Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Copyright © 2009 Keith Packard
   3 *
   4 * Permission to use, copy, modify, distribute, and sell this software and its
   5 * documentation for any purpose is hereby granted without fee, provided that
   6 * the above copyright notice appear in all copies and that both that copyright
   7 * notice and this permission notice appear in supporting documentation, and
   8 * that the name of the copyright holders not be used in advertising or
   9 * publicity pertaining to distribution of the software without specific,
  10 * written prior permission.  The copyright holders make no representations
  11 * about the suitability of this software for any purpose.  It is provided "as
  12 * is" without express or implied warranty.
  13 *
  14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
  15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
  16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
  17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
  18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
  20 * OF THIS SOFTWARE.
  21 */
  22
  23#include <linux/backlight.h>
  24#include <linux/delay.h>
  25#include <linux/errno.h>
  26#include <linux/i2c.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/string_helpers.h>
  33#include <linux/dynamic_debug.h>
  34
  35#include <drm/display/drm_dp_helper.h>
  36#include <drm/display/drm_dp_mst_helper.h>
  37#include <drm/drm_edid.h>
  38#include <drm/drm_print.h>
  39#include <drm/drm_vblank.h>
  40#include <drm/drm_panel.h>
  41
  42#include "drm_dp_helper_internal.h"
  43
  44DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
  45			"DRM_UT_CORE",
  46			"DRM_UT_DRIVER",
  47			"DRM_UT_KMS",
  48			"DRM_UT_PRIME",
  49			"DRM_UT_ATOMIC",
  50			"DRM_UT_VBL",
  51			"DRM_UT_STATE",
  52			"DRM_UT_LEASE",
  53			"DRM_UT_DP",
  54			"DRM_UT_DRMRES");
  55
  56struct dp_aux_backlight {
  57	struct backlight_device *base;
  58	struct drm_dp_aux *aux;
  59	struct drm_edp_backlight_info info;
  60	bool enabled;
  61};
  62
  63/**
  64 * DOC: dp helpers
  65 *
  66 * These functions contain some common logic and helpers at various abstraction
  67 * levels to deal with Display Port sink devices and related things like DP aux
  68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
  69 * blocks, ...
  70 */
  71
  72/* Helpers for DP link training */
  73static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
  74{
  75	return link_status[r - DP_LANE0_1_STATUS];
  76}
  77
  78static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
  79			     int lane)
  80{
  81	int i = DP_LANE0_1_STATUS + (lane >> 1);
  82	int s = (lane & 1) * 4;
  83	u8 l = dp_link_status(link_status, i);
  84
  85	return (l >> s) & 0xf;
  86}
  87
  88bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
  89			  int lane_count)
  90{
  91	u8 lane_align;
  92	u8 lane_status;
  93	int lane;
  94
  95	lane_align = dp_link_status(link_status,
  96				    DP_LANE_ALIGN_STATUS_UPDATED);
  97	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  98		return false;
  99	for (lane = 0; lane < lane_count; lane++) {
 100		lane_status = dp_get_lane_status(link_status, lane);
 101		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
 102			return false;
 103	}
 104	return true;
 105}
 106EXPORT_SYMBOL(drm_dp_channel_eq_ok);
 107
 108bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
 109			      int lane_count)
 110{
 111	int lane;
 112	u8 lane_status;
 113
 114	for (lane = 0; lane < lane_count; lane++) {
 115		lane_status = dp_get_lane_status(link_status, lane);
 116		if ((lane_status & DP_LANE_CR_DONE) == 0)
 117			return false;
 118	}
 119	return true;
 120}
 121EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
 122
 123u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
 124				     int lane)
 125{
 126	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 127	int s = ((lane & 1) ?
 128		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
 129		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
 130	u8 l = dp_link_status(link_status, i);
 131
 132	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
 133}
 134EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
 135
 136u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
 137					  int lane)
 138{
 139	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 140	int s = ((lane & 1) ?
 141		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
 142		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
 143	u8 l = dp_link_status(link_status, i);
 144
 145	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
 146}
 147EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
 148
 149/* DP 2.0 128b/132b */
 150u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
 151				   int lane)
 152{
 153	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 154	int s = ((lane & 1) ?
 155		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
 156		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
 157	u8 l = dp_link_status(link_status, i);
 158
 159	return (l >> s) & 0xf;
 160}
 161EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
 162
 163/* DP 2.0 errata for 128b/132b */
 164bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
 165					  int lane_count)
 166{
 167	u8 lane_align, lane_status;
 168	int lane;
 169
 170	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 171	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
 172		return false;
 173
 174	for (lane = 0; lane < lane_count; lane++) {
 175		lane_status = dp_get_lane_status(link_status, lane);
 176		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
 177			return false;
 178	}
 179	return true;
 180}
 181EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
 182
 183/* DP 2.0 errata for 128b/132b */
 184bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
 185					int lane_count)
 186{
 187	u8 lane_status;
 188	int lane;
 189
 190	for (lane = 0; lane < lane_count; lane++) {
 191		lane_status = dp_get_lane_status(link_status, lane);
 192		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
 193			return false;
 194	}
 195	return true;
 196}
 197EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
 198
 199/* DP 2.0 errata for 128b/132b */
 200bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 201{
 202	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 203
 204	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
 205}
 206EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
 207
 208/* DP 2.0 errata for 128b/132b */
 209bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 210{
 211	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 212
 213	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
 214}
 215EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
 216
 217/* DP 2.0 errata for 128b/132b */
 218bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
 219{
 220	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 221
 222	return status & DP_128B132B_LT_FAILED;
 223}
 224EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
 225
 226static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 227{
 228	if (rd_interval > 4)
 229		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 230			    aux->name, rd_interval);
 231
 232	if (rd_interval == 0)
 233		return 100;
 234
 235	return rd_interval * 4 * USEC_PER_MSEC;
 236}
 237
 238static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 239{
 240	if (rd_interval > 4)
 241		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 242			    aux->name, rd_interval);
 243
 244	if (rd_interval == 0)
 245		return 400;
 246
 247	return rd_interval * 4 * USEC_PER_MSEC;
 248}
 249
 250static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 251{
 252	switch (rd_interval) {
 253	default:
 254		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
 255			    aux->name, rd_interval);
 256		fallthrough;
 257	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
 258		return 400;
 259	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
 260		return 4000;
 261	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
 262		return 8000;
 263	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
 264		return 12000;
 265	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
 266		return 16000;
 267	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
 268		return 32000;
 269	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
 270		return 64000;
 271	}
 272}
 273
 274/*
 275 * The link training delays are different for:
 276 *
 277 *  - Clock recovery vs. channel equalization
 278 *  - DPRX vs. LTTPR
 279 *  - 128b/132b vs. 8b/10b
 280 *  - DPCD rev 1.3 vs. later
 281 *
 282 * Get the correct delay in us, reading DPCD if necessary.
 283 */
 284static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 285			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
 286{
 287	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
 288	unsigned int offset;
 289	u8 rd_interval, mask;
 290
 291	if (dp_phy == DP_PHY_DPRX) {
 292		if (uhbr) {
 293			if (cr)
 294				return 100;
 295
 296			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
 297			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 298			parse = __128b132b_channel_eq_delay_us;
 299		} else {
 300			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 301				return 100;
 302
 303			offset = DP_TRAINING_AUX_RD_INTERVAL;
 304			mask = DP_TRAINING_AUX_RD_MASK;
 305			if (cr)
 306				parse = __8b10b_clock_recovery_delay_us;
 307			else
 308				parse = __8b10b_channel_eq_delay_us;
 309		}
 310	} else {
 311		if (uhbr) {
 312			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 313			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 314			parse = __128b132b_channel_eq_delay_us;
 315		} else {
 316			if (cr)
 317				return 100;
 318
 319			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 320			mask = DP_TRAINING_AUX_RD_MASK;
 321			parse = __8b10b_channel_eq_delay_us;
 322		}
 323	}
 324
 325	if (offset < DP_RECEIVER_CAP_SIZE) {
 326		rd_interval = dpcd[offset];
 327	} else {
 328		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
 329			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
 330				    aux->name);
 331			/* arbitrary default delay */
 332			return 400;
 333		}
 334	}
 335
 336	return parse(aux, rd_interval & mask);
 337}
 338
 339int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 340				     enum drm_dp_phy dp_phy, bool uhbr)
 341{
 342	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
 343}
 344EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
 345
 346int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 347				 enum drm_dp_phy dp_phy, bool uhbr)
 348{
 349	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
 350}
 351EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
 352
 353/* Per DP 2.0 Errata */
 354int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
 355{
 356	int unit;
 357	u8 val;
 358
 359	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
 360		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
 361			aux->name);
 362		/* default to max */
 363		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 364	}
 365
 366	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
 367	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 368
 369	return (val + 1) * unit * 1000;
 370}
 371EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
 372
 373void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
 374					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 375{
 376	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 377		DP_TRAINING_AUX_RD_MASK;
 378	int delay_us;
 379
 380	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 381		delay_us = 100;
 382	else
 383		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
 384
 385	usleep_range(delay_us, delay_us * 2);
 386}
 387EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
 388
 389static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 390						 u8 rd_interval)
 391{
 392	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
 393
 394	usleep_range(delay_us, delay_us * 2);
 395}
 396
 397void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 398					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 399{
 400	__drm_dp_link_train_channel_eq_delay(aux,
 401					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 402					     DP_TRAINING_AUX_RD_MASK);
 403}
 404EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
 405
 406/**
 407 * drm_dp_phy_name() - Get the name of the given DP PHY
 408 * @dp_phy: The DP PHY identifier
 409 *
 410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
 411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
 412 * non-NULL and valid.
 413 *
 414 * Returns: Name of the DP PHY.
 415 */
 416const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
 417{
 418	static const char * const phy_names[] = {
 419		[DP_PHY_DPRX] = "DPRX",
 420		[DP_PHY_LTTPR1] = "LTTPR 1",
 421		[DP_PHY_LTTPR2] = "LTTPR 2",
 422		[DP_PHY_LTTPR3] = "LTTPR 3",
 423		[DP_PHY_LTTPR4] = "LTTPR 4",
 424		[DP_PHY_LTTPR5] = "LTTPR 5",
 425		[DP_PHY_LTTPR6] = "LTTPR 6",
 426		[DP_PHY_LTTPR7] = "LTTPR 7",
 427		[DP_PHY_LTTPR8] = "LTTPR 8",
 428	};
 429
 430	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
 431	    WARN_ON(!phy_names[dp_phy]))
 432		return "<INVALID DP PHY>";
 433
 434	return phy_names[dp_phy];
 435}
 436EXPORT_SYMBOL(drm_dp_phy_name);
 437
 438void drm_dp_lttpr_link_train_clock_recovery_delay(void)
 439{
 440	usleep_range(100, 200);
 441}
 442EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
 443
 444static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
 445{
 446	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
 447}
 448
 449void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 450					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
 451{
 452	u8 interval = dp_lttpr_phy_cap(phy_cap,
 453				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
 454		      DP_TRAINING_AUX_RD_MASK;
 455
 456	__drm_dp_link_train_channel_eq_delay(aux, interval);
 457}
 458EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
 459
 460u8 drm_dp_link_rate_to_bw_code(int link_rate)
 461{
 462	switch (link_rate) {
 463	case 1000000:
 464		return DP_LINK_BW_10;
 465	case 1350000:
 466		return DP_LINK_BW_13_5;
 467	case 2000000:
 468		return DP_LINK_BW_20;
 469	default:
 470		/* Spec says link_bw = link_rate / 0.27Gbps */
 471		return link_rate / 27000;
 472	}
 473}
 474EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
 475
 476int drm_dp_bw_code_to_link_rate(u8 link_bw)
 477{
 478	switch (link_bw) {
 479	case DP_LINK_BW_10:
 480		return 1000000;
 481	case DP_LINK_BW_13_5:
 482		return 1350000;
 483	case DP_LINK_BW_20:
 484		return 2000000;
 485	default:
 486		/* Spec says link_rate = link_bw * 0.27Gbps */
 487		return link_bw * 27000;
 488	}
 489}
 490EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
 491
 492#define AUX_RETRY_INTERVAL 500 /* us */
 493
 494static inline void
 495drm_dp_dump_access(const struct drm_dp_aux *aux,
 496		   u8 request, uint offset, void *buffer, int ret)
 497{
 498	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
 499
 500	if (ret > 0)
 501		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
 502			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
 503	else
 504		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
 505			   aux->name, offset, arrow, ret);
 506}
 507
 508/**
 509 * DOC: dp helpers
 510 *
 511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
 512 * independent access to AUX functionality. Drivers can take advantage of
 513 * this by filling in the fields of the drm_dp_aux structure.
 514 *
 515 * Transactions are described using a hardware-independent drm_dp_aux_msg
 516 * structure, which is passed into a driver's .transfer() implementation.
 517 * Both native and I2C-over-AUX transactions are supported.
 518 */
 519
 520static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
 521			      unsigned int offset, void *buffer, size_t size)
 522{
 523	struct drm_dp_aux_msg msg;
 524	unsigned int retry, native_reply;
 525	int err = 0, ret = 0;
 526
 527	memset(&msg, 0, sizeof(msg));
 528	msg.address = offset;
 529	msg.request = request;
 530	msg.buffer = buffer;
 531	msg.size = size;
 532
 533	mutex_lock(&aux->hw_mutex);
 534
 535	/*
 536	 * The specification doesn't give any recommendation on how often to
 537	 * retry native transactions. We used to retry 7 times like for
 538	 * aux i2c transactions but real world devices this wasn't
 539	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
 540	 */
 541	for (retry = 0; retry < 32; retry++) {
 542		if (ret != 0 && ret != -ETIMEDOUT) {
 543			usleep_range(AUX_RETRY_INTERVAL,
 544				     AUX_RETRY_INTERVAL + 100);
 545		}
 546
 547		ret = aux->transfer(aux, &msg);
 548		if (ret >= 0) {
 549			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
 550			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
 551				if (ret == size)
 552					goto unlock;
 553
 554				ret = -EPROTO;
 555			} else
 556				ret = -EIO;
 557		}
 558
 559		/*
 560		 * We want the error we return to be the error we received on
 561		 * the first transaction, since we may get a different error the
 562		 * next time we retry
 563		 */
 564		if (!err)
 565			err = ret;
 566	}
 567
 568	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
 569		    aux->name, err);
 570	ret = err;
 571
 572unlock:
 573	mutex_unlock(&aux->hw_mutex);
 574	return ret;
 575}
 576
 577/**
 578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
 579 * @aux: DisplayPort AUX channel (SST)
 580 * @offset: address of the register to probe
 581 *
 582 * Probe the provided DPCD address by reading 1 byte from it. The function can
 583 * be used to trigger some side-effect the read access has, like waking up the
 584 * sink, without the need for the read-out value.
 585 *
 586 * Returns 0 if the read access suceeded, or a negative error code on failure.
 587 */
 588int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
 589{
 590	u8 buffer;
 591	int ret;
 592
 593	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
 594	WARN_ON(ret == 0);
 595
 596	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
 597
 598	return ret < 0 ? ret : 0;
 599}
 600EXPORT_SYMBOL(drm_dp_dpcd_probe);
 601
 602/**
 603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
 604 * @aux: DisplayPort AUX channel (SST or MST)
 605 * @offset: address of the (first) register to read
 606 * @buffer: buffer to store the register values
 607 * @size: number of bytes in @buffer
 608 *
 609 * Returns the number of bytes transferred on success, or a negative error
 610 * code on failure. -EIO is returned if the request was NAKed by the sink or
 611 * if the retry count was exceeded. If not all bytes were transferred, this
 612 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 613 * function, with the exception of -EBUSY (which causes the transaction to
 614 * be retried), are propagated to the caller.
 615 */
 616ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
 617			 void *buffer, size_t size)
 618{
 619	int ret;
 620
 621	/*
 622	 * HP ZR24w corrupts the first DPCD access after entering power save
 623	 * mode. Eg. on a read, the entire buffer will be filled with the same
 624	 * byte. Do a throw away read to avoid corrupting anything we care
 625	 * about. Afterwards things will work correctly until the monitor
 626	 * gets woken up and subsequently re-enters power save mode.
 627	 *
 628	 * The user pressing any button on the monitor is enough to wake it
 629	 * up, so there is no particularly good place to do the workaround.
 630	 * We just have to do it before any DPCD access and hope that the
 631	 * monitor doesn't power down exactly after the throw away read.
 632	 */
 633	if (!aux->is_remote) {
 634		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
 635		if (ret < 0)
 636			return ret;
 637	}
 638
 639	if (aux->is_remote)
 640		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
 641	else
 642		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
 643					 buffer, size);
 644
 645	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
 646	return ret;
 647}
 648EXPORT_SYMBOL(drm_dp_dpcd_read);
 649
 650/**
 651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
 652 * @aux: DisplayPort AUX channel (SST or MST)
 653 * @offset: address of the (first) register to write
 654 * @buffer: buffer containing the values to write
 655 * @size: number of bytes in @buffer
 656 *
 657 * Returns the number of bytes transferred on success, or a negative error
 658 * code on failure. -EIO is returned if the request was NAKed by the sink or
 659 * if the retry count was exceeded. If not all bytes were transferred, this
 660 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 661 * function, with the exception of -EBUSY (which causes the transaction to
 662 * be retried), are propagated to the caller.
 663 */
 664ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
 665			  void *buffer, size_t size)
 666{
 667	int ret;
 668
 669	if (aux->is_remote)
 670		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
 671	else
 672		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
 673					 buffer, size);
 674
 675	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
 676	return ret;
 677}
 678EXPORT_SYMBOL(drm_dp_dpcd_write);
 679
 680/**
 681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
 682 * @aux: DisplayPort AUX channel
 683 * @status: buffer to store the link status in (must be at least 6 bytes)
 684 *
 685 * Returns the number of bytes transferred on success or a negative error
 686 * code on failure.
 687 */
 688int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
 689				 u8 status[DP_LINK_STATUS_SIZE])
 690{
 691	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
 692				DP_LINK_STATUS_SIZE);
 693}
 694EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
 695
 696/**
 697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
 698 * @aux: DisplayPort AUX channel
 699 * @dp_phy: the DP PHY to get the link status for
 700 * @link_status: buffer to return the status in
 701 *
 702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
 703 * layout of the returned @link_status matches the DPCD register layout of the
 704 * DPRX PHY link status.
 705 *
 706 * Returns 0 if the information was read successfully or a negative error code
 707 * on failure.
 708 */
 709int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
 710				     enum drm_dp_phy dp_phy,
 711				     u8 link_status[DP_LINK_STATUS_SIZE])
 712{
 713	int ret;
 714
 715	if (dp_phy == DP_PHY_DPRX) {
 716		ret = drm_dp_dpcd_read(aux,
 717				       DP_LANE0_1_STATUS,
 718				       link_status,
 719				       DP_LINK_STATUS_SIZE);
 720
 721		if (ret < 0)
 722			return ret;
 723
 724		WARN_ON(ret != DP_LINK_STATUS_SIZE);
 725
 726		return 0;
 727	}
 728
 729	ret = drm_dp_dpcd_read(aux,
 730			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
 731			       link_status,
 732			       DP_LINK_STATUS_SIZE - 1);
 733
 734	if (ret < 0)
 735		return ret;
 736
 737	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
 738
 739	/* Convert the LTTPR to the sink PHY link status layout */
 740	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
 741		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
 742		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
 743	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
 744
 745	return 0;
 746}
 747EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
 748
 749static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
 750{
 751	/* FIXME: get rid of drm_edid_raw() */
 752	const struct edid *edid = drm_edid_raw(drm_edid);
 753
 754	return edid && edid->revision >= 4 &&
 755		edid->input & DRM_EDID_INPUT_DIGITAL &&
 756		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
 757}
 758
 759/**
 760 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
 761 * @dpcd: DisplayPort configuration data
 762 * @port_cap: port capabilities
 763 * @type: port type to be checked. Can be:
 764 * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
 765 * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
 766 *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
 767 *
 768 * Caveat: Only works with DPCD 1.1+ port caps.
 769 *
 770 * Returns: whether the downstream facing port matches the type.
 771 */
 772bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 773			       const u8 port_cap[4], u8 type)
 774{
 775	return drm_dp_is_branch(dpcd) &&
 776		dpcd[DP_DPCD_REV] >= 0x11 &&
 777		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
 778}
 779EXPORT_SYMBOL(drm_dp_downstream_is_type);
 780
 781/**
 782 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
 783 * @dpcd: DisplayPort configuration data
 784 * @port_cap: port capabilities
 785 * @drm_edid: EDID
 786 *
 787 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
 788 */
 789bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 790			       const u8 port_cap[4],
 791			       const struct drm_edid *drm_edid)
 792{
 793	if (dpcd[DP_DPCD_REV] < 0x11) {
 794		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
 795		case DP_DWN_STRM_PORT_TYPE_TMDS:
 796			return true;
 797		default:
 798			return false;
 799		}
 800	}
 801
 802	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
 803	case DP_DS_PORT_TYPE_DP_DUALMODE:
 804		if (is_edid_digital_input_dp(drm_edid))
 805			return false;
 806		fallthrough;
 807	case DP_DS_PORT_TYPE_DVI:
 808	case DP_DS_PORT_TYPE_HDMI:
 809		return true;
 810	default:
 811		return false;
 812	}
 813}
 814EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
 815
 816/**
 817 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
 818 * @aux: DisplayPort AUX channel
 819 * @real_edid_checksum: real edid checksum for the last block
 820 *
 821 * Returns:
 822 * True on success
 823 */
 824bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
 825				    u8 real_edid_checksum)
 826{
 827	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
 828
 829	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 830			     &auto_test_req, 1) < 1) {
 831		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 832			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 833		return false;
 834	}
 835	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
 836
 837	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
 838		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 839			aux->name, DP_TEST_REQUEST);
 840		return false;
 841	}
 842	link_edid_read &= DP_TEST_LINK_EDID_READ;
 843
 844	if (!auto_test_req || !link_edid_read) {
 845		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
 846			    aux->name);
 847		return false;
 848	}
 849
 850	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 851			      &auto_test_req, 1) < 1) {
 852		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 853			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 854		return false;
 855	}
 856
 857	/* send back checksum for the last edid extension block data */
 858	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
 859			      &real_edid_checksum, 1) < 1) {
 860		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 861			aux->name, DP_TEST_EDID_CHECKSUM);
 862		return false;
 863	}
 864
 865	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
 866	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
 867		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 868			aux->name, DP_TEST_RESPONSE);
 869		return false;
 870	}
 871
 872	return true;
 873}
 874EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
 875
 876static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 877{
 878	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
 879
 880	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
 881		port_count = 4;
 882
 883	return port_count;
 884}
 885
 886static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
 887					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 888{
 889	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
 890	int ret;
 891
 892	/*
 893	 * Prior to DP1.3 the bit represented by
 894	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
 895	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
 896	 * the true capability of the panel. The only way to check is to
 897	 * then compare 0000h and 2200h.
 898	 */
 899	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 900	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
 901		return 0;
 902
 903	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
 904			       sizeof(dpcd_ext));
 905	if (ret < 0)
 906		return ret;
 907	if (ret != sizeof(dpcd_ext))
 908		return -EIO;
 909
 910	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
 911		drm_dbg_kms(aux->drm_dev,
 912			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
 913			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
 914		return 0;
 915	}
 916
 917	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
 918		return 0;
 919
 920	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 921
 922	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
 923
 924	return 0;
 925}
 926
 927/**
 928 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
 929 * available
 930 * @aux: DisplayPort AUX channel
 931 * @dpcd: Buffer to store the resulting DPCD in
 932 *
 933 * Attempts to read the base DPCD caps for @aux. Additionally, this function
 934 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
 935 * present.
 936 *
 937 * Returns: %0 if the DPCD was read successfully, negative error code
 938 * otherwise.
 939 */
 940int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
 941			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 942{
 943	int ret;
 944
 945	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
 946	if (ret < 0)
 947		return ret;
 948	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
 949		return -EIO;
 950
 951	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
 952	if (ret < 0)
 953		return ret;
 954
 955	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 956
 957	return ret;
 958}
 959EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
 960
 961/**
 962 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
 963 * @aux: DisplayPort AUX channel
 964 * @dpcd: A cached copy of the port's DPCD
 965 * @downstream_ports: buffer to store the downstream port info in
 966 *
 967 * See also:
 968 * drm_dp_downstream_max_clock()
 969 * drm_dp_downstream_max_bpc()
 970 *
 971 * Returns: 0 if either the downstream port info was read successfully or
 972 * there was no downstream info to read, or a negative error code otherwise.
 973 */
 974int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
 975				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 976				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
 977{
 978	int ret;
 979	u8 len;
 980
 981	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
 982
 983	/* No downstream info to read */
 984	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
 985		return 0;
 986
 987	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
 988	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
 989	 * some branches do it we need to handle it regardless.
 990	 */
 991	len = drm_dp_downstream_port_count(dpcd);
 992	if (!len)
 993		return 0;
 994
 995	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
 996		len *= 4;
 997
 998	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
 999	if (ret < 0)
1000		return ret;
1001	if (ret != len)
1002		return -EIO;
1003
1004	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1005
1006	return 0;
1007}
1008EXPORT_SYMBOL(drm_dp_read_downstream_info);
1009
1010/**
1011 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1012 * @dpcd: DisplayPort configuration data
1013 * @port_cap: port capabilities
1014 *
1015 * Returns: Downstream facing port max dot clock in kHz on success,
1016 * or 0 if max clock not defined
1017 */
1018int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1019				   const u8 port_cap[4])
1020{
1021	if (!drm_dp_is_branch(dpcd))
1022		return 0;
1023
1024	if (dpcd[DP_DPCD_REV] < 0x11)
1025		return 0;
1026
1027	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1028	case DP_DS_PORT_TYPE_VGA:
1029		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1030			return 0;
1031		return port_cap[1] * 8000;
1032	default:
1033		return 0;
1034	}
1035}
1036EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1037
1038/**
1039 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1040 * @dpcd: DisplayPort configuration data
1041 * @port_cap: port capabilities
1042 * @drm_edid: EDID
1043 *
1044 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1045 * or 0 if max TMDS clock not defined
1046 */
1047int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1048				     const u8 port_cap[4],
1049				     const struct drm_edid *drm_edid)
1050{
1051	if (!drm_dp_is_branch(dpcd))
1052		return 0;
1053
1054	if (dpcd[DP_DPCD_REV] < 0x11) {
1055		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1056		case DP_DWN_STRM_PORT_TYPE_TMDS:
1057			return 165000;
1058		default:
1059			return 0;
1060		}
1061	}
1062
1063	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1064	case DP_DS_PORT_TYPE_DP_DUALMODE:
1065		if (is_edid_digital_input_dp(drm_edid))
1066			return 0;
1067		/*
1068		 * It's left up to the driver to check the
1069		 * DP dual mode adapter's max TMDS clock.
1070		 *
1071		 * Unfortunately it looks like branch devices
1072		 * may not fordward that the DP dual mode i2c
1073		 * access so we just usually get i2c nak :(
1074		 */
1075		fallthrough;
1076	case DP_DS_PORT_TYPE_HDMI:
1077		 /*
1078		  * We should perhaps assume 165 MHz when detailed cap
1079		  * info is not available. But looks like many typical
1080		  * branch devices fall into that category and so we'd
1081		  * probably end up with users complaining that they can't
1082		  * get high resolution modes with their favorite dongle.
1083		  *
1084		  * So let's limit to 300 MHz instead since DPCD 1.4
1085		  * HDMI 2.0 DFPs are required to have the detailed cap
1086		  * info. So it's more likely we're dealing with a HDMI 1.4
1087		  * compatible* device here.
1088		  */
1089		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1090			return 300000;
1091		return port_cap[1] * 2500;
1092	case DP_DS_PORT_TYPE_DVI:
1093		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1094			return 165000;
1095		/* FIXME what to do about DVI dual link? */
1096		return port_cap[1] * 2500;
1097	default:
1098		return 0;
1099	}
1100}
1101EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1102
1103/**
1104 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1105 * @dpcd: DisplayPort configuration data
1106 * @port_cap: port capabilities
1107 * @drm_edid: EDID
1108 *
1109 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1110 * or 0 if max TMDS clock not defined
1111 */
1112int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1113				     const u8 port_cap[4],
1114				     const struct drm_edid *drm_edid)
1115{
1116	if (!drm_dp_is_branch(dpcd))
1117		return 0;
1118
1119	if (dpcd[DP_DPCD_REV] < 0x11) {
1120		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1121		case DP_DWN_STRM_PORT_TYPE_TMDS:
1122			return 25000;
1123		default:
1124			return 0;
1125		}
1126	}
1127
1128	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1129	case DP_DS_PORT_TYPE_DP_DUALMODE:
1130		if (is_edid_digital_input_dp(drm_edid))
1131			return 0;
1132		fallthrough;
1133	case DP_DS_PORT_TYPE_DVI:
1134	case DP_DS_PORT_TYPE_HDMI:
1135		/*
1136		 * Unclear whether the protocol converter could
1137		 * utilize pixel replication. Assume it won't.
1138		 */
1139		return 25000;
1140	default:
1141		return 0;
1142	}
1143}
1144EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1145
1146/**
1147 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1148 *                               bits per component
1149 * @dpcd: DisplayPort configuration data
1150 * @port_cap: downstream facing port capabilities
1151 * @drm_edid: EDID
1152 *
1153 * Returns: Max bpc on success or 0 if max bpc not defined
1154 */
1155int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1156			      const u8 port_cap[4],
1157			      const struct drm_edid *drm_edid)
1158{
1159	if (!drm_dp_is_branch(dpcd))
1160		return 0;
1161
1162	if (dpcd[DP_DPCD_REV] < 0x11) {
1163		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1164		case DP_DWN_STRM_PORT_TYPE_DP:
1165			return 0;
1166		default:
1167			return 8;
1168		}
1169	}
1170
1171	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1172	case DP_DS_PORT_TYPE_DP:
1173		return 0;
1174	case DP_DS_PORT_TYPE_DP_DUALMODE:
1175		if (is_edid_digital_input_dp(drm_edid))
1176			return 0;
1177		fallthrough;
1178	case DP_DS_PORT_TYPE_HDMI:
1179	case DP_DS_PORT_TYPE_DVI:
1180	case DP_DS_PORT_TYPE_VGA:
1181		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1182			return 8;
1183
1184		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1185		case DP_DS_8BPC:
1186			return 8;
1187		case DP_DS_10BPC:
1188			return 10;
1189		case DP_DS_12BPC:
1190			return 12;
1191		case DP_DS_16BPC:
1192			return 16;
1193		default:
1194			return 8;
1195		}
1196		break;
1197	default:
1198		return 8;
1199	}
1200}
1201EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1202
1203/**
1204 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1205 *                                       YCbCr 4:2:0 pass-through capability
1206 * @dpcd: DisplayPort configuration data
1207 * @port_cap: downstream facing port capabilities
1208 *
1209 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1210 */
1211bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1212				       const u8 port_cap[4])
1213{
1214	if (!drm_dp_is_branch(dpcd))
1215		return false;
1216
1217	if (dpcd[DP_DPCD_REV] < 0x13)
1218		return false;
1219
1220	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1221	case DP_DS_PORT_TYPE_DP:
1222		return true;
1223	case DP_DS_PORT_TYPE_HDMI:
1224		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1225			return false;
1226
1227		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1228	default:
1229		return false;
1230	}
1231}
1232EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1233
1234/**
1235 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1236 *                                             YCbCr 4:4:4->4:2:0 conversion capability
1237 * @dpcd: DisplayPort configuration data
1238 * @port_cap: downstream facing port capabilities
1239 *
1240 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1241 */
1242bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1243					     const u8 port_cap[4])
1244{
1245	if (!drm_dp_is_branch(dpcd))
1246		return false;
1247
1248	if (dpcd[DP_DPCD_REV] < 0x13)
1249		return false;
1250
1251	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1252	case DP_DS_PORT_TYPE_HDMI:
1253		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1254			return false;
1255
1256		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1257	default:
1258		return false;
1259	}
1260}
1261EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1262
1263/**
1264 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1265 *                                               RGB->YCbCr conversion capability
1266 * @dpcd: DisplayPort configuration data
1267 * @port_cap: downstream facing port capabilities
1268 * @color_spc: Colorspace for which conversion cap is sought
1269 *
1270 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1271 * colorspace.
1272 */
1273bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1274					       const u8 port_cap[4],
1275					       u8 color_spc)
1276{
1277	if (!drm_dp_is_branch(dpcd))
1278		return false;
1279
1280	if (dpcd[DP_DPCD_REV] < 0x13)
1281		return false;
1282
1283	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1284	case DP_DS_PORT_TYPE_HDMI:
1285		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1286			return false;
1287
1288		return port_cap[3] & color_spc;
1289	default:
1290		return false;
1291	}
1292}
1293EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1294
1295/**
1296 * drm_dp_downstream_mode() - return a mode for downstream facing port
1297 * @dev: DRM device
1298 * @dpcd: DisplayPort configuration data
1299 * @port_cap: port capabilities
1300 *
1301 * Provides a suitable mode for downstream facing ports without EDID.
1302 *
1303 * Returns: A new drm_display_mode on success or NULL on failure
1304 */
1305struct drm_display_mode *
1306drm_dp_downstream_mode(struct drm_device *dev,
1307		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1308		       const u8 port_cap[4])
1309
1310{
1311	u8 vic;
1312
1313	if (!drm_dp_is_branch(dpcd))
1314		return NULL;
1315
1316	if (dpcd[DP_DPCD_REV] < 0x11)
1317		return NULL;
1318
1319	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1320	case DP_DS_PORT_TYPE_NON_EDID:
1321		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1322		case DP_DS_NON_EDID_720x480i_60:
1323			vic = 6;
1324			break;
1325		case DP_DS_NON_EDID_720x480i_50:
1326			vic = 21;
1327			break;
1328		case DP_DS_NON_EDID_1920x1080i_60:
1329			vic = 5;
1330			break;
1331		case DP_DS_NON_EDID_1920x1080i_50:
1332			vic = 20;
1333			break;
1334		case DP_DS_NON_EDID_1280x720_60:
1335			vic = 4;
1336			break;
1337		case DP_DS_NON_EDID_1280x720_50:
1338			vic = 19;
1339			break;
1340		default:
1341			return NULL;
1342		}
1343		return drm_display_mode_from_cea_vic(dev, vic);
1344	default:
1345		return NULL;
1346	}
1347}
1348EXPORT_SYMBOL(drm_dp_downstream_mode);
1349
1350/**
1351 * drm_dp_downstream_id() - identify branch device
1352 * @aux: DisplayPort AUX channel
1353 * @id: DisplayPort branch device id
1354 *
1355 * Returns branch device id on success or NULL on failure
1356 */
1357int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1358{
1359	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1360}
1361EXPORT_SYMBOL(drm_dp_downstream_id);
1362
1363/**
1364 * drm_dp_downstream_debug() - debug DP branch devices
1365 * @m: pointer for debugfs file
1366 * @dpcd: DisplayPort configuration data
1367 * @port_cap: port capabilities
1368 * @drm_edid: EDID
1369 * @aux: DisplayPort AUX channel
1370 *
1371 */
1372void drm_dp_downstream_debug(struct seq_file *m,
1373			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1374			     const u8 port_cap[4],
1375			     const struct drm_edid *drm_edid,
1376			     struct drm_dp_aux *aux)
1377{
1378	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1379				 DP_DETAILED_CAP_INFO_AVAILABLE;
1380	int clk;
1381	int bpc;
1382	char id[7];
1383	int len;
1384	uint8_t rev[2];
1385	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1386	bool branch_device = drm_dp_is_branch(dpcd);
1387
1388	seq_printf(m, "\tDP branch device present: %s\n",
1389		   str_yes_no(branch_device));
1390
1391	if (!branch_device)
1392		return;
1393
1394	switch (type) {
1395	case DP_DS_PORT_TYPE_DP:
1396		seq_puts(m, "\t\tType: DisplayPort\n");
1397		break;
1398	case DP_DS_PORT_TYPE_VGA:
1399		seq_puts(m, "\t\tType: VGA\n");
1400		break;
1401	case DP_DS_PORT_TYPE_DVI:
1402		seq_puts(m, "\t\tType: DVI\n");
1403		break;
1404	case DP_DS_PORT_TYPE_HDMI:
1405		seq_puts(m, "\t\tType: HDMI\n");
1406		break;
1407	case DP_DS_PORT_TYPE_NON_EDID:
1408		seq_puts(m, "\t\tType: others without EDID support\n");
1409		break;
1410	case DP_DS_PORT_TYPE_DP_DUALMODE:
1411		seq_puts(m, "\t\tType: DP++\n");
1412		break;
1413	case DP_DS_PORT_TYPE_WIRELESS:
1414		seq_puts(m, "\t\tType: Wireless\n");
1415		break;
1416	default:
1417		seq_puts(m, "\t\tType: N/A\n");
1418	}
1419
1420	memset(id, 0, sizeof(id));
1421	drm_dp_downstream_id(aux, id);
1422	seq_printf(m, "\t\tID: %s\n", id);
1423
1424	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1425	if (len > 0)
1426		seq_printf(m, "\t\tHW: %d.%d\n",
1427			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1428
1429	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1430	if (len > 0)
1431		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1432
1433	if (detailed_cap_info) {
1434		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1435		if (clk > 0)
1436			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1437
1438		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1439		if (clk > 0)
1440			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1441
1442		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1443		if (clk > 0)
1444			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1445
1446		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1447
1448		if (bpc > 0)
1449			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1450	}
1451}
1452EXPORT_SYMBOL(drm_dp_downstream_debug);
1453
1454/**
1455 * drm_dp_subconnector_type() - get DP branch device type
1456 * @dpcd: DisplayPort configuration data
1457 * @port_cap: port capabilities
1458 */
1459enum drm_mode_subconnector
1460drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1461			 const u8 port_cap[4])
1462{
1463	int type;
1464	if (!drm_dp_is_branch(dpcd))
1465		return DRM_MODE_SUBCONNECTOR_Native;
1466	/* DP 1.0 approach */
1467	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1468		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1469		       DP_DWN_STRM_PORT_TYPE_MASK;
1470
1471		switch (type) {
1472		case DP_DWN_STRM_PORT_TYPE_TMDS:
1473			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1474			return DRM_MODE_SUBCONNECTOR_DVID;
1475		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1476			/* Can be VGA or DVI-A, VGA is more popular */
1477			return DRM_MODE_SUBCONNECTOR_VGA;
1478		case DP_DWN_STRM_PORT_TYPE_DP:
1479			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1480		case DP_DWN_STRM_PORT_TYPE_OTHER:
1481		default:
1482			return DRM_MODE_SUBCONNECTOR_Unknown;
1483		}
1484	}
1485	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1486
1487	switch (type) {
1488	case DP_DS_PORT_TYPE_DP:
1489	case DP_DS_PORT_TYPE_DP_DUALMODE:
1490		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1491	case DP_DS_PORT_TYPE_VGA:
1492		return DRM_MODE_SUBCONNECTOR_VGA;
1493	case DP_DS_PORT_TYPE_DVI:
1494		return DRM_MODE_SUBCONNECTOR_DVID;
1495	case DP_DS_PORT_TYPE_HDMI:
1496		return DRM_MODE_SUBCONNECTOR_HDMIA;
1497	case DP_DS_PORT_TYPE_WIRELESS:
1498		return DRM_MODE_SUBCONNECTOR_Wireless;
1499	case DP_DS_PORT_TYPE_NON_EDID:
1500	default:
1501		return DRM_MODE_SUBCONNECTOR_Unknown;
1502	}
1503}
1504EXPORT_SYMBOL(drm_dp_subconnector_type);
1505
1506/**
1507 * drm_dp_set_subconnector_property - set subconnector for DP connector
1508 * @connector: connector to set property on
1509 * @status: connector status
1510 * @dpcd: DisplayPort configuration data
1511 * @port_cap: port capabilities
1512 *
1513 * Called by a driver on every detect event.
1514 */
1515void drm_dp_set_subconnector_property(struct drm_connector *connector,
1516				      enum drm_connector_status status,
1517				      const u8 *dpcd,
1518				      const u8 port_cap[4])
1519{
1520	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1521
1522	if (status == connector_status_connected)
1523		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1524	drm_object_property_set_value(&connector->base,
1525			connector->dev->mode_config.dp_subconnector_property,
1526			subconnector);
1527}
1528EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1529
1530/**
1531 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1532 * count
1533 * @connector: The DRM connector to check
1534 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1535 * @desc: A cached copy of the connector's DP descriptor
1536 *
1537 * See also: drm_dp_read_sink_count()
1538 *
1539 * Returns: %True if the (e)DP connector has a valid sink count that should
1540 * be probed, %false otherwise.
1541 */
1542bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1543				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1544				const struct drm_dp_desc *desc)
1545{
1546	/* Some eDP panels don't set a valid value for the sink count */
1547	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1548		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1549		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1550		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1551}
1552EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1553
1554/**
1555 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1556 * @aux: The DP AUX channel to use
1557 *
1558 * See also: drm_dp_read_sink_count_cap()
1559 *
1560 * Returns: The current sink count reported by @aux, or a negative error code
1561 * otherwise.
1562 */
1563int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1564{
1565	u8 count;
1566	int ret;
1567
1568	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1569	if (ret < 0)
1570		return ret;
1571	if (ret != 1)
1572		return -EIO;
1573
1574	return DP_GET_SINK_COUNT(count);
1575}
1576EXPORT_SYMBOL(drm_dp_read_sink_count);
1577
1578/*
1579 * I2C-over-AUX implementation
1580 */
1581
1582static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1583{
1584	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1585	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1586	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1587	       I2C_FUNC_10BIT_ADDR;
1588}
1589
1590static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1591{
1592	/*
1593	 * In case of i2c defer or short i2c ack reply to a write,
1594	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1595	 * rest of the message
1596	 */
1597	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1598		msg->request &= DP_AUX_I2C_MOT;
1599		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1600	}
1601}
1602
1603#define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1604#define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1605#define AUX_STOP_LEN 4
1606#define AUX_CMD_LEN 4
1607#define AUX_ADDRESS_LEN 20
1608#define AUX_REPLY_PAD_LEN 4
1609#define AUX_LENGTH_LEN 8
1610
1611/*
1612 * Calculate the duration of the AUX request/reply in usec. Gives the
1613 * "best" case estimate, ie. successful while as short as possible.
1614 */
1615static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1616{
1617	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1618		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1619
1620	if ((msg->request & DP_AUX_I2C_READ) == 0)
1621		len += msg->size * 8;
1622
1623	return len;
1624}
1625
1626static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1627{
1628	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1629		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1630
1631	/*
1632	 * For read we expect what was asked. For writes there will
1633	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1634	 */
1635	if (msg->request & DP_AUX_I2C_READ)
1636		len += msg->size * 8;
1637
1638	return len;
1639}
1640
1641#define I2C_START_LEN 1
1642#define I2C_STOP_LEN 1
1643#define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1644#define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1645
1646/*
1647 * Calculate the length of the i2c transfer in usec, assuming
1648 * the i2c bus speed is as specified. Gives the "worst"
1649 * case estimate, ie. successful while as long as possible.
1650 * Doesn't account the "MOT" bit, and instead assumes each
1651 * message includes a START, ADDRESS and STOP. Neither does it
1652 * account for additional random variables such as clock stretching.
1653 */
1654static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1655				   int i2c_speed_khz)
1656{
1657	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1658	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1659			     msg->size * I2C_DATA_LEN +
1660			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1661}
1662
1663/*
1664 * Determine how many retries should be attempted to successfully transfer
1665 * the specified message, based on the estimated durations of the
1666 * i2c and AUX transfers.
1667 */
1668static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1669			      int i2c_speed_khz)
1670{
1671	int aux_time_us = drm_dp_aux_req_duration(msg) +
1672		drm_dp_aux_reply_duration(msg);
1673	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1674
1675	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1676}
1677
1678/*
1679 * FIXME currently assumes 10 kHz as some real world devices seem
1680 * to require it. We should query/set the speed via DPCD if supported.
1681 */
1682static int dp_aux_i2c_speed_khz __read_mostly = 10;
1683module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1684MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1685		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1686
1687/*
1688 * Transfer a single I2C-over-AUX message and handle various error conditions,
1689 * retrying the transaction as appropriate.  It is assumed that the
1690 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1691 * reply field.
1692 *
1693 * Returns bytes transferred on success, or a negative error code on failure.
1694 */
1695static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1696{
1697	unsigned int retry, defer_i2c;
1698	int ret;
1699	/*
1700	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1701	 * is required to retry at least seven times upon receiving AUX_DEFER
1702	 * before giving up the AUX transaction.
1703	 *
1704	 * We also try to account for the i2c bus speed.
1705	 */
1706	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1707
1708	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1709		ret = aux->transfer(aux, msg);
1710		if (ret < 0) {
1711			if (ret == -EBUSY)
1712				continue;
1713
1714			/*
1715			 * While timeouts can be errors, they're usually normal
1716			 * behavior (for instance, when a driver tries to
1717			 * communicate with a non-existent DisplayPort device).
1718			 * Avoid spamming the kernel log with timeout errors.
1719			 */
1720			if (ret == -ETIMEDOUT)
1721				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1722							aux->name);
1723			else
1724				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1725					    aux->name, ret);
1726			return ret;
1727		}
1728
1729
1730		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1731		case DP_AUX_NATIVE_REPLY_ACK:
1732			/*
1733			 * For I2C-over-AUX transactions this isn't enough, we
1734			 * need to check for the I2C ACK reply.
1735			 */
1736			break;
1737
1738		case DP_AUX_NATIVE_REPLY_NACK:
1739			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1740				    aux->name, ret, msg->size);
1741			return -EREMOTEIO;
1742
1743		case DP_AUX_NATIVE_REPLY_DEFER:
1744			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1745			/*
1746			 * We could check for I2C bit rate capabilities and if
1747			 * available adjust this interval. We could also be
1748			 * more careful with DP-to-legacy adapters where a
1749			 * long legacy cable may force very low I2C bit rates.
1750			 *
1751			 * For now just defer for long enough to hopefully be
1752			 * safe for all use-cases.
1753			 */
1754			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1755			continue;
1756
1757		default:
1758			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1759				aux->name, msg->reply);
1760			return -EREMOTEIO;
1761		}
1762
1763		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1764		case DP_AUX_I2C_REPLY_ACK:
1765			/*
1766			 * Both native ACK and I2C ACK replies received. We
1767			 * can assume the transfer was successful.
1768			 */
1769			if (ret != msg->size)
1770				drm_dp_i2c_msg_write_status_update(msg);
1771			return ret;
1772
1773		case DP_AUX_I2C_REPLY_NACK:
1774			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1775				    aux->name, ret, msg->size);
1776			aux->i2c_nack_count++;
1777			return -EREMOTEIO;
1778
1779		case DP_AUX_I2C_REPLY_DEFER:
1780			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1781			/* DP Compliance Test 4.2.2.5 Requirement:
1782			 * Must have at least 7 retries for I2C defers on the
1783			 * transaction to pass this test
1784			 */
1785			aux->i2c_defer_count++;
1786			if (defer_i2c < 7)
1787				defer_i2c++;
1788			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1789			drm_dp_i2c_msg_write_status_update(msg);
1790
1791			continue;
1792
1793		default:
1794			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1795				aux->name, msg->reply);
1796			return -EREMOTEIO;
1797		}
1798	}
1799
1800	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1801	return -EREMOTEIO;
1802}
1803
1804static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1805				       const struct i2c_msg *i2c_msg)
1806{
1807	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1808		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1809	if (!(i2c_msg->flags & I2C_M_STOP))
1810		msg->request |= DP_AUX_I2C_MOT;
1811}
1812
1813/*
1814 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1815 *
1816 * Returns an error code on failure, or a recommended transfer size on success.
1817 */
1818static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1819{
1820	int err, ret = orig_msg->size;
1821	struct drm_dp_aux_msg msg = *orig_msg;
1822
1823	while (msg.size > 0) {
1824		err = drm_dp_i2c_do_msg(aux, &msg);
1825		if (err <= 0)
1826			return err == 0 ? -EPROTO : err;
1827
1828		if (err < msg.size && err < ret) {
1829			drm_dbg_kms(aux->drm_dev,
1830				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1831				    aux->name, msg.size, err);
1832			ret = err;
1833		}
1834
1835		msg.size -= err;
1836		msg.buffer += err;
1837	}
1838
1839	return ret;
1840}
1841
1842/*
1843 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1844 * packets to be as large as possible. If not, the I2C transactions never
1845 * succeed. Hence the default is maximum.
1846 */
1847static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1848module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1849MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1850		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1851
1852static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1853			   int num)
1854{
1855	struct drm_dp_aux *aux = adapter->algo_data;
1856	unsigned int i, j;
1857	unsigned transfer_size;
1858	struct drm_dp_aux_msg msg;
1859	int err = 0;
1860
1861	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1862
1863	memset(&msg, 0, sizeof(msg));
1864
1865	for (i = 0; i < num; i++) {
1866		msg.address = msgs[i].addr;
1867		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1868		/* Send a bare address packet to start the transaction.
1869		 * Zero sized messages specify an address only (bare
1870		 * address) transaction.
1871		 */
1872		msg.buffer = NULL;
1873		msg.size = 0;
1874		err = drm_dp_i2c_do_msg(aux, &msg);
1875
1876		/*
1877		 * Reset msg.request in case in case it got
1878		 * changed into a WRITE_STATUS_UPDATE.
1879		 */
1880		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1881
1882		if (err < 0)
1883			break;
1884		/* We want each transaction to be as large as possible, but
1885		 * we'll go to smaller sizes if the hardware gives us a
1886		 * short reply.
1887		 */
1888		transfer_size = dp_aux_i2c_transfer_size;
1889		for (j = 0; j < msgs[i].len; j += msg.size) {
1890			msg.buffer = msgs[i].buf + j;
1891			msg.size = min(transfer_size, msgs[i].len - j);
1892
1893			err = drm_dp_i2c_drain_msg(aux, &msg);
1894
1895			/*
1896			 * Reset msg.request in case in case it got
1897			 * changed into a WRITE_STATUS_UPDATE.
1898			 */
1899			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1900
1901			if (err < 0)
1902				break;
1903			transfer_size = err;
1904		}
1905		if (err < 0)
1906			break;
1907	}
1908	if (err >= 0)
1909		err = num;
1910	/* Send a bare address packet to close out the transaction.
1911	 * Zero sized messages specify an address only (bare
1912	 * address) transaction.
1913	 */
1914	msg.request &= ~DP_AUX_I2C_MOT;
1915	msg.buffer = NULL;
1916	msg.size = 0;
1917	(void)drm_dp_i2c_do_msg(aux, &msg);
1918
1919	return err;
1920}
1921
1922static const struct i2c_algorithm drm_dp_i2c_algo = {
1923	.functionality = drm_dp_i2c_functionality,
1924	.master_xfer = drm_dp_i2c_xfer,
1925};
1926
1927static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1928{
1929	return container_of(i2c, struct drm_dp_aux, ddc);
1930}
1931
1932static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1933{
1934	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1935}
1936
1937static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1938{
1939	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1940}
1941
1942static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1943{
1944	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1945}
1946
1947static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1948	.lock_bus = lock_bus,
1949	.trylock_bus = trylock_bus,
1950	.unlock_bus = unlock_bus,
1951};
1952
1953static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1954{
1955	u8 buf, count;
1956	int ret;
1957
1958	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1959	if (ret < 0)
1960		return ret;
1961
1962	WARN_ON(!(buf & DP_TEST_SINK_START));
1963
1964	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1965	if (ret < 0)
1966		return ret;
1967
1968	count = buf & DP_TEST_COUNT_MASK;
1969	if (count == aux->crc_count)
1970		return -EAGAIN; /* No CRC yet */
1971
1972	aux->crc_count = count;
1973
1974	/*
1975	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1976	 * per component (RGB or CrYCb).
1977	 */
1978	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1979	if (ret < 0)
1980		return ret;
1981
1982	return 0;
1983}
1984
1985static void drm_dp_aux_crc_work(struct work_struct *work)
1986{
1987	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1988					      crc_work);
1989	struct drm_crtc *crtc;
1990	u8 crc_bytes[6];
1991	uint32_t crcs[3];
1992	int ret;
1993
1994	if (WARN_ON(!aux->crtc))
1995		return;
1996
1997	crtc = aux->crtc;
1998	while (crtc->crc.opened) {
1999		drm_crtc_wait_one_vblank(crtc);
2000		if (!crtc->crc.opened)
2001			break;
2002
2003		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004		if (ret == -EAGAIN) {
2005			usleep_range(1000, 2000);
2006			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2007		}
2008
2009		if (ret == -EAGAIN) {
2010			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2011				    aux->name, ret);
2012			continue;
2013		} else if (ret) {
2014			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2015			continue;
2016		}
2017
2018		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2019		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2020		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2021		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2022	}
2023}
2024
2025/**
2026 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2027 * @aux: DisplayPort AUX channel
2028 *
2029 * Used for remote aux channel in general. Merely initialize the crc work
2030 * struct.
2031 */
2032void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2033{
2034	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2035}
2036EXPORT_SYMBOL(drm_dp_remote_aux_init);
2037
2038/**
2039 * drm_dp_aux_init() - minimally initialise an aux channel
2040 * @aux: DisplayPort AUX channel
2041 *
2042 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2043 * the outside world, call drm_dp_aux_init() first. For drivers which are
2044 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2045 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2046 * has been registered to allow userspace access to the auxiliary DP channel.
2047 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2048 * early as possible so that the &drm_device that corresponds to the AUX adapter
2049 * may be mentioned in debugging output from the DRM DP helpers.
2050 *
2051 * For devices which use a separate platform device for their AUX adapters, this
2052 * may be called as early as required by the driver.
2053 *
2054 */
2055void drm_dp_aux_init(struct drm_dp_aux *aux)
2056{
2057	mutex_init(&aux->hw_mutex);
2058	mutex_init(&aux->cec.lock);
2059	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2060
2061	aux->ddc.algo = &drm_dp_i2c_algo;
2062	aux->ddc.algo_data = aux;
2063	aux->ddc.retries = 3;
2064
2065	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2066}
2067EXPORT_SYMBOL(drm_dp_aux_init);
2068
2069/**
2070 * drm_dp_aux_register() - initialise and register aux channel
2071 * @aux: DisplayPort AUX channel
2072 *
2073 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2074 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2075 * initialized. For devices which are grandparents of their AUX channels,
2076 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2077 * corresponds to @aux. For these devices, it's advised to call
2078 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2079 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2080 * Functions which don't follow this will likely Oops when
2081 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2082 *
2083 * For devices where the AUX channel is a device that exists independently of
2084 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2085 * recommended to call drm_dp_aux_register() after a &drm_device has been
2086 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2087 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2088 * with the AUX channel (e.g. on bridge detach).
2089 *
2090 * Drivers which need to use the aux channel before either of the two points
2091 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2092 * channel before registration.
2093 *
2094 * Returns 0 on success or a negative error code on failure.
2095 */
2096int drm_dp_aux_register(struct drm_dp_aux *aux)
2097{
2098	int ret;
2099
2100	WARN_ON_ONCE(!aux->drm_dev);
2101
2102	if (!aux->ddc.algo)
2103		drm_dp_aux_init(aux);
2104
2105	aux->ddc.owner = THIS_MODULE;
2106	aux->ddc.dev.parent = aux->dev;
2107
2108	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2109		sizeof(aux->ddc.name));
2110
2111	ret = drm_dp_aux_register_devnode(aux);
2112	if (ret)
2113		return ret;
2114
2115	ret = i2c_add_adapter(&aux->ddc);
2116	if (ret) {
2117		drm_dp_aux_unregister_devnode(aux);
2118		return ret;
2119	}
2120
2121	return 0;
2122}
2123EXPORT_SYMBOL(drm_dp_aux_register);
2124
2125/**
2126 * drm_dp_aux_unregister() - unregister an AUX adapter
2127 * @aux: DisplayPort AUX channel
2128 */
2129void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2130{
2131	drm_dp_aux_unregister_devnode(aux);
2132	i2c_del_adapter(&aux->ddc);
2133}
2134EXPORT_SYMBOL(drm_dp_aux_unregister);
2135
2136#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2137
2138/**
2139 * drm_dp_psr_setup_time() - PSR setup in time usec
2140 * @psr_cap: PSR capabilities from DPCD
2141 *
2142 * Returns:
2143 * PSR setup time for the panel in microseconds,  negative
2144 * error code on failure.
2145 */
2146int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2147{
2148	static const u16 psr_setup_time_us[] = {
2149		PSR_SETUP_TIME(330),
2150		PSR_SETUP_TIME(275),
2151		PSR_SETUP_TIME(220),
2152		PSR_SETUP_TIME(165),
2153		PSR_SETUP_TIME(110),
2154		PSR_SETUP_TIME(55),
2155		PSR_SETUP_TIME(0),
2156	};
2157	int i;
2158
2159	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2160	if (i >= ARRAY_SIZE(psr_setup_time_us))
2161		return -EINVAL;
2162
2163	return psr_setup_time_us[i];
2164}
2165EXPORT_SYMBOL(drm_dp_psr_setup_time);
2166
2167#undef PSR_SETUP_TIME
2168
2169/**
2170 * drm_dp_start_crc() - start capture of frame CRCs
2171 * @aux: DisplayPort AUX channel
2172 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2173 *
2174 * Returns 0 on success or a negative error code on failure.
2175 */
2176int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2177{
2178	u8 buf;
2179	int ret;
2180
2181	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2182	if (ret < 0)
2183		return ret;
2184
2185	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2186	if (ret < 0)
2187		return ret;
2188
2189	aux->crc_count = 0;
2190	aux->crtc = crtc;
2191	schedule_work(&aux->crc_work);
2192
2193	return 0;
2194}
2195EXPORT_SYMBOL(drm_dp_start_crc);
2196
2197/**
2198 * drm_dp_stop_crc() - stop capture of frame CRCs
2199 * @aux: DisplayPort AUX channel
2200 *
2201 * Returns 0 on success or a negative error code on failure.
2202 */
2203int drm_dp_stop_crc(struct drm_dp_aux *aux)
2204{
2205	u8 buf;
2206	int ret;
2207
2208	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2209	if (ret < 0)
2210		return ret;
2211
2212	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2213	if (ret < 0)
2214		return ret;
2215
2216	flush_work(&aux->crc_work);
2217	aux->crtc = NULL;
2218
2219	return 0;
2220}
2221EXPORT_SYMBOL(drm_dp_stop_crc);
2222
2223struct dpcd_quirk {
2224	u8 oui[3];
2225	u8 device_id[6];
2226	bool is_branch;
2227	u32 quirks;
2228};
2229
2230#define OUI(first, second, third) { (first), (second), (third) }
2231#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2232	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2233
2234#define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2235
2236static const struct dpcd_quirk dpcd_quirk_list[] = {
2237	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2238	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2239	/* LG LP140WF6-SPM1 eDP panel */
2240	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2241	/* Apple panels need some additional handling to support PSR */
2242	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2243	/* CH7511 seems to leave SINK_COUNT zeroed */
2244	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2245	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2246	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2247	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2248	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2249	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2250	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2251};
2252
2253#undef OUI
2254
2255/*
2256 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2257 * ident. The quirk data is shared but it's up to the drivers to act on the
2258 * data.
2259 *
2260 * For now, only the OUI (first three bytes) is used, but this may be extended
2261 * to device identification string and hardware/firmware revisions later.
2262 */
2263static u32
2264drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2265{
2266	const struct dpcd_quirk *quirk;
2267	u32 quirks = 0;
2268	int i;
2269	u8 any_device[] = DEVICE_ID_ANY;
2270
2271	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2272		quirk = &dpcd_quirk_list[i];
2273
2274		if (quirk->is_branch != is_branch)
2275			continue;
2276
2277		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2278			continue;
2279
2280		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2281		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2282			continue;
2283
2284		quirks |= quirk->quirks;
2285	}
2286
2287	return quirks;
2288}
2289
2290#undef DEVICE_ID_ANY
2291#undef DEVICE_ID
2292
2293/**
2294 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2295 * @aux: DisplayPort AUX channel
2296 * @desc: Device descriptor to fill from DPCD
2297 * @is_branch: true for branch devices, false for sink devices
2298 *
2299 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2300 * identification.
2301 *
2302 * Returns 0 on success or a negative error code on failure.
2303 */
2304int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2305		     bool is_branch)
2306{
2307	struct drm_dp_dpcd_ident *ident = &desc->ident;
2308	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2309	int ret, dev_id_len;
2310
2311	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2312	if (ret < 0)
2313		return ret;
2314
2315	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2316
2317	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2318
2319	drm_dbg_kms(aux->drm_dev,
2320		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2321		    aux->name, is_branch ? "branch" : "sink",
2322		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2323		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2324		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2325
2326	return 0;
2327}
2328EXPORT_SYMBOL(drm_dp_read_desc);
2329
2330/**
2331 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2332 * @dsc_dpcd: DSC capabilities from DPCD
2333 *
2334 * Returns the bpp precision supported by the DP sink.
2335 */
2336u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2337{
2338	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2339
2340	switch (bpp_increment_dpcd) {
2341	case DP_DSC_BITS_PER_PIXEL_1_16:
2342		return 16;
2343	case DP_DSC_BITS_PER_PIXEL_1_8:
2344		return 8;
2345	case DP_DSC_BITS_PER_PIXEL_1_4:
2346		return 4;
2347	case DP_DSC_BITS_PER_PIXEL_1_2:
2348		return 2;
2349	case DP_DSC_BITS_PER_PIXEL_1_1:
2350		return 1;
2351	}
2352
2353	return 0;
2354}
2355EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2356
2357/**
2358 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2359 * supported by the DSC sink.
2360 * @dsc_dpcd: DSC capabilities from DPCD
2361 * @is_edp: true if its eDP, false for DP
2362 *
2363 * Read the slice capabilities DPCD register from DSC sink to get
2364 * the maximum slice count supported. This is used to populate
2365 * the DSC parameters in the &struct drm_dsc_config by the driver.
2366 * Driver creates an infoframe using these parameters to populate
2367 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2368 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2369 *
2370 * Returns:
2371 * Maximum slice count supported by DSC sink or 0 its invalid
2372 */
2373u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2374				   bool is_edp)
2375{
2376	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2377
2378	if (is_edp) {
2379		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2380		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2381			return 4;
2382		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2383			return 2;
2384		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2385			return 1;
2386	} else {
2387		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2388		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2389
2390		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2391			return 24;
2392		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2393			return 20;
2394		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2395			return 16;
2396		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2397			return 12;
2398		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2399			return 10;
2400		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2401			return 8;
2402		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2403			return 6;
2404		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2405			return 4;
2406		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2407			return 2;
2408		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2409			return 1;
2410	}
2411
2412	return 0;
2413}
2414EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2415
2416/**
2417 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2418 * @dsc_dpcd: DSC capabilities from DPCD
2419 *
2420 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2421 * number of bits of precision within the decoder line buffer supported by
2422 * the DSC sink. This is used to populate the DSC parameters in the
2423 * &struct drm_dsc_config by the driver.
2424 * Driver creates an infoframe using these parameters to populate
2425 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2426 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2427 *
2428 * Returns:
2429 * Line buffer depth supported by DSC panel or 0 its invalid
2430 */
2431u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2432{
2433	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2434
2435	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2436	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2437		return 9;
2438	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2439		return 10;
2440	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2441		return 11;
2442	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2443		return 12;
2444	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2445		return 13;
2446	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2447		return 14;
2448	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2449		return 15;
2450	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2451		return 16;
2452	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2453		return 8;
2454	}
2455
2456	return 0;
2457}
2458EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2459
2460/**
2461 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2462 * values supported by the DSC sink.
2463 * @dsc_dpcd: DSC capabilities from DPCD
2464 * @dsc_bpc: An array to be filled by this helper with supported
2465 *           input bpcs.
2466 *
2467 * Read the DSC DPCD from the sink device to parse the supported bits per
2468 * component values. This is used to populate the DSC parameters
2469 * in the &struct drm_dsc_config by the driver.
2470 * Driver creates an infoframe using these parameters to populate
2471 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2472 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2473 *
2474 * Returns:
2475 * Number of input BPC values parsed from the DPCD
2476 */
2477int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2478					 u8 dsc_bpc[3])
2479{
2480	int num_bpc = 0;
2481	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2482
2483	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2484		return 0;
2485
2486	if (color_depth & DP_DSC_12_BPC)
2487		dsc_bpc[num_bpc++] = 12;
2488	if (color_depth & DP_DSC_10_BPC)
2489		dsc_bpc[num_bpc++] = 10;
2490
2491	/* A DP DSC Sink device shall support 8 bpc. */
2492	dsc_bpc[num_bpc++] = 8;
2493
2494	return num_bpc;
2495}
2496EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2497
2498static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2499				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2500				  u8 *buf, int buf_size)
2501{
2502	/*
2503	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2504	 * corrupted values when reading from the 0xF0000- range with a block
2505	 * size bigger than 1.
2506	 */
2507	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2508	int offset;
2509	int ret;
2510
2511	for (offset = 0; offset < buf_size; offset += block_size) {
2512		ret = drm_dp_dpcd_read(aux,
2513				       address + offset,
2514				       &buf[offset], block_size);
2515		if (ret < 0)
2516			return ret;
2517
2518		WARN_ON(ret != block_size);
2519	}
2520
2521	return 0;
2522}
2523
2524/**
2525 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2526 * @aux: DisplayPort AUX channel
2527 * @dpcd: DisplayPort configuration data
2528 * @caps: buffer to return the capability info in
2529 *
2530 * Read capabilities common to all LTTPRs.
2531 *
2532 * Returns 0 on success or a negative error code on failure.
2533 */
2534int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2535				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2536				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2537{
2538	return drm_dp_read_lttpr_regs(aux, dpcd,
2539				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2540				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2541}
2542EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2543
2544/**
2545 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2546 * @aux: DisplayPort AUX channel
2547 * @dpcd: DisplayPort configuration data
2548 * @dp_phy: LTTPR PHY to read the capabilities for
2549 * @caps: buffer to return the capability info in
2550 *
2551 * Read the capabilities for the given LTTPR PHY.
2552 *
2553 * Returns 0 on success or a negative error code on failure.
2554 */
2555int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2556			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2557			       enum drm_dp_phy dp_phy,
2558			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2559{
2560	return drm_dp_read_lttpr_regs(aux, dpcd,
2561				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2562				      caps, DP_LTTPR_PHY_CAP_SIZE);
2563}
2564EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2565
2566static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2567{
2568	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2569}
2570
2571/**
2572 * drm_dp_lttpr_count - get the number of detected LTTPRs
2573 * @caps: LTTPR common capabilities
2574 *
2575 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2576 *
2577 * Returns:
2578 *   -ERANGE if more than supported number (8) of LTTPRs are detected
2579 *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2580 *   otherwise the number of detected LTTPRs
2581 */
2582int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2583{
2584	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2585
2586	switch (hweight8(count)) {
2587	case 0:
2588		return 0;
2589	case 1:
2590		return 8 - ilog2(count);
2591	case 8:
2592		return -ERANGE;
2593	default:
2594		return -EINVAL;
2595	}
2596}
2597EXPORT_SYMBOL(drm_dp_lttpr_count);
2598
2599/**
2600 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2601 * @caps: LTTPR common capabilities
2602 *
2603 * Returns the maximum link rate supported by all detected LTTPRs.
2604 */
2605int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2606{
2607	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2608
2609	return drm_dp_bw_code_to_link_rate(rate);
2610}
2611EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2612
2613/**
2614 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2615 * @caps: LTTPR common capabilities
2616 *
2617 * Returns the maximum lane count supported by all detected LTTPRs.
2618 */
2619int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2620{
2621	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2622
2623	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2624}
2625EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2626
2627/**
2628 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2629 * @caps: LTTPR PHY capabilities
2630 *
2631 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2632 * voltage swing level 3.
2633 */
2634bool
2635drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2636{
2637	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2638
2639	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2640}
2641EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2642
2643/**
2644 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2645 * @caps: LTTPR PHY capabilities
2646 *
2647 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2648 * pre-emphasis level 3.
2649 */
2650bool
2651drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2652{
2653	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2654
2655	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2656}
2657EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2658
2659/**
2660 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2661 * @aux: DisplayPort AUX channel
2662 * @data: DP phy compliance test parameters.
2663 *
2664 * Returns 0 on success or a negative error code on failure.
2665 */
2666int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2667				struct drm_dp_phy_test_params *data)
2668{
2669	int err;
2670	u8 rate, lanes;
2671
2672	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2673	if (err < 0)
2674		return err;
2675	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2676
2677	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2678	if (err < 0)
2679		return err;
2680	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2681
2682	if (lanes & DP_ENHANCED_FRAME_CAP)
2683		data->enhanced_frame_cap = true;
2684
2685	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2686	if (err < 0)
2687		return err;
2688
2689	switch (data->phy_pattern) {
2690	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2691		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2692				       &data->custom80, sizeof(data->custom80));
2693		if (err < 0)
2694			return err;
2695
2696		break;
2697	case DP_PHY_TEST_PATTERN_CP2520:
2698		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2699				       &data->hbr2_reset,
2700				       sizeof(data->hbr2_reset));
2701		if (err < 0)
2702			return err;
2703	}
2704
2705	return 0;
2706}
2707EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2708
2709/**
2710 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2711 * @aux: DisplayPort AUX channel
2712 * @data: DP phy compliance test parameters.
2713 * @dp_rev: DP revision to use for compliance testing
2714 *
2715 * Returns 0 on success or a negative error code on failure.
2716 */
2717int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2718				struct drm_dp_phy_test_params *data, u8 dp_rev)
2719{
2720	int err, i;
2721	u8 test_pattern;
2722
2723	test_pattern = data->phy_pattern;
2724	if (dp_rev < 0x12) {
2725		test_pattern = (test_pattern << 2) &
2726			       DP_LINK_QUAL_PATTERN_11_MASK;
2727		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2728					 test_pattern);
2729		if (err < 0)
2730			return err;
2731	} else {
2732		for (i = 0; i < data->num_lanes; i++) {
2733			err = drm_dp_dpcd_writeb(aux,
2734						 DP_LINK_QUAL_LANE0_SET + i,
2735						 test_pattern);
2736			if (err < 0)
2737				return err;
2738		}
2739	}
2740
2741	return 0;
2742}
2743EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2744
2745static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2746{
2747	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2748		return "Invalid";
2749
2750	switch (pixelformat) {
2751	case DP_PIXELFORMAT_RGB:
2752		return "RGB";
2753	case DP_PIXELFORMAT_YUV444:
2754		return "YUV444";
2755	case DP_PIXELFORMAT_YUV422:
2756		return "YUV422";
2757	case DP_PIXELFORMAT_YUV420:
2758		return "YUV420";
2759	case DP_PIXELFORMAT_Y_ONLY:
2760		return "Y_ONLY";
2761	case DP_PIXELFORMAT_RAW:
2762		return "RAW";
2763	default:
2764		return "Reserved";
2765	}
2766}
2767
2768static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2769					   enum dp_colorimetry colorimetry)
2770{
2771	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2772		return "Invalid";
2773
2774	switch (colorimetry) {
2775	case DP_COLORIMETRY_DEFAULT:
2776		switch (pixelformat) {
2777		case DP_PIXELFORMAT_RGB:
2778			return "sRGB";
2779		case DP_PIXELFORMAT_YUV444:
2780		case DP_PIXELFORMAT_YUV422:
2781		case DP_PIXELFORMAT_YUV420:
2782			return "BT.601";
2783		case DP_PIXELFORMAT_Y_ONLY:
2784			return "DICOM PS3.14";
2785		case DP_PIXELFORMAT_RAW:
2786			return "Custom Color Profile";
2787		default:
2788			return "Reserved";
2789		}
2790	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2791		switch (pixelformat) {
2792		case DP_PIXELFORMAT_RGB:
2793			return "Wide Fixed";
2794		case DP_PIXELFORMAT_YUV444:
2795		case DP_PIXELFORMAT_YUV422:
2796		case DP_PIXELFORMAT_YUV420:
2797			return "BT.709";
2798		default:
2799			return "Reserved";
2800		}
2801	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2802		switch (pixelformat) {
2803		case DP_PIXELFORMAT_RGB:
2804			return "Wide Float";
2805		case DP_PIXELFORMAT_YUV444:
2806		case DP_PIXELFORMAT_YUV422:
2807		case DP_PIXELFORMAT_YUV420:
2808			return "xvYCC 601";
2809		default:
2810			return "Reserved";
2811		}
2812	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2813		switch (pixelformat) {
2814		case DP_PIXELFORMAT_RGB:
2815			return "OpRGB";
2816		case DP_PIXELFORMAT_YUV444:
2817		case DP_PIXELFORMAT_YUV422:
2818		case DP_PIXELFORMAT_YUV420:
2819			return "xvYCC 709";
2820		default:
2821			return "Reserved";
2822		}
2823	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2824		switch (pixelformat) {
2825		case DP_PIXELFORMAT_RGB:
2826			return "DCI-P3";
2827		case DP_PIXELFORMAT_YUV444:
2828		case DP_PIXELFORMAT_YUV422:
2829		case DP_PIXELFORMAT_YUV420:
2830			return "sYCC 601";
2831		default:
2832			return "Reserved";
2833		}
2834	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2835		switch (pixelformat) {
2836		case DP_PIXELFORMAT_RGB:
2837			return "Custom Profile";
2838		case DP_PIXELFORMAT_YUV444:
2839		case DP_PIXELFORMAT_YUV422:
2840		case DP_PIXELFORMAT_YUV420:
2841			return "OpYCC 601";
2842		default:
2843			return "Reserved";
2844		}
2845	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2846		switch (pixelformat) {
2847		case DP_PIXELFORMAT_RGB:
2848			return "BT.2020 RGB";
2849		case DP_PIXELFORMAT_YUV444:
2850		case DP_PIXELFORMAT_YUV422:
2851		case DP_PIXELFORMAT_YUV420:
2852			return "BT.2020 CYCC";
2853		default:
2854			return "Reserved";
2855		}
2856	case DP_COLORIMETRY_BT2020_YCC:
2857		switch (pixelformat) {
2858		case DP_PIXELFORMAT_YUV444:
2859		case DP_PIXELFORMAT_YUV422:
2860		case DP_PIXELFORMAT_YUV420:
2861			return "BT.2020 YCC";
2862		default:
2863			return "Reserved";
2864		}
2865	default:
2866		return "Invalid";
2867	}
2868}
2869
2870static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2871{
2872	switch (dynamic_range) {
2873	case DP_DYNAMIC_RANGE_VESA:
2874		return "VESA range";
2875	case DP_DYNAMIC_RANGE_CTA:
2876		return "CTA range";
2877	default:
2878		return "Invalid";
2879	}
2880}
2881
2882static const char *dp_content_type_get_name(enum dp_content_type content_type)
2883{
2884	switch (content_type) {
2885	case DP_CONTENT_TYPE_NOT_DEFINED:
2886		return "Not defined";
2887	case DP_CONTENT_TYPE_GRAPHICS:
2888		return "Graphics";
2889	case DP_CONTENT_TYPE_PHOTO:
2890		return "Photo";
2891	case DP_CONTENT_TYPE_VIDEO:
2892		return "Video";
2893	case DP_CONTENT_TYPE_GAME:
2894		return "Game";
2895	default:
2896		return "Reserved";
2897	}
2898}
2899
2900void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2901			const struct drm_dp_vsc_sdp *vsc)
2902{
2903#define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2904	DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2905		   vsc->revision, vsc->length);
2906	DP_SDP_LOG("    pixelformat: %s\n",
2907		   dp_pixelformat_get_name(vsc->pixelformat));
2908	DP_SDP_LOG("    colorimetry: %s\n",
2909		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2910	DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2911	DP_SDP_LOG("    dynamic range: %s\n",
2912		   dp_dynamic_range_get_name(vsc->dynamic_range));
2913	DP_SDP_LOG("    content type: %s\n",
2914		   dp_content_type_get_name(vsc->content_type));
2915#undef DP_SDP_LOG
2916}
2917EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2918
2919/**
2920 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2921 * @dpcd: DisplayPort configuration data
2922 * @port_cap: port capabilities
2923 *
2924 * Returns maximum frl bandwidth supported by PCON in GBPS,
2925 * returns 0 if not supported.
2926 */
2927int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2928			       const u8 port_cap[4])
2929{
2930	int bw;
2931	u8 buf;
2932
2933	buf = port_cap[2];
2934	bw = buf & DP_PCON_MAX_FRL_BW;
2935
2936	switch (bw) {
2937	case DP_PCON_MAX_9GBPS:
2938		return 9;
2939	case DP_PCON_MAX_18GBPS:
2940		return 18;
2941	case DP_PCON_MAX_24GBPS:
2942		return 24;
2943	case DP_PCON_MAX_32GBPS:
2944		return 32;
2945	case DP_PCON_MAX_40GBPS:
2946		return 40;
2947	case DP_PCON_MAX_48GBPS:
2948		return 48;
2949	case DP_PCON_MAX_0GBPS:
2950	default:
2951		return 0;
2952	}
2953
2954	return 0;
2955}
2956EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2957
2958/**
2959 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2960 * @aux: DisplayPort AUX channel
2961 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2962 *
2963 * Returns 0 if success, else returns negative error code.
2964 */
2965int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2966{
2967	int ret;
2968	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2969		 DP_PCON_ENABLE_LINK_FRL_MODE;
2970
2971	if (enable_frl_ready_hpd)
2972		buf |= DP_PCON_ENABLE_HPD_READY;
2973
2974	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2975
2976	return ret;
2977}
2978EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2979
2980/**
2981 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2982 * @aux: DisplayPort AUX channel
2983 *
2984 * Returns true if success, else returns false.
2985 */
2986bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2987{
2988	int ret;
2989	u8 buf;
2990
2991	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2992	if (ret < 0)
2993		return false;
2994
2995	if (buf & DP_PCON_FRL_READY)
2996		return true;
2997
2998	return false;
2999}
3000EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3001
3002/**
3003 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3004 * @aux: DisplayPort AUX channel
3005 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3006 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3007 * In Concurrent Mode, the FRL link bring up can be done along with
3008 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3009 * the DP Link training.
3010 *
3011 * Returns 0 if success, else returns negative error code.
3012 */
3013
3014int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3015				u8 frl_mode)
3016{
3017	int ret;
3018	u8 buf;
3019
3020	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3021	if (ret < 0)
3022		return ret;
3023
3024	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3025		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3026	else
3027		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3028
3029	switch (max_frl_gbps) {
3030	case 9:
3031		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3032		break;
3033	case 18:
3034		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3035		break;
3036	case 24:
3037		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3038		break;
3039	case 32:
3040		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3041		break;
3042	case 40:
3043		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3044		break;
3045	case 48:
3046		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3047		break;
3048	case 0:
3049		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3050		break;
3051	default:
3052		return -EINVAL;
3053	}
3054
3055	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3056	if (ret < 0)
3057		return ret;
3058
3059	return 0;
3060}
3061EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3062
3063/**
3064 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3065 * @aux: DisplayPort AUX channel
3066 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3067 * @frl_type : FRL training type, can be Extended, or Normal.
3068 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3069 * starting from min, and stops when link training is successful. In Extended
3070 * FRL training, all frl bw selected in the mask are trained by the PCON.
3071 *
3072 * Returns 0 if success, else returns negative error code.
3073 */
3074int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3075				u8 frl_type)
3076{
3077	int ret;
3078	u8 buf = max_frl_mask;
3079
3080	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3081		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3082	else
3083		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3084
3085	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3086	if (ret < 0)
3087		return ret;
3088
3089	return 0;
3090}
3091EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3092
3093/**
3094 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3095 * @aux: DisplayPort AUX channel
3096 *
3097 * Returns 0 if success, else returns negative error code.
3098 */
3099int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3100{
3101	int ret;
3102
3103	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3104	if (ret < 0)
3105		return ret;
3106
3107	return 0;
3108}
3109EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3110
3111/**
3112 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3113 * @aux: DisplayPort AUX channel
3114 *
3115 * Returns 0 if success, else returns negative error code.
3116 */
3117int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3118{
3119	int ret;
3120	u8 buf = 0;
3121
3122	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3123	if (ret < 0)
3124		return ret;
3125	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3126		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3127			    aux->name);
3128		return -EINVAL;
3129	}
3130	buf |= DP_PCON_ENABLE_HDMI_LINK;
3131	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3132	if (ret < 0)
3133		return ret;
3134
3135	return 0;
3136}
3137EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3138
3139/**
3140 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3141 * @aux: DisplayPort AUX channel
3142 *
3143 * Returns true if link is active else returns false.
3144 */
3145bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3146{
3147	u8 buf;
3148	int ret;
3149
3150	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3151	if (ret < 0)
3152		return false;
3153
3154	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3155}
3156EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3157
3158/**
3159 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3160 * @aux: DisplayPort AUX channel
3161 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3162 * Valid only if the MODE returned is FRL. For Normal Link training mode
3163 * only 1 of the bits will be set, but in case of Extended mode, more than
3164 * one bits can be set.
3165 *
3166 * Returns the link mode : TMDS or FRL on success, else returns negative error
3167 * code.
3168 */
3169int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3170{
3171	u8 buf;
3172	int mode;
3173	int ret;
3174
3175	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3176	if (ret < 0)
3177		return ret;
3178
3179	mode = buf & DP_PCON_HDMI_LINK_MODE;
3180
3181	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3182		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3183
3184	return mode;
3185}
3186EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3187
3188/**
3189 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3190 * during link failure between PCON and HDMI sink
3191 * @aux: DisplayPort AUX channel
3192 * @connector: DRM connector
3193 * code.
3194 **/
3195
3196void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3197					   struct drm_connector *connector)
3198{
3199	u8 buf, error_count;
3200	int i, num_error;
3201	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3202
3203	for (i = 0; i < hdmi->max_lanes; i++) {
3204		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3205			return;
3206
3207		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3208		switch (error_count) {
3209		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3210			num_error = 100;
3211			break;
3212		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3213			num_error = 10;
3214			break;
3215		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3216			num_error = 3;
3217			break;
3218		default:
3219			num_error = 0;
3220		}
3221
3222		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3223			aux->name, num_error, i);
3224	}
3225}
3226EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3227
3228/*
3229 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3230 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3231 *
3232 * Returns true is PCON encoder is DSC 1.2 else returns false.
3233 */
3234bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3235{
3236	u8 buf;
3237	u8 major_v, minor_v;
3238
3239	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3240	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3241	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3242
3243	if (major_v == 1 && minor_v == 2)
3244		return true;
3245
3246	return false;
3247}
3248EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3249
3250/*
3251 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3252 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3253 *
3254 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3255 */
3256int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3257{
3258	u8 slice_cap1, slice_cap2;
3259
3260	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3261	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3262
3263	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3264		return 24;
3265	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3266		return 20;
3267	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3268		return 16;
3269	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3270		return 12;
3271	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3272		return 10;
3273	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3274		return 8;
3275	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3276		return 6;
3277	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3278		return 4;
3279	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3280		return 2;
3281	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3282		return 1;
3283
3284	return 0;
3285}
3286EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3287
3288/*
3289 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3290 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3291 *
3292 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3293 */
3294int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3295{
3296	u8 buf;
3297
3298	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3299
3300	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3301}
3302EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3303
3304/*
3305 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3306 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3307 *
3308 * Returns the bpp precision supported by the PCON encoder.
3309 */
3310int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3311{
3312	u8 buf;
3313
3314	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3315
3316	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3317	case DP_PCON_DSC_ONE_16TH_BPP:
3318		return 16;
3319	case DP_PCON_DSC_ONE_8TH_BPP:
3320		return 8;
3321	case DP_PCON_DSC_ONE_4TH_BPP:
3322		return 4;
3323	case DP_PCON_DSC_ONE_HALF_BPP:
3324		return 2;
3325	case DP_PCON_DSC_ONE_BPP:
3326		return 1;
3327	}
3328
3329	return 0;
3330}
3331EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3332
3333static
3334int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3335{
3336	u8 buf;
3337	int ret;
3338
3339	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3340	if (ret < 0)
3341		return ret;
3342
3343	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3344
3345	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3346		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3347		buf |= pps_buf_config << 2;
3348	}
3349
3350	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3351	if (ret < 0)
3352		return ret;
3353
3354	return 0;
3355}
3356
3357/**
3358 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3359 * for DSC1.2 between PCON & HDMI2.1 sink
3360 * @aux: DisplayPort AUX channel
3361 *
3362 * Returns 0 on success, else returns negative error code.
3363 */
3364int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3365{
3366	int ret;
3367
3368	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3369	if (ret < 0)
3370		return ret;
3371
3372	return 0;
3373}
3374EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3375
3376/**
3377 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3378 * HDMI sink
3379 * @aux: DisplayPort AUX channel
3380 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3381 *
3382 * Returns 0 on success, else returns negative error code.
3383 */
3384int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3385{
3386	int ret;
3387
3388	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3389	if (ret < 0)
3390		return ret;
3391
3392	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3393	if (ret < 0)
3394		return ret;
3395
3396	return 0;
3397}
3398EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3399
3400/*
3401 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3402 * override registers
3403 * @aux: DisplayPort AUX channel
3404 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3405 * bits_per_pixel.
3406 *
3407 * Returns 0 on success, else returns negative error code.
3408 */
3409int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3410{
3411	int ret;
3412
3413	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3414	if (ret < 0)
3415		return ret;
3416	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3417	if (ret < 0)
3418		return ret;
3419	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3420	if (ret < 0)
3421		return ret;
3422
3423	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3424	if (ret < 0)
3425		return ret;
3426
3427	return 0;
3428}
3429EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3430
3431/*
3432 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3433 * @aux: displayPort AUX channel
3434 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3435 *
3436 * Returns 0 on success, else returns negative error code.
3437 */
3438int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3439{
3440	int ret;
3441	u8 buf;
3442
3443	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3444	if (ret < 0)
3445		return ret;
3446
3447	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3448		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3449	else
3450		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3451
3452	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3453	if (ret < 0)
3454		return ret;
3455
3456	return 0;
3457}
3458EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3459
3460/**
3461 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3462 * @aux: The DP AUX channel to use
3463 * @bl: Backlight capability info from drm_edp_backlight_init()
3464 * @level: The brightness level to set
3465 *
3466 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3467 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3468 *
3469 * Returns: %0 on success, negative error code on failure
3470 */
3471int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3472				u16 level)
3473{
3474	int ret;
3475	u8 buf[2] = { 0 };
3476
3477	/* The panel uses the PWM for controlling brightness levels */
3478	if (!bl->aux_set)
3479		return 0;
3480
3481	if (bl->lsb_reg_used) {
3482		buf[0] = (level & 0xff00) >> 8;
3483		buf[1] = (level & 0x00ff);
3484	} else {
3485		buf[0] = level;
3486	}
3487
3488	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3489	if (ret != sizeof(buf)) {
3490		drm_err(aux->drm_dev,
3491			"%s: Failed to write aux backlight level: %d\n",
3492			aux->name, ret);
3493		return ret < 0 ? ret : -EIO;
3494	}
3495
3496	return 0;
3497}
3498EXPORT_SYMBOL(drm_edp_backlight_set_level);
3499
3500static int
3501drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3502			     bool enable)
3503{
3504	int ret;
3505	u8 buf;
3506
3507	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3508	if (!bl->aux_enable)
3509		return 0;
3510
3511	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3512	if (ret != 1) {
3513		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3514			aux->name, ret);
3515		return ret < 0 ? ret : -EIO;
3516	}
3517	if (enable)
3518		buf |= DP_EDP_BACKLIGHT_ENABLE;
3519	else
3520		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3521
3522	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3523	if (ret != 1) {
3524		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3525			aux->name, ret);
3526		return ret < 0 ? ret : -EIO;
3527	}
3528
3529	return 0;
3530}
3531
3532/**
3533 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3534 * @aux: The DP AUX channel to use
3535 * @bl: Backlight capability info from drm_edp_backlight_init()
3536 * @level: The initial backlight level to set via AUX, if there is one
3537 *
3538 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3539 * restoring any important backlight state such as the given backlight level, the brightness byte
3540 * count, backlight frequency, etc.
3541 *
3542 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3543 * that the driver handle enabling/disabling the panel through implementation-specific means using
3544 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3545 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3546 * the EDP_BL_PWR GPIO.
3547 *
3548 * Returns: %0 on success, negative error code on failure.
3549 */
3550int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3551			     const u16 level)
3552{
3553	int ret;
3554	u8 dpcd_buf;
3555
3556	if (bl->aux_set)
3557		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3558	else
3559		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3560
3561	if (bl->pwmgen_bit_count) {
3562		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3563		if (ret != 1)
3564			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3565				    aux->name, ret);
3566	}
3567
3568	if (bl->pwm_freq_pre_divider) {
3569		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3570		if (ret != 1)
3571			drm_dbg_kms(aux->drm_dev,
3572				    "%s: Failed to write aux backlight frequency: %d\n",
3573				    aux->name, ret);
3574		else
3575			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3576	}
3577
3578	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3579	if (ret != 1) {
3580		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3581			    aux->name, ret);
3582		return ret < 0 ? ret : -EIO;
3583	}
3584
3585	ret = drm_edp_backlight_set_level(aux, bl, level);
3586	if (ret < 0)
3587		return ret;
3588	ret = drm_edp_backlight_set_enable(aux, bl, true);
3589	if (ret < 0)
3590		return ret;
3591
3592	return 0;
3593}
3594EXPORT_SYMBOL(drm_edp_backlight_enable);
3595
3596/**
3597 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3598 * @aux: The DP AUX channel to use
3599 * @bl: Backlight capability info from drm_edp_backlight_init()
3600 *
3601 * This function handles disabling DPCD backlight controls on a panel over AUX.
3602 *
3603 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3604 * that the driver handle enabling/disabling the panel through implementation-specific means using
3605 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3606 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3607 * the EDP_BL_PWR GPIO.
3608 *
3609 * Returns: %0 on success or no-op, negative error code on failure.
3610 */
3611int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3612{
3613	int ret;
3614
3615	ret = drm_edp_backlight_set_enable(aux, bl, false);
3616	if (ret < 0)
3617		return ret;
3618
3619	return 0;
3620}
3621EXPORT_SYMBOL(drm_edp_backlight_disable);
3622
3623static inline int
3624drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3625			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3626{
3627	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3628	int ret;
3629	u8 pn, pn_min, pn_max;
3630
3631	if (!bl->aux_set)
3632		return 0;
3633
3634	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3635	if (ret != 1) {
3636		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3637			    aux->name, ret);
3638		return -ENODEV;
3639	}
3640
3641	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3642	bl->max = (1 << pn) - 1;
3643	if (!driver_pwm_freq_hz)
3644		return 0;
3645
3646	/*
3647	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3648	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3649	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3650	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3651	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3652	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3653	 */
3654
3655	/* Find desired value of (F x P)
3656	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3657	 * applied automatically. So no need to check that.
3658	 */
3659	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3660
3661	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3662	 * satisfying the conditions below.
3663	 * - Pn is in the range of Pn_min and Pn_max
3664	 * - F is in the range of 1 and 255
3665	 * - FxP is within 25% of desired value.
3666	 *   Note: 25% is arbitrary value and may need some tweak.
3667	 */
3668	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3669	if (ret != 1) {
3670		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3671			    aux->name, ret);
3672		return 0;
3673	}
3674	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3675	if (ret != 1) {
3676		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3677			    aux->name, ret);
3678		return 0;
3679	}
3680	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3681	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3682
3683	/* Ensure frequency is within 25% of desired value */
3684	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3685	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3686	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3687		drm_dbg_kms(aux->drm_dev,
3688			    "%s: Driver defined backlight frequency (%d) out of range\n",
3689			    aux->name, driver_pwm_freq_hz);
3690		return 0;
3691	}
3692
3693	for (pn = pn_max; pn >= pn_min; pn--) {
3694		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3695		fxp_actual = f << pn;
3696		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3697			break;
3698	}
3699
3700	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3701	if (ret != 1) {
3702		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3703			    aux->name, ret);
3704		return 0;
3705	}
3706	bl->pwmgen_bit_count = pn;
3707	bl->max = (1 << pn) - 1;
3708
3709	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3710		bl->pwm_freq_pre_divider = f;
3711		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3712			    aux->name, driver_pwm_freq_hz);
3713	}
3714
3715	return 0;
3716}
3717
3718static inline int
3719drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3720			      u8 *current_mode)
3721{
3722	int ret;
3723	u8 buf[2];
3724	u8 mode_reg;
3725
3726	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3727	if (ret != 1) {
3728		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3729			    aux->name, ret);
3730		return ret < 0 ? ret : -EIO;
3731	}
3732
3733	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3734	if (!bl->aux_set)
3735		return 0;
3736
3737	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3738		int size = 1 + bl->lsb_reg_used;
3739
3740		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3741		if (ret != size) {
3742			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3743				    aux->name, ret);
3744			return ret < 0 ? ret : -EIO;
3745		}
3746
3747		if (bl->lsb_reg_used)
3748			return (buf[0] << 8) | buf[1];
3749		else
3750			return buf[0];
3751	}
3752
3753	/*
3754	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3755	 * the driver should assume max brightness
3756	 */
3757	return bl->max;
3758}
3759
3760/**
3761 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3762 * interface.
3763 * @aux: The DP aux device to use for probing
3764 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3765 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3766 * @edp_dpcd: A cached copy of the eDP DPCD
3767 * @current_level: Where to store the probed brightness level, if any
3768 * @current_mode: Where to store the currently set backlight control mode
3769 *
3770 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3771 * along with also probing the current and maximum supported brightness levels.
3772 *
3773 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3774 * default frequency from the panel is used.
3775 *
3776 * Returns: %0 on success, negative error code on failure.
3777 */
3778int
3779drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3780		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3781		       u16 *current_level, u8 *current_mode)
3782{
3783	int ret;
3784
3785	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3786		bl->aux_enable = true;
3787	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3788		bl->aux_set = true;
3789	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3790		bl->lsb_reg_used = true;
3791
3792	/* Sanity check caps */
3793	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3794		drm_dbg_kms(aux->drm_dev,
3795			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3796			    aux->name);
3797		return -EINVAL;
3798	}
3799
3800	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3801	if (ret < 0)
3802		return ret;
3803
3804	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3805	if (ret < 0)
3806		return ret;
3807	*current_level = ret;
3808
3809	drm_dbg_kms(aux->drm_dev,
3810		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3811		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3812	if (bl->aux_set) {
3813		drm_dbg_kms(aux->drm_dev,
3814			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3815			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3816			    bl->lsb_reg_used);
3817	}
3818
3819	return 0;
3820}
3821EXPORT_SYMBOL(drm_edp_backlight_init);
3822
3823#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3824	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3825
3826static int dp_aux_backlight_update_status(struct backlight_device *bd)
3827{
3828	struct dp_aux_backlight *bl = bl_get_data(bd);
3829	u16 brightness = backlight_get_brightness(bd);
3830	int ret = 0;
3831
3832	if (!backlight_is_blank(bd)) {
3833		if (!bl->enabled) {
3834			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3835			bl->enabled = true;
3836			return 0;
3837		}
3838		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3839	} else {
3840		if (bl->enabled) {
3841			drm_edp_backlight_disable(bl->aux, &bl->info);
3842			bl->enabled = false;
3843		}
3844	}
3845
3846	return ret;
3847}
3848
3849static const struct backlight_ops dp_aux_bl_ops = {
3850	.update_status = dp_aux_backlight_update_status,
3851};
3852
3853/**
3854 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3855 * @panel: DRM panel
3856 * @aux: The DP AUX channel to use
3857 *
3858 * Use this function to create and handle backlight if your panel
3859 * supports backlight control over DP AUX channel using DPCD
3860 * registers as per VESA's standard backlight control interface.
3861 *
3862 * When the panel is enabled backlight will be enabled after a
3863 * successful call to &drm_panel_funcs.enable()
3864 *
3865 * When the panel is disabled backlight will be disabled before the
3866 * call to &drm_panel_funcs.disable().
3867 *
3868 * A typical implementation for a panel driver supporting backlight
3869 * control over DP AUX will call this function at probe time.
3870 * Backlight will then be handled transparently without requiring
3871 * any intervention from the driver.
3872 *
3873 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3874 *
3875 * Return: 0 on success or a negative error code on failure.
3876 */
3877int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3878{
3879	struct dp_aux_backlight *bl;
3880	struct backlight_properties props = { 0 };
3881	u16 current_level;
3882	u8 current_mode;
3883	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3884	int ret;
3885
3886	if (!panel || !panel->dev || !aux)
3887		return -EINVAL;
3888
3889	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3890			       EDP_DISPLAY_CTL_CAP_SIZE);
3891	if (ret < 0)
3892		return ret;
3893
3894	if (!drm_edp_backlight_supported(edp_dpcd)) {
3895		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3896		return 0;
3897	}
3898
3899	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3900	if (!bl)
3901		return -ENOMEM;
3902
3903	bl->aux = aux;
3904
3905	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3906				     &current_level, &current_mode);
3907	if (ret < 0)
3908		return ret;
3909
3910	props.type = BACKLIGHT_RAW;
3911	props.brightness = current_level;
3912	props.max_brightness = bl->info.max;
3913
3914	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3915						  panel->dev, bl,
3916						  &dp_aux_bl_ops, &props);
3917	if (IS_ERR(bl->base))
3918		return PTR_ERR(bl->base);
3919
3920	backlight_disable(bl->base);
3921
3922	panel->backlight = bl->base;
3923
3924	return 0;
3925}
3926EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3927
3928#endif
3929
3930/* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
3931static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
3932				     int symbol_size, bool is_mst)
3933{
3934	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
3935	int align = is_mst ? 4 / lane_count : 1;
3936
3937	return ALIGN(cycles, align);
3938}
3939
3940static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
3941					 int bpp_x16, int symbol_size, bool is_mst)
3942{
3943	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
3944	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
3945							  bpp_x16, symbol_size, is_mst);
3946	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
3947
3948	return slice_count * (slice_data_cycles + slice_eoc_cycles);
3949}
3950
3951/**
3952 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
3953 * @lane_count: DP link lane count
3954 * @hactive: pixel count of the active period in one scanline of the stream
3955 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
3956 * @bpp_x16: bits per pixel in .4 binary fixed point
3957 * @flags: DRM_DP_OVERHEAD_x flags
3958 *
3959 * Calculate the BW allocation overhead of a DP link stream, depending
3960 * on the link's
3961 * - @lane_count
3962 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
3963 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
3964 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
3965 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
3966 * as well as the stream's
3967 * - @hactive timing
3968 * - @bpp_x16 color depth
3969 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
3970 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
3971 * channel coding efficiency, for that see
3972 * @drm_dp_link_bw_channel_coding_efficiency().
3973 *
3974 * Returns the overhead as 100% + overhead% in 1ppm units.
3975 */
3976int drm_dp_bw_overhead(int lane_count, int hactive,
3977		       int dsc_slice_count,
3978		       int bpp_x16, unsigned long flags)
3979{
3980	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
3981	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
3982	u32 overhead = 1000000;
3983	int symbol_cycles;
3984
3985	/*
3986	 * DP Standard v2.1 2.6.4.1
3987	 * SSC downspread and ref clock variation margin:
3988	 *   5300ppm + 300ppm ~ 0.6%
3989	 */
3990	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
3991		overhead += 6000;
3992
3993	/*
3994	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
3995	 * FEC symbol insertions for 8b/10b channel coding:
3996	 * After each 250 data symbols on 2-4 lanes:
3997	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
3998	 * After each 2 x 250 data symbols on 1 lane:
3999	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4000	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4001	 *   256 * 256 bytes + 1 FEC_PM
4002	 * or
4003	 *   128 * 512 bytes + 1 FEC_PM
4004	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4005	 */
4006	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4007		overhead += 24016;
4008
4009	/*
4010	 * DP Standard v2.1 2.7.9, 5.9.7
4011	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4012	 * coding efficiency.
4013	 */
4014	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4015		(flags & DRM_DP_BW_OVERHEAD_FEC));
4016
4017	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4018		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4019							      dsc_slice_count,
4020							      bpp_x16, symbol_size,
4021							      is_mst);
4022	else
4023		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4024							  bpp_x16, symbol_size,
4025							  is_mst);
4026
4027	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4028					    overhead * 16),
4029				hactive * bpp_x16);
4030}
4031EXPORT_SYMBOL(drm_dp_bw_overhead);
4032
4033/**
4034 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4035 * @is_uhbr: Whether the link has a 128b/132b channel coding
4036 *
4037 * Return the channel coding efficiency of the given DP link type, which is
4038 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4039 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4040 * and for 128b/132b any link or PHY level control symbol insertion overhead
4041 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4042 * corresponding FEC overhead is BW allocation specific, included in the value
4043 * returned by drm_dp_bw_overhead().
4044 *
4045 * Returns the efficiency in the 100%/coding-overhead% ratio in
4046 * 1ppm units.
4047 */
4048int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4049{
4050	if (is_uhbr)
4051		return 967100;
4052	else
4053		/*
4054		 * Note that on 8b/10b MST the efficiency is only
4055		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4056		 * not accounted for here.
4057		 */
4058		return 800000;
4059}
4060EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);