Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/vmacache.h>
23#include <linux/mman.h>
24#include <linux/swap.h>
25#include <linux/file.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>
28#include <linux/slab.h>
29#include <linux/vmalloc.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/compiler.h>
33#include <linux/mount.h>
34#include <linux/personality.h>
35#include <linux/security.h>
36#include <linux/syscalls.h>
37#include <linux/audit.h>
38#include <linux/printk.h>
39
40#include <linux/uaccess.h>
41#include <asm/tlb.h>
42#include <asm/tlbflush.h>
43#include <asm/mmu_context.h>
44#include "internal.h"
45
46void *high_memory;
47EXPORT_SYMBOL(high_memory);
48struct page *mem_map;
49unsigned long max_mapnr;
50EXPORT_SYMBOL(max_mapnr);
51unsigned long highest_memmap_pfn;
52int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53int heap_stack_gap = 0;
54
55atomic_long_t mmap_pages_allocated;
56
57EXPORT_SYMBOL(mem_map);
58
59/* list of mapped, potentially shareable regions */
60static struct kmem_cache *vm_region_jar;
61struct rb_root nommu_region_tree = RB_ROOT;
62DECLARE_RWSEM(nommu_region_sem);
63
64const struct vm_operations_struct generic_file_vm_ops = {
65};
66
67/*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73unsigned int kobjsize(const void *objp)
74{
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112}
113
114/**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126{
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132}
133EXPORT_SYMBOL(follow_pfn);
134
135LIST_HEAD(vmap_area_list);
136
137void vfree(const void *addr)
138{
139 kfree(addr);
140}
141EXPORT_SYMBOL(vfree);
142
143void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144{
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150}
151EXPORT_SYMBOL(__vmalloc);
152
153void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157{
158 return __vmalloc(size, gfp_mask);
159}
160
161void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163{
164 return __vmalloc(size, gfp_mask);
165}
166
167static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168{
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183}
184
185void *vmalloc_user(unsigned long size)
186{
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188}
189EXPORT_SYMBOL(vmalloc_user);
190
191struct page *vmalloc_to_page(const void *addr)
192{
193 return virt_to_page(addr);
194}
195EXPORT_SYMBOL(vmalloc_to_page);
196
197unsigned long vmalloc_to_pfn(const void *addr)
198{
199 return page_to_pfn(virt_to_page(addr));
200}
201EXPORT_SYMBOL(vmalloc_to_pfn);
202
203long vread(char *buf, char *addr, unsigned long count)
204{
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211}
212
213long vwrite(char *buf, char *addr, unsigned long count)
214{
215 /* Don't allow overflow */
216 if ((unsigned long) addr + count < count)
217 count = -(unsigned long) addr;
218
219 memcpy(addr, buf, count);
220 return count;
221}
222
223/*
224 * vmalloc - allocate virtually contiguous memory
225 *
226 * @size: allocation size
227 *
228 * Allocate enough pages to cover @size from the page level
229 * allocator and map them into contiguous kernel virtual space.
230 *
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
233 */
234void *vmalloc(unsigned long size)
235{
236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237}
238EXPORT_SYMBOL(vmalloc);
239
240/*
241 * vzalloc - allocate virtually contiguous memory with zero fill
242 *
243 * @size: allocation size
244 *
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 * The memory allocated is set to zero.
248 *
249 * For tight control over page level allocator and protection flags
250 * use __vmalloc() instead.
251 */
252void *vzalloc(unsigned long size)
253{
254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255}
256EXPORT_SYMBOL(vzalloc);
257
258/**
259 * vmalloc_node - allocate memory on a specific node
260 * @size: allocation size
261 * @node: numa node
262 *
263 * Allocate enough pages to cover @size from the page level
264 * allocator and map them into contiguous kernel virtual space.
265 *
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
268 */
269void *vmalloc_node(unsigned long size, int node)
270{
271 return vmalloc(size);
272}
273EXPORT_SYMBOL(vmalloc_node);
274
275/**
276 * vzalloc_node - allocate memory on a specific node with zero fill
277 * @size: allocation size
278 * @node: numa node
279 *
280 * Allocate enough pages to cover @size from the page level
281 * allocator and map them into contiguous kernel virtual space.
282 * The memory allocated is set to zero.
283 *
284 * For tight control over page level allocator and protection flags
285 * use __vmalloc() instead.
286 */
287void *vzalloc_node(unsigned long size, int node)
288{
289 return vzalloc(size);
290}
291EXPORT_SYMBOL(vzalloc_node);
292
293/**
294 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
295 * @size: allocation size
296 *
297 * Allocate enough 32bit PA addressable pages to cover @size from the
298 * page level allocator and map them into contiguous kernel virtual space.
299 */
300void *vmalloc_32(unsigned long size)
301{
302 return __vmalloc(size, GFP_KERNEL);
303}
304EXPORT_SYMBOL(vmalloc_32);
305
306/**
307 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308 * @size: allocation size
309 *
310 * The resulting memory area is 32bit addressable and zeroed so it can be
311 * mapped to userspace without leaking data.
312 *
313 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314 * remap_vmalloc_range() are permissible.
315 */
316void *vmalloc_32_user(unsigned long size)
317{
318 /*
319 * We'll have to sort out the ZONE_DMA bits for 64-bit,
320 * but for now this can simply use vmalloc_user() directly.
321 */
322 return vmalloc_user(size);
323}
324EXPORT_SYMBOL(vmalloc_32_user);
325
326void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327{
328 BUG();
329 return NULL;
330}
331EXPORT_SYMBOL(vmap);
332
333void vunmap(const void *addr)
334{
335 BUG();
336}
337EXPORT_SYMBOL(vunmap);
338
339void *vm_map_ram(struct page **pages, unsigned int count, int node)
340{
341 BUG();
342 return NULL;
343}
344EXPORT_SYMBOL(vm_map_ram);
345
346void vm_unmap_ram(const void *mem, unsigned int count)
347{
348 BUG();
349}
350EXPORT_SYMBOL(vm_unmap_ram);
351
352void vm_unmap_aliases(void)
353{
354}
355EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356
357struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
358{
359 BUG();
360 return NULL;
361}
362EXPORT_SYMBOL_GPL(alloc_vm_area);
363
364void free_vm_area(struct vm_struct *area)
365{
366 BUG();
367}
368EXPORT_SYMBOL_GPL(free_vm_area);
369
370int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
371 struct page *page)
372{
373 return -EINVAL;
374}
375EXPORT_SYMBOL(vm_insert_page);
376
377int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
378 unsigned long num)
379{
380 return -EINVAL;
381}
382EXPORT_SYMBOL(vm_map_pages);
383
384int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
385 unsigned long num)
386{
387 return -EINVAL;
388}
389EXPORT_SYMBOL(vm_map_pages_zero);
390
391/*
392 * sys_brk() for the most part doesn't need the global kernel
393 * lock, except when an application is doing something nasty
394 * like trying to un-brk an area that has already been mapped
395 * to a regular file. in this case, the unmapping will need
396 * to invoke file system routines that need the global lock.
397 */
398SYSCALL_DEFINE1(brk, unsigned long, brk)
399{
400 struct mm_struct *mm = current->mm;
401
402 if (brk < mm->start_brk || brk > mm->context.end_brk)
403 return mm->brk;
404
405 if (mm->brk == brk)
406 return mm->brk;
407
408 /*
409 * Always allow shrinking brk
410 */
411 if (brk <= mm->brk) {
412 mm->brk = brk;
413 return brk;
414 }
415
416 /*
417 * Ok, looks good - let it rip.
418 */
419 flush_icache_user_range(mm->brk, brk);
420 return mm->brk = brk;
421}
422
423/*
424 * initialise the percpu counter for VM and region record slabs
425 */
426void __init mmap_init(void)
427{
428 int ret;
429
430 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
431 VM_BUG_ON(ret);
432 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
433}
434
435/*
436 * validate the region tree
437 * - the caller must hold the region lock
438 */
439#ifdef CONFIG_DEBUG_NOMMU_REGIONS
440static noinline void validate_nommu_regions(void)
441{
442 struct vm_region *region, *last;
443 struct rb_node *p, *lastp;
444
445 lastp = rb_first(&nommu_region_tree);
446 if (!lastp)
447 return;
448
449 last = rb_entry(lastp, struct vm_region, vm_rb);
450 BUG_ON(last->vm_end <= last->vm_start);
451 BUG_ON(last->vm_top < last->vm_end);
452
453 while ((p = rb_next(lastp))) {
454 region = rb_entry(p, struct vm_region, vm_rb);
455 last = rb_entry(lastp, struct vm_region, vm_rb);
456
457 BUG_ON(region->vm_end <= region->vm_start);
458 BUG_ON(region->vm_top < region->vm_end);
459 BUG_ON(region->vm_start < last->vm_top);
460
461 lastp = p;
462 }
463}
464#else
465static void validate_nommu_regions(void)
466{
467}
468#endif
469
470/*
471 * add a region into the global tree
472 */
473static void add_nommu_region(struct vm_region *region)
474{
475 struct vm_region *pregion;
476 struct rb_node **p, *parent;
477
478 validate_nommu_regions();
479
480 parent = NULL;
481 p = &nommu_region_tree.rb_node;
482 while (*p) {
483 parent = *p;
484 pregion = rb_entry(parent, struct vm_region, vm_rb);
485 if (region->vm_start < pregion->vm_start)
486 p = &(*p)->rb_left;
487 else if (region->vm_start > pregion->vm_start)
488 p = &(*p)->rb_right;
489 else if (pregion == region)
490 return;
491 else
492 BUG();
493 }
494
495 rb_link_node(®ion->vm_rb, parent, p);
496 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
497
498 validate_nommu_regions();
499}
500
501/*
502 * delete a region from the global tree
503 */
504static void delete_nommu_region(struct vm_region *region)
505{
506 BUG_ON(!nommu_region_tree.rb_node);
507
508 validate_nommu_regions();
509 rb_erase(®ion->vm_rb, &nommu_region_tree);
510 validate_nommu_regions();
511}
512
513/*
514 * free a contiguous series of pages
515 */
516static void free_page_series(unsigned long from, unsigned long to)
517{
518 for (; from < to; from += PAGE_SIZE) {
519 struct page *page = virt_to_page(from);
520
521 atomic_long_dec(&mmap_pages_allocated);
522 put_page(page);
523 }
524}
525
526/*
527 * release a reference to a region
528 * - the caller must hold the region semaphore for writing, which this releases
529 * - the region may not have been added to the tree yet, in which case vm_top
530 * will equal vm_start
531 */
532static void __put_nommu_region(struct vm_region *region)
533 __releases(nommu_region_sem)
534{
535 BUG_ON(!nommu_region_tree.rb_node);
536
537 if (--region->vm_usage == 0) {
538 if (region->vm_top > region->vm_start)
539 delete_nommu_region(region);
540 up_write(&nommu_region_sem);
541
542 if (region->vm_file)
543 fput(region->vm_file);
544
545 /* IO memory and memory shared directly out of the pagecache
546 * from ramfs/tmpfs mustn't be released here */
547 if (region->vm_flags & VM_MAPPED_COPY)
548 free_page_series(region->vm_start, region->vm_top);
549 kmem_cache_free(vm_region_jar, region);
550 } else {
551 up_write(&nommu_region_sem);
552 }
553}
554
555/*
556 * release a reference to a region
557 */
558static void put_nommu_region(struct vm_region *region)
559{
560 down_write(&nommu_region_sem);
561 __put_nommu_region(region);
562}
563
564/*
565 * add a VMA into a process's mm_struct in the appropriate place in the list
566 * and tree and add to the address space's page tree also if not an anonymous
567 * page
568 * - should be called with mm->mmap_lock held writelocked
569 */
570static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
571{
572 struct vm_area_struct *pvma, *prev;
573 struct address_space *mapping;
574 struct rb_node **p, *parent, *rb_prev;
575
576 BUG_ON(!vma->vm_region);
577
578 mm->map_count++;
579 vma->vm_mm = mm;
580
581 /* add the VMA to the mapping */
582 if (vma->vm_file) {
583 mapping = vma->vm_file->f_mapping;
584
585 i_mmap_lock_write(mapping);
586 flush_dcache_mmap_lock(mapping);
587 vma_interval_tree_insert(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 i_mmap_unlock_write(mapping);
590 }
591
592 /* add the VMA to the tree */
593 parent = rb_prev = NULL;
594 p = &mm->mm_rb.rb_node;
595 while (*p) {
596 parent = *p;
597 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
598
599 /* sort by: start addr, end addr, VMA struct addr in that order
600 * (the latter is necessary as we may get identical VMAs) */
601 if (vma->vm_start < pvma->vm_start)
602 p = &(*p)->rb_left;
603 else if (vma->vm_start > pvma->vm_start) {
604 rb_prev = parent;
605 p = &(*p)->rb_right;
606 } else if (vma->vm_end < pvma->vm_end)
607 p = &(*p)->rb_left;
608 else if (vma->vm_end > pvma->vm_end) {
609 rb_prev = parent;
610 p = &(*p)->rb_right;
611 } else if (vma < pvma)
612 p = &(*p)->rb_left;
613 else if (vma > pvma) {
614 rb_prev = parent;
615 p = &(*p)->rb_right;
616 } else
617 BUG();
618 }
619
620 rb_link_node(&vma->vm_rb, parent, p);
621 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
622
623 /* add VMA to the VMA list also */
624 prev = NULL;
625 if (rb_prev)
626 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
627
628 __vma_link_list(mm, vma, prev);
629}
630
631/*
632 * delete a VMA from its owning mm_struct and address space
633 */
634static void delete_vma_from_mm(struct vm_area_struct *vma)
635{
636 int i;
637 struct address_space *mapping;
638 struct mm_struct *mm = vma->vm_mm;
639 struct task_struct *curr = current;
640
641 mm->map_count--;
642 for (i = 0; i < VMACACHE_SIZE; i++) {
643 /* if the vma is cached, invalidate the entire cache */
644 if (curr->vmacache.vmas[i] == vma) {
645 vmacache_invalidate(mm);
646 break;
647 }
648 }
649
650 /* remove the VMA from the mapping */
651 if (vma->vm_file) {
652 mapping = vma->vm_file->f_mapping;
653
654 i_mmap_lock_write(mapping);
655 flush_dcache_mmap_lock(mapping);
656 vma_interval_tree_remove(vma, &mapping->i_mmap);
657 flush_dcache_mmap_unlock(mapping);
658 i_mmap_unlock_write(mapping);
659 }
660
661 /* remove from the MM's tree and list */
662 rb_erase(&vma->vm_rb, &mm->mm_rb);
663
664 __vma_unlink_list(mm, vma);
665}
666
667/*
668 * destroy a VMA record
669 */
670static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
671{
672 if (vma->vm_ops && vma->vm_ops->close)
673 vma->vm_ops->close(vma);
674 if (vma->vm_file)
675 fput(vma->vm_file);
676 put_nommu_region(vma->vm_region);
677 vm_area_free(vma);
678}
679
680/*
681 * look up the first VMA in which addr resides, NULL if none
682 * - should be called with mm->mmap_lock at least held readlocked
683 */
684struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
685{
686 struct vm_area_struct *vma;
687
688 /* check the cache first */
689 vma = vmacache_find(mm, addr);
690 if (likely(vma))
691 return vma;
692
693 /* trawl the list (there may be multiple mappings in which addr
694 * resides) */
695 for (vma = mm->mmap; vma; vma = vma->vm_next) {
696 if (vma->vm_start > addr)
697 return NULL;
698 if (vma->vm_end > addr) {
699 vmacache_update(addr, vma);
700 return vma;
701 }
702 }
703
704 return NULL;
705}
706EXPORT_SYMBOL(find_vma);
707
708/*
709 * find a VMA
710 * - we don't extend stack VMAs under NOMMU conditions
711 */
712struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
713{
714 return find_vma(mm, addr);
715}
716
717/*
718 * expand a stack to a given address
719 * - not supported under NOMMU conditions
720 */
721int expand_stack(struct vm_area_struct *vma, unsigned long address)
722{
723 return -ENOMEM;
724}
725
726/*
727 * look up the first VMA exactly that exactly matches addr
728 * - should be called with mm->mmap_lock at least held readlocked
729 */
730static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
731 unsigned long addr,
732 unsigned long len)
733{
734 struct vm_area_struct *vma;
735 unsigned long end = addr + len;
736
737 /* check the cache first */
738 vma = vmacache_find_exact(mm, addr, end);
739 if (vma)
740 return vma;
741
742 /* trawl the list (there may be multiple mappings in which addr
743 * resides) */
744 for (vma = mm->mmap; vma; vma = vma->vm_next) {
745 if (vma->vm_start < addr)
746 continue;
747 if (vma->vm_start > addr)
748 return NULL;
749 if (vma->vm_end == end) {
750 vmacache_update(addr, vma);
751 return vma;
752 }
753 }
754
755 return NULL;
756}
757
758/*
759 * determine whether a mapping should be permitted and, if so, what sort of
760 * mapping we're capable of supporting
761 */
762static int validate_mmap_request(struct file *file,
763 unsigned long addr,
764 unsigned long len,
765 unsigned long prot,
766 unsigned long flags,
767 unsigned long pgoff,
768 unsigned long *_capabilities)
769{
770 unsigned long capabilities, rlen;
771 int ret;
772
773 /* do the simple checks first */
774 if (flags & MAP_FIXED)
775 return -EINVAL;
776
777 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
778 (flags & MAP_TYPE) != MAP_SHARED)
779 return -EINVAL;
780
781 if (!len)
782 return -EINVAL;
783
784 /* Careful about overflows.. */
785 rlen = PAGE_ALIGN(len);
786 if (!rlen || rlen > TASK_SIZE)
787 return -ENOMEM;
788
789 /* offset overflow? */
790 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
791 return -EOVERFLOW;
792
793 if (file) {
794 /* files must support mmap */
795 if (!file->f_op->mmap)
796 return -ENODEV;
797
798 /* work out if what we've got could possibly be shared
799 * - we support chardevs that provide their own "memory"
800 * - we support files/blockdevs that are memory backed
801 */
802 if (file->f_op->mmap_capabilities) {
803 capabilities = file->f_op->mmap_capabilities(file);
804 } else {
805 /* no explicit capabilities set, so assume some
806 * defaults */
807 switch (file_inode(file)->i_mode & S_IFMT) {
808 case S_IFREG:
809 case S_IFBLK:
810 capabilities = NOMMU_MAP_COPY;
811 break;
812
813 case S_IFCHR:
814 capabilities =
815 NOMMU_MAP_DIRECT |
816 NOMMU_MAP_READ |
817 NOMMU_MAP_WRITE;
818 break;
819
820 default:
821 return -EINVAL;
822 }
823 }
824
825 /* eliminate any capabilities that we can't support on this
826 * device */
827 if (!file->f_op->get_unmapped_area)
828 capabilities &= ~NOMMU_MAP_DIRECT;
829 if (!(file->f_mode & FMODE_CAN_READ))
830 capabilities &= ~NOMMU_MAP_COPY;
831
832 /* The file shall have been opened with read permission. */
833 if (!(file->f_mode & FMODE_READ))
834 return -EACCES;
835
836 if (flags & MAP_SHARED) {
837 /* do checks for writing, appending and locking */
838 if ((prot & PROT_WRITE) &&
839 !(file->f_mode & FMODE_WRITE))
840 return -EACCES;
841
842 if (IS_APPEND(file_inode(file)) &&
843 (file->f_mode & FMODE_WRITE))
844 return -EACCES;
845
846 if (locks_verify_locked(file))
847 return -EAGAIN;
848
849 if (!(capabilities & NOMMU_MAP_DIRECT))
850 return -ENODEV;
851
852 /* we mustn't privatise shared mappings */
853 capabilities &= ~NOMMU_MAP_COPY;
854 } else {
855 /* we're going to read the file into private memory we
856 * allocate */
857 if (!(capabilities & NOMMU_MAP_COPY))
858 return -ENODEV;
859
860 /* we don't permit a private writable mapping to be
861 * shared with the backing device */
862 if (prot & PROT_WRITE)
863 capabilities &= ~NOMMU_MAP_DIRECT;
864 }
865
866 if (capabilities & NOMMU_MAP_DIRECT) {
867 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
868 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
869 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
870 ) {
871 capabilities &= ~NOMMU_MAP_DIRECT;
872 if (flags & MAP_SHARED) {
873 pr_warn("MAP_SHARED not completely supported on !MMU\n");
874 return -EINVAL;
875 }
876 }
877 }
878
879 /* handle executable mappings and implied executable
880 * mappings */
881 if (path_noexec(&file->f_path)) {
882 if (prot & PROT_EXEC)
883 return -EPERM;
884 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
885 /* handle implication of PROT_EXEC by PROT_READ */
886 if (current->personality & READ_IMPLIES_EXEC) {
887 if (capabilities & NOMMU_MAP_EXEC)
888 prot |= PROT_EXEC;
889 }
890 } else if ((prot & PROT_READ) &&
891 (prot & PROT_EXEC) &&
892 !(capabilities & NOMMU_MAP_EXEC)
893 ) {
894 /* backing file is not executable, try to copy */
895 capabilities &= ~NOMMU_MAP_DIRECT;
896 }
897 } else {
898 /* anonymous mappings are always memory backed and can be
899 * privately mapped
900 */
901 capabilities = NOMMU_MAP_COPY;
902
903 /* handle PROT_EXEC implication by PROT_READ */
904 if ((prot & PROT_READ) &&
905 (current->personality & READ_IMPLIES_EXEC))
906 prot |= PROT_EXEC;
907 }
908
909 /* allow the security API to have its say */
910 ret = security_mmap_addr(addr);
911 if (ret < 0)
912 return ret;
913
914 /* looks okay */
915 *_capabilities = capabilities;
916 return 0;
917}
918
919/*
920 * we've determined that we can make the mapping, now translate what we
921 * now know into VMA flags
922 */
923static unsigned long determine_vm_flags(struct file *file,
924 unsigned long prot,
925 unsigned long flags,
926 unsigned long capabilities)
927{
928 unsigned long vm_flags;
929
930 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
931 /* vm_flags |= mm->def_flags; */
932
933 if (!(capabilities & NOMMU_MAP_DIRECT)) {
934 /* attempt to share read-only copies of mapped file chunks */
935 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
936 if (file && !(prot & PROT_WRITE))
937 vm_flags |= VM_MAYSHARE;
938 } else {
939 /* overlay a shareable mapping on the backing device or inode
940 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
941 * romfs/cramfs */
942 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
943 if (flags & MAP_SHARED)
944 vm_flags |= VM_SHARED;
945 }
946
947 /* refuse to let anyone share private mappings with this process if
948 * it's being traced - otherwise breakpoints set in it may interfere
949 * with another untraced process
950 */
951 if ((flags & MAP_PRIVATE) && current->ptrace)
952 vm_flags &= ~VM_MAYSHARE;
953
954 return vm_flags;
955}
956
957/*
958 * set up a shared mapping on a file (the driver or filesystem provides and
959 * pins the storage)
960 */
961static int do_mmap_shared_file(struct vm_area_struct *vma)
962{
963 int ret;
964
965 ret = call_mmap(vma->vm_file, vma);
966 if (ret == 0) {
967 vma->vm_region->vm_top = vma->vm_region->vm_end;
968 return 0;
969 }
970 if (ret != -ENOSYS)
971 return ret;
972
973 /* getting -ENOSYS indicates that direct mmap isn't possible (as
974 * opposed to tried but failed) so we can only give a suitable error as
975 * it's not possible to make a private copy if MAP_SHARED was given */
976 return -ENODEV;
977}
978
979/*
980 * set up a private mapping or an anonymous shared mapping
981 */
982static int do_mmap_private(struct vm_area_struct *vma,
983 struct vm_region *region,
984 unsigned long len,
985 unsigned long capabilities)
986{
987 unsigned long total, point;
988 void *base;
989 int ret, order;
990
991 /* invoke the file's mapping function so that it can keep track of
992 * shared mappings on devices or memory
993 * - VM_MAYSHARE will be set if it may attempt to share
994 */
995 if (capabilities & NOMMU_MAP_DIRECT) {
996 ret = call_mmap(vma->vm_file, vma);
997 if (ret == 0) {
998 /* shouldn't return success if we're not sharing */
999 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1000 vma->vm_region->vm_top = vma->vm_region->vm_end;
1001 return 0;
1002 }
1003 if (ret != -ENOSYS)
1004 return ret;
1005
1006 /* getting an ENOSYS error indicates that direct mmap isn't
1007 * possible (as opposed to tried but failed) so we'll try to
1008 * make a private copy of the data and map that instead */
1009 }
1010
1011
1012 /* allocate some memory to hold the mapping
1013 * - note that this may not return a page-aligned address if the object
1014 * we're allocating is smaller than a page
1015 */
1016 order = get_order(len);
1017 total = 1 << order;
1018 point = len >> PAGE_SHIFT;
1019
1020 /* we don't want to allocate a power-of-2 sized page set */
1021 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1022 total = point;
1023
1024 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1025 if (!base)
1026 goto enomem;
1027
1028 atomic_long_add(total, &mmap_pages_allocated);
1029
1030 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1031 region->vm_start = (unsigned long) base;
1032 region->vm_end = region->vm_start + len;
1033 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1034
1035 vma->vm_start = region->vm_start;
1036 vma->vm_end = region->vm_start + len;
1037
1038 if (vma->vm_file) {
1039 /* read the contents of a file into the copy */
1040 loff_t fpos;
1041
1042 fpos = vma->vm_pgoff;
1043 fpos <<= PAGE_SHIFT;
1044
1045 ret = kernel_read(vma->vm_file, base, len, &fpos);
1046 if (ret < 0)
1047 goto error_free;
1048
1049 /* clear the last little bit */
1050 if (ret < len)
1051 memset(base + ret, 0, len - ret);
1052
1053 } else {
1054 vma_set_anonymous(vma);
1055 }
1056
1057 return 0;
1058
1059error_free:
1060 free_page_series(region->vm_start, region->vm_top);
1061 region->vm_start = vma->vm_start = 0;
1062 region->vm_end = vma->vm_end = 0;
1063 region->vm_top = 0;
1064 return ret;
1065
1066enomem:
1067 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1068 len, current->pid, current->comm);
1069 show_free_areas(0, NULL);
1070 return -ENOMEM;
1071}
1072
1073/*
1074 * handle mapping creation for uClinux
1075 */
1076unsigned long do_mmap(struct file *file,
1077 unsigned long addr,
1078 unsigned long len,
1079 unsigned long prot,
1080 unsigned long flags,
1081 unsigned long pgoff,
1082 unsigned long *populate,
1083 struct list_head *uf)
1084{
1085 struct vm_area_struct *vma;
1086 struct vm_region *region;
1087 struct rb_node *rb;
1088 vm_flags_t vm_flags;
1089 unsigned long capabilities, result;
1090 int ret;
1091
1092 *populate = 0;
1093
1094 /* decide whether we should attempt the mapping, and if so what sort of
1095 * mapping */
1096 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1097 &capabilities);
1098 if (ret < 0)
1099 return ret;
1100
1101 /* we ignore the address hint */
1102 addr = 0;
1103 len = PAGE_ALIGN(len);
1104
1105 /* we've determined that we can make the mapping, now translate what we
1106 * now know into VMA flags */
1107 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1108
1109 /* we're going to need to record the mapping */
1110 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1111 if (!region)
1112 goto error_getting_region;
1113
1114 vma = vm_area_alloc(current->mm);
1115 if (!vma)
1116 goto error_getting_vma;
1117
1118 region->vm_usage = 1;
1119 region->vm_flags = vm_flags;
1120 region->vm_pgoff = pgoff;
1121
1122 vma->vm_flags = vm_flags;
1123 vma->vm_pgoff = pgoff;
1124
1125 if (file) {
1126 region->vm_file = get_file(file);
1127 vma->vm_file = get_file(file);
1128 }
1129
1130 down_write(&nommu_region_sem);
1131
1132 /* if we want to share, we need to check for regions created by other
1133 * mmap() calls that overlap with our proposed mapping
1134 * - we can only share with a superset match on most regular files
1135 * - shared mappings on character devices and memory backed files are
1136 * permitted to overlap inexactly as far as we are concerned for in
1137 * these cases, sharing is handled in the driver or filesystem rather
1138 * than here
1139 */
1140 if (vm_flags & VM_MAYSHARE) {
1141 struct vm_region *pregion;
1142 unsigned long pglen, rpglen, pgend, rpgend, start;
1143
1144 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145 pgend = pgoff + pglen;
1146
1147 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1148 pregion = rb_entry(rb, struct vm_region, vm_rb);
1149
1150 if (!(pregion->vm_flags & VM_MAYSHARE))
1151 continue;
1152
1153 /* search for overlapping mappings on the same file */
1154 if (file_inode(pregion->vm_file) !=
1155 file_inode(file))
1156 continue;
1157
1158 if (pregion->vm_pgoff >= pgend)
1159 continue;
1160
1161 rpglen = pregion->vm_end - pregion->vm_start;
1162 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 rpgend = pregion->vm_pgoff + rpglen;
1164 if (pgoff >= rpgend)
1165 continue;
1166
1167 /* handle inexactly overlapping matches between
1168 * mappings */
1169 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1170 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1171 /* new mapping is not a subset of the region */
1172 if (!(capabilities & NOMMU_MAP_DIRECT))
1173 goto sharing_violation;
1174 continue;
1175 }
1176
1177 /* we've found a region we can share */
1178 pregion->vm_usage++;
1179 vma->vm_region = pregion;
1180 start = pregion->vm_start;
1181 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1182 vma->vm_start = start;
1183 vma->vm_end = start + len;
1184
1185 if (pregion->vm_flags & VM_MAPPED_COPY)
1186 vma->vm_flags |= VM_MAPPED_COPY;
1187 else {
1188 ret = do_mmap_shared_file(vma);
1189 if (ret < 0) {
1190 vma->vm_region = NULL;
1191 vma->vm_start = 0;
1192 vma->vm_end = 0;
1193 pregion->vm_usage--;
1194 pregion = NULL;
1195 goto error_just_free;
1196 }
1197 }
1198 fput(region->vm_file);
1199 kmem_cache_free(vm_region_jar, region);
1200 region = pregion;
1201 result = start;
1202 goto share;
1203 }
1204
1205 /* obtain the address at which to make a shared mapping
1206 * - this is the hook for quasi-memory character devices to
1207 * tell us the location of a shared mapping
1208 */
1209 if (capabilities & NOMMU_MAP_DIRECT) {
1210 addr = file->f_op->get_unmapped_area(file, addr, len,
1211 pgoff, flags);
1212 if (IS_ERR_VALUE(addr)) {
1213 ret = addr;
1214 if (ret != -ENOSYS)
1215 goto error_just_free;
1216
1217 /* the driver refused to tell us where to site
1218 * the mapping so we'll have to attempt to copy
1219 * it */
1220 ret = -ENODEV;
1221 if (!(capabilities & NOMMU_MAP_COPY))
1222 goto error_just_free;
1223
1224 capabilities &= ~NOMMU_MAP_DIRECT;
1225 } else {
1226 vma->vm_start = region->vm_start = addr;
1227 vma->vm_end = region->vm_end = addr + len;
1228 }
1229 }
1230 }
1231
1232 vma->vm_region = region;
1233
1234 /* set up the mapping
1235 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1236 */
1237 if (file && vma->vm_flags & VM_SHARED)
1238 ret = do_mmap_shared_file(vma);
1239 else
1240 ret = do_mmap_private(vma, region, len, capabilities);
1241 if (ret < 0)
1242 goto error_just_free;
1243 add_nommu_region(region);
1244
1245 /* clear anonymous mappings that don't ask for uninitialized data */
1246 if (!vma->vm_file &&
1247 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1248 !(flags & MAP_UNINITIALIZED)))
1249 memset((void *)region->vm_start, 0,
1250 region->vm_end - region->vm_start);
1251
1252 /* okay... we have a mapping; now we have to register it */
1253 result = vma->vm_start;
1254
1255 current->mm->total_vm += len >> PAGE_SHIFT;
1256
1257share:
1258 add_vma_to_mm(current->mm, vma);
1259
1260 /* we flush the region from the icache only when the first executable
1261 * mapping of it is made */
1262 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1263 flush_icache_user_range(region->vm_start, region->vm_end);
1264 region->vm_icache_flushed = true;
1265 }
1266
1267 up_write(&nommu_region_sem);
1268
1269 return result;
1270
1271error_just_free:
1272 up_write(&nommu_region_sem);
1273error:
1274 if (region->vm_file)
1275 fput(region->vm_file);
1276 kmem_cache_free(vm_region_jar, region);
1277 if (vma->vm_file)
1278 fput(vma->vm_file);
1279 vm_area_free(vma);
1280 return ret;
1281
1282sharing_violation:
1283 up_write(&nommu_region_sem);
1284 pr_warn("Attempt to share mismatched mappings\n");
1285 ret = -EINVAL;
1286 goto error;
1287
1288error_getting_vma:
1289 kmem_cache_free(vm_region_jar, region);
1290 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1291 len, current->pid);
1292 show_free_areas(0, NULL);
1293 return -ENOMEM;
1294
1295error_getting_region:
1296 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1297 len, current->pid);
1298 show_free_areas(0, NULL);
1299 return -ENOMEM;
1300}
1301
1302unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1303 unsigned long prot, unsigned long flags,
1304 unsigned long fd, unsigned long pgoff)
1305{
1306 struct file *file = NULL;
1307 unsigned long retval = -EBADF;
1308
1309 audit_mmap_fd(fd, flags);
1310 if (!(flags & MAP_ANONYMOUS)) {
1311 file = fget(fd);
1312 if (!file)
1313 goto out;
1314 }
1315
1316 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1317
1318 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1319
1320 if (file)
1321 fput(file);
1322out:
1323 return retval;
1324}
1325
1326SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1327 unsigned long, prot, unsigned long, flags,
1328 unsigned long, fd, unsigned long, pgoff)
1329{
1330 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1331}
1332
1333#ifdef __ARCH_WANT_SYS_OLD_MMAP
1334struct mmap_arg_struct {
1335 unsigned long addr;
1336 unsigned long len;
1337 unsigned long prot;
1338 unsigned long flags;
1339 unsigned long fd;
1340 unsigned long offset;
1341};
1342
1343SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1344{
1345 struct mmap_arg_struct a;
1346
1347 if (copy_from_user(&a, arg, sizeof(a)))
1348 return -EFAULT;
1349 if (offset_in_page(a.offset))
1350 return -EINVAL;
1351
1352 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1353 a.offset >> PAGE_SHIFT);
1354}
1355#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1356
1357/*
1358 * split a vma into two pieces at address 'addr', a new vma is allocated either
1359 * for the first part or the tail.
1360 */
1361int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1362 unsigned long addr, int new_below)
1363{
1364 struct vm_area_struct *new;
1365 struct vm_region *region;
1366 unsigned long npages;
1367
1368 /* we're only permitted to split anonymous regions (these should have
1369 * only a single usage on the region) */
1370 if (vma->vm_file)
1371 return -ENOMEM;
1372
1373 if (mm->map_count >= sysctl_max_map_count)
1374 return -ENOMEM;
1375
1376 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1377 if (!region)
1378 return -ENOMEM;
1379
1380 new = vm_area_dup(vma);
1381 if (!new) {
1382 kmem_cache_free(vm_region_jar, region);
1383 return -ENOMEM;
1384 }
1385
1386 /* most fields are the same, copy all, and then fixup */
1387 *region = *vma->vm_region;
1388 new->vm_region = region;
1389
1390 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1391
1392 if (new_below) {
1393 region->vm_top = region->vm_end = new->vm_end = addr;
1394 } else {
1395 region->vm_start = new->vm_start = addr;
1396 region->vm_pgoff = new->vm_pgoff += npages;
1397 }
1398
1399 if (new->vm_ops && new->vm_ops->open)
1400 new->vm_ops->open(new);
1401
1402 delete_vma_from_mm(vma);
1403 down_write(&nommu_region_sem);
1404 delete_nommu_region(vma->vm_region);
1405 if (new_below) {
1406 vma->vm_region->vm_start = vma->vm_start = addr;
1407 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1408 } else {
1409 vma->vm_region->vm_end = vma->vm_end = addr;
1410 vma->vm_region->vm_top = addr;
1411 }
1412 add_nommu_region(vma->vm_region);
1413 add_nommu_region(new->vm_region);
1414 up_write(&nommu_region_sem);
1415 add_vma_to_mm(mm, vma);
1416 add_vma_to_mm(mm, new);
1417 return 0;
1418}
1419
1420/*
1421 * shrink a VMA by removing the specified chunk from either the beginning or
1422 * the end
1423 */
1424static int shrink_vma(struct mm_struct *mm,
1425 struct vm_area_struct *vma,
1426 unsigned long from, unsigned long to)
1427{
1428 struct vm_region *region;
1429
1430 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1431 * and list */
1432 delete_vma_from_mm(vma);
1433 if (from > vma->vm_start)
1434 vma->vm_end = from;
1435 else
1436 vma->vm_start = to;
1437 add_vma_to_mm(mm, vma);
1438
1439 /* cut the backing region down to size */
1440 region = vma->vm_region;
1441 BUG_ON(region->vm_usage != 1);
1442
1443 down_write(&nommu_region_sem);
1444 delete_nommu_region(region);
1445 if (from > region->vm_start) {
1446 to = region->vm_top;
1447 region->vm_top = region->vm_end = from;
1448 } else {
1449 region->vm_start = to;
1450 }
1451 add_nommu_region(region);
1452 up_write(&nommu_region_sem);
1453
1454 free_page_series(from, to);
1455 return 0;
1456}
1457
1458/*
1459 * release a mapping
1460 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1461 * VMA, though it need not cover the whole VMA
1462 */
1463int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1464{
1465 struct vm_area_struct *vma;
1466 unsigned long end;
1467 int ret;
1468
1469 len = PAGE_ALIGN(len);
1470 if (len == 0)
1471 return -EINVAL;
1472
1473 end = start + len;
1474
1475 /* find the first potentially overlapping VMA */
1476 vma = find_vma(mm, start);
1477 if (!vma) {
1478 static int limit;
1479 if (limit < 5) {
1480 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1481 current->pid, current->comm,
1482 start, start + len - 1);
1483 limit++;
1484 }
1485 return -EINVAL;
1486 }
1487
1488 /* we're allowed to split an anonymous VMA but not a file-backed one */
1489 if (vma->vm_file) {
1490 do {
1491 if (start > vma->vm_start)
1492 return -EINVAL;
1493 if (end == vma->vm_end)
1494 goto erase_whole_vma;
1495 vma = vma->vm_next;
1496 } while (vma);
1497 return -EINVAL;
1498 } else {
1499 /* the chunk must be a subset of the VMA found */
1500 if (start == vma->vm_start && end == vma->vm_end)
1501 goto erase_whole_vma;
1502 if (start < vma->vm_start || end > vma->vm_end)
1503 return -EINVAL;
1504 if (offset_in_page(start))
1505 return -EINVAL;
1506 if (end != vma->vm_end && offset_in_page(end))
1507 return -EINVAL;
1508 if (start != vma->vm_start && end != vma->vm_end) {
1509 ret = split_vma(mm, vma, start, 1);
1510 if (ret < 0)
1511 return ret;
1512 }
1513 return shrink_vma(mm, vma, start, end);
1514 }
1515
1516erase_whole_vma:
1517 delete_vma_from_mm(vma);
1518 delete_vma(mm, vma);
1519 return 0;
1520}
1521EXPORT_SYMBOL(do_munmap);
1522
1523int vm_munmap(unsigned long addr, size_t len)
1524{
1525 struct mm_struct *mm = current->mm;
1526 int ret;
1527
1528 mmap_write_lock(mm);
1529 ret = do_munmap(mm, addr, len, NULL);
1530 mmap_write_unlock(mm);
1531 return ret;
1532}
1533EXPORT_SYMBOL(vm_munmap);
1534
1535SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1536{
1537 return vm_munmap(addr, len);
1538}
1539
1540/*
1541 * release all the mappings made in a process's VM space
1542 */
1543void exit_mmap(struct mm_struct *mm)
1544{
1545 struct vm_area_struct *vma;
1546
1547 if (!mm)
1548 return;
1549
1550 mm->total_vm = 0;
1551
1552 while ((vma = mm->mmap)) {
1553 mm->mmap = vma->vm_next;
1554 delete_vma_from_mm(vma);
1555 delete_vma(mm, vma);
1556 cond_resched();
1557 }
1558}
1559
1560int vm_brk(unsigned long addr, unsigned long len)
1561{
1562 return -ENOMEM;
1563}
1564
1565/*
1566 * expand (or shrink) an existing mapping, potentially moving it at the same
1567 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1568 *
1569 * under NOMMU conditions, we only permit changing a mapping's size, and only
1570 * as long as it stays within the region allocated by do_mmap_private() and the
1571 * block is not shareable
1572 *
1573 * MREMAP_FIXED is not supported under NOMMU conditions
1574 */
1575static unsigned long do_mremap(unsigned long addr,
1576 unsigned long old_len, unsigned long new_len,
1577 unsigned long flags, unsigned long new_addr)
1578{
1579 struct vm_area_struct *vma;
1580
1581 /* insanity checks first */
1582 old_len = PAGE_ALIGN(old_len);
1583 new_len = PAGE_ALIGN(new_len);
1584 if (old_len == 0 || new_len == 0)
1585 return (unsigned long) -EINVAL;
1586
1587 if (offset_in_page(addr))
1588 return -EINVAL;
1589
1590 if (flags & MREMAP_FIXED && new_addr != addr)
1591 return (unsigned long) -EINVAL;
1592
1593 vma = find_vma_exact(current->mm, addr, old_len);
1594 if (!vma)
1595 return (unsigned long) -EINVAL;
1596
1597 if (vma->vm_end != vma->vm_start + old_len)
1598 return (unsigned long) -EFAULT;
1599
1600 if (vma->vm_flags & VM_MAYSHARE)
1601 return (unsigned long) -EPERM;
1602
1603 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1604 return (unsigned long) -ENOMEM;
1605
1606 /* all checks complete - do it */
1607 vma->vm_end = vma->vm_start + new_len;
1608 return vma->vm_start;
1609}
1610
1611SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1612 unsigned long, new_len, unsigned long, flags,
1613 unsigned long, new_addr)
1614{
1615 unsigned long ret;
1616
1617 mmap_write_lock(current->mm);
1618 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1619 mmap_write_unlock(current->mm);
1620 return ret;
1621}
1622
1623struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1624 unsigned int foll_flags)
1625{
1626 return NULL;
1627}
1628
1629int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1630 unsigned long pfn, unsigned long size, pgprot_t prot)
1631{
1632 if (addr != (pfn << PAGE_SHIFT))
1633 return -EINVAL;
1634
1635 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1636 return 0;
1637}
1638EXPORT_SYMBOL(remap_pfn_range);
1639
1640int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1641{
1642 unsigned long pfn = start >> PAGE_SHIFT;
1643 unsigned long vm_len = vma->vm_end - vma->vm_start;
1644
1645 pfn += vma->vm_pgoff;
1646 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1647}
1648EXPORT_SYMBOL(vm_iomap_memory);
1649
1650int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1651 unsigned long pgoff)
1652{
1653 unsigned int size = vma->vm_end - vma->vm_start;
1654
1655 if (!(vma->vm_flags & VM_USERMAP))
1656 return -EINVAL;
1657
1658 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1659 vma->vm_end = vma->vm_start + size;
1660
1661 return 0;
1662}
1663EXPORT_SYMBOL(remap_vmalloc_range);
1664
1665unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1666 unsigned long len, unsigned long pgoff, unsigned long flags)
1667{
1668 return -ENOMEM;
1669}
1670
1671vm_fault_t filemap_fault(struct vm_fault *vmf)
1672{
1673 BUG();
1674 return 0;
1675}
1676EXPORT_SYMBOL(filemap_fault);
1677
1678void filemap_map_pages(struct vm_fault *vmf,
1679 pgoff_t start_pgoff, pgoff_t end_pgoff)
1680{
1681 BUG();
1682}
1683EXPORT_SYMBOL(filemap_map_pages);
1684
1685int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1686 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1687{
1688 struct vm_area_struct *vma;
1689 int write = gup_flags & FOLL_WRITE;
1690
1691 if (mmap_read_lock_killable(mm))
1692 return 0;
1693
1694 /* the access must start within one of the target process's mappings */
1695 vma = find_vma(mm, addr);
1696 if (vma) {
1697 /* don't overrun this mapping */
1698 if (addr + len >= vma->vm_end)
1699 len = vma->vm_end - addr;
1700
1701 /* only read or write mappings where it is permitted */
1702 if (write && vma->vm_flags & VM_MAYWRITE)
1703 copy_to_user_page(vma, NULL, addr,
1704 (void *) addr, buf, len);
1705 else if (!write && vma->vm_flags & VM_MAYREAD)
1706 copy_from_user_page(vma, NULL, addr,
1707 buf, (void *) addr, len);
1708 else
1709 len = 0;
1710 } else {
1711 len = 0;
1712 }
1713
1714 mmap_read_unlock(mm);
1715
1716 return len;
1717}
1718
1719/**
1720 * access_remote_vm - access another process' address space
1721 * @mm: the mm_struct of the target address space
1722 * @addr: start address to access
1723 * @buf: source or destination buffer
1724 * @len: number of bytes to transfer
1725 * @gup_flags: flags modifying lookup behaviour
1726 *
1727 * The caller must hold a reference on @mm.
1728 */
1729int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1730 void *buf, int len, unsigned int gup_flags)
1731{
1732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1733}
1734
1735/*
1736 * Access another process' address space.
1737 * - source/target buffer must be kernel space
1738 */
1739int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1740 unsigned int gup_flags)
1741{
1742 struct mm_struct *mm;
1743
1744 if (addr + len < addr)
1745 return 0;
1746
1747 mm = get_task_mm(tsk);
1748 if (!mm)
1749 return 0;
1750
1751 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1752
1753 mmput(mm);
1754 return len;
1755}
1756EXPORT_SYMBOL_GPL(access_process_vm);
1757
1758/**
1759 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1760 * @inode: The inode to check
1761 * @size: The current filesize of the inode
1762 * @newsize: The proposed filesize of the inode
1763 *
1764 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1765 * make sure that any outstanding VMAs aren't broken and then shrink the
1766 * vm_regions that extend beyond so that do_mmap() doesn't
1767 * automatically grant mappings that are too large.
1768 */
1769int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1770 size_t newsize)
1771{
1772 struct vm_area_struct *vma;
1773 struct vm_region *region;
1774 pgoff_t low, high;
1775 size_t r_size, r_top;
1776
1777 low = newsize >> PAGE_SHIFT;
1778 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1779
1780 down_write(&nommu_region_sem);
1781 i_mmap_lock_read(inode->i_mapping);
1782
1783 /* search for VMAs that fall within the dead zone */
1784 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1785 /* found one - only interested if it's shared out of the page
1786 * cache */
1787 if (vma->vm_flags & VM_SHARED) {
1788 i_mmap_unlock_read(inode->i_mapping);
1789 up_write(&nommu_region_sem);
1790 return -ETXTBSY; /* not quite true, but near enough */
1791 }
1792 }
1793
1794 /* reduce any regions that overlap the dead zone - if in existence,
1795 * these will be pointed to by VMAs that don't overlap the dead zone
1796 *
1797 * we don't check for any regions that start beyond the EOF as there
1798 * shouldn't be any
1799 */
1800 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1801 if (!(vma->vm_flags & VM_SHARED))
1802 continue;
1803
1804 region = vma->vm_region;
1805 r_size = region->vm_top - region->vm_start;
1806 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1807
1808 if (r_top > newsize) {
1809 region->vm_top -= r_top - newsize;
1810 if (region->vm_end > region->vm_top)
1811 region->vm_end = region->vm_top;
1812 }
1813 }
1814
1815 i_mmap_unlock_read(inode->i_mapping);
1816 up_write(&nommu_region_sem);
1817 return 0;
1818}
1819
1820/*
1821 * Initialise sysctl_user_reserve_kbytes.
1822 *
1823 * This is intended to prevent a user from starting a single memory hogging
1824 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1825 * mode.
1826 *
1827 * The default value is min(3% of free memory, 128MB)
1828 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1829 */
1830static int __meminit init_user_reserve(void)
1831{
1832 unsigned long free_kbytes;
1833
1834 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1835
1836 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1837 return 0;
1838}
1839subsys_initcall(init_user_reserve);
1840
1841/*
1842 * Initialise sysctl_admin_reserve_kbytes.
1843 *
1844 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1845 * to log in and kill a memory hogging process.
1846 *
1847 * Systems with more than 256MB will reserve 8MB, enough to recover
1848 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1849 * only reserve 3% of free pages by default.
1850 */
1851static int __meminit init_admin_reserve(void)
1852{
1853 unsigned long free_kbytes;
1854
1855 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1856
1857 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1858 return 0;
1859}
1860subsys_initcall(init_admin_reserve);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/mman.h>
23#include <linux/swap.h>
24#include <linux/file.h>
25#include <linux/highmem.h>
26#include <linux/pagemap.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/printk.h>
37
38#include <linux/uaccess.h>
39#include <linux/uio.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45void *high_memory;
46EXPORT_SYMBOL(high_memory);
47struct page *mem_map;
48unsigned long max_mapnr;
49EXPORT_SYMBOL(max_mapnr);
50unsigned long highest_memmap_pfn;
51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52int heap_stack_gap = 0;
53
54atomic_long_t mmap_pages_allocated;
55
56EXPORT_SYMBOL(mem_map);
57
58/* list of mapped, potentially shareable regions */
59static struct kmem_cache *vm_region_jar;
60struct rb_root nommu_region_tree = RB_ROOT;
61DECLARE_RWSEM(nommu_region_sem);
62
63const struct vm_operations_struct generic_file_vm_ops = {
64};
65
66/*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72unsigned int kobjsize(const void *objp)
73{
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return page_size(page);
111}
112
113/**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
123int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 unsigned long *pfn)
125{
126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 return -EINVAL;
128
129 *pfn = address >> PAGE_SHIFT;
130 return 0;
131}
132EXPORT_SYMBOL(follow_pfn);
133
134LIST_HEAD(vmap_area_list);
135
136void vfree(const void *addr)
137{
138 kfree(addr);
139}
140EXPORT_SYMBOL(vfree);
141
142void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143{
144 /*
145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 * returns only a logical address.
147 */
148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149}
150EXPORT_SYMBOL(__vmalloc);
151
152void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 unsigned long start, unsigned long end, gfp_t gfp_mask,
154 pgprot_t prot, unsigned long vm_flags, int node,
155 const void *caller)
156{
157 return __vmalloc(size, gfp_mask);
158}
159
160void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 int node, const void *caller)
162{
163 return __vmalloc(size, gfp_mask);
164}
165
166static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167{
168 void *ret;
169
170 ret = __vmalloc(size, flags);
171 if (ret) {
172 struct vm_area_struct *vma;
173
174 mmap_write_lock(current->mm);
175 vma = find_vma(current->mm, (unsigned long)ret);
176 if (vma)
177 vm_flags_set(vma, VM_USERMAP);
178 mmap_write_unlock(current->mm);
179 }
180
181 return ret;
182}
183
184void *vmalloc_user(unsigned long size)
185{
186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187}
188EXPORT_SYMBOL(vmalloc_user);
189
190struct page *vmalloc_to_page(const void *addr)
191{
192 return virt_to_page(addr);
193}
194EXPORT_SYMBOL(vmalloc_to_page);
195
196unsigned long vmalloc_to_pfn(const void *addr)
197{
198 return page_to_pfn(virt_to_page(addr));
199}
200EXPORT_SYMBOL(vmalloc_to_pfn);
201
202long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203{
204 /* Don't allow overflow */
205 if ((unsigned long) addr + count < count)
206 count = -(unsigned long) addr;
207
208 return copy_to_iter(addr, count, iter);
209}
210
211/*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
222void *vmalloc(unsigned long size)
223{
224 return __vmalloc(size, GFP_KERNEL);
225}
226EXPORT_SYMBOL(vmalloc);
227
228void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230/*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242void *vzalloc(unsigned long size)
243{
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245}
246EXPORT_SYMBOL(vzalloc);
247
248/**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259void *vmalloc_node(unsigned long size, int node)
260{
261 return vmalloc(size);
262}
263EXPORT_SYMBOL(vmalloc_node);
264
265/**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277void *vzalloc_node(unsigned long size, int node)
278{
279 return vzalloc(size);
280}
281EXPORT_SYMBOL(vzalloc_node);
282
283/**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290void *vmalloc_32(unsigned long size)
291{
292 return __vmalloc(size, GFP_KERNEL);
293}
294EXPORT_SYMBOL(vmalloc_32);
295
296/**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306void *vmalloc_32_user(unsigned long size)
307{
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313}
314EXPORT_SYMBOL(vmalloc_32_user);
315
316void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317{
318 BUG();
319 return NULL;
320}
321EXPORT_SYMBOL(vmap);
322
323void vunmap(const void *addr)
324{
325 BUG();
326}
327EXPORT_SYMBOL(vunmap);
328
329void *vm_map_ram(struct page **pages, unsigned int count, int node)
330{
331 BUG();
332 return NULL;
333}
334EXPORT_SYMBOL(vm_map_ram);
335
336void vm_unmap_ram(const void *mem, unsigned int count)
337{
338 BUG();
339}
340EXPORT_SYMBOL(vm_unmap_ram);
341
342void vm_unmap_aliases(void)
343{
344}
345EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347void free_vm_area(struct vm_struct *area)
348{
349 BUG();
350}
351EXPORT_SYMBOL_GPL(free_vm_area);
352
353int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355{
356 return -EINVAL;
357}
358EXPORT_SYMBOL(vm_insert_page);
359
360int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362{
363 return -EINVAL;
364}
365EXPORT_SYMBOL(vm_map_pages);
366
367int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369{
370 return -EINVAL;
371}
372EXPORT_SYMBOL(vm_map_pages_zero);
373
374/*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381SYSCALL_DEFINE1(brk, unsigned long, brk)
382{
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404}
405
406/*
407 * initialise the percpu counter for VM and region record slabs
408 */
409void __init mmap_init(void)
410{
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416}
417
418/*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422#ifdef CONFIG_DEBUG_NOMMU_REGIONS
423static noinline void validate_nommu_regions(void)
424{
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446}
447#else
448static void validate_nommu_regions(void)
449{
450}
451#endif
452
453/*
454 * add a region into the global tree
455 */
456static void add_nommu_region(struct vm_region *region)
457{
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482}
483
484/*
485 * delete a region from the global tree
486 */
487static void delete_nommu_region(struct vm_region *region)
488{
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494}
495
496/*
497 * free a contiguous series of pages
498 */
499static void free_page_series(unsigned long from, unsigned long to)
500{
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507}
508
509/*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536}
537
538/*
539 * release a reference to a region
540 */
541static void put_nommu_region(struct vm_region *region)
542{
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545}
546
547static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548{
549 vma->vm_mm = mm;
550
551 /* add the VMA to the mapping */
552 if (vma->vm_file) {
553 struct address_space *mapping = vma->vm_file->f_mapping;
554
555 i_mmap_lock_write(mapping);
556 flush_dcache_mmap_lock(mapping);
557 vma_interval_tree_insert(vma, &mapping->i_mmap);
558 flush_dcache_mmap_unlock(mapping);
559 i_mmap_unlock_write(mapping);
560 }
561}
562
563static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564{
565 vma->vm_mm->map_count--;
566 /* remove the VMA from the mapping */
567 if (vma->vm_file) {
568 struct address_space *mapping;
569 mapping = vma->vm_file->f_mapping;
570
571 i_mmap_lock_write(mapping);
572 flush_dcache_mmap_lock(mapping);
573 vma_interval_tree_remove(vma, &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577}
578
579/*
580 * delete a VMA from its owning mm_struct and address space
581 */
582static int delete_vma_from_mm(struct vm_area_struct *vma)
583{
584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587 if (vma_iter_prealloc(&vmi, vma)) {
588 pr_warn("Allocation of vma tree for process %d failed\n",
589 current->pid);
590 return -ENOMEM;
591 }
592 cleanup_vma_from_mm(vma);
593
594 /* remove from the MM's tree and list */
595 vma_iter_clear(&vmi);
596 return 0;
597}
598/*
599 * destroy a VMA record
600 */
601static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602{
603 if (vma->vm_ops && vma->vm_ops->close)
604 vma->vm_ops->close(vma);
605 if (vma->vm_file)
606 fput(vma->vm_file);
607 put_nommu_region(vma->vm_region);
608 vm_area_free(vma);
609}
610
611struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
612 unsigned long start_addr,
613 unsigned long end_addr)
614{
615 unsigned long index = start_addr;
616
617 mmap_assert_locked(mm);
618 return mt_find(&mm->mm_mt, &index, end_addr - 1);
619}
620EXPORT_SYMBOL(find_vma_intersection);
621
622/*
623 * look up the first VMA in which addr resides, NULL if none
624 * - should be called with mm->mmap_lock at least held readlocked
625 */
626struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
627{
628 VMA_ITERATOR(vmi, mm, addr);
629
630 return vma_iter_load(&vmi);
631}
632EXPORT_SYMBOL(find_vma);
633
634/*
635 * At least xtensa ends up having protection faults even with no
636 * MMU.. No stack expansion, at least.
637 */
638struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
639 unsigned long addr, struct pt_regs *regs)
640{
641 struct vm_area_struct *vma;
642
643 mmap_read_lock(mm);
644 vma = vma_lookup(mm, addr);
645 if (!vma)
646 mmap_read_unlock(mm);
647 return vma;
648}
649
650/*
651 * expand a stack to a given address
652 * - not supported under NOMMU conditions
653 */
654int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
655{
656 return -ENOMEM;
657}
658
659struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
660{
661 mmap_read_unlock(mm);
662 return NULL;
663}
664
665/*
666 * look up the first VMA exactly that exactly matches addr
667 * - should be called with mm->mmap_lock at least held readlocked
668 */
669static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
670 unsigned long addr,
671 unsigned long len)
672{
673 struct vm_area_struct *vma;
674 unsigned long end = addr + len;
675 VMA_ITERATOR(vmi, mm, addr);
676
677 vma = vma_iter_load(&vmi);
678 if (!vma)
679 return NULL;
680 if (vma->vm_start != addr)
681 return NULL;
682 if (vma->vm_end != end)
683 return NULL;
684
685 return vma;
686}
687
688/*
689 * determine whether a mapping should be permitted and, if so, what sort of
690 * mapping we're capable of supporting
691 */
692static int validate_mmap_request(struct file *file,
693 unsigned long addr,
694 unsigned long len,
695 unsigned long prot,
696 unsigned long flags,
697 unsigned long pgoff,
698 unsigned long *_capabilities)
699{
700 unsigned long capabilities, rlen;
701 int ret;
702
703 /* do the simple checks first */
704 if (flags & MAP_FIXED)
705 return -EINVAL;
706
707 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
708 (flags & MAP_TYPE) != MAP_SHARED)
709 return -EINVAL;
710
711 if (!len)
712 return -EINVAL;
713
714 /* Careful about overflows.. */
715 rlen = PAGE_ALIGN(len);
716 if (!rlen || rlen > TASK_SIZE)
717 return -ENOMEM;
718
719 /* offset overflow? */
720 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
721 return -EOVERFLOW;
722
723 if (file) {
724 /* files must support mmap */
725 if (!file->f_op->mmap)
726 return -ENODEV;
727
728 /* work out if what we've got could possibly be shared
729 * - we support chardevs that provide their own "memory"
730 * - we support files/blockdevs that are memory backed
731 */
732 if (file->f_op->mmap_capabilities) {
733 capabilities = file->f_op->mmap_capabilities(file);
734 } else {
735 /* no explicit capabilities set, so assume some
736 * defaults */
737 switch (file_inode(file)->i_mode & S_IFMT) {
738 case S_IFREG:
739 case S_IFBLK:
740 capabilities = NOMMU_MAP_COPY;
741 break;
742
743 case S_IFCHR:
744 capabilities =
745 NOMMU_MAP_DIRECT |
746 NOMMU_MAP_READ |
747 NOMMU_MAP_WRITE;
748 break;
749
750 default:
751 return -EINVAL;
752 }
753 }
754
755 /* eliminate any capabilities that we can't support on this
756 * device */
757 if (!file->f_op->get_unmapped_area)
758 capabilities &= ~NOMMU_MAP_DIRECT;
759 if (!(file->f_mode & FMODE_CAN_READ))
760 capabilities &= ~NOMMU_MAP_COPY;
761
762 /* The file shall have been opened with read permission. */
763 if (!(file->f_mode & FMODE_READ))
764 return -EACCES;
765
766 if (flags & MAP_SHARED) {
767 /* do checks for writing, appending and locking */
768 if ((prot & PROT_WRITE) &&
769 !(file->f_mode & FMODE_WRITE))
770 return -EACCES;
771
772 if (IS_APPEND(file_inode(file)) &&
773 (file->f_mode & FMODE_WRITE))
774 return -EACCES;
775
776 if (!(capabilities & NOMMU_MAP_DIRECT))
777 return -ENODEV;
778
779 /* we mustn't privatise shared mappings */
780 capabilities &= ~NOMMU_MAP_COPY;
781 } else {
782 /* we're going to read the file into private memory we
783 * allocate */
784 if (!(capabilities & NOMMU_MAP_COPY))
785 return -ENODEV;
786
787 /* we don't permit a private writable mapping to be
788 * shared with the backing device */
789 if (prot & PROT_WRITE)
790 capabilities &= ~NOMMU_MAP_DIRECT;
791 }
792
793 if (capabilities & NOMMU_MAP_DIRECT) {
794 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
795 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
796 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
797 ) {
798 capabilities &= ~NOMMU_MAP_DIRECT;
799 if (flags & MAP_SHARED) {
800 pr_warn("MAP_SHARED not completely supported on !MMU\n");
801 return -EINVAL;
802 }
803 }
804 }
805
806 /* handle executable mappings and implied executable
807 * mappings */
808 if (path_noexec(&file->f_path)) {
809 if (prot & PROT_EXEC)
810 return -EPERM;
811 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
812 /* handle implication of PROT_EXEC by PROT_READ */
813 if (current->personality & READ_IMPLIES_EXEC) {
814 if (capabilities & NOMMU_MAP_EXEC)
815 prot |= PROT_EXEC;
816 }
817 } else if ((prot & PROT_READ) &&
818 (prot & PROT_EXEC) &&
819 !(capabilities & NOMMU_MAP_EXEC)
820 ) {
821 /* backing file is not executable, try to copy */
822 capabilities &= ~NOMMU_MAP_DIRECT;
823 }
824 } else {
825 /* anonymous mappings are always memory backed and can be
826 * privately mapped
827 */
828 capabilities = NOMMU_MAP_COPY;
829
830 /* handle PROT_EXEC implication by PROT_READ */
831 if ((prot & PROT_READ) &&
832 (current->personality & READ_IMPLIES_EXEC))
833 prot |= PROT_EXEC;
834 }
835
836 /* allow the security API to have its say */
837 ret = security_mmap_addr(addr);
838 if (ret < 0)
839 return ret;
840
841 /* looks okay */
842 *_capabilities = capabilities;
843 return 0;
844}
845
846/*
847 * we've determined that we can make the mapping, now translate what we
848 * now know into VMA flags
849 */
850static unsigned long determine_vm_flags(struct file *file,
851 unsigned long prot,
852 unsigned long flags,
853 unsigned long capabilities)
854{
855 unsigned long vm_flags;
856
857 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
858
859 if (!file) {
860 /*
861 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
862 * there is no fork().
863 */
864 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
865 } else if (flags & MAP_PRIVATE) {
866 /* MAP_PRIVATE file mapping */
867 if (capabilities & NOMMU_MAP_DIRECT)
868 vm_flags |= (capabilities & NOMMU_VMFLAGS);
869 else
870 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
871
872 if (!(prot & PROT_WRITE) && !current->ptrace)
873 /*
874 * R/O private file mapping which cannot be used to
875 * modify memory, especially also not via active ptrace
876 * (e.g., set breakpoints) or later by upgrading
877 * permissions (no mprotect()). We can try overlaying
878 * the file mapping, which will work e.g., on chardevs,
879 * ramfs/tmpfs/shmfs and romfs/cramf.
880 */
881 vm_flags |= VM_MAYOVERLAY;
882 } else {
883 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
884 vm_flags |= VM_SHARED | VM_MAYSHARE |
885 (capabilities & NOMMU_VMFLAGS);
886 }
887
888 return vm_flags;
889}
890
891/*
892 * set up a shared mapping on a file (the driver or filesystem provides and
893 * pins the storage)
894 */
895static int do_mmap_shared_file(struct vm_area_struct *vma)
896{
897 int ret;
898
899 ret = call_mmap(vma->vm_file, vma);
900 if (ret == 0) {
901 vma->vm_region->vm_top = vma->vm_region->vm_end;
902 return 0;
903 }
904 if (ret != -ENOSYS)
905 return ret;
906
907 /* getting -ENOSYS indicates that direct mmap isn't possible (as
908 * opposed to tried but failed) so we can only give a suitable error as
909 * it's not possible to make a private copy if MAP_SHARED was given */
910 return -ENODEV;
911}
912
913/*
914 * set up a private mapping or an anonymous shared mapping
915 */
916static int do_mmap_private(struct vm_area_struct *vma,
917 struct vm_region *region,
918 unsigned long len,
919 unsigned long capabilities)
920{
921 unsigned long total, point;
922 void *base;
923 int ret, order;
924
925 /*
926 * Invoke the file's mapping function so that it can keep track of
927 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
928 * it may attempt to share, which will make is_nommu_shared_mapping()
929 * happy.
930 */
931 if (capabilities & NOMMU_MAP_DIRECT) {
932 ret = call_mmap(vma->vm_file, vma);
933 /* shouldn't return success if we're not sharing */
934 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
935 ret = -ENOSYS;
936 if (ret == 0) {
937 vma->vm_region->vm_top = vma->vm_region->vm_end;
938 return 0;
939 }
940 if (ret != -ENOSYS)
941 return ret;
942
943 /* getting an ENOSYS error indicates that direct mmap isn't
944 * possible (as opposed to tried but failed) so we'll try to
945 * make a private copy of the data and map that instead */
946 }
947
948
949 /* allocate some memory to hold the mapping
950 * - note that this may not return a page-aligned address if the object
951 * we're allocating is smaller than a page
952 */
953 order = get_order(len);
954 total = 1 << order;
955 point = len >> PAGE_SHIFT;
956
957 /* we don't want to allocate a power-of-2 sized page set */
958 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
959 total = point;
960
961 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
962 if (!base)
963 goto enomem;
964
965 atomic_long_add(total, &mmap_pages_allocated);
966
967 vm_flags_set(vma, VM_MAPPED_COPY);
968 region->vm_flags = vma->vm_flags;
969 region->vm_start = (unsigned long) base;
970 region->vm_end = region->vm_start + len;
971 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
972
973 vma->vm_start = region->vm_start;
974 vma->vm_end = region->vm_start + len;
975
976 if (vma->vm_file) {
977 /* read the contents of a file into the copy */
978 loff_t fpos;
979
980 fpos = vma->vm_pgoff;
981 fpos <<= PAGE_SHIFT;
982
983 ret = kernel_read(vma->vm_file, base, len, &fpos);
984 if (ret < 0)
985 goto error_free;
986
987 /* clear the last little bit */
988 if (ret < len)
989 memset(base + ret, 0, len - ret);
990
991 } else {
992 vma_set_anonymous(vma);
993 }
994
995 return 0;
996
997error_free:
998 free_page_series(region->vm_start, region->vm_top);
999 region->vm_start = vma->vm_start = 0;
1000 region->vm_end = vma->vm_end = 0;
1001 region->vm_top = 0;
1002 return ret;
1003
1004enomem:
1005 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1006 len, current->pid, current->comm);
1007 show_mem();
1008 return -ENOMEM;
1009}
1010
1011/*
1012 * handle mapping creation for uClinux
1013 */
1014unsigned long do_mmap(struct file *file,
1015 unsigned long addr,
1016 unsigned long len,
1017 unsigned long prot,
1018 unsigned long flags,
1019 vm_flags_t vm_flags,
1020 unsigned long pgoff,
1021 unsigned long *populate,
1022 struct list_head *uf)
1023{
1024 struct vm_area_struct *vma;
1025 struct vm_region *region;
1026 struct rb_node *rb;
1027 unsigned long capabilities, result;
1028 int ret;
1029 VMA_ITERATOR(vmi, current->mm, 0);
1030
1031 *populate = 0;
1032
1033 /* decide whether we should attempt the mapping, and if so what sort of
1034 * mapping */
1035 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1036 &capabilities);
1037 if (ret < 0)
1038 return ret;
1039
1040 /* we ignore the address hint */
1041 addr = 0;
1042 len = PAGE_ALIGN(len);
1043
1044 /* we've determined that we can make the mapping, now translate what we
1045 * now know into VMA flags */
1046 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1047
1048
1049 /* we're going to need to record the mapping */
1050 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1051 if (!region)
1052 goto error_getting_region;
1053
1054 vma = vm_area_alloc(current->mm);
1055 if (!vma)
1056 goto error_getting_vma;
1057
1058 region->vm_usage = 1;
1059 region->vm_flags = vm_flags;
1060 region->vm_pgoff = pgoff;
1061
1062 vm_flags_init(vma, vm_flags);
1063 vma->vm_pgoff = pgoff;
1064
1065 if (file) {
1066 region->vm_file = get_file(file);
1067 vma->vm_file = get_file(file);
1068 }
1069
1070 down_write(&nommu_region_sem);
1071
1072 /* if we want to share, we need to check for regions created by other
1073 * mmap() calls that overlap with our proposed mapping
1074 * - we can only share with a superset match on most regular files
1075 * - shared mappings on character devices and memory backed files are
1076 * permitted to overlap inexactly as far as we are concerned for in
1077 * these cases, sharing is handled in the driver or filesystem rather
1078 * than here
1079 */
1080 if (is_nommu_shared_mapping(vm_flags)) {
1081 struct vm_region *pregion;
1082 unsigned long pglen, rpglen, pgend, rpgend, start;
1083
1084 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1085 pgend = pgoff + pglen;
1086
1087 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1088 pregion = rb_entry(rb, struct vm_region, vm_rb);
1089
1090 if (!is_nommu_shared_mapping(pregion->vm_flags))
1091 continue;
1092
1093 /* search for overlapping mappings on the same file */
1094 if (file_inode(pregion->vm_file) !=
1095 file_inode(file))
1096 continue;
1097
1098 if (pregion->vm_pgoff >= pgend)
1099 continue;
1100
1101 rpglen = pregion->vm_end - pregion->vm_start;
1102 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1103 rpgend = pregion->vm_pgoff + rpglen;
1104 if (pgoff >= rpgend)
1105 continue;
1106
1107 /* handle inexactly overlapping matches between
1108 * mappings */
1109 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1110 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1111 /* new mapping is not a subset of the region */
1112 if (!(capabilities & NOMMU_MAP_DIRECT))
1113 goto sharing_violation;
1114 continue;
1115 }
1116
1117 /* we've found a region we can share */
1118 pregion->vm_usage++;
1119 vma->vm_region = pregion;
1120 start = pregion->vm_start;
1121 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1122 vma->vm_start = start;
1123 vma->vm_end = start + len;
1124
1125 if (pregion->vm_flags & VM_MAPPED_COPY)
1126 vm_flags_set(vma, VM_MAPPED_COPY);
1127 else {
1128 ret = do_mmap_shared_file(vma);
1129 if (ret < 0) {
1130 vma->vm_region = NULL;
1131 vma->vm_start = 0;
1132 vma->vm_end = 0;
1133 pregion->vm_usage--;
1134 pregion = NULL;
1135 goto error_just_free;
1136 }
1137 }
1138 fput(region->vm_file);
1139 kmem_cache_free(vm_region_jar, region);
1140 region = pregion;
1141 result = start;
1142 goto share;
1143 }
1144
1145 /* obtain the address at which to make a shared mapping
1146 * - this is the hook for quasi-memory character devices to
1147 * tell us the location of a shared mapping
1148 */
1149 if (capabilities & NOMMU_MAP_DIRECT) {
1150 addr = file->f_op->get_unmapped_area(file, addr, len,
1151 pgoff, flags);
1152 if (IS_ERR_VALUE(addr)) {
1153 ret = addr;
1154 if (ret != -ENOSYS)
1155 goto error_just_free;
1156
1157 /* the driver refused to tell us where to site
1158 * the mapping so we'll have to attempt to copy
1159 * it */
1160 ret = -ENODEV;
1161 if (!(capabilities & NOMMU_MAP_COPY))
1162 goto error_just_free;
1163
1164 capabilities &= ~NOMMU_MAP_DIRECT;
1165 } else {
1166 vma->vm_start = region->vm_start = addr;
1167 vma->vm_end = region->vm_end = addr + len;
1168 }
1169 }
1170 }
1171
1172 vma->vm_region = region;
1173
1174 /* set up the mapping
1175 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1176 */
1177 if (file && vma->vm_flags & VM_SHARED)
1178 ret = do_mmap_shared_file(vma);
1179 else
1180 ret = do_mmap_private(vma, region, len, capabilities);
1181 if (ret < 0)
1182 goto error_just_free;
1183 add_nommu_region(region);
1184
1185 /* clear anonymous mappings that don't ask for uninitialized data */
1186 if (!vma->vm_file &&
1187 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1188 !(flags & MAP_UNINITIALIZED)))
1189 memset((void *)region->vm_start, 0,
1190 region->vm_end - region->vm_start);
1191
1192 /* okay... we have a mapping; now we have to register it */
1193 result = vma->vm_start;
1194
1195 current->mm->total_vm += len >> PAGE_SHIFT;
1196
1197share:
1198 BUG_ON(!vma->vm_region);
1199 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1200 if (vma_iter_prealloc(&vmi, vma))
1201 goto error_just_free;
1202
1203 setup_vma_to_mm(vma, current->mm);
1204 current->mm->map_count++;
1205 /* add the VMA to the tree */
1206 vma_iter_store(&vmi, vma);
1207
1208 /* we flush the region from the icache only when the first executable
1209 * mapping of it is made */
1210 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1211 flush_icache_user_range(region->vm_start, region->vm_end);
1212 region->vm_icache_flushed = true;
1213 }
1214
1215 up_write(&nommu_region_sem);
1216
1217 return result;
1218
1219error_just_free:
1220 up_write(&nommu_region_sem);
1221error:
1222 vma_iter_free(&vmi);
1223 if (region->vm_file)
1224 fput(region->vm_file);
1225 kmem_cache_free(vm_region_jar, region);
1226 if (vma->vm_file)
1227 fput(vma->vm_file);
1228 vm_area_free(vma);
1229 return ret;
1230
1231sharing_violation:
1232 up_write(&nommu_region_sem);
1233 pr_warn("Attempt to share mismatched mappings\n");
1234 ret = -EINVAL;
1235 goto error;
1236
1237error_getting_vma:
1238 kmem_cache_free(vm_region_jar, region);
1239 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1240 len, current->pid);
1241 show_mem();
1242 return -ENOMEM;
1243
1244error_getting_region:
1245 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1246 len, current->pid);
1247 show_mem();
1248 return -ENOMEM;
1249}
1250
1251unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1252 unsigned long prot, unsigned long flags,
1253 unsigned long fd, unsigned long pgoff)
1254{
1255 struct file *file = NULL;
1256 unsigned long retval = -EBADF;
1257
1258 audit_mmap_fd(fd, flags);
1259 if (!(flags & MAP_ANONYMOUS)) {
1260 file = fget(fd);
1261 if (!file)
1262 goto out;
1263 }
1264
1265 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1266
1267 if (file)
1268 fput(file);
1269out:
1270 return retval;
1271}
1272
1273SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1274 unsigned long, prot, unsigned long, flags,
1275 unsigned long, fd, unsigned long, pgoff)
1276{
1277 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1278}
1279
1280#ifdef __ARCH_WANT_SYS_OLD_MMAP
1281struct mmap_arg_struct {
1282 unsigned long addr;
1283 unsigned long len;
1284 unsigned long prot;
1285 unsigned long flags;
1286 unsigned long fd;
1287 unsigned long offset;
1288};
1289
1290SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1291{
1292 struct mmap_arg_struct a;
1293
1294 if (copy_from_user(&a, arg, sizeof(a)))
1295 return -EFAULT;
1296 if (offset_in_page(a.offset))
1297 return -EINVAL;
1298
1299 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1300 a.offset >> PAGE_SHIFT);
1301}
1302#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1303
1304/*
1305 * split a vma into two pieces at address 'addr', a new vma is allocated either
1306 * for the first part or the tail.
1307 */
1308static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1309 unsigned long addr, int new_below)
1310{
1311 struct vm_area_struct *new;
1312 struct vm_region *region;
1313 unsigned long npages;
1314 struct mm_struct *mm;
1315
1316 /* we're only permitted to split anonymous regions (these should have
1317 * only a single usage on the region) */
1318 if (vma->vm_file)
1319 return -ENOMEM;
1320
1321 mm = vma->vm_mm;
1322 if (mm->map_count >= sysctl_max_map_count)
1323 return -ENOMEM;
1324
1325 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1326 if (!region)
1327 return -ENOMEM;
1328
1329 new = vm_area_dup(vma);
1330 if (!new)
1331 goto err_vma_dup;
1332
1333 /* most fields are the same, copy all, and then fixup */
1334 *region = *vma->vm_region;
1335 new->vm_region = region;
1336
1337 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1338
1339 if (new_below) {
1340 region->vm_top = region->vm_end = new->vm_end = addr;
1341 } else {
1342 region->vm_start = new->vm_start = addr;
1343 region->vm_pgoff = new->vm_pgoff += npages;
1344 }
1345
1346 vma_iter_config(vmi, new->vm_start, new->vm_end);
1347 if (vma_iter_prealloc(vmi, vma)) {
1348 pr_warn("Allocation of vma tree for process %d failed\n",
1349 current->pid);
1350 goto err_vmi_preallocate;
1351 }
1352
1353 if (new->vm_ops && new->vm_ops->open)
1354 new->vm_ops->open(new);
1355
1356 down_write(&nommu_region_sem);
1357 delete_nommu_region(vma->vm_region);
1358 if (new_below) {
1359 vma->vm_region->vm_start = vma->vm_start = addr;
1360 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1361 } else {
1362 vma->vm_region->vm_end = vma->vm_end = addr;
1363 vma->vm_region->vm_top = addr;
1364 }
1365 add_nommu_region(vma->vm_region);
1366 add_nommu_region(new->vm_region);
1367 up_write(&nommu_region_sem);
1368
1369 setup_vma_to_mm(vma, mm);
1370 setup_vma_to_mm(new, mm);
1371 vma_iter_store(vmi, new);
1372 mm->map_count++;
1373 return 0;
1374
1375err_vmi_preallocate:
1376 vm_area_free(new);
1377err_vma_dup:
1378 kmem_cache_free(vm_region_jar, region);
1379 return -ENOMEM;
1380}
1381
1382/*
1383 * shrink a VMA by removing the specified chunk from either the beginning or
1384 * the end
1385 */
1386static int vmi_shrink_vma(struct vma_iterator *vmi,
1387 struct vm_area_struct *vma,
1388 unsigned long from, unsigned long to)
1389{
1390 struct vm_region *region;
1391
1392 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1393 * and list */
1394 if (from > vma->vm_start) {
1395 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1396 return -ENOMEM;
1397 vma->vm_end = from;
1398 } else {
1399 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1400 return -ENOMEM;
1401 vma->vm_start = to;
1402 }
1403
1404 /* cut the backing region down to size */
1405 region = vma->vm_region;
1406 BUG_ON(region->vm_usage != 1);
1407
1408 down_write(&nommu_region_sem);
1409 delete_nommu_region(region);
1410 if (from > region->vm_start) {
1411 to = region->vm_top;
1412 region->vm_top = region->vm_end = from;
1413 } else {
1414 region->vm_start = to;
1415 }
1416 add_nommu_region(region);
1417 up_write(&nommu_region_sem);
1418
1419 free_page_series(from, to);
1420 return 0;
1421}
1422
1423/*
1424 * release a mapping
1425 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1426 * VMA, though it need not cover the whole VMA
1427 */
1428int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1429{
1430 VMA_ITERATOR(vmi, mm, start);
1431 struct vm_area_struct *vma;
1432 unsigned long end;
1433 int ret = 0;
1434
1435 len = PAGE_ALIGN(len);
1436 if (len == 0)
1437 return -EINVAL;
1438
1439 end = start + len;
1440
1441 /* find the first potentially overlapping VMA */
1442 vma = vma_find(&vmi, end);
1443 if (!vma) {
1444 static int limit;
1445 if (limit < 5) {
1446 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1447 current->pid, current->comm,
1448 start, start + len - 1);
1449 limit++;
1450 }
1451 return -EINVAL;
1452 }
1453
1454 /* we're allowed to split an anonymous VMA but not a file-backed one */
1455 if (vma->vm_file) {
1456 do {
1457 if (start > vma->vm_start)
1458 return -EINVAL;
1459 if (end == vma->vm_end)
1460 goto erase_whole_vma;
1461 vma = vma_find(&vmi, end);
1462 } while (vma);
1463 return -EINVAL;
1464 } else {
1465 /* the chunk must be a subset of the VMA found */
1466 if (start == vma->vm_start && end == vma->vm_end)
1467 goto erase_whole_vma;
1468 if (start < vma->vm_start || end > vma->vm_end)
1469 return -EINVAL;
1470 if (offset_in_page(start))
1471 return -EINVAL;
1472 if (end != vma->vm_end && offset_in_page(end))
1473 return -EINVAL;
1474 if (start != vma->vm_start && end != vma->vm_end) {
1475 ret = split_vma(&vmi, vma, start, 1);
1476 if (ret < 0)
1477 return ret;
1478 }
1479 return vmi_shrink_vma(&vmi, vma, start, end);
1480 }
1481
1482erase_whole_vma:
1483 if (delete_vma_from_mm(vma))
1484 ret = -ENOMEM;
1485 else
1486 delete_vma(mm, vma);
1487 return ret;
1488}
1489
1490int vm_munmap(unsigned long addr, size_t len)
1491{
1492 struct mm_struct *mm = current->mm;
1493 int ret;
1494
1495 mmap_write_lock(mm);
1496 ret = do_munmap(mm, addr, len, NULL);
1497 mmap_write_unlock(mm);
1498 return ret;
1499}
1500EXPORT_SYMBOL(vm_munmap);
1501
1502SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1503{
1504 return vm_munmap(addr, len);
1505}
1506
1507/*
1508 * release all the mappings made in a process's VM space
1509 */
1510void exit_mmap(struct mm_struct *mm)
1511{
1512 VMA_ITERATOR(vmi, mm, 0);
1513 struct vm_area_struct *vma;
1514
1515 if (!mm)
1516 return;
1517
1518 mm->total_vm = 0;
1519
1520 /*
1521 * Lock the mm to avoid assert complaining even though this is the only
1522 * user of the mm
1523 */
1524 mmap_write_lock(mm);
1525 for_each_vma(vmi, vma) {
1526 cleanup_vma_from_mm(vma);
1527 delete_vma(mm, vma);
1528 cond_resched();
1529 }
1530 __mt_destroy(&mm->mm_mt);
1531 mmap_write_unlock(mm);
1532}
1533
1534/*
1535 * expand (or shrink) an existing mapping, potentially moving it at the same
1536 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1537 *
1538 * under NOMMU conditions, we only permit changing a mapping's size, and only
1539 * as long as it stays within the region allocated by do_mmap_private() and the
1540 * block is not shareable
1541 *
1542 * MREMAP_FIXED is not supported under NOMMU conditions
1543 */
1544static unsigned long do_mremap(unsigned long addr,
1545 unsigned long old_len, unsigned long new_len,
1546 unsigned long flags, unsigned long new_addr)
1547{
1548 struct vm_area_struct *vma;
1549
1550 /* insanity checks first */
1551 old_len = PAGE_ALIGN(old_len);
1552 new_len = PAGE_ALIGN(new_len);
1553 if (old_len == 0 || new_len == 0)
1554 return (unsigned long) -EINVAL;
1555
1556 if (offset_in_page(addr))
1557 return -EINVAL;
1558
1559 if (flags & MREMAP_FIXED && new_addr != addr)
1560 return (unsigned long) -EINVAL;
1561
1562 vma = find_vma_exact(current->mm, addr, old_len);
1563 if (!vma)
1564 return (unsigned long) -EINVAL;
1565
1566 if (vma->vm_end != vma->vm_start + old_len)
1567 return (unsigned long) -EFAULT;
1568
1569 if (is_nommu_shared_mapping(vma->vm_flags))
1570 return (unsigned long) -EPERM;
1571
1572 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1573 return (unsigned long) -ENOMEM;
1574
1575 /* all checks complete - do it */
1576 vma->vm_end = vma->vm_start + new_len;
1577 return vma->vm_start;
1578}
1579
1580SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1581 unsigned long, new_len, unsigned long, flags,
1582 unsigned long, new_addr)
1583{
1584 unsigned long ret;
1585
1586 mmap_write_lock(current->mm);
1587 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1588 mmap_write_unlock(current->mm);
1589 return ret;
1590}
1591
1592struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1593 unsigned int foll_flags)
1594{
1595 return NULL;
1596}
1597
1598int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1599 unsigned long pfn, unsigned long size, pgprot_t prot)
1600{
1601 if (addr != (pfn << PAGE_SHIFT))
1602 return -EINVAL;
1603
1604 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1605 return 0;
1606}
1607EXPORT_SYMBOL(remap_pfn_range);
1608
1609int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1610{
1611 unsigned long pfn = start >> PAGE_SHIFT;
1612 unsigned long vm_len = vma->vm_end - vma->vm_start;
1613
1614 pfn += vma->vm_pgoff;
1615 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1616}
1617EXPORT_SYMBOL(vm_iomap_memory);
1618
1619int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1620 unsigned long pgoff)
1621{
1622 unsigned int size = vma->vm_end - vma->vm_start;
1623
1624 if (!(vma->vm_flags & VM_USERMAP))
1625 return -EINVAL;
1626
1627 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1628 vma->vm_end = vma->vm_start + size;
1629
1630 return 0;
1631}
1632EXPORT_SYMBOL(remap_vmalloc_range);
1633
1634vm_fault_t filemap_fault(struct vm_fault *vmf)
1635{
1636 BUG();
1637 return 0;
1638}
1639EXPORT_SYMBOL(filemap_fault);
1640
1641vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1642 pgoff_t start_pgoff, pgoff_t end_pgoff)
1643{
1644 BUG();
1645 return 0;
1646}
1647EXPORT_SYMBOL(filemap_map_pages);
1648
1649static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1650 void *buf, int len, unsigned int gup_flags)
1651{
1652 struct vm_area_struct *vma;
1653 int write = gup_flags & FOLL_WRITE;
1654
1655 if (mmap_read_lock_killable(mm))
1656 return 0;
1657
1658 /* the access must start within one of the target process's mappings */
1659 vma = find_vma(mm, addr);
1660 if (vma) {
1661 /* don't overrun this mapping */
1662 if (addr + len >= vma->vm_end)
1663 len = vma->vm_end - addr;
1664
1665 /* only read or write mappings where it is permitted */
1666 if (write && vma->vm_flags & VM_MAYWRITE)
1667 copy_to_user_page(vma, NULL, addr,
1668 (void *) addr, buf, len);
1669 else if (!write && vma->vm_flags & VM_MAYREAD)
1670 copy_from_user_page(vma, NULL, addr,
1671 buf, (void *) addr, len);
1672 else
1673 len = 0;
1674 } else {
1675 len = 0;
1676 }
1677
1678 mmap_read_unlock(mm);
1679
1680 return len;
1681}
1682
1683/**
1684 * access_remote_vm - access another process' address space
1685 * @mm: the mm_struct of the target address space
1686 * @addr: start address to access
1687 * @buf: source or destination buffer
1688 * @len: number of bytes to transfer
1689 * @gup_flags: flags modifying lookup behaviour
1690 *
1691 * The caller must hold a reference on @mm.
1692 */
1693int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1694 void *buf, int len, unsigned int gup_flags)
1695{
1696 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1697}
1698
1699/*
1700 * Access another process' address space.
1701 * - source/target buffer must be kernel space
1702 */
1703int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1704 unsigned int gup_flags)
1705{
1706 struct mm_struct *mm;
1707
1708 if (addr + len < addr)
1709 return 0;
1710
1711 mm = get_task_mm(tsk);
1712 if (!mm)
1713 return 0;
1714
1715 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1716
1717 mmput(mm);
1718 return len;
1719}
1720EXPORT_SYMBOL_GPL(access_process_vm);
1721
1722/**
1723 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1724 * @inode: The inode to check
1725 * @size: The current filesize of the inode
1726 * @newsize: The proposed filesize of the inode
1727 *
1728 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1729 * make sure that any outstanding VMAs aren't broken and then shrink the
1730 * vm_regions that extend beyond so that do_mmap() doesn't
1731 * automatically grant mappings that are too large.
1732 */
1733int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1734 size_t newsize)
1735{
1736 struct vm_area_struct *vma;
1737 struct vm_region *region;
1738 pgoff_t low, high;
1739 size_t r_size, r_top;
1740
1741 low = newsize >> PAGE_SHIFT;
1742 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1743
1744 down_write(&nommu_region_sem);
1745 i_mmap_lock_read(inode->i_mapping);
1746
1747 /* search for VMAs that fall within the dead zone */
1748 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1749 /* found one - only interested if it's shared out of the page
1750 * cache */
1751 if (vma->vm_flags & VM_SHARED) {
1752 i_mmap_unlock_read(inode->i_mapping);
1753 up_write(&nommu_region_sem);
1754 return -ETXTBSY; /* not quite true, but near enough */
1755 }
1756 }
1757
1758 /* reduce any regions that overlap the dead zone - if in existence,
1759 * these will be pointed to by VMAs that don't overlap the dead zone
1760 *
1761 * we don't check for any regions that start beyond the EOF as there
1762 * shouldn't be any
1763 */
1764 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1765 if (!(vma->vm_flags & VM_SHARED))
1766 continue;
1767
1768 region = vma->vm_region;
1769 r_size = region->vm_top - region->vm_start;
1770 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1771
1772 if (r_top > newsize) {
1773 region->vm_top -= r_top - newsize;
1774 if (region->vm_end > region->vm_top)
1775 region->vm_end = region->vm_top;
1776 }
1777 }
1778
1779 i_mmap_unlock_read(inode->i_mapping);
1780 up_write(&nommu_region_sem);
1781 return 0;
1782}
1783
1784/*
1785 * Initialise sysctl_user_reserve_kbytes.
1786 *
1787 * This is intended to prevent a user from starting a single memory hogging
1788 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1789 * mode.
1790 *
1791 * The default value is min(3% of free memory, 128MB)
1792 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1793 */
1794static int __meminit init_user_reserve(void)
1795{
1796 unsigned long free_kbytes;
1797
1798 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1799
1800 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1801 return 0;
1802}
1803subsys_initcall(init_user_reserve);
1804
1805/*
1806 * Initialise sysctl_admin_reserve_kbytes.
1807 *
1808 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1809 * to log in and kill a memory hogging process.
1810 *
1811 * Systems with more than 256MB will reserve 8MB, enough to recover
1812 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1813 * only reserve 3% of free pages by default.
1814 */
1815static int __meminit init_admin_reserve(void)
1816{
1817 unsigned long free_kbytes;
1818
1819 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1820
1821 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1822 return 0;
1823}
1824subsys_initcall(init_admin_reserve);