Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
 
   8#include <linux/debugfs.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/of_platform.h>
  16#include <linux/pinctrl/consumer.h>
  17#include <linux/pm_runtime.h>
  18#include <linux/reset.h>
  19#include <linux/spi/spi.h>
  20
  21#define DRIVER_NAME "spi_stm32"
  22
  23/* STM32F4 SPI registers */
  24#define STM32F4_SPI_CR1			0x00
  25#define STM32F4_SPI_CR2			0x04
  26#define STM32F4_SPI_SR			0x08
  27#define STM32F4_SPI_DR			0x0C
  28#define STM32F4_SPI_I2SCFGR		0x1C
  29
  30/* STM32F4_SPI_CR1 bit fields */
  31#define STM32F4_SPI_CR1_CPHA		BIT(0)
  32#define STM32F4_SPI_CR1_CPOL		BIT(1)
  33#define STM32F4_SPI_CR1_MSTR		BIT(2)
  34#define STM32F4_SPI_CR1_BR_SHIFT	3
  35#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
  36#define STM32F4_SPI_CR1_SPE		BIT(6)
  37#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
  38#define STM32F4_SPI_CR1_SSI		BIT(8)
  39#define STM32F4_SPI_CR1_SSM		BIT(9)
  40#define STM32F4_SPI_CR1_RXONLY		BIT(10)
  41#define STM32F4_SPI_CR1_DFF		BIT(11)
  42#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
  43#define STM32F4_SPI_CR1_CRCEN		BIT(13)
  44#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
  45#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
  46#define STM32F4_SPI_CR1_BR_MIN		0
  47#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  48
  49/* STM32F4_SPI_CR2 bit fields */
  50#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
  51#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
  52#define STM32F4_SPI_CR2_SSOE		BIT(2)
  53#define STM32F4_SPI_CR2_FRF		BIT(4)
  54#define STM32F4_SPI_CR2_ERRIE		BIT(5)
  55#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
  56#define STM32F4_SPI_CR2_TXEIE		BIT(7)
  57
  58/* STM32F4_SPI_SR bit fields */
  59#define STM32F4_SPI_SR_RXNE		BIT(0)
  60#define STM32F4_SPI_SR_TXE		BIT(1)
  61#define STM32F4_SPI_SR_CHSIDE		BIT(2)
  62#define STM32F4_SPI_SR_UDR		BIT(3)
  63#define STM32F4_SPI_SR_CRCERR		BIT(4)
  64#define STM32F4_SPI_SR_MODF		BIT(5)
  65#define STM32F4_SPI_SR_OVR		BIT(6)
  66#define STM32F4_SPI_SR_BSY		BIT(7)
  67#define STM32F4_SPI_SR_FRE		BIT(8)
  68
  69/* STM32F4_SPI_I2SCFGR bit fields */
  70#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
  71
  72/* STM32F4 SPI Baud Rate min/max divisor */
  73#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
  74#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
  75
  76/* STM32H7 SPI registers */
  77#define STM32H7_SPI_CR1			0x00
  78#define STM32H7_SPI_CR2			0x04
  79#define STM32H7_SPI_CFG1		0x08
  80#define STM32H7_SPI_CFG2		0x0C
  81#define STM32H7_SPI_IER			0x10
  82#define STM32H7_SPI_SR			0x14
  83#define STM32H7_SPI_IFCR		0x18
  84#define STM32H7_SPI_TXDR		0x20
  85#define STM32H7_SPI_RXDR		0x30
  86#define STM32H7_SPI_I2SCFGR		0x50
  87
  88/* STM32H7_SPI_CR1 bit fields */
  89#define STM32H7_SPI_CR1_SPE		BIT(0)
  90#define STM32H7_SPI_CR1_MASRX		BIT(8)
  91#define STM32H7_SPI_CR1_CSTART		BIT(9)
  92#define STM32H7_SPI_CR1_CSUSP		BIT(10)
  93#define STM32H7_SPI_CR1_HDDIR		BIT(11)
  94#define STM32H7_SPI_CR1_SSI		BIT(12)
  95
  96/* STM32H7_SPI_CR2 bit fields */
  97#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
  98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
 
  99
 100/* STM32H7_SPI_CFG1 bit fields */
 101#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
 102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 103#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
 104#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 105#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 106#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 108#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 
 109#define STM32H7_SPI_CFG1_MBR_MIN	0
 110#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 111
 112/* STM32H7_SPI_CFG2 bit fields */
 113#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
 114#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 115#define STM32H7_SPI_CFG2_COMM_SHIFT	17
 116#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 117#define STM32H7_SPI_CFG2_SP_SHIFT	19
 118#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 119#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 120#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 121#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 122#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 123#define STM32H7_SPI_CFG2_SSM		BIT(26)
 124#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 125
 126/* STM32H7_SPI_IER bit fields */
 127#define STM32H7_SPI_IER_RXPIE		BIT(0)
 128#define STM32H7_SPI_IER_TXPIE		BIT(1)
 129#define STM32H7_SPI_IER_DXPIE		BIT(2)
 130#define STM32H7_SPI_IER_EOTIE		BIT(3)
 131#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 132#define STM32H7_SPI_IER_OVRIE		BIT(6)
 133#define STM32H7_SPI_IER_MODFIE		BIT(9)
 134#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 135
 136/* STM32H7_SPI_SR bit fields */
 137#define STM32H7_SPI_SR_RXP		BIT(0)
 138#define STM32H7_SPI_SR_TXP		BIT(1)
 139#define STM32H7_SPI_SR_EOT		BIT(3)
 140#define STM32H7_SPI_SR_OVR		BIT(6)
 141#define STM32H7_SPI_SR_MODF		BIT(9)
 142#define STM32H7_SPI_SR_SUSP		BIT(11)
 143#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
 144#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 145#define STM32H7_SPI_SR_RXWNE		BIT(15)
 146
 147/* STM32H7_SPI_IFCR bit fields */
 148#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 149
 150/* STM32H7_SPI_I2SCFGR bit fields */
 151#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 152
 153/* STM32H7 SPI Master Baud Rate min/max divisor */
 154#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 155#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 156
 157/* STM32H7 SPI Communication mode */
 158#define STM32H7_SPI_FULL_DUPLEX		0
 159#define STM32H7_SPI_SIMPLEX_TX		1
 160#define STM32H7_SPI_SIMPLEX_RX		2
 161#define STM32H7_SPI_HALF_DUPLEX		3
 162
 163/* SPI Communication type */
 164#define SPI_FULL_DUPLEX		0
 165#define SPI_SIMPLEX_TX		1
 166#define SPI_SIMPLEX_RX		2
 167#define SPI_3WIRE_TX		3
 168#define SPI_3WIRE_RX		4
 169
 170#define SPI_1HZ_NS		1000000000
 171
 172/*
 173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 174 * without fifo buffers.
 175 */
 176#define SPI_DMA_MIN_BYTES	16
 177
 178/**
 179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 180 * @reg:		register offset
 181 * @mask:		bitfield mask
 182 * @shift:		left shift
 183 */
 184struct stm32_spi_reg {
 185	int reg;
 186	int mask;
 187	int shift;
 188};
 189
 190/**
 191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 192 * @en: enable register and SPI enable bit
 193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 195 * @cpol: clock polarity register and polarity bit
 196 * @cpha: clock phase register and phase bit
 197 * @lsb_first: LSB transmitted first register and bit
 198 * @br: baud rate register and bitfields
 199 * @rx: SPI RX data register
 200 * @tx: SPI TX data register
 201 */
 202struct stm32_spi_regspec {
 203	const struct stm32_spi_reg en;
 204	const struct stm32_spi_reg dma_rx_en;
 205	const struct stm32_spi_reg dma_tx_en;
 206	const struct stm32_spi_reg cpol;
 207	const struct stm32_spi_reg cpha;
 208	const struct stm32_spi_reg lsb_first;
 209	const struct stm32_spi_reg br;
 210	const struct stm32_spi_reg rx;
 211	const struct stm32_spi_reg tx;
 212};
 213
 214struct stm32_spi;
 215
 216/**
 217 * struct stm32_spi_cfg - stm32 compatible configuration data
 218 * @regs: registers descriptions
 219 * @get_fifo_size: routine to get fifo size
 220 * @get_bpw_mask: routine to get bits per word mask
 221 * @disable: routine to disable controller
 222 * @config: routine to configure controller as SPI Master
 223 * @set_bpw: routine to configure registers to for bits per word
 224 * @set_mode: routine to configure registers to desired mode
 225 * @set_data_idleness: optional routine to configure registers to desired idle
 226 * time between frames (if driver has this functionality)
 227 * @set_number_of_data: optional routine to configure registers to desired
 228 * number of data (if driver has this functionality)
 229 * @can_dma: routine to determine if the transfer is eligible for DMA use
 230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 231 * using DMA
 232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 234 * @transfer_one_irq: routine to configure interrupts for driver
 235 * @irq_handler_event: Interrupt handler for SPI controller events
 236 * @irq_handler_thread: thread of interrupt handler for SPI controller
 237 * @baud_rate_div_min: minimum baud rate divisor
 238 * @baud_rate_div_max: maximum baud rate divisor
 239 * @has_fifo: boolean to know if fifo is used for driver
 240 * @has_startbit: boolean to know if start bit is used to start transfer
 241 */
 242struct stm32_spi_cfg {
 243	const struct stm32_spi_regspec *regs;
 244	int (*get_fifo_size)(struct stm32_spi *spi);
 245	int (*get_bpw_mask)(struct stm32_spi *spi);
 246	void (*disable)(struct stm32_spi *spi);
 247	int (*config)(struct stm32_spi *spi);
 248	void (*set_bpw)(struct stm32_spi *spi);
 249	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 250	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 251	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 252	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 253	void (*dma_rx_cb)(void *data);
 254	void (*dma_tx_cb)(void *data);
 255	int (*transfer_one_irq)(struct stm32_spi *spi);
 256	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 257	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 258	unsigned int baud_rate_div_min;
 259	unsigned int baud_rate_div_max;
 260	bool has_fifo;
 261};
 262
 263/**
 264 * struct stm32_spi - private data of the SPI controller
 265 * @dev: driver model representation of the controller
 266 * @master: controller master interface
 267 * @cfg: compatible configuration data
 268 * @base: virtual memory area
 269 * @clk: hw kernel clock feeding the SPI clock generator
 270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 271 * @rst: SPI controller reset line
 272 * @lock: prevent I/O concurrent access
 273 * @irq: SPI controller interrupt line
 274 * @fifo_size: size of the embedded fifo in bytes
 275 * @cur_midi: master inter-data idleness in ns
 276 * @cur_speed: speed configured in Hz
 277 * @cur_bpw: number of bits in a single SPI data frame
 278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 279 * @cur_comm: SPI communication mode
 280 * @cur_xferlen: current transfer length in bytes
 281 * @cur_usedma: boolean to know if dma is used in current transfer
 282 * @tx_buf: data to be written, or NULL
 283 * @rx_buf: data to be read, or NULL
 284 * @tx_len: number of data to be written in bytes
 285 * @rx_len: number of data to be read in bytes
 286 * @dma_tx: dma channel for TX transfer
 287 * @dma_rx: dma channel for RX transfer
 288 * @phys_addr: SPI registers physical base address
 289 */
 290struct stm32_spi {
 291	struct device *dev;
 292	struct spi_master *master;
 293	const struct stm32_spi_cfg *cfg;
 294	void __iomem *base;
 295	struct clk *clk;
 296	u32 clk_rate;
 297	struct reset_control *rst;
 298	spinlock_t lock; /* prevent I/O concurrent access */
 299	int irq;
 300	unsigned int fifo_size;
 301
 302	unsigned int cur_midi;
 303	unsigned int cur_speed;
 304	unsigned int cur_bpw;
 305	unsigned int cur_fthlv;
 306	unsigned int cur_comm;
 307	unsigned int cur_xferlen;
 308	bool cur_usedma;
 309
 310	const void *tx_buf;
 311	void *rx_buf;
 312	int tx_len;
 313	int rx_len;
 314	struct dma_chan *dma_tx;
 315	struct dma_chan *dma_rx;
 316	dma_addr_t phys_addr;
 317};
 318
 319static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 320	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 321
 322	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 323	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 324
 325	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 326	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 327	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 328	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 329
 330	.rx = { STM32F4_SPI_DR },
 331	.tx = { STM32F4_SPI_DR },
 332};
 333
 334static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 335	/* SPI data transfer is enabled but spi_ker_ck is idle.
 336	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 337	 */
 338	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 339
 340	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 341	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 342
 343	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 344	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 345	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 346	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 347		STM32H7_SPI_CFG1_MBR_SHIFT },
 348
 349	.rx = { STM32H7_SPI_RXDR },
 350	.tx = { STM32H7_SPI_TXDR },
 351};
 352
 353static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 354				      u32 offset, u32 bits)
 355{
 356	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 357		       spi->base + offset);
 358}
 359
 360static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 361				      u32 offset, u32 bits)
 362{
 363	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 364		       spi->base + offset);
 365}
 366
 367/**
 368 * stm32h7_spi_get_fifo_size - Return fifo size
 369 * @spi: pointer to the spi controller data structure
 370 */
 371static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 372{
 373	unsigned long flags;
 374	u32 count = 0;
 375
 376	spin_lock_irqsave(&spi->lock, flags);
 377
 378	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 379
 380	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 381		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 382
 383	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 384
 385	spin_unlock_irqrestore(&spi->lock, flags);
 386
 387	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 388
 389	return count;
 390}
 391
 392/**
 393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 394 * @spi: pointer to the spi controller data structure
 395 */
 396static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 397{
 398	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 399	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 400}
 401
 402/**
 403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 404 * @spi: pointer to the spi controller data structure
 405 */
 406static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 407{
 408	unsigned long flags;
 409	u32 cfg1, max_bpw;
 410
 411	spin_lock_irqsave(&spi->lock, flags);
 412
 413	/*
 414	 * The most significant bit at DSIZE bit field is reserved when the
 415	 * maximum data size of periperal instances is limited to 16-bit
 416	 */
 417	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 418
 419	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 420	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
 421		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
 422	max_bpw += 1;
 423
 424	spin_unlock_irqrestore(&spi->lock, flags);
 425
 426	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 427
 428	return SPI_BPW_RANGE_MASK(4, max_bpw);
 429}
 430
 431/**
 432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 433 * @spi: pointer to the spi controller data structure
 434 * @speed_hz: requested speed
 435 * @min_div: minimum baud rate divisor
 436 * @max_div: maximum baud rate divisor
 437 *
 438 * Return baud rate divisor value in case of success or -EINVAL
 439 */
 440static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 441				 u32 min_div, u32 max_div)
 442{
 443	u32 div, mbrdiv;
 444
 445	/* Ensure spi->clk_rate is even */
 446	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
 447
 448	/*
 449	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 450	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 451	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 452	 * no need to check it there.
 453	 * However, we need to ensure the following calculations.
 454	 */
 455	if ((div < min_div) || (div > max_div))
 456		return -EINVAL;
 457
 458	/* Determine the first power of 2 greater than or equal to div */
 459	if (div & (div - 1))
 460		mbrdiv = fls(div);
 461	else
 462		mbrdiv = fls(div) - 1;
 463
 464	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 465
 466	return mbrdiv - 1;
 467}
 468
 469/**
 470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 471 * @spi: pointer to the spi controller data structure
 472 * @xfer_len: length of the message to be transferred
 473 */
 474static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 475{
 476	u32 fthlv, half_fifo, packet;
 477
 478	/* data packet should not exceed 1/2 of fifo space */
 479	half_fifo = (spi->fifo_size / 2);
 480
 481	/* data_packet should not exceed transfer length */
 482	if (half_fifo > xfer_len)
 483		packet = xfer_len;
 484	else
 485		packet = half_fifo;
 486
 487	if (spi->cur_bpw <= 8)
 488		fthlv = packet;
 489	else if (spi->cur_bpw <= 16)
 490		fthlv = packet / 2;
 491	else
 492		fthlv = packet / 4;
 493
 494	/* align packet size with data registers access */
 495	if (spi->cur_bpw > 8)
 496		fthlv -= (fthlv % 2); /* multiple of 2 */
 497	else
 498		fthlv -= (fthlv % 4); /* multiple of 4 */
 499
 500	if (!fthlv)
 501		fthlv = 1;
 502
 503	return fthlv;
 504}
 505
 506/**
 507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 508 * @spi: pointer to the spi controller data structure
 509 *
 510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 511 * tx_buf end.
 512 */
 513static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 514{
 515	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 516				  STM32F4_SPI_SR_TXE)) {
 517		u32 offs = spi->cur_xferlen - spi->tx_len;
 518
 519		if (spi->cur_bpw == 16) {
 520			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 521
 522			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 523			spi->tx_len -= sizeof(u16);
 524		} else {
 525			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 526
 527			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 528			spi->tx_len -= sizeof(u8);
 529		}
 530	}
 531
 532	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 533}
 534
 535/**
 536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 537 * @spi: pointer to the spi controller data structure
 538 *
 539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 540 * tx_buf end.
 541 */
 542static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 543{
 544	while ((spi->tx_len > 0) &&
 545		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 546			STM32H7_SPI_SR_TXP)) {
 547		u32 offs = spi->cur_xferlen - spi->tx_len;
 548
 549		if (spi->tx_len >= sizeof(u32)) {
 550			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 551
 552			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 553			spi->tx_len -= sizeof(u32);
 554		} else if (spi->tx_len >= sizeof(u16)) {
 555			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 556
 557			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 558			spi->tx_len -= sizeof(u16);
 559		} else {
 560			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 561
 562			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 563			spi->tx_len -= sizeof(u8);
 564		}
 565	}
 566
 567	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 568}
 569
 570/**
 571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 572 * @spi: pointer to the spi controller data structure
 573 *
 574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 575 * rx_buf end.
 576 */
 577static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 578{
 579	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 580				  STM32F4_SPI_SR_RXNE)) {
 581		u32 offs = spi->cur_xferlen - spi->rx_len;
 582
 583		if (spi->cur_bpw == 16) {
 584			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 585
 586			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 587			spi->rx_len -= sizeof(u16);
 588		} else {
 589			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 590
 591			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 592			spi->rx_len -= sizeof(u8);
 593		}
 594	}
 595
 596	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 597}
 598
 599/**
 600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 601 * @spi: pointer to the spi controller data structure
 602 * @flush: boolean indicating that FIFO should be flushed
 603 *
 604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 605 * rx_buf end.
 606 */
 607static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 608{
 609	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 610	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 611		     STM32H7_SPI_SR_RXPLVL_SHIFT;
 612
 613	while ((spi->rx_len > 0) &&
 614	       ((sr & STM32H7_SPI_SR_RXP) ||
 615		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 616		u32 offs = spi->cur_xferlen - spi->rx_len;
 617
 618		if ((spi->rx_len >= sizeof(u32)) ||
 619		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 620			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 621
 622			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 623			spi->rx_len -= sizeof(u32);
 624		} else if ((spi->rx_len >= sizeof(u16)) ||
 625			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 626			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 627
 628			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 629			spi->rx_len -= sizeof(u16);
 630		} else {
 631			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 632
 633			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 634			spi->rx_len -= sizeof(u8);
 635		}
 636
 637		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 638		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 639			 STM32H7_SPI_SR_RXPLVL_SHIFT;
 640	}
 641
 642	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 643		flush ? "(flush)" : "", spi->rx_len);
 644}
 645
 646/**
 647 * stm32_spi_enable - Enable SPI controller
 648 * @spi: pointer to the spi controller data structure
 649 */
 650static void stm32_spi_enable(struct stm32_spi *spi)
 651{
 652	dev_dbg(spi->dev, "enable controller\n");
 653
 654	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 655			   spi->cfg->regs->en.mask);
 656}
 657
 658/**
 659 * stm32f4_spi_disable - Disable SPI controller
 660 * @spi: pointer to the spi controller data structure
 661 */
 662static void stm32f4_spi_disable(struct stm32_spi *spi)
 663{
 664	unsigned long flags;
 665	u32 sr;
 666
 667	dev_dbg(spi->dev, "disable controller\n");
 668
 669	spin_lock_irqsave(&spi->lock, flags);
 670
 671	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 672	      STM32F4_SPI_CR1_SPE)) {
 673		spin_unlock_irqrestore(&spi->lock, flags);
 674		return;
 675	}
 676
 677	/* Disable interrupts */
 678	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 679						 STM32F4_SPI_CR2_RXNEIE |
 680						 STM32F4_SPI_CR2_ERRIE);
 681
 682	/* Wait until BSY = 0 */
 683	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 684					      sr, !(sr & STM32F4_SPI_SR_BSY),
 685					      10, 100000) < 0) {
 686		dev_warn(spi->dev, "disabling condition timeout\n");
 687	}
 688
 689	if (spi->cur_usedma && spi->dma_tx)
 690		dmaengine_terminate_all(spi->dma_tx);
 691	if (spi->cur_usedma && spi->dma_rx)
 692		dmaengine_terminate_all(spi->dma_rx);
 693
 694	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 695
 696	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 697						 STM32F4_SPI_CR2_RXDMAEN);
 698
 699	/* Sequence to clear OVR flag */
 700	readl_relaxed(spi->base + STM32F4_SPI_DR);
 701	readl_relaxed(spi->base + STM32F4_SPI_SR);
 702
 703	spin_unlock_irqrestore(&spi->lock, flags);
 704}
 705
 706/**
 707 * stm32h7_spi_disable - Disable SPI controller
 708 * @spi: pointer to the spi controller data structure
 709 *
 710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 712 * RX-Fifo.
 713 * Normally, if TSIZE has been configured, we should relax the hardware at the
 714 * reception of the EOT interrupt. But in case of error, EOT will not be
 715 * raised. So the subsystem unprepare_message call allows us to properly
 716 * complete the transfer from an hardware point of view.
 717 */
 718static void stm32h7_spi_disable(struct stm32_spi *spi)
 719{
 720	unsigned long flags;
 721	u32 cr1, sr;
 722
 723	dev_dbg(spi->dev, "disable controller\n");
 724
 725	spin_lock_irqsave(&spi->lock, flags);
 726
 727	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 728
 729	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 730		spin_unlock_irqrestore(&spi->lock, flags);
 731		return;
 732	}
 733
 734	/* Wait on EOT or suspend the flow */
 735	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 736					      sr, !(sr & STM32H7_SPI_SR_EOT),
 737					      10, 100000) < 0) {
 738		if (cr1 & STM32H7_SPI_CR1_CSTART) {
 739			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 740				       spi->base + STM32H7_SPI_CR1);
 741			if (readl_relaxed_poll_timeout_atomic(
 742						spi->base + STM32H7_SPI_SR,
 743						sr, !(sr & STM32H7_SPI_SR_SUSP),
 744						10, 100000) < 0)
 745				dev_warn(spi->dev,
 746					 "Suspend request timeout\n");
 747		}
 748	}
 749
 750	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 751		stm32h7_spi_read_rxfifo(spi, true);
 752
 753	if (spi->cur_usedma && spi->dma_tx)
 754		dmaengine_terminate_all(spi->dma_tx);
 755	if (spi->cur_usedma && spi->dma_rx)
 756		dmaengine_terminate_all(spi->dma_rx);
 757
 758	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 759
 760	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 761						STM32H7_SPI_CFG1_RXDMAEN);
 762
 763	/* Disable interrupts and clear status flags */
 764	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 765	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 766
 767	spin_unlock_irqrestore(&spi->lock, flags);
 768}
 769
 770/**
 771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 772 * @master: controller master interface
 773 * @spi_dev: pointer to the spi device
 774 * @transfer: pointer to spi transfer
 775 *
 776 * If driver has fifo and the current transfer size is greater than fifo size,
 777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 778 */
 779static bool stm32_spi_can_dma(struct spi_master *master,
 780			      struct spi_device *spi_dev,
 781			      struct spi_transfer *transfer)
 782{
 783	unsigned int dma_size;
 784	struct stm32_spi *spi = spi_master_get_devdata(master);
 785
 786	if (spi->cfg->has_fifo)
 787		dma_size = spi->fifo_size;
 788	else
 789		dma_size = SPI_DMA_MIN_BYTES;
 790
 791	dev_dbg(spi->dev, "%s: %s\n", __func__,
 792		(transfer->len > dma_size) ? "true" : "false");
 793
 794	return (transfer->len > dma_size);
 795}
 796
 797/**
 798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 799 * @irq: interrupt line
 800 * @dev_id: SPI controller master interface
 801 */
 802static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 803{
 804	struct spi_master *master = dev_id;
 805	struct stm32_spi *spi = spi_master_get_devdata(master);
 806	u32 sr, mask = 0;
 807	unsigned long flags;
 808	bool end = false;
 809
 810	spin_lock_irqsave(&spi->lock, flags);
 811
 812	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 813	/*
 814	 * BSY flag is not handled in interrupt but it is normal behavior when
 815	 * this flag is set.
 816	 */
 817	sr &= ~STM32F4_SPI_SR_BSY;
 818
 819	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 820				 spi->cur_comm == SPI_3WIRE_TX)) {
 821		/* OVR flag shouldn't be handled for TX only mode */
 822		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 823		mask |= STM32F4_SPI_SR_TXE;
 824	}
 825
 826	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 827				spi->cur_comm == SPI_SIMPLEX_RX ||
 828				spi->cur_comm == SPI_3WIRE_RX)) {
 829		/* TXE flag is set and is handled when RXNE flag occurs */
 830		sr &= ~STM32F4_SPI_SR_TXE;
 831		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 832	}
 833
 834	if (!(sr & mask)) {
 835		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 836		spin_unlock_irqrestore(&spi->lock, flags);
 837		return IRQ_NONE;
 838	}
 839
 840	if (sr & STM32F4_SPI_SR_OVR) {
 841		dev_warn(spi->dev, "Overrun: received value discarded\n");
 842
 843		/* Sequence to clear OVR flag */
 844		readl_relaxed(spi->base + STM32F4_SPI_DR);
 845		readl_relaxed(spi->base + STM32F4_SPI_SR);
 846
 847		/*
 848		 * If overrun is detected, it means that something went wrong,
 849		 * so stop the current transfer. Transfer can wait for next
 850		 * RXNE but DR is already read and end never happens.
 851		 */
 852		end = true;
 853		goto end_irq;
 854	}
 855
 856	if (sr & STM32F4_SPI_SR_TXE) {
 857		if (spi->tx_buf)
 858			stm32f4_spi_write_tx(spi);
 859		if (spi->tx_len == 0)
 860			end = true;
 861	}
 862
 863	if (sr & STM32F4_SPI_SR_RXNE) {
 864		stm32f4_spi_read_rx(spi);
 865		if (spi->rx_len == 0)
 866			end = true;
 867		else if (spi->tx_buf)/* Load data for discontinuous mode */
 868			stm32f4_spi_write_tx(spi);
 869	}
 870
 871end_irq:
 872	if (end) {
 873		/* Immediately disable interrupts to do not generate new one */
 874		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 875					STM32F4_SPI_CR2_TXEIE |
 876					STM32F4_SPI_CR2_RXNEIE |
 877					STM32F4_SPI_CR2_ERRIE);
 878		spin_unlock_irqrestore(&spi->lock, flags);
 879		return IRQ_WAKE_THREAD;
 880	}
 881
 882	spin_unlock_irqrestore(&spi->lock, flags);
 883	return IRQ_HANDLED;
 884}
 885
 886/**
 887 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 888 * @irq: interrupt line
 889 * @dev_id: SPI controller master interface
 890 */
 891static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 892{
 893	struct spi_master *master = dev_id;
 894	struct stm32_spi *spi = spi_master_get_devdata(master);
 895
 896	spi_finalize_current_transfer(master);
 897	stm32f4_spi_disable(spi);
 898
 899	return IRQ_HANDLED;
 900}
 901
 902/**
 903 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 904 * @irq: interrupt line
 905 * @dev_id: SPI controller master interface
 906 */
 907static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 908{
 909	struct spi_master *master = dev_id;
 910	struct stm32_spi *spi = spi_master_get_devdata(master);
 911	u32 sr, ier, mask;
 912	unsigned long flags;
 913	bool end = false;
 914
 915	spin_lock_irqsave(&spi->lock, flags);
 916
 917	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 918	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 919
 920	mask = ier;
 921	/* EOTIE is triggered on EOT, SUSP and TXC events. */
 
 
 
 
 922	mask |= STM32H7_SPI_SR_SUSP;
 923	/*
 924	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 925	 * Full-Duplex, need to poll RXP event to know if there are remaining
 926	 * data, before disabling SPI.
 927	 */
 928	if (spi->rx_buf && !spi->cur_usedma)
 929		mask |= STM32H7_SPI_SR_RXP;
 930
 931	if (!(sr & mask)) {
 932		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 933			sr, ier);
 934		spin_unlock_irqrestore(&spi->lock, flags);
 935		return IRQ_NONE;
 936	}
 937
 938	if (sr & STM32H7_SPI_SR_SUSP) {
 939		static DEFINE_RATELIMIT_STATE(rs,
 940					      DEFAULT_RATELIMIT_INTERVAL * 10,
 941					      1);
 942		if (__ratelimit(&rs))
 943			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
 944		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 945			stm32h7_spi_read_rxfifo(spi, false);
 946		/*
 947		 * If communication is suspended while using DMA, it means
 948		 * that something went wrong, so stop the current transfer
 949		 */
 950		if (spi->cur_usedma)
 951			end = true;
 952	}
 953
 954	if (sr & STM32H7_SPI_SR_MODF) {
 955		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 956		end = true;
 957	}
 958
 959	if (sr & STM32H7_SPI_SR_OVR) {
 960		dev_warn(spi->dev, "Overrun: received value discarded\n");
 961		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 962			stm32h7_spi_read_rxfifo(spi, false);
 963		/*
 964		 * If overrun is detected while using DMA, it means that
 965		 * something went wrong, so stop the current transfer
 966		 */
 967		if (spi->cur_usedma)
 968			end = true;
 969	}
 970
 971	if (sr & STM32H7_SPI_SR_EOT) {
 972		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 973			stm32h7_spi_read_rxfifo(spi, true);
 974		end = true;
 975	}
 976
 977	if (sr & STM32H7_SPI_SR_TXP)
 978		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 979			stm32h7_spi_write_txfifo(spi);
 980
 981	if (sr & STM32H7_SPI_SR_RXP)
 982		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 983			stm32h7_spi_read_rxfifo(spi, false);
 984
 985	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
 986
 987	spin_unlock_irqrestore(&spi->lock, flags);
 988
 989	if (end) {
 990		stm32h7_spi_disable(spi);
 991		spi_finalize_current_transfer(master);
 992	}
 993
 994	return IRQ_HANDLED;
 995}
 996
 997/**
 998 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 999 * @master: controller master interface
1000 * @msg: pointer to spi message
1001 */
1002static int stm32_spi_prepare_msg(struct spi_master *master,
1003				 struct spi_message *msg)
1004{
1005	struct stm32_spi *spi = spi_master_get_devdata(master);
1006	struct spi_device *spi_dev = msg->spi;
1007	struct device_node *np = spi_dev->dev.of_node;
1008	unsigned long flags;
1009	u32 clrb = 0, setb = 0;
1010
1011	/* SPI slave device may need time between data frames */
1012	spi->cur_midi = 0;
1013	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1015
1016	if (spi_dev->mode & SPI_CPOL)
1017		setb |= spi->cfg->regs->cpol.mask;
1018	else
1019		clrb |= spi->cfg->regs->cpol.mask;
1020
1021	if (spi_dev->mode & SPI_CPHA)
1022		setb |= spi->cfg->regs->cpha.mask;
1023	else
1024		clrb |= spi->cfg->regs->cpha.mask;
1025
1026	if (spi_dev->mode & SPI_LSB_FIRST)
1027		setb |= spi->cfg->regs->lsb_first.mask;
1028	else
1029		clrb |= spi->cfg->regs->lsb_first.mask;
1030
1031	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032		spi_dev->mode & SPI_CPOL,
1033		spi_dev->mode & SPI_CPHA,
1034		spi_dev->mode & SPI_LSB_FIRST,
1035		spi_dev->mode & SPI_CS_HIGH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037	spin_lock_irqsave(&spi->lock, flags);
1038
1039	/* CPOL, CPHA and LSB FIRST bits have common register */
1040	if (clrb || setb)
1041		writel_relaxed(
1042			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043			 ~clrb) | setb,
1044			spi->base + spi->cfg->regs->cpol.reg);
1045
1046	spin_unlock_irqrestore(&spi->lock, flags);
1047
1048	return 0;
1049}
1050
1051/**
1052 * stm32f4_spi_dma_tx_cb - dma callback
1053 * @data: pointer to the spi controller data structure
1054 *
1055 * DMA callback is called when the transfer is complete for DMA TX channel.
1056 */
1057static void stm32f4_spi_dma_tx_cb(void *data)
1058{
1059	struct stm32_spi *spi = data;
1060
1061	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1062		spi_finalize_current_transfer(spi->master);
1063		stm32f4_spi_disable(spi);
1064	}
1065}
1066
1067/**
1068 * stm32f4_spi_dma_rx_cb - dma callback
1069 * @data: pointer to the spi controller data structure
1070 *
1071 * DMA callback is called when the transfer is complete for DMA RX channel.
1072 */
1073static void stm32f4_spi_dma_rx_cb(void *data)
1074{
1075	struct stm32_spi *spi = data;
1076
1077	spi_finalize_current_transfer(spi->master);
1078	stm32f4_spi_disable(spi);
1079}
1080
1081/**
1082 * stm32h7_spi_dma_cb - dma callback
1083 * @data: pointer to the spi controller data structure
1084 *
1085 * DMA callback is called when the transfer is complete or when an error
1086 * occurs. If the transfer is complete, EOT flag is raised.
1087 */
1088static void stm32h7_spi_dma_cb(void *data)
1089{
1090	struct stm32_spi *spi = data;
1091	unsigned long flags;
1092	u32 sr;
1093
1094	spin_lock_irqsave(&spi->lock, flags);
1095
1096	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1097
1098	spin_unlock_irqrestore(&spi->lock, flags);
1099
1100	if (!(sr & STM32H7_SPI_SR_EOT))
1101		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1102
1103	/* Now wait for EOT, or SUSP or OVR in case of error */
1104}
1105
1106/**
1107 * stm32_spi_dma_config - configure dma slave channel depending on current
1108 *			  transfer bits_per_word.
1109 * @spi: pointer to the spi controller data structure
1110 * @dma_conf: pointer to the dma_slave_config structure
1111 * @dir: direction of the dma transfer
1112 */
1113static void stm32_spi_dma_config(struct stm32_spi *spi,
1114				 struct dma_slave_config *dma_conf,
1115				 enum dma_transfer_direction dir)
1116{
1117	enum dma_slave_buswidth buswidth;
1118	u32 maxburst;
1119
1120	if (spi->cur_bpw <= 8)
1121		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1122	else if (spi->cur_bpw <= 16)
1123		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1124	else
1125		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1126
1127	if (spi->cfg->has_fifo) {
1128		/* Valid for DMA Half or Full Fifo threshold */
1129		if (spi->cur_fthlv == 2)
1130			maxburst = 1;
1131		else
1132			maxburst = spi->cur_fthlv;
1133	} else {
1134		maxburst = 1;
1135	}
1136
1137	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1138	dma_conf->direction = dir;
1139	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1140		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1141		dma_conf->src_addr_width = buswidth;
1142		dma_conf->src_maxburst = maxburst;
1143
1144		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1145			buswidth, maxburst);
1146	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1147		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1148		dma_conf->dst_addr_width = buswidth;
1149		dma_conf->dst_maxburst = maxburst;
1150
1151		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1152			buswidth, maxburst);
1153	}
1154}
1155
1156/**
1157 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1158 *				  interrupts
1159 * @spi: pointer to the spi controller data structure
1160 *
1161 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1162 * in progress.
1163 */
1164static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1165{
1166	unsigned long flags;
1167	u32 cr2 = 0;
1168
1169	/* Enable the interrupts relative to the current communication mode */
1170	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1171		cr2 |= STM32F4_SPI_CR2_TXEIE;
1172	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1173				spi->cur_comm == SPI_SIMPLEX_RX ||
1174				spi->cur_comm == SPI_3WIRE_RX) {
1175		/* In transmit-only mode, the OVR flag is set in the SR register
1176		 * since the received data are never read. Therefore set OVR
1177		 * interrupt only when rx buffer is available.
1178		 */
1179		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1180	} else {
1181		return -EINVAL;
1182	}
1183
1184	spin_lock_irqsave(&spi->lock, flags);
1185
1186	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1187
1188	stm32_spi_enable(spi);
1189
1190	/* starting data transfer when buffer is loaded */
1191	if (spi->tx_buf)
1192		stm32f4_spi_write_tx(spi);
1193
1194	spin_unlock_irqrestore(&spi->lock, flags);
1195
1196	return 1;
1197}
1198
1199/**
1200 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1201 *				  interrupts
1202 * @spi: pointer to the spi controller data structure
1203 *
1204 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1205 * in progress.
1206 */
1207static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1208{
1209	unsigned long flags;
1210	u32 ier = 0;
1211
1212	/* Enable the interrupts relative to the current communication mode */
1213	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1214		ier |= STM32H7_SPI_IER_DXPIE;
1215	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1216		ier |= STM32H7_SPI_IER_TXPIE;
1217	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1218		ier |= STM32H7_SPI_IER_RXPIE;
1219
1220	/* Enable the interrupts relative to the end of transfer */
1221	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1222	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1223
1224	spin_lock_irqsave(&spi->lock, flags);
1225
1226	stm32_spi_enable(spi);
1227
1228	/* Be sure to have data in fifo before starting data transfer */
1229	if (spi->tx_buf)
1230		stm32h7_spi_write_txfifo(spi);
1231
1232	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1233
1234	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1235
1236	spin_unlock_irqrestore(&spi->lock, flags);
1237
1238	return 1;
1239}
1240
1241/**
1242 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1243 *					transfer using DMA
1244 * @spi: pointer to the spi controller data structure
1245 */
1246static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1247{
1248	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1249	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1250	    spi->cur_comm == SPI_FULL_DUPLEX) {
1251		/*
1252		 * In transmit-only mode, the OVR flag is set in the SR register
1253		 * since the received data are never read. Therefore set OVR
1254		 * interrupt only when rx buffer is available.
1255		 */
1256		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1257	}
1258
1259	stm32_spi_enable(spi);
1260}
1261
1262/**
1263 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1264 *					transfer using DMA
1265 * @spi: pointer to the spi controller data structure
1266 */
1267static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1268{
1269	/* Enable the interrupts relative to the end of transfer */
1270	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1271						 STM32H7_SPI_IER_TXTFIE |
1272						 STM32H7_SPI_IER_OVRIE |
1273						 STM32H7_SPI_IER_MODFIE);
1274
1275	stm32_spi_enable(spi);
1276
1277	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1278}
1279
1280/**
1281 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1282 * @spi: pointer to the spi controller data structure
1283 * @xfer: pointer to the spi_transfer structure
1284 *
1285 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1286 * in progress.
1287 */
1288static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1289				      struct spi_transfer *xfer)
1290{
1291	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1292	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1293	unsigned long flags;
1294
1295	spin_lock_irqsave(&spi->lock, flags);
1296
1297	rx_dma_desc = NULL;
1298	if (spi->rx_buf && spi->dma_rx) {
1299		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1300		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1301
1302		/* Enable Rx DMA request */
1303		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1304				   spi->cfg->regs->dma_rx_en.mask);
1305
1306		rx_dma_desc = dmaengine_prep_slave_sg(
1307					spi->dma_rx, xfer->rx_sg.sgl,
1308					xfer->rx_sg.nents,
1309					rx_dma_conf.direction,
1310					DMA_PREP_INTERRUPT);
1311	}
1312
1313	tx_dma_desc = NULL;
1314	if (spi->tx_buf && spi->dma_tx) {
1315		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1316		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1317
1318		tx_dma_desc = dmaengine_prep_slave_sg(
1319					spi->dma_tx, xfer->tx_sg.sgl,
1320					xfer->tx_sg.nents,
1321					tx_dma_conf.direction,
1322					DMA_PREP_INTERRUPT);
1323	}
1324
1325	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1326	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1327		goto dma_desc_error;
1328
1329	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1330		goto dma_desc_error;
1331
1332	if (rx_dma_desc) {
1333		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1334		rx_dma_desc->callback_param = spi;
1335
1336		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1337			dev_err(spi->dev, "Rx DMA submit failed\n");
1338			goto dma_desc_error;
1339		}
1340		/* Enable Rx DMA channel */
1341		dma_async_issue_pending(spi->dma_rx);
1342	}
1343
1344	if (tx_dma_desc) {
1345		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1346		    spi->cur_comm == SPI_3WIRE_TX) {
1347			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1348			tx_dma_desc->callback_param = spi;
1349		}
1350
1351		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1352			dev_err(spi->dev, "Tx DMA submit failed\n");
1353			goto dma_submit_error;
1354		}
1355		/* Enable Tx DMA channel */
1356		dma_async_issue_pending(spi->dma_tx);
1357
1358		/* Enable Tx DMA request */
1359		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1360				   spi->cfg->regs->dma_tx_en.mask);
1361	}
1362
1363	spi->cfg->transfer_one_dma_start(spi);
1364
1365	spin_unlock_irqrestore(&spi->lock, flags);
1366
1367	return 1;
1368
1369dma_submit_error:
1370	if (spi->dma_rx)
1371		dmaengine_terminate_all(spi->dma_rx);
1372
1373dma_desc_error:
1374	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1375			   spi->cfg->regs->dma_rx_en.mask);
1376
1377	spin_unlock_irqrestore(&spi->lock, flags);
1378
1379	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1380
1381	spi->cur_usedma = false;
1382	return spi->cfg->transfer_one_irq(spi);
1383}
1384
1385/**
1386 * stm32f4_spi_set_bpw - Configure bits per word
1387 * @spi: pointer to the spi controller data structure
1388 */
1389static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1390{
1391	if (spi->cur_bpw == 16)
1392		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1393	else
1394		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1395}
1396
1397/**
1398 * stm32h7_spi_set_bpw - configure bits per word
1399 * @spi: pointer to the spi controller data structure
1400 */
1401static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1402{
1403	u32 bpw, fthlv;
1404	u32 cfg1_clrb = 0, cfg1_setb = 0;
1405
1406	bpw = spi->cur_bpw - 1;
1407
1408	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1409	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1410		     STM32H7_SPI_CFG1_DSIZE;
1411
1412	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1413	fthlv = spi->cur_fthlv - 1;
1414
1415	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1416	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1417		     STM32H7_SPI_CFG1_FTHLV;
1418
1419	writel_relaxed(
1420		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1421		 ~cfg1_clrb) | cfg1_setb,
1422		spi->base + STM32H7_SPI_CFG1);
1423}
1424
1425/**
1426 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1427 * @spi: pointer to the spi controller data structure
1428 * @mbrdiv: baud rate divisor value
1429 */
1430static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1431{
1432	u32 clrb = 0, setb = 0;
1433
1434	clrb |= spi->cfg->regs->br.mask;
1435	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1436		spi->cfg->regs->br.mask;
1437
1438	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1439			~clrb) | setb,
1440		       spi->base + spi->cfg->regs->br.reg);
1441}
1442
1443/**
1444 * stm32_spi_communication_type - return transfer communication type
1445 * @spi_dev: pointer to the spi device
1446 * @transfer: pointer to spi transfer
1447 */
1448static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1449						 struct spi_transfer *transfer)
1450{
1451	unsigned int type = SPI_FULL_DUPLEX;
1452
1453	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1454		/*
1455		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1456		 * is forbidden and unvalidated by SPI subsystem so depending
1457		 * on the valid buffer, we can determine the direction of the
1458		 * transfer.
1459		 */
1460		if (!transfer->tx_buf)
1461			type = SPI_3WIRE_RX;
1462		else
1463			type = SPI_3WIRE_TX;
1464	} else {
1465		if (!transfer->tx_buf)
1466			type = SPI_SIMPLEX_RX;
1467		else if (!transfer->rx_buf)
1468			type = SPI_SIMPLEX_TX;
1469	}
1470
1471	return type;
1472}
1473
1474/**
1475 * stm32f4_spi_set_mode - configure communication mode
1476 * @spi: pointer to the spi controller data structure
1477 * @comm_type: type of communication to configure
1478 */
1479static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1480{
1481	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1482		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1483					STM32F4_SPI_CR1_BIDIMODE |
1484					STM32F4_SPI_CR1_BIDIOE);
1485	} else if (comm_type == SPI_FULL_DUPLEX ||
1486				comm_type == SPI_SIMPLEX_RX) {
1487		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1488					STM32F4_SPI_CR1_BIDIMODE |
1489					STM32F4_SPI_CR1_BIDIOE);
1490	} else if (comm_type == SPI_3WIRE_RX) {
1491		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1492					STM32F4_SPI_CR1_BIDIMODE);
1493		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1494					STM32F4_SPI_CR1_BIDIOE);
1495	} else {
1496		return -EINVAL;
1497	}
1498
1499	return 0;
1500}
1501
1502/**
1503 * stm32h7_spi_set_mode - configure communication mode
1504 * @spi: pointer to the spi controller data structure
1505 * @comm_type: type of communication to configure
1506 */
1507static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1508{
1509	u32 mode;
1510	u32 cfg2_clrb = 0, cfg2_setb = 0;
1511
1512	if (comm_type == SPI_3WIRE_RX) {
1513		mode = STM32H7_SPI_HALF_DUPLEX;
1514		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1515	} else if (comm_type == SPI_3WIRE_TX) {
1516		mode = STM32H7_SPI_HALF_DUPLEX;
1517		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1518	} else if (comm_type == SPI_SIMPLEX_RX) {
1519		mode = STM32H7_SPI_SIMPLEX_RX;
1520	} else if (comm_type == SPI_SIMPLEX_TX) {
1521		mode = STM32H7_SPI_SIMPLEX_TX;
1522	} else {
1523		mode = STM32H7_SPI_FULL_DUPLEX;
1524	}
1525
1526	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1527	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1528		     STM32H7_SPI_CFG2_COMM;
1529
1530	writel_relaxed(
1531		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532		 ~cfg2_clrb) | cfg2_setb,
1533		spi->base + STM32H7_SPI_CFG2);
1534
1535	return 0;
1536}
1537
1538/**
1539 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1540 *			       consecutive data frames in master mode
1541 * @spi: pointer to the spi controller data structure
1542 * @len: transfer len
1543 */
1544static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1545{
1546	u32 cfg2_clrb = 0, cfg2_setb = 0;
1547
1548	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1549	if ((len > 1) && (spi->cur_midi > 0)) {
1550		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1551		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1552			       (u32)STM32H7_SPI_CFG2_MIDI >>
1553			       STM32H7_SPI_CFG2_MIDI_SHIFT);
 
 
1554
1555		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1556			sck_period_ns, midi, midi * sck_period_ns);
1557		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1558			     STM32H7_SPI_CFG2_MIDI;
1559	}
1560
1561	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1562			~cfg2_clrb) | cfg2_setb,
1563		       spi->base + STM32H7_SPI_CFG2);
1564}
1565
1566/**
1567 * stm32h7_spi_number_of_data - configure number of data at current transfer
1568 * @spi: pointer to the spi controller data structure
1569 * @nb_words: transfer length (in words)
1570 */
1571static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1572{
1573	u32 cr2_clrb = 0, cr2_setb = 0;
1574
1575	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1576			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1577		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1578		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1579		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1580				~cr2_clrb) | cr2_setb,
1581			       spi->base + STM32H7_SPI_CR2);
1582	} else {
1583		return -EMSGSIZE;
1584	}
1585
1586	return 0;
1587}
1588
1589/**
1590 * stm32_spi_transfer_one_setup - common setup to transfer a single
1591 *				  spi_transfer either using DMA or
1592 *				  interrupts.
1593 * @spi: pointer to the spi controller data structure
1594 * @spi_dev: pointer to the spi device
1595 * @transfer: pointer to spi transfer
1596 */
1597static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1598					struct spi_device *spi_dev,
1599					struct spi_transfer *transfer)
1600{
1601	unsigned long flags;
1602	unsigned int comm_type;
1603	int nb_words, ret = 0;
1604	int mbr;
1605
1606	spin_lock_irqsave(&spi->lock, flags);
1607
1608	spi->cur_xferlen = transfer->len;
1609
1610	spi->cur_bpw = transfer->bits_per_word;
1611	spi->cfg->set_bpw(spi);
1612
1613	/* Update spi->cur_speed with real clock speed */
1614	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1615				    spi->cfg->baud_rate_div_min,
1616				    spi->cfg->baud_rate_div_max);
1617	if (mbr < 0) {
1618		ret = mbr;
1619		goto out;
1620	}
1621
1622	transfer->speed_hz = spi->cur_speed;
1623	stm32_spi_set_mbr(spi, mbr);
1624
1625	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1626	ret = spi->cfg->set_mode(spi, comm_type);
1627	if (ret < 0)
1628		goto out;
1629
1630	spi->cur_comm = comm_type;
1631
1632	if (spi->cfg->set_data_idleness)
1633		spi->cfg->set_data_idleness(spi, transfer->len);
1634
1635	if (spi->cur_bpw <= 8)
1636		nb_words = transfer->len;
1637	else if (spi->cur_bpw <= 16)
1638		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1639	else
1640		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1641
1642	if (spi->cfg->set_number_of_data) {
1643		ret = spi->cfg->set_number_of_data(spi, nb_words);
1644		if (ret < 0)
1645			goto out;
1646	}
1647
1648	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1649		spi->cur_comm);
1650	dev_dbg(spi->dev,
1651		"data frame of %d-bit, data packet of %d data frames\n",
1652		spi->cur_bpw, spi->cur_fthlv);
1653	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1654	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1655		spi->cur_xferlen, nb_words);
1656	dev_dbg(spi->dev, "dma %s\n",
1657		(spi->cur_usedma) ? "enabled" : "disabled");
1658
1659out:
1660	spin_unlock_irqrestore(&spi->lock, flags);
1661
1662	return ret;
1663}
1664
1665/**
1666 * stm32_spi_transfer_one - transfer a single spi_transfer
1667 * @master: controller master interface
1668 * @spi_dev: pointer to the spi device
1669 * @transfer: pointer to spi transfer
1670 *
1671 * It must return 0 if the transfer is finished or 1 if the transfer is still
1672 * in progress.
1673 */
1674static int stm32_spi_transfer_one(struct spi_master *master,
1675				  struct spi_device *spi_dev,
1676				  struct spi_transfer *transfer)
1677{
1678	struct stm32_spi *spi = spi_master_get_devdata(master);
1679	int ret;
1680
 
 
 
 
1681	spi->tx_buf = transfer->tx_buf;
1682	spi->rx_buf = transfer->rx_buf;
1683	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685
1686	spi->cur_usedma = (master->can_dma &&
1687			   master->can_dma(master, spi_dev, transfer));
1688
1689	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690	if (ret) {
1691		dev_err(spi->dev, "SPI transfer setup failed\n");
1692		return ret;
1693	}
1694
1695	if (spi->cur_usedma)
1696		return stm32_spi_transfer_one_dma(spi, transfer);
1697	else
1698		return spi->cfg->transfer_one_irq(spi);
1699}
1700
1701/**
1702 * stm32_spi_unprepare_msg - relax the hardware
1703 * @master: controller master interface
1704 * @msg: pointer to the spi message
1705 */
1706static int stm32_spi_unprepare_msg(struct spi_master *master,
1707				   struct spi_message *msg)
1708{
1709	struct stm32_spi *spi = spi_master_get_devdata(master);
1710
1711	spi->cfg->disable(spi);
1712
1713	return 0;
1714}
1715
1716/**
1717 * stm32f4_spi_config - Configure SPI controller as SPI master
1718 * @spi: pointer to the spi controller data structure
1719 */
1720static int stm32f4_spi_config(struct stm32_spi *spi)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&spi->lock, flags);
1725
1726	/* Ensure I2SMOD bit is kept cleared */
1727	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728			   STM32F4_SPI_I2SCFGR_I2SMOD);
1729
1730	/*
1731	 * - SS input value high
1732	 * - transmitter half duplex direction
1733	 * - Set the master mode (default Motorola mode)
1734	 * - Consider 1 master/n slaves configuration and
1735	 *   SS input value is determined by the SSI bit
1736	 */
1737	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738						 STM32F4_SPI_CR1_BIDIOE |
1739						 STM32F4_SPI_CR1_MSTR |
1740						 STM32F4_SPI_CR1_SSM);
1741
1742	spin_unlock_irqrestore(&spi->lock, flags);
1743
1744	return 0;
1745}
1746
1747/**
1748 * stm32h7_spi_config - Configure SPI controller as SPI master
1749 * @spi: pointer to the spi controller data structure
1750 */
1751static int stm32h7_spi_config(struct stm32_spi *spi)
1752{
1753	unsigned long flags;
1754
1755	spin_lock_irqsave(&spi->lock, flags);
1756
1757	/* Ensure I2SMOD bit is kept cleared */
1758	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759			   STM32H7_SPI_I2SCFGR_I2SMOD);
1760
1761	/*
1762	 * - SS input value high
1763	 * - transmitter half duplex direction
1764	 * - automatic communication suspend when RX-Fifo is full
1765	 */
1766	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767						 STM32H7_SPI_CR1_HDDIR |
1768						 STM32H7_SPI_CR1_MASRX);
1769
1770	/*
1771	 * - Set the master mode (default Motorola mode)
1772	 * - Consider 1 master/n slaves configuration and
1773	 *   SS input value is determined by the SSI bit
1774	 * - keep control of all associated GPIOs
1775	 */
1776	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777						  STM32H7_SPI_CFG2_SSM |
1778						  STM32H7_SPI_CFG2_AFCNTR);
1779
1780	spin_unlock_irqrestore(&spi->lock, flags);
1781
1782	return 0;
1783}
1784
1785static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786	.regs = &stm32f4_spi_regspec,
1787	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788	.disable = stm32f4_spi_disable,
1789	.config = stm32f4_spi_config,
1790	.set_bpw = stm32f4_spi_set_bpw,
1791	.set_mode = stm32f4_spi_set_mode,
1792	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796	.irq_handler_event = stm32f4_spi_irq_event,
1797	.irq_handler_thread = stm32f4_spi_irq_thread,
1798	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1800	.has_fifo = false,
1801};
1802
1803static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804	.regs = &stm32h7_spi_regspec,
1805	.get_fifo_size = stm32h7_spi_get_fifo_size,
1806	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807	.disable = stm32h7_spi_disable,
1808	.config = stm32h7_spi_config,
1809	.set_bpw = stm32h7_spi_set_bpw,
1810	.set_mode = stm32h7_spi_set_mode,
1811	.set_data_idleness = stm32h7_spi_data_idleness,
1812	.set_number_of_data = stm32h7_spi_number_of_data,
1813	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814	.dma_rx_cb = stm32h7_spi_dma_cb,
1815	.dma_tx_cb = stm32h7_spi_dma_cb,
1816	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817	.irq_handler_thread = stm32h7_spi_irq_thread,
1818	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820	.has_fifo = true,
1821};
1822
1823static const struct of_device_id stm32_spi_of_match[] = {
1824	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826	{},
1827};
1828MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829
1830static int stm32_spi_probe(struct platform_device *pdev)
1831{
1832	struct spi_master *master;
1833	struct stm32_spi *spi;
1834	struct resource *res;
 
1835	int ret;
1836
1837	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838	if (!master) {
1839		dev_err(&pdev->dev, "spi master allocation failed\n");
1840		return -ENOMEM;
1841	}
1842	platform_set_drvdata(pdev, master);
1843
1844	spi = spi_master_get_devdata(master);
1845	spi->dev = &pdev->dev;
1846	spi->master = master;
1847	spin_lock_init(&spi->lock);
1848
1849	spi->cfg = (const struct stm32_spi_cfg *)
1850		of_match_device(pdev->dev.driver->of_match_table,
1851				&pdev->dev)->data;
1852
1853	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854	spi->base = devm_ioremap_resource(&pdev->dev, res);
1855	if (IS_ERR(spi->base)) {
1856		ret = PTR_ERR(spi->base);
1857		goto err_master_put;
1858	}
1859
1860	spi->phys_addr = (dma_addr_t)res->start;
1861
1862	spi->irq = platform_get_irq(pdev, 0);
1863	if (spi->irq <= 0) {
1864		ret = spi->irq;
1865		if (ret != -EPROBE_DEFER)
1866			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1867		goto err_master_put;
1868	}
1869	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1870					spi->cfg->irq_handler_event,
1871					spi->cfg->irq_handler_thread,
1872					IRQF_ONESHOT, pdev->name, master);
1873	if (ret) {
1874		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1875			ret);
1876		goto err_master_put;
1877	}
1878
1879	spi->clk = devm_clk_get(&pdev->dev, NULL);
1880	if (IS_ERR(spi->clk)) {
1881		ret = PTR_ERR(spi->clk);
1882		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1883		goto err_master_put;
1884	}
1885
1886	ret = clk_prepare_enable(spi->clk);
1887	if (ret) {
1888		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1889		goto err_master_put;
1890	}
1891	spi->clk_rate = clk_get_rate(spi->clk);
1892	if (!spi->clk_rate) {
1893		dev_err(&pdev->dev, "clk rate = 0\n");
1894		ret = -EINVAL;
1895		goto err_clk_disable;
1896	}
1897
1898	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1899	if (!IS_ERR(spi->rst)) {
1900		reset_control_assert(spi->rst);
 
 
 
 
 
 
1901		udelay(2);
1902		reset_control_deassert(spi->rst);
1903	}
1904
1905	if (spi->cfg->has_fifo)
1906		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1907
1908	ret = spi->cfg->config(spi);
1909	if (ret) {
1910		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1911			ret);
1912		goto err_clk_disable;
1913	}
1914
1915	master->dev.of_node = pdev->dev.of_node;
1916	master->auto_runtime_pm = true;
1917	master->bus_num = pdev->id;
1918	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1919			    SPI_3WIRE;
1920	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1921	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1922	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1923	master->use_gpio_descriptors = true;
1924	master->prepare_message = stm32_spi_prepare_msg;
1925	master->transfer_one = stm32_spi_transfer_one;
1926	master->unprepare_message = stm32_spi_unprepare_msg;
1927	master->flags = SPI_MASTER_MUST_TX;
1928
1929	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1930	if (IS_ERR(spi->dma_tx)) {
1931		ret = PTR_ERR(spi->dma_tx);
1932		spi->dma_tx = NULL;
1933		if (ret == -EPROBE_DEFER)
1934			goto err_clk_disable;
1935
1936		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1937	} else {
1938		master->dma_tx = spi->dma_tx;
1939	}
1940
1941	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1942	if (IS_ERR(spi->dma_rx)) {
1943		ret = PTR_ERR(spi->dma_rx);
1944		spi->dma_rx = NULL;
1945		if (ret == -EPROBE_DEFER)
1946			goto err_dma_release;
1947
1948		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1949	} else {
1950		master->dma_rx = spi->dma_rx;
1951	}
1952
1953	if (spi->dma_tx || spi->dma_rx)
1954		master->can_dma = stm32_spi_can_dma;
1955
1956	pm_runtime_set_active(&pdev->dev);
 
1957	pm_runtime_enable(&pdev->dev);
1958
1959	ret = devm_spi_register_master(&pdev->dev, master);
1960	if (ret) {
1961		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1962			ret);
1963		goto err_pm_disable;
1964	}
1965
1966	if (!master->cs_gpiods) {
1967		dev_err(&pdev->dev, "no CS gpios available\n");
1968		ret = -EINVAL;
1969		goto err_pm_disable;
1970	}
1971
1972	dev_info(&pdev->dev, "driver initialized\n");
1973
1974	return 0;
1975
1976err_pm_disable:
1977	pm_runtime_disable(&pdev->dev);
 
 
1978err_dma_release:
1979	if (spi->dma_tx)
1980		dma_release_channel(spi->dma_tx);
1981	if (spi->dma_rx)
1982		dma_release_channel(spi->dma_rx);
1983err_clk_disable:
1984	clk_disable_unprepare(spi->clk);
1985err_master_put:
1986	spi_master_put(master);
1987
1988	return ret;
1989}
1990
1991static int stm32_spi_remove(struct platform_device *pdev)
1992{
1993	struct spi_master *master = platform_get_drvdata(pdev);
1994	struct stm32_spi *spi = spi_master_get_devdata(master);
1995
 
 
 
1996	spi->cfg->disable(spi);
1997
 
 
 
1998	if (master->dma_tx)
1999		dma_release_channel(master->dma_tx);
2000	if (master->dma_rx)
2001		dma_release_channel(master->dma_rx);
2002
2003	clk_disable_unprepare(spi->clk);
2004
2005	pm_runtime_disable(&pdev->dev);
2006
2007	pinctrl_pm_select_sleep_state(&pdev->dev);
2008
2009	return 0;
2010}
2011
2012#ifdef CONFIG_PM
2013static int stm32_spi_runtime_suspend(struct device *dev)
2014{
2015	struct spi_master *master = dev_get_drvdata(dev);
2016	struct stm32_spi *spi = spi_master_get_devdata(master);
2017
2018	clk_disable_unprepare(spi->clk);
2019
2020	return pinctrl_pm_select_sleep_state(dev);
2021}
2022
2023static int stm32_spi_runtime_resume(struct device *dev)
2024{
2025	struct spi_master *master = dev_get_drvdata(dev);
2026	struct stm32_spi *spi = spi_master_get_devdata(master);
2027	int ret;
2028
2029	ret = pinctrl_pm_select_default_state(dev);
2030	if (ret)
2031		return ret;
2032
2033	return clk_prepare_enable(spi->clk);
2034}
2035#endif
2036
2037#ifdef CONFIG_PM_SLEEP
2038static int stm32_spi_suspend(struct device *dev)
2039{
2040	struct spi_master *master = dev_get_drvdata(dev);
2041	int ret;
2042
2043	ret = spi_master_suspend(master);
2044	if (ret)
2045		return ret;
2046
2047	return pm_runtime_force_suspend(dev);
2048}
2049
2050static int stm32_spi_resume(struct device *dev)
2051{
2052	struct spi_master *master = dev_get_drvdata(dev);
2053	struct stm32_spi *spi = spi_master_get_devdata(master);
2054	int ret;
2055
2056	ret = pm_runtime_force_resume(dev);
2057	if (ret)
2058		return ret;
2059
2060	ret = spi_master_resume(master);
2061	if (ret) {
2062		clk_disable_unprepare(spi->clk);
2063		return ret;
2064	}
2065
2066	ret = pm_runtime_get_sync(dev);
2067	if (ret < 0) {
 
2068		dev_err(dev, "Unable to power device:%d\n", ret);
2069		return ret;
2070	}
2071
2072	spi->cfg->config(spi);
2073
2074	pm_runtime_mark_last_busy(dev);
2075	pm_runtime_put_autosuspend(dev);
2076
2077	return 0;
2078}
2079#endif
2080
2081static const struct dev_pm_ops stm32_spi_pm_ops = {
2082	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2083	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2084			   stm32_spi_runtime_resume, NULL)
2085};
2086
2087static struct platform_driver stm32_spi_driver = {
2088	.probe = stm32_spi_probe,
2089	.remove = stm32_spi_remove,
2090	.driver = {
2091		.name = DRIVER_NAME,
2092		.pm = &stm32_spi_pm_ops,
2093		.of_match_table = stm32_spi_of_match,
2094	},
2095};
2096
2097module_platform_driver(stm32_spi_driver);
2098
2099MODULE_ALIAS("platform:" DRIVER_NAME);
2100MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2101MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2102MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/bitfield.h>
   9#include <linux/debugfs.h>
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/dmaengine.h>
  13#include <linux/interrupt.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/of_platform.h>
  17#include <linux/pinctrl/consumer.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/reset.h>
  20#include <linux/spi/spi.h>
  21
  22#define DRIVER_NAME "spi_stm32"
  23
  24/* STM32F4 SPI registers */
  25#define STM32F4_SPI_CR1			0x00
  26#define STM32F4_SPI_CR2			0x04
  27#define STM32F4_SPI_SR			0x08
  28#define STM32F4_SPI_DR			0x0C
  29#define STM32F4_SPI_I2SCFGR		0x1C
  30
  31/* STM32F4_SPI_CR1 bit fields */
  32#define STM32F4_SPI_CR1_CPHA		BIT(0)
  33#define STM32F4_SPI_CR1_CPOL		BIT(1)
  34#define STM32F4_SPI_CR1_MSTR		BIT(2)
  35#define STM32F4_SPI_CR1_BR_SHIFT	3
  36#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
  37#define STM32F4_SPI_CR1_SPE		BIT(6)
  38#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
  39#define STM32F4_SPI_CR1_SSI		BIT(8)
  40#define STM32F4_SPI_CR1_SSM		BIT(9)
  41#define STM32F4_SPI_CR1_RXONLY		BIT(10)
  42#define STM32F4_SPI_CR1_DFF		BIT(11)
  43#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
  44#define STM32F4_SPI_CR1_CRCEN		BIT(13)
  45#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
  46#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
  47#define STM32F4_SPI_CR1_BR_MIN		0
  48#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
  49
  50/* STM32F4_SPI_CR2 bit fields */
  51#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
  52#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
  53#define STM32F4_SPI_CR2_SSOE		BIT(2)
  54#define STM32F4_SPI_CR2_FRF		BIT(4)
  55#define STM32F4_SPI_CR2_ERRIE		BIT(5)
  56#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
  57#define STM32F4_SPI_CR2_TXEIE		BIT(7)
  58
  59/* STM32F4_SPI_SR bit fields */
  60#define STM32F4_SPI_SR_RXNE		BIT(0)
  61#define STM32F4_SPI_SR_TXE		BIT(1)
  62#define STM32F4_SPI_SR_CHSIDE		BIT(2)
  63#define STM32F4_SPI_SR_UDR		BIT(3)
  64#define STM32F4_SPI_SR_CRCERR		BIT(4)
  65#define STM32F4_SPI_SR_MODF		BIT(5)
  66#define STM32F4_SPI_SR_OVR		BIT(6)
  67#define STM32F4_SPI_SR_BSY		BIT(7)
  68#define STM32F4_SPI_SR_FRE		BIT(8)
  69
  70/* STM32F4_SPI_I2SCFGR bit fields */
  71#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
  72
  73/* STM32F4 SPI Baud Rate min/max divisor */
  74#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
  75#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
  76
  77/* STM32H7 SPI registers */
  78#define STM32H7_SPI_CR1			0x00
  79#define STM32H7_SPI_CR2			0x04
  80#define STM32H7_SPI_CFG1		0x08
  81#define STM32H7_SPI_CFG2		0x0C
  82#define STM32H7_SPI_IER			0x10
  83#define STM32H7_SPI_SR			0x14
  84#define STM32H7_SPI_IFCR		0x18
  85#define STM32H7_SPI_TXDR		0x20
  86#define STM32H7_SPI_RXDR		0x30
  87#define STM32H7_SPI_I2SCFGR		0x50
  88
  89/* STM32H7_SPI_CR1 bit fields */
  90#define STM32H7_SPI_CR1_SPE		BIT(0)
  91#define STM32H7_SPI_CR1_MASRX		BIT(8)
  92#define STM32H7_SPI_CR1_CSTART		BIT(9)
  93#define STM32H7_SPI_CR1_CSUSP		BIT(10)
  94#define STM32H7_SPI_CR1_HDDIR		BIT(11)
  95#define STM32H7_SPI_CR1_SSI		BIT(12)
  96
  97/* STM32H7_SPI_CR2 bit fields */
 
  98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
  99#define STM32H7_SPI_TSIZE_MAX		GENMASK(15, 0)
 100
 101/* STM32H7_SPI_CFG1 bit fields */
 
 102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
 
 103#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
 104#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
 105#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
 
 106#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
 107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
 108#define STM32H7_SPI_CFG1_MBR_MIN	0
 109#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
 110
 111/* STM32H7_SPI_CFG2 bit fields */
 
 112#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
 
 113#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
 
 114#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
 115#define STM32H7_SPI_CFG2_MASTER		BIT(22)
 116#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
 117#define STM32H7_SPI_CFG2_CPHA		BIT(24)
 118#define STM32H7_SPI_CFG2_CPOL		BIT(25)
 119#define STM32H7_SPI_CFG2_SSM		BIT(26)
 120#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
 121
 122/* STM32H7_SPI_IER bit fields */
 123#define STM32H7_SPI_IER_RXPIE		BIT(0)
 124#define STM32H7_SPI_IER_TXPIE		BIT(1)
 125#define STM32H7_SPI_IER_DXPIE		BIT(2)
 126#define STM32H7_SPI_IER_EOTIE		BIT(3)
 127#define STM32H7_SPI_IER_TXTFIE		BIT(4)
 128#define STM32H7_SPI_IER_OVRIE		BIT(6)
 129#define STM32H7_SPI_IER_MODFIE		BIT(9)
 130#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
 131
 132/* STM32H7_SPI_SR bit fields */
 133#define STM32H7_SPI_SR_RXP		BIT(0)
 134#define STM32H7_SPI_SR_TXP		BIT(1)
 135#define STM32H7_SPI_SR_EOT		BIT(3)
 136#define STM32H7_SPI_SR_OVR		BIT(6)
 137#define STM32H7_SPI_SR_MODF		BIT(9)
 138#define STM32H7_SPI_SR_SUSP		BIT(11)
 
 139#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
 140#define STM32H7_SPI_SR_RXWNE		BIT(15)
 141
 142/* STM32H7_SPI_IFCR bit fields */
 143#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
 144
 145/* STM32H7_SPI_I2SCFGR bit fields */
 146#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
 147
 148/* STM32H7 SPI Master Baud Rate min/max divisor */
 149#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
 150#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
 151
 152/* STM32H7 SPI Communication mode */
 153#define STM32H7_SPI_FULL_DUPLEX		0
 154#define STM32H7_SPI_SIMPLEX_TX		1
 155#define STM32H7_SPI_SIMPLEX_RX		2
 156#define STM32H7_SPI_HALF_DUPLEX		3
 157
 158/* SPI Communication type */
 159#define SPI_FULL_DUPLEX		0
 160#define SPI_SIMPLEX_TX		1
 161#define SPI_SIMPLEX_RX		2
 162#define SPI_3WIRE_TX		3
 163#define SPI_3WIRE_RX		4
 164
 
 
 165/*
 166 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 167 * without fifo buffers.
 168 */
 169#define SPI_DMA_MIN_BYTES	16
 170
 171/**
 172 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 173 * @reg:		register offset
 174 * @mask:		bitfield mask
 175 * @shift:		left shift
 176 */
 177struct stm32_spi_reg {
 178	int reg;
 179	int mask;
 180	int shift;
 181};
 182
 183/**
 184 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 185 * @en: enable register and SPI enable bit
 186 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 187 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 188 * @cpol: clock polarity register and polarity bit
 189 * @cpha: clock phase register and phase bit
 190 * @lsb_first: LSB transmitted first register and bit
 191 * @br: baud rate register and bitfields
 192 * @rx: SPI RX data register
 193 * @tx: SPI TX data register
 194 */
 195struct stm32_spi_regspec {
 196	const struct stm32_spi_reg en;
 197	const struct stm32_spi_reg dma_rx_en;
 198	const struct stm32_spi_reg dma_tx_en;
 199	const struct stm32_spi_reg cpol;
 200	const struct stm32_spi_reg cpha;
 201	const struct stm32_spi_reg lsb_first;
 202	const struct stm32_spi_reg br;
 203	const struct stm32_spi_reg rx;
 204	const struct stm32_spi_reg tx;
 205};
 206
 207struct stm32_spi;
 208
 209/**
 210 * struct stm32_spi_cfg - stm32 compatible configuration data
 211 * @regs: registers descriptions
 212 * @get_fifo_size: routine to get fifo size
 213 * @get_bpw_mask: routine to get bits per word mask
 214 * @disable: routine to disable controller
 215 * @config: routine to configure controller as SPI Master
 216 * @set_bpw: routine to configure registers to for bits per word
 217 * @set_mode: routine to configure registers to desired mode
 218 * @set_data_idleness: optional routine to configure registers to desired idle
 219 * time between frames (if driver has this functionality)
 220 * @set_number_of_data: optional routine to configure registers to desired
 221 * number of data (if driver has this functionality)
 222 * @can_dma: routine to determine if the transfer is eligible for DMA use
 223 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 224 * using DMA
 225 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 226 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 227 * @transfer_one_irq: routine to configure interrupts for driver
 228 * @irq_handler_event: Interrupt handler for SPI controller events
 229 * @irq_handler_thread: thread of interrupt handler for SPI controller
 230 * @baud_rate_div_min: minimum baud rate divisor
 231 * @baud_rate_div_max: maximum baud rate divisor
 232 * @has_fifo: boolean to know if fifo is used for driver
 233 * @has_startbit: boolean to know if start bit is used to start transfer
 234 */
 235struct stm32_spi_cfg {
 236	const struct stm32_spi_regspec *regs;
 237	int (*get_fifo_size)(struct stm32_spi *spi);
 238	int (*get_bpw_mask)(struct stm32_spi *spi);
 239	void (*disable)(struct stm32_spi *spi);
 240	int (*config)(struct stm32_spi *spi);
 241	void (*set_bpw)(struct stm32_spi *spi);
 242	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 243	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 244	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 245	void (*transfer_one_dma_start)(struct stm32_spi *spi);
 246	void (*dma_rx_cb)(void *data);
 247	void (*dma_tx_cb)(void *data);
 248	int (*transfer_one_irq)(struct stm32_spi *spi);
 249	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 250	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 251	unsigned int baud_rate_div_min;
 252	unsigned int baud_rate_div_max;
 253	bool has_fifo;
 254};
 255
 256/**
 257 * struct stm32_spi - private data of the SPI controller
 258 * @dev: driver model representation of the controller
 259 * @master: controller master interface
 260 * @cfg: compatible configuration data
 261 * @base: virtual memory area
 262 * @clk: hw kernel clock feeding the SPI clock generator
 263 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 
 264 * @lock: prevent I/O concurrent access
 265 * @irq: SPI controller interrupt line
 266 * @fifo_size: size of the embedded fifo in bytes
 267 * @cur_midi: master inter-data idleness in ns
 268 * @cur_speed: speed configured in Hz
 269 * @cur_bpw: number of bits in a single SPI data frame
 270 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 271 * @cur_comm: SPI communication mode
 272 * @cur_xferlen: current transfer length in bytes
 273 * @cur_usedma: boolean to know if dma is used in current transfer
 274 * @tx_buf: data to be written, or NULL
 275 * @rx_buf: data to be read, or NULL
 276 * @tx_len: number of data to be written in bytes
 277 * @rx_len: number of data to be read in bytes
 278 * @dma_tx: dma channel for TX transfer
 279 * @dma_rx: dma channel for RX transfer
 280 * @phys_addr: SPI registers physical base address
 281 */
 282struct stm32_spi {
 283	struct device *dev;
 284	struct spi_master *master;
 285	const struct stm32_spi_cfg *cfg;
 286	void __iomem *base;
 287	struct clk *clk;
 288	u32 clk_rate;
 
 289	spinlock_t lock; /* prevent I/O concurrent access */
 290	int irq;
 291	unsigned int fifo_size;
 292
 293	unsigned int cur_midi;
 294	unsigned int cur_speed;
 295	unsigned int cur_bpw;
 296	unsigned int cur_fthlv;
 297	unsigned int cur_comm;
 298	unsigned int cur_xferlen;
 299	bool cur_usedma;
 300
 301	const void *tx_buf;
 302	void *rx_buf;
 303	int tx_len;
 304	int rx_len;
 305	struct dma_chan *dma_tx;
 306	struct dma_chan *dma_rx;
 307	dma_addr_t phys_addr;
 308};
 309
 310static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 311	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 312
 313	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 314	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 315
 316	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 317	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 318	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 319	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 320
 321	.rx = { STM32F4_SPI_DR },
 322	.tx = { STM32F4_SPI_DR },
 323};
 324
 325static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 326	/* SPI data transfer is enabled but spi_ker_ck is idle.
 327	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
 328	 */
 329	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 330
 331	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 332	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 333
 334	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 335	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 336	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 337	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 338		STM32H7_SPI_CFG1_MBR_SHIFT },
 339
 340	.rx = { STM32H7_SPI_RXDR },
 341	.tx = { STM32H7_SPI_TXDR },
 342};
 343
 344static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 345				      u32 offset, u32 bits)
 346{
 347	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 348		       spi->base + offset);
 349}
 350
 351static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 352				      u32 offset, u32 bits)
 353{
 354	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 355		       spi->base + offset);
 356}
 357
 358/**
 359 * stm32h7_spi_get_fifo_size - Return fifo size
 360 * @spi: pointer to the spi controller data structure
 361 */
 362static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 363{
 364	unsigned long flags;
 365	u32 count = 0;
 366
 367	spin_lock_irqsave(&spi->lock, flags);
 368
 369	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 370
 371	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 372		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 373
 374	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 375
 376	spin_unlock_irqrestore(&spi->lock, flags);
 377
 378	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 379
 380	return count;
 381}
 382
 383/**
 384 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 385 * @spi: pointer to the spi controller data structure
 386 */
 387static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 388{
 389	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 390	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 391}
 392
 393/**
 394 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 395 * @spi: pointer to the spi controller data structure
 396 */
 397static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 398{
 399	unsigned long flags;
 400	u32 cfg1, max_bpw;
 401
 402	spin_lock_irqsave(&spi->lock, flags);
 403
 404	/*
 405	 * The most significant bit at DSIZE bit field is reserved when the
 406	 * maximum data size of periperal instances is limited to 16-bit
 407	 */
 408	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 409
 410	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 411	max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
 
 
 412
 413	spin_unlock_irqrestore(&spi->lock, flags);
 414
 415	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 416
 417	return SPI_BPW_RANGE_MASK(4, max_bpw);
 418}
 419
 420/**
 421 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 422 * @spi: pointer to the spi controller data structure
 423 * @speed_hz: requested speed
 424 * @min_div: minimum baud rate divisor
 425 * @max_div: maximum baud rate divisor
 426 *
 427 * Return baud rate divisor value in case of success or -EINVAL
 428 */
 429static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 430				 u32 min_div, u32 max_div)
 431{
 432	u32 div, mbrdiv;
 433
 434	/* Ensure spi->clk_rate is even */
 435	div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
 436
 437	/*
 438	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
 439	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 440	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 441	 * no need to check it there.
 442	 * However, we need to ensure the following calculations.
 443	 */
 444	if ((div < min_div) || (div > max_div))
 445		return -EINVAL;
 446
 447	/* Determine the first power of 2 greater than or equal to div */
 448	if (div & (div - 1))
 449		mbrdiv = fls(div);
 450	else
 451		mbrdiv = fls(div) - 1;
 452
 453	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 454
 455	return mbrdiv - 1;
 456}
 457
 458/**
 459 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 460 * @spi: pointer to the spi controller data structure
 461 * @xfer_len: length of the message to be transferred
 462 */
 463static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
 464{
 465	u32 packet, bpw;
 466
 467	/* data packet should not exceed 1/2 of fifo space */
 468	packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 469
 470	/* align packet size with data registers access */
 471	bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
 472	return DIV_ROUND_UP(packet, bpw);
 
 
 
 
 
 
 
 473}
 474
 475/**
 476 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 477 * @spi: pointer to the spi controller data structure
 478 *
 479 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 480 * tx_buf end.
 481 */
 482static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 483{
 484	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 485				  STM32F4_SPI_SR_TXE)) {
 486		u32 offs = spi->cur_xferlen - spi->tx_len;
 487
 488		if (spi->cur_bpw == 16) {
 489			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 490
 491			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 492			spi->tx_len -= sizeof(u16);
 493		} else {
 494			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 495
 496			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 497			spi->tx_len -= sizeof(u8);
 498		}
 499	}
 500
 501	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 502}
 503
 504/**
 505 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 506 * @spi: pointer to the spi controller data structure
 507 *
 508 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 509 * tx_buf end.
 510 */
 511static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 512{
 513	while ((spi->tx_len > 0) &&
 514		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 515			STM32H7_SPI_SR_TXP)) {
 516		u32 offs = spi->cur_xferlen - spi->tx_len;
 517
 518		if (spi->tx_len >= sizeof(u32)) {
 519			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 520
 521			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 522			spi->tx_len -= sizeof(u32);
 523		} else if (spi->tx_len >= sizeof(u16)) {
 524			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 525
 526			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 527			spi->tx_len -= sizeof(u16);
 528		} else {
 529			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 530
 531			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 532			spi->tx_len -= sizeof(u8);
 533		}
 534	}
 535
 536	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 537}
 538
 539/**
 540 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 541 * @spi: pointer to the spi controller data structure
 542 *
 543 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 544 * rx_buf end.
 545 */
 546static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 547{
 548	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 549				  STM32F4_SPI_SR_RXNE)) {
 550		u32 offs = spi->cur_xferlen - spi->rx_len;
 551
 552		if (spi->cur_bpw == 16) {
 553			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 554
 555			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 556			spi->rx_len -= sizeof(u16);
 557		} else {
 558			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 559
 560			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 561			spi->rx_len -= sizeof(u8);
 562		}
 563	}
 564
 565	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 566}
 567
 568/**
 569 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 570 * @spi: pointer to the spi controller data structure
 571 * @flush: boolean indicating that FIFO should be flushed
 572 *
 573 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 574 * rx_buf end.
 575 */
 576static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 577{
 578	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 579	u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 
 580
 581	while ((spi->rx_len > 0) &&
 582	       ((sr & STM32H7_SPI_SR_RXP) ||
 583		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 584		u32 offs = spi->cur_xferlen - spi->rx_len;
 585
 586		if ((spi->rx_len >= sizeof(u32)) ||
 587		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 588			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 589
 590			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 591			spi->rx_len -= sizeof(u32);
 592		} else if ((spi->rx_len >= sizeof(u16)) ||
 593			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 594			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 595
 596			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 597			spi->rx_len -= sizeof(u16);
 598		} else {
 599			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 600
 601			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 602			spi->rx_len -= sizeof(u8);
 603		}
 604
 605		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 606		rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
 
 607	}
 608
 609	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 610		flush ? "(flush)" : "", spi->rx_len);
 611}
 612
 613/**
 614 * stm32_spi_enable - Enable SPI controller
 615 * @spi: pointer to the spi controller data structure
 616 */
 617static void stm32_spi_enable(struct stm32_spi *spi)
 618{
 619	dev_dbg(spi->dev, "enable controller\n");
 620
 621	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 622			   spi->cfg->regs->en.mask);
 623}
 624
 625/**
 626 * stm32f4_spi_disable - Disable SPI controller
 627 * @spi: pointer to the spi controller data structure
 628 */
 629static void stm32f4_spi_disable(struct stm32_spi *spi)
 630{
 631	unsigned long flags;
 632	u32 sr;
 633
 634	dev_dbg(spi->dev, "disable controller\n");
 635
 636	spin_lock_irqsave(&spi->lock, flags);
 637
 638	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 639	      STM32F4_SPI_CR1_SPE)) {
 640		spin_unlock_irqrestore(&spi->lock, flags);
 641		return;
 642	}
 643
 644	/* Disable interrupts */
 645	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 646						 STM32F4_SPI_CR2_RXNEIE |
 647						 STM32F4_SPI_CR2_ERRIE);
 648
 649	/* Wait until BSY = 0 */
 650	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 651					      sr, !(sr & STM32F4_SPI_SR_BSY),
 652					      10, 100000) < 0) {
 653		dev_warn(spi->dev, "disabling condition timeout\n");
 654	}
 655
 656	if (spi->cur_usedma && spi->dma_tx)
 657		dmaengine_terminate_all(spi->dma_tx);
 658	if (spi->cur_usedma && spi->dma_rx)
 659		dmaengine_terminate_all(spi->dma_rx);
 660
 661	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 662
 663	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 664						 STM32F4_SPI_CR2_RXDMAEN);
 665
 666	/* Sequence to clear OVR flag */
 667	readl_relaxed(spi->base + STM32F4_SPI_DR);
 668	readl_relaxed(spi->base + STM32F4_SPI_SR);
 669
 670	spin_unlock_irqrestore(&spi->lock, flags);
 671}
 672
 673/**
 674 * stm32h7_spi_disable - Disable SPI controller
 675 * @spi: pointer to the spi controller data structure
 676 *
 677 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 678 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 679 * RX-Fifo.
 680 * Normally, if TSIZE has been configured, we should relax the hardware at the
 681 * reception of the EOT interrupt. But in case of error, EOT will not be
 682 * raised. So the subsystem unprepare_message call allows us to properly
 683 * complete the transfer from an hardware point of view.
 684 */
 685static void stm32h7_spi_disable(struct stm32_spi *spi)
 686{
 687	unsigned long flags;
 688	u32 cr1, sr;
 689
 690	dev_dbg(spi->dev, "disable controller\n");
 691
 692	spin_lock_irqsave(&spi->lock, flags);
 693
 694	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 695
 696	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 697		spin_unlock_irqrestore(&spi->lock, flags);
 698		return;
 699	}
 700
 701	/* Wait on EOT or suspend the flow */
 702	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 703					      sr, !(sr & STM32H7_SPI_SR_EOT),
 704					      10, 100000) < 0) {
 705		if (cr1 & STM32H7_SPI_CR1_CSTART) {
 706			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 707				       spi->base + STM32H7_SPI_CR1);
 708			if (readl_relaxed_poll_timeout_atomic(
 709						spi->base + STM32H7_SPI_SR,
 710						sr, !(sr & STM32H7_SPI_SR_SUSP),
 711						10, 100000) < 0)
 712				dev_warn(spi->dev,
 713					 "Suspend request timeout\n");
 714		}
 715	}
 716
 717	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 718		stm32h7_spi_read_rxfifo(spi, true);
 719
 720	if (spi->cur_usedma && spi->dma_tx)
 721		dmaengine_terminate_all(spi->dma_tx);
 722	if (spi->cur_usedma && spi->dma_rx)
 723		dmaengine_terminate_all(spi->dma_rx);
 724
 725	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 726
 727	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 728						STM32H7_SPI_CFG1_RXDMAEN);
 729
 730	/* Disable interrupts and clear status flags */
 731	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 732	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 733
 734	spin_unlock_irqrestore(&spi->lock, flags);
 735}
 736
 737/**
 738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 739 * @master: controller master interface
 740 * @spi_dev: pointer to the spi device
 741 * @transfer: pointer to spi transfer
 742 *
 743 * If driver has fifo and the current transfer size is greater than fifo size,
 744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 745 */
 746static bool stm32_spi_can_dma(struct spi_master *master,
 747			      struct spi_device *spi_dev,
 748			      struct spi_transfer *transfer)
 749{
 750	unsigned int dma_size;
 751	struct stm32_spi *spi = spi_master_get_devdata(master);
 752
 753	if (spi->cfg->has_fifo)
 754		dma_size = spi->fifo_size;
 755	else
 756		dma_size = SPI_DMA_MIN_BYTES;
 757
 758	dev_dbg(spi->dev, "%s: %s\n", __func__,
 759		(transfer->len > dma_size) ? "true" : "false");
 760
 761	return (transfer->len > dma_size);
 762}
 763
 764/**
 765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 766 * @irq: interrupt line
 767 * @dev_id: SPI controller master interface
 768 */
 769static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 770{
 771	struct spi_master *master = dev_id;
 772	struct stm32_spi *spi = spi_master_get_devdata(master);
 773	u32 sr, mask = 0;
 
 774	bool end = false;
 775
 776	spin_lock(&spi->lock);
 777
 778	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 779	/*
 780	 * BSY flag is not handled in interrupt but it is normal behavior when
 781	 * this flag is set.
 782	 */
 783	sr &= ~STM32F4_SPI_SR_BSY;
 784
 785	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 786				 spi->cur_comm == SPI_3WIRE_TX)) {
 787		/* OVR flag shouldn't be handled for TX only mode */
 788		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 789		mask |= STM32F4_SPI_SR_TXE;
 790	}
 791
 792	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
 793				spi->cur_comm == SPI_SIMPLEX_RX ||
 794				spi->cur_comm == SPI_3WIRE_RX)) {
 795		/* TXE flag is set and is handled when RXNE flag occurs */
 796		sr &= ~STM32F4_SPI_SR_TXE;
 797		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 798	}
 799
 800	if (!(sr & mask)) {
 801		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 802		spin_unlock(&spi->lock);
 803		return IRQ_NONE;
 804	}
 805
 806	if (sr & STM32F4_SPI_SR_OVR) {
 807		dev_warn(spi->dev, "Overrun: received value discarded\n");
 808
 809		/* Sequence to clear OVR flag */
 810		readl_relaxed(spi->base + STM32F4_SPI_DR);
 811		readl_relaxed(spi->base + STM32F4_SPI_SR);
 812
 813		/*
 814		 * If overrun is detected, it means that something went wrong,
 815		 * so stop the current transfer. Transfer can wait for next
 816		 * RXNE but DR is already read and end never happens.
 817		 */
 818		end = true;
 819		goto end_irq;
 820	}
 821
 822	if (sr & STM32F4_SPI_SR_TXE) {
 823		if (spi->tx_buf)
 824			stm32f4_spi_write_tx(spi);
 825		if (spi->tx_len == 0)
 826			end = true;
 827	}
 828
 829	if (sr & STM32F4_SPI_SR_RXNE) {
 830		stm32f4_spi_read_rx(spi);
 831		if (spi->rx_len == 0)
 832			end = true;
 833		else if (spi->tx_buf)/* Load data for discontinuous mode */
 834			stm32f4_spi_write_tx(spi);
 835	}
 836
 837end_irq:
 838	if (end) {
 839		/* Immediately disable interrupts to do not generate new one */
 840		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 841					STM32F4_SPI_CR2_TXEIE |
 842					STM32F4_SPI_CR2_RXNEIE |
 843					STM32F4_SPI_CR2_ERRIE);
 844		spin_unlock(&spi->lock);
 845		return IRQ_WAKE_THREAD;
 846	}
 847
 848	spin_unlock(&spi->lock);
 849	return IRQ_HANDLED;
 850}
 851
 852/**
 853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 854 * @irq: interrupt line
 855 * @dev_id: SPI controller master interface
 856 */
 857static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 858{
 859	struct spi_master *master = dev_id;
 860	struct stm32_spi *spi = spi_master_get_devdata(master);
 861
 862	spi_finalize_current_transfer(master);
 863	stm32f4_spi_disable(spi);
 864
 865	return IRQ_HANDLED;
 866}
 867
 868/**
 869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 870 * @irq: interrupt line
 871 * @dev_id: SPI controller master interface
 872 */
 873static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 874{
 875	struct spi_master *master = dev_id;
 876	struct stm32_spi *spi = spi_master_get_devdata(master);
 877	u32 sr, ier, mask;
 878	unsigned long flags;
 879	bool end = false;
 880
 881	spin_lock_irqsave(&spi->lock, flags);
 882
 883	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 884	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 885
 886	mask = ier;
 887	/*
 888	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
 889	 * SUSP to acknowledge it later. TXC is automatically cleared
 890	 */
 891
 892	mask |= STM32H7_SPI_SR_SUSP;
 893	/*
 894	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
 895	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
 
 896	 */
 897	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
 898		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
 899
 900	if (!(sr & mask)) {
 901		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 902			 sr, ier);
 903		spin_unlock_irqrestore(&spi->lock, flags);
 904		return IRQ_NONE;
 905	}
 906
 907	if (sr & STM32H7_SPI_SR_SUSP) {
 908		static DEFINE_RATELIMIT_STATE(rs,
 909					      DEFAULT_RATELIMIT_INTERVAL * 10,
 910					      1);
 911		if (__ratelimit(&rs))
 912			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
 913		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 914			stm32h7_spi_read_rxfifo(spi, false);
 915		/*
 916		 * If communication is suspended while using DMA, it means
 917		 * that something went wrong, so stop the current transfer
 918		 */
 919		if (spi->cur_usedma)
 920			end = true;
 921	}
 922
 923	if (sr & STM32H7_SPI_SR_MODF) {
 924		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 925		end = true;
 926	}
 927
 928	if (sr & STM32H7_SPI_SR_OVR) {
 929		dev_err(spi->dev, "Overrun: RX data lost\n");
 930		end = true;
 
 
 
 
 
 
 
 931	}
 932
 933	if (sr & STM32H7_SPI_SR_EOT) {
 934		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 935			stm32h7_spi_read_rxfifo(spi, true);
 936		end = true;
 937	}
 938
 939	if (sr & STM32H7_SPI_SR_TXP)
 940		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 941			stm32h7_spi_write_txfifo(spi);
 942
 943	if (sr & STM32H7_SPI_SR_RXP)
 944		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 945			stm32h7_spi_read_rxfifo(spi, false);
 946
 947	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
 948
 949	spin_unlock_irqrestore(&spi->lock, flags);
 950
 951	if (end) {
 952		stm32h7_spi_disable(spi);
 953		spi_finalize_current_transfer(master);
 954	}
 955
 956	return IRQ_HANDLED;
 957}
 958
 959/**
 960 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 961 * @master: controller master interface
 962 * @msg: pointer to spi message
 963 */
 964static int stm32_spi_prepare_msg(struct spi_master *master,
 965				 struct spi_message *msg)
 966{
 967	struct stm32_spi *spi = spi_master_get_devdata(master);
 968	struct spi_device *spi_dev = msg->spi;
 969	struct device_node *np = spi_dev->dev.of_node;
 970	unsigned long flags;
 971	u32 clrb = 0, setb = 0;
 972
 973	/* SPI slave device may need time between data frames */
 974	spi->cur_midi = 0;
 975	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
 976		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
 977
 978	if (spi_dev->mode & SPI_CPOL)
 979		setb |= spi->cfg->regs->cpol.mask;
 980	else
 981		clrb |= spi->cfg->regs->cpol.mask;
 982
 983	if (spi_dev->mode & SPI_CPHA)
 984		setb |= spi->cfg->regs->cpha.mask;
 985	else
 986		clrb |= spi->cfg->regs->cpha.mask;
 987
 988	if (spi_dev->mode & SPI_LSB_FIRST)
 989		setb |= spi->cfg->regs->lsb_first.mask;
 990	else
 991		clrb |= spi->cfg->regs->lsb_first.mask;
 992
 993	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
 994		!!(spi_dev->mode & SPI_CPOL),
 995		!!(spi_dev->mode & SPI_CPHA),
 996		!!(spi_dev->mode & SPI_LSB_FIRST),
 997		!!(spi_dev->mode & SPI_CS_HIGH));
 998
 999	/* On STM32H7, messages should not exceed a maximum size setted
1000	 * afterward via the set_number_of_data function. In order to
1001	 * ensure that, split large messages into several messages
1002	 */
1003	if (spi->cfg->set_number_of_data) {
1004		int ret;
1005
1006		ret = spi_split_transfers_maxsize(master, msg,
1007						  STM32H7_SPI_TSIZE_MAX,
1008						  GFP_KERNEL | GFP_DMA);
1009		if (ret)
1010			return ret;
1011	}
1012
1013	spin_lock_irqsave(&spi->lock, flags);
1014
1015	/* CPOL, CPHA and LSB FIRST bits have common register */
1016	if (clrb || setb)
1017		writel_relaxed(
1018			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019			 ~clrb) | setb,
1020			spi->base + spi->cfg->regs->cpol.reg);
1021
1022	spin_unlock_irqrestore(&spi->lock, flags);
1023
1024	return 0;
1025}
1026
1027/**
1028 * stm32f4_spi_dma_tx_cb - dma callback
1029 * @data: pointer to the spi controller data structure
1030 *
1031 * DMA callback is called when the transfer is complete for DMA TX channel.
1032 */
1033static void stm32f4_spi_dma_tx_cb(void *data)
1034{
1035	struct stm32_spi *spi = data;
1036
1037	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1038		spi_finalize_current_transfer(spi->master);
1039		stm32f4_spi_disable(spi);
1040	}
1041}
1042
1043/**
1044 * stm32f4_spi_dma_rx_cb - dma callback
1045 * @data: pointer to the spi controller data structure
1046 *
1047 * DMA callback is called when the transfer is complete for DMA RX channel.
1048 */
1049static void stm32f4_spi_dma_rx_cb(void *data)
1050{
1051	struct stm32_spi *spi = data;
1052
1053	spi_finalize_current_transfer(spi->master);
1054	stm32f4_spi_disable(spi);
1055}
1056
1057/**
1058 * stm32h7_spi_dma_cb - dma callback
1059 * @data: pointer to the spi controller data structure
1060 *
1061 * DMA callback is called when the transfer is complete or when an error
1062 * occurs. If the transfer is complete, EOT flag is raised.
1063 */
1064static void stm32h7_spi_dma_cb(void *data)
1065{
1066	struct stm32_spi *spi = data;
1067	unsigned long flags;
1068	u32 sr;
1069
1070	spin_lock_irqsave(&spi->lock, flags);
1071
1072	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1073
1074	spin_unlock_irqrestore(&spi->lock, flags);
1075
1076	if (!(sr & STM32H7_SPI_SR_EOT))
1077		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1078
1079	/* Now wait for EOT, or SUSP or OVR in case of error */
1080}
1081
1082/**
1083 * stm32_spi_dma_config - configure dma slave channel depending on current
1084 *			  transfer bits_per_word.
1085 * @spi: pointer to the spi controller data structure
1086 * @dma_conf: pointer to the dma_slave_config structure
1087 * @dir: direction of the dma transfer
1088 */
1089static void stm32_spi_dma_config(struct stm32_spi *spi,
1090				 struct dma_slave_config *dma_conf,
1091				 enum dma_transfer_direction dir)
1092{
1093	enum dma_slave_buswidth buswidth;
1094	u32 maxburst;
1095
1096	if (spi->cur_bpw <= 8)
1097		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1098	else if (spi->cur_bpw <= 16)
1099		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1100	else
1101		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1102
1103	if (spi->cfg->has_fifo) {
1104		/* Valid for DMA Half or Full Fifo threshold */
1105		if (spi->cur_fthlv == 2)
1106			maxburst = 1;
1107		else
1108			maxburst = spi->cur_fthlv;
1109	} else {
1110		maxburst = 1;
1111	}
1112
1113	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1114	dma_conf->direction = dir;
1115	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1116		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1117		dma_conf->src_addr_width = buswidth;
1118		dma_conf->src_maxburst = maxburst;
1119
1120		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1121			buswidth, maxburst);
1122	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1123		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1124		dma_conf->dst_addr_width = buswidth;
1125		dma_conf->dst_maxburst = maxburst;
1126
1127		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1128			buswidth, maxburst);
1129	}
1130}
1131
1132/**
1133 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1134 *				  interrupts
1135 * @spi: pointer to the spi controller data structure
1136 *
1137 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1138 * in progress.
1139 */
1140static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1141{
1142	unsigned long flags;
1143	u32 cr2 = 0;
1144
1145	/* Enable the interrupts relative to the current communication mode */
1146	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1147		cr2 |= STM32F4_SPI_CR2_TXEIE;
1148	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1149				spi->cur_comm == SPI_SIMPLEX_RX ||
1150				spi->cur_comm == SPI_3WIRE_RX) {
1151		/* In transmit-only mode, the OVR flag is set in the SR register
1152		 * since the received data are never read. Therefore set OVR
1153		 * interrupt only when rx buffer is available.
1154		 */
1155		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1156	} else {
1157		return -EINVAL;
1158	}
1159
1160	spin_lock_irqsave(&spi->lock, flags);
1161
1162	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1163
1164	stm32_spi_enable(spi);
1165
1166	/* starting data transfer when buffer is loaded */
1167	if (spi->tx_buf)
1168		stm32f4_spi_write_tx(spi);
1169
1170	spin_unlock_irqrestore(&spi->lock, flags);
1171
1172	return 1;
1173}
1174
1175/**
1176 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1177 *				  interrupts
1178 * @spi: pointer to the spi controller data structure
1179 *
1180 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1181 * in progress.
1182 */
1183static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1184{
1185	unsigned long flags;
1186	u32 ier = 0;
1187
1188	/* Enable the interrupts relative to the current communication mode */
1189	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1190		ier |= STM32H7_SPI_IER_DXPIE;
1191	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1192		ier |= STM32H7_SPI_IER_TXPIE;
1193	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1194		ier |= STM32H7_SPI_IER_RXPIE;
1195
1196	/* Enable the interrupts relative to the end of transfer */
1197	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1198	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1199
1200	spin_lock_irqsave(&spi->lock, flags);
1201
1202	stm32_spi_enable(spi);
1203
1204	/* Be sure to have data in fifo before starting data transfer */
1205	if (spi->tx_buf)
1206		stm32h7_spi_write_txfifo(spi);
1207
1208	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1209
1210	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1211
1212	spin_unlock_irqrestore(&spi->lock, flags);
1213
1214	return 1;
1215}
1216
1217/**
1218 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1219 *					transfer using DMA
1220 * @spi: pointer to the spi controller data structure
1221 */
1222static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1223{
1224	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1225	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1226	    spi->cur_comm == SPI_FULL_DUPLEX) {
1227		/*
1228		 * In transmit-only mode, the OVR flag is set in the SR register
1229		 * since the received data are never read. Therefore set OVR
1230		 * interrupt only when rx buffer is available.
1231		 */
1232		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1233	}
1234
1235	stm32_spi_enable(spi);
1236}
1237
1238/**
1239 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1240 *					transfer using DMA
1241 * @spi: pointer to the spi controller data structure
1242 */
1243static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1244{
1245	/* Enable the interrupts relative to the end of transfer */
1246	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1247						 STM32H7_SPI_IER_TXTFIE |
1248						 STM32H7_SPI_IER_OVRIE |
1249						 STM32H7_SPI_IER_MODFIE);
1250
1251	stm32_spi_enable(spi);
1252
1253	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1254}
1255
1256/**
1257 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1258 * @spi: pointer to the spi controller data structure
1259 * @xfer: pointer to the spi_transfer structure
1260 *
1261 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1262 * in progress.
1263 */
1264static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1265				      struct spi_transfer *xfer)
1266{
1267	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1268	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1269	unsigned long flags;
1270
1271	spin_lock_irqsave(&spi->lock, flags);
1272
1273	rx_dma_desc = NULL;
1274	if (spi->rx_buf && spi->dma_rx) {
1275		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1276		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1277
1278		/* Enable Rx DMA request */
1279		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1280				   spi->cfg->regs->dma_rx_en.mask);
1281
1282		rx_dma_desc = dmaengine_prep_slave_sg(
1283					spi->dma_rx, xfer->rx_sg.sgl,
1284					xfer->rx_sg.nents,
1285					rx_dma_conf.direction,
1286					DMA_PREP_INTERRUPT);
1287	}
1288
1289	tx_dma_desc = NULL;
1290	if (spi->tx_buf && spi->dma_tx) {
1291		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1292		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1293
1294		tx_dma_desc = dmaengine_prep_slave_sg(
1295					spi->dma_tx, xfer->tx_sg.sgl,
1296					xfer->tx_sg.nents,
1297					tx_dma_conf.direction,
1298					DMA_PREP_INTERRUPT);
1299	}
1300
1301	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1302	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1303		goto dma_desc_error;
1304
1305	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1306		goto dma_desc_error;
1307
1308	if (rx_dma_desc) {
1309		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1310		rx_dma_desc->callback_param = spi;
1311
1312		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1313			dev_err(spi->dev, "Rx DMA submit failed\n");
1314			goto dma_desc_error;
1315		}
1316		/* Enable Rx DMA channel */
1317		dma_async_issue_pending(spi->dma_rx);
1318	}
1319
1320	if (tx_dma_desc) {
1321		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1322		    spi->cur_comm == SPI_3WIRE_TX) {
1323			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1324			tx_dma_desc->callback_param = spi;
1325		}
1326
1327		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1328			dev_err(spi->dev, "Tx DMA submit failed\n");
1329			goto dma_submit_error;
1330		}
1331		/* Enable Tx DMA channel */
1332		dma_async_issue_pending(spi->dma_tx);
1333
1334		/* Enable Tx DMA request */
1335		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1336				   spi->cfg->regs->dma_tx_en.mask);
1337	}
1338
1339	spi->cfg->transfer_one_dma_start(spi);
1340
1341	spin_unlock_irqrestore(&spi->lock, flags);
1342
1343	return 1;
1344
1345dma_submit_error:
1346	if (spi->dma_rx)
1347		dmaengine_terminate_all(spi->dma_rx);
1348
1349dma_desc_error:
1350	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1351			   spi->cfg->regs->dma_rx_en.mask);
1352
1353	spin_unlock_irqrestore(&spi->lock, flags);
1354
1355	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1356
1357	spi->cur_usedma = false;
1358	return spi->cfg->transfer_one_irq(spi);
1359}
1360
1361/**
1362 * stm32f4_spi_set_bpw - Configure bits per word
1363 * @spi: pointer to the spi controller data structure
1364 */
1365static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1366{
1367	if (spi->cur_bpw == 16)
1368		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1369	else
1370		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1371}
1372
1373/**
1374 * stm32h7_spi_set_bpw - configure bits per word
1375 * @spi: pointer to the spi controller data structure
1376 */
1377static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1378{
1379	u32 bpw, fthlv;
1380	u32 cfg1_clrb = 0, cfg1_setb = 0;
1381
1382	bpw = spi->cur_bpw - 1;
1383
1384	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1385	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
 
1386
1387	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1388	fthlv = spi->cur_fthlv - 1;
1389
1390	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1391	cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
 
1392
1393	writel_relaxed(
1394		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1395		 ~cfg1_clrb) | cfg1_setb,
1396		spi->base + STM32H7_SPI_CFG1);
1397}
1398
1399/**
1400 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1401 * @spi: pointer to the spi controller data structure
1402 * @mbrdiv: baud rate divisor value
1403 */
1404static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1405{
1406	u32 clrb = 0, setb = 0;
1407
1408	clrb |= spi->cfg->regs->br.mask;
1409	setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
 
1410
1411	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1412			~clrb) | setb,
1413		       spi->base + spi->cfg->regs->br.reg);
1414}
1415
1416/**
1417 * stm32_spi_communication_type - return transfer communication type
1418 * @spi_dev: pointer to the spi device
1419 * @transfer: pointer to spi transfer
1420 */
1421static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1422						 struct spi_transfer *transfer)
1423{
1424	unsigned int type = SPI_FULL_DUPLEX;
1425
1426	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1427		/*
1428		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1429		 * is forbidden and unvalidated by SPI subsystem so depending
1430		 * on the valid buffer, we can determine the direction of the
1431		 * transfer.
1432		 */
1433		if (!transfer->tx_buf)
1434			type = SPI_3WIRE_RX;
1435		else
1436			type = SPI_3WIRE_TX;
1437	} else {
1438		if (!transfer->tx_buf)
1439			type = SPI_SIMPLEX_RX;
1440		else if (!transfer->rx_buf)
1441			type = SPI_SIMPLEX_TX;
1442	}
1443
1444	return type;
1445}
1446
1447/**
1448 * stm32f4_spi_set_mode - configure communication mode
1449 * @spi: pointer to the spi controller data structure
1450 * @comm_type: type of communication to configure
1451 */
1452static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1453{
1454	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1455		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1456					STM32F4_SPI_CR1_BIDIMODE |
1457					STM32F4_SPI_CR1_BIDIOE);
1458	} else if (comm_type == SPI_FULL_DUPLEX ||
1459				comm_type == SPI_SIMPLEX_RX) {
1460		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1461					STM32F4_SPI_CR1_BIDIMODE |
1462					STM32F4_SPI_CR1_BIDIOE);
1463	} else if (comm_type == SPI_3WIRE_RX) {
1464		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1465					STM32F4_SPI_CR1_BIDIMODE);
1466		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1467					STM32F4_SPI_CR1_BIDIOE);
1468	} else {
1469		return -EINVAL;
1470	}
1471
1472	return 0;
1473}
1474
1475/**
1476 * stm32h7_spi_set_mode - configure communication mode
1477 * @spi: pointer to the spi controller data structure
1478 * @comm_type: type of communication to configure
1479 */
1480static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1481{
1482	u32 mode;
1483	u32 cfg2_clrb = 0, cfg2_setb = 0;
1484
1485	if (comm_type == SPI_3WIRE_RX) {
1486		mode = STM32H7_SPI_HALF_DUPLEX;
1487		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488	} else if (comm_type == SPI_3WIRE_TX) {
1489		mode = STM32H7_SPI_HALF_DUPLEX;
1490		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1491	} else if (comm_type == SPI_SIMPLEX_RX) {
1492		mode = STM32H7_SPI_SIMPLEX_RX;
1493	} else if (comm_type == SPI_SIMPLEX_TX) {
1494		mode = STM32H7_SPI_SIMPLEX_TX;
1495	} else {
1496		mode = STM32H7_SPI_FULL_DUPLEX;
1497	}
1498
1499	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1500	cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
 
1501
1502	writel_relaxed(
1503		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1504		 ~cfg2_clrb) | cfg2_setb,
1505		spi->base + STM32H7_SPI_CFG2);
1506
1507	return 0;
1508}
1509
1510/**
1511 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1512 *			       consecutive data frames in master mode
1513 * @spi: pointer to the spi controller data structure
1514 * @len: transfer len
1515 */
1516static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1517{
1518	u32 cfg2_clrb = 0, cfg2_setb = 0;
1519
1520	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1521	if ((len > 1) && (spi->cur_midi > 0)) {
1522		u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1523		u32 midi = min_t(u32,
1524				 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1525				 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1526				 STM32H7_SPI_CFG2_MIDI));
1527
1528
1529		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1530			sck_period_ns, midi, midi * sck_period_ns);
1531		cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
 
1532	}
1533
1534	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1535			~cfg2_clrb) | cfg2_setb,
1536		       spi->base + STM32H7_SPI_CFG2);
1537}
1538
1539/**
1540 * stm32h7_spi_number_of_data - configure number of data at current transfer
1541 * @spi: pointer to the spi controller data structure
1542 * @nb_words: transfer length (in words)
1543 */
1544static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1545{
1546	if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1547		writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
 
 
 
 
 
 
1548			       spi->base + STM32H7_SPI_CR2);
1549	} else {
1550		return -EMSGSIZE;
1551	}
1552
1553	return 0;
1554}
1555
1556/**
1557 * stm32_spi_transfer_one_setup - common setup to transfer a single
1558 *				  spi_transfer either using DMA or
1559 *				  interrupts.
1560 * @spi: pointer to the spi controller data structure
1561 * @spi_dev: pointer to the spi device
1562 * @transfer: pointer to spi transfer
1563 */
1564static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1565					struct spi_device *spi_dev,
1566					struct spi_transfer *transfer)
1567{
1568	unsigned long flags;
1569	unsigned int comm_type;
1570	int nb_words, ret = 0;
1571	int mbr;
1572
1573	spin_lock_irqsave(&spi->lock, flags);
1574
1575	spi->cur_xferlen = transfer->len;
1576
1577	spi->cur_bpw = transfer->bits_per_word;
1578	spi->cfg->set_bpw(spi);
1579
1580	/* Update spi->cur_speed with real clock speed */
1581	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1582				    spi->cfg->baud_rate_div_min,
1583				    spi->cfg->baud_rate_div_max);
1584	if (mbr < 0) {
1585		ret = mbr;
1586		goto out;
1587	}
1588
1589	transfer->speed_hz = spi->cur_speed;
1590	stm32_spi_set_mbr(spi, mbr);
1591
1592	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1593	ret = spi->cfg->set_mode(spi, comm_type);
1594	if (ret < 0)
1595		goto out;
1596
1597	spi->cur_comm = comm_type;
1598
1599	if (spi->cfg->set_data_idleness)
1600		spi->cfg->set_data_idleness(spi, transfer->len);
1601
1602	if (spi->cur_bpw <= 8)
1603		nb_words = transfer->len;
1604	else if (spi->cur_bpw <= 16)
1605		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1606	else
1607		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1608
1609	if (spi->cfg->set_number_of_data) {
1610		ret = spi->cfg->set_number_of_data(spi, nb_words);
1611		if (ret < 0)
1612			goto out;
1613	}
1614
1615	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1616		spi->cur_comm);
1617	dev_dbg(spi->dev,
1618		"data frame of %d-bit, data packet of %d data frames\n",
1619		spi->cur_bpw, spi->cur_fthlv);
1620	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1621	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1622		spi->cur_xferlen, nb_words);
1623	dev_dbg(spi->dev, "dma %s\n",
1624		(spi->cur_usedma) ? "enabled" : "disabled");
1625
1626out:
1627	spin_unlock_irqrestore(&spi->lock, flags);
1628
1629	return ret;
1630}
1631
1632/**
1633 * stm32_spi_transfer_one - transfer a single spi_transfer
1634 * @master: controller master interface
1635 * @spi_dev: pointer to the spi device
1636 * @transfer: pointer to spi transfer
1637 *
1638 * It must return 0 if the transfer is finished or 1 if the transfer is still
1639 * in progress.
1640 */
1641static int stm32_spi_transfer_one(struct spi_master *master,
1642				  struct spi_device *spi_dev,
1643				  struct spi_transfer *transfer)
1644{
1645	struct stm32_spi *spi = spi_master_get_devdata(master);
1646	int ret;
1647
1648	/* Don't do anything on 0 bytes transfers */
1649	if (transfer->len == 0)
1650		return 0;
1651
1652	spi->tx_buf = transfer->tx_buf;
1653	spi->rx_buf = transfer->rx_buf;
1654	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1655	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1656
1657	spi->cur_usedma = (master->can_dma &&
1658			   master->can_dma(master, spi_dev, transfer));
1659
1660	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1661	if (ret) {
1662		dev_err(spi->dev, "SPI transfer setup failed\n");
1663		return ret;
1664	}
1665
1666	if (spi->cur_usedma)
1667		return stm32_spi_transfer_one_dma(spi, transfer);
1668	else
1669		return spi->cfg->transfer_one_irq(spi);
1670}
1671
1672/**
1673 * stm32_spi_unprepare_msg - relax the hardware
1674 * @master: controller master interface
1675 * @msg: pointer to the spi message
1676 */
1677static int stm32_spi_unprepare_msg(struct spi_master *master,
1678				   struct spi_message *msg)
1679{
1680	struct stm32_spi *spi = spi_master_get_devdata(master);
1681
1682	spi->cfg->disable(spi);
1683
1684	return 0;
1685}
1686
1687/**
1688 * stm32f4_spi_config - Configure SPI controller as SPI master
1689 * @spi: pointer to the spi controller data structure
1690 */
1691static int stm32f4_spi_config(struct stm32_spi *spi)
1692{
1693	unsigned long flags;
1694
1695	spin_lock_irqsave(&spi->lock, flags);
1696
1697	/* Ensure I2SMOD bit is kept cleared */
1698	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1699			   STM32F4_SPI_I2SCFGR_I2SMOD);
1700
1701	/*
1702	 * - SS input value high
1703	 * - transmitter half duplex direction
1704	 * - Set the master mode (default Motorola mode)
1705	 * - Consider 1 master/n slaves configuration and
1706	 *   SS input value is determined by the SSI bit
1707	 */
1708	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1709						 STM32F4_SPI_CR1_BIDIOE |
1710						 STM32F4_SPI_CR1_MSTR |
1711						 STM32F4_SPI_CR1_SSM);
1712
1713	spin_unlock_irqrestore(&spi->lock, flags);
1714
1715	return 0;
1716}
1717
1718/**
1719 * stm32h7_spi_config - Configure SPI controller as SPI master
1720 * @spi: pointer to the spi controller data structure
1721 */
1722static int stm32h7_spi_config(struct stm32_spi *spi)
1723{
1724	unsigned long flags;
1725
1726	spin_lock_irqsave(&spi->lock, flags);
1727
1728	/* Ensure I2SMOD bit is kept cleared */
1729	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1730			   STM32H7_SPI_I2SCFGR_I2SMOD);
1731
1732	/*
1733	 * - SS input value high
1734	 * - transmitter half duplex direction
1735	 * - automatic communication suspend when RX-Fifo is full
1736	 */
1737	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1738						 STM32H7_SPI_CR1_HDDIR |
1739						 STM32H7_SPI_CR1_MASRX);
1740
1741	/*
1742	 * - Set the master mode (default Motorola mode)
1743	 * - Consider 1 master/n slaves configuration and
1744	 *   SS input value is determined by the SSI bit
1745	 * - keep control of all associated GPIOs
1746	 */
1747	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1748						  STM32H7_SPI_CFG2_SSM |
1749						  STM32H7_SPI_CFG2_AFCNTR);
1750
1751	spin_unlock_irqrestore(&spi->lock, flags);
1752
1753	return 0;
1754}
1755
1756static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1757	.regs = &stm32f4_spi_regspec,
1758	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1759	.disable = stm32f4_spi_disable,
1760	.config = stm32f4_spi_config,
1761	.set_bpw = stm32f4_spi_set_bpw,
1762	.set_mode = stm32f4_spi_set_mode,
1763	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1764	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1765	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1766	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1767	.irq_handler_event = stm32f4_spi_irq_event,
1768	.irq_handler_thread = stm32f4_spi_irq_thread,
1769	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1770	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1771	.has_fifo = false,
1772};
1773
1774static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1775	.regs = &stm32h7_spi_regspec,
1776	.get_fifo_size = stm32h7_spi_get_fifo_size,
1777	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1778	.disable = stm32h7_spi_disable,
1779	.config = stm32h7_spi_config,
1780	.set_bpw = stm32h7_spi_set_bpw,
1781	.set_mode = stm32h7_spi_set_mode,
1782	.set_data_idleness = stm32h7_spi_data_idleness,
1783	.set_number_of_data = stm32h7_spi_number_of_data,
1784	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1785	.dma_rx_cb = stm32h7_spi_dma_cb,
1786	.dma_tx_cb = stm32h7_spi_dma_cb,
1787	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1788	.irq_handler_thread = stm32h7_spi_irq_thread,
1789	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1790	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1791	.has_fifo = true,
1792};
1793
1794static const struct of_device_id stm32_spi_of_match[] = {
1795	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1796	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1797	{},
1798};
1799MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1800
1801static int stm32_spi_probe(struct platform_device *pdev)
1802{
1803	struct spi_master *master;
1804	struct stm32_spi *spi;
1805	struct resource *res;
1806	struct reset_control *rst;
1807	int ret;
1808
1809	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1810	if (!master) {
1811		dev_err(&pdev->dev, "spi master allocation failed\n");
1812		return -ENOMEM;
1813	}
1814	platform_set_drvdata(pdev, master);
1815
1816	spi = spi_master_get_devdata(master);
1817	spi->dev = &pdev->dev;
1818	spi->master = master;
1819	spin_lock_init(&spi->lock);
1820
1821	spi->cfg = (const struct stm32_spi_cfg *)
1822		of_match_device(pdev->dev.driver->of_match_table,
1823				&pdev->dev)->data;
1824
1825	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826	spi->base = devm_ioremap_resource(&pdev->dev, res);
1827	if (IS_ERR(spi->base))
1828		return PTR_ERR(spi->base);
 
 
1829
1830	spi->phys_addr = (dma_addr_t)res->start;
1831
1832	spi->irq = platform_get_irq(pdev, 0);
1833	if (spi->irq <= 0)
1834		return dev_err_probe(&pdev->dev, spi->irq,
1835				     "failed to get irq\n");
1836
 
 
1837	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1838					spi->cfg->irq_handler_event,
1839					spi->cfg->irq_handler_thread,
1840					IRQF_ONESHOT, pdev->name, master);
1841	if (ret) {
1842		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1843			ret);
1844		return ret;
1845	}
1846
1847	spi->clk = devm_clk_get(&pdev->dev, NULL);
1848	if (IS_ERR(spi->clk)) {
1849		ret = PTR_ERR(spi->clk);
1850		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1851		return ret;
1852	}
1853
1854	ret = clk_prepare_enable(spi->clk);
1855	if (ret) {
1856		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1857		return ret;
1858	}
1859	spi->clk_rate = clk_get_rate(spi->clk);
1860	if (!spi->clk_rate) {
1861		dev_err(&pdev->dev, "clk rate = 0\n");
1862		ret = -EINVAL;
1863		goto err_clk_disable;
1864	}
1865
1866	rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1867	if (rst) {
1868		if (IS_ERR(rst)) {
1869			ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1870					    "failed to get reset\n");
1871			goto err_clk_disable;
1872		}
1873
1874		reset_control_assert(rst);
1875		udelay(2);
1876		reset_control_deassert(rst);
1877	}
1878
1879	if (spi->cfg->has_fifo)
1880		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1881
1882	ret = spi->cfg->config(spi);
1883	if (ret) {
1884		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1885			ret);
1886		goto err_clk_disable;
1887	}
1888
1889	master->dev.of_node = pdev->dev.of_node;
1890	master->auto_runtime_pm = true;
1891	master->bus_num = pdev->id;
1892	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1893			    SPI_3WIRE;
1894	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1895	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1896	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1897	master->use_gpio_descriptors = true;
1898	master->prepare_message = stm32_spi_prepare_msg;
1899	master->transfer_one = stm32_spi_transfer_one;
1900	master->unprepare_message = stm32_spi_unprepare_msg;
1901	master->flags = SPI_MASTER_MUST_TX;
1902
1903	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1904	if (IS_ERR(spi->dma_tx)) {
1905		ret = PTR_ERR(spi->dma_tx);
1906		spi->dma_tx = NULL;
1907		if (ret == -EPROBE_DEFER)
1908			goto err_clk_disable;
1909
1910		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1911	} else {
1912		master->dma_tx = spi->dma_tx;
1913	}
1914
1915	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1916	if (IS_ERR(spi->dma_rx)) {
1917		ret = PTR_ERR(spi->dma_rx);
1918		spi->dma_rx = NULL;
1919		if (ret == -EPROBE_DEFER)
1920			goto err_dma_release;
1921
1922		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1923	} else {
1924		master->dma_rx = spi->dma_rx;
1925	}
1926
1927	if (spi->dma_tx || spi->dma_rx)
1928		master->can_dma = stm32_spi_can_dma;
1929
1930	pm_runtime_set_active(&pdev->dev);
1931	pm_runtime_get_noresume(&pdev->dev);
1932	pm_runtime_enable(&pdev->dev);
1933
1934	ret = spi_register_master(master);
1935	if (ret) {
1936		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1937			ret);
1938		goto err_pm_disable;
1939	}
1940
 
 
 
 
 
 
1941	dev_info(&pdev->dev, "driver initialized\n");
1942
1943	return 0;
1944
1945err_pm_disable:
1946	pm_runtime_disable(&pdev->dev);
1947	pm_runtime_put_noidle(&pdev->dev);
1948	pm_runtime_set_suspended(&pdev->dev);
1949err_dma_release:
1950	if (spi->dma_tx)
1951		dma_release_channel(spi->dma_tx);
1952	if (spi->dma_rx)
1953		dma_release_channel(spi->dma_rx);
1954err_clk_disable:
1955	clk_disable_unprepare(spi->clk);
 
 
1956
1957	return ret;
1958}
1959
1960static int stm32_spi_remove(struct platform_device *pdev)
1961{
1962	struct spi_master *master = platform_get_drvdata(pdev);
1963	struct stm32_spi *spi = spi_master_get_devdata(master);
1964
1965	pm_runtime_get_sync(&pdev->dev);
1966
1967	spi_unregister_master(master);
1968	spi->cfg->disable(spi);
1969
1970	pm_runtime_disable(&pdev->dev);
1971	pm_runtime_put_noidle(&pdev->dev);
1972	pm_runtime_set_suspended(&pdev->dev);
1973	if (master->dma_tx)
1974		dma_release_channel(master->dma_tx);
1975	if (master->dma_rx)
1976		dma_release_channel(master->dma_rx);
1977
1978	clk_disable_unprepare(spi->clk);
1979
 
1980
1981	pinctrl_pm_select_sleep_state(&pdev->dev);
1982
1983	return 0;
1984}
1985
1986static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
 
1987{
1988	struct spi_master *master = dev_get_drvdata(dev);
1989	struct stm32_spi *spi = spi_master_get_devdata(master);
1990
1991	clk_disable_unprepare(spi->clk);
1992
1993	return pinctrl_pm_select_sleep_state(dev);
1994}
1995
1996static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1997{
1998	struct spi_master *master = dev_get_drvdata(dev);
1999	struct stm32_spi *spi = spi_master_get_devdata(master);
2000	int ret;
2001
2002	ret = pinctrl_pm_select_default_state(dev);
2003	if (ret)
2004		return ret;
2005
2006	return clk_prepare_enable(spi->clk);
2007}
 
2008
2009static int __maybe_unused stm32_spi_suspend(struct device *dev)
 
2010{
2011	struct spi_master *master = dev_get_drvdata(dev);
2012	int ret;
2013
2014	ret = spi_master_suspend(master);
2015	if (ret)
2016		return ret;
2017
2018	return pm_runtime_force_suspend(dev);
2019}
2020
2021static int __maybe_unused stm32_spi_resume(struct device *dev)
2022{
2023	struct spi_master *master = dev_get_drvdata(dev);
2024	struct stm32_spi *spi = spi_master_get_devdata(master);
2025	int ret;
2026
2027	ret = pm_runtime_force_resume(dev);
2028	if (ret)
2029		return ret;
2030
2031	ret = spi_master_resume(master);
2032	if (ret) {
2033		clk_disable_unprepare(spi->clk);
2034		return ret;
2035	}
2036
2037	ret = pm_runtime_get_sync(dev);
2038	if (ret < 0) {
2039		pm_runtime_put_noidle(dev);
2040		dev_err(dev, "Unable to power device:%d\n", ret);
2041		return ret;
2042	}
2043
2044	spi->cfg->config(spi);
2045
2046	pm_runtime_mark_last_busy(dev);
2047	pm_runtime_put_autosuspend(dev);
2048
2049	return 0;
2050}
 
2051
2052static const struct dev_pm_ops stm32_spi_pm_ops = {
2053	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2054	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2055			   stm32_spi_runtime_resume, NULL)
2056};
2057
2058static struct platform_driver stm32_spi_driver = {
2059	.probe = stm32_spi_probe,
2060	.remove = stm32_spi_remove,
2061	.driver = {
2062		.name = DRIVER_NAME,
2063		.pm = &stm32_spi_pm_ops,
2064		.of_match_table = stm32_spi_of_match,
2065	},
2066};
2067
2068module_platform_driver(stm32_spi_driver);
2069
2070MODULE_ALIAS("platform:" DRIVER_NAME);
2071MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2072MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2073MODULE_LICENSE("GPL v2");