Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
712 }
713
714 return 0;
715
716restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
724
725 return ret;
726}
727
728static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
730{
731 u32 avg, peak;
732 int i, ret;
733
734 if (!opp_table->paths)
735 return 0;
736
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
744 }
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
750 }
751 }
752
753 return 0;
754}
755
756static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
761{
762 struct dev_pm_set_opp_data *data;
763 int size;
764
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
770
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
777
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
780
781 return opp_table->set_opp(data);
782}
783
784/* This is only called for PM domain for now */
785static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
788{
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
793
794 if (!required_opp_tables)
795 return 0;
796
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
804 }
805 return ret;
806 }
807
808 /* Multiple genpd case */
809
810 /*
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
813 */
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
815
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818
819 if (!genpd_virt_devs[i])
820 continue;
821
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
827 }
828 }
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
830
831 return ret;
832}
833
834/**
835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836 * @dev: device for which we do this operation
837 * @opp: opp based on which the bandwidth levels are to be configured
838 *
839 * This configures the bandwidth to the levels specified by the OPP. However
840 * if the OPP specified is NULL the bandwidth levels are cleared out.
841 *
842 * Return: 0 on success or a negative error value.
843 */
844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845{
846 struct opp_table *opp_table;
847 int ret;
848
849 opp_table = _find_opp_table(dev);
850 if (IS_ERR(opp_table)) {
851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 return PTR_ERR(opp_table);
853 }
854
855 if (opp)
856 ret = _set_opp_bw(opp_table, opp, dev, false);
857 else
858 ret = _set_opp_bw(opp_table, NULL, dev, true);
859
860 dev_pm_opp_put_opp_table(opp_table);
861 return ret;
862}
863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864
865/**
866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867 * @dev: device for which we do this operation
868 * @target_freq: frequency to achieve
869 *
870 * This configures the power-supplies to the levels specified by the OPP
871 * corresponding to the target_freq, and programs the clock to a value <=
872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873 * provided by the opp, should have already rounded to the target OPP's
874 * frequency.
875 */
876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877{
878 struct opp_table *opp_table;
879 unsigned long freq, old_freq, temp_freq;
880 struct dev_pm_opp *old_opp, *opp;
881 struct clk *clk;
882 int ret;
883
884 opp_table = _find_opp_table(dev);
885 if (IS_ERR(opp_table)) {
886 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 return PTR_ERR(opp_table);
888 }
889
890 if (unlikely(!target_freq)) {
891 /*
892 * Some drivers need to support cases where some platforms may
893 * have OPP table for the device, while others don't and
894 * opp_set_rate() just needs to behave like clk_set_rate().
895 */
896 if (!_get_opp_count(opp_table)) {
897 ret = 0;
898 goto put_opp_table;
899 }
900
901 if (!opp_table->required_opp_tables && !opp_table->regulators &&
902 !opp_table->paths) {
903 dev_err(dev, "target frequency can't be 0\n");
904 ret = -EINVAL;
905 goto put_opp_table;
906 }
907
908 ret = _set_opp_bw(opp_table, NULL, dev, true);
909 if (ret)
910 goto put_opp_table;
911
912 if (opp_table->regulator_enabled) {
913 regulator_disable(opp_table->regulators[0]);
914 opp_table->regulator_enabled = false;
915 }
916
917 ret = _set_required_opps(dev, opp_table, NULL);
918 goto put_opp_table;
919 }
920
921 clk = opp_table->clk;
922 if (IS_ERR(clk)) {
923 dev_err(dev, "%s: No clock available for the device\n",
924 __func__);
925 ret = PTR_ERR(clk);
926 goto put_opp_table;
927 }
928
929 freq = clk_round_rate(clk, target_freq);
930 if ((long)freq <= 0)
931 freq = target_freq;
932
933 old_freq = clk_get_rate(clk);
934
935 /* Return early if nothing to do */
936 if (old_freq == freq) {
937 if (!opp_table->required_opp_tables && !opp_table->regulators &&
938 !opp_table->paths) {
939 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
940 __func__, freq);
941 ret = 0;
942 goto put_opp_table;
943 }
944 }
945
946 /*
947 * For IO devices which require an OPP on some platforms/SoCs
948 * while just needing to scale the clock on some others
949 * we look for empty OPP tables with just a clock handle and
950 * scale only the clk. This makes dev_pm_opp_set_rate()
951 * equivalent to a clk_set_rate()
952 */
953 if (!_get_opp_count(opp_table)) {
954 ret = _generic_set_opp_clk_only(dev, clk, freq);
955 goto put_opp_table;
956 }
957
958 temp_freq = old_freq;
959 old_opp = _find_freq_ceil(opp_table, &temp_freq);
960 if (IS_ERR(old_opp)) {
961 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
962 __func__, old_freq, PTR_ERR(old_opp));
963 }
964
965 temp_freq = freq;
966 opp = _find_freq_ceil(opp_table, &temp_freq);
967 if (IS_ERR(opp)) {
968 ret = PTR_ERR(opp);
969 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
970 __func__, freq, ret);
971 goto put_old_opp;
972 }
973
974 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
975 old_freq, freq);
976
977 /* Scaling up? Configure required OPPs before frequency */
978 if (freq >= old_freq) {
979 ret = _set_required_opps(dev, opp_table, opp);
980 if (ret)
981 goto put_opp;
982 }
983
984 if (opp_table->set_opp) {
985 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
986 IS_ERR(old_opp) ? NULL : old_opp->supplies,
987 opp->supplies);
988 } else if (opp_table->regulators) {
989 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
990 IS_ERR(old_opp) ? NULL : old_opp->supplies,
991 opp->supplies);
992 } else {
993 /* Only frequency scaling */
994 ret = _generic_set_opp_clk_only(dev, clk, freq);
995 }
996
997 /* Scaling down? Configure required OPPs after frequency */
998 if (!ret && freq < old_freq) {
999 ret = _set_required_opps(dev, opp_table, opp);
1000 if (ret)
1001 dev_err(dev, "Failed to set required opps: %d\n", ret);
1002 }
1003
1004 if (!ret)
1005 ret = _set_opp_bw(opp_table, opp, dev, false);
1006
1007put_opp:
1008 dev_pm_opp_put(opp);
1009put_old_opp:
1010 if (!IS_ERR(old_opp))
1011 dev_pm_opp_put(old_opp);
1012put_opp_table:
1013 dev_pm_opp_put_opp_table(opp_table);
1014 return ret;
1015}
1016EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017
1018/* OPP-dev Helpers */
1019static void _remove_opp_dev(struct opp_device *opp_dev,
1020 struct opp_table *opp_table)
1021{
1022 opp_debug_unregister(opp_dev, opp_table);
1023 list_del(&opp_dev->node);
1024 kfree(opp_dev);
1025}
1026
1027static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028 struct opp_table *opp_table)
1029{
1030 struct opp_device *opp_dev;
1031
1032 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033 if (!opp_dev)
1034 return NULL;
1035
1036 /* Initialize opp-dev */
1037 opp_dev->dev = dev;
1038
1039 list_add(&opp_dev->node, &opp_table->dev_list);
1040
1041 /* Create debugfs entries for the opp_table */
1042 opp_debug_register(opp_dev, opp_table);
1043
1044 return opp_dev;
1045}
1046
1047struct opp_device *_add_opp_dev(const struct device *dev,
1048 struct opp_table *opp_table)
1049{
1050 struct opp_device *opp_dev;
1051
1052 mutex_lock(&opp_table->lock);
1053 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054 mutex_unlock(&opp_table->lock);
1055
1056 return opp_dev;
1057}
1058
1059static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060{
1061 struct opp_table *opp_table;
1062 struct opp_device *opp_dev;
1063 int ret;
1064
1065 /*
1066 * Allocate a new OPP table. In the infrequent case where a new
1067 * device is needed to be added, we pay this penalty.
1068 */
1069 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070 if (!opp_table)
1071 return NULL;
1072
1073 mutex_init(&opp_table->lock);
1074 mutex_init(&opp_table->genpd_virt_dev_lock);
1075 INIT_LIST_HEAD(&opp_table->dev_list);
1076
1077 /* Mark regulator count uninitialized */
1078 opp_table->regulator_count = -1;
1079
1080 opp_dev = _add_opp_dev(dev, opp_table);
1081 if (!opp_dev) {
1082 kfree(opp_table);
1083 return NULL;
1084 }
1085
1086 _of_init_opp_table(opp_table, dev, index);
1087
1088 /* Find clk for the device */
1089 opp_table->clk = clk_get(dev, NULL);
1090 if (IS_ERR(opp_table->clk)) {
1091 ret = PTR_ERR(opp_table->clk);
1092 if (ret != -EPROBE_DEFER)
1093 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094 ret);
1095 }
1096
1097 /* Find interconnect path(s) for the device */
1098 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099 if (ret)
1100 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101 __func__, ret);
1102
1103 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104 INIT_LIST_HEAD(&opp_table->opp_list);
1105 kref_init(&opp_table->kref);
1106
1107 /* Secure the device table modification */
1108 list_add(&opp_table->node, &opp_tables);
1109 return opp_table;
1110}
1111
1112void _get_opp_table_kref(struct opp_table *opp_table)
1113{
1114 kref_get(&opp_table->kref);
1115}
1116
1117static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1118{
1119 struct opp_table *opp_table;
1120
1121 /* Hold our table modification lock here */
1122 mutex_lock(&opp_table_lock);
1123
1124 opp_table = _find_opp_table_unlocked(dev);
1125 if (!IS_ERR(opp_table))
1126 goto unlock;
1127
1128 opp_table = _managed_opp(dev, index);
1129 if (opp_table) {
1130 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131 dev_pm_opp_put_opp_table(opp_table);
1132 opp_table = NULL;
1133 }
1134 goto unlock;
1135 }
1136
1137 opp_table = _allocate_opp_table(dev, index);
1138
1139unlock:
1140 mutex_unlock(&opp_table_lock);
1141
1142 return opp_table;
1143}
1144
1145struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146{
1147 return _opp_get_opp_table(dev, 0);
1148}
1149EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150
1151struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152 int index)
1153{
1154 return _opp_get_opp_table(dev, index);
1155}
1156
1157static void _opp_table_kref_release(struct kref *kref)
1158{
1159 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160 struct opp_device *opp_dev, *temp;
1161 int i;
1162
1163 _of_clear_opp_table(opp_table);
1164
1165 /* Release clk */
1166 if (!IS_ERR(opp_table->clk))
1167 clk_put(opp_table->clk);
1168
1169 if (opp_table->paths) {
1170 for (i = 0; i < opp_table->path_count; i++)
1171 icc_put(opp_table->paths[i]);
1172 kfree(opp_table->paths);
1173 }
1174
1175 WARN_ON(!list_empty(&opp_table->opp_list));
1176
1177 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178 /*
1179 * The OPP table is getting removed, drop the performance state
1180 * constraints.
1181 */
1182 if (opp_table->genpd_performance_state)
1183 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184
1185 _remove_opp_dev(opp_dev, opp_table);
1186 }
1187
1188 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189 mutex_destroy(&opp_table->lock);
1190 list_del(&opp_table->node);
1191 kfree(opp_table);
1192
1193 mutex_unlock(&opp_table_lock);
1194}
1195
1196void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197{
1198 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199 &opp_table_lock);
1200}
1201EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202
1203void _opp_free(struct dev_pm_opp *opp)
1204{
1205 kfree(opp);
1206}
1207
1208static void _opp_kref_release(struct dev_pm_opp *opp,
1209 struct opp_table *opp_table)
1210{
1211 /*
1212 * Notify the changes in the availability of the operable
1213 * frequency/voltage list.
1214 */
1215 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216 _of_opp_free_required_opps(opp_table, opp);
1217 opp_debug_remove_one(opp);
1218 list_del(&opp->node);
1219 kfree(opp);
1220}
1221
1222static void _opp_kref_release_unlocked(struct kref *kref)
1223{
1224 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225 struct opp_table *opp_table = opp->opp_table;
1226
1227 _opp_kref_release(opp, opp_table);
1228}
1229
1230static void _opp_kref_release_locked(struct kref *kref)
1231{
1232 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233 struct opp_table *opp_table = opp->opp_table;
1234
1235 _opp_kref_release(opp, opp_table);
1236 mutex_unlock(&opp_table->lock);
1237}
1238
1239void dev_pm_opp_get(struct dev_pm_opp *opp)
1240{
1241 kref_get(&opp->kref);
1242}
1243
1244void dev_pm_opp_put(struct dev_pm_opp *opp)
1245{
1246 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247 &opp->opp_table->lock);
1248}
1249EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250
1251static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252{
1253 kref_put(&opp->kref, _opp_kref_release_unlocked);
1254}
1255
1256/**
1257 * dev_pm_opp_remove() - Remove an OPP from OPP table
1258 * @dev: device for which we do this operation
1259 * @freq: OPP to remove with matching 'freq'
1260 *
1261 * This function removes an opp from the opp table.
1262 */
1263void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264{
1265 struct dev_pm_opp *opp;
1266 struct opp_table *opp_table;
1267 bool found = false;
1268
1269 opp_table = _find_opp_table(dev);
1270 if (IS_ERR(opp_table))
1271 return;
1272
1273 mutex_lock(&opp_table->lock);
1274
1275 list_for_each_entry(opp, &opp_table->opp_list, node) {
1276 if (opp->rate == freq) {
1277 found = true;
1278 break;
1279 }
1280 }
1281
1282 mutex_unlock(&opp_table->lock);
1283
1284 if (found) {
1285 dev_pm_opp_put(opp);
1286
1287 /* Drop the reference taken by dev_pm_opp_add() */
1288 dev_pm_opp_put_opp_table(opp_table);
1289 } else {
1290 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291 __func__, freq);
1292 }
1293
1294 /* Drop the reference taken by _find_opp_table() */
1295 dev_pm_opp_put_opp_table(opp_table);
1296}
1297EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298
1299bool _opp_remove_all_static(struct opp_table *opp_table)
1300{
1301 struct dev_pm_opp *opp, *tmp;
1302 bool ret = true;
1303
1304 mutex_lock(&opp_table->lock);
1305
1306 if (!opp_table->parsed_static_opps) {
1307 ret = false;
1308 goto unlock;
1309 }
1310
1311 if (--opp_table->parsed_static_opps)
1312 goto unlock;
1313
1314 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1315 if (!opp->dynamic)
1316 dev_pm_opp_put_unlocked(opp);
1317 }
1318
1319unlock:
1320 mutex_unlock(&opp_table->lock);
1321
1322 return ret;
1323}
1324
1325/**
1326 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1327 * @dev: device for which we do this operation
1328 *
1329 * This function removes all dynamically created OPPs from the opp table.
1330 */
1331void dev_pm_opp_remove_all_dynamic(struct device *dev)
1332{
1333 struct opp_table *opp_table;
1334 struct dev_pm_opp *opp, *temp;
1335 int count = 0;
1336
1337 opp_table = _find_opp_table(dev);
1338 if (IS_ERR(opp_table))
1339 return;
1340
1341 mutex_lock(&opp_table->lock);
1342 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1343 if (opp->dynamic) {
1344 dev_pm_opp_put_unlocked(opp);
1345 count++;
1346 }
1347 }
1348 mutex_unlock(&opp_table->lock);
1349
1350 /* Drop the references taken by dev_pm_opp_add() */
1351 while (count--)
1352 dev_pm_opp_put_opp_table(opp_table);
1353
1354 /* Drop the reference taken by _find_opp_table() */
1355 dev_pm_opp_put_opp_table(opp_table);
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1358
1359struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1360{
1361 struct dev_pm_opp *opp;
1362 int supply_count, supply_size, icc_size;
1363
1364 /* Allocate space for at least one supply */
1365 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1366 supply_size = sizeof(*opp->supplies) * supply_count;
1367 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1368
1369 /* allocate new OPP node and supplies structures */
1370 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1371
1372 if (!opp)
1373 return NULL;
1374
1375 /* Put the supplies at the end of the OPP structure as an empty array */
1376 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1377 if (icc_size)
1378 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1379 INIT_LIST_HEAD(&opp->node);
1380
1381 return opp;
1382}
1383
1384static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1385 struct opp_table *opp_table)
1386{
1387 struct regulator *reg;
1388 int i;
1389
1390 if (!opp_table->regulators)
1391 return true;
1392
1393 for (i = 0; i < opp_table->regulator_count; i++) {
1394 reg = opp_table->regulators[i];
1395
1396 if (!regulator_is_supported_voltage(reg,
1397 opp->supplies[i].u_volt_min,
1398 opp->supplies[i].u_volt_max)) {
1399 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1400 __func__, opp->supplies[i].u_volt_min,
1401 opp->supplies[i].u_volt_max);
1402 return false;
1403 }
1404 }
1405
1406 return true;
1407}
1408
1409int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1410{
1411 if (opp1->rate != opp2->rate)
1412 return opp1->rate < opp2->rate ? -1 : 1;
1413 if (opp1->bandwidth && opp2->bandwidth &&
1414 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1415 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1416 if (opp1->level != opp2->level)
1417 return opp1->level < opp2->level ? -1 : 1;
1418 return 0;
1419}
1420
1421static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1422 struct opp_table *opp_table,
1423 struct list_head **head)
1424{
1425 struct dev_pm_opp *opp;
1426 int opp_cmp;
1427
1428 /*
1429 * Insert new OPP in order of increasing frequency and discard if
1430 * already present.
1431 *
1432 * Need to use &opp_table->opp_list in the condition part of the 'for'
1433 * loop, don't replace it with head otherwise it will become an infinite
1434 * loop.
1435 */
1436 list_for_each_entry(opp, &opp_table->opp_list, node) {
1437 opp_cmp = _opp_compare_key(new_opp, opp);
1438 if (opp_cmp > 0) {
1439 *head = &opp->node;
1440 continue;
1441 }
1442
1443 if (opp_cmp < 0)
1444 return 0;
1445
1446 /* Duplicate OPPs */
1447 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1448 __func__, opp->rate, opp->supplies[0].u_volt,
1449 opp->available, new_opp->rate,
1450 new_opp->supplies[0].u_volt, new_opp->available);
1451
1452 /* Should we compare voltages for all regulators here ? */
1453 return opp->available &&
1454 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1455 }
1456
1457 return 0;
1458}
1459
1460/*
1461 * Returns:
1462 * 0: On success. And appropriate error message for duplicate OPPs.
1463 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1464 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1465 * sure we don't print error messages unnecessarily if different parts of
1466 * kernel try to initialize the OPP table.
1467 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1468 * should be considered an error by the callers of _opp_add().
1469 */
1470int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1471 struct opp_table *opp_table, bool rate_not_available)
1472{
1473 struct list_head *head;
1474 int ret;
1475
1476 mutex_lock(&opp_table->lock);
1477 head = &opp_table->opp_list;
1478
1479 if (likely(!rate_not_available)) {
1480 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1481 if (ret) {
1482 mutex_unlock(&opp_table->lock);
1483 return ret;
1484 }
1485 }
1486
1487 list_add(&new_opp->node, head);
1488 mutex_unlock(&opp_table->lock);
1489
1490 new_opp->opp_table = opp_table;
1491 kref_init(&new_opp->kref);
1492
1493 opp_debug_create_one(new_opp, opp_table);
1494
1495 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1496 new_opp->available = false;
1497 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1498 __func__, new_opp->rate);
1499 }
1500
1501 return 0;
1502}
1503
1504/**
1505 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1506 * @opp_table: OPP table
1507 * @dev: device for which we do this operation
1508 * @freq: Frequency in Hz for this OPP
1509 * @u_volt: Voltage in uVolts for this OPP
1510 * @dynamic: Dynamically added OPPs.
1511 *
1512 * This function adds an opp definition to the opp table and returns status.
1513 * The opp is made available by default and it can be controlled using
1514 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1515 *
1516 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1517 * and freed by dev_pm_opp_of_remove_table.
1518 *
1519 * Return:
1520 * 0 On success OR
1521 * Duplicate OPPs (both freq and volt are same) and opp->available
1522 * -EEXIST Freq are same and volt are different OR
1523 * Duplicate OPPs (both freq and volt are same) and !opp->available
1524 * -ENOMEM Memory allocation failure
1525 */
1526int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1527 unsigned long freq, long u_volt, bool dynamic)
1528{
1529 struct dev_pm_opp *new_opp;
1530 unsigned long tol;
1531 int ret;
1532
1533 new_opp = _opp_allocate(opp_table);
1534 if (!new_opp)
1535 return -ENOMEM;
1536
1537 /* populate the opp table */
1538 new_opp->rate = freq;
1539 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1540 new_opp->supplies[0].u_volt = u_volt;
1541 new_opp->supplies[0].u_volt_min = u_volt - tol;
1542 new_opp->supplies[0].u_volt_max = u_volt + tol;
1543 new_opp->available = true;
1544 new_opp->dynamic = dynamic;
1545
1546 ret = _opp_add(dev, new_opp, opp_table, false);
1547 if (ret) {
1548 /* Don't return error for duplicate OPPs */
1549 if (ret == -EBUSY)
1550 ret = 0;
1551 goto free_opp;
1552 }
1553
1554 /*
1555 * Notify the changes in the availability of the operable
1556 * frequency/voltage list.
1557 */
1558 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1559 return 0;
1560
1561free_opp:
1562 _opp_free(new_opp);
1563
1564 return ret;
1565}
1566
1567/**
1568 * dev_pm_opp_set_supported_hw() - Set supported platforms
1569 * @dev: Device for which supported-hw has to be set.
1570 * @versions: Array of hierarchy of versions to match.
1571 * @count: Number of elements in the array.
1572 *
1573 * This is required only for the V2 bindings, and it enables a platform to
1574 * specify the hierarchy of versions it supports. OPP layer will then enable
1575 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1576 * property.
1577 */
1578struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1579 const u32 *versions, unsigned int count)
1580{
1581 struct opp_table *opp_table;
1582
1583 opp_table = dev_pm_opp_get_opp_table(dev);
1584 if (!opp_table)
1585 return ERR_PTR(-ENOMEM);
1586
1587 /* Make sure there are no concurrent readers while updating opp_table */
1588 WARN_ON(!list_empty(&opp_table->opp_list));
1589
1590 /* Another CPU that shares the OPP table has set the property ? */
1591 if (opp_table->supported_hw)
1592 return opp_table;
1593
1594 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1595 GFP_KERNEL);
1596 if (!opp_table->supported_hw) {
1597 dev_pm_opp_put_opp_table(opp_table);
1598 return ERR_PTR(-ENOMEM);
1599 }
1600
1601 opp_table->supported_hw_count = count;
1602
1603 return opp_table;
1604}
1605EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1606
1607/**
1608 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1609 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1610 *
1611 * This is required only for the V2 bindings, and is called for a matching
1612 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1613 * will not be freed.
1614 */
1615void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1616{
1617 /* Make sure there are no concurrent readers while updating opp_table */
1618 WARN_ON(!list_empty(&opp_table->opp_list));
1619
1620 kfree(opp_table->supported_hw);
1621 opp_table->supported_hw = NULL;
1622 opp_table->supported_hw_count = 0;
1623
1624 dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1627
1628/**
1629 * dev_pm_opp_set_prop_name() - Set prop-extn name
1630 * @dev: Device for which the prop-name has to be set.
1631 * @name: name to postfix to properties.
1632 *
1633 * This is required only for the V2 bindings, and it enables a platform to
1634 * specify the extn to be used for certain property names. The properties to
1635 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1636 * should postfix the property name with -<name> while looking for them.
1637 */
1638struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1639{
1640 struct opp_table *opp_table;
1641
1642 opp_table = dev_pm_opp_get_opp_table(dev);
1643 if (!opp_table)
1644 return ERR_PTR(-ENOMEM);
1645
1646 /* Make sure there are no concurrent readers while updating opp_table */
1647 WARN_ON(!list_empty(&opp_table->opp_list));
1648
1649 /* Another CPU that shares the OPP table has set the property ? */
1650 if (opp_table->prop_name)
1651 return opp_table;
1652
1653 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1654 if (!opp_table->prop_name) {
1655 dev_pm_opp_put_opp_table(opp_table);
1656 return ERR_PTR(-ENOMEM);
1657 }
1658
1659 return opp_table;
1660}
1661EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1662
1663/**
1664 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1665 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1666 *
1667 * This is required only for the V2 bindings, and is called for a matching
1668 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1669 * will not be freed.
1670 */
1671void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1672{
1673 /* Make sure there are no concurrent readers while updating opp_table */
1674 WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676 kfree(opp_table->prop_name);
1677 opp_table->prop_name = NULL;
1678
1679 dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1682
1683static int _allocate_set_opp_data(struct opp_table *opp_table)
1684{
1685 struct dev_pm_set_opp_data *data;
1686 int len, count = opp_table->regulator_count;
1687
1688 if (WARN_ON(!opp_table->regulators))
1689 return -EINVAL;
1690
1691 /* space for set_opp_data */
1692 len = sizeof(*data);
1693
1694 /* space for old_opp.supplies and new_opp.supplies */
1695 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1696
1697 data = kzalloc(len, GFP_KERNEL);
1698 if (!data)
1699 return -ENOMEM;
1700
1701 data->old_opp.supplies = (void *)(data + 1);
1702 data->new_opp.supplies = data->old_opp.supplies + count;
1703
1704 opp_table->set_opp_data = data;
1705
1706 return 0;
1707}
1708
1709static void _free_set_opp_data(struct opp_table *opp_table)
1710{
1711 kfree(opp_table->set_opp_data);
1712 opp_table->set_opp_data = NULL;
1713}
1714
1715/**
1716 * dev_pm_opp_set_regulators() - Set regulator names for the device
1717 * @dev: Device for which regulator name is being set.
1718 * @names: Array of pointers to the names of the regulator.
1719 * @count: Number of regulators.
1720 *
1721 * In order to support OPP switching, OPP layer needs to know the name of the
1722 * device's regulators, as the core would be required to switch voltages as
1723 * well.
1724 *
1725 * This must be called before any OPPs are initialized for the device.
1726 */
1727struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1728 const char * const names[],
1729 unsigned int count)
1730{
1731 struct opp_table *opp_table;
1732 struct regulator *reg;
1733 int ret, i;
1734
1735 opp_table = dev_pm_opp_get_opp_table(dev);
1736 if (!opp_table)
1737 return ERR_PTR(-ENOMEM);
1738
1739 /* This should be called before OPPs are initialized */
1740 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1741 ret = -EBUSY;
1742 goto err;
1743 }
1744
1745 /* Another CPU that shares the OPP table has set the regulators ? */
1746 if (opp_table->regulators)
1747 return opp_table;
1748
1749 opp_table->regulators = kmalloc_array(count,
1750 sizeof(*opp_table->regulators),
1751 GFP_KERNEL);
1752 if (!opp_table->regulators) {
1753 ret = -ENOMEM;
1754 goto err;
1755 }
1756
1757 for (i = 0; i < count; i++) {
1758 reg = regulator_get_optional(dev, names[i]);
1759 if (IS_ERR(reg)) {
1760 ret = PTR_ERR(reg);
1761 if (ret != -EPROBE_DEFER)
1762 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1763 __func__, names[i], ret);
1764 goto free_regulators;
1765 }
1766
1767 opp_table->regulators[i] = reg;
1768 }
1769
1770 opp_table->regulator_count = count;
1771
1772 /* Allocate block only once to pass to set_opp() routines */
1773 ret = _allocate_set_opp_data(opp_table);
1774 if (ret)
1775 goto free_regulators;
1776
1777 return opp_table;
1778
1779free_regulators:
1780 while (i != 0)
1781 regulator_put(opp_table->regulators[--i]);
1782
1783 kfree(opp_table->regulators);
1784 opp_table->regulators = NULL;
1785 opp_table->regulator_count = -1;
1786err:
1787 dev_pm_opp_put_opp_table(opp_table);
1788
1789 return ERR_PTR(ret);
1790}
1791EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1792
1793/**
1794 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1795 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1796 */
1797void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1798{
1799 int i;
1800
1801 if (!opp_table->regulators)
1802 goto put_opp_table;
1803
1804 /* Make sure there are no concurrent readers while updating opp_table */
1805 WARN_ON(!list_empty(&opp_table->opp_list));
1806
1807 if (opp_table->regulator_enabled) {
1808 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1809 regulator_disable(opp_table->regulators[i]);
1810
1811 opp_table->regulator_enabled = false;
1812 }
1813
1814 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1815 regulator_put(opp_table->regulators[i]);
1816
1817 _free_set_opp_data(opp_table);
1818
1819 kfree(opp_table->regulators);
1820 opp_table->regulators = NULL;
1821 opp_table->regulator_count = -1;
1822
1823put_opp_table:
1824 dev_pm_opp_put_opp_table(opp_table);
1825}
1826EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1827
1828/**
1829 * dev_pm_opp_set_clkname() - Set clk name for the device
1830 * @dev: Device for which clk name is being set.
1831 * @name: Clk name.
1832 *
1833 * In order to support OPP switching, OPP layer needs to get pointer to the
1834 * clock for the device. Simple cases work fine without using this routine (i.e.
1835 * by passing connection-id as NULL), but for a device with multiple clocks
1836 * available, the OPP core needs to know the exact name of the clk to use.
1837 *
1838 * This must be called before any OPPs are initialized for the device.
1839 */
1840struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1841{
1842 struct opp_table *opp_table;
1843 int ret;
1844
1845 opp_table = dev_pm_opp_get_opp_table(dev);
1846 if (!opp_table)
1847 return ERR_PTR(-ENOMEM);
1848
1849 /* This should be called before OPPs are initialized */
1850 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1851 ret = -EBUSY;
1852 goto err;
1853 }
1854
1855 /* Already have default clk set, free it */
1856 if (!IS_ERR(opp_table->clk))
1857 clk_put(opp_table->clk);
1858
1859 /* Find clk for the device */
1860 opp_table->clk = clk_get(dev, name);
1861 if (IS_ERR(opp_table->clk)) {
1862 ret = PTR_ERR(opp_table->clk);
1863 if (ret != -EPROBE_DEFER) {
1864 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1865 ret);
1866 }
1867 goto err;
1868 }
1869
1870 return opp_table;
1871
1872err:
1873 dev_pm_opp_put_opp_table(opp_table);
1874
1875 return ERR_PTR(ret);
1876}
1877EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1878
1879/**
1880 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1881 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1882 */
1883void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1884{
1885 /* Make sure there are no concurrent readers while updating opp_table */
1886 WARN_ON(!list_empty(&opp_table->opp_list));
1887
1888 clk_put(opp_table->clk);
1889 opp_table->clk = ERR_PTR(-EINVAL);
1890
1891 dev_pm_opp_put_opp_table(opp_table);
1892}
1893EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1894
1895/**
1896 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1897 * @dev: Device for which the helper is getting registered.
1898 * @set_opp: Custom set OPP helper.
1899 *
1900 * This is useful to support complex platforms (like platforms with multiple
1901 * regulators per device), instead of the generic OPP set rate helper.
1902 *
1903 * This must be called before any OPPs are initialized for the device.
1904 */
1905struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1906 int (*set_opp)(struct dev_pm_set_opp_data *data))
1907{
1908 struct opp_table *opp_table;
1909
1910 if (!set_opp)
1911 return ERR_PTR(-EINVAL);
1912
1913 opp_table = dev_pm_opp_get_opp_table(dev);
1914 if (!opp_table)
1915 return ERR_PTR(-ENOMEM);
1916
1917 /* This should be called before OPPs are initialized */
1918 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1919 dev_pm_opp_put_opp_table(opp_table);
1920 return ERR_PTR(-EBUSY);
1921 }
1922
1923 /* Another CPU that shares the OPP table has set the helper ? */
1924 if (!opp_table->set_opp)
1925 opp_table->set_opp = set_opp;
1926
1927 return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1930
1931/**
1932 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1933 * set_opp helper
1934 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1935 *
1936 * Release resources blocked for platform specific set_opp helper.
1937 */
1938void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1939{
1940 /* Make sure there are no concurrent readers while updating opp_table */
1941 WARN_ON(!list_empty(&opp_table->opp_list));
1942
1943 opp_table->set_opp = NULL;
1944 dev_pm_opp_put_opp_table(opp_table);
1945}
1946EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1947
1948static void _opp_detach_genpd(struct opp_table *opp_table)
1949{
1950 int index;
1951
1952 for (index = 0; index < opp_table->required_opp_count; index++) {
1953 if (!opp_table->genpd_virt_devs[index])
1954 continue;
1955
1956 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1957 opp_table->genpd_virt_devs[index] = NULL;
1958 }
1959
1960 kfree(opp_table->genpd_virt_devs);
1961 opp_table->genpd_virt_devs = NULL;
1962}
1963
1964/**
1965 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1966 * @dev: Consumer device for which the genpd is getting attached.
1967 * @names: Null terminated array of pointers containing names of genpd to attach.
1968 * @virt_devs: Pointer to return the array of virtual devices.
1969 *
1970 * Multiple generic power domains for a device are supported with the help of
1971 * virtual genpd devices, which are created for each consumer device - genpd
1972 * pair. These are the device structures which are attached to the power domain
1973 * and are required by the OPP core to set the performance state of the genpd.
1974 * The same API also works for the case where single genpd is available and so
1975 * we don't need to support that separately.
1976 *
1977 * This helper will normally be called by the consumer driver of the device
1978 * "dev", as only that has details of the genpd names.
1979 *
1980 * This helper needs to be called once with a list of all genpd to attach.
1981 * Otherwise the original device structure will be used instead by the OPP core.
1982 *
1983 * The order of entries in the names array must match the order in which
1984 * "required-opps" are added in DT.
1985 */
1986struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1987 const char **names, struct device ***virt_devs)
1988{
1989 struct opp_table *opp_table;
1990 struct device *virt_dev;
1991 int index = 0, ret = -EINVAL;
1992 const char **name = names;
1993
1994 opp_table = dev_pm_opp_get_opp_table(dev);
1995 if (!opp_table)
1996 return ERR_PTR(-ENOMEM);
1997
1998 /*
1999 * If the genpd's OPP table isn't already initialized, parsing of the
2000 * required-opps fail for dev. We should retry this after genpd's OPP
2001 * table is added.
2002 */
2003 if (!opp_table->required_opp_count) {
2004 ret = -EPROBE_DEFER;
2005 goto put_table;
2006 }
2007
2008 mutex_lock(&opp_table->genpd_virt_dev_lock);
2009
2010 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2011 sizeof(*opp_table->genpd_virt_devs),
2012 GFP_KERNEL);
2013 if (!opp_table->genpd_virt_devs)
2014 goto unlock;
2015
2016 while (*name) {
2017 if (index >= opp_table->required_opp_count) {
2018 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2019 *name, opp_table->required_opp_count, index);
2020 goto err;
2021 }
2022
2023 if (opp_table->genpd_virt_devs[index]) {
2024 dev_err(dev, "Genpd virtual device already set %s\n",
2025 *name);
2026 goto err;
2027 }
2028
2029 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2030 if (IS_ERR(virt_dev)) {
2031 ret = PTR_ERR(virt_dev);
2032 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2033 goto err;
2034 }
2035
2036 opp_table->genpd_virt_devs[index] = virt_dev;
2037 index++;
2038 name++;
2039 }
2040
2041 if (virt_devs)
2042 *virt_devs = opp_table->genpd_virt_devs;
2043 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2044
2045 return opp_table;
2046
2047err:
2048 _opp_detach_genpd(opp_table);
2049unlock:
2050 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2051
2052put_table:
2053 dev_pm_opp_put_opp_table(opp_table);
2054
2055 return ERR_PTR(ret);
2056}
2057EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2058
2059/**
2060 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2061 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2062 *
2063 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2064 * OPP table.
2065 */
2066void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2067{
2068 /*
2069 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2070 * used in parallel.
2071 */
2072 mutex_lock(&opp_table->genpd_virt_dev_lock);
2073 _opp_detach_genpd(opp_table);
2074 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2075
2076 dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2079
2080/**
2081 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2082 * @src_table: OPP table which has dst_table as one of its required OPP table.
2083 * @dst_table: Required OPP table of the src_table.
2084 * @pstate: Current performance state of the src_table.
2085 *
2086 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2087 * "required-opps" property of the OPP (present in @src_table) which has
2088 * performance state set to @pstate.
2089 *
2090 * Return: Zero or positive performance state on success, otherwise negative
2091 * value on errors.
2092 */
2093int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2094 struct opp_table *dst_table,
2095 unsigned int pstate)
2096{
2097 struct dev_pm_opp *opp;
2098 int dest_pstate = -EINVAL;
2099 int i;
2100
2101 if (!pstate)
2102 return 0;
2103
2104 /*
2105 * Normally the src_table will have the "required_opps" property set to
2106 * point to one of the OPPs in the dst_table, but in some cases the
2107 * genpd and its master have one to one mapping of performance states
2108 * and so none of them have the "required-opps" property set. Return the
2109 * pstate of the src_table as it is in such cases.
2110 */
2111 if (!src_table->required_opp_count)
2112 return pstate;
2113
2114 for (i = 0; i < src_table->required_opp_count; i++) {
2115 if (src_table->required_opp_tables[i]->np == dst_table->np)
2116 break;
2117 }
2118
2119 if (unlikely(i == src_table->required_opp_count)) {
2120 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2121 __func__, src_table, dst_table);
2122 return -EINVAL;
2123 }
2124
2125 mutex_lock(&src_table->lock);
2126
2127 list_for_each_entry(opp, &src_table->opp_list, node) {
2128 if (opp->pstate == pstate) {
2129 dest_pstate = opp->required_opps[i]->pstate;
2130 goto unlock;
2131 }
2132 }
2133
2134 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2135 dst_table);
2136
2137unlock:
2138 mutex_unlock(&src_table->lock);
2139
2140 return dest_pstate;
2141}
2142
2143/**
2144 * dev_pm_opp_add() - Add an OPP table from a table definitions
2145 * @dev: device for which we do this operation
2146 * @freq: Frequency in Hz for this OPP
2147 * @u_volt: Voltage in uVolts for this OPP
2148 *
2149 * This function adds an opp definition to the opp table and returns status.
2150 * The opp is made available by default and it can be controlled using
2151 * dev_pm_opp_enable/disable functions.
2152 *
2153 * Return:
2154 * 0 On success OR
2155 * Duplicate OPPs (both freq and volt are same) and opp->available
2156 * -EEXIST Freq are same and volt are different OR
2157 * Duplicate OPPs (both freq and volt are same) and !opp->available
2158 * -ENOMEM Memory allocation failure
2159 */
2160int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2161{
2162 struct opp_table *opp_table;
2163 int ret;
2164
2165 opp_table = dev_pm_opp_get_opp_table(dev);
2166 if (!opp_table)
2167 return -ENOMEM;
2168
2169 /* Fix regulator count for dynamic OPPs */
2170 opp_table->regulator_count = 1;
2171
2172 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2173 if (ret)
2174 dev_pm_opp_put_opp_table(opp_table);
2175
2176 return ret;
2177}
2178EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2179
2180/**
2181 * _opp_set_availability() - helper to set the availability of an opp
2182 * @dev: device for which we do this operation
2183 * @freq: OPP frequency to modify availability
2184 * @availability_req: availability status requested for this opp
2185 *
2186 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2187 * which is isolated here.
2188 *
2189 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2190 * copy operation, returns 0 if no modification was done OR modification was
2191 * successful.
2192 */
2193static int _opp_set_availability(struct device *dev, unsigned long freq,
2194 bool availability_req)
2195{
2196 struct opp_table *opp_table;
2197 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2198 int r = 0;
2199
2200 /* Find the opp_table */
2201 opp_table = _find_opp_table(dev);
2202 if (IS_ERR(opp_table)) {
2203 r = PTR_ERR(opp_table);
2204 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2205 return r;
2206 }
2207
2208 mutex_lock(&opp_table->lock);
2209
2210 /* Do we have the frequency? */
2211 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2212 if (tmp_opp->rate == freq) {
2213 opp = tmp_opp;
2214 break;
2215 }
2216 }
2217
2218 if (IS_ERR(opp)) {
2219 r = PTR_ERR(opp);
2220 goto unlock;
2221 }
2222
2223 /* Is update really needed? */
2224 if (opp->available == availability_req)
2225 goto unlock;
2226
2227 opp->available = availability_req;
2228
2229 dev_pm_opp_get(opp);
2230 mutex_unlock(&opp_table->lock);
2231
2232 /* Notify the change of the OPP availability */
2233 if (availability_req)
2234 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2235 opp);
2236 else
2237 blocking_notifier_call_chain(&opp_table->head,
2238 OPP_EVENT_DISABLE, opp);
2239
2240 dev_pm_opp_put(opp);
2241 goto put_table;
2242
2243unlock:
2244 mutex_unlock(&opp_table->lock);
2245put_table:
2246 dev_pm_opp_put_opp_table(opp_table);
2247 return r;
2248}
2249
2250/**
2251 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2252 * @dev: device for which we do this operation
2253 * @freq: OPP frequency to adjust voltage of
2254 * @u_volt: new OPP target voltage
2255 * @u_volt_min: new OPP min voltage
2256 * @u_volt_max: new OPP max voltage
2257 *
2258 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2259 * copy operation, returns 0 if no modifcation was done OR modification was
2260 * successful.
2261 */
2262int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2263 unsigned long u_volt, unsigned long u_volt_min,
2264 unsigned long u_volt_max)
2265
2266{
2267 struct opp_table *opp_table;
2268 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2269 int r = 0;
2270
2271 /* Find the opp_table */
2272 opp_table = _find_opp_table(dev);
2273 if (IS_ERR(opp_table)) {
2274 r = PTR_ERR(opp_table);
2275 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2276 return r;
2277 }
2278
2279 mutex_lock(&opp_table->lock);
2280
2281 /* Do we have the frequency? */
2282 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2283 if (tmp_opp->rate == freq) {
2284 opp = tmp_opp;
2285 break;
2286 }
2287 }
2288
2289 if (IS_ERR(opp)) {
2290 r = PTR_ERR(opp);
2291 goto adjust_unlock;
2292 }
2293
2294 /* Is update really needed? */
2295 if (opp->supplies->u_volt == u_volt)
2296 goto adjust_unlock;
2297
2298 opp->supplies->u_volt = u_volt;
2299 opp->supplies->u_volt_min = u_volt_min;
2300 opp->supplies->u_volt_max = u_volt_max;
2301
2302 dev_pm_opp_get(opp);
2303 mutex_unlock(&opp_table->lock);
2304
2305 /* Notify the voltage change of the OPP */
2306 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2307 opp);
2308
2309 dev_pm_opp_put(opp);
2310 goto adjust_put_table;
2311
2312adjust_unlock:
2313 mutex_unlock(&opp_table->lock);
2314adjust_put_table:
2315 dev_pm_opp_put_opp_table(opp_table);
2316 return r;
2317}
2318EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2319
2320/**
2321 * dev_pm_opp_enable() - Enable a specific OPP
2322 * @dev: device for which we do this operation
2323 * @freq: OPP frequency to enable
2324 *
2325 * Enables a provided opp. If the operation is valid, this returns 0, else the
2326 * corresponding error value. It is meant to be used for users an OPP available
2327 * after being temporarily made unavailable with dev_pm_opp_disable.
2328 *
2329 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2330 * copy operation, returns 0 if no modification was done OR modification was
2331 * successful.
2332 */
2333int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2334{
2335 return _opp_set_availability(dev, freq, true);
2336}
2337EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2338
2339/**
2340 * dev_pm_opp_disable() - Disable a specific OPP
2341 * @dev: device for which we do this operation
2342 * @freq: OPP frequency to disable
2343 *
2344 * Disables a provided opp. If the operation is valid, this returns
2345 * 0, else the corresponding error value. It is meant to be a temporary
2346 * control by users to make this OPP not available until the circumstances are
2347 * right to make it available again (with a call to dev_pm_opp_enable).
2348 *
2349 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2350 * copy operation, returns 0 if no modification was done OR modification was
2351 * successful.
2352 */
2353int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2354{
2355 return _opp_set_availability(dev, freq, false);
2356}
2357EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2358
2359/**
2360 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2361 * @dev: Device for which notifier needs to be registered
2362 * @nb: Notifier block to be registered
2363 *
2364 * Return: 0 on success or a negative error value.
2365 */
2366int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2367{
2368 struct opp_table *opp_table;
2369 int ret;
2370
2371 opp_table = _find_opp_table(dev);
2372 if (IS_ERR(opp_table))
2373 return PTR_ERR(opp_table);
2374
2375 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2376
2377 dev_pm_opp_put_opp_table(opp_table);
2378
2379 return ret;
2380}
2381EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2382
2383/**
2384 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2385 * @dev: Device for which notifier needs to be unregistered
2386 * @nb: Notifier block to be unregistered
2387 *
2388 * Return: 0 on success or a negative error value.
2389 */
2390int dev_pm_opp_unregister_notifier(struct device *dev,
2391 struct notifier_block *nb)
2392{
2393 struct opp_table *opp_table;
2394 int ret;
2395
2396 opp_table = _find_opp_table(dev);
2397 if (IS_ERR(opp_table))
2398 return PTR_ERR(opp_table);
2399
2400 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2401
2402 dev_pm_opp_put_opp_table(opp_table);
2403
2404 return ret;
2405}
2406EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2407
2408void _dev_pm_opp_find_and_remove_table(struct device *dev)
2409{
2410 struct opp_table *opp_table;
2411
2412 /* Check for existing table for 'dev' */
2413 opp_table = _find_opp_table(dev);
2414 if (IS_ERR(opp_table)) {
2415 int error = PTR_ERR(opp_table);
2416
2417 if (error != -ENODEV)
2418 WARN(1, "%s: opp_table: %d\n",
2419 IS_ERR_OR_NULL(dev) ?
2420 "Invalid device" : dev_name(dev),
2421 error);
2422 return;
2423 }
2424
2425 /*
2426 * Drop the extra reference only if the OPP table was successfully added
2427 * with dev_pm_opp_of_add_table() earlier.
2428 **/
2429 if (_opp_remove_all_static(opp_table))
2430 dev_pm_opp_put_opp_table(opp_table);
2431
2432 /* Drop reference taken by _find_opp_table() */
2433 dev_pm_opp_put_opp_table(opp_table);
2434}
2435
2436/**
2437 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2438 * @dev: device pointer used to lookup OPP table.
2439 *
2440 * Free both OPPs created using static entries present in DT and the
2441 * dynamically added entries.
2442 */
2443void dev_pm_opp_remove_table(struct device *dev)
2444{
2445 _dev_pm_opp_find_and_remove_table(dev);
2446}
2447EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106 return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142{
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228{
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450 return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455 return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460 return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466{
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477{
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488{
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503{
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559{
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572{
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581{
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590{
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620{
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649{
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656{
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681{
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709{
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734{
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762{
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784{
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806{
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 if (IS_ERR(opp))
812 return opp;
813
814 /* False match */
815 if (temp == OPP_LEVEL_UNSET) {
816 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 dev_pm_opp_put(opp);
818 return ERR_PTR(-ENODEV);
819 }
820
821 *level = temp;
822 return opp;
823}
824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826/**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev: device for which we do this operation
829 * @level: Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL: for bad pointer
838 * ERANGE: no match found for search
839 * ENODEV: if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 unsigned int *level)
846{
847 unsigned long temp = *level;
848 struct dev_pm_opp *opp;
849
850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 *level = temp;
852 return opp;
853}
854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856/**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev: device for which we do this operation
859 * @bw: start bandwidth
860 * @index: which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL: for bad pointer
869 * ERANGE: no match found for search
870 * ENODEV: if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 int index)
877{
878 unsigned long temp = *bw;
879 struct dev_pm_opp *opp;
880
881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 *bw = temp;
883 return opp;
884}
885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887/**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev: device for which we do this operation
890 * @bw: start bandwidth
891 * @index: which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL: for bad pointer
900 * ERANGE: no match found for search
901 * ENODEV: if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 unsigned int *bw, int index)
908{
909 unsigned long temp = *bw;
910 struct dev_pm_opp *opp;
911
912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 *bw = temp;
914 return opp;
915}
916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 struct dev_pm_opp_supply *supply)
920{
921 int ret;
922
923 /* Regulator not available for device */
924 if (IS_ERR(reg)) {
925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 PTR_ERR(reg));
927 return 0;
928 }
929
930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 supply->u_volt, supply->u_volt_max);
935 if (ret)
936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 __func__, supply->u_volt_min, supply->u_volt,
938 supply->u_volt_max, ret);
939
940 return ret;
941}
942
943static int
944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 struct dev_pm_opp *opp, void *data, bool scaling_down)
946{
947 unsigned long *target = data;
948 unsigned long freq;
949 int ret;
950
951 /* One of target and opp must be available */
952 if (target) {
953 freq = *target;
954 } else if (opp) {
955 freq = opp->rates[0];
956 } else {
957 WARN_ON(1);
958 return -EINVAL;
959 }
960
961 ret = clk_set_rate(opp_table->clk, freq);
962 if (ret) {
963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 ret);
965 } else {
966 opp_table->current_rate_single_clk = freq;
967 }
968
969 return ret;
970}
971
972/*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
976int dev_pm_opp_config_clks_simple(struct device *dev,
977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 bool scaling_down)
979{
980 int ret, i;
981
982 if (scaling_down) {
983 for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 return ret;
989 }
990 }
991 } else {
992 for (i = 0; i < opp_table->clk_count; i++) {
993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 if (ret) {
995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 ret);
997 return ret;
998 }
999 }
1000 }
1001
1002 return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 struct regulator **regulators, unsigned int count)
1009{
1010 struct regulator *reg = regulators[0];
1011 int ret;
1012
1013 /* This function only supports single regulator per device */
1014 if (WARN_ON(count > 1)) {
1015 dev_err(dev, "multiple regulators are not supported\n");
1016 return -EINVAL;
1017 }
1018
1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * Enable the regulator after setting its voltages, otherwise it breaks
1025 * some boot-enabled regulators.
1026 */
1027 if (unlikely(!new_opp->opp_table->enabled)) {
1028 ret = regulator_enable(reg);
1029 if (ret < 0)
1030 dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 }
1032
1033 return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037 struct dev_pm_opp *opp, struct device *dev)
1038{
1039 u32 avg, peak;
1040 int i, ret;
1041
1042 if (!opp_table->paths)
1043 return 0;
1044
1045 for (i = 0; i < opp_table->path_count; i++) {
1046 if (!opp) {
1047 avg = 0;
1048 peak = 0;
1049 } else {
1050 avg = opp->bandwidth[i].avg;
1051 peak = opp->bandwidth[i].peak;
1052 }
1053 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 if (ret) {
1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 opp ? "set" : "remove", i, ret);
1057 return ret;
1058 }
1059 }
1060
1061 return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 struct dev_pm_opp *opp, bool up)
1067{
1068 struct device **devs = opp_table->required_devs;
1069 struct dev_pm_opp *required_opp;
1070 int index, target, delta, ret;
1071
1072 if (!devs)
1073 return 0;
1074
1075 /* required-opps not fully initialized yet */
1076 if (lazy_linking_pending(opp_table))
1077 return -EBUSY;
1078
1079 /* Scaling up? Set required OPPs in normal order, else reverse */
1080 if (up) {
1081 index = 0;
1082 target = opp_table->required_opp_count;
1083 delta = 1;
1084 } else {
1085 index = opp_table->required_opp_count - 1;
1086 target = -1;
1087 delta = -1;
1088 }
1089
1090 while (index != target) {
1091 if (devs[index]) {
1092 required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094 ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 index += delta;
1100 }
1101
1102 return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106 struct dev_pm_opp *opp)
1107{
1108 unsigned int level = 0;
1109 int ret = 0;
1110
1111 if (opp) {
1112 if (opp->level == OPP_LEVEL_UNSET)
1113 return 0;
1114
1115 level = opp->level;
1116 }
1117
1118 /* Request a new performance state through the device's PM domain. */
1119 ret = dev_pm_domain_set_performance_state(dev, level);
1120 if (ret)
1121 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122 ret);
1123
1124 return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130 unsigned long freq;
1131
1132 if (!IS_ERR(opp_table->clk)) {
1133 freq = clk_get_rate(opp_table->clk);
1134 opp = _find_freq_ceil(opp_table, &freq);
1135 }
1136
1137 /*
1138 * Unable to find the current OPP ? Pick the first from the list since
1139 * it is in ascending order, otherwise rest of the code will need to
1140 * make special checks to validate current_opp.
1141 */
1142 if (IS_ERR(opp)) {
1143 mutex_lock(&opp_table->lock);
1144 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145 dev_pm_opp_get(opp);
1146 mutex_unlock(&opp_table->lock);
1147 }
1148
1149 opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154 int ret;
1155
1156 if (!opp_table->enabled)
1157 return 0;
1158
1159 /*
1160 * Some drivers need to support cases where some platforms may
1161 * have OPP table for the device, while others don't and
1162 * opp_set_rate() just needs to behave like clk_set_rate().
1163 */
1164 if (!_get_opp_count(opp_table))
1165 return 0;
1166
1167 ret = _set_opp_bw(opp_table, NULL, dev);
1168 if (ret)
1169 return ret;
1170
1171 if (opp_table->regulators)
1172 regulator_disable(opp_table->regulators[0]);
1173
1174 ret = _set_opp_level(dev, opp_table, NULL);
1175 if (ret)
1176 goto out;
1177
1178 ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181 opp_table->enabled = false;
1182 return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186 struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188 struct dev_pm_opp *old_opp;
1189 int scaling_down, ret;
1190
1191 if (unlikely(!opp))
1192 return _disable_opp_table(dev, opp_table);
1193
1194 /* Find the currently set OPP if we don't know already */
1195 if (unlikely(!opp_table->current_opp))
1196 _find_current_opp(dev, opp_table);
1197
1198 old_opp = opp_table->current_opp;
1199
1200 /* Return early if nothing to do */
1201 if (!forced && old_opp == opp && opp_table->enabled) {
1202 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203 return 0;
1204 }
1205
1206 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212 if (scaling_down == -1)
1213 scaling_down = 0;
1214
1215 /* Scaling up? Configure required OPPs before frequency */
1216 if (!scaling_down) {
1217 ret = _set_required_opps(dev, opp_table, opp, true);
1218 if (ret) {
1219 dev_err(dev, "Failed to set required opps: %d\n", ret);
1220 return ret;
1221 }
1222
1223 ret = _set_opp_level(dev, opp_table, opp);
1224 if (ret)
1225 return ret;
1226
1227 ret = _set_opp_bw(opp_table, opp, dev);
1228 if (ret) {
1229 dev_err(dev, "Failed to set bw: %d\n", ret);
1230 return ret;
1231 }
1232
1233 if (opp_table->config_regulators) {
1234 ret = opp_table->config_regulators(dev, old_opp, opp,
1235 opp_table->regulators,
1236 opp_table->regulator_count);
1237 if (ret) {
1238 dev_err(dev, "Failed to set regulator voltages: %d\n",
1239 ret);
1240 return ret;
1241 }
1242 }
1243 }
1244
1245 if (opp_table->config_clks) {
1246 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247 if (ret)
1248 return ret;
1249 }
1250
1251 /* Scaling down? Configure required OPPs after frequency */
1252 if (scaling_down) {
1253 if (opp_table->config_regulators) {
1254 ret = opp_table->config_regulators(dev, old_opp, opp,
1255 opp_table->regulators,
1256 opp_table->regulator_count);
1257 if (ret) {
1258 dev_err(dev, "Failed to set regulator voltages: %d\n",
1259 ret);
1260 return ret;
1261 }
1262 }
1263
1264 ret = _set_opp_bw(opp_table, opp, dev);
1265 if (ret) {
1266 dev_err(dev, "Failed to set bw: %d\n", ret);
1267 return ret;
1268 }
1269
1270 ret = _set_opp_level(dev, opp_table, opp);
1271 if (ret)
1272 return ret;
1273
1274 ret = _set_required_opps(dev, opp_table, opp, false);
1275 if (ret) {
1276 dev_err(dev, "Failed to set required opps: %d\n", ret);
1277 return ret;
1278 }
1279 }
1280
1281 opp_table->enabled = true;
1282 dev_pm_opp_put(old_opp);
1283
1284 /* Make sure current_opp doesn't get freed */
1285 dev_pm_opp_get(opp);
1286 opp_table->current_opp = opp;
1287
1288 return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev: device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304 struct opp_table *opp_table;
1305 unsigned long freq = 0, temp_freq;
1306 struct dev_pm_opp *opp = NULL;
1307 bool forced = false;
1308 int ret;
1309
1310 opp_table = _find_opp_table(dev);
1311 if (IS_ERR(opp_table)) {
1312 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313 return PTR_ERR(opp_table);
1314 }
1315
1316 if (target_freq) {
1317 /*
1318 * For IO devices which require an OPP on some platforms/SoCs
1319 * while just needing to scale the clock on some others
1320 * we look for empty OPP tables with just a clock handle and
1321 * scale only the clk. This makes dev_pm_opp_set_rate()
1322 * equivalent to a clk_set_rate()
1323 */
1324 if (!_get_opp_count(opp_table)) {
1325 ret = opp_table->config_clks(dev, opp_table, NULL,
1326 &target_freq, false);
1327 goto put_opp_table;
1328 }
1329
1330 freq = clk_round_rate(opp_table->clk, target_freq);
1331 if ((long)freq <= 0)
1332 freq = target_freq;
1333
1334 /*
1335 * The clock driver may support finer resolution of the
1336 * frequencies than the OPP table, don't update the frequency we
1337 * pass to clk_set_rate() here.
1338 */
1339 temp_freq = freq;
1340 opp = _find_freq_ceil(opp_table, &temp_freq);
1341 if (IS_ERR(opp)) {
1342 ret = PTR_ERR(opp);
1343 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344 __func__, freq, ret);
1345 goto put_opp_table;
1346 }
1347
1348 /*
1349 * An OPP entry specifies the highest frequency at which other
1350 * properties of the OPP entry apply. Even if the new OPP is
1351 * same as the old one, we may still reach here for a different
1352 * value of the frequency. In such a case, do not abort but
1353 * configure the hardware to the desired frequency forcefully.
1354 */
1355 forced = opp_table->current_rate_single_clk != freq;
1356 }
1357
1358 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360 if (freq)
1361 dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364 dev_pm_opp_put_opp_table(opp_table);
1365 return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381 struct opp_table *opp_table;
1382 int ret;
1383
1384 opp_table = _find_opp_table(dev);
1385 if (IS_ERR(opp_table)) {
1386 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387 return PTR_ERR(opp_table);
1388 }
1389
1390 ret = _set_opp(dev, opp_table, opp, NULL, false);
1391 dev_pm_opp_put_opp_table(opp_table);
1392
1393 return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399 struct opp_table *opp_table)
1400{
1401 opp_debug_unregister(opp_dev, opp_table);
1402 list_del(&opp_dev->node);
1403 kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407 struct opp_table *opp_table)
1408{
1409 struct opp_device *opp_dev;
1410
1411 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412 if (!opp_dev)
1413 return NULL;
1414
1415 /* Initialize opp-dev */
1416 opp_dev->dev = dev;
1417
1418 mutex_lock(&opp_table->lock);
1419 list_add(&opp_dev->node, &opp_table->dev_list);
1420 mutex_unlock(&opp_table->lock);
1421
1422 /* Create debugfs entries for the opp_table */
1423 opp_debug_register(opp_dev, opp_table);
1424
1425 return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430 struct opp_table *opp_table;
1431 struct opp_device *opp_dev;
1432 int ret;
1433
1434 /*
1435 * Allocate a new OPP table. In the infrequent case where a new
1436 * device is needed to be added, we pay this penalty.
1437 */
1438 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439 if (!opp_table)
1440 return ERR_PTR(-ENOMEM);
1441
1442 mutex_init(&opp_table->lock);
1443 INIT_LIST_HEAD(&opp_table->dev_list);
1444 INIT_LIST_HEAD(&opp_table->lazy);
1445
1446 opp_table->clk = ERR_PTR(-ENODEV);
1447
1448 /* Mark regulator count uninitialized */
1449 opp_table->regulator_count = -1;
1450
1451 opp_dev = _add_opp_dev(dev, opp_table);
1452 if (!opp_dev) {
1453 ret = -ENOMEM;
1454 goto err;
1455 }
1456
1457 _of_init_opp_table(opp_table, dev, index);
1458
1459 /* Find interconnect path(s) for the device */
1460 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461 if (ret) {
1462 if (ret == -EPROBE_DEFER)
1463 goto remove_opp_dev;
1464
1465 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466 __func__, ret);
1467 }
1468
1469 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470 INIT_LIST_HEAD(&opp_table->opp_list);
1471 kref_init(&opp_table->kref);
1472
1473 return opp_table;
1474
1475remove_opp_dev:
1476 _of_clear_opp_table(opp_table);
1477 _remove_opp_dev(opp_dev, opp_table);
1478 mutex_destroy(&opp_table->lock);
1479err:
1480 kfree(opp_table);
1481 return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486 kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490 struct opp_table *opp_table,
1491 bool getclk)
1492{
1493 int ret;
1494
1495 /*
1496 * Return early if we don't need to get clk or we have already done it
1497 * earlier.
1498 */
1499 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500 opp_table->clks)
1501 return opp_table;
1502
1503 /* Find clk for the device */
1504 opp_table->clk = clk_get(dev, NULL);
1505
1506 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507 if (!ret) {
1508 opp_table->config_clks = _opp_config_clk_single;
1509 opp_table->clk_count = 1;
1510 return opp_table;
1511 }
1512
1513 if (ret == -ENOENT) {
1514 /*
1515 * There are few platforms which don't want the OPP core to
1516 * manage device's clock settings. In such cases neither the
1517 * platform provides the clks explicitly to us, nor the DT
1518 * contains a valid clk entry. The OPP nodes in DT may still
1519 * contain "opp-hz" property though, which we need to parse and
1520 * allow the platform to find an OPP based on freq later on.
1521 *
1522 * This is a simple solution to take care of such corner cases,
1523 * i.e. make the clk_count 1, which lets us allocate space for
1524 * frequency in opp->rates and also parse the entries in DT.
1525 */
1526 opp_table->clk_count = 1;
1527
1528 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529 return opp_table;
1530 }
1531
1532 dev_pm_opp_put_opp_table(opp_table);
1533 dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535 return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554 bool getclk)
1555{
1556 struct opp_table *opp_table;
1557
1558again:
1559 mutex_lock(&opp_table_lock);
1560
1561 opp_table = _find_opp_table_unlocked(dev);
1562 if (!IS_ERR(opp_table))
1563 goto unlock;
1564
1565 /*
1566 * The opp_tables list or an OPP table's dev_list is getting updated by
1567 * another user, wait for it to finish.
1568 */
1569 if (unlikely(opp_tables_busy)) {
1570 mutex_unlock(&opp_table_lock);
1571 cpu_relax();
1572 goto again;
1573 }
1574
1575 opp_tables_busy = true;
1576 opp_table = _managed_opp(dev, index);
1577
1578 /* Drop the lock to reduce the size of critical section */
1579 mutex_unlock(&opp_table_lock);
1580
1581 if (opp_table) {
1582 if (!_add_opp_dev(dev, opp_table)) {
1583 dev_pm_opp_put_opp_table(opp_table);
1584 opp_table = ERR_PTR(-ENOMEM);
1585 }
1586
1587 mutex_lock(&opp_table_lock);
1588 } else {
1589 opp_table = _allocate_opp_table(dev, index);
1590
1591 mutex_lock(&opp_table_lock);
1592 if (!IS_ERR(opp_table))
1593 list_add(&opp_table->node, &opp_tables);
1594 }
1595
1596 opp_tables_busy = false;
1597
1598unlock:
1599 mutex_unlock(&opp_table_lock);
1600
1601 return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606 return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611 return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618 struct opp_device *opp_dev, *temp;
1619 int i;
1620
1621 /* Drop the lock as soon as we can */
1622 list_del(&opp_table->node);
1623 mutex_unlock(&opp_table_lock);
1624
1625 if (opp_table->current_opp)
1626 dev_pm_opp_put(opp_table->current_opp);
1627
1628 _of_clear_opp_table(opp_table);
1629
1630 /* Release automatically acquired single clk */
1631 if (!IS_ERR(opp_table->clk))
1632 clk_put(opp_table->clk);
1633
1634 if (opp_table->paths) {
1635 for (i = 0; i < opp_table->path_count; i++)
1636 icc_put(opp_table->paths[i]);
1637 kfree(opp_table->paths);
1638 }
1639
1640 WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643 _remove_opp_dev(opp_dev, opp_table);
1644
1645 mutex_destroy(&opp_table->lock);
1646 kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652 &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658 kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664 struct opp_table *opp_table = opp->opp_table;
1665
1666 list_del(&opp->node);
1667 mutex_unlock(&opp_table->lock);
1668
1669 /*
1670 * Notify the changes in the availability of the operable
1671 * frequency/voltage list.
1672 */
1673 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674 _of_clear_opp(opp_table, opp);
1675 opp_debug_remove_one(opp);
1676 kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681 kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove() - Remove an OPP from OPP table
1692 * @dev: device for which we do this operation
1693 * @freq: OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699 struct dev_pm_opp *opp = NULL, *iter;
1700 struct opp_table *opp_table;
1701
1702 opp_table = _find_opp_table(dev);
1703 if (IS_ERR(opp_table))
1704 return;
1705
1706 if (!assert_single_clk(opp_table))
1707 goto put_table;
1708
1709 mutex_lock(&opp_table->lock);
1710
1711 list_for_each_entry(iter, &opp_table->opp_list, node) {
1712 if (iter->rates[0] == freq) {
1713 opp = iter;
1714 break;
1715 }
1716 }
1717
1718 mutex_unlock(&opp_table->lock);
1719
1720 if (opp) {
1721 dev_pm_opp_put(opp);
1722
1723 /* Drop the reference taken by dev_pm_opp_add() */
1724 dev_pm_opp_put_opp_table(opp_table);
1725 } else {
1726 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727 __func__, freq);
1728 }
1729
1730put_table:
1731 /* Drop the reference taken by _find_opp_table() */
1732 dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737 bool dynamic)
1738{
1739 struct dev_pm_opp *opp = NULL, *temp;
1740
1741 mutex_lock(&opp_table->lock);
1742 list_for_each_entry(temp, &opp_table->opp_list, node) {
1743 /*
1744 * Refcount must be dropped only once for each OPP by OPP core,
1745 * do that with help of "removed" flag.
1746 */
1747 if (!temp->removed && dynamic == temp->dynamic) {
1748 opp = temp;
1749 break;
1750 }
1751 }
1752
1753 mutex_unlock(&opp_table->lock);
1754 return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764 struct dev_pm_opp *opp;
1765
1766 while ((opp = _opp_get_next(opp_table, dynamic))) {
1767 opp->removed = true;
1768 dev_pm_opp_put(opp);
1769
1770 /* Drop the references taken by dev_pm_opp_add() */
1771 if (dynamic)
1772 dev_pm_opp_put_opp_table(opp_table);
1773 }
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778 mutex_lock(&opp_table->lock);
1779
1780 if (!opp_table->parsed_static_opps) {
1781 mutex_unlock(&opp_table->lock);
1782 return false;
1783 }
1784
1785 if (--opp_table->parsed_static_opps) {
1786 mutex_unlock(&opp_table->lock);
1787 return true;
1788 }
1789
1790 mutex_unlock(&opp_table->lock);
1791
1792 _opp_remove_all(opp_table, false);
1793 return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev: device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804 struct opp_table *opp_table;
1805
1806 opp_table = _find_opp_table(dev);
1807 if (IS_ERR(opp_table))
1808 return;
1809
1810 _opp_remove_all(opp_table, true);
1811
1812 /* Drop the reference taken by _find_opp_table() */
1813 dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819 struct dev_pm_opp *opp;
1820 int supply_count, supply_size, icc_size, clk_size;
1821
1822 /* Allocate space for at least one supply */
1823 supply_count = opp_table->regulator_count > 0 ?
1824 opp_table->regulator_count : 1;
1825 supply_size = sizeof(*opp->supplies) * supply_count;
1826 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829 /* allocate new OPP node and supplies structures */
1830 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831 if (!opp)
1832 return NULL;
1833
1834 /* Put the supplies, bw and clock at the end of the OPP structure */
1835 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839 if (icc_size)
1840 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842 INIT_LIST_HEAD(&opp->node);
1843
1844 opp->level = OPP_LEVEL_UNSET;
1845
1846 return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850 struct opp_table *opp_table)
1851{
1852 struct regulator *reg;
1853 int i;
1854
1855 if (!opp_table->regulators)
1856 return true;
1857
1858 for (i = 0; i < opp_table->regulator_count; i++) {
1859 reg = opp_table->regulators[i];
1860
1861 if (!regulator_is_supported_voltage(reg,
1862 opp->supplies[i].u_volt_min,
1863 opp->supplies[i].u_volt_max)) {
1864 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865 __func__, opp->supplies[i].u_volt_min,
1866 opp->supplies[i].u_volt_max);
1867 return false;
1868 }
1869 }
1870
1871 return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877 int i;
1878
1879 for (i = 0; i < opp_table->clk_count; i++) {
1880 if (opp1->rates[i] != opp2->rates[i])
1881 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882 }
1883
1884 /* Same rates for both OPPs */
1885 return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889 struct dev_pm_opp *opp2)
1890{
1891 int i;
1892
1893 for (i = 0; i < opp_table->path_count; i++) {
1894 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896 }
1897
1898 /* Same bw for both OPPs */
1899 return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909 struct dev_pm_opp *opp2)
1910{
1911 int ret;
1912
1913 ret = _opp_compare_rate(opp_table, opp1, opp2);
1914 if (ret)
1915 return ret;
1916
1917 ret = _opp_compare_bw(opp_table, opp1, opp2);
1918 if (ret)
1919 return ret;
1920
1921 if (opp1->level != opp2->level)
1922 return opp1->level < opp2->level ? -1 : 1;
1923
1924 /* Duplicate OPPs */
1925 return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929 struct opp_table *opp_table,
1930 struct list_head **head)
1931{
1932 struct dev_pm_opp *opp;
1933 int opp_cmp;
1934
1935 /*
1936 * Insert new OPP in order of increasing frequency and discard if
1937 * already present.
1938 *
1939 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940 * loop, don't replace it with head otherwise it will become an infinite
1941 * loop.
1942 */
1943 list_for_each_entry(opp, &opp_table->opp_list, node) {
1944 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945 if (opp_cmp > 0) {
1946 *head = &opp->node;
1947 continue;
1948 }
1949
1950 if (opp_cmp < 0)
1951 return 0;
1952
1953 /* Duplicate OPPs */
1954 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956 opp->available, new_opp->rates[0],
1957 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959 /* Should we compare voltages for all regulators here ? */
1960 return opp->available &&
1961 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962 }
1963
1964 return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969 int i;
1970
1971 for (i = 0; i < count; i++) {
1972 if (opp->required_opps[i]->available)
1973 continue;
1974
1975 opp->available = false;
1976 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978 return;
1979 }
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 * sure we don't print error messages unnecessarily if different parts of
1988 * kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 * should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993 struct opp_table *opp_table)
1994{
1995 struct list_head *head;
1996 int ret;
1997
1998 mutex_lock(&opp_table->lock);
1999 head = &opp_table->opp_list;
2000
2001 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002 if (ret) {
2003 mutex_unlock(&opp_table->lock);
2004 return ret;
2005 }
2006
2007 list_add(&new_opp->node, head);
2008 mutex_unlock(&opp_table->lock);
2009
2010 new_opp->opp_table = opp_table;
2011 kref_init(&new_opp->kref);
2012
2013 opp_debug_create_one(new_opp, opp_table);
2014
2015 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016 new_opp->available = false;
2017 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018 __func__, new_opp->rates[0]);
2019 }
2020
2021 /* required-opps not fully initialized yet */
2022 if (lazy_linking_pending(opp_table))
2023 return 0;
2024
2025 _required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027 return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table: OPP table
2033 * @dev: device for which we do this operation
2034 * @data: The OPP data for the OPP to add
2035 * @dynamic: Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0 On success OR
2046 * Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST Freq are same and volt are different OR
2048 * Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052 struct dev_pm_opp_data *data, bool dynamic)
2053{
2054 struct dev_pm_opp *new_opp;
2055 unsigned long tol, u_volt = data->u_volt;
2056 int ret;
2057
2058 if (!assert_single_clk(opp_table))
2059 return -EINVAL;
2060
2061 new_opp = _opp_allocate(opp_table);
2062 if (!new_opp)
2063 return -ENOMEM;
2064
2065 /* populate the opp table */
2066 new_opp->rates[0] = data->freq;
2067 new_opp->level = data->level;
2068 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069 new_opp->supplies[0].u_volt = u_volt;
2070 new_opp->supplies[0].u_volt_min = u_volt - tol;
2071 new_opp->supplies[0].u_volt_max = u_volt + tol;
2072 new_opp->available = true;
2073 new_opp->dynamic = dynamic;
2074
2075 ret = _opp_add(dev, new_opp, opp_table);
2076 if (ret) {
2077 /* Don't return error for duplicate OPPs */
2078 if (ret == -EBUSY)
2079 ret = 0;
2080 goto free_opp;
2081 }
2082
2083 /*
2084 * Notify the changes in the availability of the operable
2085 * frequency/voltage list.
2086 */
2087 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088 return 0;
2089
2090free_opp:
2091 _opp_free(new_opp);
2092
2093 return ret;
2094}
2095
2096/*
2097 * This is required only for the V2 bindings, and it enables a platform to
2098 * specify the hierarchy of versions it supports. OPP layer will then enable
2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100 * property.
2101 */
2102static int _opp_set_supported_hw(struct opp_table *opp_table,
2103 const u32 *versions, unsigned int count)
2104{
2105 /* Another CPU that shares the OPP table has set the property ? */
2106 if (opp_table->supported_hw)
2107 return 0;
2108
2109 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110 GFP_KERNEL);
2111 if (!opp_table->supported_hw)
2112 return -ENOMEM;
2113
2114 opp_table->supported_hw_count = count;
2115
2116 return 0;
2117}
2118
2119static void _opp_put_supported_hw(struct opp_table *opp_table)
2120{
2121 if (opp_table->supported_hw) {
2122 kfree(opp_table->supported_hw);
2123 opp_table->supported_hw = NULL;
2124 opp_table->supported_hw_count = 0;
2125 }
2126}
2127
2128/*
2129 * This is required only for the V2 bindings, and it enables a platform to
2130 * specify the extn to be used for certain property names. The properties to
2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132 * should postfix the property name with -<name> while looking for them.
2133 */
2134static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135{
2136 /* Another CPU that shares the OPP table has set the property ? */
2137 if (!opp_table->prop_name) {
2138 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139 if (!opp_table->prop_name)
2140 return -ENOMEM;
2141 }
2142
2143 return 0;
2144}
2145
2146static void _opp_put_prop_name(struct opp_table *opp_table)
2147{
2148 if (opp_table->prop_name) {
2149 kfree(opp_table->prop_name);
2150 opp_table->prop_name = NULL;
2151 }
2152}
2153
2154/*
2155 * In order to support OPP switching, OPP layer needs to know the name of the
2156 * device's regulators, as the core would be required to switch voltages as
2157 * well.
2158 *
2159 * This must be called before any OPPs are initialized for the device.
2160 */
2161static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162 const char * const names[])
2163{
2164 const char * const *temp = names;
2165 struct regulator *reg;
2166 int count = 0, ret, i;
2167
2168 /* Count number of regulators */
2169 while (*temp++)
2170 count++;
2171
2172 if (!count)
2173 return -EINVAL;
2174
2175 /* Another CPU that shares the OPP table has set the regulators ? */
2176 if (opp_table->regulators)
2177 return 0;
2178
2179 opp_table->regulators = kmalloc_array(count,
2180 sizeof(*opp_table->regulators),
2181 GFP_KERNEL);
2182 if (!opp_table->regulators)
2183 return -ENOMEM;
2184
2185 for (i = 0; i < count; i++) {
2186 reg = regulator_get_optional(dev, names[i]);
2187 if (IS_ERR(reg)) {
2188 ret = dev_err_probe(dev, PTR_ERR(reg),
2189 "%s: no regulator (%s) found\n",
2190 __func__, names[i]);
2191 goto free_regulators;
2192 }
2193
2194 opp_table->regulators[i] = reg;
2195 }
2196
2197 opp_table->regulator_count = count;
2198
2199 /* Set generic config_regulators() for single regulators here */
2200 if (count == 1)
2201 opp_table->config_regulators = _opp_config_regulator_single;
2202
2203 return 0;
2204
2205free_regulators:
2206 while (i != 0)
2207 regulator_put(opp_table->regulators[--i]);
2208
2209 kfree(opp_table->regulators);
2210 opp_table->regulators = NULL;
2211 opp_table->regulator_count = -1;
2212
2213 return ret;
2214}
2215
2216static void _opp_put_regulators(struct opp_table *opp_table)
2217{
2218 int i;
2219
2220 if (!opp_table->regulators)
2221 return;
2222
2223 if (opp_table->enabled) {
2224 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225 regulator_disable(opp_table->regulators[i]);
2226 }
2227
2228 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229 regulator_put(opp_table->regulators[i]);
2230
2231 kfree(opp_table->regulators);
2232 opp_table->regulators = NULL;
2233 opp_table->regulator_count = -1;
2234}
2235
2236static void _put_clks(struct opp_table *opp_table, int count)
2237{
2238 int i;
2239
2240 for (i = count - 1; i >= 0; i--)
2241 clk_put(opp_table->clks[i]);
2242
2243 kfree(opp_table->clks);
2244 opp_table->clks = NULL;
2245}
2246
2247/*
2248 * In order to support OPP switching, OPP layer needs to get pointers to the
2249 * clocks for the device. Simple cases work fine without using this routine
2250 * (i.e. by passing connection-id as NULL), but for a device with multiple
2251 * clocks available, the OPP core needs to know the exact names of the clks to
2252 * use.
2253 *
2254 * This must be called before any OPPs are initialized for the device.
2255 */
2256static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257 const char * const names[],
2258 config_clks_t config_clks)
2259{
2260 const char * const *temp = names;
2261 int count = 0, ret, i;
2262 struct clk *clk;
2263
2264 /* Count number of clks */
2265 while (*temp++)
2266 count++;
2267
2268 /*
2269 * This is a special case where we have a single clock, whose connection
2270 * id name is NULL, i.e. first two entries are NULL in the array.
2271 */
2272 if (!count && !names[1])
2273 count = 1;
2274
2275 /* Fail early for invalid configurations */
2276 if (!count || (!config_clks && count > 1))
2277 return -EINVAL;
2278
2279 /* Another CPU that shares the OPP table has set the clkname ? */
2280 if (opp_table->clks)
2281 return 0;
2282
2283 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284 GFP_KERNEL);
2285 if (!opp_table->clks)
2286 return -ENOMEM;
2287
2288 /* Find clks for the device */
2289 for (i = 0; i < count; i++) {
2290 clk = clk_get(dev, names[i]);
2291 if (IS_ERR(clk)) {
2292 ret = dev_err_probe(dev, PTR_ERR(clk),
2293 "%s: Couldn't find clock with name: %s\n",
2294 __func__, names[i]);
2295 goto free_clks;
2296 }
2297
2298 opp_table->clks[i] = clk;
2299 }
2300
2301 opp_table->clk_count = count;
2302 opp_table->config_clks = config_clks;
2303
2304 /* Set generic single clk set here */
2305 if (count == 1) {
2306 if (!opp_table->config_clks)
2307 opp_table->config_clks = _opp_config_clk_single;
2308
2309 /*
2310 * We could have just dropped the "clk" field and used "clks"
2311 * everywhere. Instead we kept the "clk" field around for
2312 * following reasons:
2313 *
2314 * - avoiding clks[0] everywhere else.
2315 * - not running single clk helpers for multiple clk usecase by
2316 * mistake.
2317 *
2318 * Since this is single-clk case, just update the clk pointer
2319 * too.
2320 */
2321 opp_table->clk = opp_table->clks[0];
2322 }
2323
2324 return 0;
2325
2326free_clks:
2327 _put_clks(opp_table, i);
2328 return ret;
2329}
2330
2331static void _opp_put_clknames(struct opp_table *opp_table)
2332{
2333 if (!opp_table->clks)
2334 return;
2335
2336 opp_table->config_clks = NULL;
2337 opp_table->clk = ERR_PTR(-ENODEV);
2338
2339 _put_clks(opp_table, opp_table->clk_count);
2340}
2341
2342/*
2343 * This is useful to support platforms with multiple regulators per device.
2344 *
2345 * This must be called before any OPPs are initialized for the device.
2346 */
2347static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348 struct device *dev, config_regulators_t config_regulators)
2349{
2350 /* Another CPU that shares the OPP table has set the helper ? */
2351 if (!opp_table->config_regulators)
2352 opp_table->config_regulators = config_regulators;
2353
2354 return 0;
2355}
2356
2357static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358{
2359 if (opp_table->config_regulators)
2360 opp_table->config_regulators = NULL;
2361}
2362
2363static void _opp_detach_genpd(struct opp_table *opp_table)
2364{
2365 int index;
2366
2367 for (index = 0; index < opp_table->required_opp_count; index++) {
2368 if (!opp_table->required_devs[index])
2369 continue;
2370
2371 dev_pm_domain_detach(opp_table->required_devs[index], false);
2372 opp_table->required_devs[index] = NULL;
2373 }
2374}
2375
2376/*
2377 * Multiple generic power domains for a device are supported with the help of
2378 * virtual genpd devices, which are created for each consumer device - genpd
2379 * pair. These are the device structures which are attached to the power domain
2380 * and are required by the OPP core to set the performance state of the genpd.
2381 * The same API also works for the case where single genpd is available and so
2382 * we don't need to support that separately.
2383 *
2384 * This helper will normally be called by the consumer driver of the device
2385 * "dev", as only that has details of the genpd names.
2386 *
2387 * This helper needs to be called once with a list of all genpd to attach.
2388 * Otherwise the original device structure will be used instead by the OPP core.
2389 *
2390 * The order of entries in the names array must match the order in which
2391 * "required-opps" are added in DT.
2392 */
2393static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2394 const char * const *names, struct device ***virt_devs)
2395{
2396 struct device *virt_dev;
2397 int index = 0, ret = -EINVAL;
2398 const char * const *name = names;
2399
2400 if (!opp_table->required_devs) {
2401 dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2402 return -EINVAL;
2403 }
2404
2405 /* Genpd core takes care of propagation to parent genpd */
2406 if (opp_table->is_genpd) {
2407 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2408 return -EOPNOTSUPP;
2409 }
2410
2411 /* Checking only the first one is enough ? */
2412 if (opp_table->required_devs[0])
2413 return 0;
2414
2415 while (*name) {
2416 if (index >= opp_table->required_opp_count) {
2417 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2418 *name, opp_table->required_opp_count, index);
2419 goto err;
2420 }
2421
2422 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2423 if (IS_ERR_OR_NULL(virt_dev)) {
2424 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2425 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2426 goto err;
2427 }
2428
2429 /*
2430 * Add the virtual genpd device as a user of the OPP table, so
2431 * we can call dev_pm_opp_set_opp() on it directly.
2432 *
2433 * This will be automatically removed when the OPP table is
2434 * removed, don't need to handle that here.
2435 */
2436 if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2437 ret = -ENOMEM;
2438 goto err;
2439 }
2440
2441 opp_table->required_devs[index] = virt_dev;
2442 index++;
2443 name++;
2444 }
2445
2446 if (virt_devs)
2447 *virt_devs = opp_table->required_devs;
2448
2449 return 0;
2450
2451err:
2452 _opp_detach_genpd(opp_table);
2453 return ret;
2454
2455}
2456
2457static int _opp_set_required_devs(struct opp_table *opp_table,
2458 struct device *dev,
2459 struct device **required_devs)
2460{
2461 int i;
2462
2463 if (!opp_table->required_devs) {
2464 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2465 return -EINVAL;
2466 }
2467
2468 /* Another device that shares the OPP table has set the required devs ? */
2469 if (opp_table->required_devs[0])
2470 return 0;
2471
2472 for (i = 0; i < opp_table->required_opp_count; i++) {
2473 /* Genpd core takes care of propagation to parent genpd */
2474 if (required_devs[i] && opp_table->is_genpd &&
2475 opp_table->required_opp_tables[i]->is_genpd) {
2476 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2477 return -EOPNOTSUPP;
2478 }
2479
2480 opp_table->required_devs[i] = required_devs[i];
2481 }
2482
2483 return 0;
2484}
2485
2486static void _opp_put_required_devs(struct opp_table *opp_table)
2487{
2488 int i;
2489
2490 for (i = 0; i < opp_table->required_opp_count; i++)
2491 opp_table->required_devs[i] = NULL;
2492}
2493
2494static void _opp_clear_config(struct opp_config_data *data)
2495{
2496 if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2497 _opp_put_required_devs(data->opp_table);
2498 else if (data->flags & OPP_CONFIG_GENPD)
2499 _opp_detach_genpd(data->opp_table);
2500
2501 if (data->flags & OPP_CONFIG_REGULATOR)
2502 _opp_put_regulators(data->opp_table);
2503 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2504 _opp_put_supported_hw(data->opp_table);
2505 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2506 _opp_put_config_regulators_helper(data->opp_table);
2507 if (data->flags & OPP_CONFIG_PROP_NAME)
2508 _opp_put_prop_name(data->opp_table);
2509 if (data->flags & OPP_CONFIG_CLK)
2510 _opp_put_clknames(data->opp_table);
2511
2512 dev_pm_opp_put_opp_table(data->opp_table);
2513 kfree(data);
2514}
2515
2516/**
2517 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2518 * @dev: Device for which configuration is being set.
2519 * @config: OPP configuration.
2520 *
2521 * This allows all device OPP configurations to be performed at once.
2522 *
2523 * This must be called before any OPPs are initialized for the device. This may
2524 * be called multiple times for the same OPP table, for example once for each
2525 * CPU that share the same table. This must be balanced by the same number of
2526 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2527 *
2528 * This returns a token to the caller, which must be passed to
2529 * dev_pm_opp_clear_config() to free the resources later. The value of the
2530 * returned token will be >= 1 for success and negative for errors. The minimum
2531 * value of 1 is chosen here to make it easy for callers to manage the resource.
2532 */
2533int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2534{
2535 struct opp_table *opp_table;
2536 struct opp_config_data *data;
2537 unsigned int id;
2538 int ret;
2539
2540 data = kmalloc(sizeof(*data), GFP_KERNEL);
2541 if (!data)
2542 return -ENOMEM;
2543
2544 opp_table = _add_opp_table(dev, false);
2545 if (IS_ERR(opp_table)) {
2546 kfree(data);
2547 return PTR_ERR(opp_table);
2548 }
2549
2550 data->opp_table = opp_table;
2551 data->flags = 0;
2552
2553 /* This should be called before OPPs are initialized */
2554 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2555 ret = -EBUSY;
2556 goto err;
2557 }
2558
2559 /* Configure clocks */
2560 if (config->clk_names) {
2561 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2562 config->config_clks);
2563 if (ret)
2564 goto err;
2565
2566 data->flags |= OPP_CONFIG_CLK;
2567 } else if (config->config_clks) {
2568 /* Don't allow config callback without clocks */
2569 ret = -EINVAL;
2570 goto err;
2571 }
2572
2573 /* Configure property names */
2574 if (config->prop_name) {
2575 ret = _opp_set_prop_name(opp_table, config->prop_name);
2576 if (ret)
2577 goto err;
2578
2579 data->flags |= OPP_CONFIG_PROP_NAME;
2580 }
2581
2582 /* Configure config_regulators helper */
2583 if (config->config_regulators) {
2584 ret = _opp_set_config_regulators_helper(opp_table, dev,
2585 config->config_regulators);
2586 if (ret)
2587 goto err;
2588
2589 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2590 }
2591
2592 /* Configure supported hardware */
2593 if (config->supported_hw) {
2594 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2595 config->supported_hw_count);
2596 if (ret)
2597 goto err;
2598
2599 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2600 }
2601
2602 /* Configure supplies */
2603 if (config->regulator_names) {
2604 ret = _opp_set_regulators(opp_table, dev,
2605 config->regulator_names);
2606 if (ret)
2607 goto err;
2608
2609 data->flags |= OPP_CONFIG_REGULATOR;
2610 }
2611
2612 /* Attach genpds */
2613 if (config->genpd_names) {
2614 if (config->required_devs)
2615 goto err;
2616
2617 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2618 config->virt_devs);
2619 if (ret)
2620 goto err;
2621
2622 data->flags |= OPP_CONFIG_GENPD;
2623 } else if (config->required_devs) {
2624 ret = _opp_set_required_devs(opp_table, dev,
2625 config->required_devs);
2626 if (ret)
2627 goto err;
2628
2629 data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2630 }
2631
2632 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2633 GFP_KERNEL);
2634 if (ret)
2635 goto err;
2636
2637 return id;
2638
2639err:
2640 _opp_clear_config(data);
2641 return ret;
2642}
2643EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2644
2645/**
2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2647 * @token: The token returned by dev_pm_opp_set_config() previously.
2648 *
2649 * This allows all device OPP configurations to be cleared at once. This must be
2650 * called once for each call made to dev_pm_opp_set_config(), in order to free
2651 * the OPPs properly.
2652 *
2653 * Currently the first call itself ends up freeing all the OPP configurations,
2654 * while the later ones only drop the OPP table reference. This works well for
2655 * now as we would never want to use an half initialized OPP table and want to
2656 * remove the configurations together.
2657 */
2658void dev_pm_opp_clear_config(int token)
2659{
2660 struct opp_config_data *data;
2661
2662 /*
2663 * This lets the callers call this unconditionally and keep their code
2664 * simple.
2665 */
2666 if (unlikely(token <= 0))
2667 return;
2668
2669 data = xa_erase(&opp_configs, token);
2670 if (WARN_ON(!data))
2671 return;
2672
2673 _opp_clear_config(data);
2674}
2675EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2676
2677static void devm_pm_opp_config_release(void *token)
2678{
2679 dev_pm_opp_clear_config((unsigned long)token);
2680}
2681
2682/**
2683 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2684 * @dev: Device for which configuration is being set.
2685 * @config: OPP configuration.
2686 *
2687 * This allows all device OPP configurations to be performed at once.
2688 * This is a resource-managed variant of dev_pm_opp_set_config().
2689 *
2690 * Return: 0 on success and errorno otherwise.
2691 */
2692int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2693{
2694 int token = dev_pm_opp_set_config(dev, config);
2695
2696 if (token < 0)
2697 return token;
2698
2699 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2700 (void *) ((unsigned long) token));
2701}
2702EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2703
2704/**
2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2706 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2707 * @dst_table: Required OPP table of the @src_table.
2708 * @src_opp: OPP from the @src_table.
2709 *
2710 * This function returns the OPP (present in @dst_table) pointed out by the
2711 * "required-opps" property of the @src_opp (present in @src_table).
2712 *
2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2714 * use.
2715 *
2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2717 */
2718struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2719 struct opp_table *dst_table,
2720 struct dev_pm_opp *src_opp)
2721{
2722 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2723 int i;
2724
2725 if (!src_table || !dst_table || !src_opp ||
2726 !src_table->required_opp_tables)
2727 return ERR_PTR(-EINVAL);
2728
2729 /* required-opps not fully initialized yet */
2730 if (lazy_linking_pending(src_table))
2731 return ERR_PTR(-EBUSY);
2732
2733 for (i = 0; i < src_table->required_opp_count; i++) {
2734 if (src_table->required_opp_tables[i] == dst_table) {
2735 mutex_lock(&src_table->lock);
2736
2737 list_for_each_entry(opp, &src_table->opp_list, node) {
2738 if (opp == src_opp) {
2739 dest_opp = opp->required_opps[i];
2740 dev_pm_opp_get(dest_opp);
2741 break;
2742 }
2743 }
2744
2745 mutex_unlock(&src_table->lock);
2746 break;
2747 }
2748 }
2749
2750 if (IS_ERR(dest_opp)) {
2751 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2752 src_table, dst_table);
2753 }
2754
2755 return dest_opp;
2756}
2757EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2758
2759/**
2760 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2761 * @src_table: OPP table which has dst_table as one of its required OPP table.
2762 * @dst_table: Required OPP table of the src_table.
2763 * @pstate: Current performance state of the src_table.
2764 *
2765 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2766 * "required-opps" property of the OPP (present in @src_table) which has
2767 * performance state set to @pstate.
2768 *
2769 * Return: Zero or positive performance state on success, otherwise negative
2770 * value on errors.
2771 */
2772int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2773 struct opp_table *dst_table,
2774 unsigned int pstate)
2775{
2776 struct dev_pm_opp *opp;
2777 int dest_pstate = -EINVAL;
2778 int i;
2779
2780 /*
2781 * Normally the src_table will have the "required_opps" property set to
2782 * point to one of the OPPs in the dst_table, but in some cases the
2783 * genpd and its master have one to one mapping of performance states
2784 * and so none of them have the "required-opps" property set. Return the
2785 * pstate of the src_table as it is in such cases.
2786 */
2787 if (!src_table || !src_table->required_opp_count)
2788 return pstate;
2789
2790 /* Both OPP tables must belong to genpds */
2791 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2792 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2793 return -EINVAL;
2794 }
2795
2796 /* required-opps not fully initialized yet */
2797 if (lazy_linking_pending(src_table))
2798 return -EBUSY;
2799
2800 for (i = 0; i < src_table->required_opp_count; i++) {
2801 if (src_table->required_opp_tables[i]->np == dst_table->np)
2802 break;
2803 }
2804
2805 if (unlikely(i == src_table->required_opp_count)) {
2806 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2807 __func__, src_table, dst_table);
2808 return -EINVAL;
2809 }
2810
2811 mutex_lock(&src_table->lock);
2812
2813 list_for_each_entry(opp, &src_table->opp_list, node) {
2814 if (opp->level == pstate) {
2815 dest_pstate = opp->required_opps[i]->level;
2816 goto unlock;
2817 }
2818 }
2819
2820 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2821 dst_table);
2822
2823unlock:
2824 mutex_unlock(&src_table->lock);
2825
2826 return dest_pstate;
2827}
2828
2829/**
2830 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2831 * @dev: The device for which we do this operation
2832 * @data: The OPP data for the OPP to add
2833 *
2834 * This function adds an opp definition to the opp table and returns status.
2835 * The opp is made available by default and it can be controlled using
2836 * dev_pm_opp_enable/disable functions.
2837 *
2838 * Return:
2839 * 0 On success OR
2840 * Duplicate OPPs (both freq and volt are same) and opp->available
2841 * -EEXIST Freq are same and volt are different OR
2842 * Duplicate OPPs (both freq and volt are same) and !opp->available
2843 * -ENOMEM Memory allocation failure
2844 */
2845int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2846{
2847 struct opp_table *opp_table;
2848 int ret;
2849
2850 opp_table = _add_opp_table(dev, true);
2851 if (IS_ERR(opp_table))
2852 return PTR_ERR(opp_table);
2853
2854 /* Fix regulator count for dynamic OPPs */
2855 opp_table->regulator_count = 1;
2856
2857 ret = _opp_add_v1(opp_table, dev, data, true);
2858 if (ret)
2859 dev_pm_opp_put_opp_table(opp_table);
2860
2861 return ret;
2862}
2863EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2864
2865/**
2866 * _opp_set_availability() - helper to set the availability of an opp
2867 * @dev: device for which we do this operation
2868 * @freq: OPP frequency to modify availability
2869 * @availability_req: availability status requested for this opp
2870 *
2871 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2872 * which is isolated here.
2873 *
2874 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2875 * copy operation, returns 0 if no modification was done OR modification was
2876 * successful.
2877 */
2878static int _opp_set_availability(struct device *dev, unsigned long freq,
2879 bool availability_req)
2880{
2881 struct opp_table *opp_table;
2882 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2883 int r = 0;
2884
2885 /* Find the opp_table */
2886 opp_table = _find_opp_table(dev);
2887 if (IS_ERR(opp_table)) {
2888 r = PTR_ERR(opp_table);
2889 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2890 return r;
2891 }
2892
2893 if (!assert_single_clk(opp_table)) {
2894 r = -EINVAL;
2895 goto put_table;
2896 }
2897
2898 mutex_lock(&opp_table->lock);
2899
2900 /* Do we have the frequency? */
2901 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2902 if (tmp_opp->rates[0] == freq) {
2903 opp = tmp_opp;
2904 break;
2905 }
2906 }
2907
2908 if (IS_ERR(opp)) {
2909 r = PTR_ERR(opp);
2910 goto unlock;
2911 }
2912
2913 /* Is update really needed? */
2914 if (opp->available == availability_req)
2915 goto unlock;
2916
2917 opp->available = availability_req;
2918
2919 dev_pm_opp_get(opp);
2920 mutex_unlock(&opp_table->lock);
2921
2922 /* Notify the change of the OPP availability */
2923 if (availability_req)
2924 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2925 opp);
2926 else
2927 blocking_notifier_call_chain(&opp_table->head,
2928 OPP_EVENT_DISABLE, opp);
2929
2930 dev_pm_opp_put(opp);
2931 goto put_table;
2932
2933unlock:
2934 mutex_unlock(&opp_table->lock);
2935put_table:
2936 dev_pm_opp_put_opp_table(opp_table);
2937 return r;
2938}
2939
2940/**
2941 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2942 * @dev: device for which we do this operation
2943 * @freq: OPP frequency to adjust voltage of
2944 * @u_volt: new OPP target voltage
2945 * @u_volt_min: new OPP min voltage
2946 * @u_volt_max: new OPP max voltage
2947 *
2948 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2949 * copy operation, returns 0 if no modifcation was done OR modification was
2950 * successful.
2951 */
2952int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2953 unsigned long u_volt, unsigned long u_volt_min,
2954 unsigned long u_volt_max)
2955
2956{
2957 struct opp_table *opp_table;
2958 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2959 int r = 0;
2960
2961 /* Find the opp_table */
2962 opp_table = _find_opp_table(dev);
2963 if (IS_ERR(opp_table)) {
2964 r = PTR_ERR(opp_table);
2965 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2966 return r;
2967 }
2968
2969 if (!assert_single_clk(opp_table)) {
2970 r = -EINVAL;
2971 goto put_table;
2972 }
2973
2974 mutex_lock(&opp_table->lock);
2975
2976 /* Do we have the frequency? */
2977 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2978 if (tmp_opp->rates[0] == freq) {
2979 opp = tmp_opp;
2980 break;
2981 }
2982 }
2983
2984 if (IS_ERR(opp)) {
2985 r = PTR_ERR(opp);
2986 goto adjust_unlock;
2987 }
2988
2989 /* Is update really needed? */
2990 if (opp->supplies->u_volt == u_volt)
2991 goto adjust_unlock;
2992
2993 opp->supplies->u_volt = u_volt;
2994 opp->supplies->u_volt_min = u_volt_min;
2995 opp->supplies->u_volt_max = u_volt_max;
2996
2997 dev_pm_opp_get(opp);
2998 mutex_unlock(&opp_table->lock);
2999
3000 /* Notify the voltage change of the OPP */
3001 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3002 opp);
3003
3004 dev_pm_opp_put(opp);
3005 goto put_table;
3006
3007adjust_unlock:
3008 mutex_unlock(&opp_table->lock);
3009put_table:
3010 dev_pm_opp_put_opp_table(opp_table);
3011 return r;
3012}
3013EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3014
3015/**
3016 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3017 * @dev: device for which we do this operation
3018 *
3019 * Sync voltage state of the OPP table regulators.
3020 *
3021 * Return: 0 on success or a negative error value.
3022 */
3023int dev_pm_opp_sync_regulators(struct device *dev)
3024{
3025 struct opp_table *opp_table;
3026 struct regulator *reg;
3027 int i, ret = 0;
3028
3029 /* Device may not have OPP table */
3030 opp_table = _find_opp_table(dev);
3031 if (IS_ERR(opp_table))
3032 return 0;
3033
3034 /* Regulator may not be required for the device */
3035 if (unlikely(!opp_table->regulators))
3036 goto put_table;
3037
3038 /* Nothing to sync if voltage wasn't changed */
3039 if (!opp_table->enabled)
3040 goto put_table;
3041
3042 for (i = 0; i < opp_table->regulator_count; i++) {
3043 reg = opp_table->regulators[i];
3044 ret = regulator_sync_voltage(reg);
3045 if (ret)
3046 break;
3047 }
3048put_table:
3049 /* Drop reference taken by _find_opp_table() */
3050 dev_pm_opp_put_opp_table(opp_table);
3051
3052 return ret;
3053}
3054EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3055
3056/**
3057 * dev_pm_opp_enable() - Enable a specific OPP
3058 * @dev: device for which we do this operation
3059 * @freq: OPP frequency to enable
3060 *
3061 * Enables a provided opp. If the operation is valid, this returns 0, else the
3062 * corresponding error value. It is meant to be used for users an OPP available
3063 * after being temporarily made unavailable with dev_pm_opp_disable.
3064 *
3065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3066 * copy operation, returns 0 if no modification was done OR modification was
3067 * successful.
3068 */
3069int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3070{
3071 return _opp_set_availability(dev, freq, true);
3072}
3073EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3074
3075/**
3076 * dev_pm_opp_disable() - Disable a specific OPP
3077 * @dev: device for which we do this operation
3078 * @freq: OPP frequency to disable
3079 *
3080 * Disables a provided opp. If the operation is valid, this returns
3081 * 0, else the corresponding error value. It is meant to be a temporary
3082 * control by users to make this OPP not available until the circumstances are
3083 * right to make it available again (with a call to dev_pm_opp_enable).
3084 *
3085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3086 * copy operation, returns 0 if no modification was done OR modification was
3087 * successful.
3088 */
3089int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3090{
3091 return _opp_set_availability(dev, freq, false);
3092}
3093EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3094
3095/**
3096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3097 * @dev: Device for which notifier needs to be registered
3098 * @nb: Notifier block to be registered
3099 *
3100 * Return: 0 on success or a negative error value.
3101 */
3102int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3103{
3104 struct opp_table *opp_table;
3105 int ret;
3106
3107 opp_table = _find_opp_table(dev);
3108 if (IS_ERR(opp_table))
3109 return PTR_ERR(opp_table);
3110
3111 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3112
3113 dev_pm_opp_put_opp_table(opp_table);
3114
3115 return ret;
3116}
3117EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3118
3119/**
3120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3121 * @dev: Device for which notifier needs to be unregistered
3122 * @nb: Notifier block to be unregistered
3123 *
3124 * Return: 0 on success or a negative error value.
3125 */
3126int dev_pm_opp_unregister_notifier(struct device *dev,
3127 struct notifier_block *nb)
3128{
3129 struct opp_table *opp_table;
3130 int ret;
3131
3132 opp_table = _find_opp_table(dev);
3133 if (IS_ERR(opp_table))
3134 return PTR_ERR(opp_table);
3135
3136 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3137
3138 dev_pm_opp_put_opp_table(opp_table);
3139
3140 return ret;
3141}
3142EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3143
3144/**
3145 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3146 * @dev: device pointer used to lookup OPP table.
3147 *
3148 * Free both OPPs created using static entries present in DT and the
3149 * dynamically added entries.
3150 */
3151void dev_pm_opp_remove_table(struct device *dev)
3152{
3153 struct opp_table *opp_table;
3154
3155 /* Check for existing table for 'dev' */
3156 opp_table = _find_opp_table(dev);
3157 if (IS_ERR(opp_table)) {
3158 int error = PTR_ERR(opp_table);
3159
3160 if (error != -ENODEV)
3161 WARN(1, "%s: opp_table: %d\n",
3162 IS_ERR_OR_NULL(dev) ?
3163 "Invalid device" : dev_name(dev),
3164 error);
3165 return;
3166 }
3167
3168 /*
3169 * Drop the extra reference only if the OPP table was successfully added
3170 * with dev_pm_opp_of_add_table() earlier.
3171 **/
3172 if (_opp_remove_all_static(opp_table))
3173 dev_pm_opp_put_opp_table(opp_table);
3174
3175 /* Drop reference taken by _find_opp_table() */
3176 dev_pm_opp_put_opp_table(opp_table);
3177}
3178EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);