Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Copyright © 2009 Keith Packard
   3 *
   4 * Permission to use, copy, modify, distribute, and sell this software and its
   5 * documentation for any purpose is hereby granted without fee, provided that
   6 * the above copyright notice appear in all copies and that both that copyright
   7 * notice and this permission notice appear in supporting documentation, and
   8 * that the name of the copyright holders not be used in advertising or
   9 * publicity pertaining to distribution of the software without specific,
  10 * written prior permission.  The copyright holders make no representations
  11 * about the suitability of this software for any purpose.  It is provided "as
  12 * is" without express or implied warranty.
  13 *
  14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
  15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
  16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
  17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
  18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
  20 * OF THIS SOFTWARE.
  21 */
  22
  23#include <linux/backlight.h>
  24#include <linux/delay.h>
  25#include <linux/errno.h>
  26#include <linux/i2c.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/string_helpers.h>
  33#include <linux/dynamic_debug.h>
  34
  35#include <drm/display/drm_dp_helper.h>
  36#include <drm/display/drm_dp_mst_helper.h>
  37#include <drm/drm_edid.h>
  38#include <drm/drm_print.h>
  39#include <drm/drm_vblank.h>
  40#include <drm/drm_panel.h>
  41
  42#include "drm_dp_helper_internal.h"
  43
  44DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
  45			"DRM_UT_CORE",
  46			"DRM_UT_DRIVER",
  47			"DRM_UT_KMS",
  48			"DRM_UT_PRIME",
  49			"DRM_UT_ATOMIC",
  50			"DRM_UT_VBL",
  51			"DRM_UT_STATE",
  52			"DRM_UT_LEASE",
  53			"DRM_UT_DP",
  54			"DRM_UT_DRMRES");
  55
  56struct dp_aux_backlight {
  57	struct backlight_device *base;
  58	struct drm_dp_aux *aux;
  59	struct drm_edp_backlight_info info;
  60	bool enabled;
  61};
  62
  63/**
  64 * DOC: dp helpers
  65 *
  66 * These functions contain some common logic and helpers at various abstraction
  67 * levels to deal with Display Port sink devices and related things like DP aux
  68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
  69 * blocks, ...
  70 */
  71
  72/* Helpers for DP link training */
  73static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
  74{
  75	return link_status[r - DP_LANE0_1_STATUS];
  76}
  77
  78static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
  79			     int lane)
  80{
  81	int i = DP_LANE0_1_STATUS + (lane >> 1);
  82	int s = (lane & 1) * 4;
  83	u8 l = dp_link_status(link_status, i);
  84
  85	return (l >> s) & 0xf;
  86}
  87
  88bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
  89			  int lane_count)
  90{
  91	u8 lane_align;
  92	u8 lane_status;
  93	int lane;
  94
  95	lane_align = dp_link_status(link_status,
  96				    DP_LANE_ALIGN_STATUS_UPDATED);
  97	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  98		return false;
  99	for (lane = 0; lane < lane_count; lane++) {
 100		lane_status = dp_get_lane_status(link_status, lane);
 101		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
 102			return false;
 103	}
 104	return true;
 105}
 106EXPORT_SYMBOL(drm_dp_channel_eq_ok);
 107
 108bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
 109			      int lane_count)
 110{
 111	int lane;
 112	u8 lane_status;
 113
 114	for (lane = 0; lane < lane_count; lane++) {
 115		lane_status = dp_get_lane_status(link_status, lane);
 116		if ((lane_status & DP_LANE_CR_DONE) == 0)
 117			return false;
 118	}
 119	return true;
 120}
 121EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
 122
 123u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
 124				     int lane)
 125{
 126	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 127	int s = ((lane & 1) ?
 128		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
 129		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
 130	u8 l = dp_link_status(link_status, i);
 131
 132	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
 133}
 134EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
 135
 136u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
 137					  int lane)
 138{
 139	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 140	int s = ((lane & 1) ?
 141		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
 142		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
 143	u8 l = dp_link_status(link_status, i);
 144
 145	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
 146}
 147EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
 148
 149/* DP 2.0 128b/132b */
 150u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
 151				   int lane)
 152{
 153	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
 154	int s = ((lane & 1) ?
 155		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
 156		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
 157	u8 l = dp_link_status(link_status, i);
 158
 159	return (l >> s) & 0xf;
 160}
 161EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
 162
 163/* DP 2.0 errata for 128b/132b */
 164bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
 165					  int lane_count)
 166{
 167	u8 lane_align, lane_status;
 168	int lane;
 169
 170	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 171	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
 172		return false;
 173
 174	for (lane = 0; lane < lane_count; lane++) {
 175		lane_status = dp_get_lane_status(link_status, lane);
 176		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
 177			return false;
 178	}
 179	return true;
 180}
 181EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
 182
 183/* DP 2.0 errata for 128b/132b */
 184bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
 185					int lane_count)
 186{
 187	u8 lane_status;
 188	int lane;
 189
 190	for (lane = 0; lane < lane_count; lane++) {
 191		lane_status = dp_get_lane_status(link_status, lane);
 192		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
 193			return false;
 194	}
 195	return true;
 196}
 197EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
 198
 199/* DP 2.0 errata for 128b/132b */
 200bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 201{
 202	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 203
 204	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
 205}
 206EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
 207
 208/* DP 2.0 errata for 128b/132b */
 209bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
 210{
 211	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 212
 213	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
 214}
 215EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
 216
 217/* DP 2.0 errata for 128b/132b */
 218bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
 219{
 220	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
 221
 222	return status & DP_128B132B_LT_FAILED;
 223}
 224EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
 225
 226static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 227{
 228	if (rd_interval > 4)
 229		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 230			    aux->name, rd_interval);
 231
 232	if (rd_interval == 0)
 233		return 100;
 234
 235	return rd_interval * 4 * USEC_PER_MSEC;
 236}
 237
 238static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 239{
 240	if (rd_interval > 4)
 241		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
 242			    aux->name, rd_interval);
 243
 244	if (rd_interval == 0)
 245		return 400;
 246
 247	return rd_interval * 4 * USEC_PER_MSEC;
 248}
 249
 250static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
 251{
 252	switch (rd_interval) {
 253	default:
 254		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
 255			    aux->name, rd_interval);
 256		fallthrough;
 257	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
 258		return 400;
 259	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
 260		return 4000;
 261	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
 262		return 8000;
 263	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
 264		return 12000;
 265	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
 266		return 16000;
 267	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
 268		return 32000;
 269	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
 270		return 64000;
 271	}
 272}
 273
 274/*
 275 * The link training delays are different for:
 276 *
 277 *  - Clock recovery vs. channel equalization
 278 *  - DPRX vs. LTTPR
 279 *  - 128b/132b vs. 8b/10b
 280 *  - DPCD rev 1.3 vs. later
 281 *
 282 * Get the correct delay in us, reading DPCD if necessary.
 283 */
 284static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 285			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
 286{
 287	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
 288	unsigned int offset;
 289	u8 rd_interval, mask;
 290
 291	if (dp_phy == DP_PHY_DPRX) {
 292		if (uhbr) {
 293			if (cr)
 294				return 100;
 295
 296			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
 297			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 298			parse = __128b132b_channel_eq_delay_us;
 299		} else {
 300			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 301				return 100;
 302
 303			offset = DP_TRAINING_AUX_RD_INTERVAL;
 304			mask = DP_TRAINING_AUX_RD_MASK;
 305			if (cr)
 306				parse = __8b10b_clock_recovery_delay_us;
 307			else
 308				parse = __8b10b_channel_eq_delay_us;
 309		}
 310	} else {
 311		if (uhbr) {
 312			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 313			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 314			parse = __128b132b_channel_eq_delay_us;
 315		} else {
 316			if (cr)
 317				return 100;
 318
 319			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
 320			mask = DP_TRAINING_AUX_RD_MASK;
 321			parse = __8b10b_channel_eq_delay_us;
 322		}
 323	}
 324
 325	if (offset < DP_RECEIVER_CAP_SIZE) {
 326		rd_interval = dpcd[offset];
 327	} else {
 328		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
 329			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
 330				    aux->name);
 331			/* arbitrary default delay */
 332			return 400;
 333		}
 334	}
 335
 336	return parse(aux, rd_interval & mask);
 337}
 338
 339int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 340				     enum drm_dp_phy dp_phy, bool uhbr)
 341{
 342	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
 343}
 344EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
 345
 346int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 347				 enum drm_dp_phy dp_phy, bool uhbr)
 348{
 349	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
 350}
 351EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
 352
 353/* Per DP 2.0 Errata */
 354int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
 355{
 356	int unit;
 357	u8 val;
 358
 359	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
 360		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
 361			aux->name);
 362		/* default to max */
 363		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 364	}
 365
 366	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
 367	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
 368
 369	return (val + 1) * unit * 1000;
 370}
 371EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
 372
 373void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
 374					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 375{
 376	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 377		DP_TRAINING_AUX_RD_MASK;
 378	int delay_us;
 379
 380	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
 381		delay_us = 100;
 382	else
 383		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
 384
 385	usleep_range(delay_us, delay_us * 2);
 386}
 387EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
 388
 389static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 390						 u8 rd_interval)
 391{
 392	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
 393
 394	usleep_range(delay_us, delay_us * 2);
 395}
 396
 397void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 398					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 399{
 400	__drm_dp_link_train_channel_eq_delay(aux,
 401					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 402					     DP_TRAINING_AUX_RD_MASK);
 403}
 404EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
 405
 406/**
 407 * drm_dp_phy_name() - Get the name of the given DP PHY
 408 * @dp_phy: The DP PHY identifier
 409 *
 410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
 411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
 412 * non-NULL and valid.
 413 *
 414 * Returns: Name of the DP PHY.
 415 */
 416const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
 417{
 418	static const char * const phy_names[] = {
 419		[DP_PHY_DPRX] = "DPRX",
 420		[DP_PHY_LTTPR1] = "LTTPR 1",
 421		[DP_PHY_LTTPR2] = "LTTPR 2",
 422		[DP_PHY_LTTPR3] = "LTTPR 3",
 423		[DP_PHY_LTTPR4] = "LTTPR 4",
 424		[DP_PHY_LTTPR5] = "LTTPR 5",
 425		[DP_PHY_LTTPR6] = "LTTPR 6",
 426		[DP_PHY_LTTPR7] = "LTTPR 7",
 427		[DP_PHY_LTTPR8] = "LTTPR 8",
 428	};
 429
 430	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
 431	    WARN_ON(!phy_names[dp_phy]))
 432		return "<INVALID DP PHY>";
 433
 434	return phy_names[dp_phy];
 435}
 436EXPORT_SYMBOL(drm_dp_phy_name);
 437
 438void drm_dp_lttpr_link_train_clock_recovery_delay(void)
 439{
 440	usleep_range(100, 200);
 441}
 442EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
 443
 444static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
 445{
 446	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
 447}
 448
 449void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
 450					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
 451{
 452	u8 interval = dp_lttpr_phy_cap(phy_cap,
 453				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
 454		      DP_TRAINING_AUX_RD_MASK;
 455
 456	__drm_dp_link_train_channel_eq_delay(aux, interval);
 457}
 458EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
 459
 460u8 drm_dp_link_rate_to_bw_code(int link_rate)
 461{
 462	switch (link_rate) {
 463	case 1000000:
 464		return DP_LINK_BW_10;
 465	case 1350000:
 466		return DP_LINK_BW_13_5;
 467	case 2000000:
 468		return DP_LINK_BW_20;
 469	default:
 470		/* Spec says link_bw = link_rate / 0.27Gbps */
 471		return link_rate / 27000;
 472	}
 473}
 474EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
 475
 476int drm_dp_bw_code_to_link_rate(u8 link_bw)
 477{
 478	switch (link_bw) {
 479	case DP_LINK_BW_10:
 480		return 1000000;
 481	case DP_LINK_BW_13_5:
 482		return 1350000;
 483	case DP_LINK_BW_20:
 484		return 2000000;
 485	default:
 486		/* Spec says link_rate = link_bw * 0.27Gbps */
 487		return link_bw * 27000;
 488	}
 489}
 490EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
 491
 492#define AUX_RETRY_INTERVAL 500 /* us */
 493
 494static inline void
 495drm_dp_dump_access(const struct drm_dp_aux *aux,
 496		   u8 request, uint offset, void *buffer, int ret)
 497{
 498	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
 499
 500	if (ret > 0)
 501		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
 502			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
 503	else
 504		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
 505			   aux->name, offset, arrow, ret);
 506}
 507
 508/**
 509 * DOC: dp helpers
 510 *
 511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
 512 * independent access to AUX functionality. Drivers can take advantage of
 513 * this by filling in the fields of the drm_dp_aux structure.
 514 *
 515 * Transactions are described using a hardware-independent drm_dp_aux_msg
 516 * structure, which is passed into a driver's .transfer() implementation.
 517 * Both native and I2C-over-AUX transactions are supported.
 518 */
 519
 520static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
 521			      unsigned int offset, void *buffer, size_t size)
 522{
 523	struct drm_dp_aux_msg msg;
 524	unsigned int retry, native_reply;
 525	int err = 0, ret = 0;
 526
 527	memset(&msg, 0, sizeof(msg));
 528	msg.address = offset;
 529	msg.request = request;
 530	msg.buffer = buffer;
 531	msg.size = size;
 532
 533	mutex_lock(&aux->hw_mutex);
 534
 535	/*
 536	 * The specification doesn't give any recommendation on how often to
 537	 * retry native transactions. We used to retry 7 times like for
 538	 * aux i2c transactions but real world devices this wasn't
 539	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
 540	 */
 541	for (retry = 0; retry < 32; retry++) {
 542		if (ret != 0 && ret != -ETIMEDOUT) {
 543			usleep_range(AUX_RETRY_INTERVAL,
 544				     AUX_RETRY_INTERVAL + 100);
 545		}
 546
 547		ret = aux->transfer(aux, &msg);
 548		if (ret >= 0) {
 549			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
 550			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
 551				if (ret == size)
 552					goto unlock;
 553
 554				ret = -EPROTO;
 555			} else
 556				ret = -EIO;
 557		}
 558
 559		/*
 560		 * We want the error we return to be the error we received on
 561		 * the first transaction, since we may get a different error the
 562		 * next time we retry
 563		 */
 564		if (!err)
 565			err = ret;
 566	}
 567
 568	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
 569		    aux->name, err);
 570	ret = err;
 571
 572unlock:
 573	mutex_unlock(&aux->hw_mutex);
 574	return ret;
 575}
 576
 577/**
 578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
 579 * @aux: DisplayPort AUX channel (SST)
 580 * @offset: address of the register to probe
 581 *
 582 * Probe the provided DPCD address by reading 1 byte from it. The function can
 583 * be used to trigger some side-effect the read access has, like waking up the
 584 * sink, without the need for the read-out value.
 585 *
 586 * Returns 0 if the read access suceeded, or a negative error code on failure.
 587 */
 588int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
 589{
 590	u8 buffer;
 591	int ret;
 592
 593	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
 594	WARN_ON(ret == 0);
 595
 596	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
 597
 598	return ret < 0 ? ret : 0;
 599}
 600EXPORT_SYMBOL(drm_dp_dpcd_probe);
 601
 602/**
 603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
 604 * @aux: DisplayPort AUX channel (SST or MST)
 605 * @offset: address of the (first) register to read
 606 * @buffer: buffer to store the register values
 607 * @size: number of bytes in @buffer
 608 *
 609 * Returns the number of bytes transferred on success, or a negative error
 610 * code on failure. -EIO is returned if the request was NAKed by the sink or
 611 * if the retry count was exceeded. If not all bytes were transferred, this
 612 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 613 * function, with the exception of -EBUSY (which causes the transaction to
 614 * be retried), are propagated to the caller.
 615 */
 616ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
 617			 void *buffer, size_t size)
 618{
 619	int ret;
 620
 621	/*
 622	 * HP ZR24w corrupts the first DPCD access after entering power save
 623	 * mode. Eg. on a read, the entire buffer will be filled with the same
 624	 * byte. Do a throw away read to avoid corrupting anything we care
 625	 * about. Afterwards things will work correctly until the monitor
 626	 * gets woken up and subsequently re-enters power save mode.
 627	 *
 628	 * The user pressing any button on the monitor is enough to wake it
 629	 * up, so there is no particularly good place to do the workaround.
 630	 * We just have to do it before any DPCD access and hope that the
 631	 * monitor doesn't power down exactly after the throw away read.
 632	 */
 633	if (!aux->is_remote) {
 634		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
 635		if (ret < 0)
 636			return ret;
 637	}
 638
 639	if (aux->is_remote)
 640		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
 641	else
 642		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
 643					 buffer, size);
 644
 645	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
 646	return ret;
 647}
 648EXPORT_SYMBOL(drm_dp_dpcd_read);
 649
 650/**
 651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
 652 * @aux: DisplayPort AUX channel (SST or MST)
 653 * @offset: address of the (first) register to write
 654 * @buffer: buffer containing the values to write
 655 * @size: number of bytes in @buffer
 656 *
 657 * Returns the number of bytes transferred on success, or a negative error
 658 * code on failure. -EIO is returned if the request was NAKed by the sink or
 659 * if the retry count was exceeded. If not all bytes were transferred, this
 660 * function returns -EPROTO. Errors from the underlying AUX channel transfer
 661 * function, with the exception of -EBUSY (which causes the transaction to
 662 * be retried), are propagated to the caller.
 663 */
 664ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
 665			  void *buffer, size_t size)
 666{
 667	int ret;
 668
 669	if (aux->is_remote)
 670		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
 671	else
 672		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
 673					 buffer, size);
 674
 675	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
 676	return ret;
 677}
 678EXPORT_SYMBOL(drm_dp_dpcd_write);
 679
 680/**
 681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
 682 * @aux: DisplayPort AUX channel
 683 * @status: buffer to store the link status in (must be at least 6 bytes)
 684 *
 685 * Returns the number of bytes transferred on success or a negative error
 686 * code on failure.
 687 */
 688int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
 689				 u8 status[DP_LINK_STATUS_SIZE])
 690{
 691	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
 692				DP_LINK_STATUS_SIZE);
 693}
 694EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
 695
 696/**
 697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
 698 * @aux: DisplayPort AUX channel
 699 * @dp_phy: the DP PHY to get the link status for
 700 * @link_status: buffer to return the status in
 701 *
 702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
 703 * layout of the returned @link_status matches the DPCD register layout of the
 704 * DPRX PHY link status.
 705 *
 706 * Returns 0 if the information was read successfully or a negative error code
 707 * on failure.
 708 */
 709int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
 710				     enum drm_dp_phy dp_phy,
 711				     u8 link_status[DP_LINK_STATUS_SIZE])
 712{
 713	int ret;
 714
 715	if (dp_phy == DP_PHY_DPRX) {
 716		ret = drm_dp_dpcd_read(aux,
 717				       DP_LANE0_1_STATUS,
 718				       link_status,
 719				       DP_LINK_STATUS_SIZE);
 720
 721		if (ret < 0)
 722			return ret;
 723
 724		WARN_ON(ret != DP_LINK_STATUS_SIZE);
 725
 726		return 0;
 727	}
 728
 729	ret = drm_dp_dpcd_read(aux,
 730			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
 731			       link_status,
 732			       DP_LINK_STATUS_SIZE - 1);
 733
 734	if (ret < 0)
 735		return ret;
 736
 737	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
 738
 739	/* Convert the LTTPR to the sink PHY link status layout */
 740	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
 741		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
 742		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
 743	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
 744
 745	return 0;
 746}
 747EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
 748
 749static bool is_edid_digital_input_dp(const struct edid *edid)
 750{
 751	return edid && edid->revision >= 4 &&
 752		edid->input & DRM_EDID_INPUT_DIGITAL &&
 753		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
 754}
 755
 756/**
 757 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
 758 * @dpcd: DisplayPort configuration data
 759 * @port_cap: port capabilities
 760 * @type: port type to be checked. Can be:
 761 * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
 762 * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
 763 *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
 764 *
 765 * Caveat: Only works with DPCD 1.1+ port caps.
 766 *
 767 * Returns: whether the downstream facing port matches the type.
 768 */
 769bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 770			       const u8 port_cap[4], u8 type)
 771{
 772	return drm_dp_is_branch(dpcd) &&
 773		dpcd[DP_DPCD_REV] >= 0x11 &&
 774		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
 775}
 776EXPORT_SYMBOL(drm_dp_downstream_is_type);
 777
 778/**
 779 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
 780 * @dpcd: DisplayPort configuration data
 781 * @port_cap: port capabilities
 782 * @edid: EDID
 783 *
 784 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
 785 */
 786bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 787			       const u8 port_cap[4],
 788			       const struct edid *edid)
 789{
 790	if (dpcd[DP_DPCD_REV] < 0x11) {
 791		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
 792		case DP_DWN_STRM_PORT_TYPE_TMDS:
 793			return true;
 794		default:
 795			return false;
 796		}
 797	}
 798
 799	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
 800	case DP_DS_PORT_TYPE_DP_DUALMODE:
 801		if (is_edid_digital_input_dp(edid))
 802			return false;
 803		fallthrough;
 804	case DP_DS_PORT_TYPE_DVI:
 805	case DP_DS_PORT_TYPE_HDMI:
 806		return true;
 807	default:
 808		return false;
 809	}
 810}
 811EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
 812
 813/**
 814 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
 815 * @aux: DisplayPort AUX channel
 816 * @real_edid_checksum: real edid checksum for the last block
 817 *
 818 * Returns:
 819 * True on success
 820 */
 821bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
 822				    u8 real_edid_checksum)
 823{
 824	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
 825
 826	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 827			     &auto_test_req, 1) < 1) {
 828		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 829			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 830		return false;
 831	}
 832	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
 833
 834	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
 835		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
 836			aux->name, DP_TEST_REQUEST);
 837		return false;
 838	}
 839	link_edid_read &= DP_TEST_LINK_EDID_READ;
 840
 841	if (!auto_test_req || !link_edid_read) {
 842		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
 843			    aux->name);
 844		return false;
 845	}
 846
 847	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
 848			      &auto_test_req, 1) < 1) {
 849		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 850			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
 851		return false;
 852	}
 853
 854	/* send back checksum for the last edid extension block data */
 855	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
 856			      &real_edid_checksum, 1) < 1) {
 857		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 858			aux->name, DP_TEST_EDID_CHECKSUM);
 859		return false;
 860	}
 861
 862	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
 863	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
 864		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
 865			aux->name, DP_TEST_RESPONSE);
 866		return false;
 867	}
 868
 869	return true;
 870}
 871EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
 872
 873static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
 874{
 875	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
 876
 877	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
 878		port_count = 4;
 879
 880	return port_count;
 881}
 882
 883static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
 884					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 885{
 886	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
 887	int ret;
 888
 889	/*
 890	 * Prior to DP1.3 the bit represented by
 891	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
 892	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
 893	 * the true capability of the panel. The only way to check is to
 894	 * then compare 0000h and 2200h.
 895	 */
 896	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
 897	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
 898		return 0;
 899
 900	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
 901			       sizeof(dpcd_ext));
 902	if (ret < 0)
 903		return ret;
 904	if (ret != sizeof(dpcd_ext))
 905		return -EIO;
 906
 907	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
 908		drm_dbg_kms(aux->drm_dev,
 909			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
 910			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
 911		return 0;
 912	}
 913
 914	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
 915		return 0;
 916
 917	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 918
 919	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
 920
 921	return 0;
 922}
 923
 924/**
 925 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
 926 * available
 927 * @aux: DisplayPort AUX channel
 928 * @dpcd: Buffer to store the resulting DPCD in
 929 *
 930 * Attempts to read the base DPCD caps for @aux. Additionally, this function
 931 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
 932 * present.
 933 *
 934 * Returns: %0 if the DPCD was read successfully, negative error code
 935 * otherwise.
 936 */
 937int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
 938			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
 939{
 940	int ret;
 941
 942	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
 943	if (ret < 0)
 944		return ret;
 945	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
 946		return -EIO;
 947
 948	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
 949	if (ret < 0)
 950		return ret;
 951
 952	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
 953
 954	return ret;
 955}
 956EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
 957
 958/**
 959 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
 960 * @aux: DisplayPort AUX channel
 961 * @dpcd: A cached copy of the port's DPCD
 962 * @downstream_ports: buffer to store the downstream port info in
 963 *
 964 * See also:
 965 * drm_dp_downstream_max_clock()
 966 * drm_dp_downstream_max_bpc()
 967 *
 968 * Returns: 0 if either the downstream port info was read successfully or
 969 * there was no downstream info to read, or a negative error code otherwise.
 970 */
 971int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
 972				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
 973				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
 974{
 975	int ret;
 976	u8 len;
 977
 978	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
 979
 980	/* No downstream info to read */
 981	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
 982		return 0;
 983
 984	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
 985	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
 986	 * some branches do it we need to handle it regardless.
 987	 */
 988	len = drm_dp_downstream_port_count(dpcd);
 989	if (!len)
 990		return 0;
 991
 992	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
 993		len *= 4;
 994
 995	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
 996	if (ret < 0)
 997		return ret;
 998	if (ret != len)
 999		return -EIO;
1000
1001	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1002
1003	return 0;
1004}
1005EXPORT_SYMBOL(drm_dp_read_downstream_info);
1006
1007/**
1008 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1009 * @dpcd: DisplayPort configuration data
1010 * @port_cap: port capabilities
1011 *
1012 * Returns: Downstream facing port max dot clock in kHz on success,
1013 * or 0 if max clock not defined
1014 */
1015int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1016				   const u8 port_cap[4])
1017{
1018	if (!drm_dp_is_branch(dpcd))
1019		return 0;
1020
1021	if (dpcd[DP_DPCD_REV] < 0x11)
1022		return 0;
1023
1024	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1025	case DP_DS_PORT_TYPE_VGA:
1026		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1027			return 0;
1028		return port_cap[1] * 8000;
1029	default:
1030		return 0;
1031	}
1032}
1033EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1034
1035/**
1036 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1037 * @dpcd: DisplayPort configuration data
1038 * @port_cap: port capabilities
1039 * @edid: EDID
1040 *
1041 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1042 * or 0 if max TMDS clock not defined
1043 */
1044int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1045				     const u8 port_cap[4],
1046				     const struct edid *edid)
1047{
1048	if (!drm_dp_is_branch(dpcd))
1049		return 0;
1050
1051	if (dpcd[DP_DPCD_REV] < 0x11) {
1052		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1053		case DP_DWN_STRM_PORT_TYPE_TMDS:
1054			return 165000;
1055		default:
1056			return 0;
1057		}
1058	}
1059
1060	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061	case DP_DS_PORT_TYPE_DP_DUALMODE:
1062		if (is_edid_digital_input_dp(edid))
1063			return 0;
1064		/*
1065		 * It's left up to the driver to check the
1066		 * DP dual mode adapter's max TMDS clock.
1067		 *
1068		 * Unfortunately it looks like branch devices
1069		 * may not fordward that the DP dual mode i2c
1070		 * access so we just usually get i2c nak :(
1071		 */
1072		fallthrough;
1073	case DP_DS_PORT_TYPE_HDMI:
1074		 /*
1075		  * We should perhaps assume 165 MHz when detailed cap
1076		  * info is not available. But looks like many typical
1077		  * branch devices fall into that category and so we'd
1078		  * probably end up with users complaining that they can't
1079		  * get high resolution modes with their favorite dongle.
1080		  *
1081		  * So let's limit to 300 MHz instead since DPCD 1.4
1082		  * HDMI 2.0 DFPs are required to have the detailed cap
1083		  * info. So it's more likely we're dealing with a HDMI 1.4
1084		  * compatible* device here.
1085		  */
1086		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1087			return 300000;
1088		return port_cap[1] * 2500;
1089	case DP_DS_PORT_TYPE_DVI:
1090		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1091			return 165000;
1092		/* FIXME what to do about DVI dual link? */
1093		return port_cap[1] * 2500;
1094	default:
1095		return 0;
1096	}
1097}
1098EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1099
1100/**
1101 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1102 * @dpcd: DisplayPort configuration data
1103 * @port_cap: port capabilities
1104 * @edid: EDID
1105 *
1106 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1107 * or 0 if max TMDS clock not defined
1108 */
1109int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1110				     const u8 port_cap[4],
1111				     const struct edid *edid)
1112{
1113	if (!drm_dp_is_branch(dpcd))
1114		return 0;
1115
1116	if (dpcd[DP_DPCD_REV] < 0x11) {
1117		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1118		case DP_DWN_STRM_PORT_TYPE_TMDS:
1119			return 25000;
1120		default:
1121			return 0;
1122		}
1123	}
1124
1125	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1126	case DP_DS_PORT_TYPE_DP_DUALMODE:
1127		if (is_edid_digital_input_dp(edid))
1128			return 0;
1129		fallthrough;
1130	case DP_DS_PORT_TYPE_DVI:
1131	case DP_DS_PORT_TYPE_HDMI:
1132		/*
1133		 * Unclear whether the protocol converter could
1134		 * utilize pixel replication. Assume it won't.
1135		 */
1136		return 25000;
1137	default:
1138		return 0;
1139	}
1140}
1141EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1142
1143/**
1144 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1145 *                               bits per component
1146 * @dpcd: DisplayPort configuration data
1147 * @port_cap: downstream facing port capabilities
1148 * @edid: EDID
1149 *
1150 * Returns: Max bpc on success or 0 if max bpc not defined
1151 */
1152int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1153			      const u8 port_cap[4],
1154			      const struct edid *edid)
1155{
1156	if (!drm_dp_is_branch(dpcd))
1157		return 0;
1158
1159	if (dpcd[DP_DPCD_REV] < 0x11) {
1160		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1161		case DP_DWN_STRM_PORT_TYPE_DP:
1162			return 0;
1163		default:
1164			return 8;
1165		}
1166	}
1167
1168	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1169	case DP_DS_PORT_TYPE_DP:
1170		return 0;
1171	case DP_DS_PORT_TYPE_DP_DUALMODE:
1172		if (is_edid_digital_input_dp(edid))
1173			return 0;
1174		fallthrough;
1175	case DP_DS_PORT_TYPE_HDMI:
1176	case DP_DS_PORT_TYPE_DVI:
1177	case DP_DS_PORT_TYPE_VGA:
1178		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1179			return 8;
1180
1181		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1182		case DP_DS_8BPC:
1183			return 8;
1184		case DP_DS_10BPC:
1185			return 10;
1186		case DP_DS_12BPC:
1187			return 12;
1188		case DP_DS_16BPC:
1189			return 16;
1190		default:
1191			return 8;
1192		}
1193		break;
1194	default:
1195		return 8;
1196	}
1197}
1198EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1199
1200/**
1201 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1202 *                                       YCbCr 4:2:0 pass-through capability
1203 * @dpcd: DisplayPort configuration data
1204 * @port_cap: downstream facing port capabilities
1205 *
1206 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1207 */
1208bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1209				       const u8 port_cap[4])
1210{
1211	if (!drm_dp_is_branch(dpcd))
1212		return false;
1213
1214	if (dpcd[DP_DPCD_REV] < 0x13)
1215		return false;
1216
1217	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1218	case DP_DS_PORT_TYPE_DP:
1219		return true;
1220	case DP_DS_PORT_TYPE_HDMI:
1221		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1222			return false;
1223
1224		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1225	default:
1226		return false;
1227	}
1228}
1229EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1230
1231/**
1232 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1233 *                                             YCbCr 4:4:4->4:2:0 conversion capability
1234 * @dpcd: DisplayPort configuration data
1235 * @port_cap: downstream facing port capabilities
1236 *
1237 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1238 */
1239bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1240					     const u8 port_cap[4])
1241{
1242	if (!drm_dp_is_branch(dpcd))
1243		return false;
1244
1245	if (dpcd[DP_DPCD_REV] < 0x13)
1246		return false;
1247
1248	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1249	case DP_DS_PORT_TYPE_HDMI:
1250		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1251			return false;
1252
1253		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1254	default:
1255		return false;
1256	}
1257}
1258EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1259
1260/**
1261 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1262 *                                               RGB->YCbCr conversion capability
1263 * @dpcd: DisplayPort configuration data
1264 * @port_cap: downstream facing port capabilities
1265 * @color_spc: Colorspace for which conversion cap is sought
1266 *
1267 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1268 * colorspace.
1269 */
1270bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1271					       const u8 port_cap[4],
1272					       u8 color_spc)
1273{
1274	if (!drm_dp_is_branch(dpcd))
1275		return false;
1276
1277	if (dpcd[DP_DPCD_REV] < 0x13)
1278		return false;
1279
1280	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1281	case DP_DS_PORT_TYPE_HDMI:
1282		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1283			return false;
1284
1285		return port_cap[3] & color_spc;
1286	default:
1287		return false;
1288	}
1289}
1290EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1291
1292/**
1293 * drm_dp_downstream_mode() - return a mode for downstream facing port
1294 * @dev: DRM device
1295 * @dpcd: DisplayPort configuration data
1296 * @port_cap: port capabilities
1297 *
1298 * Provides a suitable mode for downstream facing ports without EDID.
1299 *
1300 * Returns: A new drm_display_mode on success or NULL on failure
1301 */
1302struct drm_display_mode *
1303drm_dp_downstream_mode(struct drm_device *dev,
1304		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1305		       const u8 port_cap[4])
1306
1307{
1308	u8 vic;
1309
1310	if (!drm_dp_is_branch(dpcd))
1311		return NULL;
1312
1313	if (dpcd[DP_DPCD_REV] < 0x11)
1314		return NULL;
1315
1316	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317	case DP_DS_PORT_TYPE_NON_EDID:
1318		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1319		case DP_DS_NON_EDID_720x480i_60:
1320			vic = 6;
1321			break;
1322		case DP_DS_NON_EDID_720x480i_50:
1323			vic = 21;
1324			break;
1325		case DP_DS_NON_EDID_1920x1080i_60:
1326			vic = 5;
1327			break;
1328		case DP_DS_NON_EDID_1920x1080i_50:
1329			vic = 20;
1330			break;
1331		case DP_DS_NON_EDID_1280x720_60:
1332			vic = 4;
1333			break;
1334		case DP_DS_NON_EDID_1280x720_50:
1335			vic = 19;
1336			break;
1337		default:
1338			return NULL;
1339		}
1340		return drm_display_mode_from_cea_vic(dev, vic);
1341	default:
1342		return NULL;
1343	}
1344}
1345EXPORT_SYMBOL(drm_dp_downstream_mode);
1346
1347/**
1348 * drm_dp_downstream_id() - identify branch device
1349 * @aux: DisplayPort AUX channel
1350 * @id: DisplayPort branch device id
1351 *
1352 * Returns branch device id on success or NULL on failure
1353 */
1354int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1355{
1356	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1357}
1358EXPORT_SYMBOL(drm_dp_downstream_id);
1359
1360/**
1361 * drm_dp_downstream_debug() - debug DP branch devices
1362 * @m: pointer for debugfs file
1363 * @dpcd: DisplayPort configuration data
1364 * @port_cap: port capabilities
1365 * @edid: EDID
1366 * @aux: DisplayPort AUX channel
1367 *
1368 */
1369void drm_dp_downstream_debug(struct seq_file *m,
1370			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1371			     const u8 port_cap[4],
1372			     const struct edid *edid,
1373			     struct drm_dp_aux *aux)
1374{
1375	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1376				 DP_DETAILED_CAP_INFO_AVAILABLE;
1377	int clk;
1378	int bpc;
1379	char id[7];
1380	int len;
1381	uint8_t rev[2];
1382	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1383	bool branch_device = drm_dp_is_branch(dpcd);
1384
1385	seq_printf(m, "\tDP branch device present: %s\n",
1386		   str_yes_no(branch_device));
1387
1388	if (!branch_device)
1389		return;
1390
1391	switch (type) {
1392	case DP_DS_PORT_TYPE_DP:
1393		seq_puts(m, "\t\tType: DisplayPort\n");
1394		break;
1395	case DP_DS_PORT_TYPE_VGA:
1396		seq_puts(m, "\t\tType: VGA\n");
1397		break;
1398	case DP_DS_PORT_TYPE_DVI:
1399		seq_puts(m, "\t\tType: DVI\n");
1400		break;
1401	case DP_DS_PORT_TYPE_HDMI:
1402		seq_puts(m, "\t\tType: HDMI\n");
1403		break;
1404	case DP_DS_PORT_TYPE_NON_EDID:
1405		seq_puts(m, "\t\tType: others without EDID support\n");
1406		break;
1407	case DP_DS_PORT_TYPE_DP_DUALMODE:
1408		seq_puts(m, "\t\tType: DP++\n");
1409		break;
1410	case DP_DS_PORT_TYPE_WIRELESS:
1411		seq_puts(m, "\t\tType: Wireless\n");
1412		break;
1413	default:
1414		seq_puts(m, "\t\tType: N/A\n");
1415	}
1416
1417	memset(id, 0, sizeof(id));
1418	drm_dp_downstream_id(aux, id);
1419	seq_printf(m, "\t\tID: %s\n", id);
1420
1421	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1422	if (len > 0)
1423		seq_printf(m, "\t\tHW: %d.%d\n",
1424			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1425
1426	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1427	if (len > 0)
1428		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1429
1430	if (detailed_cap_info) {
1431		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1432		if (clk > 0)
1433			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1434
1435		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1436		if (clk > 0)
1437			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1438
1439		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1440		if (clk > 0)
1441			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1442
1443		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1444
1445		if (bpc > 0)
1446			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1447	}
1448}
1449EXPORT_SYMBOL(drm_dp_downstream_debug);
1450
1451/**
1452 * drm_dp_subconnector_type() - get DP branch device type
1453 * @dpcd: DisplayPort configuration data
1454 * @port_cap: port capabilities
1455 */
1456enum drm_mode_subconnector
1457drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1458			 const u8 port_cap[4])
1459{
1460	int type;
1461	if (!drm_dp_is_branch(dpcd))
1462		return DRM_MODE_SUBCONNECTOR_Native;
1463	/* DP 1.0 approach */
1464	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1465		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1466		       DP_DWN_STRM_PORT_TYPE_MASK;
1467
1468		switch (type) {
1469		case DP_DWN_STRM_PORT_TYPE_TMDS:
1470			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1471			return DRM_MODE_SUBCONNECTOR_DVID;
1472		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1473			/* Can be VGA or DVI-A, VGA is more popular */
1474			return DRM_MODE_SUBCONNECTOR_VGA;
1475		case DP_DWN_STRM_PORT_TYPE_DP:
1476			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1477		case DP_DWN_STRM_PORT_TYPE_OTHER:
1478		default:
1479			return DRM_MODE_SUBCONNECTOR_Unknown;
1480		}
1481	}
1482	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1483
1484	switch (type) {
1485	case DP_DS_PORT_TYPE_DP:
1486	case DP_DS_PORT_TYPE_DP_DUALMODE:
1487		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1488	case DP_DS_PORT_TYPE_VGA:
1489		return DRM_MODE_SUBCONNECTOR_VGA;
1490	case DP_DS_PORT_TYPE_DVI:
1491		return DRM_MODE_SUBCONNECTOR_DVID;
1492	case DP_DS_PORT_TYPE_HDMI:
1493		return DRM_MODE_SUBCONNECTOR_HDMIA;
1494	case DP_DS_PORT_TYPE_WIRELESS:
1495		return DRM_MODE_SUBCONNECTOR_Wireless;
1496	case DP_DS_PORT_TYPE_NON_EDID:
1497	default:
1498		return DRM_MODE_SUBCONNECTOR_Unknown;
1499	}
1500}
1501EXPORT_SYMBOL(drm_dp_subconnector_type);
1502
1503/**
1504 * drm_dp_set_subconnector_property - set subconnector for DP connector
1505 * @connector: connector to set property on
1506 * @status: connector status
1507 * @dpcd: DisplayPort configuration data
1508 * @port_cap: port capabilities
1509 *
1510 * Called by a driver on every detect event.
1511 */
1512void drm_dp_set_subconnector_property(struct drm_connector *connector,
1513				      enum drm_connector_status status,
1514				      const u8 *dpcd,
1515				      const u8 port_cap[4])
1516{
1517	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1518
1519	if (status == connector_status_connected)
1520		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1521	drm_object_property_set_value(&connector->base,
1522			connector->dev->mode_config.dp_subconnector_property,
1523			subconnector);
1524}
1525EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1526
1527/**
1528 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1529 * count
1530 * @connector: The DRM connector to check
1531 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1532 * @desc: A cached copy of the connector's DP descriptor
1533 *
1534 * See also: drm_dp_read_sink_count()
1535 *
1536 * Returns: %True if the (e)DP connector has a valid sink count that should
1537 * be probed, %false otherwise.
1538 */
1539bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1540				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1541				const struct drm_dp_desc *desc)
1542{
1543	/* Some eDP panels don't set a valid value for the sink count */
1544	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1545		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1546		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1547		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1548}
1549EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1550
1551/**
1552 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1553 * @aux: The DP AUX channel to use
1554 *
1555 * See also: drm_dp_read_sink_count_cap()
1556 *
1557 * Returns: The current sink count reported by @aux, or a negative error code
1558 * otherwise.
1559 */
1560int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1561{
1562	u8 count;
1563	int ret;
1564
1565	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1566	if (ret < 0)
1567		return ret;
1568	if (ret != 1)
1569		return -EIO;
1570
1571	return DP_GET_SINK_COUNT(count);
1572}
1573EXPORT_SYMBOL(drm_dp_read_sink_count);
1574
1575/*
1576 * I2C-over-AUX implementation
1577 */
1578
1579static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1580{
1581	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1582	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1583	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1584	       I2C_FUNC_10BIT_ADDR;
1585}
1586
1587static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1588{
1589	/*
1590	 * In case of i2c defer or short i2c ack reply to a write,
1591	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1592	 * rest of the message
1593	 */
1594	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1595		msg->request &= DP_AUX_I2C_MOT;
1596		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1597	}
1598}
1599
1600#define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1601#define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1602#define AUX_STOP_LEN 4
1603#define AUX_CMD_LEN 4
1604#define AUX_ADDRESS_LEN 20
1605#define AUX_REPLY_PAD_LEN 4
1606#define AUX_LENGTH_LEN 8
1607
1608/*
1609 * Calculate the duration of the AUX request/reply in usec. Gives the
1610 * "best" case estimate, ie. successful while as short as possible.
1611 */
1612static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1613{
1614	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1615		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1616
1617	if ((msg->request & DP_AUX_I2C_READ) == 0)
1618		len += msg->size * 8;
1619
1620	return len;
1621}
1622
1623static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1624{
1625	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1626		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1627
1628	/*
1629	 * For read we expect what was asked. For writes there will
1630	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1631	 */
1632	if (msg->request & DP_AUX_I2C_READ)
1633		len += msg->size * 8;
1634
1635	return len;
1636}
1637
1638#define I2C_START_LEN 1
1639#define I2C_STOP_LEN 1
1640#define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1641#define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1642
1643/*
1644 * Calculate the length of the i2c transfer in usec, assuming
1645 * the i2c bus speed is as specified. Gives the "worst"
1646 * case estimate, ie. successful while as long as possible.
1647 * Doesn't account the "MOT" bit, and instead assumes each
1648 * message includes a START, ADDRESS and STOP. Neither does it
1649 * account for additional random variables such as clock stretching.
1650 */
1651static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1652				   int i2c_speed_khz)
1653{
1654	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1655	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1656			     msg->size * I2C_DATA_LEN +
1657			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1658}
1659
1660/*
1661 * Determine how many retries should be attempted to successfully transfer
1662 * the specified message, based on the estimated durations of the
1663 * i2c and AUX transfers.
1664 */
1665static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1666			      int i2c_speed_khz)
1667{
1668	int aux_time_us = drm_dp_aux_req_duration(msg) +
1669		drm_dp_aux_reply_duration(msg);
1670	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1671
1672	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1673}
1674
1675/*
1676 * FIXME currently assumes 10 kHz as some real world devices seem
1677 * to require it. We should query/set the speed via DPCD if supported.
1678 */
1679static int dp_aux_i2c_speed_khz __read_mostly = 10;
1680module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1681MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1682		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1683
1684/*
1685 * Transfer a single I2C-over-AUX message and handle various error conditions,
1686 * retrying the transaction as appropriate.  It is assumed that the
1687 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1688 * reply field.
1689 *
1690 * Returns bytes transferred on success, or a negative error code on failure.
1691 */
1692static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1693{
1694	unsigned int retry, defer_i2c;
1695	int ret;
1696	/*
1697	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1698	 * is required to retry at least seven times upon receiving AUX_DEFER
1699	 * before giving up the AUX transaction.
1700	 *
1701	 * We also try to account for the i2c bus speed.
1702	 */
1703	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1704
1705	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1706		ret = aux->transfer(aux, msg);
1707		if (ret < 0) {
1708			if (ret == -EBUSY)
1709				continue;
1710
1711			/*
1712			 * While timeouts can be errors, they're usually normal
1713			 * behavior (for instance, when a driver tries to
1714			 * communicate with a non-existent DisplayPort device).
1715			 * Avoid spamming the kernel log with timeout errors.
1716			 */
1717			if (ret == -ETIMEDOUT)
1718				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1719							aux->name);
1720			else
1721				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1722					    aux->name, ret);
1723			return ret;
1724		}
1725
1726
1727		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1728		case DP_AUX_NATIVE_REPLY_ACK:
1729			/*
1730			 * For I2C-over-AUX transactions this isn't enough, we
1731			 * need to check for the I2C ACK reply.
1732			 */
1733			break;
1734
1735		case DP_AUX_NATIVE_REPLY_NACK:
1736			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1737				    aux->name, ret, msg->size);
1738			return -EREMOTEIO;
1739
1740		case DP_AUX_NATIVE_REPLY_DEFER:
1741			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1742			/*
1743			 * We could check for I2C bit rate capabilities and if
1744			 * available adjust this interval. We could also be
1745			 * more careful with DP-to-legacy adapters where a
1746			 * long legacy cable may force very low I2C bit rates.
1747			 *
1748			 * For now just defer for long enough to hopefully be
1749			 * safe for all use-cases.
1750			 */
1751			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1752			continue;
1753
1754		default:
1755			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1756				aux->name, msg->reply);
1757			return -EREMOTEIO;
1758		}
1759
1760		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1761		case DP_AUX_I2C_REPLY_ACK:
1762			/*
1763			 * Both native ACK and I2C ACK replies received. We
1764			 * can assume the transfer was successful.
1765			 */
1766			if (ret != msg->size)
1767				drm_dp_i2c_msg_write_status_update(msg);
1768			return ret;
1769
1770		case DP_AUX_I2C_REPLY_NACK:
1771			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1772				    aux->name, ret, msg->size);
1773			aux->i2c_nack_count++;
1774			return -EREMOTEIO;
1775
1776		case DP_AUX_I2C_REPLY_DEFER:
1777			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1778			/* DP Compliance Test 4.2.2.5 Requirement:
1779			 * Must have at least 7 retries for I2C defers on the
1780			 * transaction to pass this test
1781			 */
1782			aux->i2c_defer_count++;
1783			if (defer_i2c < 7)
1784				defer_i2c++;
1785			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1786			drm_dp_i2c_msg_write_status_update(msg);
1787
1788			continue;
1789
1790		default:
1791			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1792				aux->name, msg->reply);
1793			return -EREMOTEIO;
1794		}
1795	}
1796
1797	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1798	return -EREMOTEIO;
1799}
1800
1801static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1802				       const struct i2c_msg *i2c_msg)
1803{
1804	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1805		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1806	if (!(i2c_msg->flags & I2C_M_STOP))
1807		msg->request |= DP_AUX_I2C_MOT;
1808}
1809
1810/*
1811 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1812 *
1813 * Returns an error code on failure, or a recommended transfer size on success.
1814 */
1815static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1816{
1817	int err, ret = orig_msg->size;
1818	struct drm_dp_aux_msg msg = *orig_msg;
1819
1820	while (msg.size > 0) {
1821		err = drm_dp_i2c_do_msg(aux, &msg);
1822		if (err <= 0)
1823			return err == 0 ? -EPROTO : err;
1824
1825		if (err < msg.size && err < ret) {
1826			drm_dbg_kms(aux->drm_dev,
1827				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1828				    aux->name, msg.size, err);
1829			ret = err;
1830		}
1831
1832		msg.size -= err;
1833		msg.buffer += err;
1834	}
1835
1836	return ret;
1837}
1838
1839/*
1840 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1841 * packets to be as large as possible. If not, the I2C transactions never
1842 * succeed. Hence the default is maximum.
1843 */
1844static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1845module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1846MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1847		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1848
1849static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1850			   int num)
1851{
1852	struct drm_dp_aux *aux = adapter->algo_data;
1853	unsigned int i, j;
1854	unsigned transfer_size;
1855	struct drm_dp_aux_msg msg;
1856	int err = 0;
1857
1858	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1859
1860	memset(&msg, 0, sizeof(msg));
1861
1862	for (i = 0; i < num; i++) {
1863		msg.address = msgs[i].addr;
1864		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1865		/* Send a bare address packet to start the transaction.
1866		 * Zero sized messages specify an address only (bare
1867		 * address) transaction.
1868		 */
1869		msg.buffer = NULL;
1870		msg.size = 0;
1871		err = drm_dp_i2c_do_msg(aux, &msg);
1872
1873		/*
1874		 * Reset msg.request in case in case it got
1875		 * changed into a WRITE_STATUS_UPDATE.
1876		 */
1877		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1878
1879		if (err < 0)
1880			break;
1881		/* We want each transaction to be as large as possible, but
1882		 * we'll go to smaller sizes if the hardware gives us a
1883		 * short reply.
1884		 */
1885		transfer_size = dp_aux_i2c_transfer_size;
1886		for (j = 0; j < msgs[i].len; j += msg.size) {
1887			msg.buffer = msgs[i].buf + j;
1888			msg.size = min(transfer_size, msgs[i].len - j);
1889
1890			err = drm_dp_i2c_drain_msg(aux, &msg);
1891
1892			/*
1893			 * Reset msg.request in case in case it got
1894			 * changed into a WRITE_STATUS_UPDATE.
1895			 */
1896			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1897
1898			if (err < 0)
1899				break;
1900			transfer_size = err;
1901		}
1902		if (err < 0)
1903			break;
1904	}
1905	if (err >= 0)
1906		err = num;
1907	/* Send a bare address packet to close out the transaction.
1908	 * Zero sized messages specify an address only (bare
1909	 * address) transaction.
1910	 */
1911	msg.request &= ~DP_AUX_I2C_MOT;
1912	msg.buffer = NULL;
1913	msg.size = 0;
1914	(void)drm_dp_i2c_do_msg(aux, &msg);
1915
1916	return err;
1917}
1918
1919static const struct i2c_algorithm drm_dp_i2c_algo = {
1920	.functionality = drm_dp_i2c_functionality,
1921	.master_xfer = drm_dp_i2c_xfer,
1922};
1923
1924static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1925{
1926	return container_of(i2c, struct drm_dp_aux, ddc);
1927}
1928
1929static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1930{
1931	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1932}
1933
1934static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1935{
1936	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1937}
1938
1939static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1940{
1941	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1942}
1943
1944static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1945	.lock_bus = lock_bus,
1946	.trylock_bus = trylock_bus,
1947	.unlock_bus = unlock_bus,
1948};
1949
1950static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1951{
1952	u8 buf, count;
1953	int ret;
1954
1955	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1956	if (ret < 0)
1957		return ret;
1958
1959	WARN_ON(!(buf & DP_TEST_SINK_START));
1960
1961	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1962	if (ret < 0)
1963		return ret;
1964
1965	count = buf & DP_TEST_COUNT_MASK;
1966	if (count == aux->crc_count)
1967		return -EAGAIN; /* No CRC yet */
1968
1969	aux->crc_count = count;
1970
1971	/*
1972	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1973	 * per component (RGB or CrYCb).
1974	 */
1975	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1976	if (ret < 0)
1977		return ret;
1978
1979	return 0;
1980}
1981
1982static void drm_dp_aux_crc_work(struct work_struct *work)
1983{
1984	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1985					      crc_work);
1986	struct drm_crtc *crtc;
1987	u8 crc_bytes[6];
1988	uint32_t crcs[3];
1989	int ret;
1990
1991	if (WARN_ON(!aux->crtc))
1992		return;
1993
1994	crtc = aux->crtc;
1995	while (crtc->crc.opened) {
1996		drm_crtc_wait_one_vblank(crtc);
1997		if (!crtc->crc.opened)
1998			break;
1999
2000		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2001		if (ret == -EAGAIN) {
2002			usleep_range(1000, 2000);
2003			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004		}
2005
2006		if (ret == -EAGAIN) {
2007			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2008				    aux->name, ret);
2009			continue;
2010		} else if (ret) {
2011			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2012			continue;
2013		}
2014
2015		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2016		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2017		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2018		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2019	}
2020}
2021
2022/**
2023 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2024 * @aux: DisplayPort AUX channel
2025 *
2026 * Used for remote aux channel in general. Merely initialize the crc work
2027 * struct.
2028 */
2029void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2030{
2031	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2032}
2033EXPORT_SYMBOL(drm_dp_remote_aux_init);
2034
2035/**
2036 * drm_dp_aux_init() - minimally initialise an aux channel
2037 * @aux: DisplayPort AUX channel
2038 *
2039 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2040 * the outside world, call drm_dp_aux_init() first. For drivers which are
2041 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2042 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2043 * has been registered to allow userspace access to the auxiliary DP channel.
2044 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2045 * early as possible so that the &drm_device that corresponds to the AUX adapter
2046 * may be mentioned in debugging output from the DRM DP helpers.
2047 *
2048 * For devices which use a separate platform device for their AUX adapters, this
2049 * may be called as early as required by the driver.
2050 *
2051 */
2052void drm_dp_aux_init(struct drm_dp_aux *aux)
2053{
2054	mutex_init(&aux->hw_mutex);
2055	mutex_init(&aux->cec.lock);
2056	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2057
2058	aux->ddc.algo = &drm_dp_i2c_algo;
2059	aux->ddc.algo_data = aux;
2060	aux->ddc.retries = 3;
2061
2062	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2063}
2064EXPORT_SYMBOL(drm_dp_aux_init);
2065
2066/**
2067 * drm_dp_aux_register() - initialise and register aux channel
2068 * @aux: DisplayPort AUX channel
2069 *
2070 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2071 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2072 * initialized. For devices which are grandparents of their AUX channels,
2073 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2074 * corresponds to @aux. For these devices, it's advised to call
2075 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2076 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2077 * Functions which don't follow this will likely Oops when
2078 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2079 *
2080 * For devices where the AUX channel is a device that exists independently of
2081 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2082 * recommended to call drm_dp_aux_register() after a &drm_device has been
2083 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2084 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2085 * with the AUX channel (e.g. on bridge detach).
2086 *
2087 * Drivers which need to use the aux channel before either of the two points
2088 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2089 * channel before registration.
2090 *
2091 * Returns 0 on success or a negative error code on failure.
2092 */
2093int drm_dp_aux_register(struct drm_dp_aux *aux)
2094{
2095	int ret;
2096
2097	WARN_ON_ONCE(!aux->drm_dev);
2098
2099	if (!aux->ddc.algo)
2100		drm_dp_aux_init(aux);
2101
2102	aux->ddc.class = I2C_CLASS_DDC;
2103	aux->ddc.owner = THIS_MODULE;
2104	aux->ddc.dev.parent = aux->dev;
2105
2106	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2107		sizeof(aux->ddc.name));
2108
2109	ret = drm_dp_aux_register_devnode(aux);
2110	if (ret)
2111		return ret;
2112
2113	ret = i2c_add_adapter(&aux->ddc);
2114	if (ret) {
2115		drm_dp_aux_unregister_devnode(aux);
2116		return ret;
2117	}
2118
2119	return 0;
2120}
2121EXPORT_SYMBOL(drm_dp_aux_register);
2122
2123/**
2124 * drm_dp_aux_unregister() - unregister an AUX adapter
2125 * @aux: DisplayPort AUX channel
2126 */
2127void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2128{
2129	drm_dp_aux_unregister_devnode(aux);
2130	i2c_del_adapter(&aux->ddc);
2131}
2132EXPORT_SYMBOL(drm_dp_aux_unregister);
2133
2134#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2135
2136/**
2137 * drm_dp_psr_setup_time() - PSR setup in time usec
2138 * @psr_cap: PSR capabilities from DPCD
2139 *
2140 * Returns:
2141 * PSR setup time for the panel in microseconds,  negative
2142 * error code on failure.
2143 */
2144int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2145{
2146	static const u16 psr_setup_time_us[] = {
2147		PSR_SETUP_TIME(330),
2148		PSR_SETUP_TIME(275),
2149		PSR_SETUP_TIME(220),
2150		PSR_SETUP_TIME(165),
2151		PSR_SETUP_TIME(110),
2152		PSR_SETUP_TIME(55),
2153		PSR_SETUP_TIME(0),
2154	};
2155	int i;
2156
2157	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2158	if (i >= ARRAY_SIZE(psr_setup_time_us))
2159		return -EINVAL;
2160
2161	return psr_setup_time_us[i];
2162}
2163EXPORT_SYMBOL(drm_dp_psr_setup_time);
2164
2165#undef PSR_SETUP_TIME
2166
2167/**
2168 * drm_dp_start_crc() - start capture of frame CRCs
2169 * @aux: DisplayPort AUX channel
2170 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2171 *
2172 * Returns 0 on success or a negative error code on failure.
2173 */
2174int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2175{
2176	u8 buf;
2177	int ret;
2178
2179	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2180	if (ret < 0)
2181		return ret;
2182
2183	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2184	if (ret < 0)
2185		return ret;
2186
2187	aux->crc_count = 0;
2188	aux->crtc = crtc;
2189	schedule_work(&aux->crc_work);
2190
2191	return 0;
2192}
2193EXPORT_SYMBOL(drm_dp_start_crc);
2194
2195/**
2196 * drm_dp_stop_crc() - stop capture of frame CRCs
2197 * @aux: DisplayPort AUX channel
2198 *
2199 * Returns 0 on success or a negative error code on failure.
2200 */
2201int drm_dp_stop_crc(struct drm_dp_aux *aux)
2202{
2203	u8 buf;
2204	int ret;
2205
2206	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2207	if (ret < 0)
2208		return ret;
2209
2210	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2211	if (ret < 0)
2212		return ret;
2213
2214	flush_work(&aux->crc_work);
2215	aux->crtc = NULL;
2216
2217	return 0;
2218}
2219EXPORT_SYMBOL(drm_dp_stop_crc);
2220
2221struct dpcd_quirk {
2222	u8 oui[3];
2223	u8 device_id[6];
2224	bool is_branch;
2225	u32 quirks;
2226};
2227
2228#define OUI(first, second, third) { (first), (second), (third) }
2229#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2230	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2231
2232#define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2233
2234static const struct dpcd_quirk dpcd_quirk_list[] = {
2235	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2236	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2237	/* LG LP140WF6-SPM1 eDP panel */
2238	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2239	/* Apple panels need some additional handling to support PSR */
2240	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2241	/* CH7511 seems to leave SINK_COUNT zeroed */
2242	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2243	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2244	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2245	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2246	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2247};
2248
2249#undef OUI
2250
2251/*
2252 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2253 * ident. The quirk data is shared but it's up to the drivers to act on the
2254 * data.
2255 *
2256 * For now, only the OUI (first three bytes) is used, but this may be extended
2257 * to device identification string and hardware/firmware revisions later.
2258 */
2259static u32
2260drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2261{
2262	const struct dpcd_quirk *quirk;
2263	u32 quirks = 0;
2264	int i;
2265	u8 any_device[] = DEVICE_ID_ANY;
2266
2267	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2268		quirk = &dpcd_quirk_list[i];
2269
2270		if (quirk->is_branch != is_branch)
2271			continue;
2272
2273		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2274			continue;
2275
2276		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2277		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2278			continue;
2279
2280		quirks |= quirk->quirks;
2281	}
2282
2283	return quirks;
2284}
2285
2286#undef DEVICE_ID_ANY
2287#undef DEVICE_ID
2288
2289/**
2290 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2291 * @aux: DisplayPort AUX channel
2292 * @desc: Device descriptor to fill from DPCD
2293 * @is_branch: true for branch devices, false for sink devices
2294 *
2295 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2296 * identification.
2297 *
2298 * Returns 0 on success or a negative error code on failure.
2299 */
2300int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2301		     bool is_branch)
2302{
2303	struct drm_dp_dpcd_ident *ident = &desc->ident;
2304	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2305	int ret, dev_id_len;
2306
2307	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2308	if (ret < 0)
2309		return ret;
2310
2311	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2312
2313	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2314
2315	drm_dbg_kms(aux->drm_dev,
2316		    "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2317		    aux->name, is_branch ? "branch" : "sink",
2318		    (int)sizeof(ident->oui), ident->oui, dev_id_len,
2319		    ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2320		    ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2321
2322	return 0;
2323}
2324EXPORT_SYMBOL(drm_dp_read_desc);
2325
2326/**
2327 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2328 * supported by the DSC sink.
2329 * @dsc_dpcd: DSC capabilities from DPCD
2330 * @is_edp: true if its eDP, false for DP
2331 *
2332 * Read the slice capabilities DPCD register from DSC sink to get
2333 * the maximum slice count supported. This is used to populate
2334 * the DSC parameters in the &struct drm_dsc_config by the driver.
2335 * Driver creates an infoframe using these parameters to populate
2336 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2337 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2338 *
2339 * Returns:
2340 * Maximum slice count supported by DSC sink or 0 its invalid
2341 */
2342u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2343				   bool is_edp)
2344{
2345	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2346
2347	if (is_edp) {
2348		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2349		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2350			return 4;
2351		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2352			return 2;
2353		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2354			return 1;
2355	} else {
2356		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2357		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2358
2359		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2360			return 24;
2361		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2362			return 20;
2363		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2364			return 16;
2365		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2366			return 12;
2367		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2368			return 10;
2369		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2370			return 8;
2371		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2372			return 6;
2373		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2374			return 4;
2375		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2376			return 2;
2377		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2378			return 1;
2379	}
2380
2381	return 0;
2382}
2383EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2384
2385/**
2386 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2387 * @dsc_dpcd: DSC capabilities from DPCD
2388 *
2389 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2390 * number of bits of precision within the decoder line buffer supported by
2391 * the DSC sink. This is used to populate the DSC parameters in the
2392 * &struct drm_dsc_config by the driver.
2393 * Driver creates an infoframe using these parameters to populate
2394 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2395 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2396 *
2397 * Returns:
2398 * Line buffer depth supported by DSC panel or 0 its invalid
2399 */
2400u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2401{
2402	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2403
2404	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2405	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2406		return 9;
2407	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2408		return 10;
2409	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2410		return 11;
2411	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2412		return 12;
2413	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2414		return 13;
2415	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2416		return 14;
2417	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2418		return 15;
2419	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2420		return 16;
2421	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2422		return 8;
2423	}
2424
2425	return 0;
2426}
2427EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2428
2429/**
2430 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2431 * values supported by the DSC sink.
2432 * @dsc_dpcd: DSC capabilities from DPCD
2433 * @dsc_bpc: An array to be filled by this helper with supported
2434 *           input bpcs.
2435 *
2436 * Read the DSC DPCD from the sink device to parse the supported bits per
2437 * component values. This is used to populate the DSC parameters
2438 * in the &struct drm_dsc_config by the driver.
2439 * Driver creates an infoframe using these parameters to populate
2440 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2441 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2442 *
2443 * Returns:
2444 * Number of input BPC values parsed from the DPCD
2445 */
2446int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2447					 u8 dsc_bpc[3])
2448{
2449	int num_bpc = 0;
2450	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2451
2452	if (color_depth & DP_DSC_12_BPC)
2453		dsc_bpc[num_bpc++] = 12;
2454	if (color_depth & DP_DSC_10_BPC)
2455		dsc_bpc[num_bpc++] = 10;
2456	if (color_depth & DP_DSC_8_BPC)
2457		dsc_bpc[num_bpc++] = 8;
2458
2459	return num_bpc;
2460}
2461EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2462
2463static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2464				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2465				  u8 *buf, int buf_size)
2466{
2467	/*
2468	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2469	 * corrupted values when reading from the 0xF0000- range with a block
2470	 * size bigger than 1.
2471	 */
2472	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2473	int offset;
2474	int ret;
2475
2476	for (offset = 0; offset < buf_size; offset += block_size) {
2477		ret = drm_dp_dpcd_read(aux,
2478				       address + offset,
2479				       &buf[offset], block_size);
2480		if (ret < 0)
2481			return ret;
2482
2483		WARN_ON(ret != block_size);
2484	}
2485
2486	return 0;
2487}
2488
2489/**
2490 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2491 * @aux: DisplayPort AUX channel
2492 * @dpcd: DisplayPort configuration data
2493 * @caps: buffer to return the capability info in
2494 *
2495 * Read capabilities common to all LTTPRs.
2496 *
2497 * Returns 0 on success or a negative error code on failure.
2498 */
2499int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2500				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2501				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2502{
2503	return drm_dp_read_lttpr_regs(aux, dpcd,
2504				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2505				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2506}
2507EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2508
2509/**
2510 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2511 * @aux: DisplayPort AUX channel
2512 * @dpcd: DisplayPort configuration data
2513 * @dp_phy: LTTPR PHY to read the capabilities for
2514 * @caps: buffer to return the capability info in
2515 *
2516 * Read the capabilities for the given LTTPR PHY.
2517 *
2518 * Returns 0 on success or a negative error code on failure.
2519 */
2520int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2521			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2522			       enum drm_dp_phy dp_phy,
2523			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2524{
2525	return drm_dp_read_lttpr_regs(aux, dpcd,
2526				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2527				      caps, DP_LTTPR_PHY_CAP_SIZE);
2528}
2529EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2530
2531static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2532{
2533	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2534}
2535
2536/**
2537 * drm_dp_lttpr_count - get the number of detected LTTPRs
2538 * @caps: LTTPR common capabilities
2539 *
2540 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2541 *
2542 * Returns:
2543 *   -ERANGE if more than supported number (8) of LTTPRs are detected
2544 *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2545 *   otherwise the number of detected LTTPRs
2546 */
2547int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2548{
2549	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2550
2551	switch (hweight8(count)) {
2552	case 0:
2553		return 0;
2554	case 1:
2555		return 8 - ilog2(count);
2556	case 8:
2557		return -ERANGE;
2558	default:
2559		return -EINVAL;
2560	}
2561}
2562EXPORT_SYMBOL(drm_dp_lttpr_count);
2563
2564/**
2565 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2566 * @caps: LTTPR common capabilities
2567 *
2568 * Returns the maximum link rate supported by all detected LTTPRs.
2569 */
2570int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2571{
2572	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2573
2574	return drm_dp_bw_code_to_link_rate(rate);
2575}
2576EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2577
2578/**
2579 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2580 * @caps: LTTPR common capabilities
2581 *
2582 * Returns the maximum lane count supported by all detected LTTPRs.
2583 */
2584int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2585{
2586	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2587
2588	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2589}
2590EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2591
2592/**
2593 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2594 * @caps: LTTPR PHY capabilities
2595 *
2596 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2597 * voltage swing level 3.
2598 */
2599bool
2600drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2601{
2602	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2603
2604	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2605}
2606EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2607
2608/**
2609 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2610 * @caps: LTTPR PHY capabilities
2611 *
2612 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2613 * pre-emphasis level 3.
2614 */
2615bool
2616drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2617{
2618	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2619
2620	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2621}
2622EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2623
2624/**
2625 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2626 * @aux: DisplayPort AUX channel
2627 * @data: DP phy compliance test parameters.
2628 *
2629 * Returns 0 on success or a negative error code on failure.
2630 */
2631int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2632				struct drm_dp_phy_test_params *data)
2633{
2634	int err;
2635	u8 rate, lanes;
2636
2637	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2638	if (err < 0)
2639		return err;
2640	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2641
2642	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2643	if (err < 0)
2644		return err;
2645	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2646
2647	if (lanes & DP_ENHANCED_FRAME_CAP)
2648		data->enhanced_frame_cap = true;
2649
2650	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2651	if (err < 0)
2652		return err;
2653
2654	switch (data->phy_pattern) {
2655	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2656		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2657				       &data->custom80, sizeof(data->custom80));
2658		if (err < 0)
2659			return err;
2660
2661		break;
2662	case DP_PHY_TEST_PATTERN_CP2520:
2663		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2664				       &data->hbr2_reset,
2665				       sizeof(data->hbr2_reset));
2666		if (err < 0)
2667			return err;
2668	}
2669
2670	return 0;
2671}
2672EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2673
2674/**
2675 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2676 * @aux: DisplayPort AUX channel
2677 * @data: DP phy compliance test parameters.
2678 * @dp_rev: DP revision to use for compliance testing
2679 *
2680 * Returns 0 on success or a negative error code on failure.
2681 */
2682int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2683				struct drm_dp_phy_test_params *data, u8 dp_rev)
2684{
2685	int err, i;
2686	u8 test_pattern;
2687
2688	test_pattern = data->phy_pattern;
2689	if (dp_rev < 0x12) {
2690		test_pattern = (test_pattern << 2) &
2691			       DP_LINK_QUAL_PATTERN_11_MASK;
2692		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2693					 test_pattern);
2694		if (err < 0)
2695			return err;
2696	} else {
2697		for (i = 0; i < data->num_lanes; i++) {
2698			err = drm_dp_dpcd_writeb(aux,
2699						 DP_LINK_QUAL_LANE0_SET + i,
2700						 test_pattern);
2701			if (err < 0)
2702				return err;
2703		}
2704	}
2705
2706	return 0;
2707}
2708EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2709
2710static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2711{
2712	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2713		return "Invalid";
2714
2715	switch (pixelformat) {
2716	case DP_PIXELFORMAT_RGB:
2717		return "RGB";
2718	case DP_PIXELFORMAT_YUV444:
2719		return "YUV444";
2720	case DP_PIXELFORMAT_YUV422:
2721		return "YUV422";
2722	case DP_PIXELFORMAT_YUV420:
2723		return "YUV420";
2724	case DP_PIXELFORMAT_Y_ONLY:
2725		return "Y_ONLY";
2726	case DP_PIXELFORMAT_RAW:
2727		return "RAW";
2728	default:
2729		return "Reserved";
2730	}
2731}
2732
2733static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2734					   enum dp_colorimetry colorimetry)
2735{
2736	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2737		return "Invalid";
2738
2739	switch (colorimetry) {
2740	case DP_COLORIMETRY_DEFAULT:
2741		switch (pixelformat) {
2742		case DP_PIXELFORMAT_RGB:
2743			return "sRGB";
2744		case DP_PIXELFORMAT_YUV444:
2745		case DP_PIXELFORMAT_YUV422:
2746		case DP_PIXELFORMAT_YUV420:
2747			return "BT.601";
2748		case DP_PIXELFORMAT_Y_ONLY:
2749			return "DICOM PS3.14";
2750		case DP_PIXELFORMAT_RAW:
2751			return "Custom Color Profile";
2752		default:
2753			return "Reserved";
2754		}
2755	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2756		switch (pixelformat) {
2757		case DP_PIXELFORMAT_RGB:
2758			return "Wide Fixed";
2759		case DP_PIXELFORMAT_YUV444:
2760		case DP_PIXELFORMAT_YUV422:
2761		case DP_PIXELFORMAT_YUV420:
2762			return "BT.709";
2763		default:
2764			return "Reserved";
2765		}
2766	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2767		switch (pixelformat) {
2768		case DP_PIXELFORMAT_RGB:
2769			return "Wide Float";
2770		case DP_PIXELFORMAT_YUV444:
2771		case DP_PIXELFORMAT_YUV422:
2772		case DP_PIXELFORMAT_YUV420:
2773			return "xvYCC 601";
2774		default:
2775			return "Reserved";
2776		}
2777	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2778		switch (pixelformat) {
2779		case DP_PIXELFORMAT_RGB:
2780			return "OpRGB";
2781		case DP_PIXELFORMAT_YUV444:
2782		case DP_PIXELFORMAT_YUV422:
2783		case DP_PIXELFORMAT_YUV420:
2784			return "xvYCC 709";
2785		default:
2786			return "Reserved";
2787		}
2788	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2789		switch (pixelformat) {
2790		case DP_PIXELFORMAT_RGB:
2791			return "DCI-P3";
2792		case DP_PIXELFORMAT_YUV444:
2793		case DP_PIXELFORMAT_YUV422:
2794		case DP_PIXELFORMAT_YUV420:
2795			return "sYCC 601";
2796		default:
2797			return "Reserved";
2798		}
2799	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2800		switch (pixelformat) {
2801		case DP_PIXELFORMAT_RGB:
2802			return "Custom Profile";
2803		case DP_PIXELFORMAT_YUV444:
2804		case DP_PIXELFORMAT_YUV422:
2805		case DP_PIXELFORMAT_YUV420:
2806			return "OpYCC 601";
2807		default:
2808			return "Reserved";
2809		}
2810	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2811		switch (pixelformat) {
2812		case DP_PIXELFORMAT_RGB:
2813			return "BT.2020 RGB";
2814		case DP_PIXELFORMAT_YUV444:
2815		case DP_PIXELFORMAT_YUV422:
2816		case DP_PIXELFORMAT_YUV420:
2817			return "BT.2020 CYCC";
2818		default:
2819			return "Reserved";
2820		}
2821	case DP_COLORIMETRY_BT2020_YCC:
2822		switch (pixelformat) {
2823		case DP_PIXELFORMAT_YUV444:
2824		case DP_PIXELFORMAT_YUV422:
2825		case DP_PIXELFORMAT_YUV420:
2826			return "BT.2020 YCC";
2827		default:
2828			return "Reserved";
2829		}
2830	default:
2831		return "Invalid";
2832	}
2833}
2834
2835static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2836{
2837	switch (dynamic_range) {
2838	case DP_DYNAMIC_RANGE_VESA:
2839		return "VESA range";
2840	case DP_DYNAMIC_RANGE_CTA:
2841		return "CTA range";
2842	default:
2843		return "Invalid";
2844	}
2845}
2846
2847static const char *dp_content_type_get_name(enum dp_content_type content_type)
2848{
2849	switch (content_type) {
2850	case DP_CONTENT_TYPE_NOT_DEFINED:
2851		return "Not defined";
2852	case DP_CONTENT_TYPE_GRAPHICS:
2853		return "Graphics";
2854	case DP_CONTENT_TYPE_PHOTO:
2855		return "Photo";
2856	case DP_CONTENT_TYPE_VIDEO:
2857		return "Video";
2858	case DP_CONTENT_TYPE_GAME:
2859		return "Game";
2860	default:
2861		return "Reserved";
2862	}
2863}
2864
2865void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2866			const struct drm_dp_vsc_sdp *vsc)
2867{
2868#define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2869	DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2870		   vsc->revision, vsc->length);
2871	DP_SDP_LOG("    pixelformat: %s\n",
2872		   dp_pixelformat_get_name(vsc->pixelformat));
2873	DP_SDP_LOG("    colorimetry: %s\n",
2874		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2875	DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2876	DP_SDP_LOG("    dynamic range: %s\n",
2877		   dp_dynamic_range_get_name(vsc->dynamic_range));
2878	DP_SDP_LOG("    content type: %s\n",
2879		   dp_content_type_get_name(vsc->content_type));
2880#undef DP_SDP_LOG
2881}
2882EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2883
2884/**
2885 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2886 * @dpcd: DisplayPort configuration data
2887 * @port_cap: port capabilities
2888 *
2889 * Returns maximum frl bandwidth supported by PCON in GBPS,
2890 * returns 0 if not supported.
2891 */
2892int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2893			       const u8 port_cap[4])
2894{
2895	int bw;
2896	u8 buf;
2897
2898	buf = port_cap[2];
2899	bw = buf & DP_PCON_MAX_FRL_BW;
2900
2901	switch (bw) {
2902	case DP_PCON_MAX_9GBPS:
2903		return 9;
2904	case DP_PCON_MAX_18GBPS:
2905		return 18;
2906	case DP_PCON_MAX_24GBPS:
2907		return 24;
2908	case DP_PCON_MAX_32GBPS:
2909		return 32;
2910	case DP_PCON_MAX_40GBPS:
2911		return 40;
2912	case DP_PCON_MAX_48GBPS:
2913		return 48;
2914	case DP_PCON_MAX_0GBPS:
2915	default:
2916		return 0;
2917	}
2918
2919	return 0;
2920}
2921EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2922
2923/**
2924 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2925 * @aux: DisplayPort AUX channel
2926 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2927 *
2928 * Returns 0 if success, else returns negative error code.
2929 */
2930int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2931{
2932	int ret;
2933	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2934		 DP_PCON_ENABLE_LINK_FRL_MODE;
2935
2936	if (enable_frl_ready_hpd)
2937		buf |= DP_PCON_ENABLE_HPD_READY;
2938
2939	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2940
2941	return ret;
2942}
2943EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2944
2945/**
2946 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2947 * @aux: DisplayPort AUX channel
2948 *
2949 * Returns true if success, else returns false.
2950 */
2951bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2952{
2953	int ret;
2954	u8 buf;
2955
2956	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2957	if (ret < 0)
2958		return false;
2959
2960	if (buf & DP_PCON_FRL_READY)
2961		return true;
2962
2963	return false;
2964}
2965EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2966
2967/**
2968 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2969 * @aux: DisplayPort AUX channel
2970 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2971 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2972 * In Concurrent Mode, the FRL link bring up can be done along with
2973 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2974 * the DP Link training.
2975 *
2976 * Returns 0 if success, else returns negative error code.
2977 */
2978
2979int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2980				u8 frl_mode)
2981{
2982	int ret;
2983	u8 buf;
2984
2985	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2986	if (ret < 0)
2987		return ret;
2988
2989	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2990		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2991	else
2992		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2993
2994	switch (max_frl_gbps) {
2995	case 9:
2996		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
2997		break;
2998	case 18:
2999		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3000		break;
3001	case 24:
3002		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3003		break;
3004	case 32:
3005		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3006		break;
3007	case 40:
3008		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3009		break;
3010	case 48:
3011		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3012		break;
3013	case 0:
3014		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3015		break;
3016	default:
3017		return -EINVAL;
3018	}
3019
3020	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3021	if (ret < 0)
3022		return ret;
3023
3024	return 0;
3025}
3026EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3027
3028/**
3029 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3030 * @aux: DisplayPort AUX channel
3031 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3032 * @frl_type : FRL training type, can be Extended, or Normal.
3033 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3034 * starting from min, and stops when link training is successful. In Extended
3035 * FRL training, all frl bw selected in the mask are trained by the PCON.
3036 *
3037 * Returns 0 if success, else returns negative error code.
3038 */
3039int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3040				u8 frl_type)
3041{
3042	int ret;
3043	u8 buf = max_frl_mask;
3044
3045	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3046		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3047	else
3048		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3049
3050	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3051	if (ret < 0)
3052		return ret;
3053
3054	return 0;
3055}
3056EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3057
3058/**
3059 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3060 * @aux: DisplayPort AUX channel
3061 *
3062 * Returns 0 if success, else returns negative error code.
3063 */
3064int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3065{
3066	int ret;
3067
3068	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3069	if (ret < 0)
3070		return ret;
3071
3072	return 0;
3073}
3074EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3075
3076/**
3077 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3078 * @aux: DisplayPort AUX channel
3079 *
3080 * Returns 0 if success, else returns negative error code.
3081 */
3082int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3083{
3084	int ret;
3085	u8 buf = 0;
3086
3087	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3088	if (ret < 0)
3089		return ret;
3090	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3091		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3092			    aux->name);
3093		return -EINVAL;
3094	}
3095	buf |= DP_PCON_ENABLE_HDMI_LINK;
3096	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3097	if (ret < 0)
3098		return ret;
3099
3100	return 0;
3101}
3102EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3103
3104/**
3105 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3106 * @aux: DisplayPort AUX channel
3107 *
3108 * Returns true if link is active else returns false.
3109 */
3110bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3111{
3112	u8 buf;
3113	int ret;
3114
3115	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3116	if (ret < 0)
3117		return false;
3118
3119	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3120}
3121EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3122
3123/**
3124 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3125 * @aux: DisplayPort AUX channel
3126 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3127 * Valid only if the MODE returned is FRL. For Normal Link training mode
3128 * only 1 of the bits will be set, but in case of Extended mode, more than
3129 * one bits can be set.
3130 *
3131 * Returns the link mode : TMDS or FRL on success, else returns negative error
3132 * code.
3133 */
3134int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3135{
3136	u8 buf;
3137	int mode;
3138	int ret;
3139
3140	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3141	if (ret < 0)
3142		return ret;
3143
3144	mode = buf & DP_PCON_HDMI_LINK_MODE;
3145
3146	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3147		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3148
3149	return mode;
3150}
3151EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3152
3153/**
3154 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3155 * during link failure between PCON and HDMI sink
3156 * @aux: DisplayPort AUX channel
3157 * @connector: DRM connector
3158 * code.
3159 **/
3160
3161void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3162					   struct drm_connector *connector)
3163{
3164	u8 buf, error_count;
3165	int i, num_error;
3166	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3167
3168	for (i = 0; i < hdmi->max_lanes; i++) {
3169		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3170			return;
3171
3172		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3173		switch (error_count) {
3174		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3175			num_error = 100;
3176			break;
3177		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3178			num_error = 10;
3179			break;
3180		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3181			num_error = 3;
3182			break;
3183		default:
3184			num_error = 0;
3185		}
3186
3187		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3188			aux->name, num_error, i);
3189	}
3190}
3191EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3192
3193/*
3194 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3195 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3196 *
3197 * Returns true is PCON encoder is DSC 1.2 else returns false.
3198 */
3199bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3200{
3201	u8 buf;
3202	u8 major_v, minor_v;
3203
3204	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3205	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3206	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3207
3208	if (major_v == 1 && minor_v == 2)
3209		return true;
3210
3211	return false;
3212}
3213EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3214
3215/*
3216 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3217 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3218 *
3219 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3220 */
3221int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3222{
3223	u8 slice_cap1, slice_cap2;
3224
3225	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3226	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3227
3228	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3229		return 24;
3230	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3231		return 20;
3232	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3233		return 16;
3234	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3235		return 12;
3236	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3237		return 10;
3238	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3239		return 8;
3240	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3241		return 6;
3242	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3243		return 4;
3244	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3245		return 2;
3246	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3247		return 1;
3248
3249	return 0;
3250}
3251EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3252
3253/*
3254 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3255 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3256 *
3257 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3258 */
3259int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3260{
3261	u8 buf;
3262
3263	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3264
3265	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3266}
3267EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3268
3269/*
3270 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3271 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3272 *
3273 * Returns the bpp precision supported by the PCON encoder.
3274 */
3275int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3276{
3277	u8 buf;
3278
3279	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3280
3281	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3282	case DP_PCON_DSC_ONE_16TH_BPP:
3283		return 16;
3284	case DP_PCON_DSC_ONE_8TH_BPP:
3285		return 8;
3286	case DP_PCON_DSC_ONE_4TH_BPP:
3287		return 4;
3288	case DP_PCON_DSC_ONE_HALF_BPP:
3289		return 2;
3290	case DP_PCON_DSC_ONE_BPP:
3291		return 1;
3292	}
3293
3294	return 0;
3295}
3296EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3297
3298static
3299int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3300{
3301	u8 buf;
3302	int ret;
3303
3304	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3305	if (ret < 0)
3306		return ret;
3307
3308	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3309
3310	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3311		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3312		buf |= pps_buf_config << 2;
3313	}
3314
3315	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3316	if (ret < 0)
3317		return ret;
3318
3319	return 0;
3320}
3321
3322/**
3323 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3324 * for DSC1.2 between PCON & HDMI2.1 sink
3325 * @aux: DisplayPort AUX channel
3326 *
3327 * Returns 0 on success, else returns negative error code.
3328 */
3329int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3330{
3331	int ret;
3332
3333	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3334	if (ret < 0)
3335		return ret;
3336
3337	return 0;
3338}
3339EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3340
3341/**
3342 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3343 * HDMI sink
3344 * @aux: DisplayPort AUX channel
3345 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3346 *
3347 * Returns 0 on success, else returns negative error code.
3348 */
3349int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3350{
3351	int ret;
3352
3353	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3354	if (ret < 0)
3355		return ret;
3356
3357	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3358	if (ret < 0)
3359		return ret;
3360
3361	return 0;
3362}
3363EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3364
3365/*
3366 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3367 * override registers
3368 * @aux: DisplayPort AUX channel
3369 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3370 * bits_per_pixel.
3371 *
3372 * Returns 0 on success, else returns negative error code.
3373 */
3374int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3375{
3376	int ret;
3377
3378	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3379	if (ret < 0)
3380		return ret;
3381	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3382	if (ret < 0)
3383		return ret;
3384	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3385	if (ret < 0)
3386		return ret;
3387
3388	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3389	if (ret < 0)
3390		return ret;
3391
3392	return 0;
3393}
3394EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3395
3396/*
3397 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3398 * @aux: displayPort AUX channel
3399 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3400 *
3401 * Returns 0 on success, else returns negative error code.
3402 */
3403int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3404{
3405	int ret;
3406	u8 buf;
3407
3408	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3409	if (ret < 0)
3410		return ret;
3411
3412	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3413		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3414	else
3415		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3416
3417	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3418	if (ret < 0)
3419		return ret;
3420
3421	return 0;
3422}
3423EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3424
3425/**
3426 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3427 * @aux: The DP AUX channel to use
3428 * @bl: Backlight capability info from drm_edp_backlight_init()
3429 * @level: The brightness level to set
3430 *
3431 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3432 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3433 *
3434 * Returns: %0 on success, negative error code on failure
3435 */
3436int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3437				u16 level)
3438{
3439	int ret;
3440	u8 buf[2] = { 0 };
3441
3442	/* The panel uses the PWM for controlling brightness levels */
3443	if (!bl->aux_set)
3444		return 0;
3445
3446	if (bl->lsb_reg_used) {
3447		buf[0] = (level & 0xff00) >> 8;
3448		buf[1] = (level & 0x00ff);
3449	} else {
3450		buf[0] = level;
3451	}
3452
3453	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3454	if (ret != sizeof(buf)) {
3455		drm_err(aux->drm_dev,
3456			"%s: Failed to write aux backlight level: %d\n",
3457			aux->name, ret);
3458		return ret < 0 ? ret : -EIO;
3459	}
3460
3461	return 0;
3462}
3463EXPORT_SYMBOL(drm_edp_backlight_set_level);
3464
3465static int
3466drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3467			     bool enable)
3468{
3469	int ret;
3470	u8 buf;
3471
3472	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3473	if (!bl->aux_enable)
3474		return 0;
3475
3476	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3477	if (ret != 1) {
3478		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3479			aux->name, ret);
3480		return ret < 0 ? ret : -EIO;
3481	}
3482	if (enable)
3483		buf |= DP_EDP_BACKLIGHT_ENABLE;
3484	else
3485		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3486
3487	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3488	if (ret != 1) {
3489		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3490			aux->name, ret);
3491		return ret < 0 ? ret : -EIO;
3492	}
3493
3494	return 0;
3495}
3496
3497/**
3498 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3499 * @aux: The DP AUX channel to use
3500 * @bl: Backlight capability info from drm_edp_backlight_init()
3501 * @level: The initial backlight level to set via AUX, if there is one
3502 *
3503 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3504 * restoring any important backlight state such as the given backlight level, the brightness byte
3505 * count, backlight frequency, etc.
3506 *
3507 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3508 * that the driver handle enabling/disabling the panel through implementation-specific means using
3509 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3510 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3511 * the EDP_BL_PWR GPIO.
3512 *
3513 * Returns: %0 on success, negative error code on failure.
3514 */
3515int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3516			     const u16 level)
3517{
3518	int ret;
3519	u8 dpcd_buf;
3520
3521	if (bl->aux_set)
3522		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3523	else
3524		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3525
3526	if (bl->pwmgen_bit_count) {
3527		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3528		if (ret != 1)
3529			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3530				    aux->name, ret);
3531	}
3532
3533	if (bl->pwm_freq_pre_divider) {
3534		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3535		if (ret != 1)
3536			drm_dbg_kms(aux->drm_dev,
3537				    "%s: Failed to write aux backlight frequency: %d\n",
3538				    aux->name, ret);
3539		else
3540			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3541	}
3542
3543	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3544	if (ret != 1) {
3545		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3546			    aux->name, ret);
3547		return ret < 0 ? ret : -EIO;
3548	}
3549
3550	ret = drm_edp_backlight_set_level(aux, bl, level);
3551	if (ret < 0)
3552		return ret;
3553	ret = drm_edp_backlight_set_enable(aux, bl, true);
3554	if (ret < 0)
3555		return ret;
3556
3557	return 0;
3558}
3559EXPORT_SYMBOL(drm_edp_backlight_enable);
3560
3561/**
3562 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3563 * @aux: The DP AUX channel to use
3564 * @bl: Backlight capability info from drm_edp_backlight_init()
3565 *
3566 * This function handles disabling DPCD backlight controls on a panel over AUX.
3567 *
3568 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3569 * that the driver handle enabling/disabling the panel through implementation-specific means using
3570 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3571 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3572 * the EDP_BL_PWR GPIO.
3573 *
3574 * Returns: %0 on success or no-op, negative error code on failure.
3575 */
3576int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3577{
3578	int ret;
3579
3580	ret = drm_edp_backlight_set_enable(aux, bl, false);
3581	if (ret < 0)
3582		return ret;
3583
3584	return 0;
3585}
3586EXPORT_SYMBOL(drm_edp_backlight_disable);
3587
3588static inline int
3589drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3590			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3591{
3592	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3593	int ret;
3594	u8 pn, pn_min, pn_max;
3595
3596	if (!bl->aux_set)
3597		return 0;
3598
3599	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3600	if (ret != 1) {
3601		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3602			    aux->name, ret);
3603		return -ENODEV;
3604	}
3605
3606	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3607	bl->max = (1 << pn) - 1;
3608	if (!driver_pwm_freq_hz)
3609		return 0;
3610
3611	/*
3612	 * Set PWM Frequency divider to match desired frequency provided by the driver.
3613	 * The PWM Frequency is calculated as 27Mhz / (F x P).
3614	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3615	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3616	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3617	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3618	 */
3619
3620	/* Find desired value of (F x P)
3621	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3622	 * applied automatically. So no need to check that.
3623	 */
3624	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3625
3626	/* Use highest possible value of Pn for more granularity of brightness adjustment while
3627	 * satisfying the conditions below.
3628	 * - Pn is in the range of Pn_min and Pn_max
3629	 * - F is in the range of 1 and 255
3630	 * - FxP is within 25% of desired value.
3631	 *   Note: 25% is arbitrary value and may need some tweak.
3632	 */
3633	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3634	if (ret != 1) {
3635		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3636			    aux->name, ret);
3637		return 0;
3638	}
3639	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3640	if (ret != 1) {
3641		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3642			    aux->name, ret);
3643		return 0;
3644	}
3645	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3646	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3647
3648	/* Ensure frequency is within 25% of desired value */
3649	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3650	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3651	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3652		drm_dbg_kms(aux->drm_dev,
3653			    "%s: Driver defined backlight frequency (%d) out of range\n",
3654			    aux->name, driver_pwm_freq_hz);
3655		return 0;
3656	}
3657
3658	for (pn = pn_max; pn >= pn_min; pn--) {
3659		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3660		fxp_actual = f << pn;
3661		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3662			break;
3663	}
3664
3665	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3666	if (ret != 1) {
3667		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3668			    aux->name, ret);
3669		return 0;
3670	}
3671	bl->pwmgen_bit_count = pn;
3672	bl->max = (1 << pn) - 1;
3673
3674	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3675		bl->pwm_freq_pre_divider = f;
3676		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3677			    aux->name, driver_pwm_freq_hz);
3678	}
3679
3680	return 0;
3681}
3682
3683static inline int
3684drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3685			      u8 *current_mode)
3686{
3687	int ret;
3688	u8 buf[2];
3689	u8 mode_reg;
3690
3691	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3692	if (ret != 1) {
3693		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3694			    aux->name, ret);
3695		return ret < 0 ? ret : -EIO;
3696	}
3697
3698	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3699	if (!bl->aux_set)
3700		return 0;
3701
3702	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3703		int size = 1 + bl->lsb_reg_used;
3704
3705		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3706		if (ret != size) {
3707			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3708				    aux->name, ret);
3709			return ret < 0 ? ret : -EIO;
3710		}
3711
3712		if (bl->lsb_reg_used)
3713			return (buf[0] << 8) | buf[1];
3714		else
3715			return buf[0];
3716	}
3717
3718	/*
3719	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3720	 * the driver should assume max brightness
3721	 */
3722	return bl->max;
3723}
3724
3725/**
3726 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3727 * interface.
3728 * @aux: The DP aux device to use for probing
3729 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3730 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3731 * @edp_dpcd: A cached copy of the eDP DPCD
3732 * @current_level: Where to store the probed brightness level, if any
3733 * @current_mode: Where to store the currently set backlight control mode
3734 *
3735 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3736 * along with also probing the current and maximum supported brightness levels.
3737 *
3738 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3739 * default frequency from the panel is used.
3740 *
3741 * Returns: %0 on success, negative error code on failure.
3742 */
3743int
3744drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3745		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3746		       u16 *current_level, u8 *current_mode)
3747{
3748	int ret;
3749
3750	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3751		bl->aux_enable = true;
3752	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3753		bl->aux_set = true;
3754	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3755		bl->lsb_reg_used = true;
3756
3757	/* Sanity check caps */
3758	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3759		drm_dbg_kms(aux->drm_dev,
3760			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3761			    aux->name);
3762		return -EINVAL;
3763	}
3764
3765	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3766	if (ret < 0)
3767		return ret;
3768
3769	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3770	if (ret < 0)
3771		return ret;
3772	*current_level = ret;
3773
3774	drm_dbg_kms(aux->drm_dev,
3775		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3776		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3777	if (bl->aux_set) {
3778		drm_dbg_kms(aux->drm_dev,
3779			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3780			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3781			    bl->lsb_reg_used);
3782	}
3783
3784	return 0;
3785}
3786EXPORT_SYMBOL(drm_edp_backlight_init);
3787
3788#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3789	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3790
3791static int dp_aux_backlight_update_status(struct backlight_device *bd)
3792{
3793	struct dp_aux_backlight *bl = bl_get_data(bd);
3794	u16 brightness = backlight_get_brightness(bd);
3795	int ret = 0;
3796
3797	if (!backlight_is_blank(bd)) {
3798		if (!bl->enabled) {
3799			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3800			bl->enabled = true;
3801			return 0;
3802		}
3803		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3804	} else {
3805		if (bl->enabled) {
3806			drm_edp_backlight_disable(bl->aux, &bl->info);
3807			bl->enabled = false;
3808		}
3809	}
3810
3811	return ret;
3812}
3813
3814static const struct backlight_ops dp_aux_bl_ops = {
3815	.update_status = dp_aux_backlight_update_status,
3816};
3817
3818/**
3819 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3820 * @panel: DRM panel
3821 * @aux: The DP AUX channel to use
3822 *
3823 * Use this function to create and handle backlight if your panel
3824 * supports backlight control over DP AUX channel using DPCD
3825 * registers as per VESA's standard backlight control interface.
3826 *
3827 * When the panel is enabled backlight will be enabled after a
3828 * successful call to &drm_panel_funcs.enable()
3829 *
3830 * When the panel is disabled backlight will be disabled before the
3831 * call to &drm_panel_funcs.disable().
3832 *
3833 * A typical implementation for a panel driver supporting backlight
3834 * control over DP AUX will call this function at probe time.
3835 * Backlight will then be handled transparently without requiring
3836 * any intervention from the driver.
3837 *
3838 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3839 *
3840 * Return: 0 on success or a negative error code on failure.
3841 */
3842int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3843{
3844	struct dp_aux_backlight *bl;
3845	struct backlight_properties props = { 0 };
3846	u16 current_level;
3847	u8 current_mode;
3848	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3849	int ret;
3850
3851	if (!panel || !panel->dev || !aux)
3852		return -EINVAL;
3853
3854	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3855			       EDP_DISPLAY_CTL_CAP_SIZE);
3856	if (ret < 0)
3857		return ret;
3858
3859	if (!drm_edp_backlight_supported(edp_dpcd)) {
3860		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3861		return 0;
3862	}
3863
3864	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3865	if (!bl)
3866		return -ENOMEM;
3867
3868	bl->aux = aux;
3869
3870	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3871				     &current_level, &current_mode);
3872	if (ret < 0)
3873		return ret;
3874
3875	props.type = BACKLIGHT_RAW;
3876	props.brightness = current_level;
3877	props.max_brightness = bl->info.max;
3878
3879	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3880						  panel->dev, bl,
3881						  &dp_aux_bl_ops, &props);
3882	if (IS_ERR(bl->base))
3883		return PTR_ERR(bl->base);
3884
3885	backlight_disable(bl->base);
3886
3887	panel->backlight = bl->base;
3888
3889	return 0;
3890}
3891EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3892
3893#endif