Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
712 }
713
714 return 0;
715
716restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
724
725 return ret;
726}
727
728static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
730{
731 u32 avg, peak;
732 int i, ret;
733
734 if (!opp_table->paths)
735 return 0;
736
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
744 }
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
750 }
751 }
752
753 return 0;
754}
755
756static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
761{
762 struct dev_pm_set_opp_data *data;
763 int size;
764
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
770
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
777
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
780
781 return opp_table->set_opp(data);
782}
783
784/* This is only called for PM domain for now */
785static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
788{
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
793
794 if (!required_opp_tables)
795 return 0;
796
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
804 }
805 return ret;
806 }
807
808 /* Multiple genpd case */
809
810 /*
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
813 */
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
815
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818
819 if (!genpd_virt_devs[i])
820 continue;
821
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
827 }
828 }
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
830
831 return ret;
832}
833
834/**
835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836 * @dev: device for which we do this operation
837 * @opp: opp based on which the bandwidth levels are to be configured
838 *
839 * This configures the bandwidth to the levels specified by the OPP. However
840 * if the OPP specified is NULL the bandwidth levels are cleared out.
841 *
842 * Return: 0 on success or a negative error value.
843 */
844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845{
846 struct opp_table *opp_table;
847 int ret;
848
849 opp_table = _find_opp_table(dev);
850 if (IS_ERR(opp_table)) {
851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 return PTR_ERR(opp_table);
853 }
854
855 if (opp)
856 ret = _set_opp_bw(opp_table, opp, dev, false);
857 else
858 ret = _set_opp_bw(opp_table, NULL, dev, true);
859
860 dev_pm_opp_put_opp_table(opp_table);
861 return ret;
862}
863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864
865/**
866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867 * @dev: device for which we do this operation
868 * @target_freq: frequency to achieve
869 *
870 * This configures the power-supplies to the levels specified by the OPP
871 * corresponding to the target_freq, and programs the clock to a value <=
872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873 * provided by the opp, should have already rounded to the target OPP's
874 * frequency.
875 */
876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877{
878 struct opp_table *opp_table;
879 unsigned long freq, old_freq, temp_freq;
880 struct dev_pm_opp *old_opp, *opp;
881 struct clk *clk;
882 int ret;
883
884 opp_table = _find_opp_table(dev);
885 if (IS_ERR(opp_table)) {
886 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 return PTR_ERR(opp_table);
888 }
889
890 if (unlikely(!target_freq)) {
891 /*
892 * Some drivers need to support cases where some platforms may
893 * have OPP table for the device, while others don't and
894 * opp_set_rate() just needs to behave like clk_set_rate().
895 */
896 if (!_get_opp_count(opp_table)) {
897 ret = 0;
898 goto put_opp_table;
899 }
900
901 if (!opp_table->required_opp_tables && !opp_table->regulators &&
902 !opp_table->paths) {
903 dev_err(dev, "target frequency can't be 0\n");
904 ret = -EINVAL;
905 goto put_opp_table;
906 }
907
908 ret = _set_opp_bw(opp_table, NULL, dev, true);
909 if (ret)
910 goto put_opp_table;
911
912 if (opp_table->regulator_enabled) {
913 regulator_disable(opp_table->regulators[0]);
914 opp_table->regulator_enabled = false;
915 }
916
917 ret = _set_required_opps(dev, opp_table, NULL);
918 goto put_opp_table;
919 }
920
921 clk = opp_table->clk;
922 if (IS_ERR(clk)) {
923 dev_err(dev, "%s: No clock available for the device\n",
924 __func__);
925 ret = PTR_ERR(clk);
926 goto put_opp_table;
927 }
928
929 freq = clk_round_rate(clk, target_freq);
930 if ((long)freq <= 0)
931 freq = target_freq;
932
933 old_freq = clk_get_rate(clk);
934
935 /* Return early if nothing to do */
936 if (old_freq == freq) {
937 if (!opp_table->required_opp_tables && !opp_table->regulators &&
938 !opp_table->paths) {
939 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
940 __func__, freq);
941 ret = 0;
942 goto put_opp_table;
943 }
944 }
945
946 /*
947 * For IO devices which require an OPP on some platforms/SoCs
948 * while just needing to scale the clock on some others
949 * we look for empty OPP tables with just a clock handle and
950 * scale only the clk. This makes dev_pm_opp_set_rate()
951 * equivalent to a clk_set_rate()
952 */
953 if (!_get_opp_count(opp_table)) {
954 ret = _generic_set_opp_clk_only(dev, clk, freq);
955 goto put_opp_table;
956 }
957
958 temp_freq = old_freq;
959 old_opp = _find_freq_ceil(opp_table, &temp_freq);
960 if (IS_ERR(old_opp)) {
961 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
962 __func__, old_freq, PTR_ERR(old_opp));
963 }
964
965 temp_freq = freq;
966 opp = _find_freq_ceil(opp_table, &temp_freq);
967 if (IS_ERR(opp)) {
968 ret = PTR_ERR(opp);
969 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
970 __func__, freq, ret);
971 goto put_old_opp;
972 }
973
974 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
975 old_freq, freq);
976
977 /* Scaling up? Configure required OPPs before frequency */
978 if (freq >= old_freq) {
979 ret = _set_required_opps(dev, opp_table, opp);
980 if (ret)
981 goto put_opp;
982 }
983
984 if (opp_table->set_opp) {
985 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
986 IS_ERR(old_opp) ? NULL : old_opp->supplies,
987 opp->supplies);
988 } else if (opp_table->regulators) {
989 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
990 IS_ERR(old_opp) ? NULL : old_opp->supplies,
991 opp->supplies);
992 } else {
993 /* Only frequency scaling */
994 ret = _generic_set_opp_clk_only(dev, clk, freq);
995 }
996
997 /* Scaling down? Configure required OPPs after frequency */
998 if (!ret && freq < old_freq) {
999 ret = _set_required_opps(dev, opp_table, opp);
1000 if (ret)
1001 dev_err(dev, "Failed to set required opps: %d\n", ret);
1002 }
1003
1004 if (!ret)
1005 ret = _set_opp_bw(opp_table, opp, dev, false);
1006
1007put_opp:
1008 dev_pm_opp_put(opp);
1009put_old_opp:
1010 if (!IS_ERR(old_opp))
1011 dev_pm_opp_put(old_opp);
1012put_opp_table:
1013 dev_pm_opp_put_opp_table(opp_table);
1014 return ret;
1015}
1016EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017
1018/* OPP-dev Helpers */
1019static void _remove_opp_dev(struct opp_device *opp_dev,
1020 struct opp_table *opp_table)
1021{
1022 opp_debug_unregister(opp_dev, opp_table);
1023 list_del(&opp_dev->node);
1024 kfree(opp_dev);
1025}
1026
1027static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028 struct opp_table *opp_table)
1029{
1030 struct opp_device *opp_dev;
1031
1032 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033 if (!opp_dev)
1034 return NULL;
1035
1036 /* Initialize opp-dev */
1037 opp_dev->dev = dev;
1038
1039 list_add(&opp_dev->node, &opp_table->dev_list);
1040
1041 /* Create debugfs entries for the opp_table */
1042 opp_debug_register(opp_dev, opp_table);
1043
1044 return opp_dev;
1045}
1046
1047struct opp_device *_add_opp_dev(const struct device *dev,
1048 struct opp_table *opp_table)
1049{
1050 struct opp_device *opp_dev;
1051
1052 mutex_lock(&opp_table->lock);
1053 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054 mutex_unlock(&opp_table->lock);
1055
1056 return opp_dev;
1057}
1058
1059static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060{
1061 struct opp_table *opp_table;
1062 struct opp_device *opp_dev;
1063 int ret;
1064
1065 /*
1066 * Allocate a new OPP table. In the infrequent case where a new
1067 * device is needed to be added, we pay this penalty.
1068 */
1069 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070 if (!opp_table)
1071 return NULL;
1072
1073 mutex_init(&opp_table->lock);
1074 mutex_init(&opp_table->genpd_virt_dev_lock);
1075 INIT_LIST_HEAD(&opp_table->dev_list);
1076
1077 /* Mark regulator count uninitialized */
1078 opp_table->regulator_count = -1;
1079
1080 opp_dev = _add_opp_dev(dev, opp_table);
1081 if (!opp_dev) {
1082 kfree(opp_table);
1083 return NULL;
1084 }
1085
1086 _of_init_opp_table(opp_table, dev, index);
1087
1088 /* Find clk for the device */
1089 opp_table->clk = clk_get(dev, NULL);
1090 if (IS_ERR(opp_table->clk)) {
1091 ret = PTR_ERR(opp_table->clk);
1092 if (ret != -EPROBE_DEFER)
1093 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094 ret);
1095 }
1096
1097 /* Find interconnect path(s) for the device */
1098 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099 if (ret)
1100 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101 __func__, ret);
1102
1103 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104 INIT_LIST_HEAD(&opp_table->opp_list);
1105 kref_init(&opp_table->kref);
1106
1107 /* Secure the device table modification */
1108 list_add(&opp_table->node, &opp_tables);
1109 return opp_table;
1110}
1111
1112void _get_opp_table_kref(struct opp_table *opp_table)
1113{
1114 kref_get(&opp_table->kref);
1115}
1116
1117static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1118{
1119 struct opp_table *opp_table;
1120
1121 /* Hold our table modification lock here */
1122 mutex_lock(&opp_table_lock);
1123
1124 opp_table = _find_opp_table_unlocked(dev);
1125 if (!IS_ERR(opp_table))
1126 goto unlock;
1127
1128 opp_table = _managed_opp(dev, index);
1129 if (opp_table) {
1130 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131 dev_pm_opp_put_opp_table(opp_table);
1132 opp_table = NULL;
1133 }
1134 goto unlock;
1135 }
1136
1137 opp_table = _allocate_opp_table(dev, index);
1138
1139unlock:
1140 mutex_unlock(&opp_table_lock);
1141
1142 return opp_table;
1143}
1144
1145struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146{
1147 return _opp_get_opp_table(dev, 0);
1148}
1149EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150
1151struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152 int index)
1153{
1154 return _opp_get_opp_table(dev, index);
1155}
1156
1157static void _opp_table_kref_release(struct kref *kref)
1158{
1159 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160 struct opp_device *opp_dev, *temp;
1161 int i;
1162
1163 _of_clear_opp_table(opp_table);
1164
1165 /* Release clk */
1166 if (!IS_ERR(opp_table->clk))
1167 clk_put(opp_table->clk);
1168
1169 if (opp_table->paths) {
1170 for (i = 0; i < opp_table->path_count; i++)
1171 icc_put(opp_table->paths[i]);
1172 kfree(opp_table->paths);
1173 }
1174
1175 WARN_ON(!list_empty(&opp_table->opp_list));
1176
1177 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178 /*
1179 * The OPP table is getting removed, drop the performance state
1180 * constraints.
1181 */
1182 if (opp_table->genpd_performance_state)
1183 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184
1185 _remove_opp_dev(opp_dev, opp_table);
1186 }
1187
1188 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189 mutex_destroy(&opp_table->lock);
1190 list_del(&opp_table->node);
1191 kfree(opp_table);
1192
1193 mutex_unlock(&opp_table_lock);
1194}
1195
1196void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197{
1198 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199 &opp_table_lock);
1200}
1201EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202
1203void _opp_free(struct dev_pm_opp *opp)
1204{
1205 kfree(opp);
1206}
1207
1208static void _opp_kref_release(struct dev_pm_opp *opp,
1209 struct opp_table *opp_table)
1210{
1211 /*
1212 * Notify the changes in the availability of the operable
1213 * frequency/voltage list.
1214 */
1215 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216 _of_opp_free_required_opps(opp_table, opp);
1217 opp_debug_remove_one(opp);
1218 list_del(&opp->node);
1219 kfree(opp);
1220}
1221
1222static void _opp_kref_release_unlocked(struct kref *kref)
1223{
1224 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225 struct opp_table *opp_table = opp->opp_table;
1226
1227 _opp_kref_release(opp, opp_table);
1228}
1229
1230static void _opp_kref_release_locked(struct kref *kref)
1231{
1232 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233 struct opp_table *opp_table = opp->opp_table;
1234
1235 _opp_kref_release(opp, opp_table);
1236 mutex_unlock(&opp_table->lock);
1237}
1238
1239void dev_pm_opp_get(struct dev_pm_opp *opp)
1240{
1241 kref_get(&opp->kref);
1242}
1243
1244void dev_pm_opp_put(struct dev_pm_opp *opp)
1245{
1246 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247 &opp->opp_table->lock);
1248}
1249EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250
1251static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252{
1253 kref_put(&opp->kref, _opp_kref_release_unlocked);
1254}
1255
1256/**
1257 * dev_pm_opp_remove() - Remove an OPP from OPP table
1258 * @dev: device for which we do this operation
1259 * @freq: OPP to remove with matching 'freq'
1260 *
1261 * This function removes an opp from the opp table.
1262 */
1263void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264{
1265 struct dev_pm_opp *opp;
1266 struct opp_table *opp_table;
1267 bool found = false;
1268
1269 opp_table = _find_opp_table(dev);
1270 if (IS_ERR(opp_table))
1271 return;
1272
1273 mutex_lock(&opp_table->lock);
1274
1275 list_for_each_entry(opp, &opp_table->opp_list, node) {
1276 if (opp->rate == freq) {
1277 found = true;
1278 break;
1279 }
1280 }
1281
1282 mutex_unlock(&opp_table->lock);
1283
1284 if (found) {
1285 dev_pm_opp_put(opp);
1286
1287 /* Drop the reference taken by dev_pm_opp_add() */
1288 dev_pm_opp_put_opp_table(opp_table);
1289 } else {
1290 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291 __func__, freq);
1292 }
1293
1294 /* Drop the reference taken by _find_opp_table() */
1295 dev_pm_opp_put_opp_table(opp_table);
1296}
1297EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298
1299bool _opp_remove_all_static(struct opp_table *opp_table)
1300{
1301 struct dev_pm_opp *opp, *tmp;
1302 bool ret = true;
1303
1304 mutex_lock(&opp_table->lock);
1305
1306 if (!opp_table->parsed_static_opps) {
1307 ret = false;
1308 goto unlock;
1309 }
1310
1311 if (--opp_table->parsed_static_opps)
1312 goto unlock;
1313
1314 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1315 if (!opp->dynamic)
1316 dev_pm_opp_put_unlocked(opp);
1317 }
1318
1319unlock:
1320 mutex_unlock(&opp_table->lock);
1321
1322 return ret;
1323}
1324
1325/**
1326 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1327 * @dev: device for which we do this operation
1328 *
1329 * This function removes all dynamically created OPPs from the opp table.
1330 */
1331void dev_pm_opp_remove_all_dynamic(struct device *dev)
1332{
1333 struct opp_table *opp_table;
1334 struct dev_pm_opp *opp, *temp;
1335 int count = 0;
1336
1337 opp_table = _find_opp_table(dev);
1338 if (IS_ERR(opp_table))
1339 return;
1340
1341 mutex_lock(&opp_table->lock);
1342 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1343 if (opp->dynamic) {
1344 dev_pm_opp_put_unlocked(opp);
1345 count++;
1346 }
1347 }
1348 mutex_unlock(&opp_table->lock);
1349
1350 /* Drop the references taken by dev_pm_opp_add() */
1351 while (count--)
1352 dev_pm_opp_put_opp_table(opp_table);
1353
1354 /* Drop the reference taken by _find_opp_table() */
1355 dev_pm_opp_put_opp_table(opp_table);
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1358
1359struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1360{
1361 struct dev_pm_opp *opp;
1362 int supply_count, supply_size, icc_size;
1363
1364 /* Allocate space for at least one supply */
1365 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1366 supply_size = sizeof(*opp->supplies) * supply_count;
1367 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1368
1369 /* allocate new OPP node and supplies structures */
1370 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1371
1372 if (!opp)
1373 return NULL;
1374
1375 /* Put the supplies at the end of the OPP structure as an empty array */
1376 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1377 if (icc_size)
1378 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1379 INIT_LIST_HEAD(&opp->node);
1380
1381 return opp;
1382}
1383
1384static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1385 struct opp_table *opp_table)
1386{
1387 struct regulator *reg;
1388 int i;
1389
1390 if (!opp_table->regulators)
1391 return true;
1392
1393 for (i = 0; i < opp_table->regulator_count; i++) {
1394 reg = opp_table->regulators[i];
1395
1396 if (!regulator_is_supported_voltage(reg,
1397 opp->supplies[i].u_volt_min,
1398 opp->supplies[i].u_volt_max)) {
1399 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1400 __func__, opp->supplies[i].u_volt_min,
1401 opp->supplies[i].u_volt_max);
1402 return false;
1403 }
1404 }
1405
1406 return true;
1407}
1408
1409int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1410{
1411 if (opp1->rate != opp2->rate)
1412 return opp1->rate < opp2->rate ? -1 : 1;
1413 if (opp1->bandwidth && opp2->bandwidth &&
1414 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1415 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1416 if (opp1->level != opp2->level)
1417 return opp1->level < opp2->level ? -1 : 1;
1418 return 0;
1419}
1420
1421static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1422 struct opp_table *opp_table,
1423 struct list_head **head)
1424{
1425 struct dev_pm_opp *opp;
1426 int opp_cmp;
1427
1428 /*
1429 * Insert new OPP in order of increasing frequency and discard if
1430 * already present.
1431 *
1432 * Need to use &opp_table->opp_list in the condition part of the 'for'
1433 * loop, don't replace it with head otherwise it will become an infinite
1434 * loop.
1435 */
1436 list_for_each_entry(opp, &opp_table->opp_list, node) {
1437 opp_cmp = _opp_compare_key(new_opp, opp);
1438 if (opp_cmp > 0) {
1439 *head = &opp->node;
1440 continue;
1441 }
1442
1443 if (opp_cmp < 0)
1444 return 0;
1445
1446 /* Duplicate OPPs */
1447 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1448 __func__, opp->rate, opp->supplies[0].u_volt,
1449 opp->available, new_opp->rate,
1450 new_opp->supplies[0].u_volt, new_opp->available);
1451
1452 /* Should we compare voltages for all regulators here ? */
1453 return opp->available &&
1454 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1455 }
1456
1457 return 0;
1458}
1459
1460/*
1461 * Returns:
1462 * 0: On success. And appropriate error message for duplicate OPPs.
1463 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1464 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1465 * sure we don't print error messages unnecessarily if different parts of
1466 * kernel try to initialize the OPP table.
1467 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1468 * should be considered an error by the callers of _opp_add().
1469 */
1470int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1471 struct opp_table *opp_table, bool rate_not_available)
1472{
1473 struct list_head *head;
1474 int ret;
1475
1476 mutex_lock(&opp_table->lock);
1477 head = &opp_table->opp_list;
1478
1479 if (likely(!rate_not_available)) {
1480 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1481 if (ret) {
1482 mutex_unlock(&opp_table->lock);
1483 return ret;
1484 }
1485 }
1486
1487 list_add(&new_opp->node, head);
1488 mutex_unlock(&opp_table->lock);
1489
1490 new_opp->opp_table = opp_table;
1491 kref_init(&new_opp->kref);
1492
1493 opp_debug_create_one(new_opp, opp_table);
1494
1495 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1496 new_opp->available = false;
1497 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1498 __func__, new_opp->rate);
1499 }
1500
1501 return 0;
1502}
1503
1504/**
1505 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1506 * @opp_table: OPP table
1507 * @dev: device for which we do this operation
1508 * @freq: Frequency in Hz for this OPP
1509 * @u_volt: Voltage in uVolts for this OPP
1510 * @dynamic: Dynamically added OPPs.
1511 *
1512 * This function adds an opp definition to the opp table and returns status.
1513 * The opp is made available by default and it can be controlled using
1514 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1515 *
1516 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1517 * and freed by dev_pm_opp_of_remove_table.
1518 *
1519 * Return:
1520 * 0 On success OR
1521 * Duplicate OPPs (both freq and volt are same) and opp->available
1522 * -EEXIST Freq are same and volt are different OR
1523 * Duplicate OPPs (both freq and volt are same) and !opp->available
1524 * -ENOMEM Memory allocation failure
1525 */
1526int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1527 unsigned long freq, long u_volt, bool dynamic)
1528{
1529 struct dev_pm_opp *new_opp;
1530 unsigned long tol;
1531 int ret;
1532
1533 new_opp = _opp_allocate(opp_table);
1534 if (!new_opp)
1535 return -ENOMEM;
1536
1537 /* populate the opp table */
1538 new_opp->rate = freq;
1539 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1540 new_opp->supplies[0].u_volt = u_volt;
1541 new_opp->supplies[0].u_volt_min = u_volt - tol;
1542 new_opp->supplies[0].u_volt_max = u_volt + tol;
1543 new_opp->available = true;
1544 new_opp->dynamic = dynamic;
1545
1546 ret = _opp_add(dev, new_opp, opp_table, false);
1547 if (ret) {
1548 /* Don't return error for duplicate OPPs */
1549 if (ret == -EBUSY)
1550 ret = 0;
1551 goto free_opp;
1552 }
1553
1554 /*
1555 * Notify the changes in the availability of the operable
1556 * frequency/voltage list.
1557 */
1558 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1559 return 0;
1560
1561free_opp:
1562 _opp_free(new_opp);
1563
1564 return ret;
1565}
1566
1567/**
1568 * dev_pm_opp_set_supported_hw() - Set supported platforms
1569 * @dev: Device for which supported-hw has to be set.
1570 * @versions: Array of hierarchy of versions to match.
1571 * @count: Number of elements in the array.
1572 *
1573 * This is required only for the V2 bindings, and it enables a platform to
1574 * specify the hierarchy of versions it supports. OPP layer will then enable
1575 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1576 * property.
1577 */
1578struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1579 const u32 *versions, unsigned int count)
1580{
1581 struct opp_table *opp_table;
1582
1583 opp_table = dev_pm_opp_get_opp_table(dev);
1584 if (!opp_table)
1585 return ERR_PTR(-ENOMEM);
1586
1587 /* Make sure there are no concurrent readers while updating opp_table */
1588 WARN_ON(!list_empty(&opp_table->opp_list));
1589
1590 /* Another CPU that shares the OPP table has set the property ? */
1591 if (opp_table->supported_hw)
1592 return opp_table;
1593
1594 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1595 GFP_KERNEL);
1596 if (!opp_table->supported_hw) {
1597 dev_pm_opp_put_opp_table(opp_table);
1598 return ERR_PTR(-ENOMEM);
1599 }
1600
1601 opp_table->supported_hw_count = count;
1602
1603 return opp_table;
1604}
1605EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1606
1607/**
1608 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1609 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1610 *
1611 * This is required only for the V2 bindings, and is called for a matching
1612 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1613 * will not be freed.
1614 */
1615void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1616{
1617 /* Make sure there are no concurrent readers while updating opp_table */
1618 WARN_ON(!list_empty(&opp_table->opp_list));
1619
1620 kfree(opp_table->supported_hw);
1621 opp_table->supported_hw = NULL;
1622 opp_table->supported_hw_count = 0;
1623
1624 dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1627
1628/**
1629 * dev_pm_opp_set_prop_name() - Set prop-extn name
1630 * @dev: Device for which the prop-name has to be set.
1631 * @name: name to postfix to properties.
1632 *
1633 * This is required only for the V2 bindings, and it enables a platform to
1634 * specify the extn to be used for certain property names. The properties to
1635 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1636 * should postfix the property name with -<name> while looking for them.
1637 */
1638struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1639{
1640 struct opp_table *opp_table;
1641
1642 opp_table = dev_pm_opp_get_opp_table(dev);
1643 if (!opp_table)
1644 return ERR_PTR(-ENOMEM);
1645
1646 /* Make sure there are no concurrent readers while updating opp_table */
1647 WARN_ON(!list_empty(&opp_table->opp_list));
1648
1649 /* Another CPU that shares the OPP table has set the property ? */
1650 if (opp_table->prop_name)
1651 return opp_table;
1652
1653 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1654 if (!opp_table->prop_name) {
1655 dev_pm_opp_put_opp_table(opp_table);
1656 return ERR_PTR(-ENOMEM);
1657 }
1658
1659 return opp_table;
1660}
1661EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1662
1663/**
1664 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1665 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1666 *
1667 * This is required only for the V2 bindings, and is called for a matching
1668 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1669 * will not be freed.
1670 */
1671void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1672{
1673 /* Make sure there are no concurrent readers while updating opp_table */
1674 WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676 kfree(opp_table->prop_name);
1677 opp_table->prop_name = NULL;
1678
1679 dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1682
1683static int _allocate_set_opp_data(struct opp_table *opp_table)
1684{
1685 struct dev_pm_set_opp_data *data;
1686 int len, count = opp_table->regulator_count;
1687
1688 if (WARN_ON(!opp_table->regulators))
1689 return -EINVAL;
1690
1691 /* space for set_opp_data */
1692 len = sizeof(*data);
1693
1694 /* space for old_opp.supplies and new_opp.supplies */
1695 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1696
1697 data = kzalloc(len, GFP_KERNEL);
1698 if (!data)
1699 return -ENOMEM;
1700
1701 data->old_opp.supplies = (void *)(data + 1);
1702 data->new_opp.supplies = data->old_opp.supplies + count;
1703
1704 opp_table->set_opp_data = data;
1705
1706 return 0;
1707}
1708
1709static void _free_set_opp_data(struct opp_table *opp_table)
1710{
1711 kfree(opp_table->set_opp_data);
1712 opp_table->set_opp_data = NULL;
1713}
1714
1715/**
1716 * dev_pm_opp_set_regulators() - Set regulator names for the device
1717 * @dev: Device for which regulator name is being set.
1718 * @names: Array of pointers to the names of the regulator.
1719 * @count: Number of regulators.
1720 *
1721 * In order to support OPP switching, OPP layer needs to know the name of the
1722 * device's regulators, as the core would be required to switch voltages as
1723 * well.
1724 *
1725 * This must be called before any OPPs are initialized for the device.
1726 */
1727struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1728 const char * const names[],
1729 unsigned int count)
1730{
1731 struct opp_table *opp_table;
1732 struct regulator *reg;
1733 int ret, i;
1734
1735 opp_table = dev_pm_opp_get_opp_table(dev);
1736 if (!opp_table)
1737 return ERR_PTR(-ENOMEM);
1738
1739 /* This should be called before OPPs are initialized */
1740 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1741 ret = -EBUSY;
1742 goto err;
1743 }
1744
1745 /* Another CPU that shares the OPP table has set the regulators ? */
1746 if (opp_table->regulators)
1747 return opp_table;
1748
1749 opp_table->regulators = kmalloc_array(count,
1750 sizeof(*opp_table->regulators),
1751 GFP_KERNEL);
1752 if (!opp_table->regulators) {
1753 ret = -ENOMEM;
1754 goto err;
1755 }
1756
1757 for (i = 0; i < count; i++) {
1758 reg = regulator_get_optional(dev, names[i]);
1759 if (IS_ERR(reg)) {
1760 ret = PTR_ERR(reg);
1761 if (ret != -EPROBE_DEFER)
1762 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1763 __func__, names[i], ret);
1764 goto free_regulators;
1765 }
1766
1767 opp_table->regulators[i] = reg;
1768 }
1769
1770 opp_table->regulator_count = count;
1771
1772 /* Allocate block only once to pass to set_opp() routines */
1773 ret = _allocate_set_opp_data(opp_table);
1774 if (ret)
1775 goto free_regulators;
1776
1777 return opp_table;
1778
1779free_regulators:
1780 while (i != 0)
1781 regulator_put(opp_table->regulators[--i]);
1782
1783 kfree(opp_table->regulators);
1784 opp_table->regulators = NULL;
1785 opp_table->regulator_count = -1;
1786err:
1787 dev_pm_opp_put_opp_table(opp_table);
1788
1789 return ERR_PTR(ret);
1790}
1791EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1792
1793/**
1794 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1795 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1796 */
1797void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1798{
1799 int i;
1800
1801 if (!opp_table->regulators)
1802 goto put_opp_table;
1803
1804 /* Make sure there are no concurrent readers while updating opp_table */
1805 WARN_ON(!list_empty(&opp_table->opp_list));
1806
1807 if (opp_table->regulator_enabled) {
1808 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1809 regulator_disable(opp_table->regulators[i]);
1810
1811 opp_table->regulator_enabled = false;
1812 }
1813
1814 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1815 regulator_put(opp_table->regulators[i]);
1816
1817 _free_set_opp_data(opp_table);
1818
1819 kfree(opp_table->regulators);
1820 opp_table->regulators = NULL;
1821 opp_table->regulator_count = -1;
1822
1823put_opp_table:
1824 dev_pm_opp_put_opp_table(opp_table);
1825}
1826EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1827
1828/**
1829 * dev_pm_opp_set_clkname() - Set clk name for the device
1830 * @dev: Device for which clk name is being set.
1831 * @name: Clk name.
1832 *
1833 * In order to support OPP switching, OPP layer needs to get pointer to the
1834 * clock for the device. Simple cases work fine without using this routine (i.e.
1835 * by passing connection-id as NULL), but for a device with multiple clocks
1836 * available, the OPP core needs to know the exact name of the clk to use.
1837 *
1838 * This must be called before any OPPs are initialized for the device.
1839 */
1840struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1841{
1842 struct opp_table *opp_table;
1843 int ret;
1844
1845 opp_table = dev_pm_opp_get_opp_table(dev);
1846 if (!opp_table)
1847 return ERR_PTR(-ENOMEM);
1848
1849 /* This should be called before OPPs are initialized */
1850 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1851 ret = -EBUSY;
1852 goto err;
1853 }
1854
1855 /* Already have default clk set, free it */
1856 if (!IS_ERR(opp_table->clk))
1857 clk_put(opp_table->clk);
1858
1859 /* Find clk for the device */
1860 opp_table->clk = clk_get(dev, name);
1861 if (IS_ERR(opp_table->clk)) {
1862 ret = PTR_ERR(opp_table->clk);
1863 if (ret != -EPROBE_DEFER) {
1864 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1865 ret);
1866 }
1867 goto err;
1868 }
1869
1870 return opp_table;
1871
1872err:
1873 dev_pm_opp_put_opp_table(opp_table);
1874
1875 return ERR_PTR(ret);
1876}
1877EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1878
1879/**
1880 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1881 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1882 */
1883void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1884{
1885 /* Make sure there are no concurrent readers while updating opp_table */
1886 WARN_ON(!list_empty(&opp_table->opp_list));
1887
1888 clk_put(opp_table->clk);
1889 opp_table->clk = ERR_PTR(-EINVAL);
1890
1891 dev_pm_opp_put_opp_table(opp_table);
1892}
1893EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1894
1895/**
1896 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1897 * @dev: Device for which the helper is getting registered.
1898 * @set_opp: Custom set OPP helper.
1899 *
1900 * This is useful to support complex platforms (like platforms with multiple
1901 * regulators per device), instead of the generic OPP set rate helper.
1902 *
1903 * This must be called before any OPPs are initialized for the device.
1904 */
1905struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1906 int (*set_opp)(struct dev_pm_set_opp_data *data))
1907{
1908 struct opp_table *opp_table;
1909
1910 if (!set_opp)
1911 return ERR_PTR(-EINVAL);
1912
1913 opp_table = dev_pm_opp_get_opp_table(dev);
1914 if (!opp_table)
1915 return ERR_PTR(-ENOMEM);
1916
1917 /* This should be called before OPPs are initialized */
1918 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1919 dev_pm_opp_put_opp_table(opp_table);
1920 return ERR_PTR(-EBUSY);
1921 }
1922
1923 /* Another CPU that shares the OPP table has set the helper ? */
1924 if (!opp_table->set_opp)
1925 opp_table->set_opp = set_opp;
1926
1927 return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1930
1931/**
1932 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1933 * set_opp helper
1934 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1935 *
1936 * Release resources blocked for platform specific set_opp helper.
1937 */
1938void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1939{
1940 /* Make sure there are no concurrent readers while updating opp_table */
1941 WARN_ON(!list_empty(&opp_table->opp_list));
1942
1943 opp_table->set_opp = NULL;
1944 dev_pm_opp_put_opp_table(opp_table);
1945}
1946EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1947
1948static void _opp_detach_genpd(struct opp_table *opp_table)
1949{
1950 int index;
1951
1952 for (index = 0; index < opp_table->required_opp_count; index++) {
1953 if (!opp_table->genpd_virt_devs[index])
1954 continue;
1955
1956 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1957 opp_table->genpd_virt_devs[index] = NULL;
1958 }
1959
1960 kfree(opp_table->genpd_virt_devs);
1961 opp_table->genpd_virt_devs = NULL;
1962}
1963
1964/**
1965 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1966 * @dev: Consumer device for which the genpd is getting attached.
1967 * @names: Null terminated array of pointers containing names of genpd to attach.
1968 * @virt_devs: Pointer to return the array of virtual devices.
1969 *
1970 * Multiple generic power domains for a device are supported with the help of
1971 * virtual genpd devices, which are created for each consumer device - genpd
1972 * pair. These are the device structures which are attached to the power domain
1973 * and are required by the OPP core to set the performance state of the genpd.
1974 * The same API also works for the case where single genpd is available and so
1975 * we don't need to support that separately.
1976 *
1977 * This helper will normally be called by the consumer driver of the device
1978 * "dev", as only that has details of the genpd names.
1979 *
1980 * This helper needs to be called once with a list of all genpd to attach.
1981 * Otherwise the original device structure will be used instead by the OPP core.
1982 *
1983 * The order of entries in the names array must match the order in which
1984 * "required-opps" are added in DT.
1985 */
1986struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1987 const char **names, struct device ***virt_devs)
1988{
1989 struct opp_table *opp_table;
1990 struct device *virt_dev;
1991 int index = 0, ret = -EINVAL;
1992 const char **name = names;
1993
1994 opp_table = dev_pm_opp_get_opp_table(dev);
1995 if (!opp_table)
1996 return ERR_PTR(-ENOMEM);
1997
1998 /*
1999 * If the genpd's OPP table isn't already initialized, parsing of the
2000 * required-opps fail for dev. We should retry this after genpd's OPP
2001 * table is added.
2002 */
2003 if (!opp_table->required_opp_count) {
2004 ret = -EPROBE_DEFER;
2005 goto put_table;
2006 }
2007
2008 mutex_lock(&opp_table->genpd_virt_dev_lock);
2009
2010 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2011 sizeof(*opp_table->genpd_virt_devs),
2012 GFP_KERNEL);
2013 if (!opp_table->genpd_virt_devs)
2014 goto unlock;
2015
2016 while (*name) {
2017 if (index >= opp_table->required_opp_count) {
2018 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2019 *name, opp_table->required_opp_count, index);
2020 goto err;
2021 }
2022
2023 if (opp_table->genpd_virt_devs[index]) {
2024 dev_err(dev, "Genpd virtual device already set %s\n",
2025 *name);
2026 goto err;
2027 }
2028
2029 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2030 if (IS_ERR(virt_dev)) {
2031 ret = PTR_ERR(virt_dev);
2032 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2033 goto err;
2034 }
2035
2036 opp_table->genpd_virt_devs[index] = virt_dev;
2037 index++;
2038 name++;
2039 }
2040
2041 if (virt_devs)
2042 *virt_devs = opp_table->genpd_virt_devs;
2043 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2044
2045 return opp_table;
2046
2047err:
2048 _opp_detach_genpd(opp_table);
2049unlock:
2050 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2051
2052put_table:
2053 dev_pm_opp_put_opp_table(opp_table);
2054
2055 return ERR_PTR(ret);
2056}
2057EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2058
2059/**
2060 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2061 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2062 *
2063 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2064 * OPP table.
2065 */
2066void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2067{
2068 /*
2069 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2070 * used in parallel.
2071 */
2072 mutex_lock(&opp_table->genpd_virt_dev_lock);
2073 _opp_detach_genpd(opp_table);
2074 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2075
2076 dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2079
2080/**
2081 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2082 * @src_table: OPP table which has dst_table as one of its required OPP table.
2083 * @dst_table: Required OPP table of the src_table.
2084 * @pstate: Current performance state of the src_table.
2085 *
2086 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2087 * "required-opps" property of the OPP (present in @src_table) which has
2088 * performance state set to @pstate.
2089 *
2090 * Return: Zero or positive performance state on success, otherwise negative
2091 * value on errors.
2092 */
2093int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2094 struct opp_table *dst_table,
2095 unsigned int pstate)
2096{
2097 struct dev_pm_opp *opp;
2098 int dest_pstate = -EINVAL;
2099 int i;
2100
2101 if (!pstate)
2102 return 0;
2103
2104 /*
2105 * Normally the src_table will have the "required_opps" property set to
2106 * point to one of the OPPs in the dst_table, but in some cases the
2107 * genpd and its master have one to one mapping of performance states
2108 * and so none of them have the "required-opps" property set. Return the
2109 * pstate of the src_table as it is in such cases.
2110 */
2111 if (!src_table->required_opp_count)
2112 return pstate;
2113
2114 for (i = 0; i < src_table->required_opp_count; i++) {
2115 if (src_table->required_opp_tables[i]->np == dst_table->np)
2116 break;
2117 }
2118
2119 if (unlikely(i == src_table->required_opp_count)) {
2120 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2121 __func__, src_table, dst_table);
2122 return -EINVAL;
2123 }
2124
2125 mutex_lock(&src_table->lock);
2126
2127 list_for_each_entry(opp, &src_table->opp_list, node) {
2128 if (opp->pstate == pstate) {
2129 dest_pstate = opp->required_opps[i]->pstate;
2130 goto unlock;
2131 }
2132 }
2133
2134 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2135 dst_table);
2136
2137unlock:
2138 mutex_unlock(&src_table->lock);
2139
2140 return dest_pstate;
2141}
2142
2143/**
2144 * dev_pm_opp_add() - Add an OPP table from a table definitions
2145 * @dev: device for which we do this operation
2146 * @freq: Frequency in Hz for this OPP
2147 * @u_volt: Voltage in uVolts for this OPP
2148 *
2149 * This function adds an opp definition to the opp table and returns status.
2150 * The opp is made available by default and it can be controlled using
2151 * dev_pm_opp_enable/disable functions.
2152 *
2153 * Return:
2154 * 0 On success OR
2155 * Duplicate OPPs (both freq and volt are same) and opp->available
2156 * -EEXIST Freq are same and volt are different OR
2157 * Duplicate OPPs (both freq and volt are same) and !opp->available
2158 * -ENOMEM Memory allocation failure
2159 */
2160int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2161{
2162 struct opp_table *opp_table;
2163 int ret;
2164
2165 opp_table = dev_pm_opp_get_opp_table(dev);
2166 if (!opp_table)
2167 return -ENOMEM;
2168
2169 /* Fix regulator count for dynamic OPPs */
2170 opp_table->regulator_count = 1;
2171
2172 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2173 if (ret)
2174 dev_pm_opp_put_opp_table(opp_table);
2175
2176 return ret;
2177}
2178EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2179
2180/**
2181 * _opp_set_availability() - helper to set the availability of an opp
2182 * @dev: device for which we do this operation
2183 * @freq: OPP frequency to modify availability
2184 * @availability_req: availability status requested for this opp
2185 *
2186 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2187 * which is isolated here.
2188 *
2189 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2190 * copy operation, returns 0 if no modification was done OR modification was
2191 * successful.
2192 */
2193static int _opp_set_availability(struct device *dev, unsigned long freq,
2194 bool availability_req)
2195{
2196 struct opp_table *opp_table;
2197 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2198 int r = 0;
2199
2200 /* Find the opp_table */
2201 opp_table = _find_opp_table(dev);
2202 if (IS_ERR(opp_table)) {
2203 r = PTR_ERR(opp_table);
2204 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2205 return r;
2206 }
2207
2208 mutex_lock(&opp_table->lock);
2209
2210 /* Do we have the frequency? */
2211 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2212 if (tmp_opp->rate == freq) {
2213 opp = tmp_opp;
2214 break;
2215 }
2216 }
2217
2218 if (IS_ERR(opp)) {
2219 r = PTR_ERR(opp);
2220 goto unlock;
2221 }
2222
2223 /* Is update really needed? */
2224 if (opp->available == availability_req)
2225 goto unlock;
2226
2227 opp->available = availability_req;
2228
2229 dev_pm_opp_get(opp);
2230 mutex_unlock(&opp_table->lock);
2231
2232 /* Notify the change of the OPP availability */
2233 if (availability_req)
2234 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2235 opp);
2236 else
2237 blocking_notifier_call_chain(&opp_table->head,
2238 OPP_EVENT_DISABLE, opp);
2239
2240 dev_pm_opp_put(opp);
2241 goto put_table;
2242
2243unlock:
2244 mutex_unlock(&opp_table->lock);
2245put_table:
2246 dev_pm_opp_put_opp_table(opp_table);
2247 return r;
2248}
2249
2250/**
2251 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2252 * @dev: device for which we do this operation
2253 * @freq: OPP frequency to adjust voltage of
2254 * @u_volt: new OPP target voltage
2255 * @u_volt_min: new OPP min voltage
2256 * @u_volt_max: new OPP max voltage
2257 *
2258 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2259 * copy operation, returns 0 if no modifcation was done OR modification was
2260 * successful.
2261 */
2262int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2263 unsigned long u_volt, unsigned long u_volt_min,
2264 unsigned long u_volt_max)
2265
2266{
2267 struct opp_table *opp_table;
2268 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2269 int r = 0;
2270
2271 /* Find the opp_table */
2272 opp_table = _find_opp_table(dev);
2273 if (IS_ERR(opp_table)) {
2274 r = PTR_ERR(opp_table);
2275 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2276 return r;
2277 }
2278
2279 mutex_lock(&opp_table->lock);
2280
2281 /* Do we have the frequency? */
2282 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2283 if (tmp_opp->rate == freq) {
2284 opp = tmp_opp;
2285 break;
2286 }
2287 }
2288
2289 if (IS_ERR(opp)) {
2290 r = PTR_ERR(opp);
2291 goto adjust_unlock;
2292 }
2293
2294 /* Is update really needed? */
2295 if (opp->supplies->u_volt == u_volt)
2296 goto adjust_unlock;
2297
2298 opp->supplies->u_volt = u_volt;
2299 opp->supplies->u_volt_min = u_volt_min;
2300 opp->supplies->u_volt_max = u_volt_max;
2301
2302 dev_pm_opp_get(opp);
2303 mutex_unlock(&opp_table->lock);
2304
2305 /* Notify the voltage change of the OPP */
2306 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2307 opp);
2308
2309 dev_pm_opp_put(opp);
2310 goto adjust_put_table;
2311
2312adjust_unlock:
2313 mutex_unlock(&opp_table->lock);
2314adjust_put_table:
2315 dev_pm_opp_put_opp_table(opp_table);
2316 return r;
2317}
2318EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2319
2320/**
2321 * dev_pm_opp_enable() - Enable a specific OPP
2322 * @dev: device for which we do this operation
2323 * @freq: OPP frequency to enable
2324 *
2325 * Enables a provided opp. If the operation is valid, this returns 0, else the
2326 * corresponding error value. It is meant to be used for users an OPP available
2327 * after being temporarily made unavailable with dev_pm_opp_disable.
2328 *
2329 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2330 * copy operation, returns 0 if no modification was done OR modification was
2331 * successful.
2332 */
2333int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2334{
2335 return _opp_set_availability(dev, freq, true);
2336}
2337EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2338
2339/**
2340 * dev_pm_opp_disable() - Disable a specific OPP
2341 * @dev: device for which we do this operation
2342 * @freq: OPP frequency to disable
2343 *
2344 * Disables a provided opp. If the operation is valid, this returns
2345 * 0, else the corresponding error value. It is meant to be a temporary
2346 * control by users to make this OPP not available until the circumstances are
2347 * right to make it available again (with a call to dev_pm_opp_enable).
2348 *
2349 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2350 * copy operation, returns 0 if no modification was done OR modification was
2351 * successful.
2352 */
2353int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2354{
2355 return _opp_set_availability(dev, freq, false);
2356}
2357EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2358
2359/**
2360 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2361 * @dev: Device for which notifier needs to be registered
2362 * @nb: Notifier block to be registered
2363 *
2364 * Return: 0 on success or a negative error value.
2365 */
2366int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2367{
2368 struct opp_table *opp_table;
2369 int ret;
2370
2371 opp_table = _find_opp_table(dev);
2372 if (IS_ERR(opp_table))
2373 return PTR_ERR(opp_table);
2374
2375 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2376
2377 dev_pm_opp_put_opp_table(opp_table);
2378
2379 return ret;
2380}
2381EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2382
2383/**
2384 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2385 * @dev: Device for which notifier needs to be unregistered
2386 * @nb: Notifier block to be unregistered
2387 *
2388 * Return: 0 on success or a negative error value.
2389 */
2390int dev_pm_opp_unregister_notifier(struct device *dev,
2391 struct notifier_block *nb)
2392{
2393 struct opp_table *opp_table;
2394 int ret;
2395
2396 opp_table = _find_opp_table(dev);
2397 if (IS_ERR(opp_table))
2398 return PTR_ERR(opp_table);
2399
2400 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2401
2402 dev_pm_opp_put_opp_table(opp_table);
2403
2404 return ret;
2405}
2406EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2407
2408void _dev_pm_opp_find_and_remove_table(struct device *dev)
2409{
2410 struct opp_table *opp_table;
2411
2412 /* Check for existing table for 'dev' */
2413 opp_table = _find_opp_table(dev);
2414 if (IS_ERR(opp_table)) {
2415 int error = PTR_ERR(opp_table);
2416
2417 if (error != -ENODEV)
2418 WARN(1, "%s: opp_table: %d\n",
2419 IS_ERR_OR_NULL(dev) ?
2420 "Invalid device" : dev_name(dev),
2421 error);
2422 return;
2423 }
2424
2425 /*
2426 * Drop the extra reference only if the OPP table was successfully added
2427 * with dev_pm_opp_of_add_table() earlier.
2428 **/
2429 if (_opp_remove_all_static(opp_table))
2430 dev_pm_opp_put_opp_table(opp_table);
2431
2432 /* Drop reference taken by _find_opp_table() */
2433 dev_pm_opp_put_opp_table(opp_table);
2434}
2435
2436/**
2437 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2438 * @dev: device pointer used to lookup OPP table.
2439 *
2440 * Free both OPPs created using static entries present in DT and the
2441 * dynamically added entries.
2442 */
2443void dev_pm_opp_remove_table(struct device *dev)
2444{
2445 _dev_pm_opp_find_and_remove_table(dev);
2446}
2447EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 return 0;
703
704restore_freq:
705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 __func__, old_freq);
708restore_voltage:
709 /* This shouldn't harm even if the voltages weren't updated earlier */
710 if (old_supply)
711 _set_opp_voltage(dev, reg, old_supply);
712
713 return ret;
714}
715
716static int _set_opp_custom(const struct opp_table *opp_table,
717 struct device *dev, unsigned long old_freq,
718 unsigned long freq,
719 struct dev_pm_opp_supply *old_supply,
720 struct dev_pm_opp_supply *new_supply)
721{
722 struct dev_pm_set_opp_data *data;
723 int size;
724
725 data = opp_table->set_opp_data;
726 data->regulators = opp_table->regulators;
727 data->regulator_count = opp_table->regulator_count;
728 data->clk = opp_table->clk;
729 data->dev = dev;
730
731 data->old_opp.rate = old_freq;
732 size = sizeof(*old_supply) * opp_table->regulator_count;
733 if (!old_supply)
734 memset(data->old_opp.supplies, 0, size);
735 else
736 memcpy(data->old_opp.supplies, old_supply, size);
737
738 data->new_opp.rate = freq;
739 memcpy(data->new_opp.supplies, new_supply, size);
740
741 return opp_table->set_opp(data);
742}
743
744/* This is only called for PM domain for now */
745static int _set_required_opps(struct device *dev,
746 struct opp_table *opp_table,
747 struct dev_pm_opp *opp)
748{
749 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 unsigned int pstate;
752 int i, ret = 0;
753
754 if (!required_opp_tables)
755 return 0;
756
757 /* Single genpd case */
758 if (!genpd_virt_devs) {
759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 if (ret) {
762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 dev_name(dev), pstate, ret);
764 }
765 return ret;
766 }
767
768 /* Multiple genpd case */
769
770 /*
771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 * after it is freed from another thread.
773 */
774 mutex_lock(&opp_table->genpd_virt_dev_lock);
775
776 for (i = 0; i < opp_table->required_opp_count; i++) {
777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778
779 if (!genpd_virt_devs[i])
780 continue;
781
782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 if (ret) {
784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 dev_name(genpd_virt_devs[i]), pstate, ret);
786 break;
787 }
788 }
789 mutex_unlock(&opp_table->genpd_virt_dev_lock);
790
791 return ret;
792}
793
794/**
795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796 * @dev: device for which we do this operation
797 * @target_freq: frequency to achieve
798 *
799 * This configures the power-supplies to the levels specified by the OPP
800 * corresponding to the target_freq, and programs the clock to a value <=
801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802 * provided by the opp, should have already rounded to the target OPP's
803 * frequency.
804 */
805int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806{
807 struct opp_table *opp_table;
808 unsigned long freq, old_freq, temp_freq;
809 struct dev_pm_opp *old_opp, *opp;
810 struct clk *clk;
811 int ret;
812
813 opp_table = _find_opp_table(dev);
814 if (IS_ERR(opp_table)) {
815 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 return PTR_ERR(opp_table);
817 }
818
819 if (unlikely(!target_freq)) {
820 if (opp_table->required_opp_tables) {
821 ret = _set_required_opps(dev, opp_table, NULL);
822 } else {
823 dev_err(dev, "target frequency can't be 0\n");
824 ret = -EINVAL;
825 }
826
827 goto put_opp_table;
828 }
829
830 clk = opp_table->clk;
831 if (IS_ERR(clk)) {
832 dev_err(dev, "%s: No clock available for the device\n",
833 __func__);
834 ret = PTR_ERR(clk);
835 goto put_opp_table;
836 }
837
838 freq = clk_round_rate(clk, target_freq);
839 if ((long)freq <= 0)
840 freq = target_freq;
841
842 old_freq = clk_get_rate(clk);
843
844 /* Return early if nothing to do */
845 if (old_freq == freq) {
846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 __func__, freq);
848 ret = 0;
849 goto put_opp_table;
850 }
851
852 temp_freq = old_freq;
853 old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 if (IS_ERR(old_opp)) {
855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 __func__, old_freq, PTR_ERR(old_opp));
857 }
858
859 temp_freq = freq;
860 opp = _find_freq_ceil(opp_table, &temp_freq);
861 if (IS_ERR(opp)) {
862 ret = PTR_ERR(opp);
863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 __func__, freq, ret);
865 goto put_old_opp;
866 }
867
868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 old_freq, freq);
870
871 /* Scaling up? Configure required OPPs before frequency */
872 if (freq >= old_freq) {
873 ret = _set_required_opps(dev, opp_table, opp);
874 if (ret)
875 goto put_opp;
876 }
877
878 if (opp_table->set_opp) {
879 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 opp->supplies);
882 } else if (opp_table->regulators) {
883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 opp->supplies);
886 } else {
887 /* Only frequency scaling */
888 ret = _generic_set_opp_clk_only(dev, clk, freq);
889 }
890
891 /* Scaling down? Configure required OPPs after frequency */
892 if (!ret && freq < old_freq) {
893 ret = _set_required_opps(dev, opp_table, opp);
894 if (ret)
895 dev_err(dev, "Failed to set required opps: %d\n", ret);
896 }
897
898put_opp:
899 dev_pm_opp_put(opp);
900put_old_opp:
901 if (!IS_ERR(old_opp))
902 dev_pm_opp_put(old_opp);
903put_opp_table:
904 dev_pm_opp_put_opp_table(opp_table);
905 return ret;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908
909/* OPP-dev Helpers */
910static void _remove_opp_dev(struct opp_device *opp_dev,
911 struct opp_table *opp_table)
912{
913 opp_debug_unregister(opp_dev, opp_table);
914 list_del(&opp_dev->node);
915 kfree(opp_dev);
916}
917
918static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 struct opp_table *opp_table)
920{
921 struct opp_device *opp_dev;
922
923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 if (!opp_dev)
925 return NULL;
926
927 /* Initialize opp-dev */
928 opp_dev->dev = dev;
929
930 list_add(&opp_dev->node, &opp_table->dev_list);
931
932 /* Create debugfs entries for the opp_table */
933 opp_debug_register(opp_dev, opp_table);
934
935 return opp_dev;
936}
937
938struct opp_device *_add_opp_dev(const struct device *dev,
939 struct opp_table *opp_table)
940{
941 struct opp_device *opp_dev;
942
943 mutex_lock(&opp_table->lock);
944 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 mutex_unlock(&opp_table->lock);
946
947 return opp_dev;
948}
949
950static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951{
952 struct opp_table *opp_table;
953 struct opp_device *opp_dev;
954 int ret;
955
956 /*
957 * Allocate a new OPP table. In the infrequent case where a new
958 * device is needed to be added, we pay this penalty.
959 */
960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 if (!opp_table)
962 return NULL;
963
964 mutex_init(&opp_table->lock);
965 mutex_init(&opp_table->genpd_virt_dev_lock);
966 INIT_LIST_HEAD(&opp_table->dev_list);
967
968 /* Mark regulator count uninitialized */
969 opp_table->regulator_count = -1;
970
971 opp_dev = _add_opp_dev(dev, opp_table);
972 if (!opp_dev) {
973 kfree(opp_table);
974 return NULL;
975 }
976
977 _of_init_opp_table(opp_table, dev, index);
978
979 /* Find clk for the device */
980 opp_table->clk = clk_get(dev, NULL);
981 if (IS_ERR(opp_table->clk)) {
982 ret = PTR_ERR(opp_table->clk);
983 if (ret != -EPROBE_DEFER)
984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 ret);
986 }
987
988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 INIT_LIST_HEAD(&opp_table->opp_list);
990 kref_init(&opp_table->kref);
991 kref_init(&opp_table->list_kref);
992
993 /* Secure the device table modification */
994 list_add(&opp_table->node, &opp_tables);
995 return opp_table;
996}
997
998void _get_opp_table_kref(struct opp_table *opp_table)
999{
1000 kref_get(&opp_table->kref);
1001}
1002
1003static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1004{
1005 struct opp_table *opp_table;
1006
1007 /* Hold our table modification lock here */
1008 mutex_lock(&opp_table_lock);
1009
1010 opp_table = _find_opp_table_unlocked(dev);
1011 if (!IS_ERR(opp_table))
1012 goto unlock;
1013
1014 opp_table = _managed_opp(dev, index);
1015 if (opp_table) {
1016 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1017 dev_pm_opp_put_opp_table(opp_table);
1018 opp_table = NULL;
1019 }
1020 goto unlock;
1021 }
1022
1023 opp_table = _allocate_opp_table(dev, index);
1024
1025unlock:
1026 mutex_unlock(&opp_table_lock);
1027
1028 return opp_table;
1029}
1030
1031struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1032{
1033 return _opp_get_opp_table(dev, 0);
1034}
1035EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1036
1037struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1038 int index)
1039{
1040 return _opp_get_opp_table(dev, index);
1041}
1042
1043static void _opp_table_kref_release(struct kref *kref)
1044{
1045 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1046 struct opp_device *opp_dev, *temp;
1047
1048 _of_clear_opp_table(opp_table);
1049
1050 /* Release clk */
1051 if (!IS_ERR(opp_table->clk))
1052 clk_put(opp_table->clk);
1053
1054 WARN_ON(!list_empty(&opp_table->opp_list));
1055
1056 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1057 /*
1058 * The OPP table is getting removed, drop the performance state
1059 * constraints.
1060 */
1061 if (opp_table->genpd_performance_state)
1062 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1063
1064 _remove_opp_dev(opp_dev, opp_table);
1065 }
1066
1067 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1068 mutex_destroy(&opp_table->lock);
1069 list_del(&opp_table->node);
1070 kfree(opp_table);
1071
1072 mutex_unlock(&opp_table_lock);
1073}
1074
1075void _opp_remove_all_static(struct opp_table *opp_table)
1076{
1077 struct dev_pm_opp *opp, *tmp;
1078
1079 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1080 if (!opp->dynamic)
1081 dev_pm_opp_put(opp);
1082 }
1083
1084 opp_table->parsed_static_opps = false;
1085}
1086
1087static void _opp_table_list_kref_release(struct kref *kref)
1088{
1089 struct opp_table *opp_table = container_of(kref, struct opp_table,
1090 list_kref);
1091
1092 _opp_remove_all_static(opp_table);
1093 mutex_unlock(&opp_table_lock);
1094}
1095
1096void _put_opp_list_kref(struct opp_table *opp_table)
1097{
1098 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1099 &opp_table_lock);
1100}
1101
1102void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1103{
1104 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1105 &opp_table_lock);
1106}
1107EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1108
1109void _opp_free(struct dev_pm_opp *opp)
1110{
1111 kfree(opp);
1112}
1113
1114static void _opp_kref_release(struct dev_pm_opp *opp,
1115 struct opp_table *opp_table)
1116{
1117 /*
1118 * Notify the changes in the availability of the operable
1119 * frequency/voltage list.
1120 */
1121 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1122 _of_opp_free_required_opps(opp_table, opp);
1123 opp_debug_remove_one(opp);
1124 list_del(&opp->node);
1125 kfree(opp);
1126}
1127
1128static void _opp_kref_release_unlocked(struct kref *kref)
1129{
1130 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1131 struct opp_table *opp_table = opp->opp_table;
1132
1133 _opp_kref_release(opp, opp_table);
1134}
1135
1136static void _opp_kref_release_locked(struct kref *kref)
1137{
1138 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1139 struct opp_table *opp_table = opp->opp_table;
1140
1141 _opp_kref_release(opp, opp_table);
1142 mutex_unlock(&opp_table->lock);
1143}
1144
1145void dev_pm_opp_get(struct dev_pm_opp *opp)
1146{
1147 kref_get(&opp->kref);
1148}
1149
1150void dev_pm_opp_put(struct dev_pm_opp *opp)
1151{
1152 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1153 &opp->opp_table->lock);
1154}
1155EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1156
1157static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1158{
1159 kref_put(&opp->kref, _opp_kref_release_unlocked);
1160}
1161
1162/**
1163 * dev_pm_opp_remove() - Remove an OPP from OPP table
1164 * @dev: device for which we do this operation
1165 * @freq: OPP to remove with matching 'freq'
1166 *
1167 * This function removes an opp from the opp table.
1168 */
1169void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1170{
1171 struct dev_pm_opp *opp;
1172 struct opp_table *opp_table;
1173 bool found = false;
1174
1175 opp_table = _find_opp_table(dev);
1176 if (IS_ERR(opp_table))
1177 return;
1178
1179 mutex_lock(&opp_table->lock);
1180
1181 list_for_each_entry(opp, &opp_table->opp_list, node) {
1182 if (opp->rate == freq) {
1183 found = true;
1184 break;
1185 }
1186 }
1187
1188 mutex_unlock(&opp_table->lock);
1189
1190 if (found) {
1191 dev_pm_opp_put(opp);
1192
1193 /* Drop the reference taken by dev_pm_opp_add() */
1194 dev_pm_opp_put_opp_table(opp_table);
1195 } else {
1196 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1197 __func__, freq);
1198 }
1199
1200 /* Drop the reference taken by _find_opp_table() */
1201 dev_pm_opp_put_opp_table(opp_table);
1202}
1203EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1204
1205/**
1206 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1207 * @dev: device for which we do this operation
1208 *
1209 * This function removes all dynamically created OPPs from the opp table.
1210 */
1211void dev_pm_opp_remove_all_dynamic(struct device *dev)
1212{
1213 struct opp_table *opp_table;
1214 struct dev_pm_opp *opp, *temp;
1215 int count = 0;
1216
1217 opp_table = _find_opp_table(dev);
1218 if (IS_ERR(opp_table))
1219 return;
1220
1221 mutex_lock(&opp_table->lock);
1222 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1223 if (opp->dynamic) {
1224 dev_pm_opp_put_unlocked(opp);
1225 count++;
1226 }
1227 }
1228 mutex_unlock(&opp_table->lock);
1229
1230 /* Drop the references taken by dev_pm_opp_add() */
1231 while (count--)
1232 dev_pm_opp_put_opp_table(opp_table);
1233
1234 /* Drop the reference taken by _find_opp_table() */
1235 dev_pm_opp_put_opp_table(opp_table);
1236}
1237EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1238
1239struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1240{
1241 struct dev_pm_opp *opp;
1242 int count, supply_size;
1243
1244 /* Allocate space for at least one supply */
1245 count = table->regulator_count > 0 ? table->regulator_count : 1;
1246 supply_size = sizeof(*opp->supplies) * count;
1247
1248 /* allocate new OPP node and supplies structures */
1249 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1250 if (!opp)
1251 return NULL;
1252
1253 /* Put the supplies at the end of the OPP structure as an empty array */
1254 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1255 INIT_LIST_HEAD(&opp->node);
1256
1257 return opp;
1258}
1259
1260static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1261 struct opp_table *opp_table)
1262{
1263 struct regulator *reg;
1264 int i;
1265
1266 if (!opp_table->regulators)
1267 return true;
1268
1269 for (i = 0; i < opp_table->regulator_count; i++) {
1270 reg = opp_table->regulators[i];
1271
1272 if (!regulator_is_supported_voltage(reg,
1273 opp->supplies[i].u_volt_min,
1274 opp->supplies[i].u_volt_max)) {
1275 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1276 __func__, opp->supplies[i].u_volt_min,
1277 opp->supplies[i].u_volt_max);
1278 return false;
1279 }
1280 }
1281
1282 return true;
1283}
1284
1285static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1286 struct opp_table *opp_table,
1287 struct list_head **head)
1288{
1289 struct dev_pm_opp *opp;
1290
1291 /*
1292 * Insert new OPP in order of increasing frequency and discard if
1293 * already present.
1294 *
1295 * Need to use &opp_table->opp_list in the condition part of the 'for'
1296 * loop, don't replace it with head otherwise it will become an infinite
1297 * loop.
1298 */
1299 list_for_each_entry(opp, &opp_table->opp_list, node) {
1300 if (new_opp->rate > opp->rate) {
1301 *head = &opp->node;
1302 continue;
1303 }
1304
1305 if (new_opp->rate < opp->rate)
1306 return 0;
1307
1308 /* Duplicate OPPs */
1309 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1310 __func__, opp->rate, opp->supplies[0].u_volt,
1311 opp->available, new_opp->rate,
1312 new_opp->supplies[0].u_volt, new_opp->available);
1313
1314 /* Should we compare voltages for all regulators here ? */
1315 return opp->available &&
1316 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1317 }
1318
1319 return 0;
1320}
1321
1322/*
1323 * Returns:
1324 * 0: On success. And appropriate error message for duplicate OPPs.
1325 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1326 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1327 * sure we don't print error messages unnecessarily if different parts of
1328 * kernel try to initialize the OPP table.
1329 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1330 * should be considered an error by the callers of _opp_add().
1331 */
1332int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1333 struct opp_table *opp_table, bool rate_not_available)
1334{
1335 struct list_head *head;
1336 int ret;
1337
1338 mutex_lock(&opp_table->lock);
1339 head = &opp_table->opp_list;
1340
1341 if (likely(!rate_not_available)) {
1342 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1343 if (ret) {
1344 mutex_unlock(&opp_table->lock);
1345 return ret;
1346 }
1347 }
1348
1349 list_add(&new_opp->node, head);
1350 mutex_unlock(&opp_table->lock);
1351
1352 new_opp->opp_table = opp_table;
1353 kref_init(&new_opp->kref);
1354
1355 opp_debug_create_one(new_opp, opp_table);
1356
1357 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1358 new_opp->available = false;
1359 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1360 __func__, new_opp->rate);
1361 }
1362
1363 return 0;
1364}
1365
1366/**
1367 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1368 * @opp_table: OPP table
1369 * @dev: device for which we do this operation
1370 * @freq: Frequency in Hz for this OPP
1371 * @u_volt: Voltage in uVolts for this OPP
1372 * @dynamic: Dynamically added OPPs.
1373 *
1374 * This function adds an opp definition to the opp table and returns status.
1375 * The opp is made available by default and it can be controlled using
1376 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1377 *
1378 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1379 * and freed by dev_pm_opp_of_remove_table.
1380 *
1381 * Return:
1382 * 0 On success OR
1383 * Duplicate OPPs (both freq and volt are same) and opp->available
1384 * -EEXIST Freq are same and volt are different OR
1385 * Duplicate OPPs (both freq and volt are same) and !opp->available
1386 * -ENOMEM Memory allocation failure
1387 */
1388int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1389 unsigned long freq, long u_volt, bool dynamic)
1390{
1391 struct dev_pm_opp *new_opp;
1392 unsigned long tol;
1393 int ret;
1394
1395 new_opp = _opp_allocate(opp_table);
1396 if (!new_opp)
1397 return -ENOMEM;
1398
1399 /* populate the opp table */
1400 new_opp->rate = freq;
1401 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1402 new_opp->supplies[0].u_volt = u_volt;
1403 new_opp->supplies[0].u_volt_min = u_volt - tol;
1404 new_opp->supplies[0].u_volt_max = u_volt + tol;
1405 new_opp->available = true;
1406 new_opp->dynamic = dynamic;
1407
1408 ret = _opp_add(dev, new_opp, opp_table, false);
1409 if (ret) {
1410 /* Don't return error for duplicate OPPs */
1411 if (ret == -EBUSY)
1412 ret = 0;
1413 goto free_opp;
1414 }
1415
1416 /*
1417 * Notify the changes in the availability of the operable
1418 * frequency/voltage list.
1419 */
1420 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1421 return 0;
1422
1423free_opp:
1424 _opp_free(new_opp);
1425
1426 return ret;
1427}
1428
1429/**
1430 * dev_pm_opp_set_supported_hw() - Set supported platforms
1431 * @dev: Device for which supported-hw has to be set.
1432 * @versions: Array of hierarchy of versions to match.
1433 * @count: Number of elements in the array.
1434 *
1435 * This is required only for the V2 bindings, and it enables a platform to
1436 * specify the hierarchy of versions it supports. OPP layer will then enable
1437 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1438 * property.
1439 */
1440struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1441 const u32 *versions, unsigned int count)
1442{
1443 struct opp_table *opp_table;
1444
1445 opp_table = dev_pm_opp_get_opp_table(dev);
1446 if (!opp_table)
1447 return ERR_PTR(-ENOMEM);
1448
1449 /* Make sure there are no concurrent readers while updating opp_table */
1450 WARN_ON(!list_empty(&opp_table->opp_list));
1451
1452 /* Another CPU that shares the OPP table has set the property ? */
1453 if (opp_table->supported_hw)
1454 return opp_table;
1455
1456 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1457 GFP_KERNEL);
1458 if (!opp_table->supported_hw) {
1459 dev_pm_opp_put_opp_table(opp_table);
1460 return ERR_PTR(-ENOMEM);
1461 }
1462
1463 opp_table->supported_hw_count = count;
1464
1465 return opp_table;
1466}
1467EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1468
1469/**
1470 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1471 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1472 *
1473 * This is required only for the V2 bindings, and is called for a matching
1474 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1475 * will not be freed.
1476 */
1477void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1478{
1479 /* Make sure there are no concurrent readers while updating opp_table */
1480 WARN_ON(!list_empty(&opp_table->opp_list));
1481
1482 kfree(opp_table->supported_hw);
1483 opp_table->supported_hw = NULL;
1484 opp_table->supported_hw_count = 0;
1485
1486 dev_pm_opp_put_opp_table(opp_table);
1487}
1488EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1489
1490/**
1491 * dev_pm_opp_set_prop_name() - Set prop-extn name
1492 * @dev: Device for which the prop-name has to be set.
1493 * @name: name to postfix to properties.
1494 *
1495 * This is required only for the V2 bindings, and it enables a platform to
1496 * specify the extn to be used for certain property names. The properties to
1497 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1498 * should postfix the property name with -<name> while looking for them.
1499 */
1500struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1501{
1502 struct opp_table *opp_table;
1503
1504 opp_table = dev_pm_opp_get_opp_table(dev);
1505 if (!opp_table)
1506 return ERR_PTR(-ENOMEM);
1507
1508 /* Make sure there are no concurrent readers while updating opp_table */
1509 WARN_ON(!list_empty(&opp_table->opp_list));
1510
1511 /* Another CPU that shares the OPP table has set the property ? */
1512 if (opp_table->prop_name)
1513 return opp_table;
1514
1515 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1516 if (!opp_table->prop_name) {
1517 dev_pm_opp_put_opp_table(opp_table);
1518 return ERR_PTR(-ENOMEM);
1519 }
1520
1521 return opp_table;
1522}
1523EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1524
1525/**
1526 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1527 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1528 *
1529 * This is required only for the V2 bindings, and is called for a matching
1530 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1531 * will not be freed.
1532 */
1533void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1534{
1535 /* Make sure there are no concurrent readers while updating opp_table */
1536 WARN_ON(!list_empty(&opp_table->opp_list));
1537
1538 kfree(opp_table->prop_name);
1539 opp_table->prop_name = NULL;
1540
1541 dev_pm_opp_put_opp_table(opp_table);
1542}
1543EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1544
1545static int _allocate_set_opp_data(struct opp_table *opp_table)
1546{
1547 struct dev_pm_set_opp_data *data;
1548 int len, count = opp_table->regulator_count;
1549
1550 if (WARN_ON(!opp_table->regulators))
1551 return -EINVAL;
1552
1553 /* space for set_opp_data */
1554 len = sizeof(*data);
1555
1556 /* space for old_opp.supplies and new_opp.supplies */
1557 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1558
1559 data = kzalloc(len, GFP_KERNEL);
1560 if (!data)
1561 return -ENOMEM;
1562
1563 data->old_opp.supplies = (void *)(data + 1);
1564 data->new_opp.supplies = data->old_opp.supplies + count;
1565
1566 opp_table->set_opp_data = data;
1567
1568 return 0;
1569}
1570
1571static void _free_set_opp_data(struct opp_table *opp_table)
1572{
1573 kfree(opp_table->set_opp_data);
1574 opp_table->set_opp_data = NULL;
1575}
1576
1577/**
1578 * dev_pm_opp_set_regulators() - Set regulator names for the device
1579 * @dev: Device for which regulator name is being set.
1580 * @names: Array of pointers to the names of the regulator.
1581 * @count: Number of regulators.
1582 *
1583 * In order to support OPP switching, OPP layer needs to know the name of the
1584 * device's regulators, as the core would be required to switch voltages as
1585 * well.
1586 *
1587 * This must be called before any OPPs are initialized for the device.
1588 */
1589struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1590 const char * const names[],
1591 unsigned int count)
1592{
1593 struct opp_table *opp_table;
1594 struct regulator *reg;
1595 int ret, i;
1596
1597 opp_table = dev_pm_opp_get_opp_table(dev);
1598 if (!opp_table)
1599 return ERR_PTR(-ENOMEM);
1600
1601 /* This should be called before OPPs are initialized */
1602 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1603 ret = -EBUSY;
1604 goto err;
1605 }
1606
1607 /* Another CPU that shares the OPP table has set the regulators ? */
1608 if (opp_table->regulators)
1609 return opp_table;
1610
1611 opp_table->regulators = kmalloc_array(count,
1612 sizeof(*opp_table->regulators),
1613 GFP_KERNEL);
1614 if (!opp_table->regulators) {
1615 ret = -ENOMEM;
1616 goto err;
1617 }
1618
1619 for (i = 0; i < count; i++) {
1620 reg = regulator_get_optional(dev, names[i]);
1621 if (IS_ERR(reg)) {
1622 ret = PTR_ERR(reg);
1623 if (ret != -EPROBE_DEFER)
1624 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1625 __func__, names[i], ret);
1626 goto free_regulators;
1627 }
1628
1629 opp_table->regulators[i] = reg;
1630 }
1631
1632 opp_table->regulator_count = count;
1633
1634 /* Allocate block only once to pass to set_opp() routines */
1635 ret = _allocate_set_opp_data(opp_table);
1636 if (ret)
1637 goto free_regulators;
1638
1639 return opp_table;
1640
1641free_regulators:
1642 while (i != 0)
1643 regulator_put(opp_table->regulators[--i]);
1644
1645 kfree(opp_table->regulators);
1646 opp_table->regulators = NULL;
1647 opp_table->regulator_count = -1;
1648err:
1649 dev_pm_opp_put_opp_table(opp_table);
1650
1651 return ERR_PTR(ret);
1652}
1653EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1654
1655/**
1656 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1657 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1658 */
1659void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1660{
1661 int i;
1662
1663 if (!opp_table->regulators)
1664 goto put_opp_table;
1665
1666 /* Make sure there are no concurrent readers while updating opp_table */
1667 WARN_ON(!list_empty(&opp_table->opp_list));
1668
1669 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1670 regulator_put(opp_table->regulators[i]);
1671
1672 _free_set_opp_data(opp_table);
1673
1674 kfree(opp_table->regulators);
1675 opp_table->regulators = NULL;
1676 opp_table->regulator_count = -1;
1677
1678put_opp_table:
1679 dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1682
1683/**
1684 * dev_pm_opp_set_clkname() - Set clk name for the device
1685 * @dev: Device for which clk name is being set.
1686 * @name: Clk name.
1687 *
1688 * In order to support OPP switching, OPP layer needs to get pointer to the
1689 * clock for the device. Simple cases work fine without using this routine (i.e.
1690 * by passing connection-id as NULL), but for a device with multiple clocks
1691 * available, the OPP core needs to know the exact name of the clk to use.
1692 *
1693 * This must be called before any OPPs are initialized for the device.
1694 */
1695struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1696{
1697 struct opp_table *opp_table;
1698 int ret;
1699
1700 opp_table = dev_pm_opp_get_opp_table(dev);
1701 if (!opp_table)
1702 return ERR_PTR(-ENOMEM);
1703
1704 /* This should be called before OPPs are initialized */
1705 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1706 ret = -EBUSY;
1707 goto err;
1708 }
1709
1710 /* Already have default clk set, free it */
1711 if (!IS_ERR(opp_table->clk))
1712 clk_put(opp_table->clk);
1713
1714 /* Find clk for the device */
1715 opp_table->clk = clk_get(dev, name);
1716 if (IS_ERR(opp_table->clk)) {
1717 ret = PTR_ERR(opp_table->clk);
1718 if (ret != -EPROBE_DEFER) {
1719 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1720 ret);
1721 }
1722 goto err;
1723 }
1724
1725 return opp_table;
1726
1727err:
1728 dev_pm_opp_put_opp_table(opp_table);
1729
1730 return ERR_PTR(ret);
1731}
1732EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1733
1734/**
1735 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1736 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1737 */
1738void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1739{
1740 /* Make sure there are no concurrent readers while updating opp_table */
1741 WARN_ON(!list_empty(&opp_table->opp_list));
1742
1743 clk_put(opp_table->clk);
1744 opp_table->clk = ERR_PTR(-EINVAL);
1745
1746 dev_pm_opp_put_opp_table(opp_table);
1747}
1748EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1749
1750/**
1751 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1752 * @dev: Device for which the helper is getting registered.
1753 * @set_opp: Custom set OPP helper.
1754 *
1755 * This is useful to support complex platforms (like platforms with multiple
1756 * regulators per device), instead of the generic OPP set rate helper.
1757 *
1758 * This must be called before any OPPs are initialized for the device.
1759 */
1760struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1761 int (*set_opp)(struct dev_pm_set_opp_data *data))
1762{
1763 struct opp_table *opp_table;
1764
1765 if (!set_opp)
1766 return ERR_PTR(-EINVAL);
1767
1768 opp_table = dev_pm_opp_get_opp_table(dev);
1769 if (!opp_table)
1770 return ERR_PTR(-ENOMEM);
1771
1772 /* This should be called before OPPs are initialized */
1773 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1774 dev_pm_opp_put_opp_table(opp_table);
1775 return ERR_PTR(-EBUSY);
1776 }
1777
1778 /* Another CPU that shares the OPP table has set the helper ? */
1779 if (!opp_table->set_opp)
1780 opp_table->set_opp = set_opp;
1781
1782 return opp_table;
1783}
1784EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1785
1786/**
1787 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1788 * set_opp helper
1789 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1790 *
1791 * Release resources blocked for platform specific set_opp helper.
1792 */
1793void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1794{
1795 /* Make sure there are no concurrent readers while updating opp_table */
1796 WARN_ON(!list_empty(&opp_table->opp_list));
1797
1798 opp_table->set_opp = NULL;
1799 dev_pm_opp_put_opp_table(opp_table);
1800}
1801EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1802
1803static void _opp_detach_genpd(struct opp_table *opp_table)
1804{
1805 int index;
1806
1807 for (index = 0; index < opp_table->required_opp_count; index++) {
1808 if (!opp_table->genpd_virt_devs[index])
1809 continue;
1810
1811 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1812 opp_table->genpd_virt_devs[index] = NULL;
1813 }
1814
1815 kfree(opp_table->genpd_virt_devs);
1816 opp_table->genpd_virt_devs = NULL;
1817}
1818
1819/**
1820 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1821 * @dev: Consumer device for which the genpd is getting attached.
1822 * @names: Null terminated array of pointers containing names of genpd to attach.
1823 * @virt_devs: Pointer to return the array of virtual devices.
1824 *
1825 * Multiple generic power domains for a device are supported with the help of
1826 * virtual genpd devices, which are created for each consumer device - genpd
1827 * pair. These are the device structures which are attached to the power domain
1828 * and are required by the OPP core to set the performance state of the genpd.
1829 * The same API also works for the case where single genpd is available and so
1830 * we don't need to support that separately.
1831 *
1832 * This helper will normally be called by the consumer driver of the device
1833 * "dev", as only that has details of the genpd names.
1834 *
1835 * This helper needs to be called once with a list of all genpd to attach.
1836 * Otherwise the original device structure will be used instead by the OPP core.
1837 *
1838 * The order of entries in the names array must match the order in which
1839 * "required-opps" are added in DT.
1840 */
1841struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1842 const char **names, struct device ***virt_devs)
1843{
1844 struct opp_table *opp_table;
1845 struct device *virt_dev;
1846 int index = 0, ret = -EINVAL;
1847 const char **name = names;
1848
1849 opp_table = dev_pm_opp_get_opp_table(dev);
1850 if (!opp_table)
1851 return ERR_PTR(-ENOMEM);
1852
1853 /*
1854 * If the genpd's OPP table isn't already initialized, parsing of the
1855 * required-opps fail for dev. We should retry this after genpd's OPP
1856 * table is added.
1857 */
1858 if (!opp_table->required_opp_count) {
1859 ret = -EPROBE_DEFER;
1860 goto put_table;
1861 }
1862
1863 mutex_lock(&opp_table->genpd_virt_dev_lock);
1864
1865 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1866 sizeof(*opp_table->genpd_virt_devs),
1867 GFP_KERNEL);
1868 if (!opp_table->genpd_virt_devs)
1869 goto unlock;
1870
1871 while (*name) {
1872 if (index >= opp_table->required_opp_count) {
1873 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1874 *name, opp_table->required_opp_count, index);
1875 goto err;
1876 }
1877
1878 if (opp_table->genpd_virt_devs[index]) {
1879 dev_err(dev, "Genpd virtual device already set %s\n",
1880 *name);
1881 goto err;
1882 }
1883
1884 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1885 if (IS_ERR(virt_dev)) {
1886 ret = PTR_ERR(virt_dev);
1887 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1888 goto err;
1889 }
1890
1891 opp_table->genpd_virt_devs[index] = virt_dev;
1892 index++;
1893 name++;
1894 }
1895
1896 if (virt_devs)
1897 *virt_devs = opp_table->genpd_virt_devs;
1898 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1899
1900 return opp_table;
1901
1902err:
1903 _opp_detach_genpd(opp_table);
1904unlock:
1905 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1906
1907put_table:
1908 dev_pm_opp_put_opp_table(opp_table);
1909
1910 return ERR_PTR(ret);
1911}
1912EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1913
1914/**
1915 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1916 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1917 *
1918 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1919 * OPP table.
1920 */
1921void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1922{
1923 /*
1924 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1925 * used in parallel.
1926 */
1927 mutex_lock(&opp_table->genpd_virt_dev_lock);
1928 _opp_detach_genpd(opp_table);
1929 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1930
1931 dev_pm_opp_put_opp_table(opp_table);
1932}
1933EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1934
1935/**
1936 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1937 * @src_table: OPP table which has dst_table as one of its required OPP table.
1938 * @dst_table: Required OPP table of the src_table.
1939 * @pstate: Current performance state of the src_table.
1940 *
1941 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1942 * "required-opps" property of the OPP (present in @src_table) which has
1943 * performance state set to @pstate.
1944 *
1945 * Return: Zero or positive performance state on success, otherwise negative
1946 * value on errors.
1947 */
1948int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1949 struct opp_table *dst_table,
1950 unsigned int pstate)
1951{
1952 struct dev_pm_opp *opp;
1953 int dest_pstate = -EINVAL;
1954 int i;
1955
1956 if (!pstate)
1957 return 0;
1958
1959 /*
1960 * Normally the src_table will have the "required_opps" property set to
1961 * point to one of the OPPs in the dst_table, but in some cases the
1962 * genpd and its master have one to one mapping of performance states
1963 * and so none of them have the "required-opps" property set. Return the
1964 * pstate of the src_table as it is in such cases.
1965 */
1966 if (!src_table->required_opp_count)
1967 return pstate;
1968
1969 for (i = 0; i < src_table->required_opp_count; i++) {
1970 if (src_table->required_opp_tables[i]->np == dst_table->np)
1971 break;
1972 }
1973
1974 if (unlikely(i == src_table->required_opp_count)) {
1975 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1976 __func__, src_table, dst_table);
1977 return -EINVAL;
1978 }
1979
1980 mutex_lock(&src_table->lock);
1981
1982 list_for_each_entry(opp, &src_table->opp_list, node) {
1983 if (opp->pstate == pstate) {
1984 dest_pstate = opp->required_opps[i]->pstate;
1985 goto unlock;
1986 }
1987 }
1988
1989 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1990 dst_table);
1991
1992unlock:
1993 mutex_unlock(&src_table->lock);
1994
1995 return dest_pstate;
1996}
1997
1998/**
1999 * dev_pm_opp_add() - Add an OPP table from a table definitions
2000 * @dev: device for which we do this operation
2001 * @freq: Frequency in Hz for this OPP
2002 * @u_volt: Voltage in uVolts for this OPP
2003 *
2004 * This function adds an opp definition to the opp table and returns status.
2005 * The opp is made available by default and it can be controlled using
2006 * dev_pm_opp_enable/disable functions.
2007 *
2008 * Return:
2009 * 0 On success OR
2010 * Duplicate OPPs (both freq and volt are same) and opp->available
2011 * -EEXIST Freq are same and volt are different OR
2012 * Duplicate OPPs (both freq and volt are same) and !opp->available
2013 * -ENOMEM Memory allocation failure
2014 */
2015int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2016{
2017 struct opp_table *opp_table;
2018 int ret;
2019
2020 opp_table = dev_pm_opp_get_opp_table(dev);
2021 if (!opp_table)
2022 return -ENOMEM;
2023
2024 /* Fix regulator count for dynamic OPPs */
2025 opp_table->regulator_count = 1;
2026
2027 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2028 if (ret)
2029 dev_pm_opp_put_opp_table(opp_table);
2030
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2034
2035/**
2036 * _opp_set_availability() - helper to set the availability of an opp
2037 * @dev: device for which we do this operation
2038 * @freq: OPP frequency to modify availability
2039 * @availability_req: availability status requested for this opp
2040 *
2041 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2042 * which is isolated here.
2043 *
2044 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2045 * copy operation, returns 0 if no modification was done OR modification was
2046 * successful.
2047 */
2048static int _opp_set_availability(struct device *dev, unsigned long freq,
2049 bool availability_req)
2050{
2051 struct opp_table *opp_table;
2052 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2053 int r = 0;
2054
2055 /* Find the opp_table */
2056 opp_table = _find_opp_table(dev);
2057 if (IS_ERR(opp_table)) {
2058 r = PTR_ERR(opp_table);
2059 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2060 return r;
2061 }
2062
2063 mutex_lock(&opp_table->lock);
2064
2065 /* Do we have the frequency? */
2066 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2067 if (tmp_opp->rate == freq) {
2068 opp = tmp_opp;
2069 break;
2070 }
2071 }
2072
2073 if (IS_ERR(opp)) {
2074 r = PTR_ERR(opp);
2075 goto unlock;
2076 }
2077
2078 /* Is update really needed? */
2079 if (opp->available == availability_req)
2080 goto unlock;
2081
2082 opp->available = availability_req;
2083
2084 dev_pm_opp_get(opp);
2085 mutex_unlock(&opp_table->lock);
2086
2087 /* Notify the change of the OPP availability */
2088 if (availability_req)
2089 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2090 opp);
2091 else
2092 blocking_notifier_call_chain(&opp_table->head,
2093 OPP_EVENT_DISABLE, opp);
2094
2095 dev_pm_opp_put(opp);
2096 goto put_table;
2097
2098unlock:
2099 mutex_unlock(&opp_table->lock);
2100put_table:
2101 dev_pm_opp_put_opp_table(opp_table);
2102 return r;
2103}
2104
2105/**
2106 * dev_pm_opp_enable() - Enable a specific OPP
2107 * @dev: device for which we do this operation
2108 * @freq: OPP frequency to enable
2109 *
2110 * Enables a provided opp. If the operation is valid, this returns 0, else the
2111 * corresponding error value. It is meant to be used for users an OPP available
2112 * after being temporarily made unavailable with dev_pm_opp_disable.
2113 *
2114 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2115 * copy operation, returns 0 if no modification was done OR modification was
2116 * successful.
2117 */
2118int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2119{
2120 return _opp_set_availability(dev, freq, true);
2121}
2122EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2123
2124/**
2125 * dev_pm_opp_disable() - Disable a specific OPP
2126 * @dev: device for which we do this operation
2127 * @freq: OPP frequency to disable
2128 *
2129 * Disables a provided opp. If the operation is valid, this returns
2130 * 0, else the corresponding error value. It is meant to be a temporary
2131 * control by users to make this OPP not available until the circumstances are
2132 * right to make it available again (with a call to dev_pm_opp_enable).
2133 *
2134 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2135 * copy operation, returns 0 if no modification was done OR modification was
2136 * successful.
2137 */
2138int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2139{
2140 return _opp_set_availability(dev, freq, false);
2141}
2142EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2143
2144/**
2145 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2146 * @dev: Device for which notifier needs to be registered
2147 * @nb: Notifier block to be registered
2148 *
2149 * Return: 0 on success or a negative error value.
2150 */
2151int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2152{
2153 struct opp_table *opp_table;
2154 int ret;
2155
2156 opp_table = _find_opp_table(dev);
2157 if (IS_ERR(opp_table))
2158 return PTR_ERR(opp_table);
2159
2160 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2161
2162 dev_pm_opp_put_opp_table(opp_table);
2163
2164 return ret;
2165}
2166EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2167
2168/**
2169 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2170 * @dev: Device for which notifier needs to be unregistered
2171 * @nb: Notifier block to be unregistered
2172 *
2173 * Return: 0 on success or a negative error value.
2174 */
2175int dev_pm_opp_unregister_notifier(struct device *dev,
2176 struct notifier_block *nb)
2177{
2178 struct opp_table *opp_table;
2179 int ret;
2180
2181 opp_table = _find_opp_table(dev);
2182 if (IS_ERR(opp_table))
2183 return PTR_ERR(opp_table);
2184
2185 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2186
2187 dev_pm_opp_put_opp_table(opp_table);
2188
2189 return ret;
2190}
2191EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2192
2193void _dev_pm_opp_find_and_remove_table(struct device *dev)
2194{
2195 struct opp_table *opp_table;
2196
2197 /* Check for existing table for 'dev' */
2198 opp_table = _find_opp_table(dev);
2199 if (IS_ERR(opp_table)) {
2200 int error = PTR_ERR(opp_table);
2201
2202 if (error != -ENODEV)
2203 WARN(1, "%s: opp_table: %d\n",
2204 IS_ERR_OR_NULL(dev) ?
2205 "Invalid device" : dev_name(dev),
2206 error);
2207 return;
2208 }
2209
2210 _put_opp_list_kref(opp_table);
2211
2212 /* Drop reference taken by _find_opp_table() */
2213 dev_pm_opp_put_opp_table(opp_table);
2214
2215 /* Drop reference taken while the OPP table was added */
2216 dev_pm_opp_put_opp_table(opp_table);
2217}
2218
2219/**
2220 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2221 * @dev: device pointer used to lookup OPP table.
2222 *
2223 * Free both OPPs created using static entries present in DT and the
2224 * dynamically added entries.
2225 */
2226void dev_pm_opp_remove_table(struct device *dev)
2227{
2228 _dev_pm_opp_find_and_remove_table(dev);
2229}
2230EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);