2288	clk_disable_unprepare(spi->clk);
2289
2290	return pinctrl_pm_select_sleep_state(dev);
2291}
2292
2293static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2294{
2295	struct spi_controller *ctrl = dev_get_drvdata(dev);
2296	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2297	int ret;
2298
2299	ret = pinctrl_pm_select_default_state(dev);
2300	if (ret)
2301		return ret;
2302
2303	return clk_prepare_enable(spi->clk);
2304}
 
2305
2306static int __maybe_unused stm32_spi_suspend(struct device *dev)
 
2307{
2308	struct spi_controller *ctrl = dev_get_drvdata(dev);
2309	int ret;
2310
2311	ret = spi_controller_suspend(ctrl);
2312	if (ret)
2313		return ret;
2314
2315	return pm_runtime_force_suspend(dev);
2316}
2317
2318static int __maybe_unused stm32_spi_resume(struct device *dev)
2319{
2320	struct spi_controller *ctrl = dev_get_drvdata(dev);
2321	struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2322	int ret;
2323
2324	ret = pm_runtime_force_resume(dev);
2325	if (ret)
2326		return ret;
2327
2328	ret = spi_controller_resume(ctrl);
2329	if (ret) {
2330		clk_disable_unprepare(spi->clk);
2331		return ret;
2332	}
2333
2334	ret = pm_runtime_resume_and_get(dev);
2335	if (ret < 0) {
2336		dev_err(dev, "Unable to power device:%d\n", ret);
2337		return ret;
2338	}
2339
2340	spi->cfg->config(spi);
2341
2342	pm_runtime_mark_last_busy(dev);
2343	pm_runtime_put_autosuspend(dev);
2344
2345	return 0;
2346}
 
2347
2348static const struct dev_pm_ops stm32_spi_pm_ops = {
2349	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2350	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2351			   stm32_spi_runtime_resume, NULL)
2352};
2353
2354static struct platform_driver stm32_spi_driver = {
2355	.probe = stm32_spi_probe,
2356	.remove_new = stm32_spi_remove,
2357	.driver = {
2358		.name = DRIVER_NAME,
2359		.pm = &stm32_spi_pm_ops,
2360		.of_match_table = stm32_spi_of_match,
2361	},
2362};
2363
2364module_platform_driver(stm32_spi_driver);
2365
2366MODULE_ALIAS("platform:" DRIVER_NAME);
2367MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2368MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2369MODULE_LICENSE("GPL v2");