Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/export.h>
  19#include <linux/pm_domain.h>
  20#include <linux/regulator/consumer.h>
  21
  22#include "opp.h"
  23
  24/*
  25 * The root of the list of all opp-tables. All opp_table structures branch off
  26 * from here, with each opp_table containing the list of opps it supports in
  27 * various states of availability.
  28 */
  29LIST_HEAD(opp_tables);
  30/* Lock to allow exclusive modification to the device and opp lists */
  31DEFINE_MUTEX(opp_table_lock);
  32
  33static struct opp_device *_find_opp_dev(const struct device *dev,
  34					struct opp_table *opp_table)
  35{
  36	struct opp_device *opp_dev;
  37
  38	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  39		if (opp_dev->dev == dev)
  40			return opp_dev;
  41
  42	return NULL;
  43}
  44
  45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  46{
  47	struct opp_table *opp_table;
  48	bool found;
  49
  50	list_for_each_entry(opp_table, &opp_tables, node) {
  51		mutex_lock(&opp_table->lock);
  52		found = !!_find_opp_dev(dev, opp_table);
  53		mutex_unlock(&opp_table->lock);
  54
  55		if (found) {
  56			_get_opp_table_kref(opp_table);
  57
  58			return opp_table;
  59		}
  60	}
  61
  62	return ERR_PTR(-ENODEV);
  63}
  64
  65/**
  66 * _find_opp_table() - find opp_table struct using device pointer
  67 * @dev:	device pointer used to lookup OPP table
  68 *
  69 * Search OPP table for one containing matching device.
  70 *
  71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  72 * -EINVAL based on type of error.
  73 *
  74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  75 */
  76struct opp_table *_find_opp_table(struct device *dev)
  77{
  78	struct opp_table *opp_table;
  79
  80	if (IS_ERR_OR_NULL(dev)) {
  81		pr_err("%s: Invalid parameters\n", __func__);
  82		return ERR_PTR(-EINVAL);
  83	}
  84
  85	mutex_lock(&opp_table_lock);
  86	opp_table = _find_opp_table_unlocked(dev);
  87	mutex_unlock(&opp_table_lock);
  88
  89	return opp_table;
  90}
  91
  92/**
  93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  94 * @opp:	opp for which voltage has to be returned for
  95 *
  96 * Return: voltage in micro volt corresponding to the opp, else
  97 * return 0
  98 *
  99 * This is useful only for devices with single power supply.
 100 */
 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 102{
 103	if (IS_ERR_OR_NULL(opp)) {
 104		pr_err("%s: Invalid parameters\n", __func__);
 105		return 0;
 106	}
 107
 108	return opp->supplies[0].u_volt;
 109}
 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 111
 112/**
 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 114 * @opp:	opp for which frequency has to be returned for
 115 *
 116 * Return: frequency in hertz corresponding to the opp, else
 117 * return 0
 118 */
 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 120{
 121	if (IS_ERR_OR_NULL(opp)) {
 122		pr_err("%s: Invalid parameters\n", __func__);
 123		return 0;
 124	}
 125
 126	return opp->rate;
 127}
 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 129
 130/**
 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 132 * @opp:	opp for which level value has to be returned for
 133 *
 134 * Return: level read from device tree corresponding to the opp, else
 135 * return 0.
 136 */
 137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->level;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 147
 148/**
 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 150 * @opp: opp for which turbo mode is being verified
 151 *
 152 * Turbo OPPs are not for normal use, and can be enabled (under certain
 153 * conditions) for short duration of times to finish high throughput work
 154 * quickly. Running on them for longer times may overheat the chip.
 155 *
 156 * Return: true if opp is turbo opp, else false.
 157 */
 158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 159{
 160	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 161		pr_err("%s: Invalid parameters\n", __func__);
 162		return false;
 163	}
 164
 165	return opp->turbo;
 166}
 167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 168
 169/**
 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 171 * @dev:	device for which we do this operation
 172 *
 173 * Return: This function returns the max clock latency in nanoseconds.
 174 */
 175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 176{
 177	struct opp_table *opp_table;
 178	unsigned long clock_latency_ns;
 179
 180	opp_table = _find_opp_table(dev);
 181	if (IS_ERR(opp_table))
 182		return 0;
 183
 184	clock_latency_ns = opp_table->clock_latency_ns_max;
 185
 186	dev_pm_opp_put_opp_table(opp_table);
 187
 188	return clock_latency_ns;
 189}
 190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 191
 192/**
 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 194 * @dev: device for which we do this operation
 195 *
 196 * Return: This function returns the max voltage latency in nanoseconds.
 197 */
 198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 199{
 200	struct opp_table *opp_table;
 201	struct dev_pm_opp *opp;
 202	struct regulator *reg;
 203	unsigned long latency_ns = 0;
 204	int ret, i, count;
 205	struct {
 206		unsigned long min;
 207		unsigned long max;
 208	} *uV;
 209
 210	opp_table = _find_opp_table(dev);
 211	if (IS_ERR(opp_table))
 212		return 0;
 213
 214	/* Regulator may not be required for the device */
 215	if (!opp_table->regulators)
 216		goto put_opp_table;
 217
 218	count = opp_table->regulator_count;
 219
 220	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 221	if (!uV)
 222		goto put_opp_table;
 223
 224	mutex_lock(&opp_table->lock);
 225
 226	for (i = 0; i < count; i++) {
 227		uV[i].min = ~0;
 228		uV[i].max = 0;
 229
 230		list_for_each_entry(opp, &opp_table->opp_list, node) {
 231			if (!opp->available)
 232				continue;
 233
 234			if (opp->supplies[i].u_volt_min < uV[i].min)
 235				uV[i].min = opp->supplies[i].u_volt_min;
 236			if (opp->supplies[i].u_volt_max > uV[i].max)
 237				uV[i].max = opp->supplies[i].u_volt_max;
 238		}
 239	}
 240
 241	mutex_unlock(&opp_table->lock);
 242
 243	/*
 244	 * The caller needs to ensure that opp_table (and hence the regulator)
 245	 * isn't freed, while we are executing this routine.
 246	 */
 247	for (i = 0; i < count; i++) {
 248		reg = opp_table->regulators[i];
 249		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 250		if (ret > 0)
 251			latency_ns += ret * 1000;
 252	}
 253
 254	kfree(uV);
 255put_opp_table:
 256	dev_pm_opp_put_opp_table(opp_table);
 257
 258	return latency_ns;
 259}
 260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 261
 262/**
 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 264 *					     nanoseconds
 265 * @dev: device for which we do this operation
 266 *
 267 * Return: This function returns the max transition latency, in nanoseconds, to
 268 * switch from one OPP to other.
 269 */
 270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 271{
 272	return dev_pm_opp_get_max_volt_latency(dev) +
 273		dev_pm_opp_get_max_clock_latency(dev);
 274}
 275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 276
 277/**
 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 279 * @dev:	device for which we do this operation
 280 *
 281 * Return: This function returns the frequency of the OPP marked as suspend_opp
 282 * if one is available, else returns 0;
 283 */
 284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 285{
 286	struct opp_table *opp_table;
 287	unsigned long freq = 0;
 288
 289	opp_table = _find_opp_table(dev);
 290	if (IS_ERR(opp_table))
 291		return 0;
 292
 293	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 294		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 295
 296	dev_pm_opp_put_opp_table(opp_table);
 297
 298	return freq;
 299}
 300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 301
 302int _get_opp_count(struct opp_table *opp_table)
 303{
 304	struct dev_pm_opp *opp;
 305	int count = 0;
 306
 307	mutex_lock(&opp_table->lock);
 308
 309	list_for_each_entry(opp, &opp_table->opp_list, node) {
 310		if (opp->available)
 311			count++;
 312	}
 313
 314	mutex_unlock(&opp_table->lock);
 315
 316	return count;
 317}
 318
 319/**
 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 321 * @dev:	device for which we do this operation
 322 *
 323 * Return: This function returns the number of available opps if there are any,
 324 * else returns 0 if none or the corresponding error value.
 325 */
 326int dev_pm_opp_get_opp_count(struct device *dev)
 327{
 328	struct opp_table *opp_table;
 329	int count;
 330
 331	opp_table = _find_opp_table(dev);
 332	if (IS_ERR(opp_table)) {
 333		count = PTR_ERR(opp_table);
 334		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 335			__func__, count);
 336		return count;
 337	}
 338
 339	count = _get_opp_count(opp_table);
 340	dev_pm_opp_put_opp_table(opp_table);
 341
 342	return count;
 343}
 344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 345
 346/**
 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 348 * @dev:		device for which we do this operation
 349 * @freq:		frequency to search for
 350 * @available:		true/false - match for available opp
 351 *
 352 * Return: Searches for exact match in the opp table and returns pointer to the
 353 * matching opp if found, else returns ERR_PTR in case of error and should
 354 * be handled using IS_ERR. Error return values can be:
 355 * EINVAL:	for bad pointer
 356 * ERANGE:	no match found for search
 357 * ENODEV:	if device not found in list of registered devices
 358 *
 359 * Note: available is a modifier for the search. if available=true, then the
 360 * match is for exact matching frequency and is available in the stored OPP
 361 * table. if false, the match is for exact frequency which is not available.
 362 *
 363 * This provides a mechanism to enable an opp which is not available currently
 364 * or the opposite as well.
 365 *
 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 367 * use.
 368 */
 369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 370					      unsigned long freq,
 371					      bool available)
 372{
 373	struct opp_table *opp_table;
 374	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 375
 376	opp_table = _find_opp_table(dev);
 377	if (IS_ERR(opp_table)) {
 378		int r = PTR_ERR(opp_table);
 379
 380		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 381		return ERR_PTR(r);
 382	}
 383
 384	mutex_lock(&opp_table->lock);
 385
 386	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 387		if (temp_opp->available == available &&
 388				temp_opp->rate == freq) {
 389			opp = temp_opp;
 390
 391			/* Increment the reference count of OPP */
 392			dev_pm_opp_get(opp);
 393			break;
 394		}
 395	}
 396
 397	mutex_unlock(&opp_table->lock);
 398	dev_pm_opp_put_opp_table(opp_table);
 399
 400	return opp;
 401}
 402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 403
 404/**
 405 * dev_pm_opp_find_level_exact() - search for an exact level
 406 * @dev:		device for which we do this operation
 407 * @level:		level to search for
 408 *
 409 * Return: Searches for exact match in the opp table and returns pointer to the
 410 * matching opp if found, else returns ERR_PTR in case of error and should
 411 * be handled using IS_ERR. Error return values can be:
 412 * EINVAL:	for bad pointer
 413 * ERANGE:	no match found for search
 414 * ENODEV:	if device not found in list of registered devices
 415 *
 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 417 * use.
 418 */
 419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 420					       unsigned int level)
 421{
 422	struct opp_table *opp_table;
 423	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 424
 425	opp_table = _find_opp_table(dev);
 426	if (IS_ERR(opp_table)) {
 427		int r = PTR_ERR(opp_table);
 428
 429		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 430		return ERR_PTR(r);
 431	}
 432
 433	mutex_lock(&opp_table->lock);
 434
 435	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 436		if (temp_opp->level == level) {
 437			opp = temp_opp;
 438
 439			/* Increment the reference count of OPP */
 440			dev_pm_opp_get(opp);
 441			break;
 442		}
 443	}
 444
 445	mutex_unlock(&opp_table->lock);
 446	dev_pm_opp_put_opp_table(opp_table);
 447
 448	return opp;
 449}
 450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 451
 452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 453						   unsigned long *freq)
 454{
 455	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 456
 457	mutex_lock(&opp_table->lock);
 458
 459	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 460		if (temp_opp->available && temp_opp->rate >= *freq) {
 461			opp = temp_opp;
 462			*freq = opp->rate;
 463
 464			/* Increment the reference count of OPP */
 465			dev_pm_opp_get(opp);
 466			break;
 467		}
 468	}
 469
 470	mutex_unlock(&opp_table->lock);
 471
 472	return opp;
 473}
 474
 475/**
 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 477 * @dev:	device for which we do this operation
 478 * @freq:	Start frequency
 479 *
 480 * Search for the matching ceil *available* OPP from a starting freq
 481 * for a device.
 482 *
 483 * Return: matching *opp and refreshes *freq accordingly, else returns
 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 485 * values can be:
 486 * EINVAL:	for bad pointer
 487 * ERANGE:	no match found for search
 488 * ENODEV:	if device not found in list of registered devices
 489 *
 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 491 * use.
 492 */
 493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 494					     unsigned long *freq)
 495{
 496	struct opp_table *opp_table;
 497	struct dev_pm_opp *opp;
 498
 499	if (!dev || !freq) {
 500		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 501		return ERR_PTR(-EINVAL);
 502	}
 503
 504	opp_table = _find_opp_table(dev);
 505	if (IS_ERR(opp_table))
 506		return ERR_CAST(opp_table);
 507
 508	opp = _find_freq_ceil(opp_table, freq);
 509
 510	dev_pm_opp_put_opp_table(opp_table);
 511
 512	return opp;
 513}
 514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 515
 516/**
 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 518 * @dev:	device for which we do this operation
 519 * @freq:	Start frequency
 520 *
 521 * Search for the matching floor *available* OPP from a starting freq
 522 * for a device.
 523 *
 524 * Return: matching *opp and refreshes *freq accordingly, else returns
 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 526 * values can be:
 527 * EINVAL:	for bad pointer
 528 * ERANGE:	no match found for search
 529 * ENODEV:	if device not found in list of registered devices
 530 *
 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 532 * use.
 533 */
 534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 535					      unsigned long *freq)
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 539
 540	if (!dev || !freq) {
 541		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 542		return ERR_PTR(-EINVAL);
 543	}
 544
 545	opp_table = _find_opp_table(dev);
 546	if (IS_ERR(opp_table))
 547		return ERR_CAST(opp_table);
 548
 549	mutex_lock(&opp_table->lock);
 550
 551	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 552		if (temp_opp->available) {
 553			/* go to the next node, before choosing prev */
 554			if (temp_opp->rate > *freq)
 555				break;
 556			else
 557				opp = temp_opp;
 558		}
 559	}
 560
 561	/* Increment the reference count of OPP */
 562	if (!IS_ERR(opp))
 563		dev_pm_opp_get(opp);
 564	mutex_unlock(&opp_table->lock);
 565	dev_pm_opp_put_opp_table(opp_table);
 566
 567	if (!IS_ERR(opp))
 568		*freq = opp->rate;
 569
 570	return opp;
 571}
 572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 573
 574/**
 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
 576 *					 target voltage.
 577 * @dev:	Device for which we do this operation.
 578 * @u_volt:	Target voltage.
 579 *
 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
 581 *
 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
 583 * handled using IS_ERR.
 584 *
 585 * Error return values can be:
 586 * EINVAL:	bad parameters
 587 *
 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 589 * use.
 590 */
 591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
 592						     unsigned long u_volt)
 593{
 594	struct opp_table *opp_table;
 595	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 596
 597	if (!dev || !u_volt) {
 598		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
 599			u_volt);
 600		return ERR_PTR(-EINVAL);
 601	}
 602
 603	opp_table = _find_opp_table(dev);
 604	if (IS_ERR(opp_table))
 605		return ERR_CAST(opp_table);
 606
 607	mutex_lock(&opp_table->lock);
 608
 609	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 610		if (temp_opp->available) {
 611			if (temp_opp->supplies[0].u_volt > u_volt)
 612				break;
 613			opp = temp_opp;
 614		}
 615	}
 616
 617	/* Increment the reference count of OPP */
 618	if (!IS_ERR(opp))
 619		dev_pm_opp_get(opp);
 620
 621	mutex_unlock(&opp_table->lock);
 622	dev_pm_opp_put_opp_table(opp_table);
 623
 624	return opp;
 625}
 626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
 627
 628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 629			    struct dev_pm_opp_supply *supply)
 630{
 631	int ret;
 632
 633	/* Regulator not available for device */
 634	if (IS_ERR(reg)) {
 635		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 636			PTR_ERR(reg));
 637		return 0;
 638	}
 639
 640	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 641		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 642
 643	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 644					    supply->u_volt, supply->u_volt_max);
 645	if (ret)
 646		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 647			__func__, supply->u_volt_min, supply->u_volt,
 648			supply->u_volt_max, ret);
 649
 650	return ret;
 651}
 652
 653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 654					    unsigned long freq)
 655{
 656	int ret;
 657
 658	ret = clk_set_rate(clk, freq);
 659	if (ret) {
 660		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 661			ret);
 662	}
 663
 664	return ret;
 665}
 666
 667static int _generic_set_opp_regulator(struct opp_table *opp_table,
 668				      struct device *dev,
 669				      unsigned long old_freq,
 670				      unsigned long freq,
 671				      struct dev_pm_opp_supply *old_supply,
 672				      struct dev_pm_opp_supply *new_supply)
 673{
 674	struct regulator *reg = opp_table->regulators[0];
 675	int ret;
 676
 677	/* This function only supports single regulator per device */
 678	if (WARN_ON(opp_table->regulator_count > 1)) {
 679		dev_err(dev, "multiple regulators are not supported\n");
 680		return -EINVAL;
 681	}
 682
 683	/* Scaling up? Scale voltage before frequency */
 684	if (freq >= old_freq) {
 685		ret = _set_opp_voltage(dev, reg, new_supply);
 686		if (ret)
 687			goto restore_voltage;
 688	}
 689
 690	/* Change frequency */
 691	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
 692	if (ret)
 693		goto restore_voltage;
 694
 695	/* Scaling down? Scale voltage after frequency */
 696	if (freq < old_freq) {
 697		ret = _set_opp_voltage(dev, reg, new_supply);
 698		if (ret)
 699			goto restore_freq;
 700	}
 701
 702	/*
 703	 * Enable the regulator after setting its voltages, otherwise it breaks
 704	 * some boot-enabled regulators.
 705	 */
 706	if (unlikely(!opp_table->regulator_enabled)) {
 707		ret = regulator_enable(reg);
 708		if (ret < 0)
 709			dev_warn(dev, "Failed to enable regulator: %d", ret);
 710		else
 711			opp_table->regulator_enabled = true;
 712	}
 713
 714	return 0;
 715
 716restore_freq:
 717	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
 718		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 719			__func__, old_freq);
 720restore_voltage:
 721	/* This shouldn't harm even if the voltages weren't updated earlier */
 722	if (old_supply)
 723		_set_opp_voltage(dev, reg, old_supply);
 724
 725	return ret;
 726}
 727
 728static int _set_opp_bw(const struct opp_table *opp_table,
 729		       struct dev_pm_opp *opp, struct device *dev, bool remove)
 730{
 731	u32 avg, peak;
 732	int i, ret;
 733
 734	if (!opp_table->paths)
 735		return 0;
 736
 737	for (i = 0; i < opp_table->path_count; i++) {
 738		if (remove) {
 739			avg = 0;
 740			peak = 0;
 741		} else {
 742			avg = opp->bandwidth[i].avg;
 743			peak = opp->bandwidth[i].peak;
 744		}
 745		ret = icc_set_bw(opp_table->paths[i], avg, peak);
 746		if (ret) {
 747			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
 748				remove ? "remove" : "set", i, ret);
 749			return ret;
 750		}
 751	}
 752
 753	return 0;
 754}
 755
 756static int _set_opp_custom(const struct opp_table *opp_table,
 757			   struct device *dev, unsigned long old_freq,
 758			   unsigned long freq,
 759			   struct dev_pm_opp_supply *old_supply,
 760			   struct dev_pm_opp_supply *new_supply)
 761{
 762	struct dev_pm_set_opp_data *data;
 763	int size;
 764
 765	data = opp_table->set_opp_data;
 766	data->regulators = opp_table->regulators;
 767	data->regulator_count = opp_table->regulator_count;
 768	data->clk = opp_table->clk;
 769	data->dev = dev;
 770
 771	data->old_opp.rate = old_freq;
 772	size = sizeof(*old_supply) * opp_table->regulator_count;
 773	if (!old_supply)
 774		memset(data->old_opp.supplies, 0, size);
 775	else
 776		memcpy(data->old_opp.supplies, old_supply, size);
 777
 778	data->new_opp.rate = freq;
 779	memcpy(data->new_opp.supplies, new_supply, size);
 780
 781	return opp_table->set_opp(data);
 782}
 783
 784/* This is only called for PM domain for now */
 785static int _set_required_opps(struct device *dev,
 786			      struct opp_table *opp_table,
 787			      struct dev_pm_opp *opp)
 788{
 789	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 790	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 791	unsigned int pstate;
 792	int i, ret = 0;
 793
 794	if (!required_opp_tables)
 795		return 0;
 796
 797	/* Single genpd case */
 798	if (!genpd_virt_devs) {
 799		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
 800		ret = dev_pm_genpd_set_performance_state(dev, pstate);
 801		if (ret) {
 802			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 803				dev_name(dev), pstate, ret);
 804		}
 805		return ret;
 806	}
 807
 808	/* Multiple genpd case */
 809
 810	/*
 811	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 812	 * after it is freed from another thread.
 813	 */
 814	mutex_lock(&opp_table->genpd_virt_dev_lock);
 815
 816	for (i = 0; i < opp_table->required_opp_count; i++) {
 817		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 818
 819		if (!genpd_virt_devs[i])
 820			continue;
 821
 822		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
 823		if (ret) {
 824			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
 825				dev_name(genpd_virt_devs[i]), pstate, ret);
 826			break;
 827		}
 828	}
 829	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 830
 831	return ret;
 832}
 833
 834/**
 835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
 836 * @dev:	device for which we do this operation
 837 * @opp:	opp based on which the bandwidth levels are to be configured
 838 *
 839 * This configures the bandwidth to the levels specified by the OPP. However
 840 * if the OPP specified is NULL the bandwidth levels are cleared out.
 841 *
 842 * Return: 0 on success or a negative error value.
 843 */
 844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
 845{
 846	struct opp_table *opp_table;
 847	int ret;
 848
 849	opp_table = _find_opp_table(dev);
 850	if (IS_ERR(opp_table)) {
 851		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
 852		return PTR_ERR(opp_table);
 853	}
 854
 855	if (opp)
 856		ret = _set_opp_bw(opp_table, opp, dev, false);
 857	else
 858		ret = _set_opp_bw(opp_table, NULL, dev, true);
 859
 860	dev_pm_opp_put_opp_table(opp_table);
 861	return ret;
 862}
 863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
 864
 865/**
 866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 867 * @dev:	 device for which we do this operation
 868 * @target_freq: frequency to achieve
 869 *
 870 * This configures the power-supplies to the levels specified by the OPP
 871 * corresponding to the target_freq, and programs the clock to a value <=
 872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
 873 * provided by the opp, should have already rounded to the target OPP's
 874 * frequency.
 875 */
 876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
 877{
 878	struct opp_table *opp_table;
 879	unsigned long freq, old_freq, temp_freq;
 880	struct dev_pm_opp *old_opp, *opp;
 881	struct clk *clk;
 882	int ret;
 883
 884	opp_table = _find_opp_table(dev);
 885	if (IS_ERR(opp_table)) {
 886		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
 887		return PTR_ERR(opp_table);
 888	}
 889
 890	if (unlikely(!target_freq)) {
 891		/*
 892		 * Some drivers need to support cases where some platforms may
 893		 * have OPP table for the device, while others don't and
 894		 * opp_set_rate() just needs to behave like clk_set_rate().
 895		 */
 896		if (!_get_opp_count(opp_table)) {
 897			ret = 0;
 898			goto put_opp_table;
 899		}
 900
 901		if (!opp_table->required_opp_tables && !opp_table->regulators &&
 902		    !opp_table->paths) {
 903			dev_err(dev, "target frequency can't be 0\n");
 904			ret = -EINVAL;
 905			goto put_opp_table;
 906		}
 907
 908		ret = _set_opp_bw(opp_table, NULL, dev, true);
 909		if (ret)
 910			goto put_opp_table;
 911
 912		if (opp_table->regulator_enabled) {
 913			regulator_disable(opp_table->regulators[0]);
 914			opp_table->regulator_enabled = false;
 915		}
 916
 917		ret = _set_required_opps(dev, opp_table, NULL);
 918		goto put_opp_table;
 919	}
 920
 921	clk = opp_table->clk;
 922	if (IS_ERR(clk)) {
 923		dev_err(dev, "%s: No clock available for the device\n",
 924			__func__);
 925		ret = PTR_ERR(clk);
 926		goto put_opp_table;
 927	}
 928
 929	freq = clk_round_rate(clk, target_freq);
 930	if ((long)freq <= 0)
 931		freq = target_freq;
 932
 933	old_freq = clk_get_rate(clk);
 934
 935	/* Return early if nothing to do */
 936	if (old_freq == freq) {
 937		if (!opp_table->required_opp_tables && !opp_table->regulators &&
 938		    !opp_table->paths) {
 939			dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
 940				__func__, freq);
 941			ret = 0;
 942			goto put_opp_table;
 943		}
 944	}
 945
 946	/*
 947	 * For IO devices which require an OPP on some platforms/SoCs
 948	 * while just needing to scale the clock on some others
 949	 * we look for empty OPP tables with just a clock handle and
 950	 * scale only the clk. This makes dev_pm_opp_set_rate()
 951	 * equivalent to a clk_set_rate()
 952	 */
 953	if (!_get_opp_count(opp_table)) {
 954		ret = _generic_set_opp_clk_only(dev, clk, freq);
 955		goto put_opp_table;
 956	}
 957
 958	temp_freq = old_freq;
 959	old_opp = _find_freq_ceil(opp_table, &temp_freq);
 960	if (IS_ERR(old_opp)) {
 961		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
 962			__func__, old_freq, PTR_ERR(old_opp));
 963	}
 964
 965	temp_freq = freq;
 966	opp = _find_freq_ceil(opp_table, &temp_freq);
 967	if (IS_ERR(opp)) {
 968		ret = PTR_ERR(opp);
 969		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
 970			__func__, freq, ret);
 971		goto put_old_opp;
 972	}
 973
 974	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
 975		old_freq, freq);
 976
 977	/* Scaling up? Configure required OPPs before frequency */
 978	if (freq >= old_freq) {
 979		ret = _set_required_opps(dev, opp_table, opp);
 980		if (ret)
 981			goto put_opp;
 982	}
 983
 984	if (opp_table->set_opp) {
 985		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
 986				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
 987				      opp->supplies);
 988	} else if (opp_table->regulators) {
 989		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
 990						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
 991						 opp->supplies);
 992	} else {
 993		/* Only frequency scaling */
 994		ret = _generic_set_opp_clk_only(dev, clk, freq);
 995	}
 996
 997	/* Scaling down? Configure required OPPs after frequency */
 998	if (!ret && freq < old_freq) {
 999		ret = _set_required_opps(dev, opp_table, opp);
1000		if (ret)
1001			dev_err(dev, "Failed to set required opps: %d\n", ret);
1002	}
1003
1004	if (!ret)
1005		ret = _set_opp_bw(opp_table, opp, dev, false);
1006
1007put_opp:
1008	dev_pm_opp_put(opp);
1009put_old_opp:
1010	if (!IS_ERR(old_opp))
1011		dev_pm_opp_put(old_opp);
1012put_opp_table:
1013	dev_pm_opp_put_opp_table(opp_table);
1014	return ret;
1015}
1016EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017
1018/* OPP-dev Helpers */
1019static void _remove_opp_dev(struct opp_device *opp_dev,
1020			    struct opp_table *opp_table)
1021{
1022	opp_debug_unregister(opp_dev, opp_table);
1023	list_del(&opp_dev->node);
1024	kfree(opp_dev);
1025}
1026
1027static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028						struct opp_table *opp_table)
1029{
1030	struct opp_device *opp_dev;
1031
1032	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033	if (!opp_dev)
1034		return NULL;
1035
1036	/* Initialize opp-dev */
1037	opp_dev->dev = dev;
1038
1039	list_add(&opp_dev->node, &opp_table->dev_list);
1040
1041	/* Create debugfs entries for the opp_table */
1042	opp_debug_register(opp_dev, opp_table);
1043
1044	return opp_dev;
1045}
1046
1047struct opp_device *_add_opp_dev(const struct device *dev,
1048				struct opp_table *opp_table)
1049{
1050	struct opp_device *opp_dev;
1051
1052	mutex_lock(&opp_table->lock);
1053	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054	mutex_unlock(&opp_table->lock);
1055
1056	return opp_dev;
1057}
1058
1059static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060{
1061	struct opp_table *opp_table;
1062	struct opp_device *opp_dev;
1063	int ret;
1064
1065	/*
1066	 * Allocate a new OPP table. In the infrequent case where a new
1067	 * device is needed to be added, we pay this penalty.
1068	 */
1069	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070	if (!opp_table)
1071		return NULL;
1072
1073	mutex_init(&opp_table->lock);
1074	mutex_init(&opp_table->genpd_virt_dev_lock);
1075	INIT_LIST_HEAD(&opp_table->dev_list);
1076
1077	/* Mark regulator count uninitialized */
1078	opp_table->regulator_count = -1;
1079
1080	opp_dev = _add_opp_dev(dev, opp_table);
1081	if (!opp_dev) {
1082		kfree(opp_table);
1083		return NULL;
1084	}
1085
1086	_of_init_opp_table(opp_table, dev, index);
1087
1088	/* Find clk for the device */
1089	opp_table->clk = clk_get(dev, NULL);
1090	if (IS_ERR(opp_table->clk)) {
1091		ret = PTR_ERR(opp_table->clk);
1092		if (ret != -EPROBE_DEFER)
1093			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094				ret);
1095	}
1096
1097	/* Find interconnect path(s) for the device */
1098	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099	if (ret)
1100		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101			 __func__, ret);
1102
1103	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104	INIT_LIST_HEAD(&opp_table->opp_list);
1105	kref_init(&opp_table->kref);
 
1106
1107	/* Secure the device table modification */
1108	list_add(&opp_table->node, &opp_tables);
1109	return opp_table;
1110}
1111
1112void _get_opp_table_kref(struct opp_table *opp_table)
1113{
1114	kref_get(&opp_table->kref);
1115}
1116
1117static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1118{
1119	struct opp_table *opp_table;
1120
1121	/* Hold our table modification lock here */
1122	mutex_lock(&opp_table_lock);
1123
1124	opp_table = _find_opp_table_unlocked(dev);
1125	if (!IS_ERR(opp_table))
1126		goto unlock;
1127
1128	opp_table = _managed_opp(dev, index);
1129	if (opp_table) {
1130		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131			dev_pm_opp_put_opp_table(opp_table);
1132			opp_table = NULL;
1133		}
1134		goto unlock;
1135	}
1136
1137	opp_table = _allocate_opp_table(dev, index);
1138
1139unlock:
1140	mutex_unlock(&opp_table_lock);
1141
1142	return opp_table;
1143}
1144
1145struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146{
1147	return _opp_get_opp_table(dev, 0);
1148}
1149EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150
1151struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152						   int index)
1153{
1154	return _opp_get_opp_table(dev, index);
1155}
1156
1157static void _opp_table_kref_release(struct kref *kref)
1158{
1159	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160	struct opp_device *opp_dev, *temp;
1161	int i;
1162
1163	_of_clear_opp_table(opp_table);
1164
1165	/* Release clk */
1166	if (!IS_ERR(opp_table->clk))
1167		clk_put(opp_table->clk);
1168
1169	if (opp_table->paths) {
1170		for (i = 0; i < opp_table->path_count; i++)
1171			icc_put(opp_table->paths[i]);
1172		kfree(opp_table->paths);
1173	}
1174
1175	WARN_ON(!list_empty(&opp_table->opp_list));
1176
1177	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178		/*
1179		 * The OPP table is getting removed, drop the performance state
1180		 * constraints.
1181		 */
1182		if (opp_table->genpd_performance_state)
1183			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184
1185		_remove_opp_dev(opp_dev, opp_table);
1186	}
1187
1188	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189	mutex_destroy(&opp_table->lock);
1190	list_del(&opp_table->node);
1191	kfree(opp_table);
1192
1193	mutex_unlock(&opp_table_lock);
1194}
1195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197{
1198	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199		       &opp_table_lock);
1200}
1201EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202
1203void _opp_free(struct dev_pm_opp *opp)
1204{
1205	kfree(opp);
1206}
1207
1208static void _opp_kref_release(struct dev_pm_opp *opp,
1209			      struct opp_table *opp_table)
1210{
1211	/*
1212	 * Notify the changes in the availability of the operable
1213	 * frequency/voltage list.
1214	 */
1215	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216	_of_opp_free_required_opps(opp_table, opp);
1217	opp_debug_remove_one(opp);
1218	list_del(&opp->node);
1219	kfree(opp);
1220}
1221
1222static void _opp_kref_release_unlocked(struct kref *kref)
1223{
1224	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225	struct opp_table *opp_table = opp->opp_table;
1226
1227	_opp_kref_release(opp, opp_table);
1228}
1229
1230static void _opp_kref_release_locked(struct kref *kref)
1231{
1232	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233	struct opp_table *opp_table = opp->opp_table;
1234
1235	_opp_kref_release(opp, opp_table);
1236	mutex_unlock(&opp_table->lock);
1237}
1238
1239void dev_pm_opp_get(struct dev_pm_opp *opp)
1240{
1241	kref_get(&opp->kref);
1242}
1243
1244void dev_pm_opp_put(struct dev_pm_opp *opp)
1245{
1246	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247		       &opp->opp_table->lock);
1248}
1249EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250
1251static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252{
1253	kref_put(&opp->kref, _opp_kref_release_unlocked);
1254}
1255
1256/**
1257 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1258 * @dev:	device for which we do this operation
1259 * @freq:	OPP to remove with matching 'freq'
1260 *
1261 * This function removes an opp from the opp table.
1262 */
1263void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264{
1265	struct dev_pm_opp *opp;
1266	struct opp_table *opp_table;
1267	bool found = false;
1268
1269	opp_table = _find_opp_table(dev);
1270	if (IS_ERR(opp_table))
1271		return;
1272
1273	mutex_lock(&opp_table->lock);
1274
1275	list_for_each_entry(opp, &opp_table->opp_list, node) {
1276		if (opp->rate == freq) {
1277			found = true;
1278			break;
1279		}
1280	}
1281
1282	mutex_unlock(&opp_table->lock);
1283
1284	if (found) {
1285		dev_pm_opp_put(opp);
1286
1287		/* Drop the reference taken by dev_pm_opp_add() */
1288		dev_pm_opp_put_opp_table(opp_table);
1289	} else {
1290		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291			 __func__, freq);
1292	}
1293
1294	/* Drop the reference taken by _find_opp_table() */
1295	dev_pm_opp_put_opp_table(opp_table);
1296}
1297EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298
1299bool _opp_remove_all_static(struct opp_table *opp_table)
1300{
1301	struct dev_pm_opp *opp, *tmp;
1302	bool ret = true;
1303
1304	mutex_lock(&opp_table->lock);
1305
1306	if (!opp_table->parsed_static_opps) {
1307		ret = false;
1308		goto unlock;
1309	}
1310
1311	if (--opp_table->parsed_static_opps)
1312		goto unlock;
1313
1314	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1315		if (!opp->dynamic)
1316			dev_pm_opp_put_unlocked(opp);
1317	}
1318
1319unlock:
1320	mutex_unlock(&opp_table->lock);
1321
1322	return ret;
1323}
1324
1325/**
1326 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1327 * @dev:	device for which we do this operation
1328 *
1329 * This function removes all dynamically created OPPs from the opp table.
1330 */
1331void dev_pm_opp_remove_all_dynamic(struct device *dev)
1332{
1333	struct opp_table *opp_table;
1334	struct dev_pm_opp *opp, *temp;
1335	int count = 0;
1336
1337	opp_table = _find_opp_table(dev);
1338	if (IS_ERR(opp_table))
1339		return;
1340
1341	mutex_lock(&opp_table->lock);
1342	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1343		if (opp->dynamic) {
1344			dev_pm_opp_put_unlocked(opp);
1345			count++;
1346		}
1347	}
1348	mutex_unlock(&opp_table->lock);
1349
1350	/* Drop the references taken by dev_pm_opp_add() */
1351	while (count--)
1352		dev_pm_opp_put_opp_table(opp_table);
1353
1354	/* Drop the reference taken by _find_opp_table() */
1355	dev_pm_opp_put_opp_table(opp_table);
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1358
1359struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1360{
1361	struct dev_pm_opp *opp;
1362	int supply_count, supply_size, icc_size;
1363
1364	/* Allocate space for at least one supply */
1365	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1366	supply_size = sizeof(*opp->supplies) * supply_count;
1367	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1368
1369	/* allocate new OPP node and supplies structures */
1370	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1371
1372	if (!opp)
1373		return NULL;
1374
1375	/* Put the supplies at the end of the OPP structure as an empty array */
1376	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1377	if (icc_size)
1378		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1379	INIT_LIST_HEAD(&opp->node);
1380
1381	return opp;
1382}
1383
1384static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1385					 struct opp_table *opp_table)
1386{
1387	struct regulator *reg;
1388	int i;
1389
1390	if (!opp_table->regulators)
1391		return true;
1392
1393	for (i = 0; i < opp_table->regulator_count; i++) {
1394		reg = opp_table->regulators[i];
1395
1396		if (!regulator_is_supported_voltage(reg,
1397					opp->supplies[i].u_volt_min,
1398					opp->supplies[i].u_volt_max)) {
1399			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1400				__func__, opp->supplies[i].u_volt_min,
1401				opp->supplies[i].u_volt_max);
1402			return false;
1403		}
1404	}
1405
1406	return true;
1407}
1408
1409int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1410{
1411	if (opp1->rate != opp2->rate)
1412		return opp1->rate < opp2->rate ? -1 : 1;
1413	if (opp1->bandwidth && opp2->bandwidth &&
1414	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1415		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1416	if (opp1->level != opp2->level)
1417		return opp1->level < opp2->level ? -1 : 1;
1418	return 0;
1419}
1420
1421static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1422			     struct opp_table *opp_table,
1423			     struct list_head **head)
1424{
1425	struct dev_pm_opp *opp;
1426	int opp_cmp;
1427
1428	/*
1429	 * Insert new OPP in order of increasing frequency and discard if
1430	 * already present.
1431	 *
1432	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1433	 * loop, don't replace it with head otherwise it will become an infinite
1434	 * loop.
1435	 */
1436	list_for_each_entry(opp, &opp_table->opp_list, node) {
1437		opp_cmp = _opp_compare_key(new_opp, opp);
1438		if (opp_cmp > 0) {
1439			*head = &opp->node;
1440			continue;
1441		}
1442
1443		if (opp_cmp < 0)
1444			return 0;
1445
1446		/* Duplicate OPPs */
1447		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1448			 __func__, opp->rate, opp->supplies[0].u_volt,
1449			 opp->available, new_opp->rate,
1450			 new_opp->supplies[0].u_volt, new_opp->available);
1451
1452		/* Should we compare voltages for all regulators here ? */
1453		return opp->available &&
1454		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1455	}
1456
1457	return 0;
1458}
1459
1460/*
1461 * Returns:
1462 * 0: On success. And appropriate error message for duplicate OPPs.
1463 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1464 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1465 *  sure we don't print error messages unnecessarily if different parts of
1466 *  kernel try to initialize the OPP table.
1467 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1468 *  should be considered an error by the callers of _opp_add().
1469 */
1470int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1471	     struct opp_table *opp_table, bool rate_not_available)
1472{
1473	struct list_head *head;
1474	int ret;
1475
1476	mutex_lock(&opp_table->lock);
1477	head = &opp_table->opp_list;
1478
1479	if (likely(!rate_not_available)) {
1480		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1481		if (ret) {
1482			mutex_unlock(&opp_table->lock);
1483			return ret;
1484		}
1485	}
1486
1487	list_add(&new_opp->node, head);
1488	mutex_unlock(&opp_table->lock);
1489
1490	new_opp->opp_table = opp_table;
1491	kref_init(&new_opp->kref);
1492
1493	opp_debug_create_one(new_opp, opp_table);
1494
1495	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1496		new_opp->available = false;
1497		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1498			 __func__, new_opp->rate);
1499	}
1500
1501	return 0;
1502}
1503
1504/**
1505 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1506 * @opp_table:	OPP table
1507 * @dev:	device for which we do this operation
1508 * @freq:	Frequency in Hz for this OPP
1509 * @u_volt:	Voltage in uVolts for this OPP
1510 * @dynamic:	Dynamically added OPPs.
1511 *
1512 * This function adds an opp definition to the opp table and returns status.
1513 * The opp is made available by default and it can be controlled using
1514 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1515 *
1516 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1517 * and freed by dev_pm_opp_of_remove_table.
1518 *
1519 * Return:
1520 * 0		On success OR
1521 *		Duplicate OPPs (both freq and volt are same) and opp->available
1522 * -EEXIST	Freq are same and volt are different OR
1523 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1524 * -ENOMEM	Memory allocation failure
1525 */
1526int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1527		unsigned long freq, long u_volt, bool dynamic)
1528{
1529	struct dev_pm_opp *new_opp;
1530	unsigned long tol;
1531	int ret;
1532
1533	new_opp = _opp_allocate(opp_table);
1534	if (!new_opp)
1535		return -ENOMEM;
1536
1537	/* populate the opp table */
1538	new_opp->rate = freq;
1539	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1540	new_opp->supplies[0].u_volt = u_volt;
1541	new_opp->supplies[0].u_volt_min = u_volt - tol;
1542	new_opp->supplies[0].u_volt_max = u_volt + tol;
1543	new_opp->available = true;
1544	new_opp->dynamic = dynamic;
1545
1546	ret = _opp_add(dev, new_opp, opp_table, false);
1547	if (ret) {
1548		/* Don't return error for duplicate OPPs */
1549		if (ret == -EBUSY)
1550			ret = 0;
1551		goto free_opp;
1552	}
1553
1554	/*
1555	 * Notify the changes in the availability of the operable
1556	 * frequency/voltage list.
1557	 */
1558	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1559	return 0;
1560
1561free_opp:
1562	_opp_free(new_opp);
1563
1564	return ret;
1565}
1566
1567/**
1568 * dev_pm_opp_set_supported_hw() - Set supported platforms
1569 * @dev: Device for which supported-hw has to be set.
1570 * @versions: Array of hierarchy of versions to match.
1571 * @count: Number of elements in the array.
1572 *
1573 * This is required only for the V2 bindings, and it enables a platform to
1574 * specify the hierarchy of versions it supports. OPP layer will then enable
1575 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1576 * property.
1577 */
1578struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1579			const u32 *versions, unsigned int count)
1580{
1581	struct opp_table *opp_table;
1582
1583	opp_table = dev_pm_opp_get_opp_table(dev);
1584	if (!opp_table)
1585		return ERR_PTR(-ENOMEM);
1586
1587	/* Make sure there are no concurrent readers while updating opp_table */
1588	WARN_ON(!list_empty(&opp_table->opp_list));
1589
1590	/* Another CPU that shares the OPP table has set the property ? */
1591	if (opp_table->supported_hw)
1592		return opp_table;
1593
1594	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1595					GFP_KERNEL);
1596	if (!opp_table->supported_hw) {
1597		dev_pm_opp_put_opp_table(opp_table);
1598		return ERR_PTR(-ENOMEM);
1599	}
1600
1601	opp_table->supported_hw_count = count;
1602
1603	return opp_table;
1604}
1605EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1606
1607/**
1608 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1609 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1610 *
1611 * This is required only for the V2 bindings, and is called for a matching
1612 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1613 * will not be freed.
1614 */
1615void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1616{
1617	/* Make sure there are no concurrent readers while updating opp_table */
1618	WARN_ON(!list_empty(&opp_table->opp_list));
1619
1620	kfree(opp_table->supported_hw);
1621	opp_table->supported_hw = NULL;
1622	opp_table->supported_hw_count = 0;
1623
1624	dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1627
1628/**
1629 * dev_pm_opp_set_prop_name() - Set prop-extn name
1630 * @dev: Device for which the prop-name has to be set.
1631 * @name: name to postfix to properties.
1632 *
1633 * This is required only for the V2 bindings, and it enables a platform to
1634 * specify the extn to be used for certain property names. The properties to
1635 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1636 * should postfix the property name with -<name> while looking for them.
1637 */
1638struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1639{
1640	struct opp_table *opp_table;
1641
1642	opp_table = dev_pm_opp_get_opp_table(dev);
1643	if (!opp_table)
1644		return ERR_PTR(-ENOMEM);
1645
1646	/* Make sure there are no concurrent readers while updating opp_table */
1647	WARN_ON(!list_empty(&opp_table->opp_list));
1648
1649	/* Another CPU that shares the OPP table has set the property ? */
1650	if (opp_table->prop_name)
1651		return opp_table;
1652
1653	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1654	if (!opp_table->prop_name) {
1655		dev_pm_opp_put_opp_table(opp_table);
1656		return ERR_PTR(-ENOMEM);
1657	}
1658
1659	return opp_table;
1660}
1661EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1662
1663/**
1664 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1665 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1666 *
1667 * This is required only for the V2 bindings, and is called for a matching
1668 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1669 * will not be freed.
1670 */
1671void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1672{
1673	/* Make sure there are no concurrent readers while updating opp_table */
1674	WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676	kfree(opp_table->prop_name);
1677	opp_table->prop_name = NULL;
1678
1679	dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1682
1683static int _allocate_set_opp_data(struct opp_table *opp_table)
1684{
1685	struct dev_pm_set_opp_data *data;
1686	int len, count = opp_table->regulator_count;
1687
1688	if (WARN_ON(!opp_table->regulators))
1689		return -EINVAL;
1690
1691	/* space for set_opp_data */
1692	len = sizeof(*data);
1693
1694	/* space for old_opp.supplies and new_opp.supplies */
1695	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1696
1697	data = kzalloc(len, GFP_KERNEL);
1698	if (!data)
1699		return -ENOMEM;
1700
1701	data->old_opp.supplies = (void *)(data + 1);
1702	data->new_opp.supplies = data->old_opp.supplies + count;
1703
1704	opp_table->set_opp_data = data;
1705
1706	return 0;
1707}
1708
1709static void _free_set_opp_data(struct opp_table *opp_table)
1710{
1711	kfree(opp_table->set_opp_data);
1712	opp_table->set_opp_data = NULL;
1713}
1714
1715/**
1716 * dev_pm_opp_set_regulators() - Set regulator names for the device
1717 * @dev: Device for which regulator name is being set.
1718 * @names: Array of pointers to the names of the regulator.
1719 * @count: Number of regulators.
1720 *
1721 * In order to support OPP switching, OPP layer needs to know the name of the
1722 * device's regulators, as the core would be required to switch voltages as
1723 * well.
1724 *
1725 * This must be called before any OPPs are initialized for the device.
1726 */
1727struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1728					    const char * const names[],
1729					    unsigned int count)
1730{
1731	struct opp_table *opp_table;
1732	struct regulator *reg;
1733	int ret, i;
1734
1735	opp_table = dev_pm_opp_get_opp_table(dev);
1736	if (!opp_table)
1737		return ERR_PTR(-ENOMEM);
1738
1739	/* This should be called before OPPs are initialized */
1740	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1741		ret = -EBUSY;
1742		goto err;
1743	}
1744
1745	/* Another CPU that shares the OPP table has set the regulators ? */
1746	if (opp_table->regulators)
1747		return opp_table;
1748
1749	opp_table->regulators = kmalloc_array(count,
1750					      sizeof(*opp_table->regulators),
1751					      GFP_KERNEL);
1752	if (!opp_table->regulators) {
1753		ret = -ENOMEM;
1754		goto err;
1755	}
1756
1757	for (i = 0; i < count; i++) {
1758		reg = regulator_get_optional(dev, names[i]);
1759		if (IS_ERR(reg)) {
1760			ret = PTR_ERR(reg);
1761			if (ret != -EPROBE_DEFER)
1762				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1763					__func__, names[i], ret);
1764			goto free_regulators;
1765		}
1766
1767		opp_table->regulators[i] = reg;
1768	}
1769
1770	opp_table->regulator_count = count;
1771
1772	/* Allocate block only once to pass to set_opp() routines */
1773	ret = _allocate_set_opp_data(opp_table);
1774	if (ret)
1775		goto free_regulators;
1776
1777	return opp_table;
1778
1779free_regulators:
1780	while (i != 0)
1781		regulator_put(opp_table->regulators[--i]);
1782
1783	kfree(opp_table->regulators);
1784	opp_table->regulators = NULL;
1785	opp_table->regulator_count = -1;
1786err:
1787	dev_pm_opp_put_opp_table(opp_table);
1788
1789	return ERR_PTR(ret);
1790}
1791EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1792
1793/**
1794 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1795 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1796 */
1797void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1798{
1799	int i;
1800
1801	if (!opp_table->regulators)
1802		goto put_opp_table;
1803
1804	/* Make sure there are no concurrent readers while updating opp_table */
1805	WARN_ON(!list_empty(&opp_table->opp_list));
1806
1807	if (opp_table->regulator_enabled) {
1808		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1809			regulator_disable(opp_table->regulators[i]);
1810
1811		opp_table->regulator_enabled = false;
1812	}
1813
1814	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1815		regulator_put(opp_table->regulators[i]);
1816
1817	_free_set_opp_data(opp_table);
1818
1819	kfree(opp_table->regulators);
1820	opp_table->regulators = NULL;
1821	opp_table->regulator_count = -1;
1822
1823put_opp_table:
1824	dev_pm_opp_put_opp_table(opp_table);
1825}
1826EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1827
1828/**
1829 * dev_pm_opp_set_clkname() - Set clk name for the device
1830 * @dev: Device for which clk name is being set.
1831 * @name: Clk name.
1832 *
1833 * In order to support OPP switching, OPP layer needs to get pointer to the
1834 * clock for the device. Simple cases work fine without using this routine (i.e.
1835 * by passing connection-id as NULL), but for a device with multiple clocks
1836 * available, the OPP core needs to know the exact name of the clk to use.
1837 *
1838 * This must be called before any OPPs are initialized for the device.
1839 */
1840struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1841{
1842	struct opp_table *opp_table;
1843	int ret;
1844
1845	opp_table = dev_pm_opp_get_opp_table(dev);
1846	if (!opp_table)
1847		return ERR_PTR(-ENOMEM);
1848
1849	/* This should be called before OPPs are initialized */
1850	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1851		ret = -EBUSY;
1852		goto err;
1853	}
1854
1855	/* Already have default clk set, free it */
1856	if (!IS_ERR(opp_table->clk))
1857		clk_put(opp_table->clk);
1858
1859	/* Find clk for the device */
1860	opp_table->clk = clk_get(dev, name);
1861	if (IS_ERR(opp_table->clk)) {
1862		ret = PTR_ERR(opp_table->clk);
1863		if (ret != -EPROBE_DEFER) {
1864			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1865				ret);
1866		}
1867		goto err;
1868	}
1869
1870	return opp_table;
1871
1872err:
1873	dev_pm_opp_put_opp_table(opp_table);
1874
1875	return ERR_PTR(ret);
1876}
1877EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1878
1879/**
1880 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1881 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1882 */
1883void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1884{
1885	/* Make sure there are no concurrent readers while updating opp_table */
1886	WARN_ON(!list_empty(&opp_table->opp_list));
1887
1888	clk_put(opp_table->clk);
1889	opp_table->clk = ERR_PTR(-EINVAL);
1890
1891	dev_pm_opp_put_opp_table(opp_table);
1892}
1893EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1894
1895/**
1896 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1897 * @dev: Device for which the helper is getting registered.
1898 * @set_opp: Custom set OPP helper.
1899 *
1900 * This is useful to support complex platforms (like platforms with multiple
1901 * regulators per device), instead of the generic OPP set rate helper.
1902 *
1903 * This must be called before any OPPs are initialized for the device.
1904 */
1905struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1906			int (*set_opp)(struct dev_pm_set_opp_data *data))
1907{
1908	struct opp_table *opp_table;
1909
1910	if (!set_opp)
1911		return ERR_PTR(-EINVAL);
1912
1913	opp_table = dev_pm_opp_get_opp_table(dev);
1914	if (!opp_table)
1915		return ERR_PTR(-ENOMEM);
1916
1917	/* This should be called before OPPs are initialized */
1918	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1919		dev_pm_opp_put_opp_table(opp_table);
1920		return ERR_PTR(-EBUSY);
1921	}
1922
1923	/* Another CPU that shares the OPP table has set the helper ? */
1924	if (!opp_table->set_opp)
1925		opp_table->set_opp = set_opp;
1926
1927	return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1930
1931/**
1932 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1933 *					   set_opp helper
1934 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1935 *
1936 * Release resources blocked for platform specific set_opp helper.
1937 */
1938void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1939{
1940	/* Make sure there are no concurrent readers while updating opp_table */
1941	WARN_ON(!list_empty(&opp_table->opp_list));
1942
1943	opp_table->set_opp = NULL;
1944	dev_pm_opp_put_opp_table(opp_table);
1945}
1946EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1947
1948static void _opp_detach_genpd(struct opp_table *opp_table)
1949{
1950	int index;
1951
1952	for (index = 0; index < opp_table->required_opp_count; index++) {
1953		if (!opp_table->genpd_virt_devs[index])
1954			continue;
1955
1956		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1957		opp_table->genpd_virt_devs[index] = NULL;
1958	}
1959
1960	kfree(opp_table->genpd_virt_devs);
1961	opp_table->genpd_virt_devs = NULL;
1962}
1963
1964/**
1965 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1966 * @dev: Consumer device for which the genpd is getting attached.
1967 * @names: Null terminated array of pointers containing names of genpd to attach.
1968 * @virt_devs: Pointer to return the array of virtual devices.
1969 *
1970 * Multiple generic power domains for a device are supported with the help of
1971 * virtual genpd devices, which are created for each consumer device - genpd
1972 * pair. These are the device structures which are attached to the power domain
1973 * and are required by the OPP core to set the performance state of the genpd.
1974 * The same API also works for the case where single genpd is available and so
1975 * we don't need to support that separately.
1976 *
1977 * This helper will normally be called by the consumer driver of the device
1978 * "dev", as only that has details of the genpd names.
1979 *
1980 * This helper needs to be called once with a list of all genpd to attach.
1981 * Otherwise the original device structure will be used instead by the OPP core.
1982 *
1983 * The order of entries in the names array must match the order in which
1984 * "required-opps" are added in DT.
1985 */
1986struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1987		const char **names, struct device ***virt_devs)
1988{
1989	struct opp_table *opp_table;
1990	struct device *virt_dev;
1991	int index = 0, ret = -EINVAL;
1992	const char **name = names;
1993
1994	opp_table = dev_pm_opp_get_opp_table(dev);
1995	if (!opp_table)
1996		return ERR_PTR(-ENOMEM);
1997
1998	/*
1999	 * If the genpd's OPP table isn't already initialized, parsing of the
2000	 * required-opps fail for dev. We should retry this after genpd's OPP
2001	 * table is added.
2002	 */
2003	if (!opp_table->required_opp_count) {
2004		ret = -EPROBE_DEFER;
2005		goto put_table;
2006	}
2007
2008	mutex_lock(&opp_table->genpd_virt_dev_lock);
2009
2010	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2011					     sizeof(*opp_table->genpd_virt_devs),
2012					     GFP_KERNEL);
2013	if (!opp_table->genpd_virt_devs)
2014		goto unlock;
2015
2016	while (*name) {
2017		if (index >= opp_table->required_opp_count) {
2018			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2019				*name, opp_table->required_opp_count, index);
2020			goto err;
2021		}
2022
2023		if (opp_table->genpd_virt_devs[index]) {
2024			dev_err(dev, "Genpd virtual device already set %s\n",
2025				*name);
2026			goto err;
2027		}
2028
2029		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2030		if (IS_ERR(virt_dev)) {
2031			ret = PTR_ERR(virt_dev);
2032			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2033			goto err;
2034		}
2035
2036		opp_table->genpd_virt_devs[index] = virt_dev;
2037		index++;
2038		name++;
2039	}
2040
2041	if (virt_devs)
2042		*virt_devs = opp_table->genpd_virt_devs;
2043	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2044
2045	return opp_table;
2046
2047err:
2048	_opp_detach_genpd(opp_table);
2049unlock:
2050	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2051
2052put_table:
2053	dev_pm_opp_put_opp_table(opp_table);
2054
2055	return ERR_PTR(ret);
2056}
2057EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2058
2059/**
2060 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2061 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2062 *
2063 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2064 * OPP table.
2065 */
2066void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2067{
2068	/*
2069	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2070	 * used in parallel.
2071	 */
2072	mutex_lock(&opp_table->genpd_virt_dev_lock);
2073	_opp_detach_genpd(opp_table);
2074	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2075
2076	dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2079
2080/**
2081 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2082 * @src_table: OPP table which has dst_table as one of its required OPP table.
2083 * @dst_table: Required OPP table of the src_table.
2084 * @pstate: Current performance state of the src_table.
2085 *
2086 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2087 * "required-opps" property of the OPP (present in @src_table) which has
2088 * performance state set to @pstate.
2089 *
2090 * Return: Zero or positive performance state on success, otherwise negative
2091 * value on errors.
2092 */
2093int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2094				       struct opp_table *dst_table,
2095				       unsigned int pstate)
2096{
2097	struct dev_pm_opp *opp;
2098	int dest_pstate = -EINVAL;
2099	int i;
2100
2101	if (!pstate)
2102		return 0;
2103
2104	/*
2105	 * Normally the src_table will have the "required_opps" property set to
2106	 * point to one of the OPPs in the dst_table, but in some cases the
2107	 * genpd and its master have one to one mapping of performance states
2108	 * and so none of them have the "required-opps" property set. Return the
2109	 * pstate of the src_table as it is in such cases.
2110	 */
2111	if (!src_table->required_opp_count)
2112		return pstate;
2113
2114	for (i = 0; i < src_table->required_opp_count; i++) {
2115		if (src_table->required_opp_tables[i]->np == dst_table->np)
2116			break;
2117	}
2118
2119	if (unlikely(i == src_table->required_opp_count)) {
2120		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2121		       __func__, src_table, dst_table);
2122		return -EINVAL;
2123	}
2124
2125	mutex_lock(&src_table->lock);
2126
2127	list_for_each_entry(opp, &src_table->opp_list, node) {
2128		if (opp->pstate == pstate) {
2129			dest_pstate = opp->required_opps[i]->pstate;
2130			goto unlock;
2131		}
2132	}
2133
2134	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2135	       dst_table);
2136
2137unlock:
2138	mutex_unlock(&src_table->lock);
2139
2140	return dest_pstate;
2141}
2142
2143/**
2144 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2145 * @dev:	device for which we do this operation
2146 * @freq:	Frequency in Hz for this OPP
2147 * @u_volt:	Voltage in uVolts for this OPP
2148 *
2149 * This function adds an opp definition to the opp table and returns status.
2150 * The opp is made available by default and it can be controlled using
2151 * dev_pm_opp_enable/disable functions.
2152 *
2153 * Return:
2154 * 0		On success OR
2155 *		Duplicate OPPs (both freq and volt are same) and opp->available
2156 * -EEXIST	Freq are same and volt are different OR
2157 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2158 * -ENOMEM	Memory allocation failure
2159 */
2160int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2161{
2162	struct opp_table *opp_table;
2163	int ret;
2164
2165	opp_table = dev_pm_opp_get_opp_table(dev);
2166	if (!opp_table)
2167		return -ENOMEM;
2168
2169	/* Fix regulator count for dynamic OPPs */
2170	opp_table->regulator_count = 1;
2171
2172	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2173	if (ret)
2174		dev_pm_opp_put_opp_table(opp_table);
2175
2176	return ret;
2177}
2178EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2179
2180/**
2181 * _opp_set_availability() - helper to set the availability of an opp
2182 * @dev:		device for which we do this operation
2183 * @freq:		OPP frequency to modify availability
2184 * @availability_req:	availability status requested for this opp
2185 *
2186 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2187 * which is isolated here.
2188 *
2189 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2190 * copy operation, returns 0 if no modification was done OR modification was
2191 * successful.
2192 */
2193static int _opp_set_availability(struct device *dev, unsigned long freq,
2194				 bool availability_req)
2195{
2196	struct opp_table *opp_table;
2197	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2198	int r = 0;
2199
2200	/* Find the opp_table */
2201	opp_table = _find_opp_table(dev);
2202	if (IS_ERR(opp_table)) {
2203		r = PTR_ERR(opp_table);
2204		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2205		return r;
2206	}
2207
2208	mutex_lock(&opp_table->lock);
2209
2210	/* Do we have the frequency? */
2211	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2212		if (tmp_opp->rate == freq) {
2213			opp = tmp_opp;
2214			break;
2215		}
2216	}
2217
2218	if (IS_ERR(opp)) {
2219		r = PTR_ERR(opp);
2220		goto unlock;
2221	}
2222
2223	/* Is update really needed? */
2224	if (opp->available == availability_req)
2225		goto unlock;
2226
2227	opp->available = availability_req;
2228
2229	dev_pm_opp_get(opp);
2230	mutex_unlock(&opp_table->lock);
2231
2232	/* Notify the change of the OPP availability */
2233	if (availability_req)
2234		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2235					     opp);
2236	else
2237		blocking_notifier_call_chain(&opp_table->head,
2238					     OPP_EVENT_DISABLE, opp);
2239
2240	dev_pm_opp_put(opp);
2241	goto put_table;
2242
2243unlock:
2244	mutex_unlock(&opp_table->lock);
2245put_table:
2246	dev_pm_opp_put_opp_table(opp_table);
2247	return r;
2248}
2249
2250/**
2251 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2252 * @dev:		device for which we do this operation
2253 * @freq:		OPP frequency to adjust voltage of
2254 * @u_volt:		new OPP target voltage
2255 * @u_volt_min:		new OPP min voltage
2256 * @u_volt_max:		new OPP max voltage
2257 *
2258 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2259 * copy operation, returns 0 if no modifcation was done OR modification was
2260 * successful.
2261 */
2262int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2263			      unsigned long u_volt, unsigned long u_volt_min,
2264			      unsigned long u_volt_max)
2265
2266{
2267	struct opp_table *opp_table;
2268	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2269	int r = 0;
2270
2271	/* Find the opp_table */
2272	opp_table = _find_opp_table(dev);
2273	if (IS_ERR(opp_table)) {
2274		r = PTR_ERR(opp_table);
2275		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2276		return r;
2277	}
2278
2279	mutex_lock(&opp_table->lock);
2280
2281	/* Do we have the frequency? */
2282	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2283		if (tmp_opp->rate == freq) {
2284			opp = tmp_opp;
2285			break;
2286		}
2287	}
2288
2289	if (IS_ERR(opp)) {
2290		r = PTR_ERR(opp);
2291		goto adjust_unlock;
2292	}
2293
2294	/* Is update really needed? */
2295	if (opp->supplies->u_volt == u_volt)
2296		goto adjust_unlock;
2297
2298	opp->supplies->u_volt = u_volt;
2299	opp->supplies->u_volt_min = u_volt_min;
2300	opp->supplies->u_volt_max = u_volt_max;
2301
2302	dev_pm_opp_get(opp);
2303	mutex_unlock(&opp_table->lock);
2304
2305	/* Notify the voltage change of the OPP */
2306	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2307				     opp);
2308
2309	dev_pm_opp_put(opp);
2310	goto adjust_put_table;
2311
2312adjust_unlock:
2313	mutex_unlock(&opp_table->lock);
2314adjust_put_table:
2315	dev_pm_opp_put_opp_table(opp_table);
2316	return r;
2317}
2318EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2319
2320/**
2321 * dev_pm_opp_enable() - Enable a specific OPP
2322 * @dev:	device for which we do this operation
2323 * @freq:	OPP frequency to enable
2324 *
2325 * Enables a provided opp. If the operation is valid, this returns 0, else the
2326 * corresponding error value. It is meant to be used for users an OPP available
2327 * after being temporarily made unavailable with dev_pm_opp_disable.
2328 *
2329 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2330 * copy operation, returns 0 if no modification was done OR modification was
2331 * successful.
2332 */
2333int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2334{
2335	return _opp_set_availability(dev, freq, true);
2336}
2337EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2338
2339/**
2340 * dev_pm_opp_disable() - Disable a specific OPP
2341 * @dev:	device for which we do this operation
2342 * @freq:	OPP frequency to disable
2343 *
2344 * Disables a provided opp. If the operation is valid, this returns
2345 * 0, else the corresponding error value. It is meant to be a temporary
2346 * control by users to make this OPP not available until the circumstances are
2347 * right to make it available again (with a call to dev_pm_opp_enable).
2348 *
2349 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2350 * copy operation, returns 0 if no modification was done OR modification was
2351 * successful.
2352 */
2353int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2354{
2355	return _opp_set_availability(dev, freq, false);
2356}
2357EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2358
2359/**
2360 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2361 * @dev:	Device for which notifier needs to be registered
2362 * @nb:		Notifier block to be registered
2363 *
2364 * Return: 0 on success or a negative error value.
2365 */
2366int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2367{
2368	struct opp_table *opp_table;
2369	int ret;
2370
2371	opp_table = _find_opp_table(dev);
2372	if (IS_ERR(opp_table))
2373		return PTR_ERR(opp_table);
2374
2375	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2376
2377	dev_pm_opp_put_opp_table(opp_table);
2378
2379	return ret;
2380}
2381EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2382
2383/**
2384 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2385 * @dev:	Device for which notifier needs to be unregistered
2386 * @nb:		Notifier block to be unregistered
2387 *
2388 * Return: 0 on success or a negative error value.
2389 */
2390int dev_pm_opp_unregister_notifier(struct device *dev,
2391				   struct notifier_block *nb)
2392{
2393	struct opp_table *opp_table;
2394	int ret;
2395
2396	opp_table = _find_opp_table(dev);
2397	if (IS_ERR(opp_table))
2398		return PTR_ERR(opp_table);
2399
2400	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2401
2402	dev_pm_opp_put_opp_table(opp_table);
2403
2404	return ret;
2405}
2406EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2407
2408void _dev_pm_opp_find_and_remove_table(struct device *dev)
2409{
2410	struct opp_table *opp_table;
2411
2412	/* Check for existing table for 'dev' */
2413	opp_table = _find_opp_table(dev);
2414	if (IS_ERR(opp_table)) {
2415		int error = PTR_ERR(opp_table);
2416
2417		if (error != -ENODEV)
2418			WARN(1, "%s: opp_table: %d\n",
2419			     IS_ERR_OR_NULL(dev) ?
2420					"Invalid device" : dev_name(dev),
2421			     error);
2422		return;
2423	}
2424
2425	/*
2426	 * Drop the extra reference only if the OPP table was successfully added
2427	 * with dev_pm_opp_of_add_table() earlier.
2428	 **/
2429	if (_opp_remove_all_static(opp_table))
2430		dev_pm_opp_put_opp_table(opp_table);
2431
2432	/* Drop reference taken by _find_opp_table() */
 
 
 
2433	dev_pm_opp_put_opp_table(opp_table);
2434}
2435
2436/**
2437 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2438 * @dev:	device pointer used to lookup OPP table.
2439 *
2440 * Free both OPPs created using static entries present in DT and the
2441 * dynamically added entries.
2442 */
2443void dev_pm_opp_remove_table(struct device *dev)
2444{
2445	_dev_pm_opp_find_and_remove_table(dev);
2446}
2447EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/export.h>
  19#include <linux/pm_domain.h>
  20#include <linux/regulator/consumer.h>
  21
  22#include "opp.h"
  23
  24/*
  25 * The root of the list of all opp-tables. All opp_table structures branch off
  26 * from here, with each opp_table containing the list of opps it supports in
  27 * various states of availability.
  28 */
  29LIST_HEAD(opp_tables);
  30/* Lock to allow exclusive modification to the device and opp lists */
  31DEFINE_MUTEX(opp_table_lock);
  32
  33static struct opp_device *_find_opp_dev(const struct device *dev,
  34					struct opp_table *opp_table)
  35{
  36	struct opp_device *opp_dev;
  37
  38	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  39		if (opp_dev->dev == dev)
  40			return opp_dev;
  41
  42	return NULL;
  43}
  44
  45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  46{
  47	struct opp_table *opp_table;
  48	bool found;
  49
  50	list_for_each_entry(opp_table, &opp_tables, node) {
  51		mutex_lock(&opp_table->lock);
  52		found = !!_find_opp_dev(dev, opp_table);
  53		mutex_unlock(&opp_table->lock);
  54
  55		if (found) {
  56			_get_opp_table_kref(opp_table);
  57
  58			return opp_table;
  59		}
  60	}
  61
  62	return ERR_PTR(-ENODEV);
  63}
  64
  65/**
  66 * _find_opp_table() - find opp_table struct using device pointer
  67 * @dev:	device pointer used to lookup OPP table
  68 *
  69 * Search OPP table for one containing matching device.
  70 *
  71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  72 * -EINVAL based on type of error.
  73 *
  74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  75 */
  76struct opp_table *_find_opp_table(struct device *dev)
  77{
  78	struct opp_table *opp_table;
  79
  80	if (IS_ERR_OR_NULL(dev)) {
  81		pr_err("%s: Invalid parameters\n", __func__);
  82		return ERR_PTR(-EINVAL);
  83	}
  84
  85	mutex_lock(&opp_table_lock);
  86	opp_table = _find_opp_table_unlocked(dev);
  87	mutex_unlock(&opp_table_lock);
  88
  89	return opp_table;
  90}
  91
  92/**
  93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  94 * @opp:	opp for which voltage has to be returned for
  95 *
  96 * Return: voltage in micro volt corresponding to the opp, else
  97 * return 0
  98 *
  99 * This is useful only for devices with single power supply.
 100 */
 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 102{
 103	if (IS_ERR_OR_NULL(opp)) {
 104		pr_err("%s: Invalid parameters\n", __func__);
 105		return 0;
 106	}
 107
 108	return opp->supplies[0].u_volt;
 109}
 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 111
 112/**
 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 114 * @opp:	opp for which frequency has to be returned for
 115 *
 116 * Return: frequency in hertz corresponding to the opp, else
 117 * return 0
 118 */
 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 120{
 121	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 122		pr_err("%s: Invalid parameters\n", __func__);
 123		return 0;
 124	}
 125
 126	return opp->rate;
 127}
 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 129
 130/**
 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 132 * @opp:	opp for which level value has to be returned for
 133 *
 134 * Return: level read from device tree corresponding to the opp, else
 135 * return 0.
 136 */
 137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->level;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 147
 148/**
 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 150 * @opp: opp for which turbo mode is being verified
 151 *
 152 * Turbo OPPs are not for normal use, and can be enabled (under certain
 153 * conditions) for short duration of times to finish high throughput work
 154 * quickly. Running on them for longer times may overheat the chip.
 155 *
 156 * Return: true if opp is turbo opp, else false.
 157 */
 158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 159{
 160	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 161		pr_err("%s: Invalid parameters\n", __func__);
 162		return false;
 163	}
 164
 165	return opp->turbo;
 166}
 167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 168
 169/**
 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 171 * @dev:	device for which we do this operation
 172 *
 173 * Return: This function returns the max clock latency in nanoseconds.
 174 */
 175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 176{
 177	struct opp_table *opp_table;
 178	unsigned long clock_latency_ns;
 179
 180	opp_table = _find_opp_table(dev);
 181	if (IS_ERR(opp_table))
 182		return 0;
 183
 184	clock_latency_ns = opp_table->clock_latency_ns_max;
 185
 186	dev_pm_opp_put_opp_table(opp_table);
 187
 188	return clock_latency_ns;
 189}
 190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 191
 192/**
 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 194 * @dev: device for which we do this operation
 195 *
 196 * Return: This function returns the max voltage latency in nanoseconds.
 197 */
 198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 199{
 200	struct opp_table *opp_table;
 201	struct dev_pm_opp *opp;
 202	struct regulator *reg;
 203	unsigned long latency_ns = 0;
 204	int ret, i, count;
 205	struct {
 206		unsigned long min;
 207		unsigned long max;
 208	} *uV;
 209
 210	opp_table = _find_opp_table(dev);
 211	if (IS_ERR(opp_table))
 212		return 0;
 213
 214	/* Regulator may not be required for the device */
 215	if (!opp_table->regulators)
 216		goto put_opp_table;
 217
 218	count = opp_table->regulator_count;
 219
 220	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 221	if (!uV)
 222		goto put_opp_table;
 223
 224	mutex_lock(&opp_table->lock);
 225
 226	for (i = 0; i < count; i++) {
 227		uV[i].min = ~0;
 228		uV[i].max = 0;
 229
 230		list_for_each_entry(opp, &opp_table->opp_list, node) {
 231			if (!opp->available)
 232				continue;
 233
 234			if (opp->supplies[i].u_volt_min < uV[i].min)
 235				uV[i].min = opp->supplies[i].u_volt_min;
 236			if (opp->supplies[i].u_volt_max > uV[i].max)
 237				uV[i].max = opp->supplies[i].u_volt_max;
 238		}
 239	}
 240
 241	mutex_unlock(&opp_table->lock);
 242
 243	/*
 244	 * The caller needs to ensure that opp_table (and hence the regulator)
 245	 * isn't freed, while we are executing this routine.
 246	 */
 247	for (i = 0; i < count; i++) {
 248		reg = opp_table->regulators[i];
 249		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 250		if (ret > 0)
 251			latency_ns += ret * 1000;
 252	}
 253
 254	kfree(uV);
 255put_opp_table:
 256	dev_pm_opp_put_opp_table(opp_table);
 257
 258	return latency_ns;
 259}
 260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 261
 262/**
 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 264 *					     nanoseconds
 265 * @dev: device for which we do this operation
 266 *
 267 * Return: This function returns the max transition latency, in nanoseconds, to
 268 * switch from one OPP to other.
 269 */
 270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 271{
 272	return dev_pm_opp_get_max_volt_latency(dev) +
 273		dev_pm_opp_get_max_clock_latency(dev);
 274}
 275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 276
 277/**
 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 279 * @dev:	device for which we do this operation
 280 *
 281 * Return: This function returns the frequency of the OPP marked as suspend_opp
 282 * if one is available, else returns 0;
 283 */
 284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 285{
 286	struct opp_table *opp_table;
 287	unsigned long freq = 0;
 288
 289	opp_table = _find_opp_table(dev);
 290	if (IS_ERR(opp_table))
 291		return 0;
 292
 293	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 294		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 295
 296	dev_pm_opp_put_opp_table(opp_table);
 297
 298	return freq;
 299}
 300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 301
 302int _get_opp_count(struct opp_table *opp_table)
 303{
 304	struct dev_pm_opp *opp;
 305	int count = 0;
 306
 307	mutex_lock(&opp_table->lock);
 308
 309	list_for_each_entry(opp, &opp_table->opp_list, node) {
 310		if (opp->available)
 311			count++;
 312	}
 313
 314	mutex_unlock(&opp_table->lock);
 315
 316	return count;
 317}
 318
 319/**
 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 321 * @dev:	device for which we do this operation
 322 *
 323 * Return: This function returns the number of available opps if there are any,
 324 * else returns 0 if none or the corresponding error value.
 325 */
 326int dev_pm_opp_get_opp_count(struct device *dev)
 327{
 328	struct opp_table *opp_table;
 329	int count;
 330
 331	opp_table = _find_opp_table(dev);
 332	if (IS_ERR(opp_table)) {
 333		count = PTR_ERR(opp_table);
 334		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 335			__func__, count);
 336		return count;
 337	}
 338
 339	count = _get_opp_count(opp_table);
 340	dev_pm_opp_put_opp_table(opp_table);
 341
 342	return count;
 343}
 344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 345
 346/**
 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 348 * @dev:		device for which we do this operation
 349 * @freq:		frequency to search for
 350 * @available:		true/false - match for available opp
 351 *
 352 * Return: Searches for exact match in the opp table and returns pointer to the
 353 * matching opp if found, else returns ERR_PTR in case of error and should
 354 * be handled using IS_ERR. Error return values can be:
 355 * EINVAL:	for bad pointer
 356 * ERANGE:	no match found for search
 357 * ENODEV:	if device not found in list of registered devices
 358 *
 359 * Note: available is a modifier for the search. if available=true, then the
 360 * match is for exact matching frequency and is available in the stored OPP
 361 * table. if false, the match is for exact frequency which is not available.
 362 *
 363 * This provides a mechanism to enable an opp which is not available currently
 364 * or the opposite as well.
 365 *
 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 367 * use.
 368 */
 369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 370					      unsigned long freq,
 371					      bool available)
 372{
 373	struct opp_table *opp_table;
 374	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 375
 376	opp_table = _find_opp_table(dev);
 377	if (IS_ERR(opp_table)) {
 378		int r = PTR_ERR(opp_table);
 379
 380		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 381		return ERR_PTR(r);
 382	}
 383
 384	mutex_lock(&opp_table->lock);
 385
 386	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 387		if (temp_opp->available == available &&
 388				temp_opp->rate == freq) {
 389			opp = temp_opp;
 390
 391			/* Increment the reference count of OPP */
 392			dev_pm_opp_get(opp);
 393			break;
 394		}
 395	}
 396
 397	mutex_unlock(&opp_table->lock);
 398	dev_pm_opp_put_opp_table(opp_table);
 399
 400	return opp;
 401}
 402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 403
 404/**
 405 * dev_pm_opp_find_level_exact() - search for an exact level
 406 * @dev:		device for which we do this operation
 407 * @level:		level to search for
 408 *
 409 * Return: Searches for exact match in the opp table and returns pointer to the
 410 * matching opp if found, else returns ERR_PTR in case of error and should
 411 * be handled using IS_ERR. Error return values can be:
 412 * EINVAL:	for bad pointer
 413 * ERANGE:	no match found for search
 414 * ENODEV:	if device not found in list of registered devices
 415 *
 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 417 * use.
 418 */
 419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 420					       unsigned int level)
 421{
 422	struct opp_table *opp_table;
 423	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 424
 425	opp_table = _find_opp_table(dev);
 426	if (IS_ERR(opp_table)) {
 427		int r = PTR_ERR(opp_table);
 428
 429		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 430		return ERR_PTR(r);
 431	}
 432
 433	mutex_lock(&opp_table->lock);
 434
 435	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 436		if (temp_opp->level == level) {
 437			opp = temp_opp;
 438
 439			/* Increment the reference count of OPP */
 440			dev_pm_opp_get(opp);
 441			break;
 442		}
 443	}
 444
 445	mutex_unlock(&opp_table->lock);
 446	dev_pm_opp_put_opp_table(opp_table);
 447
 448	return opp;
 449}
 450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 451
 452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 453						   unsigned long *freq)
 454{
 455	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 456
 457	mutex_lock(&opp_table->lock);
 458
 459	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 460		if (temp_opp->available && temp_opp->rate >= *freq) {
 461			opp = temp_opp;
 462			*freq = opp->rate;
 463
 464			/* Increment the reference count of OPP */
 465			dev_pm_opp_get(opp);
 466			break;
 467		}
 468	}
 469
 470	mutex_unlock(&opp_table->lock);
 471
 472	return opp;
 473}
 474
 475/**
 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 477 * @dev:	device for which we do this operation
 478 * @freq:	Start frequency
 479 *
 480 * Search for the matching ceil *available* OPP from a starting freq
 481 * for a device.
 482 *
 483 * Return: matching *opp and refreshes *freq accordingly, else returns
 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 485 * values can be:
 486 * EINVAL:	for bad pointer
 487 * ERANGE:	no match found for search
 488 * ENODEV:	if device not found in list of registered devices
 489 *
 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 491 * use.
 492 */
 493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 494					     unsigned long *freq)
 495{
 496	struct opp_table *opp_table;
 497	struct dev_pm_opp *opp;
 498
 499	if (!dev || !freq) {
 500		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 501		return ERR_PTR(-EINVAL);
 502	}
 503
 504	opp_table = _find_opp_table(dev);
 505	if (IS_ERR(opp_table))
 506		return ERR_CAST(opp_table);
 507
 508	opp = _find_freq_ceil(opp_table, freq);
 509
 510	dev_pm_opp_put_opp_table(opp_table);
 511
 512	return opp;
 513}
 514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 515
 516/**
 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 518 * @dev:	device for which we do this operation
 519 * @freq:	Start frequency
 520 *
 521 * Search for the matching floor *available* OPP from a starting freq
 522 * for a device.
 523 *
 524 * Return: matching *opp and refreshes *freq accordingly, else returns
 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 526 * values can be:
 527 * EINVAL:	for bad pointer
 528 * ERANGE:	no match found for search
 529 * ENODEV:	if device not found in list of registered devices
 530 *
 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 532 * use.
 533 */
 534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 535					      unsigned long *freq)
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 539
 540	if (!dev || !freq) {
 541		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 542		return ERR_PTR(-EINVAL);
 543	}
 544
 545	opp_table = _find_opp_table(dev);
 546	if (IS_ERR(opp_table))
 547		return ERR_CAST(opp_table);
 548
 549	mutex_lock(&opp_table->lock);
 550
 551	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 552		if (temp_opp->available) {
 553			/* go to the next node, before choosing prev */
 554			if (temp_opp->rate > *freq)
 555				break;
 556			else
 557				opp = temp_opp;
 558		}
 559	}
 560
 561	/* Increment the reference count of OPP */
 562	if (!IS_ERR(opp))
 563		dev_pm_opp_get(opp);
 564	mutex_unlock(&opp_table->lock);
 565	dev_pm_opp_put_opp_table(opp_table);
 566
 567	if (!IS_ERR(opp))
 568		*freq = opp->rate;
 569
 570	return opp;
 571}
 572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 573
 574/**
 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
 576 *					 target voltage.
 577 * @dev:	Device for which we do this operation.
 578 * @u_volt:	Target voltage.
 579 *
 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
 581 *
 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
 583 * handled using IS_ERR.
 584 *
 585 * Error return values can be:
 586 * EINVAL:	bad parameters
 587 *
 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 589 * use.
 590 */
 591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
 592						     unsigned long u_volt)
 593{
 594	struct opp_table *opp_table;
 595	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 596
 597	if (!dev || !u_volt) {
 598		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
 599			u_volt);
 600		return ERR_PTR(-EINVAL);
 601	}
 602
 603	opp_table = _find_opp_table(dev);
 604	if (IS_ERR(opp_table))
 605		return ERR_CAST(opp_table);
 606
 607	mutex_lock(&opp_table->lock);
 608
 609	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 610		if (temp_opp->available) {
 611			if (temp_opp->supplies[0].u_volt > u_volt)
 612				break;
 613			opp = temp_opp;
 614		}
 615	}
 616
 617	/* Increment the reference count of OPP */
 618	if (!IS_ERR(opp))
 619		dev_pm_opp_get(opp);
 620
 621	mutex_unlock(&opp_table->lock);
 622	dev_pm_opp_put_opp_table(opp_table);
 623
 624	return opp;
 625}
 626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
 627
 628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 629			    struct dev_pm_opp_supply *supply)
 630{
 631	int ret;
 632
 633	/* Regulator not available for device */
 634	if (IS_ERR(reg)) {
 635		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 636			PTR_ERR(reg));
 637		return 0;
 638	}
 639
 640	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 641		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 642
 643	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 644					    supply->u_volt, supply->u_volt_max);
 645	if (ret)
 646		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 647			__func__, supply->u_volt_min, supply->u_volt,
 648			supply->u_volt_max, ret);
 649
 650	return ret;
 651}
 652
 653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 654					    unsigned long freq)
 655{
 656	int ret;
 657
 658	ret = clk_set_rate(clk, freq);
 659	if (ret) {
 660		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 661			ret);
 662	}
 663
 664	return ret;
 665}
 666
 667static int _generic_set_opp_regulator(const struct opp_table *opp_table,
 668				      struct device *dev,
 669				      unsigned long old_freq,
 670				      unsigned long freq,
 671				      struct dev_pm_opp_supply *old_supply,
 672				      struct dev_pm_opp_supply *new_supply)
 673{
 674	struct regulator *reg = opp_table->regulators[0];
 675	int ret;
 676
 677	/* This function only supports single regulator per device */
 678	if (WARN_ON(opp_table->regulator_count > 1)) {
 679		dev_err(dev, "multiple regulators are not supported\n");
 680		return -EINVAL;
 681	}
 682
 683	/* Scaling up? Scale voltage before frequency */
 684	if (freq >= old_freq) {
 685		ret = _set_opp_voltage(dev, reg, new_supply);
 686		if (ret)
 687			goto restore_voltage;
 688	}
 689
 690	/* Change frequency */
 691	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
 692	if (ret)
 693		goto restore_voltage;
 694
 695	/* Scaling down? Scale voltage after frequency */
 696	if (freq < old_freq) {
 697		ret = _set_opp_voltage(dev, reg, new_supply);
 698		if (ret)
 699			goto restore_freq;
 700	}
 701
 
 
 
 
 
 
 
 
 
 
 
 
 702	return 0;
 703
 704restore_freq:
 705	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
 706		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 707			__func__, old_freq);
 708restore_voltage:
 709	/* This shouldn't harm even if the voltages weren't updated earlier */
 710	if (old_supply)
 711		_set_opp_voltage(dev, reg, old_supply);
 712
 713	return ret;
 714}
 715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716static int _set_opp_custom(const struct opp_table *opp_table,
 717			   struct device *dev, unsigned long old_freq,
 718			   unsigned long freq,
 719			   struct dev_pm_opp_supply *old_supply,
 720			   struct dev_pm_opp_supply *new_supply)
 721{
 722	struct dev_pm_set_opp_data *data;
 723	int size;
 724
 725	data = opp_table->set_opp_data;
 726	data->regulators = opp_table->regulators;
 727	data->regulator_count = opp_table->regulator_count;
 728	data->clk = opp_table->clk;
 729	data->dev = dev;
 730
 731	data->old_opp.rate = old_freq;
 732	size = sizeof(*old_supply) * opp_table->regulator_count;
 733	if (!old_supply)
 734		memset(data->old_opp.supplies, 0, size);
 735	else
 736		memcpy(data->old_opp.supplies, old_supply, size);
 737
 738	data->new_opp.rate = freq;
 739	memcpy(data->new_opp.supplies, new_supply, size);
 740
 741	return opp_table->set_opp(data);
 742}
 743
 744/* This is only called for PM domain for now */
 745static int _set_required_opps(struct device *dev,
 746			      struct opp_table *opp_table,
 747			      struct dev_pm_opp *opp)
 748{
 749	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 750	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 751	unsigned int pstate;
 752	int i, ret = 0;
 753
 754	if (!required_opp_tables)
 755		return 0;
 756
 757	/* Single genpd case */
 758	if (!genpd_virt_devs) {
 759		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
 760		ret = dev_pm_genpd_set_performance_state(dev, pstate);
 761		if (ret) {
 762			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 763				dev_name(dev), pstate, ret);
 764		}
 765		return ret;
 766	}
 767
 768	/* Multiple genpd case */
 769
 770	/*
 771	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 772	 * after it is freed from another thread.
 773	 */
 774	mutex_lock(&opp_table->genpd_virt_dev_lock);
 775
 776	for (i = 0; i < opp_table->required_opp_count; i++) {
 777		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 778
 779		if (!genpd_virt_devs[i])
 780			continue;
 781
 782		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
 783		if (ret) {
 784			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
 785				dev_name(genpd_virt_devs[i]), pstate, ret);
 786			break;
 787		}
 788	}
 789	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 790
 791	return ret;
 792}
 793
 794/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 796 * @dev:	 device for which we do this operation
 797 * @target_freq: frequency to achieve
 798 *
 799 * This configures the power-supplies to the levels specified by the OPP
 800 * corresponding to the target_freq, and programs the clock to a value <=
 801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
 802 * provided by the opp, should have already rounded to the target OPP's
 803 * frequency.
 804 */
 805int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
 806{
 807	struct opp_table *opp_table;
 808	unsigned long freq, old_freq, temp_freq;
 809	struct dev_pm_opp *old_opp, *opp;
 810	struct clk *clk;
 811	int ret;
 812
 813	opp_table = _find_opp_table(dev);
 814	if (IS_ERR(opp_table)) {
 815		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
 816		return PTR_ERR(opp_table);
 817	}
 818
 819	if (unlikely(!target_freq)) {
 820		if (opp_table->required_opp_tables) {
 821			ret = _set_required_opps(dev, opp_table, NULL);
 822		} else {
 
 
 
 
 
 
 
 
 
 823			dev_err(dev, "target frequency can't be 0\n");
 824			ret = -EINVAL;
 
 825		}
 826
 
 
 
 
 
 
 
 
 
 
 827		goto put_opp_table;
 828	}
 829
 830	clk = opp_table->clk;
 831	if (IS_ERR(clk)) {
 832		dev_err(dev, "%s: No clock available for the device\n",
 833			__func__);
 834		ret = PTR_ERR(clk);
 835		goto put_opp_table;
 836	}
 837
 838	freq = clk_round_rate(clk, target_freq);
 839	if ((long)freq <= 0)
 840		freq = target_freq;
 841
 842	old_freq = clk_get_rate(clk);
 843
 844	/* Return early if nothing to do */
 845	if (old_freq == freq) {
 846		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
 847			__func__, freq);
 848		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849		goto put_opp_table;
 850	}
 851
 852	temp_freq = old_freq;
 853	old_opp = _find_freq_ceil(opp_table, &temp_freq);
 854	if (IS_ERR(old_opp)) {
 855		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
 856			__func__, old_freq, PTR_ERR(old_opp));
 857	}
 858
 859	temp_freq = freq;
 860	opp = _find_freq_ceil(opp_table, &temp_freq);
 861	if (IS_ERR(opp)) {
 862		ret = PTR_ERR(opp);
 863		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
 864			__func__, freq, ret);
 865		goto put_old_opp;
 866	}
 867
 868	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
 869		old_freq, freq);
 870
 871	/* Scaling up? Configure required OPPs before frequency */
 872	if (freq >= old_freq) {
 873		ret = _set_required_opps(dev, opp_table, opp);
 874		if (ret)
 875			goto put_opp;
 876	}
 877
 878	if (opp_table->set_opp) {
 879		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
 880				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
 881				      opp->supplies);
 882	} else if (opp_table->regulators) {
 883		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
 884						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
 885						 opp->supplies);
 886	} else {
 887		/* Only frequency scaling */
 888		ret = _generic_set_opp_clk_only(dev, clk, freq);
 889	}
 890
 891	/* Scaling down? Configure required OPPs after frequency */
 892	if (!ret && freq < old_freq) {
 893		ret = _set_required_opps(dev, opp_table, opp);
 894		if (ret)
 895			dev_err(dev, "Failed to set required opps: %d\n", ret);
 896	}
 897
 
 
 
 898put_opp:
 899	dev_pm_opp_put(opp);
 900put_old_opp:
 901	if (!IS_ERR(old_opp))
 902		dev_pm_opp_put(old_opp);
 903put_opp_table:
 904	dev_pm_opp_put_opp_table(opp_table);
 905	return ret;
 906}
 907EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
 908
 909/* OPP-dev Helpers */
 910static void _remove_opp_dev(struct opp_device *opp_dev,
 911			    struct opp_table *opp_table)
 912{
 913	opp_debug_unregister(opp_dev, opp_table);
 914	list_del(&opp_dev->node);
 915	kfree(opp_dev);
 916}
 917
 918static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
 919						struct opp_table *opp_table)
 920{
 921	struct opp_device *opp_dev;
 922
 923	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
 924	if (!opp_dev)
 925		return NULL;
 926
 927	/* Initialize opp-dev */
 928	opp_dev->dev = dev;
 929
 930	list_add(&opp_dev->node, &opp_table->dev_list);
 931
 932	/* Create debugfs entries for the opp_table */
 933	opp_debug_register(opp_dev, opp_table);
 934
 935	return opp_dev;
 936}
 937
 938struct opp_device *_add_opp_dev(const struct device *dev,
 939				struct opp_table *opp_table)
 940{
 941	struct opp_device *opp_dev;
 942
 943	mutex_lock(&opp_table->lock);
 944	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
 945	mutex_unlock(&opp_table->lock);
 946
 947	return opp_dev;
 948}
 949
 950static struct opp_table *_allocate_opp_table(struct device *dev, int index)
 951{
 952	struct opp_table *opp_table;
 953	struct opp_device *opp_dev;
 954	int ret;
 955
 956	/*
 957	 * Allocate a new OPP table. In the infrequent case where a new
 958	 * device is needed to be added, we pay this penalty.
 959	 */
 960	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
 961	if (!opp_table)
 962		return NULL;
 963
 964	mutex_init(&opp_table->lock);
 965	mutex_init(&opp_table->genpd_virt_dev_lock);
 966	INIT_LIST_HEAD(&opp_table->dev_list);
 967
 968	/* Mark regulator count uninitialized */
 969	opp_table->regulator_count = -1;
 970
 971	opp_dev = _add_opp_dev(dev, opp_table);
 972	if (!opp_dev) {
 973		kfree(opp_table);
 974		return NULL;
 975	}
 976
 977	_of_init_opp_table(opp_table, dev, index);
 978
 979	/* Find clk for the device */
 980	opp_table->clk = clk_get(dev, NULL);
 981	if (IS_ERR(opp_table->clk)) {
 982		ret = PTR_ERR(opp_table->clk);
 983		if (ret != -EPROBE_DEFER)
 984			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
 985				ret);
 986	}
 987
 
 
 
 
 
 
 988	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
 989	INIT_LIST_HEAD(&opp_table->opp_list);
 990	kref_init(&opp_table->kref);
 991	kref_init(&opp_table->list_kref);
 992
 993	/* Secure the device table modification */
 994	list_add(&opp_table->node, &opp_tables);
 995	return opp_table;
 996}
 997
 998void _get_opp_table_kref(struct opp_table *opp_table)
 999{
1000	kref_get(&opp_table->kref);
1001}
1002
1003static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1004{
1005	struct opp_table *opp_table;
1006
1007	/* Hold our table modification lock here */
1008	mutex_lock(&opp_table_lock);
1009
1010	opp_table = _find_opp_table_unlocked(dev);
1011	if (!IS_ERR(opp_table))
1012		goto unlock;
1013
1014	opp_table = _managed_opp(dev, index);
1015	if (opp_table) {
1016		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1017			dev_pm_opp_put_opp_table(opp_table);
1018			opp_table = NULL;
1019		}
1020		goto unlock;
1021	}
1022
1023	opp_table = _allocate_opp_table(dev, index);
1024
1025unlock:
1026	mutex_unlock(&opp_table_lock);
1027
1028	return opp_table;
1029}
1030
1031struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1032{
1033	return _opp_get_opp_table(dev, 0);
1034}
1035EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1036
1037struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1038						   int index)
1039{
1040	return _opp_get_opp_table(dev, index);
1041}
1042
1043static void _opp_table_kref_release(struct kref *kref)
1044{
1045	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1046	struct opp_device *opp_dev, *temp;
 
1047
1048	_of_clear_opp_table(opp_table);
1049
1050	/* Release clk */
1051	if (!IS_ERR(opp_table->clk))
1052		clk_put(opp_table->clk);
1053
 
 
 
 
 
 
1054	WARN_ON(!list_empty(&opp_table->opp_list));
1055
1056	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1057		/*
1058		 * The OPP table is getting removed, drop the performance state
1059		 * constraints.
1060		 */
1061		if (opp_table->genpd_performance_state)
1062			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1063
1064		_remove_opp_dev(opp_dev, opp_table);
1065	}
1066
1067	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1068	mutex_destroy(&opp_table->lock);
1069	list_del(&opp_table->node);
1070	kfree(opp_table);
1071
1072	mutex_unlock(&opp_table_lock);
1073}
1074
1075void _opp_remove_all_static(struct opp_table *opp_table)
1076{
1077	struct dev_pm_opp *opp, *tmp;
1078
1079	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1080		if (!opp->dynamic)
1081			dev_pm_opp_put(opp);
1082	}
1083
1084	opp_table->parsed_static_opps = false;
1085}
1086
1087static void _opp_table_list_kref_release(struct kref *kref)
1088{
1089	struct opp_table *opp_table = container_of(kref, struct opp_table,
1090						   list_kref);
1091
1092	_opp_remove_all_static(opp_table);
1093	mutex_unlock(&opp_table_lock);
1094}
1095
1096void _put_opp_list_kref(struct opp_table *opp_table)
1097{
1098	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1099		       &opp_table_lock);
1100}
1101
1102void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1103{
1104	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1105		       &opp_table_lock);
1106}
1107EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1108
1109void _opp_free(struct dev_pm_opp *opp)
1110{
1111	kfree(opp);
1112}
1113
1114static void _opp_kref_release(struct dev_pm_opp *opp,
1115			      struct opp_table *opp_table)
1116{
1117	/*
1118	 * Notify the changes in the availability of the operable
1119	 * frequency/voltage list.
1120	 */
1121	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1122	_of_opp_free_required_opps(opp_table, opp);
1123	opp_debug_remove_one(opp);
1124	list_del(&opp->node);
1125	kfree(opp);
1126}
1127
1128static void _opp_kref_release_unlocked(struct kref *kref)
1129{
1130	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1131	struct opp_table *opp_table = opp->opp_table;
1132
1133	_opp_kref_release(opp, opp_table);
1134}
1135
1136static void _opp_kref_release_locked(struct kref *kref)
1137{
1138	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1139	struct opp_table *opp_table = opp->opp_table;
1140
1141	_opp_kref_release(opp, opp_table);
1142	mutex_unlock(&opp_table->lock);
1143}
1144
1145void dev_pm_opp_get(struct dev_pm_opp *opp)
1146{
1147	kref_get(&opp->kref);
1148}
1149
1150void dev_pm_opp_put(struct dev_pm_opp *opp)
1151{
1152	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1153		       &opp->opp_table->lock);
1154}
1155EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1156
1157static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1158{
1159	kref_put(&opp->kref, _opp_kref_release_unlocked);
1160}
1161
1162/**
1163 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1164 * @dev:	device for which we do this operation
1165 * @freq:	OPP to remove with matching 'freq'
1166 *
1167 * This function removes an opp from the opp table.
1168 */
1169void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1170{
1171	struct dev_pm_opp *opp;
1172	struct opp_table *opp_table;
1173	bool found = false;
1174
1175	opp_table = _find_opp_table(dev);
1176	if (IS_ERR(opp_table))
1177		return;
1178
1179	mutex_lock(&opp_table->lock);
1180
1181	list_for_each_entry(opp, &opp_table->opp_list, node) {
1182		if (opp->rate == freq) {
1183			found = true;
1184			break;
1185		}
1186	}
1187
1188	mutex_unlock(&opp_table->lock);
1189
1190	if (found) {
1191		dev_pm_opp_put(opp);
1192
1193		/* Drop the reference taken by dev_pm_opp_add() */
1194		dev_pm_opp_put_opp_table(opp_table);
1195	} else {
1196		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1197			 __func__, freq);
1198	}
1199
1200	/* Drop the reference taken by _find_opp_table() */
1201	dev_pm_opp_put_opp_table(opp_table);
1202}
1203EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205/**
1206 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1207 * @dev:	device for which we do this operation
1208 *
1209 * This function removes all dynamically created OPPs from the opp table.
1210 */
1211void dev_pm_opp_remove_all_dynamic(struct device *dev)
1212{
1213	struct opp_table *opp_table;
1214	struct dev_pm_opp *opp, *temp;
1215	int count = 0;
1216
1217	opp_table = _find_opp_table(dev);
1218	if (IS_ERR(opp_table))
1219		return;
1220
1221	mutex_lock(&opp_table->lock);
1222	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1223		if (opp->dynamic) {
1224			dev_pm_opp_put_unlocked(opp);
1225			count++;
1226		}
1227	}
1228	mutex_unlock(&opp_table->lock);
1229
1230	/* Drop the references taken by dev_pm_opp_add() */
1231	while (count--)
1232		dev_pm_opp_put_opp_table(opp_table);
1233
1234	/* Drop the reference taken by _find_opp_table() */
1235	dev_pm_opp_put_opp_table(opp_table);
1236}
1237EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1238
1239struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1240{
1241	struct dev_pm_opp *opp;
1242	int count, supply_size;
1243
1244	/* Allocate space for at least one supply */
1245	count = table->regulator_count > 0 ? table->regulator_count : 1;
1246	supply_size = sizeof(*opp->supplies) * count;
 
1247
1248	/* allocate new OPP node and supplies structures */
1249	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
 
1250	if (!opp)
1251		return NULL;
1252
1253	/* Put the supplies at the end of the OPP structure as an empty array */
1254	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
 
 
1255	INIT_LIST_HEAD(&opp->node);
1256
1257	return opp;
1258}
1259
1260static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1261					 struct opp_table *opp_table)
1262{
1263	struct regulator *reg;
1264	int i;
1265
1266	if (!opp_table->regulators)
1267		return true;
1268
1269	for (i = 0; i < opp_table->regulator_count; i++) {
1270		reg = opp_table->regulators[i];
1271
1272		if (!regulator_is_supported_voltage(reg,
1273					opp->supplies[i].u_volt_min,
1274					opp->supplies[i].u_volt_max)) {
1275			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1276				__func__, opp->supplies[i].u_volt_min,
1277				opp->supplies[i].u_volt_max);
1278			return false;
1279		}
1280	}
1281
1282	return true;
1283}
1284
 
 
 
 
 
 
 
 
 
 
 
 
1285static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1286			     struct opp_table *opp_table,
1287			     struct list_head **head)
1288{
1289	struct dev_pm_opp *opp;
 
1290
1291	/*
1292	 * Insert new OPP in order of increasing frequency and discard if
1293	 * already present.
1294	 *
1295	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1296	 * loop, don't replace it with head otherwise it will become an infinite
1297	 * loop.
1298	 */
1299	list_for_each_entry(opp, &opp_table->opp_list, node) {
1300		if (new_opp->rate > opp->rate) {
 
1301			*head = &opp->node;
1302			continue;
1303		}
1304
1305		if (new_opp->rate < opp->rate)
1306			return 0;
1307
1308		/* Duplicate OPPs */
1309		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1310			 __func__, opp->rate, opp->supplies[0].u_volt,
1311			 opp->available, new_opp->rate,
1312			 new_opp->supplies[0].u_volt, new_opp->available);
1313
1314		/* Should we compare voltages for all regulators here ? */
1315		return opp->available &&
1316		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1317	}
1318
1319	return 0;
1320}
1321
1322/*
1323 * Returns:
1324 * 0: On success. And appropriate error message for duplicate OPPs.
1325 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1326 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1327 *  sure we don't print error messages unnecessarily if different parts of
1328 *  kernel try to initialize the OPP table.
1329 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1330 *  should be considered an error by the callers of _opp_add().
1331 */
1332int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1333	     struct opp_table *opp_table, bool rate_not_available)
1334{
1335	struct list_head *head;
1336	int ret;
1337
1338	mutex_lock(&opp_table->lock);
1339	head = &opp_table->opp_list;
1340
1341	if (likely(!rate_not_available)) {
1342		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1343		if (ret) {
1344			mutex_unlock(&opp_table->lock);
1345			return ret;
1346		}
1347	}
1348
1349	list_add(&new_opp->node, head);
1350	mutex_unlock(&opp_table->lock);
1351
1352	new_opp->opp_table = opp_table;
1353	kref_init(&new_opp->kref);
1354
1355	opp_debug_create_one(new_opp, opp_table);
1356
1357	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1358		new_opp->available = false;
1359		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1360			 __func__, new_opp->rate);
1361	}
1362
1363	return 0;
1364}
1365
1366/**
1367 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1368 * @opp_table:	OPP table
1369 * @dev:	device for which we do this operation
1370 * @freq:	Frequency in Hz for this OPP
1371 * @u_volt:	Voltage in uVolts for this OPP
1372 * @dynamic:	Dynamically added OPPs.
1373 *
1374 * This function adds an opp definition to the opp table and returns status.
1375 * The opp is made available by default and it can be controlled using
1376 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1377 *
1378 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1379 * and freed by dev_pm_opp_of_remove_table.
1380 *
1381 * Return:
1382 * 0		On success OR
1383 *		Duplicate OPPs (both freq and volt are same) and opp->available
1384 * -EEXIST	Freq are same and volt are different OR
1385 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1386 * -ENOMEM	Memory allocation failure
1387 */
1388int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1389		unsigned long freq, long u_volt, bool dynamic)
1390{
1391	struct dev_pm_opp *new_opp;
1392	unsigned long tol;
1393	int ret;
1394
1395	new_opp = _opp_allocate(opp_table);
1396	if (!new_opp)
1397		return -ENOMEM;
1398
1399	/* populate the opp table */
1400	new_opp->rate = freq;
1401	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1402	new_opp->supplies[0].u_volt = u_volt;
1403	new_opp->supplies[0].u_volt_min = u_volt - tol;
1404	new_opp->supplies[0].u_volt_max = u_volt + tol;
1405	new_opp->available = true;
1406	new_opp->dynamic = dynamic;
1407
1408	ret = _opp_add(dev, new_opp, opp_table, false);
1409	if (ret) {
1410		/* Don't return error for duplicate OPPs */
1411		if (ret == -EBUSY)
1412			ret = 0;
1413		goto free_opp;
1414	}
1415
1416	/*
1417	 * Notify the changes in the availability of the operable
1418	 * frequency/voltage list.
1419	 */
1420	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1421	return 0;
1422
1423free_opp:
1424	_opp_free(new_opp);
1425
1426	return ret;
1427}
1428
1429/**
1430 * dev_pm_opp_set_supported_hw() - Set supported platforms
1431 * @dev: Device for which supported-hw has to be set.
1432 * @versions: Array of hierarchy of versions to match.
1433 * @count: Number of elements in the array.
1434 *
1435 * This is required only for the V2 bindings, and it enables a platform to
1436 * specify the hierarchy of versions it supports. OPP layer will then enable
1437 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1438 * property.
1439 */
1440struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1441			const u32 *versions, unsigned int count)
1442{
1443	struct opp_table *opp_table;
1444
1445	opp_table = dev_pm_opp_get_opp_table(dev);
1446	if (!opp_table)
1447		return ERR_PTR(-ENOMEM);
1448
1449	/* Make sure there are no concurrent readers while updating opp_table */
1450	WARN_ON(!list_empty(&opp_table->opp_list));
1451
1452	/* Another CPU that shares the OPP table has set the property ? */
1453	if (opp_table->supported_hw)
1454		return opp_table;
1455
1456	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1457					GFP_KERNEL);
1458	if (!opp_table->supported_hw) {
1459		dev_pm_opp_put_opp_table(opp_table);
1460		return ERR_PTR(-ENOMEM);
1461	}
1462
1463	opp_table->supported_hw_count = count;
1464
1465	return opp_table;
1466}
1467EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1468
1469/**
1470 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1471 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1472 *
1473 * This is required only for the V2 bindings, and is called for a matching
1474 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1475 * will not be freed.
1476 */
1477void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1478{
1479	/* Make sure there are no concurrent readers while updating opp_table */
1480	WARN_ON(!list_empty(&opp_table->opp_list));
1481
1482	kfree(opp_table->supported_hw);
1483	opp_table->supported_hw = NULL;
1484	opp_table->supported_hw_count = 0;
1485
1486	dev_pm_opp_put_opp_table(opp_table);
1487}
1488EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1489
1490/**
1491 * dev_pm_opp_set_prop_name() - Set prop-extn name
1492 * @dev: Device for which the prop-name has to be set.
1493 * @name: name to postfix to properties.
1494 *
1495 * This is required only for the V2 bindings, and it enables a platform to
1496 * specify the extn to be used for certain property names. The properties to
1497 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1498 * should postfix the property name with -<name> while looking for them.
1499 */
1500struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1501{
1502	struct opp_table *opp_table;
1503
1504	opp_table = dev_pm_opp_get_opp_table(dev);
1505	if (!opp_table)
1506		return ERR_PTR(-ENOMEM);
1507
1508	/* Make sure there are no concurrent readers while updating opp_table */
1509	WARN_ON(!list_empty(&opp_table->opp_list));
1510
1511	/* Another CPU that shares the OPP table has set the property ? */
1512	if (opp_table->prop_name)
1513		return opp_table;
1514
1515	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1516	if (!opp_table->prop_name) {
1517		dev_pm_opp_put_opp_table(opp_table);
1518		return ERR_PTR(-ENOMEM);
1519	}
1520
1521	return opp_table;
1522}
1523EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1524
1525/**
1526 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1527 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1528 *
1529 * This is required only for the V2 bindings, and is called for a matching
1530 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1531 * will not be freed.
1532 */
1533void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1534{
1535	/* Make sure there are no concurrent readers while updating opp_table */
1536	WARN_ON(!list_empty(&opp_table->opp_list));
1537
1538	kfree(opp_table->prop_name);
1539	opp_table->prop_name = NULL;
1540
1541	dev_pm_opp_put_opp_table(opp_table);
1542}
1543EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1544
1545static int _allocate_set_opp_data(struct opp_table *opp_table)
1546{
1547	struct dev_pm_set_opp_data *data;
1548	int len, count = opp_table->regulator_count;
1549
1550	if (WARN_ON(!opp_table->regulators))
1551		return -EINVAL;
1552
1553	/* space for set_opp_data */
1554	len = sizeof(*data);
1555
1556	/* space for old_opp.supplies and new_opp.supplies */
1557	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1558
1559	data = kzalloc(len, GFP_KERNEL);
1560	if (!data)
1561		return -ENOMEM;
1562
1563	data->old_opp.supplies = (void *)(data + 1);
1564	data->new_opp.supplies = data->old_opp.supplies + count;
1565
1566	opp_table->set_opp_data = data;
1567
1568	return 0;
1569}
1570
1571static void _free_set_opp_data(struct opp_table *opp_table)
1572{
1573	kfree(opp_table->set_opp_data);
1574	opp_table->set_opp_data = NULL;
1575}
1576
1577/**
1578 * dev_pm_opp_set_regulators() - Set regulator names for the device
1579 * @dev: Device for which regulator name is being set.
1580 * @names: Array of pointers to the names of the regulator.
1581 * @count: Number of regulators.
1582 *
1583 * In order to support OPP switching, OPP layer needs to know the name of the
1584 * device's regulators, as the core would be required to switch voltages as
1585 * well.
1586 *
1587 * This must be called before any OPPs are initialized for the device.
1588 */
1589struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1590					    const char * const names[],
1591					    unsigned int count)
1592{
1593	struct opp_table *opp_table;
1594	struct regulator *reg;
1595	int ret, i;
1596
1597	opp_table = dev_pm_opp_get_opp_table(dev);
1598	if (!opp_table)
1599		return ERR_PTR(-ENOMEM);
1600
1601	/* This should be called before OPPs are initialized */
1602	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1603		ret = -EBUSY;
1604		goto err;
1605	}
1606
1607	/* Another CPU that shares the OPP table has set the regulators ? */
1608	if (opp_table->regulators)
1609		return opp_table;
1610
1611	opp_table->regulators = kmalloc_array(count,
1612					      sizeof(*opp_table->regulators),
1613					      GFP_KERNEL);
1614	if (!opp_table->regulators) {
1615		ret = -ENOMEM;
1616		goto err;
1617	}
1618
1619	for (i = 0; i < count; i++) {
1620		reg = regulator_get_optional(dev, names[i]);
1621		if (IS_ERR(reg)) {
1622			ret = PTR_ERR(reg);
1623			if (ret != -EPROBE_DEFER)
1624				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1625					__func__, names[i], ret);
1626			goto free_regulators;
1627		}
1628
1629		opp_table->regulators[i] = reg;
1630	}
1631
1632	opp_table->regulator_count = count;
1633
1634	/* Allocate block only once to pass to set_opp() routines */
1635	ret = _allocate_set_opp_data(opp_table);
1636	if (ret)
1637		goto free_regulators;
1638
1639	return opp_table;
1640
1641free_regulators:
1642	while (i != 0)
1643		regulator_put(opp_table->regulators[--i]);
1644
1645	kfree(opp_table->regulators);
1646	opp_table->regulators = NULL;
1647	opp_table->regulator_count = -1;
1648err:
1649	dev_pm_opp_put_opp_table(opp_table);
1650
1651	return ERR_PTR(ret);
1652}
1653EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1654
1655/**
1656 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1657 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1658 */
1659void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1660{
1661	int i;
1662
1663	if (!opp_table->regulators)
1664		goto put_opp_table;
1665
1666	/* Make sure there are no concurrent readers while updating opp_table */
1667	WARN_ON(!list_empty(&opp_table->opp_list));
1668
 
 
 
 
 
 
 
1669	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1670		regulator_put(opp_table->regulators[i]);
1671
1672	_free_set_opp_data(opp_table);
1673
1674	kfree(opp_table->regulators);
1675	opp_table->regulators = NULL;
1676	opp_table->regulator_count = -1;
1677
1678put_opp_table:
1679	dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1682
1683/**
1684 * dev_pm_opp_set_clkname() - Set clk name for the device
1685 * @dev: Device for which clk name is being set.
1686 * @name: Clk name.
1687 *
1688 * In order to support OPP switching, OPP layer needs to get pointer to the
1689 * clock for the device. Simple cases work fine without using this routine (i.e.
1690 * by passing connection-id as NULL), but for a device with multiple clocks
1691 * available, the OPP core needs to know the exact name of the clk to use.
1692 *
1693 * This must be called before any OPPs are initialized for the device.
1694 */
1695struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1696{
1697	struct opp_table *opp_table;
1698	int ret;
1699
1700	opp_table = dev_pm_opp_get_opp_table(dev);
1701	if (!opp_table)
1702		return ERR_PTR(-ENOMEM);
1703
1704	/* This should be called before OPPs are initialized */
1705	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1706		ret = -EBUSY;
1707		goto err;
1708	}
1709
1710	/* Already have default clk set, free it */
1711	if (!IS_ERR(opp_table->clk))
1712		clk_put(opp_table->clk);
1713
1714	/* Find clk for the device */
1715	opp_table->clk = clk_get(dev, name);
1716	if (IS_ERR(opp_table->clk)) {
1717		ret = PTR_ERR(opp_table->clk);
1718		if (ret != -EPROBE_DEFER) {
1719			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1720				ret);
1721		}
1722		goto err;
1723	}
1724
1725	return opp_table;
1726
1727err:
1728	dev_pm_opp_put_opp_table(opp_table);
1729
1730	return ERR_PTR(ret);
1731}
1732EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1733
1734/**
1735 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1736 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1737 */
1738void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1739{
1740	/* Make sure there are no concurrent readers while updating opp_table */
1741	WARN_ON(!list_empty(&opp_table->opp_list));
1742
1743	clk_put(opp_table->clk);
1744	opp_table->clk = ERR_PTR(-EINVAL);
1745
1746	dev_pm_opp_put_opp_table(opp_table);
1747}
1748EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1749
1750/**
1751 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1752 * @dev: Device for which the helper is getting registered.
1753 * @set_opp: Custom set OPP helper.
1754 *
1755 * This is useful to support complex platforms (like platforms with multiple
1756 * regulators per device), instead of the generic OPP set rate helper.
1757 *
1758 * This must be called before any OPPs are initialized for the device.
1759 */
1760struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1761			int (*set_opp)(struct dev_pm_set_opp_data *data))
1762{
1763	struct opp_table *opp_table;
1764
1765	if (!set_opp)
1766		return ERR_PTR(-EINVAL);
1767
1768	opp_table = dev_pm_opp_get_opp_table(dev);
1769	if (!opp_table)
1770		return ERR_PTR(-ENOMEM);
1771
1772	/* This should be called before OPPs are initialized */
1773	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1774		dev_pm_opp_put_opp_table(opp_table);
1775		return ERR_PTR(-EBUSY);
1776	}
1777
1778	/* Another CPU that shares the OPP table has set the helper ? */
1779	if (!opp_table->set_opp)
1780		opp_table->set_opp = set_opp;
1781
1782	return opp_table;
1783}
1784EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1785
1786/**
1787 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1788 *					   set_opp helper
1789 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1790 *
1791 * Release resources blocked for platform specific set_opp helper.
1792 */
1793void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1794{
1795	/* Make sure there are no concurrent readers while updating opp_table */
1796	WARN_ON(!list_empty(&opp_table->opp_list));
1797
1798	opp_table->set_opp = NULL;
1799	dev_pm_opp_put_opp_table(opp_table);
1800}
1801EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1802
1803static void _opp_detach_genpd(struct opp_table *opp_table)
1804{
1805	int index;
1806
1807	for (index = 0; index < opp_table->required_opp_count; index++) {
1808		if (!opp_table->genpd_virt_devs[index])
1809			continue;
1810
1811		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1812		opp_table->genpd_virt_devs[index] = NULL;
1813	}
1814
1815	kfree(opp_table->genpd_virt_devs);
1816	opp_table->genpd_virt_devs = NULL;
1817}
1818
1819/**
1820 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1821 * @dev: Consumer device for which the genpd is getting attached.
1822 * @names: Null terminated array of pointers containing names of genpd to attach.
1823 * @virt_devs: Pointer to return the array of virtual devices.
1824 *
1825 * Multiple generic power domains for a device are supported with the help of
1826 * virtual genpd devices, which are created for each consumer device - genpd
1827 * pair. These are the device structures which are attached to the power domain
1828 * and are required by the OPP core to set the performance state of the genpd.
1829 * The same API also works for the case where single genpd is available and so
1830 * we don't need to support that separately.
1831 *
1832 * This helper will normally be called by the consumer driver of the device
1833 * "dev", as only that has details of the genpd names.
1834 *
1835 * This helper needs to be called once with a list of all genpd to attach.
1836 * Otherwise the original device structure will be used instead by the OPP core.
1837 *
1838 * The order of entries in the names array must match the order in which
1839 * "required-opps" are added in DT.
1840 */
1841struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1842		const char **names, struct device ***virt_devs)
1843{
1844	struct opp_table *opp_table;
1845	struct device *virt_dev;
1846	int index = 0, ret = -EINVAL;
1847	const char **name = names;
1848
1849	opp_table = dev_pm_opp_get_opp_table(dev);
1850	if (!opp_table)
1851		return ERR_PTR(-ENOMEM);
1852
1853	/*
1854	 * If the genpd's OPP table isn't already initialized, parsing of the
1855	 * required-opps fail for dev. We should retry this after genpd's OPP
1856	 * table is added.
1857	 */
1858	if (!opp_table->required_opp_count) {
1859		ret = -EPROBE_DEFER;
1860		goto put_table;
1861	}
1862
1863	mutex_lock(&opp_table->genpd_virt_dev_lock);
1864
1865	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1866					     sizeof(*opp_table->genpd_virt_devs),
1867					     GFP_KERNEL);
1868	if (!opp_table->genpd_virt_devs)
1869		goto unlock;
1870
1871	while (*name) {
1872		if (index >= opp_table->required_opp_count) {
1873			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1874				*name, opp_table->required_opp_count, index);
1875			goto err;
1876		}
1877
1878		if (opp_table->genpd_virt_devs[index]) {
1879			dev_err(dev, "Genpd virtual device already set %s\n",
1880				*name);
1881			goto err;
1882		}
1883
1884		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1885		if (IS_ERR(virt_dev)) {
1886			ret = PTR_ERR(virt_dev);
1887			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1888			goto err;
1889		}
1890
1891		opp_table->genpd_virt_devs[index] = virt_dev;
1892		index++;
1893		name++;
1894	}
1895
1896	if (virt_devs)
1897		*virt_devs = opp_table->genpd_virt_devs;
1898	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1899
1900	return opp_table;
1901
1902err:
1903	_opp_detach_genpd(opp_table);
1904unlock:
1905	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1906
1907put_table:
1908	dev_pm_opp_put_opp_table(opp_table);
1909
1910	return ERR_PTR(ret);
1911}
1912EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1913
1914/**
1915 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1916 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1917 *
1918 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1919 * OPP table.
1920 */
1921void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1922{
1923	/*
1924	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1925	 * used in parallel.
1926	 */
1927	mutex_lock(&opp_table->genpd_virt_dev_lock);
1928	_opp_detach_genpd(opp_table);
1929	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1930
1931	dev_pm_opp_put_opp_table(opp_table);
1932}
1933EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1934
1935/**
1936 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1937 * @src_table: OPP table which has dst_table as one of its required OPP table.
1938 * @dst_table: Required OPP table of the src_table.
1939 * @pstate: Current performance state of the src_table.
1940 *
1941 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1942 * "required-opps" property of the OPP (present in @src_table) which has
1943 * performance state set to @pstate.
1944 *
1945 * Return: Zero or positive performance state on success, otherwise negative
1946 * value on errors.
1947 */
1948int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1949				       struct opp_table *dst_table,
1950				       unsigned int pstate)
1951{
1952	struct dev_pm_opp *opp;
1953	int dest_pstate = -EINVAL;
1954	int i;
1955
1956	if (!pstate)
1957		return 0;
1958
1959	/*
1960	 * Normally the src_table will have the "required_opps" property set to
1961	 * point to one of the OPPs in the dst_table, but in some cases the
1962	 * genpd and its master have one to one mapping of performance states
1963	 * and so none of them have the "required-opps" property set. Return the
1964	 * pstate of the src_table as it is in such cases.
1965	 */
1966	if (!src_table->required_opp_count)
1967		return pstate;
1968
1969	for (i = 0; i < src_table->required_opp_count; i++) {
1970		if (src_table->required_opp_tables[i]->np == dst_table->np)
1971			break;
1972	}
1973
1974	if (unlikely(i == src_table->required_opp_count)) {
1975		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1976		       __func__, src_table, dst_table);
1977		return -EINVAL;
1978	}
1979
1980	mutex_lock(&src_table->lock);
1981
1982	list_for_each_entry(opp, &src_table->opp_list, node) {
1983		if (opp->pstate == pstate) {
1984			dest_pstate = opp->required_opps[i]->pstate;
1985			goto unlock;
1986		}
1987	}
1988
1989	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1990	       dst_table);
1991
1992unlock:
1993	mutex_unlock(&src_table->lock);
1994
1995	return dest_pstate;
1996}
1997
1998/**
1999 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2000 * @dev:	device for which we do this operation
2001 * @freq:	Frequency in Hz for this OPP
2002 * @u_volt:	Voltage in uVolts for this OPP
2003 *
2004 * This function adds an opp definition to the opp table and returns status.
2005 * The opp is made available by default and it can be controlled using
2006 * dev_pm_opp_enable/disable functions.
2007 *
2008 * Return:
2009 * 0		On success OR
2010 *		Duplicate OPPs (both freq and volt are same) and opp->available
2011 * -EEXIST	Freq are same and volt are different OR
2012 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2013 * -ENOMEM	Memory allocation failure
2014 */
2015int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2016{
2017	struct opp_table *opp_table;
2018	int ret;
2019
2020	opp_table = dev_pm_opp_get_opp_table(dev);
2021	if (!opp_table)
2022		return -ENOMEM;
2023
2024	/* Fix regulator count for dynamic OPPs */
2025	opp_table->regulator_count = 1;
2026
2027	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2028	if (ret)
2029		dev_pm_opp_put_opp_table(opp_table);
2030
2031	return ret;
2032}
2033EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2034
2035/**
2036 * _opp_set_availability() - helper to set the availability of an opp
2037 * @dev:		device for which we do this operation
2038 * @freq:		OPP frequency to modify availability
2039 * @availability_req:	availability status requested for this opp
2040 *
2041 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2042 * which is isolated here.
2043 *
2044 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2045 * copy operation, returns 0 if no modification was done OR modification was
2046 * successful.
2047 */
2048static int _opp_set_availability(struct device *dev, unsigned long freq,
2049				 bool availability_req)
2050{
2051	struct opp_table *opp_table;
2052	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2053	int r = 0;
2054
2055	/* Find the opp_table */
2056	opp_table = _find_opp_table(dev);
2057	if (IS_ERR(opp_table)) {
2058		r = PTR_ERR(opp_table);
2059		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2060		return r;
2061	}
2062
2063	mutex_lock(&opp_table->lock);
2064
2065	/* Do we have the frequency? */
2066	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2067		if (tmp_opp->rate == freq) {
2068			opp = tmp_opp;
2069			break;
2070		}
2071	}
2072
2073	if (IS_ERR(opp)) {
2074		r = PTR_ERR(opp);
2075		goto unlock;
2076	}
2077
2078	/* Is update really needed? */
2079	if (opp->available == availability_req)
2080		goto unlock;
2081
2082	opp->available = availability_req;
2083
2084	dev_pm_opp_get(opp);
2085	mutex_unlock(&opp_table->lock);
2086
2087	/* Notify the change of the OPP availability */
2088	if (availability_req)
2089		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2090					     opp);
2091	else
2092		blocking_notifier_call_chain(&opp_table->head,
2093					     OPP_EVENT_DISABLE, opp);
2094
2095	dev_pm_opp_put(opp);
2096	goto put_table;
2097
2098unlock:
2099	mutex_unlock(&opp_table->lock);
2100put_table:
2101	dev_pm_opp_put_opp_table(opp_table);
2102	return r;
2103}
2104
2105/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106 * dev_pm_opp_enable() - Enable a specific OPP
2107 * @dev:	device for which we do this operation
2108 * @freq:	OPP frequency to enable
2109 *
2110 * Enables a provided opp. If the operation is valid, this returns 0, else the
2111 * corresponding error value. It is meant to be used for users an OPP available
2112 * after being temporarily made unavailable with dev_pm_opp_disable.
2113 *
2114 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2115 * copy operation, returns 0 if no modification was done OR modification was
2116 * successful.
2117 */
2118int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2119{
2120	return _opp_set_availability(dev, freq, true);
2121}
2122EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2123
2124/**
2125 * dev_pm_opp_disable() - Disable a specific OPP
2126 * @dev:	device for which we do this operation
2127 * @freq:	OPP frequency to disable
2128 *
2129 * Disables a provided opp. If the operation is valid, this returns
2130 * 0, else the corresponding error value. It is meant to be a temporary
2131 * control by users to make this OPP not available until the circumstances are
2132 * right to make it available again (with a call to dev_pm_opp_enable).
2133 *
2134 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2135 * copy operation, returns 0 if no modification was done OR modification was
2136 * successful.
2137 */
2138int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2139{
2140	return _opp_set_availability(dev, freq, false);
2141}
2142EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2143
2144/**
2145 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2146 * @dev:	Device for which notifier needs to be registered
2147 * @nb:		Notifier block to be registered
2148 *
2149 * Return: 0 on success or a negative error value.
2150 */
2151int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2152{
2153	struct opp_table *opp_table;
2154	int ret;
2155
2156	opp_table = _find_opp_table(dev);
2157	if (IS_ERR(opp_table))
2158		return PTR_ERR(opp_table);
2159
2160	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2161
2162	dev_pm_opp_put_opp_table(opp_table);
2163
2164	return ret;
2165}
2166EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2167
2168/**
2169 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2170 * @dev:	Device for which notifier needs to be unregistered
2171 * @nb:		Notifier block to be unregistered
2172 *
2173 * Return: 0 on success or a negative error value.
2174 */
2175int dev_pm_opp_unregister_notifier(struct device *dev,
2176				   struct notifier_block *nb)
2177{
2178	struct opp_table *opp_table;
2179	int ret;
2180
2181	opp_table = _find_opp_table(dev);
2182	if (IS_ERR(opp_table))
2183		return PTR_ERR(opp_table);
2184
2185	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2186
2187	dev_pm_opp_put_opp_table(opp_table);
2188
2189	return ret;
2190}
2191EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2192
2193void _dev_pm_opp_find_and_remove_table(struct device *dev)
2194{
2195	struct opp_table *opp_table;
2196
2197	/* Check for existing table for 'dev' */
2198	opp_table = _find_opp_table(dev);
2199	if (IS_ERR(opp_table)) {
2200		int error = PTR_ERR(opp_table);
2201
2202		if (error != -ENODEV)
2203			WARN(1, "%s: opp_table: %d\n",
2204			     IS_ERR_OR_NULL(dev) ?
2205					"Invalid device" : dev_name(dev),
2206			     error);
2207		return;
2208	}
2209
2210	_put_opp_list_kref(opp_table);
 
 
 
 
 
2211
2212	/* Drop reference taken by _find_opp_table() */
2213	dev_pm_opp_put_opp_table(opp_table);
2214
2215	/* Drop reference taken while the OPP table was added */
2216	dev_pm_opp_put_opp_table(opp_table);
2217}
2218
2219/**
2220 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2221 * @dev:	device pointer used to lookup OPP table.
2222 *
2223 * Free both OPPs created using static entries present in DT and the
2224 * dynamically added entries.
2225 */
2226void dev_pm_opp_remove_table(struct device *dev)
2227{
2228	_dev_pm_opp_find_and_remove_table(dev);
2229}
2230EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);