Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/crypto.h>
  3#include <linux/err.h>
  4#include <linux/init.h>
  5#include <linux/kernel.h>
  6#include <linux/list.h>
  7#include <linux/tcp.h>
  8#include <linux/rcupdate.h>
  9#include <linux/rculist.h>
 10#include <net/inetpeer.h>
 11#include <net/tcp.h>
 12
 13void tcp_fastopen_init_key_once(struct net *net)
 14{
 15	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 16	struct tcp_fastopen_context *ctxt;
 17
 18	rcu_read_lock();
 19	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 20	if (ctxt) {
 21		rcu_read_unlock();
 22		return;
 23	}
 24	rcu_read_unlock();
 25
 26	/* tcp_fastopen_reset_cipher publishes the new context
 27	 * atomically, so we allow this race happening here.
 28	 *
 29	 * All call sites of tcp_fastopen_cookie_gen also check
 30	 * for a valid cookie, so this is an acceptable risk.
 31	 */
 32	get_random_bytes(key, sizeof(key));
 33	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 34}
 35
 36static void tcp_fastopen_ctx_free(struct rcu_head *head)
 37{
 38	struct tcp_fastopen_context *ctx =
 39	    container_of(head, struct tcp_fastopen_context, rcu);
 40
 41	kfree_sensitive(ctx);
 42}
 43
 44void tcp_fastopen_destroy_cipher(struct sock *sk)
 45{
 46	struct tcp_fastopen_context *ctx;
 47
 48	ctx = rcu_dereference_protected(
 49			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 50	if (ctx)
 51		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 52}
 53
 54void tcp_fastopen_ctx_destroy(struct net *net)
 55{
 56	struct tcp_fastopen_context *ctxt;
 57
 58	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 59
 60	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
 61				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 62	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
 63	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
 64
 65	if (ctxt)
 66		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 67}
 68
 69int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 70			      void *primary_key, void *backup_key)
 71{
 72	struct tcp_fastopen_context *ctx, *octx;
 73	struct fastopen_queue *q;
 74	int err = 0;
 75
 76	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 77	if (!ctx) {
 78		err = -ENOMEM;
 79		goto out;
 80	}
 81
 82	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 83	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 84	if (backup_key) {
 85		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 86		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 87		ctx->num = 2;
 88	} else {
 89		ctx->num = 1;
 90	}
 91
 92	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 93	if (sk) {
 94		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 95		octx = rcu_dereference_protected(q->ctx,
 96			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 97		rcu_assign_pointer(q->ctx, ctx);
 98	} else {
 99		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
100			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
102	}
103	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
104
105	if (octx)
106		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
107out:
108	return err;
109}
110
111int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
112			    u64 *key)
113{
114	struct tcp_fastopen_context *ctx;
115	int n_keys = 0, i;
116
117	rcu_read_lock();
118	if (icsk)
119		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
120	else
121		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
122	if (ctx) {
123		n_keys = tcp_fastopen_context_len(ctx);
124		for (i = 0; i < n_keys; i++) {
125			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
126			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
127		}
128	}
129	rcu_read_unlock();
130
131	return n_keys;
132}
133
134static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
135					     struct sk_buff *syn,
136					     const siphash_key_t *key,
137					     struct tcp_fastopen_cookie *foc)
138{
139	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
140
141	if (req->rsk_ops->family == AF_INET) {
142		const struct iphdr *iph = ip_hdr(syn);
143
144		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
145					  sizeof(iph->saddr) +
146					  sizeof(iph->daddr),
147					  key));
148		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149		return true;
150	}
151#if IS_ENABLED(CONFIG_IPV6)
152	if (req->rsk_ops->family == AF_INET6) {
153		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
154
155		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
156					  sizeof(ip6h->saddr) +
157					  sizeof(ip6h->daddr),
158					  key));
159		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
160		return true;
161	}
162#endif
163	return false;
164}
165
166/* Generate the fastopen cookie by applying SipHash to both the source and
167 * destination addresses.
168 */
169static void tcp_fastopen_cookie_gen(struct sock *sk,
170				    struct request_sock *req,
171				    struct sk_buff *syn,
172				    struct tcp_fastopen_cookie *foc)
173{
174	struct tcp_fastopen_context *ctx;
175
176	rcu_read_lock();
177	ctx = tcp_fastopen_get_ctx(sk);
178	if (ctx)
179		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
180	rcu_read_unlock();
181}
182
183/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
184 * queue this additional data / FIN.
185 */
186void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
187{
188	struct tcp_sock *tp = tcp_sk(sk);
189
190	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
191		return;
192
193	skb = skb_clone(skb, GFP_ATOMIC);
194	if (!skb)
195		return;
196
197	skb_dst_drop(skb);
198	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
199	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
200	 * to avoid double counting.  Also, tcp_segs_in() expects
201	 * skb->len to include the tcp_hdrlen.  Hence, it should
202	 * be called before __skb_pull().
203	 */
204	tp->segs_in = 0;
205	tcp_segs_in(tp, skb);
206	__skb_pull(skb, tcp_hdrlen(skb));
207	sk_forced_mem_schedule(sk, skb->truesize);
208	skb_set_owner_r(skb, sk);
209
210	TCP_SKB_CB(skb)->seq++;
211	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
212
213	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
214	__skb_queue_tail(&sk->sk_receive_queue, skb);
215	tp->syn_data_acked = 1;
216
217	/* u64_stats_update_begin(&tp->syncp) not needed here,
218	 * as we certainly are not changing upper 32bit value (0)
219	 */
220	tp->bytes_received = skb->len;
221
222	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
223		tcp_fin(sk);
224}
225
226/* returns 0 - no key match, 1 for primary, 2 for backup */
227static int tcp_fastopen_cookie_gen_check(struct sock *sk,
228					 struct request_sock *req,
229					 struct sk_buff *syn,
230					 struct tcp_fastopen_cookie *orig,
231					 struct tcp_fastopen_cookie *valid_foc)
232{
233	struct tcp_fastopen_cookie search_foc = { .len = -1 };
234	struct tcp_fastopen_cookie *foc = valid_foc;
235	struct tcp_fastopen_context *ctx;
236	int i, ret = 0;
237
238	rcu_read_lock();
239	ctx = tcp_fastopen_get_ctx(sk);
240	if (!ctx)
241		goto out;
242	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
243		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
244		if (tcp_fastopen_cookie_match(foc, orig)) {
245			ret = i + 1;
246			goto out;
247		}
248		foc = &search_foc;
249	}
250out:
251	rcu_read_unlock();
252	return ret;
253}
254
255static struct sock *tcp_fastopen_create_child(struct sock *sk,
256					      struct sk_buff *skb,
257					      struct request_sock *req)
258{
259	struct tcp_sock *tp;
260	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
261	struct sock *child;
262	bool own_req;
263
264	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
265							 NULL, &own_req);
266	if (!child)
267		return NULL;
268
269	spin_lock(&queue->fastopenq.lock);
270	queue->fastopenq.qlen++;
271	spin_unlock(&queue->fastopenq.lock);
272
273	/* Initialize the child socket. Have to fix some values to take
274	 * into account the child is a Fast Open socket and is created
275	 * only out of the bits carried in the SYN packet.
276	 */
277	tp = tcp_sk(child);
278
279	rcu_assign_pointer(tp->fastopen_rsk, req);
280	tcp_rsk(req)->tfo_listener = true;
281
282	/* RFC1323: The window in SYN & SYN/ACK segments is never
283	 * scaled. So correct it appropriately.
284	 */
285	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
286	tp->max_window = tp->snd_wnd;
287
288	/* Activate the retrans timer so that SYNACK can be retransmitted.
289	 * The request socket is not added to the ehash
290	 * because it's been added to the accept queue directly.
291	 */
 
292	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
293				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
294
295	refcount_set(&req->rsk_refcnt, 2);
296
297	/* Now finish processing the fastopen child socket. */
298	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
299
300	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
301
302	tcp_fastopen_add_skb(child, skb);
303
304	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
305	tp->rcv_wup = tp->rcv_nxt;
306	/* tcp_conn_request() is sending the SYNACK,
307	 * and queues the child into listener accept queue.
308	 */
309	return child;
310}
311
312static bool tcp_fastopen_queue_check(struct sock *sk)
313{
314	struct fastopen_queue *fastopenq;
 
315
316	/* Make sure the listener has enabled fastopen, and we don't
317	 * exceed the max # of pending TFO requests allowed before trying
318	 * to validating the cookie in order to avoid burning CPU cycles
319	 * unnecessarily.
320	 *
321	 * XXX (TFO) - The implication of checking the max_qlen before
322	 * processing a cookie request is that clients can't differentiate
323	 * between qlen overflow causing Fast Open to be disabled
324	 * temporarily vs a server not supporting Fast Open at all.
325	 */
326	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
327	if (fastopenq->max_qlen == 0)
 
328		return false;
329
330	if (fastopenq->qlen >= fastopenq->max_qlen) {
331		struct request_sock *req1;
332		spin_lock(&fastopenq->lock);
333		req1 = fastopenq->rskq_rst_head;
334		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
335			__NET_INC_STATS(sock_net(sk),
336					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
337			spin_unlock(&fastopenq->lock);
338			return false;
339		}
340		fastopenq->rskq_rst_head = req1->dl_next;
341		fastopenq->qlen--;
342		spin_unlock(&fastopenq->lock);
343		reqsk_put(req1);
344	}
345	return true;
346}
347
348static bool tcp_fastopen_no_cookie(const struct sock *sk,
349				   const struct dst_entry *dst,
350				   int flag)
351{
352	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
353	       tcp_sk(sk)->fastopen_no_cookie ||
354	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
355}
356
357/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
358 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
359 * cookie request (foc->len == 0).
360 */
361struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
362			      struct request_sock *req,
363			      struct tcp_fastopen_cookie *foc,
364			      const struct dst_entry *dst)
365{
366	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
367	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
368	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
369	struct sock *child;
370	int ret = 0;
371
372	if (foc->len == 0) /* Client requests a cookie */
373		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
374
375	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
376	      (syn_data || foc->len >= 0) &&
377	      tcp_fastopen_queue_check(sk))) {
378		foc->len = -1;
379		return NULL;
380	}
381
382	if (syn_data &&
383	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
384		goto fastopen;
385
386	if (foc->len == 0) {
387		/* Client requests a cookie. */
388		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
389	} else if (foc->len > 0) {
390		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
391						    &valid_foc);
392		if (!ret) {
393			NET_INC_STATS(sock_net(sk),
394				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
395		} else {
396			/* Cookie is valid. Create a (full) child socket to
397			 * accept the data in SYN before returning a SYN-ACK to
398			 * ack the data. If we fail to create the socket, fall
399			 * back and ack the ISN only but includes the same
400			 * cookie.
401			 *
402			 * Note: Data-less SYN with valid cookie is allowed to
403			 * send data in SYN_RECV state.
404			 */
405fastopen:
406			child = tcp_fastopen_create_child(sk, skb, req);
407			if (child) {
408				if (ret == 2) {
409					valid_foc.exp = foc->exp;
410					*foc = valid_foc;
411					NET_INC_STATS(sock_net(sk),
412						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
413				} else {
414					foc->len = -1;
415				}
416				NET_INC_STATS(sock_net(sk),
417					      LINUX_MIB_TCPFASTOPENPASSIVE);
418				return child;
419			}
420			NET_INC_STATS(sock_net(sk),
421				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
422		}
423	}
424	valid_foc.exp = foc->exp;
425	*foc = valid_foc;
426	return NULL;
427}
428
429bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
430			       struct tcp_fastopen_cookie *cookie)
431{
432	const struct dst_entry *dst;
433
434	tcp_fastopen_cache_get(sk, mss, cookie);
435
436	/* Firewall blackhole issue check */
437	if (tcp_fastopen_active_should_disable(sk)) {
438		cookie->len = -1;
439		return false;
440	}
441
442	dst = __sk_dst_get(sk);
443
444	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
445		cookie->len = -1;
446		return true;
447	}
448	if (cookie->len > 0)
449		return true;
450	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
451	return false;
452}
453
454/* This function checks if we want to defer sending SYN until the first
455 * write().  We defer under the following conditions:
456 * 1. fastopen_connect sockopt is set
457 * 2. we have a valid cookie
458 * Return value: return true if we want to defer until application writes data
459 *               return false if we want to send out SYN immediately
460 */
461bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
462{
463	struct tcp_fastopen_cookie cookie = { .len = 0 };
464	struct tcp_sock *tp = tcp_sk(sk);
465	u16 mss;
466
467	if (tp->fastopen_connect && !tp->fastopen_req) {
468		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
469			inet_sk(sk)->defer_connect = 1;
470			return true;
471		}
472
473		/* Alloc fastopen_req in order for FO option to be included
474		 * in SYN
475		 */
476		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
477					   sk->sk_allocation);
478		if (tp->fastopen_req)
479			tp->fastopen_req->cookie = cookie;
480		else
481			*err = -ENOBUFS;
482	}
483	return false;
484}
485EXPORT_SYMBOL(tcp_fastopen_defer_connect);
486
487/*
488 * The following code block is to deal with middle box issues with TFO:
489 * Middlebox firewall issues can potentially cause server's data being
490 * blackholed after a successful 3WHS using TFO.
491 * The proposed solution is to disable active TFO globally under the
492 * following circumstances:
493 *   1. client side TFO socket receives out of order FIN
494 *   2. client side TFO socket receives out of order RST
495 *   3. client side TFO socket has timed out three times consecutively during
496 *      or after handshake
497 * We disable active side TFO globally for 1hr at first. Then if it
498 * happens again, we disable it for 2h, then 4h, 8h, ...
499 * And we reset the timeout back to 1hr when we see a successful active
500 * TFO connection with data exchanges.
501 */
502
503/* Disable active TFO and record current jiffies and
504 * tfo_active_disable_times
505 */
506void tcp_fastopen_active_disable(struct sock *sk)
507{
508	struct net *net = sock_net(sk);
509
 
 
 
 
 
 
 
 
 
 
510	atomic_inc(&net->ipv4.tfo_active_disable_times);
511	net->ipv4.tfo_active_disable_stamp = jiffies;
512	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
513}
514
515/* Calculate timeout for tfo active disable
516 * Return true if we are still in the active TFO disable period
517 * Return false if timeout already expired and we should use active TFO
518 */
519bool tcp_fastopen_active_should_disable(struct sock *sk)
520{
521	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
522	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
523	unsigned long timeout;
 
524	int multiplier;
525
 
 
 
 
526	if (!tfo_da_times)
527		return false;
528
529	/* Limit timout to max: 2^6 * initial timeout */
 
 
 
530	multiplier = 1 << min(tfo_da_times - 1, 6);
531	timeout = multiplier * tfo_bh_timeout * HZ;
532	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
 
 
 
533		return true;
534
535	/* Mark check bit so we can check for successful active TFO
536	 * condition and reset tfo_active_disable_times
537	 */
538	tcp_sk(sk)->syn_fastopen_ch = 1;
539	return false;
540}
541
542/* Disable active TFO if FIN is the only packet in the ofo queue
543 * and no data is received.
544 * Also check if we can reset tfo_active_disable_times if data is
545 * received successfully on a marked active TFO sockets opened on
546 * a non-loopback interface
547 */
548void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
549{
550	struct tcp_sock *tp = tcp_sk(sk);
551	struct dst_entry *dst;
552	struct sk_buff *skb;
553
554	if (!tp->syn_fastopen)
555		return;
556
557	if (!tp->data_segs_in) {
558		skb = skb_rb_first(&tp->out_of_order_queue);
559		if (skb && !skb_rb_next(skb)) {
560			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
561				tcp_fastopen_active_disable(sk);
562				return;
563			}
564		}
565	} else if (tp->syn_fastopen_ch &&
566		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
567		dst = sk_dst_get(sk);
568		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
569			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
570		dst_release(dst);
571	}
572}
573
574void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
575{
576	u32 timeouts = inet_csk(sk)->icsk_retransmits;
577	struct tcp_sock *tp = tcp_sk(sk);
578
579	/* Broken middle-boxes may black-hole Fast Open connection during or
580	 * even after the handshake. Be extremely conservative and pause
581	 * Fast Open globally after hitting the third consecutive timeout or
582	 * exceeding the configured timeout limit.
583	 */
584	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
585	    (timeouts == 2 || (timeouts < 2 && expired))) {
586		tcp_fastopen_active_disable(sk);
587		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
588	}
589}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
 
 
 
  2#include <linux/kernel.h>
 
  3#include <linux/tcp.h>
  4#include <linux/rcupdate.h>
 
 
  5#include <net/tcp.h>
  6
  7void tcp_fastopen_init_key_once(struct net *net)
  8{
  9	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 10	struct tcp_fastopen_context *ctxt;
 11
 12	rcu_read_lock();
 13	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 14	if (ctxt) {
 15		rcu_read_unlock();
 16		return;
 17	}
 18	rcu_read_unlock();
 19
 20	/* tcp_fastopen_reset_cipher publishes the new context
 21	 * atomically, so we allow this race happening here.
 22	 *
 23	 * All call sites of tcp_fastopen_cookie_gen also check
 24	 * for a valid cookie, so this is an acceptable risk.
 25	 */
 26	get_random_bytes(key, sizeof(key));
 27	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 28}
 29
 30static void tcp_fastopen_ctx_free(struct rcu_head *head)
 31{
 32	struct tcp_fastopen_context *ctx =
 33	    container_of(head, struct tcp_fastopen_context, rcu);
 34
 35	kfree_sensitive(ctx);
 36}
 37
 38void tcp_fastopen_destroy_cipher(struct sock *sk)
 39{
 40	struct tcp_fastopen_context *ctx;
 41
 42	ctx = rcu_dereference_protected(
 43			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 44	if (ctx)
 45		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 46}
 47
 48void tcp_fastopen_ctx_destroy(struct net *net)
 49{
 50	struct tcp_fastopen_context *ctxt;
 51
 52	ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
 
 
 
 
 
 53
 54	if (ctxt)
 55		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 56}
 57
 58int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 59			      void *primary_key, void *backup_key)
 60{
 61	struct tcp_fastopen_context *ctx, *octx;
 62	struct fastopen_queue *q;
 63	int err = 0;
 64
 65	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 66	if (!ctx) {
 67		err = -ENOMEM;
 68		goto out;
 69	}
 70
 71	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 72	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 73	if (backup_key) {
 74		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 75		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 76		ctx->num = 2;
 77	} else {
 78		ctx->num = 1;
 79	}
 80
 
 81	if (sk) {
 82		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 83		octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
 
 
 84	} else {
 85		octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
 
 
 86	}
 
 87
 88	if (octx)
 89		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 90out:
 91	return err;
 92}
 93
 94int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
 95			    u64 *key)
 96{
 97	struct tcp_fastopen_context *ctx;
 98	int n_keys = 0, i;
 99
100	rcu_read_lock();
101	if (icsk)
102		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
103	else
104		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
105	if (ctx) {
106		n_keys = tcp_fastopen_context_len(ctx);
107		for (i = 0; i < n_keys; i++) {
108			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
109			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
110		}
111	}
112	rcu_read_unlock();
113
114	return n_keys;
115}
116
117static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
118					     struct sk_buff *syn,
119					     const siphash_key_t *key,
120					     struct tcp_fastopen_cookie *foc)
121{
122	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
123
124	if (req->rsk_ops->family == AF_INET) {
125		const struct iphdr *iph = ip_hdr(syn);
126
127		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
128					  sizeof(iph->saddr) +
129					  sizeof(iph->daddr),
130					  key));
131		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
132		return true;
133	}
134#if IS_ENABLED(CONFIG_IPV6)
135	if (req->rsk_ops->family == AF_INET6) {
136		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
137
138		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
139					  sizeof(ip6h->saddr) +
140					  sizeof(ip6h->daddr),
141					  key));
142		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
143		return true;
144	}
145#endif
146	return false;
147}
148
149/* Generate the fastopen cookie by applying SipHash to both the source and
150 * destination addresses.
151 */
152static void tcp_fastopen_cookie_gen(struct sock *sk,
153				    struct request_sock *req,
154				    struct sk_buff *syn,
155				    struct tcp_fastopen_cookie *foc)
156{
157	struct tcp_fastopen_context *ctx;
158
159	rcu_read_lock();
160	ctx = tcp_fastopen_get_ctx(sk);
161	if (ctx)
162		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
163	rcu_read_unlock();
164}
165
166/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
167 * queue this additional data / FIN.
168 */
169void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
170{
171	struct tcp_sock *tp = tcp_sk(sk);
172
173	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
174		return;
175
176	skb = skb_clone(skb, GFP_ATOMIC);
177	if (!skb)
178		return;
179
180	skb_dst_drop(skb);
181	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
182	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
183	 * to avoid double counting.  Also, tcp_segs_in() expects
184	 * skb->len to include the tcp_hdrlen.  Hence, it should
185	 * be called before __skb_pull().
186	 */
187	tp->segs_in = 0;
188	tcp_segs_in(tp, skb);
189	__skb_pull(skb, tcp_hdrlen(skb));
190	sk_forced_mem_schedule(sk, skb->truesize);
191	skb_set_owner_r(skb, sk);
192
193	TCP_SKB_CB(skb)->seq++;
194	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
195
196	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197	__skb_queue_tail(&sk->sk_receive_queue, skb);
198	tp->syn_data_acked = 1;
199
200	/* u64_stats_update_begin(&tp->syncp) not needed here,
201	 * as we certainly are not changing upper 32bit value (0)
202	 */
203	tp->bytes_received = skb->len;
204
205	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
206		tcp_fin(sk);
207}
208
209/* returns 0 - no key match, 1 for primary, 2 for backup */
210static int tcp_fastopen_cookie_gen_check(struct sock *sk,
211					 struct request_sock *req,
212					 struct sk_buff *syn,
213					 struct tcp_fastopen_cookie *orig,
214					 struct tcp_fastopen_cookie *valid_foc)
215{
216	struct tcp_fastopen_cookie search_foc = { .len = -1 };
217	struct tcp_fastopen_cookie *foc = valid_foc;
218	struct tcp_fastopen_context *ctx;
219	int i, ret = 0;
220
221	rcu_read_lock();
222	ctx = tcp_fastopen_get_ctx(sk);
223	if (!ctx)
224		goto out;
225	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
226		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
227		if (tcp_fastopen_cookie_match(foc, orig)) {
228			ret = i + 1;
229			goto out;
230		}
231		foc = &search_foc;
232	}
233out:
234	rcu_read_unlock();
235	return ret;
236}
237
238static struct sock *tcp_fastopen_create_child(struct sock *sk,
239					      struct sk_buff *skb,
240					      struct request_sock *req)
241{
242	struct tcp_sock *tp;
243	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
244	struct sock *child;
245	bool own_req;
246
247	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
248							 NULL, &own_req);
249	if (!child)
250		return NULL;
251
252	spin_lock(&queue->fastopenq.lock);
253	queue->fastopenq.qlen++;
254	spin_unlock(&queue->fastopenq.lock);
255
256	/* Initialize the child socket. Have to fix some values to take
257	 * into account the child is a Fast Open socket and is created
258	 * only out of the bits carried in the SYN packet.
259	 */
260	tp = tcp_sk(child);
261
262	rcu_assign_pointer(tp->fastopen_rsk, req);
263	tcp_rsk(req)->tfo_listener = true;
264
265	/* RFC1323: The window in SYN & SYN/ACK segments is never
266	 * scaled. So correct it appropriately.
267	 */
268	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
269	tp->max_window = tp->snd_wnd;
270
271	/* Activate the retrans timer so that SYNACK can be retransmitted.
272	 * The request socket is not added to the ehash
273	 * because it's been added to the accept queue directly.
274	 */
275	req->timeout = tcp_timeout_init(child);
276	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
277				  req->timeout, TCP_RTO_MAX);
278
279	refcount_set(&req->rsk_refcnt, 2);
280
281	/* Now finish processing the fastopen child socket. */
282	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
283
284	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
285
286	tcp_fastopen_add_skb(child, skb);
287
288	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
289	tp->rcv_wup = tp->rcv_nxt;
290	/* tcp_conn_request() is sending the SYNACK,
291	 * and queues the child into listener accept queue.
292	 */
293	return child;
294}
295
296static bool tcp_fastopen_queue_check(struct sock *sk)
297{
298	struct fastopen_queue *fastopenq;
299	int max_qlen;
300
301	/* Make sure the listener has enabled fastopen, and we don't
302	 * exceed the max # of pending TFO requests allowed before trying
303	 * to validating the cookie in order to avoid burning CPU cycles
304	 * unnecessarily.
305	 *
306	 * XXX (TFO) - The implication of checking the max_qlen before
307	 * processing a cookie request is that clients can't differentiate
308	 * between qlen overflow causing Fast Open to be disabled
309	 * temporarily vs a server not supporting Fast Open at all.
310	 */
311	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
312	max_qlen = READ_ONCE(fastopenq->max_qlen);
313	if (max_qlen == 0)
314		return false;
315
316	if (fastopenq->qlen >= max_qlen) {
317		struct request_sock *req1;
318		spin_lock(&fastopenq->lock);
319		req1 = fastopenq->rskq_rst_head;
320		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
321			__NET_INC_STATS(sock_net(sk),
322					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
323			spin_unlock(&fastopenq->lock);
324			return false;
325		}
326		fastopenq->rskq_rst_head = req1->dl_next;
327		fastopenq->qlen--;
328		spin_unlock(&fastopenq->lock);
329		reqsk_put(req1);
330	}
331	return true;
332}
333
334static bool tcp_fastopen_no_cookie(const struct sock *sk,
335				   const struct dst_entry *dst,
336				   int flag)
337{
338	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
339	       tcp_sk(sk)->fastopen_no_cookie ||
340	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
341}
342
343/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
344 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
345 * cookie request (foc->len == 0).
346 */
347struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
348			      struct request_sock *req,
349			      struct tcp_fastopen_cookie *foc,
350			      const struct dst_entry *dst)
351{
352	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
353	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
354	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
355	struct sock *child;
356	int ret = 0;
357
358	if (foc->len == 0) /* Client requests a cookie */
359		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
360
361	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
362	      (syn_data || foc->len >= 0) &&
363	      tcp_fastopen_queue_check(sk))) {
364		foc->len = -1;
365		return NULL;
366	}
367
368	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
 
369		goto fastopen;
370
371	if (foc->len == 0) {
372		/* Client requests a cookie. */
373		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
374	} else if (foc->len > 0) {
375		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
376						    &valid_foc);
377		if (!ret) {
378			NET_INC_STATS(sock_net(sk),
379				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
380		} else {
381			/* Cookie is valid. Create a (full) child socket to
382			 * accept the data in SYN before returning a SYN-ACK to
383			 * ack the data. If we fail to create the socket, fall
384			 * back and ack the ISN only but includes the same
385			 * cookie.
386			 *
387			 * Note: Data-less SYN with valid cookie is allowed to
388			 * send data in SYN_RECV state.
389			 */
390fastopen:
391			child = tcp_fastopen_create_child(sk, skb, req);
392			if (child) {
393				if (ret == 2) {
394					valid_foc.exp = foc->exp;
395					*foc = valid_foc;
396					NET_INC_STATS(sock_net(sk),
397						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
398				} else {
399					foc->len = -1;
400				}
401				NET_INC_STATS(sock_net(sk),
402					      LINUX_MIB_TCPFASTOPENPASSIVE);
403				return child;
404			}
405			NET_INC_STATS(sock_net(sk),
406				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
407		}
408	}
409	valid_foc.exp = foc->exp;
410	*foc = valid_foc;
411	return NULL;
412}
413
414bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
415			       struct tcp_fastopen_cookie *cookie)
416{
417	const struct dst_entry *dst;
418
419	tcp_fastopen_cache_get(sk, mss, cookie);
420
421	/* Firewall blackhole issue check */
422	if (tcp_fastopen_active_should_disable(sk)) {
423		cookie->len = -1;
424		return false;
425	}
426
427	dst = __sk_dst_get(sk);
428
429	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
430		cookie->len = -1;
431		return true;
432	}
433	if (cookie->len > 0)
434		return true;
435	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
436	return false;
437}
438
439/* This function checks if we want to defer sending SYN until the first
440 * write().  We defer under the following conditions:
441 * 1. fastopen_connect sockopt is set
442 * 2. we have a valid cookie
443 * Return value: return true if we want to defer until application writes data
444 *               return false if we want to send out SYN immediately
445 */
446bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
447{
448	struct tcp_fastopen_cookie cookie = { .len = 0 };
449	struct tcp_sock *tp = tcp_sk(sk);
450	u16 mss;
451
452	if (tp->fastopen_connect && !tp->fastopen_req) {
453		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
454			inet_set_bit(DEFER_CONNECT, sk);
455			return true;
456		}
457
458		/* Alloc fastopen_req in order for FO option to be included
459		 * in SYN
460		 */
461		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
462					   sk->sk_allocation);
463		if (tp->fastopen_req)
464			tp->fastopen_req->cookie = cookie;
465		else
466			*err = -ENOBUFS;
467	}
468	return false;
469}
470EXPORT_SYMBOL(tcp_fastopen_defer_connect);
471
472/*
473 * The following code block is to deal with middle box issues with TFO:
474 * Middlebox firewall issues can potentially cause server's data being
475 * blackholed after a successful 3WHS using TFO.
476 * The proposed solution is to disable active TFO globally under the
477 * following circumstances:
478 *   1. client side TFO socket receives out of order FIN
479 *   2. client side TFO socket receives out of order RST
480 *   3. client side TFO socket has timed out three times consecutively during
481 *      or after handshake
482 * We disable active side TFO globally for 1hr at first. Then if it
483 * happens again, we disable it for 2h, then 4h, 8h, ...
484 * And we reset the timeout back to 1hr when we see a successful active
485 * TFO connection with data exchanges.
486 */
487
488/* Disable active TFO and record current jiffies and
489 * tfo_active_disable_times
490 */
491void tcp_fastopen_active_disable(struct sock *sk)
492{
493	struct net *net = sock_net(sk);
494
495	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
496		return;
497
498	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
499	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
500
501	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
502	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
503	 */
504	smp_mb__before_atomic();
505	atomic_inc(&net->ipv4.tfo_active_disable_times);
506
507	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
508}
509
510/* Calculate timeout for tfo active disable
511 * Return true if we are still in the active TFO disable period
512 * Return false if timeout already expired and we should use active TFO
513 */
514bool tcp_fastopen_active_should_disable(struct sock *sk)
515{
516	unsigned int tfo_bh_timeout =
517		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
518	unsigned long timeout;
519	int tfo_da_times;
520	int multiplier;
521
522	if (!tfo_bh_timeout)
523		return false;
524
525	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
526	if (!tfo_da_times)
527		return false;
528
529	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
530	smp_rmb();
531
532	/* Limit timeout to max: 2^6 * initial timeout */
533	multiplier = 1 << min(tfo_da_times - 1, 6);
534
535	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
536	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
537		  multiplier * tfo_bh_timeout * HZ;
538	if (time_before(jiffies, timeout))
539		return true;
540
541	/* Mark check bit so we can check for successful active TFO
542	 * condition and reset tfo_active_disable_times
543	 */
544	tcp_sk(sk)->syn_fastopen_ch = 1;
545	return false;
546}
547
548/* Disable active TFO if FIN is the only packet in the ofo queue
549 * and no data is received.
550 * Also check if we can reset tfo_active_disable_times if data is
551 * received successfully on a marked active TFO sockets opened on
552 * a non-loopback interface
553 */
554void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
555{
556	struct tcp_sock *tp = tcp_sk(sk);
557	struct dst_entry *dst;
558	struct sk_buff *skb;
559
560	if (!tp->syn_fastopen)
561		return;
562
563	if (!tp->data_segs_in) {
564		skb = skb_rb_first(&tp->out_of_order_queue);
565		if (skb && !skb_rb_next(skb)) {
566			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
567				tcp_fastopen_active_disable(sk);
568				return;
569			}
570		}
571	} else if (tp->syn_fastopen_ch &&
572		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
573		dst = sk_dst_get(sk);
574		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
575			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
576		dst_release(dst);
577	}
578}
579
580void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
581{
582	u32 timeouts = inet_csk(sk)->icsk_retransmits;
583	struct tcp_sock *tp = tcp_sk(sk);
584
585	/* Broken middle-boxes may black-hole Fast Open connection during or
586	 * even after the handshake. Be extremely conservative and pause
587	 * Fast Open globally after hitting the third consecutive timeout or
588	 * exceeding the configured timeout limit.
589	 */
590	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
591	    (timeouts == 2 || (timeouts < 2 && expired))) {
592		tcp_fastopen_active_disable(sk);
593		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
594	}
595}