Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28__read_mostly bool force_irqthreads;
29EXPORT_SYMBOL_GPL(force_irqthreads);
30
31static int __init setup_forced_irqthreads(char *arg)
32{
33 force_irqthreads = true;
34 return 0;
35}
36early_param("threadirqs", setup_forced_irqthreads);
37#endif
38
39static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40{
41 struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 bool inprogress;
43
44 do {
45 unsigned long flags;
46
47 /*
48 * Wait until we're out of the critical section. This might
49 * give the wrong answer due to the lack of memory barriers.
50 */
51 while (irqd_irq_inprogress(&desc->irq_data))
52 cpu_relax();
53
54 /* Ok, that indicated we're done: double-check carefully. */
55 raw_spin_lock_irqsave(&desc->lock, flags);
56 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58 /*
59 * If requested and supported, check at the chip whether it
60 * is in flight at the hardware level, i.e. already pending
61 * in a CPU and waiting for service and acknowledge.
62 */
63 if (!inprogress && sync_chip) {
64 /*
65 * Ignore the return code. inprogress is only updated
66 * when the chip supports it.
67 */
68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 &inprogress);
70 }
71 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73 /* Oops, that failed? */
74 } while (inprogress);
75}
76
77/**
78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79 * @irq: interrupt number to wait for
80 *
81 * This function waits for any pending hard IRQ handlers for this
82 * interrupt to complete before returning. If you use this
83 * function while holding a resource the IRQ handler may need you
84 * will deadlock. It does not take associated threaded handlers
85 * into account.
86 *
87 * Do not use this for shutdown scenarios where you must be sure
88 * that all parts (hardirq and threaded handler) have completed.
89 *
90 * Returns: false if a threaded handler is active.
91 *
92 * This function may be called - with care - from IRQ context.
93 *
94 * It does not check whether there is an interrupt in flight at the
95 * hardware level, but not serviced yet, as this might deadlock when
96 * called with interrupts disabled and the target CPU of the interrupt
97 * is the current CPU.
98 */
99bool synchronize_hardirq(unsigned int irq)
100{
101 struct irq_desc *desc = irq_to_desc(irq);
102
103 if (desc) {
104 __synchronize_hardirq(desc, false);
105 return !atomic_read(&desc->threads_active);
106 }
107
108 return true;
109}
110EXPORT_SYMBOL(synchronize_hardirq);
111
112/**
113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114 * @irq: interrupt number to wait for
115 *
116 * This function waits for any pending IRQ handlers for this interrupt
117 * to complete before returning. If you use this function while
118 * holding a resource the IRQ handler may need you will deadlock.
119 *
120 * Can only be called from preemptible code as it might sleep when
121 * an interrupt thread is associated to @irq.
122 *
123 * It optionally makes sure (when the irq chip supports that method)
124 * that the interrupt is not pending in any CPU and waiting for
125 * service.
126 */
127void synchronize_irq(unsigned int irq)
128{
129 struct irq_desc *desc = irq_to_desc(irq);
130
131 if (desc) {
132 __synchronize_hardirq(desc, true);
133 /*
134 * We made sure that no hardirq handler is
135 * running. Now verify that no threaded handlers are
136 * active.
137 */
138 wait_event(desc->wait_for_threads,
139 !atomic_read(&desc->threads_active));
140 }
141}
142EXPORT_SYMBOL(synchronize_irq);
143
144#ifdef CONFIG_SMP
145cpumask_var_t irq_default_affinity;
146
147static bool __irq_can_set_affinity(struct irq_desc *desc)
148{
149 if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 return false;
152 return true;
153}
154
155/**
156 * irq_can_set_affinity - Check if the affinity of a given irq can be set
157 * @irq: Interrupt to check
158 *
159 */
160int irq_can_set_affinity(unsigned int irq)
161{
162 return __irq_can_set_affinity(irq_to_desc(irq));
163}
164
165/**
166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167 * @irq: Interrupt to check
168 *
169 * Like irq_can_set_affinity() above, but additionally checks for the
170 * AFFINITY_MANAGED flag.
171 */
172bool irq_can_set_affinity_usr(unsigned int irq)
173{
174 struct irq_desc *desc = irq_to_desc(irq);
175
176 return __irq_can_set_affinity(desc) &&
177 !irqd_affinity_is_managed(&desc->irq_data);
178}
179
180/**
181 * irq_set_thread_affinity - Notify irq threads to adjust affinity
182 * @desc: irq descriptor which has affitnity changed
183 *
184 * We just set IRQTF_AFFINITY and delegate the affinity setting
185 * to the interrupt thread itself. We can not call
186 * set_cpus_allowed_ptr() here as we hold desc->lock and this
187 * code can be called from hard interrupt context.
188 */
189void irq_set_thread_affinity(struct irq_desc *desc)
190{
191 struct irqaction *action;
192
193 for_each_action_of_desc(desc, action)
194 if (action->thread)
195 set_bit(IRQTF_AFFINITY, &action->thread_flags);
196}
197
198#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
199static void irq_validate_effective_affinity(struct irq_data *data)
200{
201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204 if (!cpumask_empty(m))
205 return;
206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 chip->name, data->irq);
208}
209
210static inline void irq_init_effective_affinity(struct irq_data *data,
211 const struct cpumask *mask)
212{
213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214}
215#else
216static inline void irq_validate_effective_affinity(struct irq_data *data) { }
217static inline void irq_init_effective_affinity(struct irq_data *data,
218 const struct cpumask *mask) { }
219#endif
220
221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 bool force)
223{
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 int ret;
227
228 if (!chip || !chip->irq_set_affinity)
229 return -EINVAL;
230
231 /*
232 * If this is a managed interrupt and housekeeping is enabled on
233 * it check whether the requested affinity mask intersects with
234 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 * the mask and just keep the housekeeping CPU(s). This prevents
236 * the affinity setter from routing the interrupt to an isolated
237 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 * interrupts on an isolated one.
239 *
240 * If the masks do not intersect or include online CPU(s) then
241 * keep the requested mask. The isolated target CPUs are only
242 * receiving interrupts when the I/O operation was submitted
243 * directly from them.
244 *
245 * If all housekeeping CPUs in the affinity mask are offline, the
246 * interrupt will be migrated by the CPU hotplug code once a
247 * housekeeping CPU which belongs to the affinity mask comes
248 * online.
249 */
250 if (irqd_affinity_is_managed(data) &&
251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 const struct cpumask *hk_mask, *prog_mask;
253
254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 static struct cpumask tmp_mask;
256
257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258
259 raw_spin_lock(&tmp_mask_lock);
260 cpumask_and(&tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = &tmp_mask;
265 ret = chip->irq_set_affinity(data, prog_mask, force);
266 raw_spin_unlock(&tmp_mask_lock);
267 } else {
268 ret = chip->irq_set_affinity(data, mask, force);
269 }
270 switch (ret) {
271 case IRQ_SET_MASK_OK:
272 case IRQ_SET_MASK_OK_DONE:
273 cpumask_copy(desc->irq_common_data.affinity, mask);
274 fallthrough;
275 case IRQ_SET_MASK_OK_NOCOPY:
276 irq_validate_effective_affinity(data);
277 irq_set_thread_affinity(desc);
278 ret = 0;
279 }
280
281 return ret;
282}
283
284#ifdef CONFIG_GENERIC_PENDING_IRQ
285static inline int irq_set_affinity_pending(struct irq_data *data,
286 const struct cpumask *dest)
287{
288 struct irq_desc *desc = irq_data_to_desc(data);
289
290 irqd_set_move_pending(data);
291 irq_copy_pending(desc, dest);
292 return 0;
293}
294#else
295static inline int irq_set_affinity_pending(struct irq_data *data,
296 const struct cpumask *dest)
297{
298 return -EBUSY;
299}
300#endif
301
302static int irq_try_set_affinity(struct irq_data *data,
303 const struct cpumask *dest, bool force)
304{
305 int ret = irq_do_set_affinity(data, dest, force);
306
307 /*
308 * In case that the underlying vector management is busy and the
309 * architecture supports the generic pending mechanism then utilize
310 * this to avoid returning an error to user space.
311 */
312 if (ret == -EBUSY && !force)
313 ret = irq_set_affinity_pending(data, dest);
314 return ret;
315}
316
317static bool irq_set_affinity_deactivated(struct irq_data *data,
318 const struct cpumask *mask, bool force)
319{
320 struct irq_desc *desc = irq_data_to_desc(data);
321
322 /*
323 * Handle irq chips which can handle affinity only in activated
324 * state correctly
325 *
326 * If the interrupt is not yet activated, just store the affinity
327 * mask and do not call the chip driver at all. On activation the
328 * driver has to make sure anyway that the interrupt is in a
329 * useable state so startup works.
330 */
331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 return false;
334
335 cpumask_copy(desc->irq_common_data.affinity, mask);
336 irq_init_effective_affinity(data, mask);
337 irqd_set(data, IRQD_AFFINITY_SET);
338 return true;
339}
340
341int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 bool force)
343{
344 struct irq_chip *chip = irq_data_get_irq_chip(data);
345 struct irq_desc *desc = irq_data_to_desc(data);
346 int ret = 0;
347
348 if (!chip || !chip->irq_set_affinity)
349 return -EINVAL;
350
351 if (irq_set_affinity_deactivated(data, mask, force))
352 return 0;
353
354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 ret = irq_try_set_affinity(data, mask, force);
356 } else {
357 irqd_set_move_pending(data);
358 irq_copy_pending(desc, mask);
359 }
360
361 if (desc->affinity_notify) {
362 kref_get(&desc->affinity_notify->kref);
363 if (!schedule_work(&desc->affinity_notify->work)) {
364 /* Work was already scheduled, drop our extra ref */
365 kref_put(&desc->affinity_notify->kref,
366 desc->affinity_notify->release);
367 }
368 }
369 irqd_set(data, IRQD_AFFINITY_SET);
370
371 return ret;
372}
373
374int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
375{
376 struct irq_desc *desc = irq_to_desc(irq);
377 unsigned long flags;
378 int ret;
379
380 if (!desc)
381 return -EINVAL;
382
383 raw_spin_lock_irqsave(&desc->lock, flags);
384 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
385 raw_spin_unlock_irqrestore(&desc->lock, flags);
386 return ret;
387}
388
389int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
390{
391 unsigned long flags;
392 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
393
394 if (!desc)
395 return -EINVAL;
396 desc->affinity_hint = m;
397 irq_put_desc_unlock(desc, flags);
398 /* set the initial affinity to prevent every interrupt being on CPU0 */
399 if (m)
400 __irq_set_affinity(irq, m, false);
401 return 0;
402}
403EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
404
405static void irq_affinity_notify(struct work_struct *work)
406{
407 struct irq_affinity_notify *notify =
408 container_of(work, struct irq_affinity_notify, work);
409 struct irq_desc *desc = irq_to_desc(notify->irq);
410 cpumask_var_t cpumask;
411 unsigned long flags;
412
413 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
414 goto out;
415
416 raw_spin_lock_irqsave(&desc->lock, flags);
417 if (irq_move_pending(&desc->irq_data))
418 irq_get_pending(cpumask, desc);
419 else
420 cpumask_copy(cpumask, desc->irq_common_data.affinity);
421 raw_spin_unlock_irqrestore(&desc->lock, flags);
422
423 notify->notify(notify, cpumask);
424
425 free_cpumask_var(cpumask);
426out:
427 kref_put(¬ify->kref, notify->release);
428}
429
430/**
431 * irq_set_affinity_notifier - control notification of IRQ affinity changes
432 * @irq: Interrupt for which to enable/disable notification
433 * @notify: Context for notification, or %NULL to disable
434 * notification. Function pointers must be initialised;
435 * the other fields will be initialised by this function.
436 *
437 * Must be called in process context. Notification may only be enabled
438 * after the IRQ is allocated and must be disabled before the IRQ is
439 * freed using free_irq().
440 */
441int
442irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
443{
444 struct irq_desc *desc = irq_to_desc(irq);
445 struct irq_affinity_notify *old_notify;
446 unsigned long flags;
447
448 /* The release function is promised process context */
449 might_sleep();
450
451 if (!desc || desc->istate & IRQS_NMI)
452 return -EINVAL;
453
454 /* Complete initialisation of *notify */
455 if (notify) {
456 notify->irq = irq;
457 kref_init(¬ify->kref);
458 INIT_WORK(¬ify->work, irq_affinity_notify);
459 }
460
461 raw_spin_lock_irqsave(&desc->lock, flags);
462 old_notify = desc->affinity_notify;
463 desc->affinity_notify = notify;
464 raw_spin_unlock_irqrestore(&desc->lock, flags);
465
466 if (old_notify) {
467 if (cancel_work_sync(&old_notify->work)) {
468 /* Pending work had a ref, put that one too */
469 kref_put(&old_notify->kref, old_notify->release);
470 }
471 kref_put(&old_notify->kref, old_notify->release);
472 }
473
474 return 0;
475}
476EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
477
478#ifndef CONFIG_AUTO_IRQ_AFFINITY
479/*
480 * Generic version of the affinity autoselector.
481 */
482int irq_setup_affinity(struct irq_desc *desc)
483{
484 struct cpumask *set = irq_default_affinity;
485 int ret, node = irq_desc_get_node(desc);
486 static DEFINE_RAW_SPINLOCK(mask_lock);
487 static struct cpumask mask;
488
489 /* Excludes PER_CPU and NO_BALANCE interrupts */
490 if (!__irq_can_set_affinity(desc))
491 return 0;
492
493 raw_spin_lock(&mask_lock);
494 /*
495 * Preserve the managed affinity setting and a userspace affinity
496 * setup, but make sure that one of the targets is online.
497 */
498 if (irqd_affinity_is_managed(&desc->irq_data) ||
499 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
500 if (cpumask_intersects(desc->irq_common_data.affinity,
501 cpu_online_mask))
502 set = desc->irq_common_data.affinity;
503 else
504 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
505 }
506
507 cpumask_and(&mask, cpu_online_mask, set);
508 if (cpumask_empty(&mask))
509 cpumask_copy(&mask, cpu_online_mask);
510
511 if (node != NUMA_NO_NODE) {
512 const struct cpumask *nodemask = cpumask_of_node(node);
513
514 /* make sure at least one of the cpus in nodemask is online */
515 if (cpumask_intersects(&mask, nodemask))
516 cpumask_and(&mask, &mask, nodemask);
517 }
518 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
519 raw_spin_unlock(&mask_lock);
520 return ret;
521}
522#else
523/* Wrapper for ALPHA specific affinity selector magic */
524int irq_setup_affinity(struct irq_desc *desc)
525{
526 return irq_select_affinity(irq_desc_get_irq(desc));
527}
528#endif /* CONFIG_AUTO_IRQ_AFFINITY */
529#endif /* CONFIG_SMP */
530
531
532/**
533 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
534 * @irq: interrupt number to set affinity
535 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
536 * specific data for percpu_devid interrupts
537 *
538 * This function uses the vCPU specific data to set the vCPU
539 * affinity for an irq. The vCPU specific data is passed from
540 * outside, such as KVM. One example code path is as below:
541 * KVM -> IOMMU -> irq_set_vcpu_affinity().
542 */
543int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
544{
545 unsigned long flags;
546 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
547 struct irq_data *data;
548 struct irq_chip *chip;
549 int ret = -ENOSYS;
550
551 if (!desc)
552 return -EINVAL;
553
554 data = irq_desc_get_irq_data(desc);
555 do {
556 chip = irq_data_get_irq_chip(data);
557 if (chip && chip->irq_set_vcpu_affinity)
558 break;
559#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
560 data = data->parent_data;
561#else
562 data = NULL;
563#endif
564 } while (data);
565
566 if (data)
567 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
568 irq_put_desc_unlock(desc, flags);
569
570 return ret;
571}
572EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
573
574void __disable_irq(struct irq_desc *desc)
575{
576 if (!desc->depth++)
577 irq_disable(desc);
578}
579
580static int __disable_irq_nosync(unsigned int irq)
581{
582 unsigned long flags;
583 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
584
585 if (!desc)
586 return -EINVAL;
587 __disable_irq(desc);
588 irq_put_desc_busunlock(desc, flags);
589 return 0;
590}
591
592/**
593 * disable_irq_nosync - disable an irq without waiting
594 * @irq: Interrupt to disable
595 *
596 * Disable the selected interrupt line. Disables and Enables are
597 * nested.
598 * Unlike disable_irq(), this function does not ensure existing
599 * instances of the IRQ handler have completed before returning.
600 *
601 * This function may be called from IRQ context.
602 */
603void disable_irq_nosync(unsigned int irq)
604{
605 __disable_irq_nosync(irq);
606}
607EXPORT_SYMBOL(disable_irq_nosync);
608
609/**
610 * disable_irq - disable an irq and wait for completion
611 * @irq: Interrupt to disable
612 *
613 * Disable the selected interrupt line. Enables and Disables are
614 * nested.
615 * This function waits for any pending IRQ handlers for this interrupt
616 * to complete before returning. If you use this function while
617 * holding a resource the IRQ handler may need you will deadlock.
618 *
619 * This function may be called - with care - from IRQ context.
620 */
621void disable_irq(unsigned int irq)
622{
623 if (!__disable_irq_nosync(irq))
624 synchronize_irq(irq);
625}
626EXPORT_SYMBOL(disable_irq);
627
628/**
629 * disable_hardirq - disables an irq and waits for hardirq completion
630 * @irq: Interrupt to disable
631 *
632 * Disable the selected interrupt line. Enables and Disables are
633 * nested.
634 * This function waits for any pending hard IRQ handlers for this
635 * interrupt to complete before returning. If you use this function while
636 * holding a resource the hard IRQ handler may need you will deadlock.
637 *
638 * When used to optimistically disable an interrupt from atomic context
639 * the return value must be checked.
640 *
641 * Returns: false if a threaded handler is active.
642 *
643 * This function may be called - with care - from IRQ context.
644 */
645bool disable_hardirq(unsigned int irq)
646{
647 if (!__disable_irq_nosync(irq))
648 return synchronize_hardirq(irq);
649
650 return false;
651}
652EXPORT_SYMBOL_GPL(disable_hardirq);
653
654/**
655 * disable_nmi_nosync - disable an nmi without waiting
656 * @irq: Interrupt to disable
657 *
658 * Disable the selected interrupt line. Disables and enables are
659 * nested.
660 * The interrupt to disable must have been requested through request_nmi.
661 * Unlike disable_nmi(), this function does not ensure existing
662 * instances of the IRQ handler have completed before returning.
663 */
664void disable_nmi_nosync(unsigned int irq)
665{
666 disable_irq_nosync(irq);
667}
668
669void __enable_irq(struct irq_desc *desc)
670{
671 switch (desc->depth) {
672 case 0:
673 err_out:
674 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
675 irq_desc_get_irq(desc));
676 break;
677 case 1: {
678 if (desc->istate & IRQS_SUSPENDED)
679 goto err_out;
680 /* Prevent probing on this irq: */
681 irq_settings_set_noprobe(desc);
682 /*
683 * Call irq_startup() not irq_enable() here because the
684 * interrupt might be marked NOAUTOEN. So irq_startup()
685 * needs to be invoked when it gets enabled the first
686 * time. If it was already started up, then irq_startup()
687 * will invoke irq_enable() under the hood.
688 */
689 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
690 break;
691 }
692 default:
693 desc->depth--;
694 }
695}
696
697/**
698 * enable_irq - enable handling of an irq
699 * @irq: Interrupt to enable
700 *
701 * Undoes the effect of one call to disable_irq(). If this
702 * matches the last disable, processing of interrupts on this
703 * IRQ line is re-enabled.
704 *
705 * This function may be called from IRQ context only when
706 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
707 */
708void enable_irq(unsigned int irq)
709{
710 unsigned long flags;
711 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
712
713 if (!desc)
714 return;
715 if (WARN(!desc->irq_data.chip,
716 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
717 goto out;
718
719 __enable_irq(desc);
720out:
721 irq_put_desc_busunlock(desc, flags);
722}
723EXPORT_SYMBOL(enable_irq);
724
725/**
726 * enable_nmi - enable handling of an nmi
727 * @irq: Interrupt to enable
728 *
729 * The interrupt to enable must have been requested through request_nmi.
730 * Undoes the effect of one call to disable_nmi(). If this
731 * matches the last disable, processing of interrupts on this
732 * IRQ line is re-enabled.
733 */
734void enable_nmi(unsigned int irq)
735{
736 enable_irq(irq);
737}
738
739static int set_irq_wake_real(unsigned int irq, unsigned int on)
740{
741 struct irq_desc *desc = irq_to_desc(irq);
742 int ret = -ENXIO;
743
744 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
745 return 0;
746
747 if (desc->irq_data.chip->irq_set_wake)
748 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
749
750 return ret;
751}
752
753/**
754 * irq_set_irq_wake - control irq power management wakeup
755 * @irq: interrupt to control
756 * @on: enable/disable power management wakeup
757 *
758 * Enable/disable power management wakeup mode, which is
759 * disabled by default. Enables and disables must match,
760 * just as they match for non-wakeup mode support.
761 *
762 * Wakeup mode lets this IRQ wake the system from sleep
763 * states like "suspend to RAM".
764 *
765 * Note: irq enable/disable state is completely orthogonal
766 * to the enable/disable state of irq wake. An irq can be
767 * disabled with disable_irq() and still wake the system as
768 * long as the irq has wake enabled. If this does not hold,
769 * then the underlying irq chip and the related driver need
770 * to be investigated.
771 */
772int irq_set_irq_wake(unsigned int irq, unsigned int on)
773{
774 unsigned long flags;
775 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
776 int ret = 0;
777
778 if (!desc)
779 return -EINVAL;
780
781 /* Don't use NMIs as wake up interrupts please */
782 if (desc->istate & IRQS_NMI) {
783 ret = -EINVAL;
784 goto out_unlock;
785 }
786
787 /* wakeup-capable irqs can be shared between drivers that
788 * don't need to have the same sleep mode behaviors.
789 */
790 if (on) {
791 if (desc->wake_depth++ == 0) {
792 ret = set_irq_wake_real(irq, on);
793 if (ret)
794 desc->wake_depth = 0;
795 else
796 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
797 }
798 } else {
799 if (desc->wake_depth == 0) {
800 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
801 } else if (--desc->wake_depth == 0) {
802 ret = set_irq_wake_real(irq, on);
803 if (ret)
804 desc->wake_depth = 1;
805 else
806 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
807 }
808 }
809
810out_unlock:
811 irq_put_desc_busunlock(desc, flags);
812 return ret;
813}
814EXPORT_SYMBOL(irq_set_irq_wake);
815
816/*
817 * Internal function that tells the architecture code whether a
818 * particular irq has been exclusively allocated or is available
819 * for driver use.
820 */
821int can_request_irq(unsigned int irq, unsigned long irqflags)
822{
823 unsigned long flags;
824 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
825 int canrequest = 0;
826
827 if (!desc)
828 return 0;
829
830 if (irq_settings_can_request(desc)) {
831 if (!desc->action ||
832 irqflags & desc->action->flags & IRQF_SHARED)
833 canrequest = 1;
834 }
835 irq_put_desc_unlock(desc, flags);
836 return canrequest;
837}
838
839int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
840{
841 struct irq_chip *chip = desc->irq_data.chip;
842 int ret, unmask = 0;
843
844 if (!chip || !chip->irq_set_type) {
845 /*
846 * IRQF_TRIGGER_* but the PIC does not support multiple
847 * flow-types?
848 */
849 pr_debug("No set_type function for IRQ %d (%s)\n",
850 irq_desc_get_irq(desc),
851 chip ? (chip->name ? : "unknown") : "unknown");
852 return 0;
853 }
854
855 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
856 if (!irqd_irq_masked(&desc->irq_data))
857 mask_irq(desc);
858 if (!irqd_irq_disabled(&desc->irq_data))
859 unmask = 1;
860 }
861
862 /* Mask all flags except trigger mode */
863 flags &= IRQ_TYPE_SENSE_MASK;
864 ret = chip->irq_set_type(&desc->irq_data, flags);
865
866 switch (ret) {
867 case IRQ_SET_MASK_OK:
868 case IRQ_SET_MASK_OK_DONE:
869 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
870 irqd_set(&desc->irq_data, flags);
871 fallthrough;
872
873 case IRQ_SET_MASK_OK_NOCOPY:
874 flags = irqd_get_trigger_type(&desc->irq_data);
875 irq_settings_set_trigger_mask(desc, flags);
876 irqd_clear(&desc->irq_data, IRQD_LEVEL);
877 irq_settings_clr_level(desc);
878 if (flags & IRQ_TYPE_LEVEL_MASK) {
879 irq_settings_set_level(desc);
880 irqd_set(&desc->irq_data, IRQD_LEVEL);
881 }
882
883 ret = 0;
884 break;
885 default:
886 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
887 flags, irq_desc_get_irq(desc), chip->irq_set_type);
888 }
889 if (unmask)
890 unmask_irq(desc);
891 return ret;
892}
893
894#ifdef CONFIG_HARDIRQS_SW_RESEND
895int irq_set_parent(int irq, int parent_irq)
896{
897 unsigned long flags;
898 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
899
900 if (!desc)
901 return -EINVAL;
902
903 desc->parent_irq = parent_irq;
904
905 irq_put_desc_unlock(desc, flags);
906 return 0;
907}
908EXPORT_SYMBOL_GPL(irq_set_parent);
909#endif
910
911/*
912 * Default primary interrupt handler for threaded interrupts. Is
913 * assigned as primary handler when request_threaded_irq is called
914 * with handler == NULL. Useful for oneshot interrupts.
915 */
916static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
917{
918 return IRQ_WAKE_THREAD;
919}
920
921/*
922 * Primary handler for nested threaded interrupts. Should never be
923 * called.
924 */
925static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
926{
927 WARN(1, "Primary handler called for nested irq %d\n", irq);
928 return IRQ_NONE;
929}
930
931static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
932{
933 WARN(1, "Secondary action handler called for irq %d\n", irq);
934 return IRQ_NONE;
935}
936
937static int irq_wait_for_interrupt(struct irqaction *action)
938{
939 for (;;) {
940 set_current_state(TASK_INTERRUPTIBLE);
941
942 if (kthread_should_stop()) {
943 /* may need to run one last time */
944 if (test_and_clear_bit(IRQTF_RUNTHREAD,
945 &action->thread_flags)) {
946 __set_current_state(TASK_RUNNING);
947 return 0;
948 }
949 __set_current_state(TASK_RUNNING);
950 return -1;
951 }
952
953 if (test_and_clear_bit(IRQTF_RUNTHREAD,
954 &action->thread_flags)) {
955 __set_current_state(TASK_RUNNING);
956 return 0;
957 }
958 schedule();
959 }
960}
961
962/*
963 * Oneshot interrupts keep the irq line masked until the threaded
964 * handler finished. unmask if the interrupt has not been disabled and
965 * is marked MASKED.
966 */
967static void irq_finalize_oneshot(struct irq_desc *desc,
968 struct irqaction *action)
969{
970 if (!(desc->istate & IRQS_ONESHOT) ||
971 action->handler == irq_forced_secondary_handler)
972 return;
973again:
974 chip_bus_lock(desc);
975 raw_spin_lock_irq(&desc->lock);
976
977 /*
978 * Implausible though it may be we need to protect us against
979 * the following scenario:
980 *
981 * The thread is faster done than the hard interrupt handler
982 * on the other CPU. If we unmask the irq line then the
983 * interrupt can come in again and masks the line, leaves due
984 * to IRQS_INPROGRESS and the irq line is masked forever.
985 *
986 * This also serializes the state of shared oneshot handlers
987 * versus "desc->threads_onehsot |= action->thread_mask;" in
988 * irq_wake_thread(). See the comment there which explains the
989 * serialization.
990 */
991 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
992 raw_spin_unlock_irq(&desc->lock);
993 chip_bus_sync_unlock(desc);
994 cpu_relax();
995 goto again;
996 }
997
998 /*
999 * Now check again, whether the thread should run. Otherwise
1000 * we would clear the threads_oneshot bit of this thread which
1001 * was just set.
1002 */
1003 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1004 goto out_unlock;
1005
1006 desc->threads_oneshot &= ~action->thread_mask;
1007
1008 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1009 irqd_irq_masked(&desc->irq_data))
1010 unmask_threaded_irq(desc);
1011
1012out_unlock:
1013 raw_spin_unlock_irq(&desc->lock);
1014 chip_bus_sync_unlock(desc);
1015}
1016
1017#ifdef CONFIG_SMP
1018/*
1019 * Check whether we need to change the affinity of the interrupt thread.
1020 */
1021static void
1022irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1023{
1024 cpumask_var_t mask;
1025 bool valid = true;
1026
1027 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1028 return;
1029
1030 /*
1031 * In case we are out of memory we set IRQTF_AFFINITY again and
1032 * try again next time
1033 */
1034 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1035 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1036 return;
1037 }
1038
1039 raw_spin_lock_irq(&desc->lock);
1040 /*
1041 * This code is triggered unconditionally. Check the affinity
1042 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1043 */
1044 if (cpumask_available(desc->irq_common_data.affinity)) {
1045 const struct cpumask *m;
1046
1047 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1048 cpumask_copy(mask, m);
1049 } else {
1050 valid = false;
1051 }
1052 raw_spin_unlock_irq(&desc->lock);
1053
1054 if (valid)
1055 set_cpus_allowed_ptr(current, mask);
1056 free_cpumask_var(mask);
1057}
1058#else
1059static inline void
1060irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1061#endif
1062
1063/*
1064 * Interrupts which are not explicitly requested as threaded
1065 * interrupts rely on the implicit bh/preempt disable of the hard irq
1066 * context. So we need to disable bh here to avoid deadlocks and other
1067 * side effects.
1068 */
1069static irqreturn_t
1070irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1071{
1072 irqreturn_t ret;
1073
1074 local_bh_disable();
1075 ret = action->thread_fn(action->irq, action->dev_id);
1076 if (ret == IRQ_HANDLED)
1077 atomic_inc(&desc->threads_handled);
1078
1079 irq_finalize_oneshot(desc, action);
1080 local_bh_enable();
1081 return ret;
1082}
1083
1084/*
1085 * Interrupts explicitly requested as threaded interrupts want to be
1086 * preemtible - many of them need to sleep and wait for slow busses to
1087 * complete.
1088 */
1089static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1090 struct irqaction *action)
1091{
1092 irqreturn_t ret;
1093
1094 ret = action->thread_fn(action->irq, action->dev_id);
1095 if (ret == IRQ_HANDLED)
1096 atomic_inc(&desc->threads_handled);
1097
1098 irq_finalize_oneshot(desc, action);
1099 return ret;
1100}
1101
1102static void wake_threads_waitq(struct irq_desc *desc)
1103{
1104 if (atomic_dec_and_test(&desc->threads_active))
1105 wake_up(&desc->wait_for_threads);
1106}
1107
1108static void irq_thread_dtor(struct callback_head *unused)
1109{
1110 struct task_struct *tsk = current;
1111 struct irq_desc *desc;
1112 struct irqaction *action;
1113
1114 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1115 return;
1116
1117 action = kthread_data(tsk);
1118
1119 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1120 tsk->comm, tsk->pid, action->irq);
1121
1122
1123 desc = irq_to_desc(action->irq);
1124 /*
1125 * If IRQTF_RUNTHREAD is set, we need to decrement
1126 * desc->threads_active and wake possible waiters.
1127 */
1128 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1129 wake_threads_waitq(desc);
1130
1131 /* Prevent a stale desc->threads_oneshot */
1132 irq_finalize_oneshot(desc, action);
1133}
1134
1135static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1136{
1137 struct irqaction *secondary = action->secondary;
1138
1139 if (WARN_ON_ONCE(!secondary))
1140 return;
1141
1142 raw_spin_lock_irq(&desc->lock);
1143 __irq_wake_thread(desc, secondary);
1144 raw_spin_unlock_irq(&desc->lock);
1145}
1146
1147/*
1148 * Interrupt handler thread
1149 */
1150static int irq_thread(void *data)
1151{
1152 struct callback_head on_exit_work;
1153 struct irqaction *action = data;
1154 struct irq_desc *desc = irq_to_desc(action->irq);
1155 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1156 struct irqaction *action);
1157
1158 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1159 &action->thread_flags))
1160 handler_fn = irq_forced_thread_fn;
1161 else
1162 handler_fn = irq_thread_fn;
1163
1164 init_task_work(&on_exit_work, irq_thread_dtor);
1165 task_work_add(current, &on_exit_work, false);
1166
1167 irq_thread_check_affinity(desc, action);
1168
1169 while (!irq_wait_for_interrupt(action)) {
1170 irqreturn_t action_ret;
1171
1172 irq_thread_check_affinity(desc, action);
1173
1174 action_ret = handler_fn(desc, action);
1175 if (action_ret == IRQ_WAKE_THREAD)
1176 irq_wake_secondary(desc, action);
1177
1178 wake_threads_waitq(desc);
1179 }
1180
1181 /*
1182 * This is the regular exit path. __free_irq() is stopping the
1183 * thread via kthread_stop() after calling
1184 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1185 * oneshot mask bit can be set.
1186 */
1187 task_work_cancel(current, irq_thread_dtor);
1188 return 0;
1189}
1190
1191/**
1192 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1193 * @irq: Interrupt line
1194 * @dev_id: Device identity for which the thread should be woken
1195 *
1196 */
1197void irq_wake_thread(unsigned int irq, void *dev_id)
1198{
1199 struct irq_desc *desc = irq_to_desc(irq);
1200 struct irqaction *action;
1201 unsigned long flags;
1202
1203 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1204 return;
1205
1206 raw_spin_lock_irqsave(&desc->lock, flags);
1207 for_each_action_of_desc(desc, action) {
1208 if (action->dev_id == dev_id) {
1209 if (action->thread)
1210 __irq_wake_thread(desc, action);
1211 break;
1212 }
1213 }
1214 raw_spin_unlock_irqrestore(&desc->lock, flags);
1215}
1216EXPORT_SYMBOL_GPL(irq_wake_thread);
1217
1218static int irq_setup_forced_threading(struct irqaction *new)
1219{
1220 if (!force_irqthreads)
1221 return 0;
1222 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1223 return 0;
1224
1225 /*
1226 * No further action required for interrupts which are requested as
1227 * threaded interrupts already
1228 */
1229 if (new->handler == irq_default_primary_handler)
1230 return 0;
1231
1232 new->flags |= IRQF_ONESHOT;
1233
1234 /*
1235 * Handle the case where we have a real primary handler and a
1236 * thread handler. We force thread them as well by creating a
1237 * secondary action.
1238 */
1239 if (new->handler && new->thread_fn) {
1240 /* Allocate the secondary action */
1241 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1242 if (!new->secondary)
1243 return -ENOMEM;
1244 new->secondary->handler = irq_forced_secondary_handler;
1245 new->secondary->thread_fn = new->thread_fn;
1246 new->secondary->dev_id = new->dev_id;
1247 new->secondary->irq = new->irq;
1248 new->secondary->name = new->name;
1249 }
1250 /* Deal with the primary handler */
1251 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1252 new->thread_fn = new->handler;
1253 new->handler = irq_default_primary_handler;
1254 return 0;
1255}
1256
1257static int irq_request_resources(struct irq_desc *desc)
1258{
1259 struct irq_data *d = &desc->irq_data;
1260 struct irq_chip *c = d->chip;
1261
1262 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1263}
1264
1265static void irq_release_resources(struct irq_desc *desc)
1266{
1267 struct irq_data *d = &desc->irq_data;
1268 struct irq_chip *c = d->chip;
1269
1270 if (c->irq_release_resources)
1271 c->irq_release_resources(d);
1272}
1273
1274static bool irq_supports_nmi(struct irq_desc *desc)
1275{
1276 struct irq_data *d = irq_desc_get_irq_data(desc);
1277
1278#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1279 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1280 if (d->parent_data)
1281 return false;
1282#endif
1283 /* Don't support NMIs for chips behind a slow bus */
1284 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1285 return false;
1286
1287 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1288}
1289
1290static int irq_nmi_setup(struct irq_desc *desc)
1291{
1292 struct irq_data *d = irq_desc_get_irq_data(desc);
1293 struct irq_chip *c = d->chip;
1294
1295 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1296}
1297
1298static void irq_nmi_teardown(struct irq_desc *desc)
1299{
1300 struct irq_data *d = irq_desc_get_irq_data(desc);
1301 struct irq_chip *c = d->chip;
1302
1303 if (c->irq_nmi_teardown)
1304 c->irq_nmi_teardown(d);
1305}
1306
1307static int
1308setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1309{
1310 struct task_struct *t;
1311
1312 if (!secondary) {
1313 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1314 new->name);
1315 } else {
1316 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1317 new->name);
1318 }
1319
1320 if (IS_ERR(t))
1321 return PTR_ERR(t);
1322
1323 sched_set_fifo(t);
1324
1325 /*
1326 * We keep the reference to the task struct even if
1327 * the thread dies to avoid that the interrupt code
1328 * references an already freed task_struct.
1329 */
1330 new->thread = get_task_struct(t);
1331 /*
1332 * Tell the thread to set its affinity. This is
1333 * important for shared interrupt handlers as we do
1334 * not invoke setup_affinity() for the secondary
1335 * handlers as everything is already set up. Even for
1336 * interrupts marked with IRQF_NO_BALANCE this is
1337 * correct as we want the thread to move to the cpu(s)
1338 * on which the requesting code placed the interrupt.
1339 */
1340 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1341 return 0;
1342}
1343
1344/*
1345 * Internal function to register an irqaction - typically used to
1346 * allocate special interrupts that are part of the architecture.
1347 *
1348 * Locking rules:
1349 *
1350 * desc->request_mutex Provides serialization against a concurrent free_irq()
1351 * chip_bus_lock Provides serialization for slow bus operations
1352 * desc->lock Provides serialization against hard interrupts
1353 *
1354 * chip_bus_lock and desc->lock are sufficient for all other management and
1355 * interrupt related functions. desc->request_mutex solely serializes
1356 * request/free_irq().
1357 */
1358static int
1359__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1360{
1361 struct irqaction *old, **old_ptr;
1362 unsigned long flags, thread_mask = 0;
1363 int ret, nested, shared = 0;
1364
1365 if (!desc)
1366 return -EINVAL;
1367
1368 if (desc->irq_data.chip == &no_irq_chip)
1369 return -ENOSYS;
1370 if (!try_module_get(desc->owner))
1371 return -ENODEV;
1372
1373 new->irq = irq;
1374
1375 /*
1376 * If the trigger type is not specified by the caller,
1377 * then use the default for this interrupt.
1378 */
1379 if (!(new->flags & IRQF_TRIGGER_MASK))
1380 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1381
1382 /*
1383 * Check whether the interrupt nests into another interrupt
1384 * thread.
1385 */
1386 nested = irq_settings_is_nested_thread(desc);
1387 if (nested) {
1388 if (!new->thread_fn) {
1389 ret = -EINVAL;
1390 goto out_mput;
1391 }
1392 /*
1393 * Replace the primary handler which was provided from
1394 * the driver for non nested interrupt handling by the
1395 * dummy function which warns when called.
1396 */
1397 new->handler = irq_nested_primary_handler;
1398 } else {
1399 if (irq_settings_can_thread(desc)) {
1400 ret = irq_setup_forced_threading(new);
1401 if (ret)
1402 goto out_mput;
1403 }
1404 }
1405
1406 /*
1407 * Create a handler thread when a thread function is supplied
1408 * and the interrupt does not nest into another interrupt
1409 * thread.
1410 */
1411 if (new->thread_fn && !nested) {
1412 ret = setup_irq_thread(new, irq, false);
1413 if (ret)
1414 goto out_mput;
1415 if (new->secondary) {
1416 ret = setup_irq_thread(new->secondary, irq, true);
1417 if (ret)
1418 goto out_thread;
1419 }
1420 }
1421
1422 /*
1423 * Drivers are often written to work w/o knowledge about the
1424 * underlying irq chip implementation, so a request for a
1425 * threaded irq without a primary hard irq context handler
1426 * requires the ONESHOT flag to be set. Some irq chips like
1427 * MSI based interrupts are per se one shot safe. Check the
1428 * chip flags, so we can avoid the unmask dance at the end of
1429 * the threaded handler for those.
1430 */
1431 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1432 new->flags &= ~IRQF_ONESHOT;
1433
1434 /*
1435 * Protects against a concurrent __free_irq() call which might wait
1436 * for synchronize_hardirq() to complete without holding the optional
1437 * chip bus lock and desc->lock. Also protects against handing out
1438 * a recycled oneshot thread_mask bit while it's still in use by
1439 * its previous owner.
1440 */
1441 mutex_lock(&desc->request_mutex);
1442
1443 /*
1444 * Acquire bus lock as the irq_request_resources() callback below
1445 * might rely on the serialization or the magic power management
1446 * functions which are abusing the irq_bus_lock() callback,
1447 */
1448 chip_bus_lock(desc);
1449
1450 /* First installed action requests resources. */
1451 if (!desc->action) {
1452 ret = irq_request_resources(desc);
1453 if (ret) {
1454 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1455 new->name, irq, desc->irq_data.chip->name);
1456 goto out_bus_unlock;
1457 }
1458 }
1459
1460 /*
1461 * The following block of code has to be executed atomically
1462 * protected against a concurrent interrupt and any of the other
1463 * management calls which are not serialized via
1464 * desc->request_mutex or the optional bus lock.
1465 */
1466 raw_spin_lock_irqsave(&desc->lock, flags);
1467 old_ptr = &desc->action;
1468 old = *old_ptr;
1469 if (old) {
1470 /*
1471 * Can't share interrupts unless both agree to and are
1472 * the same type (level, edge, polarity). So both flag
1473 * fields must have IRQF_SHARED set and the bits which
1474 * set the trigger type must match. Also all must
1475 * agree on ONESHOT.
1476 * Interrupt lines used for NMIs cannot be shared.
1477 */
1478 unsigned int oldtype;
1479
1480 if (desc->istate & IRQS_NMI) {
1481 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1482 new->name, irq, desc->irq_data.chip->name);
1483 ret = -EINVAL;
1484 goto out_unlock;
1485 }
1486
1487 /*
1488 * If nobody did set the configuration before, inherit
1489 * the one provided by the requester.
1490 */
1491 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1492 oldtype = irqd_get_trigger_type(&desc->irq_data);
1493 } else {
1494 oldtype = new->flags & IRQF_TRIGGER_MASK;
1495 irqd_set_trigger_type(&desc->irq_data, oldtype);
1496 }
1497
1498 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1499 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1500 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1501 goto mismatch;
1502
1503 /* All handlers must agree on per-cpuness */
1504 if ((old->flags & IRQF_PERCPU) !=
1505 (new->flags & IRQF_PERCPU))
1506 goto mismatch;
1507
1508 /* add new interrupt at end of irq queue */
1509 do {
1510 /*
1511 * Or all existing action->thread_mask bits,
1512 * so we can find the next zero bit for this
1513 * new action.
1514 */
1515 thread_mask |= old->thread_mask;
1516 old_ptr = &old->next;
1517 old = *old_ptr;
1518 } while (old);
1519 shared = 1;
1520 }
1521
1522 /*
1523 * Setup the thread mask for this irqaction for ONESHOT. For
1524 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1525 * conditional in irq_wake_thread().
1526 */
1527 if (new->flags & IRQF_ONESHOT) {
1528 /*
1529 * Unlikely to have 32 resp 64 irqs sharing one line,
1530 * but who knows.
1531 */
1532 if (thread_mask == ~0UL) {
1533 ret = -EBUSY;
1534 goto out_unlock;
1535 }
1536 /*
1537 * The thread_mask for the action is or'ed to
1538 * desc->thread_active to indicate that the
1539 * IRQF_ONESHOT thread handler has been woken, but not
1540 * yet finished. The bit is cleared when a thread
1541 * completes. When all threads of a shared interrupt
1542 * line have completed desc->threads_active becomes
1543 * zero and the interrupt line is unmasked. See
1544 * handle.c:irq_wake_thread() for further information.
1545 *
1546 * If no thread is woken by primary (hard irq context)
1547 * interrupt handlers, then desc->threads_active is
1548 * also checked for zero to unmask the irq line in the
1549 * affected hard irq flow handlers
1550 * (handle_[fasteoi|level]_irq).
1551 *
1552 * The new action gets the first zero bit of
1553 * thread_mask assigned. See the loop above which or's
1554 * all existing action->thread_mask bits.
1555 */
1556 new->thread_mask = 1UL << ffz(thread_mask);
1557
1558 } else if (new->handler == irq_default_primary_handler &&
1559 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1560 /*
1561 * The interrupt was requested with handler = NULL, so
1562 * we use the default primary handler for it. But it
1563 * does not have the oneshot flag set. In combination
1564 * with level interrupts this is deadly, because the
1565 * default primary handler just wakes the thread, then
1566 * the irq lines is reenabled, but the device still
1567 * has the level irq asserted. Rinse and repeat....
1568 *
1569 * While this works for edge type interrupts, we play
1570 * it safe and reject unconditionally because we can't
1571 * say for sure which type this interrupt really
1572 * has. The type flags are unreliable as the
1573 * underlying chip implementation can override them.
1574 */
1575 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1576 new->name, irq);
1577 ret = -EINVAL;
1578 goto out_unlock;
1579 }
1580
1581 if (!shared) {
1582 init_waitqueue_head(&desc->wait_for_threads);
1583
1584 /* Setup the type (level, edge polarity) if configured: */
1585 if (new->flags & IRQF_TRIGGER_MASK) {
1586 ret = __irq_set_trigger(desc,
1587 new->flags & IRQF_TRIGGER_MASK);
1588
1589 if (ret)
1590 goto out_unlock;
1591 }
1592
1593 /*
1594 * Activate the interrupt. That activation must happen
1595 * independently of IRQ_NOAUTOEN. request_irq() can fail
1596 * and the callers are supposed to handle
1597 * that. enable_irq() of an interrupt requested with
1598 * IRQ_NOAUTOEN is not supposed to fail. The activation
1599 * keeps it in shutdown mode, it merily associates
1600 * resources if necessary and if that's not possible it
1601 * fails. Interrupts which are in managed shutdown mode
1602 * will simply ignore that activation request.
1603 */
1604 ret = irq_activate(desc);
1605 if (ret)
1606 goto out_unlock;
1607
1608 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1609 IRQS_ONESHOT | IRQS_WAITING);
1610 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1611
1612 if (new->flags & IRQF_PERCPU) {
1613 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1614 irq_settings_set_per_cpu(desc);
1615 }
1616
1617 if (new->flags & IRQF_ONESHOT)
1618 desc->istate |= IRQS_ONESHOT;
1619
1620 /* Exclude IRQ from balancing if requested */
1621 if (new->flags & IRQF_NOBALANCING) {
1622 irq_settings_set_no_balancing(desc);
1623 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1624 }
1625
1626 if (irq_settings_can_autoenable(desc)) {
1627 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1628 } else {
1629 /*
1630 * Shared interrupts do not go well with disabling
1631 * auto enable. The sharing interrupt might request
1632 * it while it's still disabled and then wait for
1633 * interrupts forever.
1634 */
1635 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1636 /* Undo nested disables: */
1637 desc->depth = 1;
1638 }
1639
1640 } else if (new->flags & IRQF_TRIGGER_MASK) {
1641 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1642 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1643
1644 if (nmsk != omsk)
1645 /* hope the handler works with current trigger mode */
1646 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1647 irq, omsk, nmsk);
1648 }
1649
1650 *old_ptr = new;
1651
1652 irq_pm_install_action(desc, new);
1653
1654 /* Reset broken irq detection when installing new handler */
1655 desc->irq_count = 0;
1656 desc->irqs_unhandled = 0;
1657
1658 /*
1659 * Check whether we disabled the irq via the spurious handler
1660 * before. Reenable it and give it another chance.
1661 */
1662 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1663 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1664 __enable_irq(desc);
1665 }
1666
1667 raw_spin_unlock_irqrestore(&desc->lock, flags);
1668 chip_bus_sync_unlock(desc);
1669 mutex_unlock(&desc->request_mutex);
1670
1671 irq_setup_timings(desc, new);
1672
1673 /*
1674 * Strictly no need to wake it up, but hung_task complains
1675 * when no hard interrupt wakes the thread up.
1676 */
1677 if (new->thread)
1678 wake_up_process(new->thread);
1679 if (new->secondary)
1680 wake_up_process(new->secondary->thread);
1681
1682 register_irq_proc(irq, desc);
1683 new->dir = NULL;
1684 register_handler_proc(irq, new);
1685 return 0;
1686
1687mismatch:
1688 if (!(new->flags & IRQF_PROBE_SHARED)) {
1689 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1690 irq, new->flags, new->name, old->flags, old->name);
1691#ifdef CONFIG_DEBUG_SHIRQ
1692 dump_stack();
1693#endif
1694 }
1695 ret = -EBUSY;
1696
1697out_unlock:
1698 raw_spin_unlock_irqrestore(&desc->lock, flags);
1699
1700 if (!desc->action)
1701 irq_release_resources(desc);
1702out_bus_unlock:
1703 chip_bus_sync_unlock(desc);
1704 mutex_unlock(&desc->request_mutex);
1705
1706out_thread:
1707 if (new->thread) {
1708 struct task_struct *t = new->thread;
1709
1710 new->thread = NULL;
1711 kthread_stop(t);
1712 put_task_struct(t);
1713 }
1714 if (new->secondary && new->secondary->thread) {
1715 struct task_struct *t = new->secondary->thread;
1716
1717 new->secondary->thread = NULL;
1718 kthread_stop(t);
1719 put_task_struct(t);
1720 }
1721out_mput:
1722 module_put(desc->owner);
1723 return ret;
1724}
1725
1726/*
1727 * Internal function to unregister an irqaction - used to free
1728 * regular and special interrupts that are part of the architecture.
1729 */
1730static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1731{
1732 unsigned irq = desc->irq_data.irq;
1733 struct irqaction *action, **action_ptr;
1734 unsigned long flags;
1735
1736 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1737
1738 mutex_lock(&desc->request_mutex);
1739 chip_bus_lock(desc);
1740 raw_spin_lock_irqsave(&desc->lock, flags);
1741
1742 /*
1743 * There can be multiple actions per IRQ descriptor, find the right
1744 * one based on the dev_id:
1745 */
1746 action_ptr = &desc->action;
1747 for (;;) {
1748 action = *action_ptr;
1749
1750 if (!action) {
1751 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1752 raw_spin_unlock_irqrestore(&desc->lock, flags);
1753 chip_bus_sync_unlock(desc);
1754 mutex_unlock(&desc->request_mutex);
1755 return NULL;
1756 }
1757
1758 if (action->dev_id == dev_id)
1759 break;
1760 action_ptr = &action->next;
1761 }
1762
1763 /* Found it - now remove it from the list of entries: */
1764 *action_ptr = action->next;
1765
1766 irq_pm_remove_action(desc, action);
1767
1768 /* If this was the last handler, shut down the IRQ line: */
1769 if (!desc->action) {
1770 irq_settings_clr_disable_unlazy(desc);
1771 /* Only shutdown. Deactivate after synchronize_hardirq() */
1772 irq_shutdown(desc);
1773 }
1774
1775#ifdef CONFIG_SMP
1776 /* make sure affinity_hint is cleaned up */
1777 if (WARN_ON_ONCE(desc->affinity_hint))
1778 desc->affinity_hint = NULL;
1779#endif
1780
1781 raw_spin_unlock_irqrestore(&desc->lock, flags);
1782 /*
1783 * Drop bus_lock here so the changes which were done in the chip
1784 * callbacks above are synced out to the irq chips which hang
1785 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1786 *
1787 * Aside of that the bus_lock can also be taken from the threaded
1788 * handler in irq_finalize_oneshot() which results in a deadlock
1789 * because kthread_stop() would wait forever for the thread to
1790 * complete, which is blocked on the bus lock.
1791 *
1792 * The still held desc->request_mutex() protects against a
1793 * concurrent request_irq() of this irq so the release of resources
1794 * and timing data is properly serialized.
1795 */
1796 chip_bus_sync_unlock(desc);
1797
1798 unregister_handler_proc(irq, action);
1799
1800 /*
1801 * Make sure it's not being used on another CPU and if the chip
1802 * supports it also make sure that there is no (not yet serviced)
1803 * interrupt in flight at the hardware level.
1804 */
1805 __synchronize_hardirq(desc, true);
1806
1807#ifdef CONFIG_DEBUG_SHIRQ
1808 /*
1809 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1810 * event to happen even now it's being freed, so let's make sure that
1811 * is so by doing an extra call to the handler ....
1812 *
1813 * ( We do this after actually deregistering it, to make sure that a
1814 * 'real' IRQ doesn't run in parallel with our fake. )
1815 */
1816 if (action->flags & IRQF_SHARED) {
1817 local_irq_save(flags);
1818 action->handler(irq, dev_id);
1819 local_irq_restore(flags);
1820 }
1821#endif
1822
1823 /*
1824 * The action has already been removed above, but the thread writes
1825 * its oneshot mask bit when it completes. Though request_mutex is
1826 * held across this which prevents __setup_irq() from handing out
1827 * the same bit to a newly requested action.
1828 */
1829 if (action->thread) {
1830 kthread_stop(action->thread);
1831 put_task_struct(action->thread);
1832 if (action->secondary && action->secondary->thread) {
1833 kthread_stop(action->secondary->thread);
1834 put_task_struct(action->secondary->thread);
1835 }
1836 }
1837
1838 /* Last action releases resources */
1839 if (!desc->action) {
1840 /*
1841 * Reaquire bus lock as irq_release_resources() might
1842 * require it to deallocate resources over the slow bus.
1843 */
1844 chip_bus_lock(desc);
1845 /*
1846 * There is no interrupt on the fly anymore. Deactivate it
1847 * completely.
1848 */
1849 raw_spin_lock_irqsave(&desc->lock, flags);
1850 irq_domain_deactivate_irq(&desc->irq_data);
1851 raw_spin_unlock_irqrestore(&desc->lock, flags);
1852
1853 irq_release_resources(desc);
1854 chip_bus_sync_unlock(desc);
1855 irq_remove_timings(desc);
1856 }
1857
1858 mutex_unlock(&desc->request_mutex);
1859
1860 irq_chip_pm_put(&desc->irq_data);
1861 module_put(desc->owner);
1862 kfree(action->secondary);
1863 return action;
1864}
1865
1866/**
1867 * free_irq - free an interrupt allocated with request_irq
1868 * @irq: Interrupt line to free
1869 * @dev_id: Device identity to free
1870 *
1871 * Remove an interrupt handler. The handler is removed and if the
1872 * interrupt line is no longer in use by any driver it is disabled.
1873 * On a shared IRQ the caller must ensure the interrupt is disabled
1874 * on the card it drives before calling this function. The function
1875 * does not return until any executing interrupts for this IRQ
1876 * have completed.
1877 *
1878 * This function must not be called from interrupt context.
1879 *
1880 * Returns the devname argument passed to request_irq.
1881 */
1882const void *free_irq(unsigned int irq, void *dev_id)
1883{
1884 struct irq_desc *desc = irq_to_desc(irq);
1885 struct irqaction *action;
1886 const char *devname;
1887
1888 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1889 return NULL;
1890
1891#ifdef CONFIG_SMP
1892 if (WARN_ON(desc->affinity_notify))
1893 desc->affinity_notify = NULL;
1894#endif
1895
1896 action = __free_irq(desc, dev_id);
1897
1898 if (!action)
1899 return NULL;
1900
1901 devname = action->name;
1902 kfree(action);
1903 return devname;
1904}
1905EXPORT_SYMBOL(free_irq);
1906
1907/* This function must be called with desc->lock held */
1908static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1909{
1910 const char *devname = NULL;
1911
1912 desc->istate &= ~IRQS_NMI;
1913
1914 if (!WARN_ON(desc->action == NULL)) {
1915 irq_pm_remove_action(desc, desc->action);
1916 devname = desc->action->name;
1917 unregister_handler_proc(irq, desc->action);
1918
1919 kfree(desc->action);
1920 desc->action = NULL;
1921 }
1922
1923 irq_settings_clr_disable_unlazy(desc);
1924 irq_shutdown_and_deactivate(desc);
1925
1926 irq_release_resources(desc);
1927
1928 irq_chip_pm_put(&desc->irq_data);
1929 module_put(desc->owner);
1930
1931 return devname;
1932}
1933
1934const void *free_nmi(unsigned int irq, void *dev_id)
1935{
1936 struct irq_desc *desc = irq_to_desc(irq);
1937 unsigned long flags;
1938 const void *devname;
1939
1940 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1941 return NULL;
1942
1943 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1944 return NULL;
1945
1946 /* NMI still enabled */
1947 if (WARN_ON(desc->depth == 0))
1948 disable_nmi_nosync(irq);
1949
1950 raw_spin_lock_irqsave(&desc->lock, flags);
1951
1952 irq_nmi_teardown(desc);
1953 devname = __cleanup_nmi(irq, desc);
1954
1955 raw_spin_unlock_irqrestore(&desc->lock, flags);
1956
1957 return devname;
1958}
1959
1960/**
1961 * request_threaded_irq - allocate an interrupt line
1962 * @irq: Interrupt line to allocate
1963 * @handler: Function to be called when the IRQ occurs.
1964 * Primary handler for threaded interrupts
1965 * If NULL and thread_fn != NULL the default
1966 * primary handler is installed
1967 * @thread_fn: Function called from the irq handler thread
1968 * If NULL, no irq thread is created
1969 * @irqflags: Interrupt type flags
1970 * @devname: An ascii name for the claiming device
1971 * @dev_id: A cookie passed back to the handler function
1972 *
1973 * This call allocates interrupt resources and enables the
1974 * interrupt line and IRQ handling. From the point this
1975 * call is made your handler function may be invoked. Since
1976 * your handler function must clear any interrupt the board
1977 * raises, you must take care both to initialise your hardware
1978 * and to set up the interrupt handler in the right order.
1979 *
1980 * If you want to set up a threaded irq handler for your device
1981 * then you need to supply @handler and @thread_fn. @handler is
1982 * still called in hard interrupt context and has to check
1983 * whether the interrupt originates from the device. If yes it
1984 * needs to disable the interrupt on the device and return
1985 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1986 * @thread_fn. This split handler design is necessary to support
1987 * shared interrupts.
1988 *
1989 * Dev_id must be globally unique. Normally the address of the
1990 * device data structure is used as the cookie. Since the handler
1991 * receives this value it makes sense to use it.
1992 *
1993 * If your interrupt is shared you must pass a non NULL dev_id
1994 * as this is required when freeing the interrupt.
1995 *
1996 * Flags:
1997 *
1998 * IRQF_SHARED Interrupt is shared
1999 * IRQF_TRIGGER_* Specify active edge(s) or level
2000 *
2001 */
2002int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2003 irq_handler_t thread_fn, unsigned long irqflags,
2004 const char *devname, void *dev_id)
2005{
2006 struct irqaction *action;
2007 struct irq_desc *desc;
2008 int retval;
2009
2010 if (irq == IRQ_NOTCONNECTED)
2011 return -ENOTCONN;
2012
2013 /*
2014 * Sanity-check: shared interrupts must pass in a real dev-ID,
2015 * otherwise we'll have trouble later trying to figure out
2016 * which interrupt is which (messes up the interrupt freeing
2017 * logic etc).
2018 *
2019 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2020 * it cannot be set along with IRQF_NO_SUSPEND.
2021 */
2022 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2023 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2024 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2025 return -EINVAL;
2026
2027 desc = irq_to_desc(irq);
2028 if (!desc)
2029 return -EINVAL;
2030
2031 if (!irq_settings_can_request(desc) ||
2032 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033 return -EINVAL;
2034
2035 if (!handler) {
2036 if (!thread_fn)
2037 return -EINVAL;
2038 handler = irq_default_primary_handler;
2039 }
2040
2041 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2042 if (!action)
2043 return -ENOMEM;
2044
2045 action->handler = handler;
2046 action->thread_fn = thread_fn;
2047 action->flags = irqflags;
2048 action->name = devname;
2049 action->dev_id = dev_id;
2050
2051 retval = irq_chip_pm_get(&desc->irq_data);
2052 if (retval < 0) {
2053 kfree(action);
2054 return retval;
2055 }
2056
2057 retval = __setup_irq(irq, desc, action);
2058
2059 if (retval) {
2060 irq_chip_pm_put(&desc->irq_data);
2061 kfree(action->secondary);
2062 kfree(action);
2063 }
2064
2065#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2066 if (!retval && (irqflags & IRQF_SHARED)) {
2067 /*
2068 * It's a shared IRQ -- the driver ought to be prepared for it
2069 * to happen immediately, so let's make sure....
2070 * We disable the irq to make sure that a 'real' IRQ doesn't
2071 * run in parallel with our fake.
2072 */
2073 unsigned long flags;
2074
2075 disable_irq(irq);
2076 local_irq_save(flags);
2077
2078 handler(irq, dev_id);
2079
2080 local_irq_restore(flags);
2081 enable_irq(irq);
2082 }
2083#endif
2084 return retval;
2085}
2086EXPORT_SYMBOL(request_threaded_irq);
2087
2088/**
2089 * request_any_context_irq - allocate an interrupt line
2090 * @irq: Interrupt line to allocate
2091 * @handler: Function to be called when the IRQ occurs.
2092 * Threaded handler for threaded interrupts.
2093 * @flags: Interrupt type flags
2094 * @name: An ascii name for the claiming device
2095 * @dev_id: A cookie passed back to the handler function
2096 *
2097 * This call allocates interrupt resources and enables the
2098 * interrupt line and IRQ handling. It selects either a
2099 * hardirq or threaded handling method depending on the
2100 * context.
2101 *
2102 * On failure, it returns a negative value. On success,
2103 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2104 */
2105int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2106 unsigned long flags, const char *name, void *dev_id)
2107{
2108 struct irq_desc *desc;
2109 int ret;
2110
2111 if (irq == IRQ_NOTCONNECTED)
2112 return -ENOTCONN;
2113
2114 desc = irq_to_desc(irq);
2115 if (!desc)
2116 return -EINVAL;
2117
2118 if (irq_settings_is_nested_thread(desc)) {
2119 ret = request_threaded_irq(irq, NULL, handler,
2120 flags, name, dev_id);
2121 return !ret ? IRQC_IS_NESTED : ret;
2122 }
2123
2124 ret = request_irq(irq, handler, flags, name, dev_id);
2125 return !ret ? IRQC_IS_HARDIRQ : ret;
2126}
2127EXPORT_SYMBOL_GPL(request_any_context_irq);
2128
2129/**
2130 * request_nmi - allocate an interrupt line for NMI delivery
2131 * @irq: Interrupt line to allocate
2132 * @handler: Function to be called when the IRQ occurs.
2133 * Threaded handler for threaded interrupts.
2134 * @irqflags: Interrupt type flags
2135 * @name: An ascii name for the claiming device
2136 * @dev_id: A cookie passed back to the handler function
2137 *
2138 * This call allocates interrupt resources and enables the
2139 * interrupt line and IRQ handling. It sets up the IRQ line
2140 * to be handled as an NMI.
2141 *
2142 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2143 * cannot be threaded.
2144 *
2145 * Interrupt lines requested for NMI delivering must produce per cpu
2146 * interrupts and have auto enabling setting disabled.
2147 *
2148 * Dev_id must be globally unique. Normally the address of the
2149 * device data structure is used as the cookie. Since the handler
2150 * receives this value it makes sense to use it.
2151 *
2152 * If the interrupt line cannot be used to deliver NMIs, function
2153 * will fail and return a negative value.
2154 */
2155int request_nmi(unsigned int irq, irq_handler_t handler,
2156 unsigned long irqflags, const char *name, void *dev_id)
2157{
2158 struct irqaction *action;
2159 struct irq_desc *desc;
2160 unsigned long flags;
2161 int retval;
2162
2163 if (irq == IRQ_NOTCONNECTED)
2164 return -ENOTCONN;
2165
2166 /* NMI cannot be shared, used for Polling */
2167 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2168 return -EINVAL;
2169
2170 if (!(irqflags & IRQF_PERCPU))
2171 return -EINVAL;
2172
2173 if (!handler)
2174 return -EINVAL;
2175
2176 desc = irq_to_desc(irq);
2177
2178 if (!desc || irq_settings_can_autoenable(desc) ||
2179 !irq_settings_can_request(desc) ||
2180 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2181 !irq_supports_nmi(desc))
2182 return -EINVAL;
2183
2184 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2185 if (!action)
2186 return -ENOMEM;
2187
2188 action->handler = handler;
2189 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2190 action->name = name;
2191 action->dev_id = dev_id;
2192
2193 retval = irq_chip_pm_get(&desc->irq_data);
2194 if (retval < 0)
2195 goto err_out;
2196
2197 retval = __setup_irq(irq, desc, action);
2198 if (retval)
2199 goto err_irq_setup;
2200
2201 raw_spin_lock_irqsave(&desc->lock, flags);
2202
2203 /* Setup NMI state */
2204 desc->istate |= IRQS_NMI;
2205 retval = irq_nmi_setup(desc);
2206 if (retval) {
2207 __cleanup_nmi(irq, desc);
2208 raw_spin_unlock_irqrestore(&desc->lock, flags);
2209 return -EINVAL;
2210 }
2211
2212 raw_spin_unlock_irqrestore(&desc->lock, flags);
2213
2214 return 0;
2215
2216err_irq_setup:
2217 irq_chip_pm_put(&desc->irq_data);
2218err_out:
2219 kfree(action);
2220
2221 return retval;
2222}
2223
2224void enable_percpu_irq(unsigned int irq, unsigned int type)
2225{
2226 unsigned int cpu = smp_processor_id();
2227 unsigned long flags;
2228 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2229
2230 if (!desc)
2231 return;
2232
2233 /*
2234 * If the trigger type is not specified by the caller, then
2235 * use the default for this interrupt.
2236 */
2237 type &= IRQ_TYPE_SENSE_MASK;
2238 if (type == IRQ_TYPE_NONE)
2239 type = irqd_get_trigger_type(&desc->irq_data);
2240
2241 if (type != IRQ_TYPE_NONE) {
2242 int ret;
2243
2244 ret = __irq_set_trigger(desc, type);
2245
2246 if (ret) {
2247 WARN(1, "failed to set type for IRQ%d\n", irq);
2248 goto out;
2249 }
2250 }
2251
2252 irq_percpu_enable(desc, cpu);
2253out:
2254 irq_put_desc_unlock(desc, flags);
2255}
2256EXPORT_SYMBOL_GPL(enable_percpu_irq);
2257
2258void enable_percpu_nmi(unsigned int irq, unsigned int type)
2259{
2260 enable_percpu_irq(irq, type);
2261}
2262
2263/**
2264 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2265 * @irq: Linux irq number to check for
2266 *
2267 * Must be called from a non migratable context. Returns the enable
2268 * state of a per cpu interrupt on the current cpu.
2269 */
2270bool irq_percpu_is_enabled(unsigned int irq)
2271{
2272 unsigned int cpu = smp_processor_id();
2273 struct irq_desc *desc;
2274 unsigned long flags;
2275 bool is_enabled;
2276
2277 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2278 if (!desc)
2279 return false;
2280
2281 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2282 irq_put_desc_unlock(desc, flags);
2283
2284 return is_enabled;
2285}
2286EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2287
2288void disable_percpu_irq(unsigned int irq)
2289{
2290 unsigned int cpu = smp_processor_id();
2291 unsigned long flags;
2292 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2293
2294 if (!desc)
2295 return;
2296
2297 irq_percpu_disable(desc, cpu);
2298 irq_put_desc_unlock(desc, flags);
2299}
2300EXPORT_SYMBOL_GPL(disable_percpu_irq);
2301
2302void disable_percpu_nmi(unsigned int irq)
2303{
2304 disable_percpu_irq(irq);
2305}
2306
2307/*
2308 * Internal function to unregister a percpu irqaction.
2309 */
2310static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2311{
2312 struct irq_desc *desc = irq_to_desc(irq);
2313 struct irqaction *action;
2314 unsigned long flags;
2315
2316 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2317
2318 if (!desc)
2319 return NULL;
2320
2321 raw_spin_lock_irqsave(&desc->lock, flags);
2322
2323 action = desc->action;
2324 if (!action || action->percpu_dev_id != dev_id) {
2325 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2326 goto bad;
2327 }
2328
2329 if (!cpumask_empty(desc->percpu_enabled)) {
2330 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2331 irq, cpumask_first(desc->percpu_enabled));
2332 goto bad;
2333 }
2334
2335 /* Found it - now remove it from the list of entries: */
2336 desc->action = NULL;
2337
2338 desc->istate &= ~IRQS_NMI;
2339
2340 raw_spin_unlock_irqrestore(&desc->lock, flags);
2341
2342 unregister_handler_proc(irq, action);
2343
2344 irq_chip_pm_put(&desc->irq_data);
2345 module_put(desc->owner);
2346 return action;
2347
2348bad:
2349 raw_spin_unlock_irqrestore(&desc->lock, flags);
2350 return NULL;
2351}
2352
2353/**
2354 * remove_percpu_irq - free a per-cpu interrupt
2355 * @irq: Interrupt line to free
2356 * @act: irqaction for the interrupt
2357 *
2358 * Used to remove interrupts statically setup by the early boot process.
2359 */
2360void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2361{
2362 struct irq_desc *desc = irq_to_desc(irq);
2363
2364 if (desc && irq_settings_is_per_cpu_devid(desc))
2365 __free_percpu_irq(irq, act->percpu_dev_id);
2366}
2367
2368/**
2369 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2370 * @irq: Interrupt line to free
2371 * @dev_id: Device identity to free
2372 *
2373 * Remove a percpu interrupt handler. The handler is removed, but
2374 * the interrupt line is not disabled. This must be done on each
2375 * CPU before calling this function. The function does not return
2376 * until any executing interrupts for this IRQ have completed.
2377 *
2378 * This function must not be called from interrupt context.
2379 */
2380void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2381{
2382 struct irq_desc *desc = irq_to_desc(irq);
2383
2384 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2385 return;
2386
2387 chip_bus_lock(desc);
2388 kfree(__free_percpu_irq(irq, dev_id));
2389 chip_bus_sync_unlock(desc);
2390}
2391EXPORT_SYMBOL_GPL(free_percpu_irq);
2392
2393void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2394{
2395 struct irq_desc *desc = irq_to_desc(irq);
2396
2397 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2398 return;
2399
2400 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2401 return;
2402
2403 kfree(__free_percpu_irq(irq, dev_id));
2404}
2405
2406/**
2407 * setup_percpu_irq - setup a per-cpu interrupt
2408 * @irq: Interrupt line to setup
2409 * @act: irqaction for the interrupt
2410 *
2411 * Used to statically setup per-cpu interrupts in the early boot process.
2412 */
2413int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2414{
2415 struct irq_desc *desc = irq_to_desc(irq);
2416 int retval;
2417
2418 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2419 return -EINVAL;
2420
2421 retval = irq_chip_pm_get(&desc->irq_data);
2422 if (retval < 0)
2423 return retval;
2424
2425 retval = __setup_irq(irq, desc, act);
2426
2427 if (retval)
2428 irq_chip_pm_put(&desc->irq_data);
2429
2430 return retval;
2431}
2432
2433/**
2434 * __request_percpu_irq - allocate a percpu interrupt line
2435 * @irq: Interrupt line to allocate
2436 * @handler: Function to be called when the IRQ occurs.
2437 * @flags: Interrupt type flags (IRQF_TIMER only)
2438 * @devname: An ascii name for the claiming device
2439 * @dev_id: A percpu cookie passed back to the handler function
2440 *
2441 * This call allocates interrupt resources and enables the
2442 * interrupt on the local CPU. If the interrupt is supposed to be
2443 * enabled on other CPUs, it has to be done on each CPU using
2444 * enable_percpu_irq().
2445 *
2446 * Dev_id must be globally unique. It is a per-cpu variable, and
2447 * the handler gets called with the interrupted CPU's instance of
2448 * that variable.
2449 */
2450int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2451 unsigned long flags, const char *devname,
2452 void __percpu *dev_id)
2453{
2454 struct irqaction *action;
2455 struct irq_desc *desc;
2456 int retval;
2457
2458 if (!dev_id)
2459 return -EINVAL;
2460
2461 desc = irq_to_desc(irq);
2462 if (!desc || !irq_settings_can_request(desc) ||
2463 !irq_settings_is_per_cpu_devid(desc))
2464 return -EINVAL;
2465
2466 if (flags && flags != IRQF_TIMER)
2467 return -EINVAL;
2468
2469 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2470 if (!action)
2471 return -ENOMEM;
2472
2473 action->handler = handler;
2474 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2475 action->name = devname;
2476 action->percpu_dev_id = dev_id;
2477
2478 retval = irq_chip_pm_get(&desc->irq_data);
2479 if (retval < 0) {
2480 kfree(action);
2481 return retval;
2482 }
2483
2484 retval = __setup_irq(irq, desc, action);
2485
2486 if (retval) {
2487 irq_chip_pm_put(&desc->irq_data);
2488 kfree(action);
2489 }
2490
2491 return retval;
2492}
2493EXPORT_SYMBOL_GPL(__request_percpu_irq);
2494
2495/**
2496 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2497 * @irq: Interrupt line to allocate
2498 * @handler: Function to be called when the IRQ occurs.
2499 * @name: An ascii name for the claiming device
2500 * @dev_id: A percpu cookie passed back to the handler function
2501 *
2502 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2503 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2504 * being enabled on the same CPU by using enable_percpu_nmi().
2505 *
2506 * Dev_id must be globally unique. It is a per-cpu variable, and
2507 * the handler gets called with the interrupted CPU's instance of
2508 * that variable.
2509 *
2510 * Interrupt lines requested for NMI delivering should have auto enabling
2511 * setting disabled.
2512 *
2513 * If the interrupt line cannot be used to deliver NMIs, function
2514 * will fail returning a negative value.
2515 */
2516int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2517 const char *name, void __percpu *dev_id)
2518{
2519 struct irqaction *action;
2520 struct irq_desc *desc;
2521 unsigned long flags;
2522 int retval;
2523
2524 if (!handler)
2525 return -EINVAL;
2526
2527 desc = irq_to_desc(irq);
2528
2529 if (!desc || !irq_settings_can_request(desc) ||
2530 !irq_settings_is_per_cpu_devid(desc) ||
2531 irq_settings_can_autoenable(desc) ||
2532 !irq_supports_nmi(desc))
2533 return -EINVAL;
2534
2535 /* The line cannot already be NMI */
2536 if (desc->istate & IRQS_NMI)
2537 return -EINVAL;
2538
2539 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2540 if (!action)
2541 return -ENOMEM;
2542
2543 action->handler = handler;
2544 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2545 | IRQF_NOBALANCING;
2546 action->name = name;
2547 action->percpu_dev_id = dev_id;
2548
2549 retval = irq_chip_pm_get(&desc->irq_data);
2550 if (retval < 0)
2551 goto err_out;
2552
2553 retval = __setup_irq(irq, desc, action);
2554 if (retval)
2555 goto err_irq_setup;
2556
2557 raw_spin_lock_irqsave(&desc->lock, flags);
2558 desc->istate |= IRQS_NMI;
2559 raw_spin_unlock_irqrestore(&desc->lock, flags);
2560
2561 return 0;
2562
2563err_irq_setup:
2564 irq_chip_pm_put(&desc->irq_data);
2565err_out:
2566 kfree(action);
2567
2568 return retval;
2569}
2570
2571/**
2572 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2573 * @irq: Interrupt line to prepare for NMI delivery
2574 *
2575 * This call prepares an interrupt line to deliver NMI on the current CPU,
2576 * before that interrupt line gets enabled with enable_percpu_nmi().
2577 *
2578 * As a CPU local operation, this should be called from non-preemptible
2579 * context.
2580 *
2581 * If the interrupt line cannot be used to deliver NMIs, function
2582 * will fail returning a negative value.
2583 */
2584int prepare_percpu_nmi(unsigned int irq)
2585{
2586 unsigned long flags;
2587 struct irq_desc *desc;
2588 int ret = 0;
2589
2590 WARN_ON(preemptible());
2591
2592 desc = irq_get_desc_lock(irq, &flags,
2593 IRQ_GET_DESC_CHECK_PERCPU);
2594 if (!desc)
2595 return -EINVAL;
2596
2597 if (WARN(!(desc->istate & IRQS_NMI),
2598 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2599 irq)) {
2600 ret = -EINVAL;
2601 goto out;
2602 }
2603
2604 ret = irq_nmi_setup(desc);
2605 if (ret) {
2606 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2607 goto out;
2608 }
2609
2610out:
2611 irq_put_desc_unlock(desc, flags);
2612 return ret;
2613}
2614
2615/**
2616 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2617 * @irq: Interrupt line from which CPU local NMI configuration should be
2618 * removed
2619 *
2620 * This call undoes the setup done by prepare_percpu_nmi().
2621 *
2622 * IRQ line should not be enabled for the current CPU.
2623 *
2624 * As a CPU local operation, this should be called from non-preemptible
2625 * context.
2626 */
2627void teardown_percpu_nmi(unsigned int irq)
2628{
2629 unsigned long flags;
2630 struct irq_desc *desc;
2631
2632 WARN_ON(preemptible());
2633
2634 desc = irq_get_desc_lock(irq, &flags,
2635 IRQ_GET_DESC_CHECK_PERCPU);
2636 if (!desc)
2637 return;
2638
2639 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2640 goto out;
2641
2642 irq_nmi_teardown(desc);
2643out:
2644 irq_put_desc_unlock(desc, flags);
2645}
2646
2647int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2648 bool *state)
2649{
2650 struct irq_chip *chip;
2651 int err = -EINVAL;
2652
2653 do {
2654 chip = irq_data_get_irq_chip(data);
2655 if (WARN_ON_ONCE(!chip))
2656 return -ENODEV;
2657 if (chip->irq_get_irqchip_state)
2658 break;
2659#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2660 data = data->parent_data;
2661#else
2662 data = NULL;
2663#endif
2664 } while (data);
2665
2666 if (data)
2667 err = chip->irq_get_irqchip_state(data, which, state);
2668 return err;
2669}
2670
2671/**
2672 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2673 * @irq: Interrupt line that is forwarded to a VM
2674 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2675 * @state: a pointer to a boolean where the state is to be storeed
2676 *
2677 * This call snapshots the internal irqchip state of an
2678 * interrupt, returning into @state the bit corresponding to
2679 * stage @which
2680 *
2681 * This function should be called with preemption disabled if the
2682 * interrupt controller has per-cpu registers.
2683 */
2684int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2685 bool *state)
2686{
2687 struct irq_desc *desc;
2688 struct irq_data *data;
2689 unsigned long flags;
2690 int err = -EINVAL;
2691
2692 desc = irq_get_desc_buslock(irq, &flags, 0);
2693 if (!desc)
2694 return err;
2695
2696 data = irq_desc_get_irq_data(desc);
2697
2698 err = __irq_get_irqchip_state(data, which, state);
2699
2700 irq_put_desc_busunlock(desc, flags);
2701 return err;
2702}
2703EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2704
2705/**
2706 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2707 * @irq: Interrupt line that is forwarded to a VM
2708 * @which: State to be restored (one of IRQCHIP_STATE_*)
2709 * @val: Value corresponding to @which
2710 *
2711 * This call sets the internal irqchip state of an interrupt,
2712 * depending on the value of @which.
2713 *
2714 * This function should be called with preemption disabled if the
2715 * interrupt controller has per-cpu registers.
2716 */
2717int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2718 bool val)
2719{
2720 struct irq_desc *desc;
2721 struct irq_data *data;
2722 struct irq_chip *chip;
2723 unsigned long flags;
2724 int err = -EINVAL;
2725
2726 desc = irq_get_desc_buslock(irq, &flags, 0);
2727 if (!desc)
2728 return err;
2729
2730 data = irq_desc_get_irq_data(desc);
2731
2732 do {
2733 chip = irq_data_get_irq_chip(data);
2734 if (WARN_ON_ONCE(!chip)) {
2735 err = -ENODEV;
2736 goto out_unlock;
2737 }
2738 if (chip->irq_set_irqchip_state)
2739 break;
2740#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2741 data = data->parent_data;
2742#else
2743 data = NULL;
2744#endif
2745 } while (data);
2746
2747 if (data)
2748 err = chip->irq_set_irqchip_state(data, which, val);
2749
2750out_unlock:
2751 irq_put_desc_busunlock(desc, flags);
2752 return err;
2753}
2754EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30static int __init setup_forced_irqthreads(char *arg)
31{
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34}
35early_param("threadirqs", setup_forced_irqthreads);
36#endif
37
38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39{
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74}
75
76/**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
98bool synchronize_hardirq(unsigned int irq)
99{
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108}
109EXPORT_SYMBOL(synchronize_hardirq);
110
111static void __synchronize_irq(struct irq_desc *desc)
112{
113 __synchronize_hardirq(desc, true);
114 /*
115 * We made sure that no hardirq handler is running. Now verify that no
116 * threaded handlers are active.
117 */
118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119}
120
121/**
122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 * @irq: interrupt number to wait for
124 *
125 * This function waits for any pending IRQ handlers for this interrupt
126 * to complete before returning. If you use this function while
127 * holding a resource the IRQ handler may need you will deadlock.
128 *
129 * Can only be called from preemptible code as it might sleep when
130 * an interrupt thread is associated to @irq.
131 *
132 * It optionally makes sure (when the irq chip supports that method)
133 * that the interrupt is not pending in any CPU and waiting for
134 * service.
135 */
136void synchronize_irq(unsigned int irq)
137{
138 struct irq_desc *desc = irq_to_desc(irq);
139
140 if (desc)
141 __synchronize_irq(desc);
142}
143EXPORT_SYMBOL(synchronize_irq);
144
145#ifdef CONFIG_SMP
146cpumask_var_t irq_default_affinity;
147
148static bool __irq_can_set_affinity(struct irq_desc *desc)
149{
150 if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 return false;
153 return true;
154}
155
156/**
157 * irq_can_set_affinity - Check if the affinity of a given irq can be set
158 * @irq: Interrupt to check
159 *
160 */
161int irq_can_set_affinity(unsigned int irq)
162{
163 return __irq_can_set_affinity(irq_to_desc(irq));
164}
165
166/**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq: Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
173bool irq_can_set_affinity_usr(unsigned int irq)
174{
175 struct irq_desc *desc = irq_to_desc(irq);
176
177 return __irq_can_set_affinity(desc) &&
178 !irqd_affinity_is_managed(&desc->irq_data);
179}
180
181/**
182 * irq_set_thread_affinity - Notify irq threads to adjust affinity
183 * @desc: irq descriptor which has affinity changed
184 *
185 * We just set IRQTF_AFFINITY and delegate the affinity setting
186 * to the interrupt thread itself. We can not call
187 * set_cpus_allowed_ptr() here as we hold desc->lock and this
188 * code can be called from hard interrupt context.
189 */
190void irq_set_thread_affinity(struct irq_desc *desc)
191{
192 struct irqaction *action;
193
194 for_each_action_of_desc(desc, action) {
195 if (action->thread)
196 set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 if (action->secondary && action->secondary->thread)
198 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
199 }
200}
201
202#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
203static void irq_validate_effective_affinity(struct irq_data *data)
204{
205 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
206 struct irq_chip *chip = irq_data_get_irq_chip(data);
207
208 if (!cpumask_empty(m))
209 return;
210 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
211 chip->name, data->irq);
212}
213#else
214static inline void irq_validate_effective_affinity(struct irq_data *data) { }
215#endif
216
217int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
218 bool force)
219{
220 struct irq_desc *desc = irq_data_to_desc(data);
221 struct irq_chip *chip = irq_data_get_irq_chip(data);
222 const struct cpumask *prog_mask;
223 int ret;
224
225 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
226 static struct cpumask tmp_mask;
227
228 if (!chip || !chip->irq_set_affinity)
229 return -EINVAL;
230
231 raw_spin_lock(&tmp_mask_lock);
232 /*
233 * If this is a managed interrupt and housekeeping is enabled on
234 * it check whether the requested affinity mask intersects with
235 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 * the mask and just keep the housekeeping CPU(s). This prevents
237 * the affinity setter from routing the interrupt to an isolated
238 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 * interrupts on an isolated one.
240 *
241 * If the masks do not intersect or include online CPU(s) then
242 * keep the requested mask. The isolated target CPUs are only
243 * receiving interrupts when the I/O operation was submitted
244 * directly from them.
245 *
246 * If all housekeeping CPUs in the affinity mask are offline, the
247 * interrupt will be migrated by the CPU hotplug code once a
248 * housekeeping CPU which belongs to the affinity mask comes
249 * online.
250 */
251 if (irqd_affinity_is_managed(data) &&
252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 const struct cpumask *hk_mask;
254
255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256
257 cpumask_and(&tmp_mask, mask, hk_mask);
258 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
259 prog_mask = mask;
260 else
261 prog_mask = &tmp_mask;
262 } else {
263 prog_mask = mask;
264 }
265
266 /*
267 * Make sure we only provide online CPUs to the irqchip,
268 * unless we are being asked to force the affinity (in which
269 * case we do as we are told).
270 */
271 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
272 if (!force && !cpumask_empty(&tmp_mask))
273 ret = chip->irq_set_affinity(data, &tmp_mask, force);
274 else if (force)
275 ret = chip->irq_set_affinity(data, mask, force);
276 else
277 ret = -EINVAL;
278
279 raw_spin_unlock(&tmp_mask_lock);
280
281 switch (ret) {
282 case IRQ_SET_MASK_OK:
283 case IRQ_SET_MASK_OK_DONE:
284 cpumask_copy(desc->irq_common_data.affinity, mask);
285 fallthrough;
286 case IRQ_SET_MASK_OK_NOCOPY:
287 irq_validate_effective_affinity(data);
288 irq_set_thread_affinity(desc);
289 ret = 0;
290 }
291
292 return ret;
293}
294
295#ifdef CONFIG_GENERIC_PENDING_IRQ
296static inline int irq_set_affinity_pending(struct irq_data *data,
297 const struct cpumask *dest)
298{
299 struct irq_desc *desc = irq_data_to_desc(data);
300
301 irqd_set_move_pending(data);
302 irq_copy_pending(desc, dest);
303 return 0;
304}
305#else
306static inline int irq_set_affinity_pending(struct irq_data *data,
307 const struct cpumask *dest)
308{
309 return -EBUSY;
310}
311#endif
312
313static int irq_try_set_affinity(struct irq_data *data,
314 const struct cpumask *dest, bool force)
315{
316 int ret = irq_do_set_affinity(data, dest, force);
317
318 /*
319 * In case that the underlying vector management is busy and the
320 * architecture supports the generic pending mechanism then utilize
321 * this to avoid returning an error to user space.
322 */
323 if (ret == -EBUSY && !force)
324 ret = irq_set_affinity_pending(data, dest);
325 return ret;
326}
327
328static bool irq_set_affinity_deactivated(struct irq_data *data,
329 const struct cpumask *mask)
330{
331 struct irq_desc *desc = irq_data_to_desc(data);
332
333 /*
334 * Handle irq chips which can handle affinity only in activated
335 * state correctly
336 *
337 * If the interrupt is not yet activated, just store the affinity
338 * mask and do not call the chip driver at all. On activation the
339 * driver has to make sure anyway that the interrupt is in a
340 * usable state so startup works.
341 */
342 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
343 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
344 return false;
345
346 cpumask_copy(desc->irq_common_data.affinity, mask);
347 irq_data_update_effective_affinity(data, mask);
348 irqd_set(data, IRQD_AFFINITY_SET);
349 return true;
350}
351
352int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
353 bool force)
354{
355 struct irq_chip *chip = irq_data_get_irq_chip(data);
356 struct irq_desc *desc = irq_data_to_desc(data);
357 int ret = 0;
358
359 if (!chip || !chip->irq_set_affinity)
360 return -EINVAL;
361
362 if (irq_set_affinity_deactivated(data, mask))
363 return 0;
364
365 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
366 ret = irq_try_set_affinity(data, mask, force);
367 } else {
368 irqd_set_move_pending(data);
369 irq_copy_pending(desc, mask);
370 }
371
372 if (desc->affinity_notify) {
373 kref_get(&desc->affinity_notify->kref);
374 if (!schedule_work(&desc->affinity_notify->work)) {
375 /* Work was already scheduled, drop our extra ref */
376 kref_put(&desc->affinity_notify->kref,
377 desc->affinity_notify->release);
378 }
379 }
380 irqd_set(data, IRQD_AFFINITY_SET);
381
382 return ret;
383}
384
385/**
386 * irq_update_affinity_desc - Update affinity management for an interrupt
387 * @irq: The interrupt number to update
388 * @affinity: Pointer to the affinity descriptor
389 *
390 * This interface can be used to configure the affinity management of
391 * interrupts which have been allocated already.
392 *
393 * There are certain limitations on when it may be used - attempts to use it
394 * for when the kernel is configured for generic IRQ reservation mode (in
395 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
396 * managed/non-managed interrupt accounting. In addition, attempts to use it on
397 * an interrupt which is already started or which has already been configured
398 * as managed will also fail, as these mean invalid init state or double init.
399 */
400int irq_update_affinity_desc(unsigned int irq,
401 struct irq_affinity_desc *affinity)
402{
403 struct irq_desc *desc;
404 unsigned long flags;
405 bool activated;
406 int ret = 0;
407
408 /*
409 * Supporting this with the reservation scheme used by x86 needs
410 * some more thought. Fail it for now.
411 */
412 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
413 return -EOPNOTSUPP;
414
415 desc = irq_get_desc_buslock(irq, &flags, 0);
416 if (!desc)
417 return -EINVAL;
418
419 /* Requires the interrupt to be shut down */
420 if (irqd_is_started(&desc->irq_data)) {
421 ret = -EBUSY;
422 goto out_unlock;
423 }
424
425 /* Interrupts which are already managed cannot be modified */
426 if (irqd_affinity_is_managed(&desc->irq_data)) {
427 ret = -EBUSY;
428 goto out_unlock;
429 }
430
431 /*
432 * Deactivate the interrupt. That's required to undo
433 * anything an earlier activation has established.
434 */
435 activated = irqd_is_activated(&desc->irq_data);
436 if (activated)
437 irq_domain_deactivate_irq(&desc->irq_data);
438
439 if (affinity->is_managed) {
440 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
441 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
442 }
443
444 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
445
446 /* Restore the activation state */
447 if (activated)
448 irq_domain_activate_irq(&desc->irq_data, false);
449
450out_unlock:
451 irq_put_desc_busunlock(desc, flags);
452 return ret;
453}
454
455static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
456 bool force)
457{
458 struct irq_desc *desc = irq_to_desc(irq);
459 unsigned long flags;
460 int ret;
461
462 if (!desc)
463 return -EINVAL;
464
465 raw_spin_lock_irqsave(&desc->lock, flags);
466 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
467 raw_spin_unlock_irqrestore(&desc->lock, flags);
468 return ret;
469}
470
471/**
472 * irq_set_affinity - Set the irq affinity of a given irq
473 * @irq: Interrupt to set affinity
474 * @cpumask: cpumask
475 *
476 * Fails if cpumask does not contain an online CPU
477 */
478int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
479{
480 return __irq_set_affinity(irq, cpumask, false);
481}
482EXPORT_SYMBOL_GPL(irq_set_affinity);
483
484/**
485 * irq_force_affinity - Force the irq affinity of a given irq
486 * @irq: Interrupt to set affinity
487 * @cpumask: cpumask
488 *
489 * Same as irq_set_affinity, but without checking the mask against
490 * online cpus.
491 *
492 * Solely for low level cpu hotplug code, where we need to make per
493 * cpu interrupts affine before the cpu becomes online.
494 */
495int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
496{
497 return __irq_set_affinity(irq, cpumask, true);
498}
499EXPORT_SYMBOL_GPL(irq_force_affinity);
500
501int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
502 bool setaffinity)
503{
504 unsigned long flags;
505 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
506
507 if (!desc)
508 return -EINVAL;
509 desc->affinity_hint = m;
510 irq_put_desc_unlock(desc, flags);
511 if (m && setaffinity)
512 __irq_set_affinity(irq, m, false);
513 return 0;
514}
515EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
516
517static void irq_affinity_notify(struct work_struct *work)
518{
519 struct irq_affinity_notify *notify =
520 container_of(work, struct irq_affinity_notify, work);
521 struct irq_desc *desc = irq_to_desc(notify->irq);
522 cpumask_var_t cpumask;
523 unsigned long flags;
524
525 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
526 goto out;
527
528 raw_spin_lock_irqsave(&desc->lock, flags);
529 if (irq_move_pending(&desc->irq_data))
530 irq_get_pending(cpumask, desc);
531 else
532 cpumask_copy(cpumask, desc->irq_common_data.affinity);
533 raw_spin_unlock_irqrestore(&desc->lock, flags);
534
535 notify->notify(notify, cpumask);
536
537 free_cpumask_var(cpumask);
538out:
539 kref_put(¬ify->kref, notify->release);
540}
541
542/**
543 * irq_set_affinity_notifier - control notification of IRQ affinity changes
544 * @irq: Interrupt for which to enable/disable notification
545 * @notify: Context for notification, or %NULL to disable
546 * notification. Function pointers must be initialised;
547 * the other fields will be initialised by this function.
548 *
549 * Must be called in process context. Notification may only be enabled
550 * after the IRQ is allocated and must be disabled before the IRQ is
551 * freed using free_irq().
552 */
553int
554irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
555{
556 struct irq_desc *desc = irq_to_desc(irq);
557 struct irq_affinity_notify *old_notify;
558 unsigned long flags;
559
560 /* The release function is promised process context */
561 might_sleep();
562
563 if (!desc || desc->istate & IRQS_NMI)
564 return -EINVAL;
565
566 /* Complete initialisation of *notify */
567 if (notify) {
568 notify->irq = irq;
569 kref_init(¬ify->kref);
570 INIT_WORK(¬ify->work, irq_affinity_notify);
571 }
572
573 raw_spin_lock_irqsave(&desc->lock, flags);
574 old_notify = desc->affinity_notify;
575 desc->affinity_notify = notify;
576 raw_spin_unlock_irqrestore(&desc->lock, flags);
577
578 if (old_notify) {
579 if (cancel_work_sync(&old_notify->work)) {
580 /* Pending work had a ref, put that one too */
581 kref_put(&old_notify->kref, old_notify->release);
582 }
583 kref_put(&old_notify->kref, old_notify->release);
584 }
585
586 return 0;
587}
588EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
589
590#ifndef CONFIG_AUTO_IRQ_AFFINITY
591/*
592 * Generic version of the affinity autoselector.
593 */
594int irq_setup_affinity(struct irq_desc *desc)
595{
596 struct cpumask *set = irq_default_affinity;
597 int ret, node = irq_desc_get_node(desc);
598 static DEFINE_RAW_SPINLOCK(mask_lock);
599 static struct cpumask mask;
600
601 /* Excludes PER_CPU and NO_BALANCE interrupts */
602 if (!__irq_can_set_affinity(desc))
603 return 0;
604
605 raw_spin_lock(&mask_lock);
606 /*
607 * Preserve the managed affinity setting and a userspace affinity
608 * setup, but make sure that one of the targets is online.
609 */
610 if (irqd_affinity_is_managed(&desc->irq_data) ||
611 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
612 if (cpumask_intersects(desc->irq_common_data.affinity,
613 cpu_online_mask))
614 set = desc->irq_common_data.affinity;
615 else
616 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
617 }
618
619 cpumask_and(&mask, cpu_online_mask, set);
620 if (cpumask_empty(&mask))
621 cpumask_copy(&mask, cpu_online_mask);
622
623 if (node != NUMA_NO_NODE) {
624 const struct cpumask *nodemask = cpumask_of_node(node);
625
626 /* make sure at least one of the cpus in nodemask is online */
627 if (cpumask_intersects(&mask, nodemask))
628 cpumask_and(&mask, &mask, nodemask);
629 }
630 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
631 raw_spin_unlock(&mask_lock);
632 return ret;
633}
634#else
635/* Wrapper for ALPHA specific affinity selector magic */
636int irq_setup_affinity(struct irq_desc *desc)
637{
638 return irq_select_affinity(irq_desc_get_irq(desc));
639}
640#endif /* CONFIG_AUTO_IRQ_AFFINITY */
641#endif /* CONFIG_SMP */
642
643
644/**
645 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
646 * @irq: interrupt number to set affinity
647 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
648 * specific data for percpu_devid interrupts
649 *
650 * This function uses the vCPU specific data to set the vCPU
651 * affinity for an irq. The vCPU specific data is passed from
652 * outside, such as KVM. One example code path is as below:
653 * KVM -> IOMMU -> irq_set_vcpu_affinity().
654 */
655int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
656{
657 unsigned long flags;
658 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
659 struct irq_data *data;
660 struct irq_chip *chip;
661 int ret = -ENOSYS;
662
663 if (!desc)
664 return -EINVAL;
665
666 data = irq_desc_get_irq_data(desc);
667 do {
668 chip = irq_data_get_irq_chip(data);
669 if (chip && chip->irq_set_vcpu_affinity)
670 break;
671#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
672 data = data->parent_data;
673#else
674 data = NULL;
675#endif
676 } while (data);
677
678 if (data)
679 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
680 irq_put_desc_unlock(desc, flags);
681
682 return ret;
683}
684EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
685
686void __disable_irq(struct irq_desc *desc)
687{
688 if (!desc->depth++)
689 irq_disable(desc);
690}
691
692static int __disable_irq_nosync(unsigned int irq)
693{
694 unsigned long flags;
695 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
696
697 if (!desc)
698 return -EINVAL;
699 __disable_irq(desc);
700 irq_put_desc_busunlock(desc, flags);
701 return 0;
702}
703
704/**
705 * disable_irq_nosync - disable an irq without waiting
706 * @irq: Interrupt to disable
707 *
708 * Disable the selected interrupt line. Disables and Enables are
709 * nested.
710 * Unlike disable_irq(), this function does not ensure existing
711 * instances of the IRQ handler have completed before returning.
712 *
713 * This function may be called from IRQ context.
714 */
715void disable_irq_nosync(unsigned int irq)
716{
717 __disable_irq_nosync(irq);
718}
719EXPORT_SYMBOL(disable_irq_nosync);
720
721/**
722 * disable_irq - disable an irq and wait for completion
723 * @irq: Interrupt to disable
724 *
725 * Disable the selected interrupt line. Enables and Disables are
726 * nested.
727 * This function waits for any pending IRQ handlers for this interrupt
728 * to complete before returning. If you use this function while
729 * holding a resource the IRQ handler may need you will deadlock.
730 *
731 * Can only be called from preemptible code as it might sleep when
732 * an interrupt thread is associated to @irq.
733 *
734 */
735void disable_irq(unsigned int irq)
736{
737 might_sleep();
738 if (!__disable_irq_nosync(irq))
739 synchronize_irq(irq);
740}
741EXPORT_SYMBOL(disable_irq);
742
743/**
744 * disable_hardirq - disables an irq and waits for hardirq completion
745 * @irq: Interrupt to disable
746 *
747 * Disable the selected interrupt line. Enables and Disables are
748 * nested.
749 * This function waits for any pending hard IRQ handlers for this
750 * interrupt to complete before returning. If you use this function while
751 * holding a resource the hard IRQ handler may need you will deadlock.
752 *
753 * When used to optimistically disable an interrupt from atomic context
754 * the return value must be checked.
755 *
756 * Returns: false if a threaded handler is active.
757 *
758 * This function may be called - with care - from IRQ context.
759 */
760bool disable_hardirq(unsigned int irq)
761{
762 if (!__disable_irq_nosync(irq))
763 return synchronize_hardirq(irq);
764
765 return false;
766}
767EXPORT_SYMBOL_GPL(disable_hardirq);
768
769/**
770 * disable_nmi_nosync - disable an nmi without waiting
771 * @irq: Interrupt to disable
772 *
773 * Disable the selected interrupt line. Disables and enables are
774 * nested.
775 * The interrupt to disable must have been requested through request_nmi.
776 * Unlike disable_nmi(), this function does not ensure existing
777 * instances of the IRQ handler have completed before returning.
778 */
779void disable_nmi_nosync(unsigned int irq)
780{
781 disable_irq_nosync(irq);
782}
783
784void __enable_irq(struct irq_desc *desc)
785{
786 switch (desc->depth) {
787 case 0:
788 err_out:
789 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
790 irq_desc_get_irq(desc));
791 break;
792 case 1: {
793 if (desc->istate & IRQS_SUSPENDED)
794 goto err_out;
795 /* Prevent probing on this irq: */
796 irq_settings_set_noprobe(desc);
797 /*
798 * Call irq_startup() not irq_enable() here because the
799 * interrupt might be marked NOAUTOEN. So irq_startup()
800 * needs to be invoked when it gets enabled the first
801 * time. If it was already started up, then irq_startup()
802 * will invoke irq_enable() under the hood.
803 */
804 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
805 break;
806 }
807 default:
808 desc->depth--;
809 }
810}
811
812/**
813 * enable_irq - enable handling of an irq
814 * @irq: Interrupt to enable
815 *
816 * Undoes the effect of one call to disable_irq(). If this
817 * matches the last disable, processing of interrupts on this
818 * IRQ line is re-enabled.
819 *
820 * This function may be called from IRQ context only when
821 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
822 */
823void enable_irq(unsigned int irq)
824{
825 unsigned long flags;
826 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
827
828 if (!desc)
829 return;
830 if (WARN(!desc->irq_data.chip,
831 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
832 goto out;
833
834 __enable_irq(desc);
835out:
836 irq_put_desc_busunlock(desc, flags);
837}
838EXPORT_SYMBOL(enable_irq);
839
840/**
841 * enable_nmi - enable handling of an nmi
842 * @irq: Interrupt to enable
843 *
844 * The interrupt to enable must have been requested through request_nmi.
845 * Undoes the effect of one call to disable_nmi(). If this
846 * matches the last disable, processing of interrupts on this
847 * IRQ line is re-enabled.
848 */
849void enable_nmi(unsigned int irq)
850{
851 enable_irq(irq);
852}
853
854static int set_irq_wake_real(unsigned int irq, unsigned int on)
855{
856 struct irq_desc *desc = irq_to_desc(irq);
857 int ret = -ENXIO;
858
859 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
860 return 0;
861
862 if (desc->irq_data.chip->irq_set_wake)
863 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
864
865 return ret;
866}
867
868/**
869 * irq_set_irq_wake - control irq power management wakeup
870 * @irq: interrupt to control
871 * @on: enable/disable power management wakeup
872 *
873 * Enable/disable power management wakeup mode, which is
874 * disabled by default. Enables and disables must match,
875 * just as they match for non-wakeup mode support.
876 *
877 * Wakeup mode lets this IRQ wake the system from sleep
878 * states like "suspend to RAM".
879 *
880 * Note: irq enable/disable state is completely orthogonal
881 * to the enable/disable state of irq wake. An irq can be
882 * disabled with disable_irq() and still wake the system as
883 * long as the irq has wake enabled. If this does not hold,
884 * then the underlying irq chip and the related driver need
885 * to be investigated.
886 */
887int irq_set_irq_wake(unsigned int irq, unsigned int on)
888{
889 unsigned long flags;
890 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
891 int ret = 0;
892
893 if (!desc)
894 return -EINVAL;
895
896 /* Don't use NMIs as wake up interrupts please */
897 if (desc->istate & IRQS_NMI) {
898 ret = -EINVAL;
899 goto out_unlock;
900 }
901
902 /* wakeup-capable irqs can be shared between drivers that
903 * don't need to have the same sleep mode behaviors.
904 */
905 if (on) {
906 if (desc->wake_depth++ == 0) {
907 ret = set_irq_wake_real(irq, on);
908 if (ret)
909 desc->wake_depth = 0;
910 else
911 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
912 }
913 } else {
914 if (desc->wake_depth == 0) {
915 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
916 } else if (--desc->wake_depth == 0) {
917 ret = set_irq_wake_real(irq, on);
918 if (ret)
919 desc->wake_depth = 1;
920 else
921 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
922 }
923 }
924
925out_unlock:
926 irq_put_desc_busunlock(desc, flags);
927 return ret;
928}
929EXPORT_SYMBOL(irq_set_irq_wake);
930
931/*
932 * Internal function that tells the architecture code whether a
933 * particular irq has been exclusively allocated or is available
934 * for driver use.
935 */
936int can_request_irq(unsigned int irq, unsigned long irqflags)
937{
938 unsigned long flags;
939 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
940 int canrequest = 0;
941
942 if (!desc)
943 return 0;
944
945 if (irq_settings_can_request(desc)) {
946 if (!desc->action ||
947 irqflags & desc->action->flags & IRQF_SHARED)
948 canrequest = 1;
949 }
950 irq_put_desc_unlock(desc, flags);
951 return canrequest;
952}
953
954int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
955{
956 struct irq_chip *chip = desc->irq_data.chip;
957 int ret, unmask = 0;
958
959 if (!chip || !chip->irq_set_type) {
960 /*
961 * IRQF_TRIGGER_* but the PIC does not support multiple
962 * flow-types?
963 */
964 pr_debug("No set_type function for IRQ %d (%s)\n",
965 irq_desc_get_irq(desc),
966 chip ? (chip->name ? : "unknown") : "unknown");
967 return 0;
968 }
969
970 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
971 if (!irqd_irq_masked(&desc->irq_data))
972 mask_irq(desc);
973 if (!irqd_irq_disabled(&desc->irq_data))
974 unmask = 1;
975 }
976
977 /* Mask all flags except trigger mode */
978 flags &= IRQ_TYPE_SENSE_MASK;
979 ret = chip->irq_set_type(&desc->irq_data, flags);
980
981 switch (ret) {
982 case IRQ_SET_MASK_OK:
983 case IRQ_SET_MASK_OK_DONE:
984 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
985 irqd_set(&desc->irq_data, flags);
986 fallthrough;
987
988 case IRQ_SET_MASK_OK_NOCOPY:
989 flags = irqd_get_trigger_type(&desc->irq_data);
990 irq_settings_set_trigger_mask(desc, flags);
991 irqd_clear(&desc->irq_data, IRQD_LEVEL);
992 irq_settings_clr_level(desc);
993 if (flags & IRQ_TYPE_LEVEL_MASK) {
994 irq_settings_set_level(desc);
995 irqd_set(&desc->irq_data, IRQD_LEVEL);
996 }
997
998 ret = 0;
999 break;
1000 default:
1001 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1002 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1003 }
1004 if (unmask)
1005 unmask_irq(desc);
1006 return ret;
1007}
1008
1009#ifdef CONFIG_HARDIRQS_SW_RESEND
1010int irq_set_parent(int irq, int parent_irq)
1011{
1012 unsigned long flags;
1013 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1014
1015 if (!desc)
1016 return -EINVAL;
1017
1018 desc->parent_irq = parent_irq;
1019
1020 irq_put_desc_unlock(desc, flags);
1021 return 0;
1022}
1023EXPORT_SYMBOL_GPL(irq_set_parent);
1024#endif
1025
1026/*
1027 * Default primary interrupt handler for threaded interrupts. Is
1028 * assigned as primary handler when request_threaded_irq is called
1029 * with handler == NULL. Useful for oneshot interrupts.
1030 */
1031static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1032{
1033 return IRQ_WAKE_THREAD;
1034}
1035
1036/*
1037 * Primary handler for nested threaded interrupts. Should never be
1038 * called.
1039 */
1040static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1041{
1042 WARN(1, "Primary handler called for nested irq %d\n", irq);
1043 return IRQ_NONE;
1044}
1045
1046static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1047{
1048 WARN(1, "Secondary action handler called for irq %d\n", irq);
1049 return IRQ_NONE;
1050}
1051
1052static int irq_wait_for_interrupt(struct irqaction *action)
1053{
1054 for (;;) {
1055 set_current_state(TASK_INTERRUPTIBLE);
1056
1057 if (kthread_should_stop()) {
1058 /* may need to run one last time */
1059 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1060 &action->thread_flags)) {
1061 __set_current_state(TASK_RUNNING);
1062 return 0;
1063 }
1064 __set_current_state(TASK_RUNNING);
1065 return -1;
1066 }
1067
1068 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1069 &action->thread_flags)) {
1070 __set_current_state(TASK_RUNNING);
1071 return 0;
1072 }
1073 schedule();
1074 }
1075}
1076
1077/*
1078 * Oneshot interrupts keep the irq line masked until the threaded
1079 * handler finished. unmask if the interrupt has not been disabled and
1080 * is marked MASKED.
1081 */
1082static void irq_finalize_oneshot(struct irq_desc *desc,
1083 struct irqaction *action)
1084{
1085 if (!(desc->istate & IRQS_ONESHOT) ||
1086 action->handler == irq_forced_secondary_handler)
1087 return;
1088again:
1089 chip_bus_lock(desc);
1090 raw_spin_lock_irq(&desc->lock);
1091
1092 /*
1093 * Implausible though it may be we need to protect us against
1094 * the following scenario:
1095 *
1096 * The thread is faster done than the hard interrupt handler
1097 * on the other CPU. If we unmask the irq line then the
1098 * interrupt can come in again and masks the line, leaves due
1099 * to IRQS_INPROGRESS and the irq line is masked forever.
1100 *
1101 * This also serializes the state of shared oneshot handlers
1102 * versus "desc->threads_oneshot |= action->thread_mask;" in
1103 * irq_wake_thread(). See the comment there which explains the
1104 * serialization.
1105 */
1106 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1107 raw_spin_unlock_irq(&desc->lock);
1108 chip_bus_sync_unlock(desc);
1109 cpu_relax();
1110 goto again;
1111 }
1112
1113 /*
1114 * Now check again, whether the thread should run. Otherwise
1115 * we would clear the threads_oneshot bit of this thread which
1116 * was just set.
1117 */
1118 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1119 goto out_unlock;
1120
1121 desc->threads_oneshot &= ~action->thread_mask;
1122
1123 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1124 irqd_irq_masked(&desc->irq_data))
1125 unmask_threaded_irq(desc);
1126
1127out_unlock:
1128 raw_spin_unlock_irq(&desc->lock);
1129 chip_bus_sync_unlock(desc);
1130}
1131
1132#ifdef CONFIG_SMP
1133/*
1134 * Check whether we need to change the affinity of the interrupt thread.
1135 */
1136static void
1137irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1138{
1139 cpumask_var_t mask;
1140 bool valid = true;
1141
1142 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1143 return;
1144
1145 /*
1146 * In case we are out of memory we set IRQTF_AFFINITY again and
1147 * try again next time
1148 */
1149 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1150 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1151 return;
1152 }
1153
1154 raw_spin_lock_irq(&desc->lock);
1155 /*
1156 * This code is triggered unconditionally. Check the affinity
1157 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1158 */
1159 if (cpumask_available(desc->irq_common_data.affinity)) {
1160 const struct cpumask *m;
1161
1162 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1163 cpumask_copy(mask, m);
1164 } else {
1165 valid = false;
1166 }
1167 raw_spin_unlock_irq(&desc->lock);
1168
1169 if (valid)
1170 set_cpus_allowed_ptr(current, mask);
1171 free_cpumask_var(mask);
1172}
1173#else
1174static inline void
1175irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1176#endif
1177
1178/*
1179 * Interrupts which are not explicitly requested as threaded
1180 * interrupts rely on the implicit bh/preempt disable of the hard irq
1181 * context. So we need to disable bh here to avoid deadlocks and other
1182 * side effects.
1183 */
1184static irqreturn_t
1185irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1186{
1187 irqreturn_t ret;
1188
1189 local_bh_disable();
1190 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1191 local_irq_disable();
1192 ret = action->thread_fn(action->irq, action->dev_id);
1193 if (ret == IRQ_HANDLED)
1194 atomic_inc(&desc->threads_handled);
1195
1196 irq_finalize_oneshot(desc, action);
1197 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1198 local_irq_enable();
1199 local_bh_enable();
1200 return ret;
1201}
1202
1203/*
1204 * Interrupts explicitly requested as threaded interrupts want to be
1205 * preemptible - many of them need to sleep and wait for slow busses to
1206 * complete.
1207 */
1208static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1209 struct irqaction *action)
1210{
1211 irqreturn_t ret;
1212
1213 ret = action->thread_fn(action->irq, action->dev_id);
1214 if (ret == IRQ_HANDLED)
1215 atomic_inc(&desc->threads_handled);
1216
1217 irq_finalize_oneshot(desc, action);
1218 return ret;
1219}
1220
1221void wake_threads_waitq(struct irq_desc *desc)
1222{
1223 if (atomic_dec_and_test(&desc->threads_active))
1224 wake_up(&desc->wait_for_threads);
1225}
1226
1227static void irq_thread_dtor(struct callback_head *unused)
1228{
1229 struct task_struct *tsk = current;
1230 struct irq_desc *desc;
1231 struct irqaction *action;
1232
1233 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1234 return;
1235
1236 action = kthread_data(tsk);
1237
1238 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1239 tsk->comm, tsk->pid, action->irq);
1240
1241
1242 desc = irq_to_desc(action->irq);
1243 /*
1244 * If IRQTF_RUNTHREAD is set, we need to decrement
1245 * desc->threads_active and wake possible waiters.
1246 */
1247 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1248 wake_threads_waitq(desc);
1249
1250 /* Prevent a stale desc->threads_oneshot */
1251 irq_finalize_oneshot(desc, action);
1252}
1253
1254static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1255{
1256 struct irqaction *secondary = action->secondary;
1257
1258 if (WARN_ON_ONCE(!secondary))
1259 return;
1260
1261 raw_spin_lock_irq(&desc->lock);
1262 __irq_wake_thread(desc, secondary);
1263 raw_spin_unlock_irq(&desc->lock);
1264}
1265
1266/*
1267 * Internal function to notify that a interrupt thread is ready.
1268 */
1269static void irq_thread_set_ready(struct irq_desc *desc,
1270 struct irqaction *action)
1271{
1272 set_bit(IRQTF_READY, &action->thread_flags);
1273 wake_up(&desc->wait_for_threads);
1274}
1275
1276/*
1277 * Internal function to wake up a interrupt thread and wait until it is
1278 * ready.
1279 */
1280static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1281 struct irqaction *action)
1282{
1283 if (!action || !action->thread)
1284 return;
1285
1286 wake_up_process(action->thread);
1287 wait_event(desc->wait_for_threads,
1288 test_bit(IRQTF_READY, &action->thread_flags));
1289}
1290
1291/*
1292 * Interrupt handler thread
1293 */
1294static int irq_thread(void *data)
1295{
1296 struct callback_head on_exit_work;
1297 struct irqaction *action = data;
1298 struct irq_desc *desc = irq_to_desc(action->irq);
1299 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1300 struct irqaction *action);
1301
1302 irq_thread_set_ready(desc, action);
1303
1304 sched_set_fifo(current);
1305
1306 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1307 &action->thread_flags))
1308 handler_fn = irq_forced_thread_fn;
1309 else
1310 handler_fn = irq_thread_fn;
1311
1312 init_task_work(&on_exit_work, irq_thread_dtor);
1313 task_work_add(current, &on_exit_work, TWA_NONE);
1314
1315 irq_thread_check_affinity(desc, action);
1316
1317 while (!irq_wait_for_interrupt(action)) {
1318 irqreturn_t action_ret;
1319
1320 irq_thread_check_affinity(desc, action);
1321
1322 action_ret = handler_fn(desc, action);
1323 if (action_ret == IRQ_WAKE_THREAD)
1324 irq_wake_secondary(desc, action);
1325
1326 wake_threads_waitq(desc);
1327 }
1328
1329 /*
1330 * This is the regular exit path. __free_irq() is stopping the
1331 * thread via kthread_stop() after calling
1332 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1333 * oneshot mask bit can be set.
1334 */
1335 task_work_cancel(current, irq_thread_dtor);
1336 return 0;
1337}
1338
1339/**
1340 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1341 * @irq: Interrupt line
1342 * @dev_id: Device identity for which the thread should be woken
1343 *
1344 */
1345void irq_wake_thread(unsigned int irq, void *dev_id)
1346{
1347 struct irq_desc *desc = irq_to_desc(irq);
1348 struct irqaction *action;
1349 unsigned long flags;
1350
1351 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1352 return;
1353
1354 raw_spin_lock_irqsave(&desc->lock, flags);
1355 for_each_action_of_desc(desc, action) {
1356 if (action->dev_id == dev_id) {
1357 if (action->thread)
1358 __irq_wake_thread(desc, action);
1359 break;
1360 }
1361 }
1362 raw_spin_unlock_irqrestore(&desc->lock, flags);
1363}
1364EXPORT_SYMBOL_GPL(irq_wake_thread);
1365
1366static int irq_setup_forced_threading(struct irqaction *new)
1367{
1368 if (!force_irqthreads())
1369 return 0;
1370 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1371 return 0;
1372
1373 /*
1374 * No further action required for interrupts which are requested as
1375 * threaded interrupts already
1376 */
1377 if (new->handler == irq_default_primary_handler)
1378 return 0;
1379
1380 new->flags |= IRQF_ONESHOT;
1381
1382 /*
1383 * Handle the case where we have a real primary handler and a
1384 * thread handler. We force thread them as well by creating a
1385 * secondary action.
1386 */
1387 if (new->handler && new->thread_fn) {
1388 /* Allocate the secondary action */
1389 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1390 if (!new->secondary)
1391 return -ENOMEM;
1392 new->secondary->handler = irq_forced_secondary_handler;
1393 new->secondary->thread_fn = new->thread_fn;
1394 new->secondary->dev_id = new->dev_id;
1395 new->secondary->irq = new->irq;
1396 new->secondary->name = new->name;
1397 }
1398 /* Deal with the primary handler */
1399 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1400 new->thread_fn = new->handler;
1401 new->handler = irq_default_primary_handler;
1402 return 0;
1403}
1404
1405static int irq_request_resources(struct irq_desc *desc)
1406{
1407 struct irq_data *d = &desc->irq_data;
1408 struct irq_chip *c = d->chip;
1409
1410 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1411}
1412
1413static void irq_release_resources(struct irq_desc *desc)
1414{
1415 struct irq_data *d = &desc->irq_data;
1416 struct irq_chip *c = d->chip;
1417
1418 if (c->irq_release_resources)
1419 c->irq_release_resources(d);
1420}
1421
1422static bool irq_supports_nmi(struct irq_desc *desc)
1423{
1424 struct irq_data *d = irq_desc_get_irq_data(desc);
1425
1426#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1427 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1428 if (d->parent_data)
1429 return false;
1430#endif
1431 /* Don't support NMIs for chips behind a slow bus */
1432 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1433 return false;
1434
1435 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1436}
1437
1438static int irq_nmi_setup(struct irq_desc *desc)
1439{
1440 struct irq_data *d = irq_desc_get_irq_data(desc);
1441 struct irq_chip *c = d->chip;
1442
1443 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1444}
1445
1446static void irq_nmi_teardown(struct irq_desc *desc)
1447{
1448 struct irq_data *d = irq_desc_get_irq_data(desc);
1449 struct irq_chip *c = d->chip;
1450
1451 if (c->irq_nmi_teardown)
1452 c->irq_nmi_teardown(d);
1453}
1454
1455static int
1456setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1457{
1458 struct task_struct *t;
1459
1460 if (!secondary) {
1461 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1462 new->name);
1463 } else {
1464 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1465 new->name);
1466 }
1467
1468 if (IS_ERR(t))
1469 return PTR_ERR(t);
1470
1471 /*
1472 * We keep the reference to the task struct even if
1473 * the thread dies to avoid that the interrupt code
1474 * references an already freed task_struct.
1475 */
1476 new->thread = get_task_struct(t);
1477 /*
1478 * Tell the thread to set its affinity. This is
1479 * important for shared interrupt handlers as we do
1480 * not invoke setup_affinity() for the secondary
1481 * handlers as everything is already set up. Even for
1482 * interrupts marked with IRQF_NO_BALANCE this is
1483 * correct as we want the thread to move to the cpu(s)
1484 * on which the requesting code placed the interrupt.
1485 */
1486 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1487 return 0;
1488}
1489
1490/*
1491 * Internal function to register an irqaction - typically used to
1492 * allocate special interrupts that are part of the architecture.
1493 *
1494 * Locking rules:
1495 *
1496 * desc->request_mutex Provides serialization against a concurrent free_irq()
1497 * chip_bus_lock Provides serialization for slow bus operations
1498 * desc->lock Provides serialization against hard interrupts
1499 *
1500 * chip_bus_lock and desc->lock are sufficient for all other management and
1501 * interrupt related functions. desc->request_mutex solely serializes
1502 * request/free_irq().
1503 */
1504static int
1505__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1506{
1507 struct irqaction *old, **old_ptr;
1508 unsigned long flags, thread_mask = 0;
1509 int ret, nested, shared = 0;
1510
1511 if (!desc)
1512 return -EINVAL;
1513
1514 if (desc->irq_data.chip == &no_irq_chip)
1515 return -ENOSYS;
1516 if (!try_module_get(desc->owner))
1517 return -ENODEV;
1518
1519 new->irq = irq;
1520
1521 /*
1522 * If the trigger type is not specified by the caller,
1523 * then use the default for this interrupt.
1524 */
1525 if (!(new->flags & IRQF_TRIGGER_MASK))
1526 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1527
1528 /*
1529 * Check whether the interrupt nests into another interrupt
1530 * thread.
1531 */
1532 nested = irq_settings_is_nested_thread(desc);
1533 if (nested) {
1534 if (!new->thread_fn) {
1535 ret = -EINVAL;
1536 goto out_mput;
1537 }
1538 /*
1539 * Replace the primary handler which was provided from
1540 * the driver for non nested interrupt handling by the
1541 * dummy function which warns when called.
1542 */
1543 new->handler = irq_nested_primary_handler;
1544 } else {
1545 if (irq_settings_can_thread(desc)) {
1546 ret = irq_setup_forced_threading(new);
1547 if (ret)
1548 goto out_mput;
1549 }
1550 }
1551
1552 /*
1553 * Create a handler thread when a thread function is supplied
1554 * and the interrupt does not nest into another interrupt
1555 * thread.
1556 */
1557 if (new->thread_fn && !nested) {
1558 ret = setup_irq_thread(new, irq, false);
1559 if (ret)
1560 goto out_mput;
1561 if (new->secondary) {
1562 ret = setup_irq_thread(new->secondary, irq, true);
1563 if (ret)
1564 goto out_thread;
1565 }
1566 }
1567
1568 /*
1569 * Drivers are often written to work w/o knowledge about the
1570 * underlying irq chip implementation, so a request for a
1571 * threaded irq without a primary hard irq context handler
1572 * requires the ONESHOT flag to be set. Some irq chips like
1573 * MSI based interrupts are per se one shot safe. Check the
1574 * chip flags, so we can avoid the unmask dance at the end of
1575 * the threaded handler for those.
1576 */
1577 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1578 new->flags &= ~IRQF_ONESHOT;
1579
1580 /*
1581 * Protects against a concurrent __free_irq() call which might wait
1582 * for synchronize_hardirq() to complete without holding the optional
1583 * chip bus lock and desc->lock. Also protects against handing out
1584 * a recycled oneshot thread_mask bit while it's still in use by
1585 * its previous owner.
1586 */
1587 mutex_lock(&desc->request_mutex);
1588
1589 /*
1590 * Acquire bus lock as the irq_request_resources() callback below
1591 * might rely on the serialization or the magic power management
1592 * functions which are abusing the irq_bus_lock() callback,
1593 */
1594 chip_bus_lock(desc);
1595
1596 /* First installed action requests resources. */
1597 if (!desc->action) {
1598 ret = irq_request_resources(desc);
1599 if (ret) {
1600 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1601 new->name, irq, desc->irq_data.chip->name);
1602 goto out_bus_unlock;
1603 }
1604 }
1605
1606 /*
1607 * The following block of code has to be executed atomically
1608 * protected against a concurrent interrupt and any of the other
1609 * management calls which are not serialized via
1610 * desc->request_mutex or the optional bus lock.
1611 */
1612 raw_spin_lock_irqsave(&desc->lock, flags);
1613 old_ptr = &desc->action;
1614 old = *old_ptr;
1615 if (old) {
1616 /*
1617 * Can't share interrupts unless both agree to and are
1618 * the same type (level, edge, polarity). So both flag
1619 * fields must have IRQF_SHARED set and the bits which
1620 * set the trigger type must match. Also all must
1621 * agree on ONESHOT.
1622 * Interrupt lines used for NMIs cannot be shared.
1623 */
1624 unsigned int oldtype;
1625
1626 if (desc->istate & IRQS_NMI) {
1627 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1628 new->name, irq, desc->irq_data.chip->name);
1629 ret = -EINVAL;
1630 goto out_unlock;
1631 }
1632
1633 /*
1634 * If nobody did set the configuration before, inherit
1635 * the one provided by the requester.
1636 */
1637 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1638 oldtype = irqd_get_trigger_type(&desc->irq_data);
1639 } else {
1640 oldtype = new->flags & IRQF_TRIGGER_MASK;
1641 irqd_set_trigger_type(&desc->irq_data, oldtype);
1642 }
1643
1644 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1645 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1646 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1647 goto mismatch;
1648
1649 /* All handlers must agree on per-cpuness */
1650 if ((old->flags & IRQF_PERCPU) !=
1651 (new->flags & IRQF_PERCPU))
1652 goto mismatch;
1653
1654 /* add new interrupt at end of irq queue */
1655 do {
1656 /*
1657 * Or all existing action->thread_mask bits,
1658 * so we can find the next zero bit for this
1659 * new action.
1660 */
1661 thread_mask |= old->thread_mask;
1662 old_ptr = &old->next;
1663 old = *old_ptr;
1664 } while (old);
1665 shared = 1;
1666 }
1667
1668 /*
1669 * Setup the thread mask for this irqaction for ONESHOT. For
1670 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1671 * conditional in irq_wake_thread().
1672 */
1673 if (new->flags & IRQF_ONESHOT) {
1674 /*
1675 * Unlikely to have 32 resp 64 irqs sharing one line,
1676 * but who knows.
1677 */
1678 if (thread_mask == ~0UL) {
1679 ret = -EBUSY;
1680 goto out_unlock;
1681 }
1682 /*
1683 * The thread_mask for the action is or'ed to
1684 * desc->thread_active to indicate that the
1685 * IRQF_ONESHOT thread handler has been woken, but not
1686 * yet finished. The bit is cleared when a thread
1687 * completes. When all threads of a shared interrupt
1688 * line have completed desc->threads_active becomes
1689 * zero and the interrupt line is unmasked. See
1690 * handle.c:irq_wake_thread() for further information.
1691 *
1692 * If no thread is woken by primary (hard irq context)
1693 * interrupt handlers, then desc->threads_active is
1694 * also checked for zero to unmask the irq line in the
1695 * affected hard irq flow handlers
1696 * (handle_[fasteoi|level]_irq).
1697 *
1698 * The new action gets the first zero bit of
1699 * thread_mask assigned. See the loop above which or's
1700 * all existing action->thread_mask bits.
1701 */
1702 new->thread_mask = 1UL << ffz(thread_mask);
1703
1704 } else if (new->handler == irq_default_primary_handler &&
1705 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1706 /*
1707 * The interrupt was requested with handler = NULL, so
1708 * we use the default primary handler for it. But it
1709 * does not have the oneshot flag set. In combination
1710 * with level interrupts this is deadly, because the
1711 * default primary handler just wakes the thread, then
1712 * the irq lines is reenabled, but the device still
1713 * has the level irq asserted. Rinse and repeat....
1714 *
1715 * While this works for edge type interrupts, we play
1716 * it safe and reject unconditionally because we can't
1717 * say for sure which type this interrupt really
1718 * has. The type flags are unreliable as the
1719 * underlying chip implementation can override them.
1720 */
1721 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1722 new->name, irq);
1723 ret = -EINVAL;
1724 goto out_unlock;
1725 }
1726
1727 if (!shared) {
1728 /* Setup the type (level, edge polarity) if configured: */
1729 if (new->flags & IRQF_TRIGGER_MASK) {
1730 ret = __irq_set_trigger(desc,
1731 new->flags & IRQF_TRIGGER_MASK);
1732
1733 if (ret)
1734 goto out_unlock;
1735 }
1736
1737 /*
1738 * Activate the interrupt. That activation must happen
1739 * independently of IRQ_NOAUTOEN. request_irq() can fail
1740 * and the callers are supposed to handle
1741 * that. enable_irq() of an interrupt requested with
1742 * IRQ_NOAUTOEN is not supposed to fail. The activation
1743 * keeps it in shutdown mode, it merily associates
1744 * resources if necessary and if that's not possible it
1745 * fails. Interrupts which are in managed shutdown mode
1746 * will simply ignore that activation request.
1747 */
1748 ret = irq_activate(desc);
1749 if (ret)
1750 goto out_unlock;
1751
1752 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1753 IRQS_ONESHOT | IRQS_WAITING);
1754 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1755
1756 if (new->flags & IRQF_PERCPU) {
1757 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1758 irq_settings_set_per_cpu(desc);
1759 if (new->flags & IRQF_NO_DEBUG)
1760 irq_settings_set_no_debug(desc);
1761 }
1762
1763 if (noirqdebug)
1764 irq_settings_set_no_debug(desc);
1765
1766 if (new->flags & IRQF_ONESHOT)
1767 desc->istate |= IRQS_ONESHOT;
1768
1769 /* Exclude IRQ from balancing if requested */
1770 if (new->flags & IRQF_NOBALANCING) {
1771 irq_settings_set_no_balancing(desc);
1772 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1773 }
1774
1775 if (!(new->flags & IRQF_NO_AUTOEN) &&
1776 irq_settings_can_autoenable(desc)) {
1777 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1778 } else {
1779 /*
1780 * Shared interrupts do not go well with disabling
1781 * auto enable. The sharing interrupt might request
1782 * it while it's still disabled and then wait for
1783 * interrupts forever.
1784 */
1785 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1786 /* Undo nested disables: */
1787 desc->depth = 1;
1788 }
1789
1790 } else if (new->flags & IRQF_TRIGGER_MASK) {
1791 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1792 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1793
1794 if (nmsk != omsk)
1795 /* hope the handler works with current trigger mode */
1796 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1797 irq, omsk, nmsk);
1798 }
1799
1800 *old_ptr = new;
1801
1802 irq_pm_install_action(desc, new);
1803
1804 /* Reset broken irq detection when installing new handler */
1805 desc->irq_count = 0;
1806 desc->irqs_unhandled = 0;
1807
1808 /*
1809 * Check whether we disabled the irq via the spurious handler
1810 * before. Reenable it and give it another chance.
1811 */
1812 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1813 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1814 __enable_irq(desc);
1815 }
1816
1817 raw_spin_unlock_irqrestore(&desc->lock, flags);
1818 chip_bus_sync_unlock(desc);
1819 mutex_unlock(&desc->request_mutex);
1820
1821 irq_setup_timings(desc, new);
1822
1823 wake_up_and_wait_for_irq_thread_ready(desc, new);
1824 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1825
1826 register_irq_proc(irq, desc);
1827 new->dir = NULL;
1828 register_handler_proc(irq, new);
1829 return 0;
1830
1831mismatch:
1832 if (!(new->flags & IRQF_PROBE_SHARED)) {
1833 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1834 irq, new->flags, new->name, old->flags, old->name);
1835#ifdef CONFIG_DEBUG_SHIRQ
1836 dump_stack();
1837#endif
1838 }
1839 ret = -EBUSY;
1840
1841out_unlock:
1842 raw_spin_unlock_irqrestore(&desc->lock, flags);
1843
1844 if (!desc->action)
1845 irq_release_resources(desc);
1846out_bus_unlock:
1847 chip_bus_sync_unlock(desc);
1848 mutex_unlock(&desc->request_mutex);
1849
1850out_thread:
1851 if (new->thread) {
1852 struct task_struct *t = new->thread;
1853
1854 new->thread = NULL;
1855 kthread_stop_put(t);
1856 }
1857 if (new->secondary && new->secondary->thread) {
1858 struct task_struct *t = new->secondary->thread;
1859
1860 new->secondary->thread = NULL;
1861 kthread_stop_put(t);
1862 }
1863out_mput:
1864 module_put(desc->owner);
1865 return ret;
1866}
1867
1868/*
1869 * Internal function to unregister an irqaction - used to free
1870 * regular and special interrupts that are part of the architecture.
1871 */
1872static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1873{
1874 unsigned irq = desc->irq_data.irq;
1875 struct irqaction *action, **action_ptr;
1876 unsigned long flags;
1877
1878 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1879
1880 mutex_lock(&desc->request_mutex);
1881 chip_bus_lock(desc);
1882 raw_spin_lock_irqsave(&desc->lock, flags);
1883
1884 /*
1885 * There can be multiple actions per IRQ descriptor, find the right
1886 * one based on the dev_id:
1887 */
1888 action_ptr = &desc->action;
1889 for (;;) {
1890 action = *action_ptr;
1891
1892 if (!action) {
1893 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1894 raw_spin_unlock_irqrestore(&desc->lock, flags);
1895 chip_bus_sync_unlock(desc);
1896 mutex_unlock(&desc->request_mutex);
1897 return NULL;
1898 }
1899
1900 if (action->dev_id == dev_id)
1901 break;
1902 action_ptr = &action->next;
1903 }
1904
1905 /* Found it - now remove it from the list of entries: */
1906 *action_ptr = action->next;
1907
1908 irq_pm_remove_action(desc, action);
1909
1910 /* If this was the last handler, shut down the IRQ line: */
1911 if (!desc->action) {
1912 irq_settings_clr_disable_unlazy(desc);
1913 /* Only shutdown. Deactivate after synchronize_hardirq() */
1914 irq_shutdown(desc);
1915 }
1916
1917#ifdef CONFIG_SMP
1918 /* make sure affinity_hint is cleaned up */
1919 if (WARN_ON_ONCE(desc->affinity_hint))
1920 desc->affinity_hint = NULL;
1921#endif
1922
1923 raw_spin_unlock_irqrestore(&desc->lock, flags);
1924 /*
1925 * Drop bus_lock here so the changes which were done in the chip
1926 * callbacks above are synced out to the irq chips which hang
1927 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1928 *
1929 * Aside of that the bus_lock can also be taken from the threaded
1930 * handler in irq_finalize_oneshot() which results in a deadlock
1931 * because kthread_stop() would wait forever for the thread to
1932 * complete, which is blocked on the bus lock.
1933 *
1934 * The still held desc->request_mutex() protects against a
1935 * concurrent request_irq() of this irq so the release of resources
1936 * and timing data is properly serialized.
1937 */
1938 chip_bus_sync_unlock(desc);
1939
1940 unregister_handler_proc(irq, action);
1941
1942 /*
1943 * Make sure it's not being used on another CPU and if the chip
1944 * supports it also make sure that there is no (not yet serviced)
1945 * interrupt in flight at the hardware level.
1946 */
1947 __synchronize_irq(desc);
1948
1949#ifdef CONFIG_DEBUG_SHIRQ
1950 /*
1951 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1952 * event to happen even now it's being freed, so let's make sure that
1953 * is so by doing an extra call to the handler ....
1954 *
1955 * ( We do this after actually deregistering it, to make sure that a
1956 * 'real' IRQ doesn't run in parallel with our fake. )
1957 */
1958 if (action->flags & IRQF_SHARED) {
1959 local_irq_save(flags);
1960 action->handler(irq, dev_id);
1961 local_irq_restore(flags);
1962 }
1963#endif
1964
1965 /*
1966 * The action has already been removed above, but the thread writes
1967 * its oneshot mask bit when it completes. Though request_mutex is
1968 * held across this which prevents __setup_irq() from handing out
1969 * the same bit to a newly requested action.
1970 */
1971 if (action->thread) {
1972 kthread_stop_put(action->thread);
1973 if (action->secondary && action->secondary->thread)
1974 kthread_stop_put(action->secondary->thread);
1975 }
1976
1977 /* Last action releases resources */
1978 if (!desc->action) {
1979 /*
1980 * Reacquire bus lock as irq_release_resources() might
1981 * require it to deallocate resources over the slow bus.
1982 */
1983 chip_bus_lock(desc);
1984 /*
1985 * There is no interrupt on the fly anymore. Deactivate it
1986 * completely.
1987 */
1988 raw_spin_lock_irqsave(&desc->lock, flags);
1989 irq_domain_deactivate_irq(&desc->irq_data);
1990 raw_spin_unlock_irqrestore(&desc->lock, flags);
1991
1992 irq_release_resources(desc);
1993 chip_bus_sync_unlock(desc);
1994 irq_remove_timings(desc);
1995 }
1996
1997 mutex_unlock(&desc->request_mutex);
1998
1999 irq_chip_pm_put(&desc->irq_data);
2000 module_put(desc->owner);
2001 kfree(action->secondary);
2002 return action;
2003}
2004
2005/**
2006 * free_irq - free an interrupt allocated with request_irq
2007 * @irq: Interrupt line to free
2008 * @dev_id: Device identity to free
2009 *
2010 * Remove an interrupt handler. The handler is removed and if the
2011 * interrupt line is no longer in use by any driver it is disabled.
2012 * On a shared IRQ the caller must ensure the interrupt is disabled
2013 * on the card it drives before calling this function. The function
2014 * does not return until any executing interrupts for this IRQ
2015 * have completed.
2016 *
2017 * This function must not be called from interrupt context.
2018 *
2019 * Returns the devname argument passed to request_irq.
2020 */
2021const void *free_irq(unsigned int irq, void *dev_id)
2022{
2023 struct irq_desc *desc = irq_to_desc(irq);
2024 struct irqaction *action;
2025 const char *devname;
2026
2027 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2028 return NULL;
2029
2030#ifdef CONFIG_SMP
2031 if (WARN_ON(desc->affinity_notify))
2032 desc->affinity_notify = NULL;
2033#endif
2034
2035 action = __free_irq(desc, dev_id);
2036
2037 if (!action)
2038 return NULL;
2039
2040 devname = action->name;
2041 kfree(action);
2042 return devname;
2043}
2044EXPORT_SYMBOL(free_irq);
2045
2046/* This function must be called with desc->lock held */
2047static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2048{
2049 const char *devname = NULL;
2050
2051 desc->istate &= ~IRQS_NMI;
2052
2053 if (!WARN_ON(desc->action == NULL)) {
2054 irq_pm_remove_action(desc, desc->action);
2055 devname = desc->action->name;
2056 unregister_handler_proc(irq, desc->action);
2057
2058 kfree(desc->action);
2059 desc->action = NULL;
2060 }
2061
2062 irq_settings_clr_disable_unlazy(desc);
2063 irq_shutdown_and_deactivate(desc);
2064
2065 irq_release_resources(desc);
2066
2067 irq_chip_pm_put(&desc->irq_data);
2068 module_put(desc->owner);
2069
2070 return devname;
2071}
2072
2073const void *free_nmi(unsigned int irq, void *dev_id)
2074{
2075 struct irq_desc *desc = irq_to_desc(irq);
2076 unsigned long flags;
2077 const void *devname;
2078
2079 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2080 return NULL;
2081
2082 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2083 return NULL;
2084
2085 /* NMI still enabled */
2086 if (WARN_ON(desc->depth == 0))
2087 disable_nmi_nosync(irq);
2088
2089 raw_spin_lock_irqsave(&desc->lock, flags);
2090
2091 irq_nmi_teardown(desc);
2092 devname = __cleanup_nmi(irq, desc);
2093
2094 raw_spin_unlock_irqrestore(&desc->lock, flags);
2095
2096 return devname;
2097}
2098
2099/**
2100 * request_threaded_irq - allocate an interrupt line
2101 * @irq: Interrupt line to allocate
2102 * @handler: Function to be called when the IRQ occurs.
2103 * Primary handler for threaded interrupts.
2104 * If handler is NULL and thread_fn != NULL
2105 * the default primary handler is installed.
2106 * @thread_fn: Function called from the irq handler thread
2107 * If NULL, no irq thread is created
2108 * @irqflags: Interrupt type flags
2109 * @devname: An ascii name for the claiming device
2110 * @dev_id: A cookie passed back to the handler function
2111 *
2112 * This call allocates interrupt resources and enables the
2113 * interrupt line and IRQ handling. From the point this
2114 * call is made your handler function may be invoked. Since
2115 * your handler function must clear any interrupt the board
2116 * raises, you must take care both to initialise your hardware
2117 * and to set up the interrupt handler in the right order.
2118 *
2119 * If you want to set up a threaded irq handler for your device
2120 * then you need to supply @handler and @thread_fn. @handler is
2121 * still called in hard interrupt context and has to check
2122 * whether the interrupt originates from the device. If yes it
2123 * needs to disable the interrupt on the device and return
2124 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2125 * @thread_fn. This split handler design is necessary to support
2126 * shared interrupts.
2127 *
2128 * Dev_id must be globally unique. Normally the address of the
2129 * device data structure is used as the cookie. Since the handler
2130 * receives this value it makes sense to use it.
2131 *
2132 * If your interrupt is shared you must pass a non NULL dev_id
2133 * as this is required when freeing the interrupt.
2134 *
2135 * Flags:
2136 *
2137 * IRQF_SHARED Interrupt is shared
2138 * IRQF_TRIGGER_* Specify active edge(s) or level
2139 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2140 */
2141int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2142 irq_handler_t thread_fn, unsigned long irqflags,
2143 const char *devname, void *dev_id)
2144{
2145 struct irqaction *action;
2146 struct irq_desc *desc;
2147 int retval;
2148
2149 if (irq == IRQ_NOTCONNECTED)
2150 return -ENOTCONN;
2151
2152 /*
2153 * Sanity-check: shared interrupts must pass in a real dev-ID,
2154 * otherwise we'll have trouble later trying to figure out
2155 * which interrupt is which (messes up the interrupt freeing
2156 * logic etc).
2157 *
2158 * Also shared interrupts do not go well with disabling auto enable.
2159 * The sharing interrupt might request it while it's still disabled
2160 * and then wait for interrupts forever.
2161 *
2162 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2163 * it cannot be set along with IRQF_NO_SUSPEND.
2164 */
2165 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2166 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2167 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2168 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2169 return -EINVAL;
2170
2171 desc = irq_to_desc(irq);
2172 if (!desc)
2173 return -EINVAL;
2174
2175 if (!irq_settings_can_request(desc) ||
2176 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2177 return -EINVAL;
2178
2179 if (!handler) {
2180 if (!thread_fn)
2181 return -EINVAL;
2182 handler = irq_default_primary_handler;
2183 }
2184
2185 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2186 if (!action)
2187 return -ENOMEM;
2188
2189 action->handler = handler;
2190 action->thread_fn = thread_fn;
2191 action->flags = irqflags;
2192 action->name = devname;
2193 action->dev_id = dev_id;
2194
2195 retval = irq_chip_pm_get(&desc->irq_data);
2196 if (retval < 0) {
2197 kfree(action);
2198 return retval;
2199 }
2200
2201 retval = __setup_irq(irq, desc, action);
2202
2203 if (retval) {
2204 irq_chip_pm_put(&desc->irq_data);
2205 kfree(action->secondary);
2206 kfree(action);
2207 }
2208
2209#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2210 if (!retval && (irqflags & IRQF_SHARED)) {
2211 /*
2212 * It's a shared IRQ -- the driver ought to be prepared for it
2213 * to happen immediately, so let's make sure....
2214 * We disable the irq to make sure that a 'real' IRQ doesn't
2215 * run in parallel with our fake.
2216 */
2217 unsigned long flags;
2218
2219 disable_irq(irq);
2220 local_irq_save(flags);
2221
2222 handler(irq, dev_id);
2223
2224 local_irq_restore(flags);
2225 enable_irq(irq);
2226 }
2227#endif
2228 return retval;
2229}
2230EXPORT_SYMBOL(request_threaded_irq);
2231
2232/**
2233 * request_any_context_irq - allocate an interrupt line
2234 * @irq: Interrupt line to allocate
2235 * @handler: Function to be called when the IRQ occurs.
2236 * Threaded handler for threaded interrupts.
2237 * @flags: Interrupt type flags
2238 * @name: An ascii name for the claiming device
2239 * @dev_id: A cookie passed back to the handler function
2240 *
2241 * This call allocates interrupt resources and enables the
2242 * interrupt line and IRQ handling. It selects either a
2243 * hardirq or threaded handling method depending on the
2244 * context.
2245 *
2246 * On failure, it returns a negative value. On success,
2247 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2248 */
2249int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2250 unsigned long flags, const char *name, void *dev_id)
2251{
2252 struct irq_desc *desc;
2253 int ret;
2254
2255 if (irq == IRQ_NOTCONNECTED)
2256 return -ENOTCONN;
2257
2258 desc = irq_to_desc(irq);
2259 if (!desc)
2260 return -EINVAL;
2261
2262 if (irq_settings_is_nested_thread(desc)) {
2263 ret = request_threaded_irq(irq, NULL, handler,
2264 flags, name, dev_id);
2265 return !ret ? IRQC_IS_NESTED : ret;
2266 }
2267
2268 ret = request_irq(irq, handler, flags, name, dev_id);
2269 return !ret ? IRQC_IS_HARDIRQ : ret;
2270}
2271EXPORT_SYMBOL_GPL(request_any_context_irq);
2272
2273/**
2274 * request_nmi - allocate an interrupt line for NMI delivery
2275 * @irq: Interrupt line to allocate
2276 * @handler: Function to be called when the IRQ occurs.
2277 * Threaded handler for threaded interrupts.
2278 * @irqflags: Interrupt type flags
2279 * @name: An ascii name for the claiming device
2280 * @dev_id: A cookie passed back to the handler function
2281 *
2282 * This call allocates interrupt resources and enables the
2283 * interrupt line and IRQ handling. It sets up the IRQ line
2284 * to be handled as an NMI.
2285 *
2286 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2287 * cannot be threaded.
2288 *
2289 * Interrupt lines requested for NMI delivering must produce per cpu
2290 * interrupts and have auto enabling setting disabled.
2291 *
2292 * Dev_id must be globally unique. Normally the address of the
2293 * device data structure is used as the cookie. Since the handler
2294 * receives this value it makes sense to use it.
2295 *
2296 * If the interrupt line cannot be used to deliver NMIs, function
2297 * will fail and return a negative value.
2298 */
2299int request_nmi(unsigned int irq, irq_handler_t handler,
2300 unsigned long irqflags, const char *name, void *dev_id)
2301{
2302 struct irqaction *action;
2303 struct irq_desc *desc;
2304 unsigned long flags;
2305 int retval;
2306
2307 if (irq == IRQ_NOTCONNECTED)
2308 return -ENOTCONN;
2309
2310 /* NMI cannot be shared, used for Polling */
2311 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2312 return -EINVAL;
2313
2314 if (!(irqflags & IRQF_PERCPU))
2315 return -EINVAL;
2316
2317 if (!handler)
2318 return -EINVAL;
2319
2320 desc = irq_to_desc(irq);
2321
2322 if (!desc || (irq_settings_can_autoenable(desc) &&
2323 !(irqflags & IRQF_NO_AUTOEN)) ||
2324 !irq_settings_can_request(desc) ||
2325 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2326 !irq_supports_nmi(desc))
2327 return -EINVAL;
2328
2329 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2330 if (!action)
2331 return -ENOMEM;
2332
2333 action->handler = handler;
2334 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2335 action->name = name;
2336 action->dev_id = dev_id;
2337
2338 retval = irq_chip_pm_get(&desc->irq_data);
2339 if (retval < 0)
2340 goto err_out;
2341
2342 retval = __setup_irq(irq, desc, action);
2343 if (retval)
2344 goto err_irq_setup;
2345
2346 raw_spin_lock_irqsave(&desc->lock, flags);
2347
2348 /* Setup NMI state */
2349 desc->istate |= IRQS_NMI;
2350 retval = irq_nmi_setup(desc);
2351 if (retval) {
2352 __cleanup_nmi(irq, desc);
2353 raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 return -EINVAL;
2355 }
2356
2357 raw_spin_unlock_irqrestore(&desc->lock, flags);
2358
2359 return 0;
2360
2361err_irq_setup:
2362 irq_chip_pm_put(&desc->irq_data);
2363err_out:
2364 kfree(action);
2365
2366 return retval;
2367}
2368
2369void enable_percpu_irq(unsigned int irq, unsigned int type)
2370{
2371 unsigned int cpu = smp_processor_id();
2372 unsigned long flags;
2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374
2375 if (!desc)
2376 return;
2377
2378 /*
2379 * If the trigger type is not specified by the caller, then
2380 * use the default for this interrupt.
2381 */
2382 type &= IRQ_TYPE_SENSE_MASK;
2383 if (type == IRQ_TYPE_NONE)
2384 type = irqd_get_trigger_type(&desc->irq_data);
2385
2386 if (type != IRQ_TYPE_NONE) {
2387 int ret;
2388
2389 ret = __irq_set_trigger(desc, type);
2390
2391 if (ret) {
2392 WARN(1, "failed to set type for IRQ%d\n", irq);
2393 goto out;
2394 }
2395 }
2396
2397 irq_percpu_enable(desc, cpu);
2398out:
2399 irq_put_desc_unlock(desc, flags);
2400}
2401EXPORT_SYMBOL_GPL(enable_percpu_irq);
2402
2403void enable_percpu_nmi(unsigned int irq, unsigned int type)
2404{
2405 enable_percpu_irq(irq, type);
2406}
2407
2408/**
2409 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2410 * @irq: Linux irq number to check for
2411 *
2412 * Must be called from a non migratable context. Returns the enable
2413 * state of a per cpu interrupt on the current cpu.
2414 */
2415bool irq_percpu_is_enabled(unsigned int irq)
2416{
2417 unsigned int cpu = smp_processor_id();
2418 struct irq_desc *desc;
2419 unsigned long flags;
2420 bool is_enabled;
2421
2422 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2423 if (!desc)
2424 return false;
2425
2426 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2427 irq_put_desc_unlock(desc, flags);
2428
2429 return is_enabled;
2430}
2431EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2432
2433void disable_percpu_irq(unsigned int irq)
2434{
2435 unsigned int cpu = smp_processor_id();
2436 unsigned long flags;
2437 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2438
2439 if (!desc)
2440 return;
2441
2442 irq_percpu_disable(desc, cpu);
2443 irq_put_desc_unlock(desc, flags);
2444}
2445EXPORT_SYMBOL_GPL(disable_percpu_irq);
2446
2447void disable_percpu_nmi(unsigned int irq)
2448{
2449 disable_percpu_irq(irq);
2450}
2451
2452/*
2453 * Internal function to unregister a percpu irqaction.
2454 */
2455static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2456{
2457 struct irq_desc *desc = irq_to_desc(irq);
2458 struct irqaction *action;
2459 unsigned long flags;
2460
2461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2462
2463 if (!desc)
2464 return NULL;
2465
2466 raw_spin_lock_irqsave(&desc->lock, flags);
2467
2468 action = desc->action;
2469 if (!action || action->percpu_dev_id != dev_id) {
2470 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2471 goto bad;
2472 }
2473
2474 if (!cpumask_empty(desc->percpu_enabled)) {
2475 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2476 irq, cpumask_first(desc->percpu_enabled));
2477 goto bad;
2478 }
2479
2480 /* Found it - now remove it from the list of entries: */
2481 desc->action = NULL;
2482
2483 desc->istate &= ~IRQS_NMI;
2484
2485 raw_spin_unlock_irqrestore(&desc->lock, flags);
2486
2487 unregister_handler_proc(irq, action);
2488
2489 irq_chip_pm_put(&desc->irq_data);
2490 module_put(desc->owner);
2491 return action;
2492
2493bad:
2494 raw_spin_unlock_irqrestore(&desc->lock, flags);
2495 return NULL;
2496}
2497
2498/**
2499 * remove_percpu_irq - free a per-cpu interrupt
2500 * @irq: Interrupt line to free
2501 * @act: irqaction for the interrupt
2502 *
2503 * Used to remove interrupts statically setup by the early boot process.
2504 */
2505void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2506{
2507 struct irq_desc *desc = irq_to_desc(irq);
2508
2509 if (desc && irq_settings_is_per_cpu_devid(desc))
2510 __free_percpu_irq(irq, act->percpu_dev_id);
2511}
2512
2513/**
2514 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2515 * @irq: Interrupt line to free
2516 * @dev_id: Device identity to free
2517 *
2518 * Remove a percpu interrupt handler. The handler is removed, but
2519 * the interrupt line is not disabled. This must be done on each
2520 * CPU before calling this function. The function does not return
2521 * until any executing interrupts for this IRQ have completed.
2522 *
2523 * This function must not be called from interrupt context.
2524 */
2525void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2526{
2527 struct irq_desc *desc = irq_to_desc(irq);
2528
2529 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2530 return;
2531
2532 chip_bus_lock(desc);
2533 kfree(__free_percpu_irq(irq, dev_id));
2534 chip_bus_sync_unlock(desc);
2535}
2536EXPORT_SYMBOL_GPL(free_percpu_irq);
2537
2538void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2539{
2540 struct irq_desc *desc = irq_to_desc(irq);
2541
2542 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2543 return;
2544
2545 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2546 return;
2547
2548 kfree(__free_percpu_irq(irq, dev_id));
2549}
2550
2551/**
2552 * setup_percpu_irq - setup a per-cpu interrupt
2553 * @irq: Interrupt line to setup
2554 * @act: irqaction for the interrupt
2555 *
2556 * Used to statically setup per-cpu interrupts in the early boot process.
2557 */
2558int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2559{
2560 struct irq_desc *desc = irq_to_desc(irq);
2561 int retval;
2562
2563 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2564 return -EINVAL;
2565
2566 retval = irq_chip_pm_get(&desc->irq_data);
2567 if (retval < 0)
2568 return retval;
2569
2570 retval = __setup_irq(irq, desc, act);
2571
2572 if (retval)
2573 irq_chip_pm_put(&desc->irq_data);
2574
2575 return retval;
2576}
2577
2578/**
2579 * __request_percpu_irq - allocate a percpu interrupt line
2580 * @irq: Interrupt line to allocate
2581 * @handler: Function to be called when the IRQ occurs.
2582 * @flags: Interrupt type flags (IRQF_TIMER only)
2583 * @devname: An ascii name for the claiming device
2584 * @dev_id: A percpu cookie passed back to the handler function
2585 *
2586 * This call allocates interrupt resources and enables the
2587 * interrupt on the local CPU. If the interrupt is supposed to be
2588 * enabled on other CPUs, it has to be done on each CPU using
2589 * enable_percpu_irq().
2590 *
2591 * Dev_id must be globally unique. It is a per-cpu variable, and
2592 * the handler gets called with the interrupted CPU's instance of
2593 * that variable.
2594 */
2595int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2596 unsigned long flags, const char *devname,
2597 void __percpu *dev_id)
2598{
2599 struct irqaction *action;
2600 struct irq_desc *desc;
2601 int retval;
2602
2603 if (!dev_id)
2604 return -EINVAL;
2605
2606 desc = irq_to_desc(irq);
2607 if (!desc || !irq_settings_can_request(desc) ||
2608 !irq_settings_is_per_cpu_devid(desc))
2609 return -EINVAL;
2610
2611 if (flags && flags != IRQF_TIMER)
2612 return -EINVAL;
2613
2614 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2615 if (!action)
2616 return -ENOMEM;
2617
2618 action->handler = handler;
2619 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2620 action->name = devname;
2621 action->percpu_dev_id = dev_id;
2622
2623 retval = irq_chip_pm_get(&desc->irq_data);
2624 if (retval < 0) {
2625 kfree(action);
2626 return retval;
2627 }
2628
2629 retval = __setup_irq(irq, desc, action);
2630
2631 if (retval) {
2632 irq_chip_pm_put(&desc->irq_data);
2633 kfree(action);
2634 }
2635
2636 return retval;
2637}
2638EXPORT_SYMBOL_GPL(__request_percpu_irq);
2639
2640/**
2641 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2642 * @irq: Interrupt line to allocate
2643 * @handler: Function to be called when the IRQ occurs.
2644 * @name: An ascii name for the claiming device
2645 * @dev_id: A percpu cookie passed back to the handler function
2646 *
2647 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2648 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2649 * being enabled on the same CPU by using enable_percpu_nmi().
2650 *
2651 * Dev_id must be globally unique. It is a per-cpu variable, and
2652 * the handler gets called with the interrupted CPU's instance of
2653 * that variable.
2654 *
2655 * Interrupt lines requested for NMI delivering should have auto enabling
2656 * setting disabled.
2657 *
2658 * If the interrupt line cannot be used to deliver NMIs, function
2659 * will fail returning a negative value.
2660 */
2661int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2662 const char *name, void __percpu *dev_id)
2663{
2664 struct irqaction *action;
2665 struct irq_desc *desc;
2666 unsigned long flags;
2667 int retval;
2668
2669 if (!handler)
2670 return -EINVAL;
2671
2672 desc = irq_to_desc(irq);
2673
2674 if (!desc || !irq_settings_can_request(desc) ||
2675 !irq_settings_is_per_cpu_devid(desc) ||
2676 irq_settings_can_autoenable(desc) ||
2677 !irq_supports_nmi(desc))
2678 return -EINVAL;
2679
2680 /* The line cannot already be NMI */
2681 if (desc->istate & IRQS_NMI)
2682 return -EINVAL;
2683
2684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2685 if (!action)
2686 return -ENOMEM;
2687
2688 action->handler = handler;
2689 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2690 | IRQF_NOBALANCING;
2691 action->name = name;
2692 action->percpu_dev_id = dev_id;
2693
2694 retval = irq_chip_pm_get(&desc->irq_data);
2695 if (retval < 0)
2696 goto err_out;
2697
2698 retval = __setup_irq(irq, desc, action);
2699 if (retval)
2700 goto err_irq_setup;
2701
2702 raw_spin_lock_irqsave(&desc->lock, flags);
2703 desc->istate |= IRQS_NMI;
2704 raw_spin_unlock_irqrestore(&desc->lock, flags);
2705
2706 return 0;
2707
2708err_irq_setup:
2709 irq_chip_pm_put(&desc->irq_data);
2710err_out:
2711 kfree(action);
2712
2713 return retval;
2714}
2715
2716/**
2717 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2718 * @irq: Interrupt line to prepare for NMI delivery
2719 *
2720 * This call prepares an interrupt line to deliver NMI on the current CPU,
2721 * before that interrupt line gets enabled with enable_percpu_nmi().
2722 *
2723 * As a CPU local operation, this should be called from non-preemptible
2724 * context.
2725 *
2726 * If the interrupt line cannot be used to deliver NMIs, function
2727 * will fail returning a negative value.
2728 */
2729int prepare_percpu_nmi(unsigned int irq)
2730{
2731 unsigned long flags;
2732 struct irq_desc *desc;
2733 int ret = 0;
2734
2735 WARN_ON(preemptible());
2736
2737 desc = irq_get_desc_lock(irq, &flags,
2738 IRQ_GET_DESC_CHECK_PERCPU);
2739 if (!desc)
2740 return -EINVAL;
2741
2742 if (WARN(!(desc->istate & IRQS_NMI),
2743 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2744 irq)) {
2745 ret = -EINVAL;
2746 goto out;
2747 }
2748
2749 ret = irq_nmi_setup(desc);
2750 if (ret) {
2751 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2752 goto out;
2753 }
2754
2755out:
2756 irq_put_desc_unlock(desc, flags);
2757 return ret;
2758}
2759
2760/**
2761 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2762 * @irq: Interrupt line from which CPU local NMI configuration should be
2763 * removed
2764 *
2765 * This call undoes the setup done by prepare_percpu_nmi().
2766 *
2767 * IRQ line should not be enabled for the current CPU.
2768 *
2769 * As a CPU local operation, this should be called from non-preemptible
2770 * context.
2771 */
2772void teardown_percpu_nmi(unsigned int irq)
2773{
2774 unsigned long flags;
2775 struct irq_desc *desc;
2776
2777 WARN_ON(preemptible());
2778
2779 desc = irq_get_desc_lock(irq, &flags,
2780 IRQ_GET_DESC_CHECK_PERCPU);
2781 if (!desc)
2782 return;
2783
2784 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2785 goto out;
2786
2787 irq_nmi_teardown(desc);
2788out:
2789 irq_put_desc_unlock(desc, flags);
2790}
2791
2792int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2793 bool *state)
2794{
2795 struct irq_chip *chip;
2796 int err = -EINVAL;
2797
2798 do {
2799 chip = irq_data_get_irq_chip(data);
2800 if (WARN_ON_ONCE(!chip))
2801 return -ENODEV;
2802 if (chip->irq_get_irqchip_state)
2803 break;
2804#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2805 data = data->parent_data;
2806#else
2807 data = NULL;
2808#endif
2809 } while (data);
2810
2811 if (data)
2812 err = chip->irq_get_irqchip_state(data, which, state);
2813 return err;
2814}
2815
2816/**
2817 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2818 * @irq: Interrupt line that is forwarded to a VM
2819 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2820 * @state: a pointer to a boolean where the state is to be stored
2821 *
2822 * This call snapshots the internal irqchip state of an
2823 * interrupt, returning into @state the bit corresponding to
2824 * stage @which
2825 *
2826 * This function should be called with preemption disabled if the
2827 * interrupt controller has per-cpu registers.
2828 */
2829int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2830 bool *state)
2831{
2832 struct irq_desc *desc;
2833 struct irq_data *data;
2834 unsigned long flags;
2835 int err = -EINVAL;
2836
2837 desc = irq_get_desc_buslock(irq, &flags, 0);
2838 if (!desc)
2839 return err;
2840
2841 data = irq_desc_get_irq_data(desc);
2842
2843 err = __irq_get_irqchip_state(data, which, state);
2844
2845 irq_put_desc_busunlock(desc, flags);
2846 return err;
2847}
2848EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2849
2850/**
2851 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2852 * @irq: Interrupt line that is forwarded to a VM
2853 * @which: State to be restored (one of IRQCHIP_STATE_*)
2854 * @val: Value corresponding to @which
2855 *
2856 * This call sets the internal irqchip state of an interrupt,
2857 * depending on the value of @which.
2858 *
2859 * This function should be called with migration disabled if the
2860 * interrupt controller has per-cpu registers.
2861 */
2862int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2863 bool val)
2864{
2865 struct irq_desc *desc;
2866 struct irq_data *data;
2867 struct irq_chip *chip;
2868 unsigned long flags;
2869 int err = -EINVAL;
2870
2871 desc = irq_get_desc_buslock(irq, &flags, 0);
2872 if (!desc)
2873 return err;
2874
2875 data = irq_desc_get_irq_data(desc);
2876
2877 do {
2878 chip = irq_data_get_irq_chip(data);
2879 if (WARN_ON_ONCE(!chip)) {
2880 err = -ENODEV;
2881 goto out_unlock;
2882 }
2883 if (chip->irq_set_irqchip_state)
2884 break;
2885#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2886 data = data->parent_data;
2887#else
2888 data = NULL;
2889#endif
2890 } while (data);
2891
2892 if (data)
2893 err = chip->irq_set_irqchip_state(data, which, val);
2894
2895out_unlock:
2896 irq_put_desc_busunlock(desc, flags);
2897 return err;
2898}
2899EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2900
2901/**
2902 * irq_has_action - Check whether an interrupt is requested
2903 * @irq: The linux irq number
2904 *
2905 * Returns: A snapshot of the current state
2906 */
2907bool irq_has_action(unsigned int irq)
2908{
2909 bool res;
2910
2911 rcu_read_lock();
2912 res = irq_desc_has_action(irq_to_desc(irq));
2913 rcu_read_unlock();
2914 return res;
2915}
2916EXPORT_SYMBOL_GPL(irq_has_action);
2917
2918/**
2919 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2920 * @irq: The linux irq number
2921 * @bitmask: The bitmask to evaluate
2922 *
2923 * Returns: True if one of the bits in @bitmask is set
2924 */
2925bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2926{
2927 struct irq_desc *desc;
2928 bool res = false;
2929
2930 rcu_read_lock();
2931 desc = irq_to_desc(irq);
2932 if (desc)
2933 res = !!(desc->status_use_accessors & bitmask);
2934 rcu_read_unlock();
2935 return res;
2936}
2937EXPORT_SYMBOL_GPL(irq_check_status_bit);