Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/crypto.h>
  3#include <linux/err.h>
  4#include <linux/init.h>
  5#include <linux/kernel.h>
  6#include <linux/list.h>
  7#include <linux/tcp.h>
  8#include <linux/rcupdate.h>
  9#include <linux/rculist.h>
 10#include <net/inetpeer.h>
 11#include <net/tcp.h>
 12
 13void tcp_fastopen_init_key_once(struct net *net)
 14{
 15	u8 key[TCP_FASTOPEN_KEY_LENGTH];
 16	struct tcp_fastopen_context *ctxt;
 17
 18	rcu_read_lock();
 19	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
 20	if (ctxt) {
 21		rcu_read_unlock();
 22		return;
 23	}
 24	rcu_read_unlock();
 25
 26	/* tcp_fastopen_reset_cipher publishes the new context
 27	 * atomically, so we allow this race happening here.
 28	 *
 29	 * All call sites of tcp_fastopen_cookie_gen also check
 30	 * for a valid cookie, so this is an acceptable risk.
 31	 */
 32	get_random_bytes(key, sizeof(key));
 33	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
 34}
 35
 36static void tcp_fastopen_ctx_free(struct rcu_head *head)
 37{
 38	struct tcp_fastopen_context *ctx =
 39	    container_of(head, struct tcp_fastopen_context, rcu);
 40
 41	kfree_sensitive(ctx);
 42}
 43
 44void tcp_fastopen_destroy_cipher(struct sock *sk)
 45{
 46	struct tcp_fastopen_context *ctx;
 47
 48	ctx = rcu_dereference_protected(
 49			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
 50	if (ctx)
 51		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
 52}
 53
 54void tcp_fastopen_ctx_destroy(struct net *net)
 55{
 56	struct tcp_fastopen_context *ctxt;
 57
 58	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 59
 60	ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
 61				lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 62	rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
 63	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
 64
 65	if (ctxt)
 66		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
 67}
 68
 69int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
 70			      void *primary_key, void *backup_key)
 71{
 
 72	struct tcp_fastopen_context *ctx, *octx;
 73	struct fastopen_queue *q;
 74	int err = 0;
 75
 76	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 77	if (!ctx) {
 78		err = -ENOMEM;
 79		goto out;
 80	}
 81
 82	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
 83	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
 84	if (backup_key) {
 85		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
 86		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
 87		ctx->num = 2;
 88	} else {
 89		ctx->num = 1;
 90	}
 91
 92	spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
 93	if (sk) {
 94		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
 95		octx = rcu_dereference_protected(q->ctx,
 96			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
 97		rcu_assign_pointer(q->ctx, ctx);
 98	} else {
 99		octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
100			lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
101		rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
102	}
103	spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
 
 
 
 
 
 
 
 
104
105	if (octx)
106		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
107out:
108	return err;
109}
110
111int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
112			    u64 *key)
113{
114	struct tcp_fastopen_context *ctx;
115	int n_keys = 0, i;
116
117	rcu_read_lock();
118	if (icsk)
119		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
120	else
121		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
122	if (ctx) {
123		n_keys = tcp_fastopen_context_len(ctx);
124		for (i = 0; i < n_keys; i++) {
125			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
126			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
127		}
128	}
129	rcu_read_unlock();
130
131	return n_keys;
132}
133
134static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
135					     struct sk_buff *syn,
136					     const siphash_key_t *key,
137					     struct tcp_fastopen_cookie *foc)
 
 
 
 
 
138{
139	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
140
141	if (req->rsk_ops->family == AF_INET) {
142		const struct iphdr *iph = ip_hdr(syn);
143
144		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
145					  sizeof(iph->saddr) +
146					  sizeof(iph->daddr),
147					  key));
148		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149		return true;
150	}
 
151#if IS_ENABLED(CONFIG_IPV6)
152	if (req->rsk_ops->family == AF_INET6) {
153		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
 
154
155		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
156					  sizeof(ip6h->saddr) +
157					  sizeof(ip6h->daddr),
158					  key));
159		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
160		return true;
 
 
161	}
162#endif
163	return false;
164}
165
166/* Generate the fastopen cookie by applying SipHash to both the source and
167 * destination addresses.
168 */
169static void tcp_fastopen_cookie_gen(struct sock *sk,
170				    struct request_sock *req,
171				    struct sk_buff *syn,
172				    struct tcp_fastopen_cookie *foc)
173{
174	struct tcp_fastopen_context *ctx;
175
176	rcu_read_lock();
177	ctx = tcp_fastopen_get_ctx(sk);
178	if (ctx)
179		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
180	rcu_read_unlock();
181}
182
183/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
184 * queue this additional data / FIN.
185 */
186void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
187{
188	struct tcp_sock *tp = tcp_sk(sk);
189
190	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
191		return;
192
193	skb = skb_clone(skb, GFP_ATOMIC);
194	if (!skb)
195		return;
196
197	skb_dst_drop(skb);
198	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
199	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
200	 * to avoid double counting.  Also, tcp_segs_in() expects
201	 * skb->len to include the tcp_hdrlen.  Hence, it should
202	 * be called before __skb_pull().
203	 */
204	tp->segs_in = 0;
205	tcp_segs_in(tp, skb);
206	__skb_pull(skb, tcp_hdrlen(skb));
207	sk_forced_mem_schedule(sk, skb->truesize);
208	skb_set_owner_r(skb, sk);
209
210	TCP_SKB_CB(skb)->seq++;
211	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
212
213	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
214	__skb_queue_tail(&sk->sk_receive_queue, skb);
215	tp->syn_data_acked = 1;
216
217	/* u64_stats_update_begin(&tp->syncp) not needed here,
218	 * as we certainly are not changing upper 32bit value (0)
219	 */
220	tp->bytes_received = skb->len;
221
222	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
223		tcp_fin(sk);
224}
225
226/* returns 0 - no key match, 1 for primary, 2 for backup */
227static int tcp_fastopen_cookie_gen_check(struct sock *sk,
228					 struct request_sock *req,
229					 struct sk_buff *syn,
230					 struct tcp_fastopen_cookie *orig,
231					 struct tcp_fastopen_cookie *valid_foc)
232{
233	struct tcp_fastopen_cookie search_foc = { .len = -1 };
234	struct tcp_fastopen_cookie *foc = valid_foc;
235	struct tcp_fastopen_context *ctx;
236	int i, ret = 0;
237
238	rcu_read_lock();
239	ctx = tcp_fastopen_get_ctx(sk);
240	if (!ctx)
241		goto out;
242	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
243		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
244		if (tcp_fastopen_cookie_match(foc, orig)) {
245			ret = i + 1;
246			goto out;
247		}
248		foc = &search_foc;
249	}
250out:
251	rcu_read_unlock();
252	return ret;
253}
254
255static struct sock *tcp_fastopen_create_child(struct sock *sk,
256					      struct sk_buff *skb,
 
257					      struct request_sock *req)
258{
259	struct tcp_sock *tp;
260	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
261	struct sock *child;
262	bool own_req;
263
 
 
 
 
264	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
265							 NULL, &own_req);
266	if (!child)
267		return NULL;
268
269	spin_lock(&queue->fastopenq.lock);
270	queue->fastopenq.qlen++;
271	spin_unlock(&queue->fastopenq.lock);
272
273	/* Initialize the child socket. Have to fix some values to take
274	 * into account the child is a Fast Open socket and is created
275	 * only out of the bits carried in the SYN packet.
276	 */
277	tp = tcp_sk(child);
278
279	rcu_assign_pointer(tp->fastopen_rsk, req);
280	tcp_rsk(req)->tfo_listener = true;
281
282	/* RFC1323: The window in SYN & SYN/ACK segments is never
283	 * scaled. So correct it appropriately.
284	 */
285	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
286	tp->max_window = tp->snd_wnd;
287
288	/* Activate the retrans timer so that SYNACK can be retransmitted.
289	 * The request socket is not added to the ehash
290	 * because it's been added to the accept queue directly.
291	 */
292	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
293				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
294
295	refcount_set(&req->rsk_refcnt, 2);
296
297	/* Now finish processing the fastopen child socket. */
298	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
 
 
 
 
299
300	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
301
302	tcp_fastopen_add_skb(child, skb);
303
304	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
305	tp->rcv_wup = tp->rcv_nxt;
306	/* tcp_conn_request() is sending the SYNACK,
307	 * and queues the child into listener accept queue.
308	 */
309	return child;
310}
311
312static bool tcp_fastopen_queue_check(struct sock *sk)
313{
314	struct fastopen_queue *fastopenq;
315
316	/* Make sure the listener has enabled fastopen, and we don't
317	 * exceed the max # of pending TFO requests allowed before trying
318	 * to validating the cookie in order to avoid burning CPU cycles
319	 * unnecessarily.
320	 *
321	 * XXX (TFO) - The implication of checking the max_qlen before
322	 * processing a cookie request is that clients can't differentiate
323	 * between qlen overflow causing Fast Open to be disabled
324	 * temporarily vs a server not supporting Fast Open at all.
325	 */
326	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
327	if (fastopenq->max_qlen == 0)
328		return false;
329
330	if (fastopenq->qlen >= fastopenq->max_qlen) {
331		struct request_sock *req1;
332		spin_lock(&fastopenq->lock);
333		req1 = fastopenq->rskq_rst_head;
334		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
335			__NET_INC_STATS(sock_net(sk),
336					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
337			spin_unlock(&fastopenq->lock);
 
 
338			return false;
339		}
340		fastopenq->rskq_rst_head = req1->dl_next;
341		fastopenq->qlen--;
342		spin_unlock(&fastopenq->lock);
343		reqsk_put(req1);
344	}
345	return true;
346}
347
348static bool tcp_fastopen_no_cookie(const struct sock *sk,
349				   const struct dst_entry *dst,
350				   int flag)
351{
352	return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
353	       tcp_sk(sk)->fastopen_no_cookie ||
354	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
355}
356
357/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
358 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
359 * cookie request (foc->len == 0).
360 */
361struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
362			      struct request_sock *req,
363			      struct tcp_fastopen_cookie *foc,
364			      const struct dst_entry *dst)
365{
366	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
367	int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
368	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
 
369	struct sock *child;
370	int ret = 0;
371
372	if (foc->len == 0) /* Client requests a cookie */
373		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
374
375	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
376	      (syn_data || foc->len >= 0) &&
377	      tcp_fastopen_queue_check(sk))) {
378		foc->len = -1;
379		return NULL;
380	}
381
382	if (syn_data &&
383	    tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
384		goto fastopen;
385
386	if (foc->len == 0) {
387		/* Client requests a cookie. */
388		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
389	} else if (foc->len > 0) {
390		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
391						    &valid_foc);
392		if (!ret) {
393			NET_INC_STATS(sock_net(sk),
394				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
395		} else {
396			/* Cookie is valid. Create a (full) child socket to
397			 * accept the data in SYN before returning a SYN-ACK to
398			 * ack the data. If we fail to create the socket, fall
399			 * back and ack the ISN only but includes the same
400			 * cookie.
401			 *
402			 * Note: Data-less SYN with valid cookie is allowed to
403			 * send data in SYN_RECV state.
404			 */
405fastopen:
406			child = tcp_fastopen_create_child(sk, skb, req);
407			if (child) {
408				if (ret == 2) {
409					valid_foc.exp = foc->exp;
410					*foc = valid_foc;
411					NET_INC_STATS(sock_net(sk),
412						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
413				} else {
414					foc->len = -1;
415				}
416				NET_INC_STATS(sock_net(sk),
417					      LINUX_MIB_TCPFASTOPENPASSIVE);
418				return child;
419			}
420			NET_INC_STATS(sock_net(sk),
421				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
422		}
423	}
 
 
 
424	valid_foc.exp = foc->exp;
425	*foc = valid_foc;
426	return NULL;
427}
428
429bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
430			       struct tcp_fastopen_cookie *cookie)
431{
432	const struct dst_entry *dst;
433
434	tcp_fastopen_cache_get(sk, mss, cookie);
435
436	/* Firewall blackhole issue check */
437	if (tcp_fastopen_active_should_disable(sk)) {
438		cookie->len = -1;
439		return false;
440	}
441
442	dst = __sk_dst_get(sk);
443
444	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
445		cookie->len = -1;
446		return true;
447	}
448	if (cookie->len > 0)
449		return true;
450	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
451	return false;
452}
453
454/* This function checks if we want to defer sending SYN until the first
455 * write().  We defer under the following conditions:
456 * 1. fastopen_connect sockopt is set
457 * 2. we have a valid cookie
458 * Return value: return true if we want to defer until application writes data
459 *               return false if we want to send out SYN immediately
460 */
461bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
462{
463	struct tcp_fastopen_cookie cookie = { .len = 0 };
464	struct tcp_sock *tp = tcp_sk(sk);
465	u16 mss;
466
467	if (tp->fastopen_connect && !tp->fastopen_req) {
468		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
469			inet_sk(sk)->defer_connect = 1;
470			return true;
471		}
472
473		/* Alloc fastopen_req in order for FO option to be included
474		 * in SYN
475		 */
476		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
477					   sk->sk_allocation);
478		if (tp->fastopen_req)
479			tp->fastopen_req->cookie = cookie;
480		else
481			*err = -ENOBUFS;
482	}
483	return false;
484}
485EXPORT_SYMBOL(tcp_fastopen_defer_connect);
486
487/*
488 * The following code block is to deal with middle box issues with TFO:
489 * Middlebox firewall issues can potentially cause server's data being
490 * blackholed after a successful 3WHS using TFO.
491 * The proposed solution is to disable active TFO globally under the
492 * following circumstances:
493 *   1. client side TFO socket receives out of order FIN
494 *   2. client side TFO socket receives out of order RST
495 *   3. client side TFO socket has timed out three times consecutively during
496 *      or after handshake
497 * We disable active side TFO globally for 1hr at first. Then if it
498 * happens again, we disable it for 2h, then 4h, 8h, ...
499 * And we reset the timeout back to 1hr when we see a successful active
500 * TFO connection with data exchanges.
501 */
502
503/* Disable active TFO and record current jiffies and
504 * tfo_active_disable_times
505 */
506void tcp_fastopen_active_disable(struct sock *sk)
507{
508	struct net *net = sock_net(sk);
509
510	atomic_inc(&net->ipv4.tfo_active_disable_times);
511	net->ipv4.tfo_active_disable_stamp = jiffies;
512	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
513}
514
515/* Calculate timeout for tfo active disable
516 * Return true if we are still in the active TFO disable period
517 * Return false if timeout already expired and we should use active TFO
518 */
519bool tcp_fastopen_active_should_disable(struct sock *sk)
520{
521	unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
522	int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
523	unsigned long timeout;
524	int multiplier;
525
526	if (!tfo_da_times)
527		return false;
528
529	/* Limit timout to max: 2^6 * initial timeout */
530	multiplier = 1 << min(tfo_da_times - 1, 6);
531	timeout = multiplier * tfo_bh_timeout * HZ;
532	if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
533		return true;
534
535	/* Mark check bit so we can check for successful active TFO
536	 * condition and reset tfo_active_disable_times
537	 */
538	tcp_sk(sk)->syn_fastopen_ch = 1;
539	return false;
540}
541
542/* Disable active TFO if FIN is the only packet in the ofo queue
543 * and no data is received.
544 * Also check if we can reset tfo_active_disable_times if data is
545 * received successfully on a marked active TFO sockets opened on
546 * a non-loopback interface
547 */
548void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
549{
550	struct tcp_sock *tp = tcp_sk(sk);
551	struct dst_entry *dst;
552	struct sk_buff *skb;
553
554	if (!tp->syn_fastopen)
555		return;
556
557	if (!tp->data_segs_in) {
558		skb = skb_rb_first(&tp->out_of_order_queue);
559		if (skb && !skb_rb_next(skb)) {
560			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
561				tcp_fastopen_active_disable(sk);
562				return;
563			}
564		}
565	} else if (tp->syn_fastopen_ch &&
566		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
567		dst = sk_dst_get(sk);
568		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
569			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
570		dst_release(dst);
571	}
572}
573
574void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
575{
576	u32 timeouts = inet_csk(sk)->icsk_retransmits;
577	struct tcp_sock *tp = tcp_sk(sk);
578
579	/* Broken middle-boxes may black-hole Fast Open connection during or
580	 * even after the handshake. Be extremely conservative and pause
581	 * Fast Open globally after hitting the third consecutive timeout or
582	 * exceeding the configured timeout limit.
583	 */
584	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
585	    (timeouts == 2 || (timeouts < 2 && expired))) {
586		tcp_fastopen_active_disable(sk);
587		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
588	}
589}
v4.6
 
  1#include <linux/crypto.h>
  2#include <linux/err.h>
  3#include <linux/init.h>
  4#include <linux/kernel.h>
  5#include <linux/list.h>
  6#include <linux/tcp.h>
  7#include <linux/rcupdate.h>
  8#include <linux/rculist.h>
  9#include <net/inetpeer.h>
 10#include <net/tcp.h>
 11
 12int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
 
 
 
 13
 14struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
 15
 16static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
 17
 18void tcp_fastopen_init_key_once(bool publish)
 19{
 20	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
 21
 22	/* tcp_fastopen_reset_cipher publishes the new context
 23	 * atomically, so we allow this race happening here.
 24	 *
 25	 * All call sites of tcp_fastopen_cookie_gen also check
 26	 * for a valid cookie, so this is an acceptable risk.
 27	 */
 28	if (net_get_random_once(key, sizeof(key)) && publish)
 29		tcp_fastopen_reset_cipher(key, sizeof(key));
 30}
 31
 32static void tcp_fastopen_ctx_free(struct rcu_head *head)
 33{
 34	struct tcp_fastopen_context *ctx =
 35	    container_of(head, struct tcp_fastopen_context, rcu);
 36	crypto_free_cipher(ctx->tfm);
 37	kfree(ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38}
 39
 40int tcp_fastopen_reset_cipher(void *key, unsigned int len)
 
 41{
 42	int err;
 43	struct tcp_fastopen_context *ctx, *octx;
 
 
 44
 45	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 46	if (!ctx)
 47		return -ENOMEM;
 48	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 49
 50	if (IS_ERR(ctx->tfm)) {
 51		err = PTR_ERR(ctx->tfm);
 52error:		kfree(ctx);
 53		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
 54		return err;
 55	}
 56	err = crypto_cipher_setkey(ctx->tfm, key, len);
 57	if (err) {
 58		pr_err("TCP: TFO cipher key error: %d\n", err);
 59		crypto_free_cipher(ctx->tfm);
 60		goto error;
 61	}
 62	memcpy(ctx->key, key, len);
 63
 64	spin_lock(&tcp_fastopen_ctx_lock);
 65
 66	octx = rcu_dereference_protected(tcp_fastopen_ctx,
 67				lockdep_is_held(&tcp_fastopen_ctx_lock));
 68	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
 69	spin_unlock(&tcp_fastopen_ctx_lock);
 70
 71	if (octx)
 72		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 
 73	return err;
 74}
 75
 76static bool __tcp_fastopen_cookie_gen(const void *path,
 77				      struct tcp_fastopen_cookie *foc)
 78{
 79	struct tcp_fastopen_context *ctx;
 80	bool ok = false;
 81
 82	rcu_read_lock();
 83	ctx = rcu_dereference(tcp_fastopen_ctx);
 
 
 
 84	if (ctx) {
 85		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
 86		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
 87		ok = true;
 
 
 88	}
 89	rcu_read_unlock();
 90	return ok;
 
 91}
 92
 93/* Generate the fastopen cookie by doing aes128 encryption on both
 94 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
 95 * addresses. For the longer IPv6 addresses use CBC-MAC.
 96 *
 97 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
 98 */
 99static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100				    struct sk_buff *syn,
101				    struct tcp_fastopen_cookie *foc)
102{
 
 
103	if (req->rsk_ops->family == AF_INET) {
104		const struct iphdr *iph = ip_hdr(syn);
105
106		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107		return __tcp_fastopen_cookie_gen(path, foc);
 
 
 
 
108	}
109
110#if IS_ENABLED(CONFIG_IPV6)
111	if (req->rsk_ops->family == AF_INET6) {
112		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113		struct tcp_fastopen_cookie tmp;
114
115		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116			struct in6_addr *buf = (struct in6_addr *) tmp.val;
117			int i;
118
119			for (i = 0; i < 4; i++)
120				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121			return __tcp_fastopen_cookie_gen(buf, foc);
122		}
123	}
124#endif
125	return false;
126}
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
129/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
130 * queue this additional data / FIN.
131 */
132void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
133{
134	struct tcp_sock *tp = tcp_sk(sk);
135
136	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
137		return;
138
139	skb = skb_clone(skb, GFP_ATOMIC);
140	if (!skb)
141		return;
142
143	skb_dst_drop(skb);
144	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
145	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
146	 * to avoid double counting.  Also, tcp_segs_in() expects
147	 * skb->len to include the tcp_hdrlen.  Hence, it should
148	 * be called before __skb_pull().
149	 */
150	tp->segs_in = 0;
151	tcp_segs_in(tp, skb);
152	__skb_pull(skb, tcp_hdrlen(skb));
 
153	skb_set_owner_r(skb, sk);
154
155	TCP_SKB_CB(skb)->seq++;
156	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
157
158	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
159	__skb_queue_tail(&sk->sk_receive_queue, skb);
160	tp->syn_data_acked = 1;
161
162	/* u64_stats_update_begin(&tp->syncp) not needed here,
163	 * as we certainly are not changing upper 32bit value (0)
164	 */
165	tp->bytes_received = skb->len;
166
167	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
168		tcp_fin(sk);
169}
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171static struct sock *tcp_fastopen_create_child(struct sock *sk,
172					      struct sk_buff *skb,
173					      struct dst_entry *dst,
174					      struct request_sock *req)
175{
176	struct tcp_sock *tp;
177	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
178	struct sock *child;
179	bool own_req;
180
181	req->num_retrans = 0;
182	req->num_timeout = 0;
183	req->sk = NULL;
184
185	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
186							 NULL, &own_req);
187	if (!child)
188		return NULL;
189
190	spin_lock(&queue->fastopenq.lock);
191	queue->fastopenq.qlen++;
192	spin_unlock(&queue->fastopenq.lock);
193
194	/* Initialize the child socket. Have to fix some values to take
195	 * into account the child is a Fast Open socket and is created
196	 * only out of the bits carried in the SYN packet.
197	 */
198	tp = tcp_sk(child);
199
200	tp->fastopen_rsk = req;
201	tcp_rsk(req)->tfo_listener = true;
202
203	/* RFC1323: The window in SYN & SYN/ACK segments is never
204	 * scaled. So correct it appropriately.
205	 */
206	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
 
207
208	/* Activate the retrans timer so that SYNACK can be retransmitted.
209	 * The request socket is not added to the ehash
210	 * because it's been added to the accept queue directly.
211	 */
212	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
213				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
214
215	atomic_set(&req->rsk_refcnt, 2);
216
217	/* Now finish processing the fastopen child socket. */
218	inet_csk(child)->icsk_af_ops->rebuild_header(child);
219	tcp_init_congestion_control(child);
220	tcp_mtup_init(child);
221	tcp_init_metrics(child);
222	tcp_init_buffer_space(child);
223
224	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
225
226	tcp_fastopen_add_skb(child, skb);
227
228	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
 
229	/* tcp_conn_request() is sending the SYNACK,
230	 * and queues the child into listener accept queue.
231	 */
232	return child;
233}
234
235static bool tcp_fastopen_queue_check(struct sock *sk)
236{
237	struct fastopen_queue *fastopenq;
238
239	/* Make sure the listener has enabled fastopen, and we don't
240	 * exceed the max # of pending TFO requests allowed before trying
241	 * to validating the cookie in order to avoid burning CPU cycles
242	 * unnecessarily.
243	 *
244	 * XXX (TFO) - The implication of checking the max_qlen before
245	 * processing a cookie request is that clients can't differentiate
246	 * between qlen overflow causing Fast Open to be disabled
247	 * temporarily vs a server not supporting Fast Open at all.
248	 */
249	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
250	if (fastopenq->max_qlen == 0)
251		return false;
252
253	if (fastopenq->qlen >= fastopenq->max_qlen) {
254		struct request_sock *req1;
255		spin_lock(&fastopenq->lock);
256		req1 = fastopenq->rskq_rst_head;
257		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
 
 
258			spin_unlock(&fastopenq->lock);
259			NET_INC_STATS_BH(sock_net(sk),
260					 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
261			return false;
262		}
263		fastopenq->rskq_rst_head = req1->dl_next;
264		fastopenq->qlen--;
265		spin_unlock(&fastopenq->lock);
266		reqsk_put(req1);
267	}
268	return true;
269}
270
 
 
 
 
 
 
 
 
 
271/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
272 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
273 * cookie request (foc->len == 0).
274 */
275struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
276			      struct request_sock *req,
277			      struct tcp_fastopen_cookie *foc,
278			      struct dst_entry *dst)
279{
 
 
280	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
281	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
282	struct sock *child;
 
283
284	if (foc->len == 0) /* Client requests a cookie */
285		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
286
287	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
288	      (syn_data || foc->len >= 0) &&
289	      tcp_fastopen_queue_check(sk))) {
290		foc->len = -1;
291		return NULL;
292	}
293
294	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
 
295		goto fastopen;
296
297	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
298	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
299	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
300	    foc->len == valid_foc.len &&
301	    !memcmp(foc->val, valid_foc.val, foc->len)) {
302		/* Cookie is valid. Create a (full) child socket to accept
303		 * the data in SYN before returning a SYN-ACK to ack the
304		 * data. If we fail to create the socket, fall back and
305		 * ack the ISN only but includes the same cookie.
306		 *
307		 * Note: Data-less SYN with valid cookie is allowed to send
308		 * data in SYN_RECV state.
309		 */
 
 
 
 
 
 
310fastopen:
311		child = tcp_fastopen_create_child(sk, skb, dst, req);
312		if (child) {
313			foc->len = -1;
314			NET_INC_STATS_BH(sock_net(sk),
315					 LINUX_MIB_TCPFASTOPENPASSIVE);
316			return child;
 
 
 
 
 
 
 
 
 
 
317		}
318		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
319	} else if (foc->len > 0) /* Client presents an invalid cookie */
320		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
321
322	valid_foc.exp = foc->exp;
323	*foc = valid_foc;
324	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325}