Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58				       unsigned int type, unsigned int id,
  59				       unsigned int application)
  60{
  61	struct hid_report_enum *report_enum = device->report_enum + type;
  62	struct hid_report *report;
  63
  64	if (id >= HID_MAX_IDS)
  65		return NULL;
  66	if (report_enum->report_id_hash[id])
  67		return report_enum->report_id_hash[id];
  68
  69	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70	if (!report)
  71		return NULL;
  72
  73	if (id != 0)
  74		report_enum->numbered = 1;
  75
  76	report->id = id;
  77	report->type = type;
  78	report->size = 0;
  79	report->device = device;
  80	report->application = application;
  81	report_enum->report_id_hash[id] = report;
  82
  83	list_add_tail(&report->list, &report_enum->report_list);
 
  84
  85	return report;
  86}
  87EXPORT_SYMBOL_GPL(hid_register_report);
  88
  89/*
  90 * Register a new field for this report.
  91 */
  92
  93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  94{
  95	struct hid_field *field;
  96
  97	if (report->maxfield == HID_MAX_FIELDS) {
  98		hid_err(report->device, "too many fields in report\n");
  99		return NULL;
 100	}
 101
 102	field = kzalloc((sizeof(struct hid_field) +
 103			 usages * sizeof(struct hid_usage) +
 104			 values * sizeof(unsigned)), GFP_KERNEL);
 105	if (!field)
 106		return NULL;
 107
 108	field->index = report->maxfield++;
 109	report->field[field->index] = field;
 110	field->usage = (struct hid_usage *)(field + 1);
 111	field->value = (s32 *)(field->usage + usages);
 
 
 112	field->report = report;
 113
 114	return field;
 115}
 116
 117/*
 118 * Open a collection. The type/usage is pushed on the stack.
 119 */
 120
 121static int open_collection(struct hid_parser *parser, unsigned type)
 122{
 123	struct hid_collection *collection;
 124	unsigned usage;
 125	int collection_index;
 126
 127	usage = parser->local.usage[0];
 128
 129	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 130		unsigned int *collection_stack;
 131		unsigned int new_size = parser->collection_stack_size +
 132					HID_COLLECTION_STACK_SIZE;
 133
 134		collection_stack = krealloc(parser->collection_stack,
 135					    new_size * sizeof(unsigned int),
 136					    GFP_KERNEL);
 137		if (!collection_stack)
 138			return -ENOMEM;
 139
 140		parser->collection_stack = collection_stack;
 141		parser->collection_stack_size = new_size;
 142	}
 143
 144	if (parser->device->maxcollection == parser->device->collection_size) {
 145		collection = kmalloc(
 146				array3_size(sizeof(struct hid_collection),
 147					    parser->device->collection_size,
 148					    2),
 149				GFP_KERNEL);
 150		if (collection == NULL) {
 151			hid_err(parser->device, "failed to reallocate collection array\n");
 152			return -ENOMEM;
 153		}
 154		memcpy(collection, parser->device->collection,
 155			sizeof(struct hid_collection) *
 156			parser->device->collection_size);
 157		memset(collection + parser->device->collection_size, 0,
 158			sizeof(struct hid_collection) *
 159			parser->device->collection_size);
 160		kfree(parser->device->collection);
 161		parser->device->collection = collection;
 162		parser->device->collection_size *= 2;
 163	}
 164
 165	parser->collection_stack[parser->collection_stack_ptr++] =
 166		parser->device->maxcollection;
 167
 168	collection_index = parser->device->maxcollection++;
 169	collection = parser->device->collection + collection_index;
 170	collection->type = type;
 171	collection->usage = usage;
 172	collection->level = parser->collection_stack_ptr - 1;
 173	collection->parent_idx = (collection->level == 0) ? -1 :
 174		parser->collection_stack[collection->level - 1];
 175
 176	if (type == HID_COLLECTION_APPLICATION)
 177		parser->device->maxapplication++;
 178
 179	return 0;
 180}
 181
 182/*
 183 * Close a collection.
 184 */
 185
 186static int close_collection(struct hid_parser *parser)
 187{
 188	if (!parser->collection_stack_ptr) {
 189		hid_err(parser->device, "collection stack underflow\n");
 190		return -EINVAL;
 191	}
 192	parser->collection_stack_ptr--;
 193	return 0;
 194}
 195
 196/*
 197 * Climb up the stack, search for the specified collection type
 198 * and return the usage.
 199 */
 200
 201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 202{
 203	struct hid_collection *collection = parser->device->collection;
 204	int n;
 205
 206	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 207		unsigned index = parser->collection_stack[n];
 208		if (collection[index].type == type)
 209			return collection[index].usage;
 210	}
 211	return 0; /* we know nothing about this usage type */
 212}
 213
 214/*
 215 * Concatenate usage which defines 16 bits or less with the
 216 * currently defined usage page to form a 32 bit usage
 217 */
 218
 219static void complete_usage(struct hid_parser *parser, unsigned int index)
 220{
 221	parser->local.usage[index] &= 0xFFFF;
 222	parser->local.usage[index] |=
 223		(parser->global.usage_page & 0xFFFF) << 16;
 224}
 225
 226/*
 227 * Add a usage to the temporary parser table.
 228 */
 229
 230static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 231{
 232	if (parser->local.usage_index >= HID_MAX_USAGES) {
 233		hid_err(parser->device, "usage index exceeded\n");
 234		return -1;
 235	}
 236	parser->local.usage[parser->local.usage_index] = usage;
 237
 238	/*
 239	 * If Usage item only includes usage id, concatenate it with
 240	 * currently defined usage page
 241	 */
 242	if (size <= 2)
 243		complete_usage(parser, parser->local.usage_index);
 244
 245	parser->local.usage_size[parser->local.usage_index] = size;
 246	parser->local.collection_index[parser->local.usage_index] =
 247		parser->collection_stack_ptr ?
 248		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 249	parser->local.usage_index++;
 250	return 0;
 251}
 252
 253/*
 254 * Register a new field for this report.
 255 */
 256
 257static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 258{
 259	struct hid_report *report;
 260	struct hid_field *field;
 
 261	unsigned int usages;
 262	unsigned int offset;
 263	unsigned int i;
 264	unsigned int application;
 265
 266	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 267
 268	report = hid_register_report(parser->device, report_type,
 269				     parser->global.report_id, application);
 270	if (!report) {
 271		hid_err(parser->device, "hid_register_report failed\n");
 272		return -1;
 273	}
 274
 275	/* Handle both signed and unsigned cases properly */
 276	if ((parser->global.logical_minimum < 0 &&
 277		parser->global.logical_maximum <
 278		parser->global.logical_minimum) ||
 279		(parser->global.logical_minimum >= 0 &&
 280		(__u32)parser->global.logical_maximum <
 281		(__u32)parser->global.logical_minimum)) {
 282		dbg_hid("logical range invalid 0x%x 0x%x\n",
 283			parser->global.logical_minimum,
 284			parser->global.logical_maximum);
 285		return -1;
 286	}
 287
 288	offset = report->size;
 289	report->size += parser->global.report_size * parser->global.report_count;
 290
 
 
 
 291	/* Total size check: Allow for possible report index byte */
 292	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
 293		hid_err(parser->device, "report is too long\n");
 294		return -1;
 295	}
 296
 297	if (!parser->local.usage_index) /* Ignore padding fields */
 298		return 0;
 299
 300	usages = max_t(unsigned, parser->local.usage_index,
 301				 parser->global.report_count);
 302
 303	field = hid_register_field(report, usages, parser->global.report_count);
 304	if (!field)
 305		return 0;
 306
 307	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 308	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 309	field->application = application;
 310
 311	for (i = 0; i < usages; i++) {
 312		unsigned j = i;
 313		/* Duplicate the last usage we parsed if we have excess values */
 314		if (i >= parser->local.usage_index)
 315			j = parser->local.usage_index - 1;
 316		field->usage[i].hid = parser->local.usage[j];
 317		field->usage[i].collection_index =
 318			parser->local.collection_index[j];
 319		field->usage[i].usage_index = i;
 320		field->usage[i].resolution_multiplier = 1;
 321	}
 322
 323	field->maxusage = usages;
 324	field->flags = flags;
 325	field->report_offset = offset;
 326	field->report_type = report_type;
 327	field->report_size = parser->global.report_size;
 328	field->report_count = parser->global.report_count;
 329	field->logical_minimum = parser->global.logical_minimum;
 330	field->logical_maximum = parser->global.logical_maximum;
 331	field->physical_minimum = parser->global.physical_minimum;
 332	field->physical_maximum = parser->global.physical_maximum;
 333	field->unit_exponent = parser->global.unit_exponent;
 334	field->unit = parser->global.unit;
 335
 336	return 0;
 337}
 338
 339/*
 340 * Read data value from item.
 341 */
 342
 343static u32 item_udata(struct hid_item *item)
 344{
 345	switch (item->size) {
 346	case 1: return item->data.u8;
 347	case 2: return item->data.u16;
 348	case 4: return item->data.u32;
 349	}
 350	return 0;
 351}
 352
 353static s32 item_sdata(struct hid_item *item)
 354{
 355	switch (item->size) {
 356	case 1: return item->data.s8;
 357	case 2: return item->data.s16;
 358	case 4: return item->data.s32;
 359	}
 360	return 0;
 361}
 362
 363/*
 364 * Process a global item.
 365 */
 366
 367static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 368{
 369	__s32 raw_value;
 370	switch (item->tag) {
 371	case HID_GLOBAL_ITEM_TAG_PUSH:
 372
 373		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 374			hid_err(parser->device, "global environment stack overflow\n");
 375			return -1;
 376		}
 377
 378		memcpy(parser->global_stack + parser->global_stack_ptr++,
 379			&parser->global, sizeof(struct hid_global));
 380		return 0;
 381
 382	case HID_GLOBAL_ITEM_TAG_POP:
 383
 384		if (!parser->global_stack_ptr) {
 385			hid_err(parser->device, "global environment stack underflow\n");
 386			return -1;
 387		}
 388
 389		memcpy(&parser->global, parser->global_stack +
 390			--parser->global_stack_ptr, sizeof(struct hid_global));
 391		return 0;
 392
 393	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 394		parser->global.usage_page = item_udata(item);
 395		return 0;
 396
 397	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 398		parser->global.logical_minimum = item_sdata(item);
 399		return 0;
 400
 401	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 402		if (parser->global.logical_minimum < 0)
 403			parser->global.logical_maximum = item_sdata(item);
 404		else
 405			parser->global.logical_maximum = item_udata(item);
 406		return 0;
 407
 408	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 409		parser->global.physical_minimum = item_sdata(item);
 410		return 0;
 411
 412	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 413		if (parser->global.physical_minimum < 0)
 414			parser->global.physical_maximum = item_sdata(item);
 415		else
 416			parser->global.physical_maximum = item_udata(item);
 417		return 0;
 418
 419	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 420		/* Many devices provide unit exponent as a two's complement
 421		 * nibble due to the common misunderstanding of HID
 422		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 423		 * both this and the standard encoding. */
 424		raw_value = item_sdata(item);
 425		if (!(raw_value & 0xfffffff0))
 426			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 427		else
 428			parser->global.unit_exponent = raw_value;
 429		return 0;
 430
 431	case HID_GLOBAL_ITEM_TAG_UNIT:
 432		parser->global.unit = item_udata(item);
 433		return 0;
 434
 435	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 436		parser->global.report_size = item_udata(item);
 437		if (parser->global.report_size > 256) {
 438			hid_err(parser->device, "invalid report_size %d\n",
 439					parser->global.report_size);
 440			return -1;
 441		}
 442		return 0;
 443
 444	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 445		parser->global.report_count = item_udata(item);
 446		if (parser->global.report_count > HID_MAX_USAGES) {
 447			hid_err(parser->device, "invalid report_count %d\n",
 448					parser->global.report_count);
 449			return -1;
 450		}
 451		return 0;
 452
 453	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 454		parser->global.report_id = item_udata(item);
 455		if (parser->global.report_id == 0 ||
 456		    parser->global.report_id >= HID_MAX_IDS) {
 457			hid_err(parser->device, "report_id %u is invalid\n",
 458				parser->global.report_id);
 459			return -1;
 460		}
 461		return 0;
 462
 463	default:
 464		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 465		return -1;
 466	}
 467}
 468
 469/*
 470 * Process a local item.
 471 */
 472
 473static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 474{
 475	__u32 data;
 476	unsigned n;
 477	__u32 count;
 478
 479	data = item_udata(item);
 480
 481	switch (item->tag) {
 482	case HID_LOCAL_ITEM_TAG_DELIMITER:
 483
 484		if (data) {
 485			/*
 486			 * We treat items before the first delimiter
 487			 * as global to all usage sets (branch 0).
 488			 * In the moment we process only these global
 489			 * items and the first delimiter set.
 490			 */
 491			if (parser->local.delimiter_depth != 0) {
 492				hid_err(parser->device, "nested delimiters\n");
 493				return -1;
 494			}
 495			parser->local.delimiter_depth++;
 496			parser->local.delimiter_branch++;
 497		} else {
 498			if (parser->local.delimiter_depth < 1) {
 499				hid_err(parser->device, "bogus close delimiter\n");
 500				return -1;
 501			}
 502			parser->local.delimiter_depth--;
 503		}
 504		return 0;
 505
 506	case HID_LOCAL_ITEM_TAG_USAGE:
 507
 508		if (parser->local.delimiter_branch > 1) {
 509			dbg_hid("alternative usage ignored\n");
 510			return 0;
 511		}
 512
 513		return hid_add_usage(parser, data, item->size);
 514
 515	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 516
 517		if (parser->local.delimiter_branch > 1) {
 518			dbg_hid("alternative usage ignored\n");
 519			return 0;
 520		}
 521
 522		parser->local.usage_minimum = data;
 523		return 0;
 524
 525	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 526
 527		if (parser->local.delimiter_branch > 1) {
 528			dbg_hid("alternative usage ignored\n");
 529			return 0;
 530		}
 531
 532		count = data - parser->local.usage_minimum;
 533		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 534			/*
 535			 * We do not warn if the name is not set, we are
 536			 * actually pre-scanning the device.
 537			 */
 538			if (dev_name(&parser->device->dev))
 539				hid_warn(parser->device,
 540					 "ignoring exceeding usage max\n");
 541			data = HID_MAX_USAGES - parser->local.usage_index +
 542				parser->local.usage_minimum - 1;
 543			if (data <= 0) {
 544				hid_err(parser->device,
 545					"no more usage index available\n");
 546				return -1;
 547			}
 548		}
 549
 550		for (n = parser->local.usage_minimum; n <= data; n++)
 551			if (hid_add_usage(parser, n, item->size)) {
 552				dbg_hid("hid_add_usage failed\n");
 553				return -1;
 554			}
 555		return 0;
 556
 557	default:
 558
 559		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 560		return 0;
 561	}
 562	return 0;
 563}
 564
 565/*
 566 * Concatenate Usage Pages into Usages where relevant:
 567 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 568 * concatenates the last declared Usage Page with a Usage to form a complete
 569 * usage value."
 570 */
 571
 572static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 573{
 574	int i;
 575	unsigned int usage_page;
 576	unsigned int current_page;
 577
 578	if (!parser->local.usage_index)
 579		return;
 580
 581	usage_page = parser->global.usage_page;
 582
 583	/*
 584	 * Concatenate usage page again only if last declared Usage Page
 585	 * has not been already used in previous usages concatenation
 586	 */
 587	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 588		if (parser->local.usage_size[i] > 2)
 589			/* Ignore extended usages */
 590			continue;
 591
 592		current_page = parser->local.usage[i] >> 16;
 593		if (current_page == usage_page)
 594			break;
 595
 596		complete_usage(parser, i);
 597	}
 598}
 599
 600/*
 601 * Process a main item.
 602 */
 603
 604static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 605{
 606	__u32 data;
 607	int ret;
 608
 609	hid_concatenate_last_usage_page(parser);
 610
 611	data = item_udata(item);
 612
 613	switch (item->tag) {
 614	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 615		ret = open_collection(parser, data & 0xff);
 616		break;
 617	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 618		ret = close_collection(parser);
 619		break;
 620	case HID_MAIN_ITEM_TAG_INPUT:
 621		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 622		break;
 623	case HID_MAIN_ITEM_TAG_OUTPUT:
 624		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 625		break;
 626	case HID_MAIN_ITEM_TAG_FEATURE:
 627		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 628		break;
 629	default:
 630		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 631		ret = 0;
 632	}
 633
 634	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 635
 636	return ret;
 637}
 638
 639/*
 640 * Process a reserved item.
 641 */
 642
 643static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 644{
 645	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 646	return 0;
 647}
 648
 649/*
 650 * Free a report and all registered fields. The field->usage and
 651 * field->value table's are allocated behind the field, so we need
 652 * only to free(field) itself.
 653 */
 654
 655static void hid_free_report(struct hid_report *report)
 656{
 657	unsigned n;
 658
 
 
 659	for (n = 0; n < report->maxfield; n++)
 660		kfree(report->field[n]);
 661	kfree(report);
 662}
 663
 664/*
 665 * Close report. This function returns the device
 666 * state to the point prior to hid_open_report().
 667 */
 668static void hid_close_report(struct hid_device *device)
 669{
 670	unsigned i, j;
 671
 672	for (i = 0; i < HID_REPORT_TYPES; i++) {
 673		struct hid_report_enum *report_enum = device->report_enum + i;
 674
 675		for (j = 0; j < HID_MAX_IDS; j++) {
 676			struct hid_report *report = report_enum->report_id_hash[j];
 677			if (report)
 678				hid_free_report(report);
 679		}
 680		memset(report_enum, 0, sizeof(*report_enum));
 681		INIT_LIST_HEAD(&report_enum->report_list);
 682	}
 683
 684	kfree(device->rdesc);
 685	device->rdesc = NULL;
 686	device->rsize = 0;
 687
 688	kfree(device->collection);
 689	device->collection = NULL;
 690	device->collection_size = 0;
 691	device->maxcollection = 0;
 692	device->maxapplication = 0;
 693
 694	device->status &= ~HID_STAT_PARSED;
 695}
 696
 697/*
 698 * Free a device structure, all reports, and all fields.
 699 */
 700
 701static void hid_device_release(struct device *dev)
 702{
 703	struct hid_device *hid = to_hid_device(dev);
 704
 705	hid_close_report(hid);
 706	kfree(hid->dev_rdesc);
 707	kfree(hid);
 708}
 709
 
 
 
 
 
 
 
 710/*
 711 * Fetch a report description item from the data stream. We support long
 712 * items, though they are not used yet.
 713 */
 714
 715static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 716{
 717	u8 b;
 718
 719	if ((end - start) <= 0)
 720		return NULL;
 721
 722	b = *start++;
 723
 724	item->type = (b >> 2) & 3;
 725	item->tag  = (b >> 4) & 15;
 726
 727	if (item->tag == HID_ITEM_TAG_LONG) {
 728
 729		item->format = HID_ITEM_FORMAT_LONG;
 730
 731		if ((end - start) < 2)
 732			return NULL;
 733
 734		item->size = *start++;
 735		item->tag  = *start++;
 736
 737		if ((end - start) < item->size)
 738			return NULL;
 739
 740		item->data.longdata = start;
 741		start += item->size;
 742		return start;
 743	}
 744
 745	item->format = HID_ITEM_FORMAT_SHORT;
 746	item->size = b & 3;
 747
 748	switch (item->size) {
 749	case 0:
 750		return start;
 751
 752	case 1:
 753		if ((end - start) < 1)
 754			return NULL;
 755		item->data.u8 = *start++;
 756		return start;
 757
 758	case 2:
 759		if ((end - start) < 2)
 760			return NULL;
 761		item->data.u16 = get_unaligned_le16(start);
 762		start = (__u8 *)((__le16 *)start + 1);
 763		return start;
 764
 765	case 3:
 766		item->size++;
 767		if ((end - start) < 4)
 768			return NULL;
 769		item->data.u32 = get_unaligned_le32(start);
 770		start = (__u8 *)((__le32 *)start + 1);
 771		return start;
 772	}
 773
 774	return NULL;
 775}
 776
 777static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 778{
 779	struct hid_device *hid = parser->device;
 780
 781	if (usage == HID_DG_CONTACTID)
 782		hid->group = HID_GROUP_MULTITOUCH;
 783}
 784
 785static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 786{
 787	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 788	    parser->global.report_size == 8)
 789		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 790
 791	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 792	    parser->global.report_size == 8)
 793		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 794}
 795
 796static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 797{
 798	struct hid_device *hid = parser->device;
 799	int i;
 800
 801	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 802	    type == HID_COLLECTION_PHYSICAL)
 
 803		hid->group = HID_GROUP_SENSOR_HUB;
 804
 805	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 806	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 807	    hid->group == HID_GROUP_MULTITOUCH)
 808		hid->group = HID_GROUP_GENERIC;
 809
 810	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 811		for (i = 0; i < parser->local.usage_index; i++)
 812			if (parser->local.usage[i] == HID_GD_POINTER)
 813				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 814
 815	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 816		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 
 
 
 
 
 
 
 817}
 818
 819static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 820{
 821	__u32 data;
 822	int i;
 823
 824	hid_concatenate_last_usage_page(parser);
 825
 826	data = item_udata(item);
 827
 828	switch (item->tag) {
 829	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 830		hid_scan_collection(parser, data & 0xff);
 831		break;
 832	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 833		break;
 834	case HID_MAIN_ITEM_TAG_INPUT:
 835		/* ignore constant inputs, they will be ignored by hid-input */
 836		if (data & HID_MAIN_ITEM_CONSTANT)
 837			break;
 838		for (i = 0; i < parser->local.usage_index; i++)
 839			hid_scan_input_usage(parser, parser->local.usage[i]);
 840		break;
 841	case HID_MAIN_ITEM_TAG_OUTPUT:
 842		break;
 843	case HID_MAIN_ITEM_TAG_FEATURE:
 844		for (i = 0; i < parser->local.usage_index; i++)
 845			hid_scan_feature_usage(parser, parser->local.usage[i]);
 846		break;
 847	}
 848
 849	/* Reset the local parser environment */
 850	memset(&parser->local, 0, sizeof(parser->local));
 851
 852	return 0;
 853}
 854
 855/*
 856 * Scan a report descriptor before the device is added to the bus.
 857 * Sets device groups and other properties that determine what driver
 858 * to load.
 859 */
 860static int hid_scan_report(struct hid_device *hid)
 861{
 862	struct hid_parser *parser;
 863	struct hid_item item;
 864	__u8 *start = hid->dev_rdesc;
 865	__u8 *end = start + hid->dev_rsize;
 866	static int (*dispatch_type[])(struct hid_parser *parser,
 867				      struct hid_item *item) = {
 868		hid_scan_main,
 869		hid_parser_global,
 870		hid_parser_local,
 871		hid_parser_reserved
 872	};
 873
 874	parser = vzalloc(sizeof(struct hid_parser));
 875	if (!parser)
 876		return -ENOMEM;
 877
 878	parser->device = hid;
 879	hid->group = HID_GROUP_GENERIC;
 880
 881	/*
 882	 * The parsing is simpler than the one in hid_open_report() as we should
 883	 * be robust against hid errors. Those errors will be raised by
 884	 * hid_open_report() anyway.
 885	 */
 886	while ((start = fetch_item(start, end, &item)) != NULL)
 887		dispatch_type[item.type](parser, &item);
 888
 889	/*
 890	 * Handle special flags set during scanning.
 891	 */
 892	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 893	    (hid->group == HID_GROUP_MULTITOUCH))
 894		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 895
 896	/*
 897	 * Vendor specific handlings
 898	 */
 899	switch (hid->vendor) {
 900	case USB_VENDOR_ID_WACOM:
 901		hid->group = HID_GROUP_WACOM;
 902		break;
 903	case USB_VENDOR_ID_SYNAPTICS:
 904		if (hid->group == HID_GROUP_GENERIC)
 905			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 906			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 907				/*
 908				 * hid-rmi should take care of them,
 909				 * not hid-generic
 910				 */
 911				hid->group = HID_GROUP_RMI;
 912		break;
 913	}
 914
 915	kfree(parser->collection_stack);
 916	vfree(parser);
 917	return 0;
 918}
 919
 920/**
 921 * hid_parse_report - parse device report
 922 *
 923 * @device: hid device
 924 * @start: report start
 925 * @size: report size
 926 *
 927 * Allocate the device report as read by the bus driver. This function should
 928 * only be called from parse() in ll drivers.
 929 */
 930int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 931{
 932	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 933	if (!hid->dev_rdesc)
 934		return -ENOMEM;
 935	hid->dev_rsize = size;
 936	return 0;
 937}
 938EXPORT_SYMBOL_GPL(hid_parse_report);
 939
 940static const char * const hid_report_names[] = {
 941	"HID_INPUT_REPORT",
 942	"HID_OUTPUT_REPORT",
 943	"HID_FEATURE_REPORT",
 944};
 945/**
 946 * hid_validate_values - validate existing device report's value indexes
 947 *
 948 * @device: hid device
 949 * @type: which report type to examine
 950 * @id: which report ID to examine (0 for first)
 951 * @field_index: which report field to examine
 952 * @report_counts: expected number of values
 953 *
 954 * Validate the number of values in a given field of a given report, after
 955 * parsing.
 956 */
 957struct hid_report *hid_validate_values(struct hid_device *hid,
 958				       unsigned int type, unsigned int id,
 959				       unsigned int field_index,
 960				       unsigned int report_counts)
 961{
 962	struct hid_report *report;
 963
 964	if (type > HID_FEATURE_REPORT) {
 965		hid_err(hid, "invalid HID report type %u\n", type);
 966		return NULL;
 967	}
 968
 969	if (id >= HID_MAX_IDS) {
 970		hid_err(hid, "invalid HID report id %u\n", id);
 971		return NULL;
 972	}
 973
 974	/*
 975	 * Explicitly not using hid_get_report() here since it depends on
 976	 * ->numbered being checked, which may not always be the case when
 977	 * drivers go to access report values.
 978	 */
 979	if (id == 0) {
 980		/*
 981		 * Validating on id 0 means we should examine the first
 982		 * report in the list.
 983		 */
 984		report = list_entry(
 985				hid->report_enum[type].report_list.next,
 986				struct hid_report, list);
 987	} else {
 988		report = hid->report_enum[type].report_id_hash[id];
 989	}
 990	if (!report) {
 991		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 992		return NULL;
 993	}
 994	if (report->maxfield <= field_index) {
 995		hid_err(hid, "not enough fields in %s %u\n",
 996			hid_report_names[type], id);
 997		return NULL;
 998	}
 999	if (report->field[field_index]->report_count < report_counts) {
1000		hid_err(hid, "not enough values in %s %u field %u\n",
1001			hid_report_names[type], id, field_index);
1002		return NULL;
1003	}
1004	return report;
1005}
1006EXPORT_SYMBOL_GPL(hid_validate_values);
1007
1008static int hid_calculate_multiplier(struct hid_device *hid,
1009				     struct hid_field *multiplier)
1010{
1011	int m;
1012	__s32 v = *multiplier->value;
1013	__s32 lmin = multiplier->logical_minimum;
1014	__s32 lmax = multiplier->logical_maximum;
1015	__s32 pmin = multiplier->physical_minimum;
1016	__s32 pmax = multiplier->physical_maximum;
1017
1018	/*
1019	 * "Because OS implementations will generally divide the control's
1020	 * reported count by the Effective Resolution Multiplier, designers
1021	 * should take care not to establish a potential Effective
1022	 * Resolution Multiplier of zero."
1023	 * HID Usage Table, v1.12, Section 4.3.1, p31
1024	 */
1025	if (lmax - lmin == 0)
1026		return 1;
1027	/*
1028	 * Handling the unit exponent is left as an exercise to whoever
1029	 * finds a device where that exponent is not 0.
1030	 */
1031	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1032	if (unlikely(multiplier->unit_exponent != 0)) {
1033		hid_warn(hid,
1034			 "unsupported Resolution Multiplier unit exponent %d\n",
1035			 multiplier->unit_exponent);
1036	}
1037
1038	/* There are no devices with an effective multiplier > 255 */
1039	if (unlikely(m == 0 || m > 255 || m < -255)) {
1040		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1041		m = 1;
1042	}
1043
1044	return m;
1045}
1046
1047static void hid_apply_multiplier_to_field(struct hid_device *hid,
1048					  struct hid_field *field,
1049					  struct hid_collection *multiplier_collection,
1050					  int effective_multiplier)
1051{
1052	struct hid_collection *collection;
1053	struct hid_usage *usage;
1054	int i;
1055
1056	/*
1057	 * If multiplier_collection is NULL, the multiplier applies
1058	 * to all fields in the report.
1059	 * Otherwise, it is the Logical Collection the multiplier applies to
1060	 * but our field may be in a subcollection of that collection.
1061	 */
1062	for (i = 0; i < field->maxusage; i++) {
1063		usage = &field->usage[i];
1064
1065		collection = &hid->collection[usage->collection_index];
1066		while (collection->parent_idx != -1 &&
1067		       collection != multiplier_collection)
1068			collection = &hid->collection[collection->parent_idx];
1069
1070		if (collection->parent_idx != -1 ||
1071		    multiplier_collection == NULL)
1072			usage->resolution_multiplier = effective_multiplier;
1073
1074	}
1075}
1076
1077static void hid_apply_multiplier(struct hid_device *hid,
1078				 struct hid_field *multiplier)
1079{
1080	struct hid_report_enum *rep_enum;
1081	struct hid_report *rep;
1082	struct hid_field *field;
1083	struct hid_collection *multiplier_collection;
1084	int effective_multiplier;
1085	int i;
1086
1087	/*
1088	 * "The Resolution Multiplier control must be contained in the same
1089	 * Logical Collection as the control(s) to which it is to be applied.
1090	 * If no Resolution Multiplier is defined, then the Resolution
1091	 * Multiplier defaults to 1.  If more than one control exists in a
1092	 * Logical Collection, the Resolution Multiplier is associated with
1093	 * all controls in the collection. If no Logical Collection is
1094	 * defined, the Resolution Multiplier is associated with all
1095	 * controls in the report."
1096	 * HID Usage Table, v1.12, Section 4.3.1, p30
1097	 *
1098	 * Thus, search from the current collection upwards until we find a
1099	 * logical collection. Then search all fields for that same parent
1100	 * collection. Those are the fields the multiplier applies to.
1101	 *
1102	 * If we have more than one multiplier, it will overwrite the
1103	 * applicable fields later.
1104	 */
1105	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1106	while (multiplier_collection->parent_idx != -1 &&
1107	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1108		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1109
1110	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1111
1112	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1113	list_for_each_entry(rep, &rep_enum->report_list, list) {
1114		for (i = 0; i < rep->maxfield; i++) {
1115			field = rep->field[i];
1116			hid_apply_multiplier_to_field(hid, field,
1117						      multiplier_collection,
1118						      effective_multiplier);
1119		}
1120	}
1121}
1122
1123/*
1124 * hid_setup_resolution_multiplier - set up all resolution multipliers
1125 *
1126 * @device: hid device
1127 *
1128 * Search for all Resolution Multiplier Feature Reports and apply their
1129 * value to all matching Input items. This only updates the internal struct
1130 * fields.
1131 *
1132 * The Resolution Multiplier is applied by the hardware. If the multiplier
1133 * is anything other than 1, the hardware will send pre-multiplied events
1134 * so that the same physical interaction generates an accumulated
1135 *	accumulated_value = value * * multiplier
1136 * This may be achieved by sending
1137 * - "value * multiplier" for each event, or
1138 * - "value" but "multiplier" times as frequently, or
1139 * - a combination of the above
1140 * The only guarantee is that the same physical interaction always generates
1141 * an accumulated 'value * multiplier'.
1142 *
1143 * This function must be called before any event processing and after
1144 * any SetRequest to the Resolution Multiplier.
1145 */
1146void hid_setup_resolution_multiplier(struct hid_device *hid)
1147{
1148	struct hid_report_enum *rep_enum;
1149	struct hid_report *rep;
1150	struct hid_usage *usage;
1151	int i, j;
1152
1153	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1154	list_for_each_entry(rep, &rep_enum->report_list, list) {
1155		for (i = 0; i < rep->maxfield; i++) {
1156			/* Ignore if report count is out of bounds. */
1157			if (rep->field[i]->report_count < 1)
1158				continue;
1159
1160			for (j = 0; j < rep->field[i]->maxusage; j++) {
1161				usage = &rep->field[i]->usage[j];
1162				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1163					hid_apply_multiplier(hid,
1164							     rep->field[i]);
1165			}
1166		}
1167	}
1168}
1169EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1170
1171/**
1172 * hid_open_report - open a driver-specific device report
1173 *
1174 * @device: hid device
1175 *
1176 * Parse a report description into a hid_device structure. Reports are
1177 * enumerated, fields are attached to these reports.
1178 * 0 returned on success, otherwise nonzero error value.
1179 *
1180 * This function (or the equivalent hid_parse() macro) should only be
1181 * called from probe() in drivers, before starting the device.
1182 */
1183int hid_open_report(struct hid_device *device)
1184{
1185	struct hid_parser *parser;
1186	struct hid_item item;
1187	unsigned int size;
1188	__u8 *start;
1189	__u8 *buf;
1190	__u8 *end;
1191	__u8 *next;
1192	int ret;
 
1193	static int (*dispatch_type[])(struct hid_parser *parser,
1194				      struct hid_item *item) = {
1195		hid_parser_main,
1196		hid_parser_global,
1197		hid_parser_local,
1198		hid_parser_reserved
1199	};
1200
1201	if (WARN_ON(device->status & HID_STAT_PARSED))
1202		return -EBUSY;
1203
1204	start = device->dev_rdesc;
1205	if (WARN_ON(!start))
1206		return -ENODEV;
1207	size = device->dev_rsize;
1208
1209	buf = kmemdup(start, size, GFP_KERNEL);
 
1210	if (buf == NULL)
1211		return -ENOMEM;
1212
1213	if (device->driver->report_fixup)
1214		start = device->driver->report_fixup(device, buf, &size);
1215	else
1216		start = buf;
1217
1218	start = kmemdup(start, size, GFP_KERNEL);
1219	kfree(buf);
1220	if (start == NULL)
1221		return -ENOMEM;
1222
1223	device->rdesc = start;
1224	device->rsize = size;
1225
1226	parser = vzalloc(sizeof(struct hid_parser));
1227	if (!parser) {
1228		ret = -ENOMEM;
1229		goto alloc_err;
1230	}
1231
1232	parser->device = device;
1233
1234	end = start + size;
1235
1236	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1237				     sizeof(struct hid_collection), GFP_KERNEL);
1238	if (!device->collection) {
1239		ret = -ENOMEM;
1240		goto err;
1241	}
1242	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
 
 
1243
1244	ret = -EINVAL;
1245	while ((next = fetch_item(start, end, &item)) != NULL) {
1246		start = next;
1247
1248		if (item.format != HID_ITEM_FORMAT_SHORT) {
1249			hid_err(device, "unexpected long global item\n");
1250			goto err;
1251		}
1252
1253		if (dispatch_type[item.type](parser, &item)) {
1254			hid_err(device, "item %u %u %u %u parsing failed\n",
1255				item.format, (unsigned)item.size,
1256				(unsigned)item.type, (unsigned)item.tag);
1257			goto err;
1258		}
1259
1260		if (start == end) {
1261			if (parser->collection_stack_ptr) {
1262				hid_err(device, "unbalanced collection at end of report description\n");
1263				goto err;
1264			}
1265			if (parser->local.delimiter_depth) {
1266				hid_err(device, "unbalanced delimiter at end of report description\n");
1267				goto err;
1268			}
1269
1270			/*
1271			 * fetch initial values in case the device's
1272			 * default multiplier isn't the recommended 1
1273			 */
1274			hid_setup_resolution_multiplier(device);
1275
1276			kfree(parser->collection_stack);
1277			vfree(parser);
1278			device->status |= HID_STAT_PARSED;
1279
1280			return 0;
1281		}
1282	}
1283
1284	hid_err(device, "item fetching failed at offset %u/%u\n",
1285		size - (unsigned int)(end - start), size);
1286err:
1287	kfree(parser->collection_stack);
1288alloc_err:
1289	vfree(parser);
1290	hid_close_report(device);
1291	return ret;
1292}
1293EXPORT_SYMBOL_GPL(hid_open_report);
1294
1295/*
1296 * Convert a signed n-bit integer to signed 32-bit integer. Common
1297 * cases are done through the compiler, the screwed things has to be
1298 * done by hand.
1299 */
1300
1301static s32 snto32(__u32 value, unsigned n)
1302{
 
 
 
 
 
 
1303	switch (n) {
1304	case 8:  return ((__s8)value);
1305	case 16: return ((__s16)value);
1306	case 32: return ((__s32)value);
1307	}
1308	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1309}
1310
1311s32 hid_snto32(__u32 value, unsigned n)
1312{
1313	return snto32(value, n);
1314}
1315EXPORT_SYMBOL_GPL(hid_snto32);
1316
1317/*
1318 * Convert a signed 32-bit integer to a signed n-bit integer.
1319 */
1320
1321static u32 s32ton(__s32 value, unsigned n)
1322{
1323	s32 a = value >> (n - 1);
1324	if (a && a != -1)
1325		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1326	return value & ((1 << n) - 1);
1327}
1328
1329/*
1330 * Extract/implement a data field from/to a little endian report (bit array).
1331 *
1332 * Code sort-of follows HID spec:
1333 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1334 *
1335 * While the USB HID spec allows unlimited length bit fields in "report
1336 * descriptors", most devices never use more than 16 bits.
1337 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1339 */
1340
1341static u32 __extract(u8 *report, unsigned offset, int n)
1342{
1343	unsigned int idx = offset / 8;
1344	unsigned int bit_nr = 0;
1345	unsigned int bit_shift = offset % 8;
1346	int bits_to_copy = 8 - bit_shift;
1347	u32 value = 0;
1348	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1349
1350	while (n > 0) {
1351		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1352		n -= bits_to_copy;
1353		bit_nr += bits_to_copy;
1354		bits_to_copy = 8;
1355		bit_shift = 0;
1356		idx++;
1357	}
1358
1359	return value & mask;
1360}
1361
1362u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1363			unsigned offset, unsigned n)
1364{
1365	if (n > 32) {
1366		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1367			      __func__, n, current->comm);
1368		n = 32;
1369	}
1370
1371	return __extract(report, offset, n);
1372}
1373EXPORT_SYMBOL_GPL(hid_field_extract);
1374
1375/*
1376 * "implement" : set bits in a little endian bit stream.
1377 * Same concepts as "extract" (see comments above).
1378 * The data mangled in the bit stream remains in little endian
1379 * order the whole time. It make more sense to talk about
1380 * endianness of register values by considering a register
1381 * a "cached" copy of the little endian bit stream.
1382 */
1383
1384static void __implement(u8 *report, unsigned offset, int n, u32 value)
1385{
1386	unsigned int idx = offset / 8;
1387	unsigned int bit_shift = offset % 8;
1388	int bits_to_set = 8 - bit_shift;
1389
1390	while (n - bits_to_set >= 0) {
1391		report[idx] &= ~(0xff << bit_shift);
1392		report[idx] |= value << bit_shift;
1393		value >>= bits_to_set;
1394		n -= bits_to_set;
1395		bits_to_set = 8;
1396		bit_shift = 0;
1397		idx++;
1398	}
1399
1400	/* last nibble */
1401	if (n) {
1402		u8 bit_mask = ((1U << n) - 1);
1403		report[idx] &= ~(bit_mask << bit_shift);
1404		report[idx] |= value << bit_shift;
1405	}
1406}
1407
1408static void implement(const struct hid_device *hid, u8 *report,
1409		      unsigned offset, unsigned n, u32 value)
1410{
1411	if (unlikely(n > 32)) {
1412		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1413			 __func__, n, current->comm);
1414		n = 32;
1415	} else if (n < 32) {
1416		u32 m = (1U << n) - 1;
1417
1418		if (unlikely(value > m)) {
1419			hid_warn(hid,
1420				 "%s() called with too large value %d (n: %d)! (%s)\n",
1421				 __func__, value, n, current->comm);
1422			WARN_ON(1);
1423			value &= m;
1424		}
1425	}
1426
1427	__implement(report, offset, n, value);
1428}
1429
1430/*
1431 * Search an array for a value.
1432 */
1433
1434static int search(__s32 *array, __s32 value, unsigned n)
1435{
1436	while (n--) {
1437		if (*array++ == value)
1438			return 0;
1439	}
1440	return -1;
1441}
1442
1443/**
1444 * hid_match_report - check if driver's raw_event should be called
1445 *
1446 * @hid: hid device
1447 * @report_type: type to match against
1448 *
1449 * compare hid->driver->report_table->report_type to report->type
1450 */
1451static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1452{
1453	const struct hid_report_id *id = hid->driver->report_table;
1454
1455	if (!id) /* NULL means all */
1456		return 1;
1457
1458	for (; id->report_type != HID_TERMINATOR; id++)
1459		if (id->report_type == HID_ANY_ID ||
1460				id->report_type == report->type)
1461			return 1;
1462	return 0;
1463}
1464
1465/**
1466 * hid_match_usage - check if driver's event should be called
1467 *
1468 * @hid: hid device
1469 * @usage: usage to match against
1470 *
1471 * compare hid->driver->usage_table->usage_{type,code} to
1472 * usage->usage_{type,code}
1473 */
1474static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1475{
1476	const struct hid_usage_id *id = hid->driver->usage_table;
1477
1478	if (!id) /* NULL means all */
1479		return 1;
1480
1481	for (; id->usage_type != HID_ANY_ID - 1; id++)
1482		if ((id->usage_hid == HID_ANY_ID ||
1483				id->usage_hid == usage->hid) &&
1484				(id->usage_type == HID_ANY_ID ||
1485				id->usage_type == usage->type) &&
1486				(id->usage_code == HID_ANY_ID ||
1487				 id->usage_code == usage->code))
1488			return 1;
1489	return 0;
1490}
1491
1492static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1493		struct hid_usage *usage, __s32 value, int interrupt)
1494{
1495	struct hid_driver *hdrv = hid->driver;
1496	int ret;
1497
1498	if (!list_empty(&hid->debug_list))
1499		hid_dump_input(hid, usage, value);
1500
1501	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1502		ret = hdrv->event(hid, field, usage, value);
1503		if (ret != 0) {
1504			if (ret < 0)
1505				hid_err(hid, "%s's event failed with %d\n",
1506						hdrv->name, ret);
1507			return;
1508		}
1509	}
1510
1511	if (hid->claimed & HID_CLAIMED_INPUT)
1512		hidinput_hid_event(hid, field, usage, value);
1513	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1514		hid->hiddev_hid_event(hid, field, usage, value);
1515}
1516
1517/*
1518 * Analyse a received field, and fetch the data from it. The field
1519 * content is stored for next report processing (we do differential
1520 * reporting to the layer).
1521 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1524			    __u8 *data, int interrupt)
 
 
 
 
 
1525{
1526	unsigned n;
1527	unsigned count = field->report_count;
1528	unsigned offset = field->report_offset;
1529	unsigned size = field->report_size;
1530	__s32 min = field->logical_minimum;
1531	__s32 max = field->logical_maximum;
1532	__s32 *value;
1533
1534	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1535	if (!value)
1536		return;
1537
1538	for (n = 0; n < count; n++) {
1539
1540		value[n] = min < 0 ?
1541			snto32(hid_field_extract(hid, data, offset + n * size,
1542			       size), size) :
1543			hid_field_extract(hid, data, offset + n * size, size);
1544
1545		/* Ignore report if ErrorRollOver */
1546		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1547		    value[n] >= min && value[n] <= max &&
1548		    value[n] - min < field->maxusage &&
1549		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1550			goto exit;
 
1551	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553	for (n = 0; n < count; n++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1556			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1557			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558		}
 
 
 
 
1559
1560		if (field->value[n] >= min && field->value[n] <= max
1561			&& field->value[n] - min < field->maxusage
1562			&& field->usage[field->value[n] - min].hid
1563			&& search(value, field->value[n], count))
1564				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1565
1566		if (value[n] >= min && value[n] <= max
1567			&& value[n] - min < field->maxusage
1568			&& field->usage[value[n] - min].hid
1569			&& search(field->value, value[n], count))
1570				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1571	}
 
1572
1573	memcpy(field->value, value, count * sizeof(__s32));
1574exit:
1575	kfree(value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576}
1577
1578/*
1579 * Output the field into the report.
1580 */
1581
1582static void hid_output_field(const struct hid_device *hid,
1583			     struct hid_field *field, __u8 *data)
1584{
1585	unsigned count = field->report_count;
1586	unsigned offset = field->report_offset;
1587	unsigned size = field->report_size;
1588	unsigned n;
1589
1590	for (n = 0; n < count; n++) {
1591		if (field->logical_minimum < 0)	/* signed values */
1592			implement(hid, data, offset + n * size, size,
1593				  s32ton(field->value[n], size));
1594		else				/* unsigned values */
1595			implement(hid, data, offset + n * size, size,
1596				  field->value[n]);
1597	}
1598}
1599
1600/*
1601 * Compute the size of a report.
1602 */
1603static size_t hid_compute_report_size(struct hid_report *report)
1604{
1605	if (report->size)
1606		return ((report->size - 1) >> 3) + 1;
1607
1608	return 0;
1609}
1610
1611/*
1612 * Create a report. 'data' has to be allocated using
1613 * hid_alloc_report_buf() so that it has proper size.
1614 */
1615
1616void hid_output_report(struct hid_report *report, __u8 *data)
1617{
1618	unsigned n;
1619
1620	if (report->id > 0)
1621		*data++ = report->id;
1622
1623	memset(data, 0, hid_compute_report_size(report));
1624	for (n = 0; n < report->maxfield; n++)
1625		hid_output_field(report->device, report->field[n], data);
1626}
1627EXPORT_SYMBOL_GPL(hid_output_report);
1628
1629/*
1630 * Allocator for buffer that is going to be passed to hid_output_report()
1631 */
1632u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1633{
1634	/*
1635	 * 7 extra bytes are necessary to achieve proper functionality
1636	 * of implement() working on 8 byte chunks
1637	 */
1638
1639	u32 len = hid_report_len(report) + 7;
1640
1641	return kmalloc(len, flags);
1642}
1643EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1644
1645/*
1646 * Set a field value. The report this field belongs to has to be
1647 * created and transferred to the device, to set this value in the
1648 * device.
1649 */
1650
1651int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1652{
1653	unsigned size;
1654
1655	if (!field)
1656		return -1;
1657
1658	size = field->report_size;
1659
1660	hid_dump_input(field->report->device, field->usage + offset, value);
1661
1662	if (offset >= field->report_count) {
1663		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1664				offset, field->report_count);
1665		return -1;
1666	}
1667	if (field->logical_minimum < 0) {
1668		if (value != snto32(s32ton(value, size), size)) {
1669			hid_err(field->report->device, "value %d is out of range\n", value);
1670			return -1;
1671		}
1672	}
1673	field->value[offset] = value;
1674	return 0;
1675}
1676EXPORT_SYMBOL_GPL(hid_set_field);
1677
1678static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1679		const u8 *data)
1680{
1681	struct hid_report *report;
1682	unsigned int n = 0;	/* Normally report number is 0 */
1683
1684	/* Device uses numbered reports, data[0] is report number */
1685	if (report_enum->numbered)
1686		n = *data;
1687
1688	report = report_enum->report_id_hash[n];
1689	if (report == NULL)
1690		dbg_hid("undefined report_id %u received\n", n);
1691
1692	return report;
1693}
1694
1695/*
1696 * Implement a generic .request() callback, using .raw_request()
1697 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1698 */
1699int __hid_request(struct hid_device *hid, struct hid_report *report,
1700		int reqtype)
1701{
1702	char *buf;
1703	int ret;
1704	u32 len;
1705
1706	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1707	if (!buf)
1708		return -ENOMEM;
1709
1710	len = hid_report_len(report);
1711
1712	if (reqtype == HID_REQ_SET_REPORT)
1713		hid_output_report(report, buf);
1714
1715	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1716					  report->type, reqtype);
1717	if (ret < 0) {
1718		dbg_hid("unable to complete request: %d\n", ret);
1719		goto out;
1720	}
1721
1722	if (reqtype == HID_REQ_GET_REPORT)
1723		hid_input_report(hid, report->type, buf, ret, 0);
1724
1725	ret = 0;
1726
1727out:
1728	kfree(buf);
1729	return ret;
1730}
1731EXPORT_SYMBOL_GPL(__hid_request);
1732
1733int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1734		int interrupt)
1735{
1736	struct hid_report_enum *report_enum = hid->report_enum + type;
1737	struct hid_report *report;
1738	struct hid_driver *hdrv;
1739	unsigned int a;
1740	u32 rsize, csize = size;
1741	u8 *cdata = data;
1742	int ret = 0;
1743
1744	report = hid_get_report(report_enum, data);
1745	if (!report)
1746		goto out;
1747
1748	if (report_enum->numbered) {
1749		cdata++;
1750		csize--;
1751	}
1752
1753	rsize = hid_compute_report_size(report);
1754
1755	if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1756		rsize = HID_MAX_BUFFER_SIZE - 1;
1757	else if (rsize > HID_MAX_BUFFER_SIZE)
1758		rsize = HID_MAX_BUFFER_SIZE;
 
 
 
1759
1760	if (csize < rsize) {
1761		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1762				csize, rsize);
1763		memset(cdata + csize, 0, rsize - csize);
1764	}
1765
1766	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1767		hid->hiddev_report_event(hid, report);
1768	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1769		ret = hidraw_report_event(hid, data, size);
1770		if (ret)
1771			goto out;
1772	}
1773
1774	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1775		for (a = 0; a < report->maxfield; a++)
1776			hid_input_field(hid, report->field[a], cdata, interrupt);
1777		hdrv = hid->driver;
1778		if (hdrv && hdrv->report)
1779			hdrv->report(hid, report);
1780	}
1781
1782	if (hid->claimed & HID_CLAIMED_INPUT)
1783		hidinput_report_event(hid, report);
1784out:
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(hid_report_raw_event);
1788
1789/**
1790 * hid_input_report - report data from lower layer (usb, bt...)
1791 *
1792 * @hid: hid device
1793 * @type: HID report type (HID_*_REPORT)
1794 * @data: report contents
1795 * @size: size of data parameter
1796 * @interrupt: distinguish between interrupt and control transfers
1797 *
1798 * This is data entry for lower layers.
1799 */
1800int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
 
1801{
1802	struct hid_report_enum *report_enum;
1803	struct hid_driver *hdrv;
1804	struct hid_report *report;
1805	int ret = 0;
1806
1807	if (!hid)
1808		return -ENODEV;
1809
1810	if (down_trylock(&hid->driver_input_lock))
1811		return -EBUSY;
1812
1813	if (!hid->driver) {
1814		ret = -ENODEV;
1815		goto unlock;
1816	}
1817	report_enum = hid->report_enum + type;
1818	hdrv = hid->driver;
1819
 
 
 
 
 
 
1820	if (!size) {
1821		dbg_hid("empty report\n");
1822		ret = -1;
1823		goto unlock;
1824	}
1825
1826	/* Avoid unnecessary overhead if debugfs is disabled */
1827	if (!list_empty(&hid->debug_list))
1828		hid_dump_report(hid, type, data, size);
1829
1830	report = hid_get_report(report_enum, data);
1831
1832	if (!report) {
1833		ret = -1;
1834		goto unlock;
1835	}
1836
1837	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1838		ret = hdrv->raw_event(hid, report, data, size);
1839		if (ret < 0)
1840			goto unlock;
1841	}
1842
1843	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1844
1845unlock:
1846	up(&hid->driver_input_lock);
1847	return ret;
1848}
1849EXPORT_SYMBOL_GPL(hid_input_report);
1850
1851bool hid_match_one_id(const struct hid_device *hdev,
1852		      const struct hid_device_id *id)
1853{
1854	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1855		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1856		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1857		(id->product == HID_ANY_ID || id->product == hdev->product);
1858}
1859
1860const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1861		const struct hid_device_id *id)
1862{
1863	for (; id->bus; id++)
1864		if (hid_match_one_id(hdev, id))
1865			return id;
1866
1867	return NULL;
1868}
 
1869
1870static const struct hid_device_id hid_hiddev_list[] = {
1871	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1872	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1873	{ }
1874};
1875
1876static bool hid_hiddev(struct hid_device *hdev)
1877{
1878	return !!hid_match_id(hdev, hid_hiddev_list);
1879}
1880
1881
1882static ssize_t
1883read_report_descriptor(struct file *filp, struct kobject *kobj,
1884		struct bin_attribute *attr,
1885		char *buf, loff_t off, size_t count)
1886{
1887	struct device *dev = kobj_to_dev(kobj);
1888	struct hid_device *hdev = to_hid_device(dev);
1889
1890	if (off >= hdev->rsize)
1891		return 0;
1892
1893	if (off + count > hdev->rsize)
1894		count = hdev->rsize - off;
1895
1896	memcpy(buf, hdev->rdesc + off, count);
1897
1898	return count;
1899}
1900
1901static ssize_t
1902show_country(struct device *dev, struct device_attribute *attr,
1903		char *buf)
1904{
1905	struct hid_device *hdev = to_hid_device(dev);
1906
1907	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1908}
1909
1910static struct bin_attribute dev_bin_attr_report_desc = {
1911	.attr = { .name = "report_descriptor", .mode = 0444 },
1912	.read = read_report_descriptor,
1913	.size = HID_MAX_DESCRIPTOR_SIZE,
1914};
1915
1916static const struct device_attribute dev_attr_country = {
1917	.attr = { .name = "country", .mode = 0444 },
1918	.show = show_country,
1919};
1920
1921int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1922{
1923	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1924		"Joystick", "Gamepad", "Keyboard", "Keypad",
1925		"Multi-Axis Controller"
1926	};
1927	const char *type, *bus;
1928	char buf[64] = "";
1929	unsigned int i;
1930	int len;
1931	int ret;
1932
 
 
 
 
1933	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1934		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1935	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1936		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1937	if (hdev->bus != BUS_USB)
1938		connect_mask &= ~HID_CONNECT_HIDDEV;
1939	if (hid_hiddev(hdev))
1940		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1941
1942	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1943				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1944		hdev->claimed |= HID_CLAIMED_INPUT;
1945
1946	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1947			!hdev->hiddev_connect(hdev,
1948				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1949		hdev->claimed |= HID_CLAIMED_HIDDEV;
1950	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1951		hdev->claimed |= HID_CLAIMED_HIDRAW;
1952
1953	if (connect_mask & HID_CONNECT_DRIVER)
1954		hdev->claimed |= HID_CLAIMED_DRIVER;
1955
1956	/* Drivers with the ->raw_event callback set are not required to connect
1957	 * to any other listener. */
1958	if (!hdev->claimed && !hdev->driver->raw_event) {
1959		hid_err(hdev, "device has no listeners, quitting\n");
1960		return -ENODEV;
1961	}
1962
 
 
1963	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1964			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1965		hdev->ff_init(hdev);
1966
1967	len = 0;
1968	if (hdev->claimed & HID_CLAIMED_INPUT)
1969		len += sprintf(buf + len, "input");
1970	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1971		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1972				((struct hiddev *)hdev->hiddev)->minor);
1973	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1974		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1975				((struct hidraw *)hdev->hidraw)->minor);
1976
1977	type = "Device";
1978	for (i = 0; i < hdev->maxcollection; i++) {
1979		struct hid_collection *col = &hdev->collection[i];
1980		if (col->type == HID_COLLECTION_APPLICATION &&
1981		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1982		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1983			type = types[col->usage & 0xffff];
1984			break;
1985		}
1986	}
1987
1988	switch (hdev->bus) {
1989	case BUS_USB:
1990		bus = "USB";
1991		break;
1992	case BUS_BLUETOOTH:
1993		bus = "BLUETOOTH";
1994		break;
1995	case BUS_I2C:
1996		bus = "I2C";
1997		break;
 
 
 
 
 
 
 
1998	default:
1999		bus = "<UNKNOWN>";
2000	}
2001
2002	ret = device_create_file(&hdev->dev, &dev_attr_country);
2003	if (ret)
2004		hid_warn(hdev,
2005			 "can't create sysfs country code attribute err: %d\n", ret);
2006
2007	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2008		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2009		 type, hdev->name, hdev->phys);
2010
2011	return 0;
2012}
2013EXPORT_SYMBOL_GPL(hid_connect);
2014
2015void hid_disconnect(struct hid_device *hdev)
2016{
2017	device_remove_file(&hdev->dev, &dev_attr_country);
2018	if (hdev->claimed & HID_CLAIMED_INPUT)
2019		hidinput_disconnect(hdev);
2020	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2021		hdev->hiddev_disconnect(hdev);
2022	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2023		hidraw_disconnect(hdev);
2024	hdev->claimed = 0;
 
 
2025}
2026EXPORT_SYMBOL_GPL(hid_disconnect);
2027
2028/**
2029 * hid_hw_start - start underlying HW
2030 * @hdev: hid device
2031 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2032 *
2033 * Call this in probe function *after* hid_parse. This will setup HW
2034 * buffers and start the device (if not defeirred to device open).
2035 * hid_hw_stop must be called if this was successful.
2036 */
2037int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2038{
2039	int error;
2040
2041	error = hdev->ll_driver->start(hdev);
2042	if (error)
2043		return error;
2044
2045	if (connect_mask) {
2046		error = hid_connect(hdev, connect_mask);
2047		if (error) {
2048			hdev->ll_driver->stop(hdev);
2049			return error;
2050		}
2051	}
2052
2053	return 0;
2054}
2055EXPORT_SYMBOL_GPL(hid_hw_start);
2056
2057/**
2058 * hid_hw_stop - stop underlying HW
2059 * @hdev: hid device
2060 *
2061 * This is usually called from remove function or from probe when something
2062 * failed and hid_hw_start was called already.
2063 */
2064void hid_hw_stop(struct hid_device *hdev)
2065{
2066	hid_disconnect(hdev);
2067	hdev->ll_driver->stop(hdev);
2068}
2069EXPORT_SYMBOL_GPL(hid_hw_stop);
2070
2071/**
2072 * hid_hw_open - signal underlying HW to start delivering events
2073 * @hdev: hid device
2074 *
2075 * Tell underlying HW to start delivering events from the device.
2076 * This function should be called sometime after successful call
2077 * to hid_hw_start().
2078 */
2079int hid_hw_open(struct hid_device *hdev)
2080{
2081	int ret;
2082
2083	ret = mutex_lock_killable(&hdev->ll_open_lock);
2084	if (ret)
2085		return ret;
2086
2087	if (!hdev->ll_open_count++) {
2088		ret = hdev->ll_driver->open(hdev);
2089		if (ret)
2090			hdev->ll_open_count--;
2091	}
2092
2093	mutex_unlock(&hdev->ll_open_lock);
2094	return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_hw_open);
2097
2098/**
2099 * hid_hw_close - signal underlaying HW to stop delivering events
2100 *
2101 * @hdev: hid device
2102 *
2103 * This function indicates that we are not interested in the events
2104 * from this device anymore. Delivery of events may or may not stop,
2105 * depending on the number of users still outstanding.
2106 */
2107void hid_hw_close(struct hid_device *hdev)
2108{
2109	mutex_lock(&hdev->ll_open_lock);
2110	if (!--hdev->ll_open_count)
2111		hdev->ll_driver->close(hdev);
2112	mutex_unlock(&hdev->ll_open_lock);
2113}
2114EXPORT_SYMBOL_GPL(hid_hw_close);
2115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116struct hid_dynid {
2117	struct list_head list;
2118	struct hid_device_id id;
2119};
2120
2121/**
2122 * store_new_id - add a new HID device ID to this driver and re-probe devices
2123 * @driver: target device driver
2124 * @buf: buffer for scanning device ID data
2125 * @count: input size
2126 *
2127 * Adds a new dynamic hid device ID to this driver,
2128 * and causes the driver to probe for all devices again.
2129 */
2130static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2131		size_t count)
2132{
2133	struct hid_driver *hdrv = to_hid_driver(drv);
2134	struct hid_dynid *dynid;
2135	__u32 bus, vendor, product;
2136	unsigned long driver_data = 0;
2137	int ret;
2138
2139	ret = sscanf(buf, "%x %x %x %lx",
2140			&bus, &vendor, &product, &driver_data);
2141	if (ret < 3)
2142		return -EINVAL;
2143
2144	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2145	if (!dynid)
2146		return -ENOMEM;
2147
2148	dynid->id.bus = bus;
2149	dynid->id.group = HID_GROUP_ANY;
2150	dynid->id.vendor = vendor;
2151	dynid->id.product = product;
2152	dynid->id.driver_data = driver_data;
2153
2154	spin_lock(&hdrv->dyn_lock);
2155	list_add_tail(&dynid->list, &hdrv->dyn_list);
2156	spin_unlock(&hdrv->dyn_lock);
2157
2158	ret = driver_attach(&hdrv->driver);
2159
2160	return ret ? : count;
2161}
2162static DRIVER_ATTR_WO(new_id);
2163
2164static struct attribute *hid_drv_attrs[] = {
2165	&driver_attr_new_id.attr,
2166	NULL,
2167};
2168ATTRIBUTE_GROUPS(hid_drv);
2169
2170static void hid_free_dynids(struct hid_driver *hdrv)
2171{
2172	struct hid_dynid *dynid, *n;
2173
2174	spin_lock(&hdrv->dyn_lock);
2175	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2176		list_del(&dynid->list);
2177		kfree(dynid);
2178	}
2179	spin_unlock(&hdrv->dyn_lock);
2180}
2181
2182const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2183					     struct hid_driver *hdrv)
2184{
2185	struct hid_dynid *dynid;
2186
2187	spin_lock(&hdrv->dyn_lock);
2188	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2189		if (hid_match_one_id(hdev, &dynid->id)) {
2190			spin_unlock(&hdrv->dyn_lock);
2191			return &dynid->id;
2192		}
2193	}
2194	spin_unlock(&hdrv->dyn_lock);
2195
2196	return hid_match_id(hdev, hdrv->id_table);
2197}
2198EXPORT_SYMBOL_GPL(hid_match_device);
2199
2200static int hid_bus_match(struct device *dev, struct device_driver *drv)
2201{
2202	struct hid_driver *hdrv = to_hid_driver(drv);
2203	struct hid_device *hdev = to_hid_device(dev);
2204
2205	return hid_match_device(hdev, hdrv) != NULL;
2206}
2207
2208/**
2209 * hid_compare_device_paths - check if both devices share the same path
2210 * @hdev_a: hid device
2211 * @hdev_b: hid device
2212 * @separator: char to use as separator
2213 *
2214 * Check if two devices share the same path up to the last occurrence of
2215 * the separator char. Both paths must exist (i.e., zero-length paths
2216 * don't match).
2217 */
2218bool hid_compare_device_paths(struct hid_device *hdev_a,
2219			      struct hid_device *hdev_b, char separator)
2220{
2221	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2222	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2223
2224	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2225		return false;
2226
2227	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2228}
2229EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2231static int hid_device_probe(struct device *dev)
2232{
2233	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2234	struct hid_device *hdev = to_hid_device(dev);
2235	const struct hid_device_id *id;
2236	int ret = 0;
2237
2238	if (down_interruptible(&hdev->driver_input_lock)) {
2239		ret = -EINTR;
2240		goto end;
2241	}
2242	hdev->io_started = false;
2243
 
2244	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2245
2246	if (!hdev->driver) {
2247		id = hid_match_device(hdev, hdrv);
2248		if (id == NULL) {
2249			ret = -ENODEV;
2250			goto unlock;
2251		}
2252
2253		if (hdrv->match) {
2254			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2255				ret = -ENODEV;
2256				goto unlock;
2257			}
2258		} else {
2259			/*
2260			 * hid-generic implements .match(), so if
2261			 * hid_ignore_special_drivers is set, we can safely
2262			 * return.
2263			 */
2264			if (hid_ignore_special_drivers) {
2265				ret = -ENODEV;
2266				goto unlock;
2267			}
2268		}
2269
2270		/* reset the quirks that has been previously set */
2271		hdev->quirks = hid_lookup_quirk(hdev);
2272		hdev->driver = hdrv;
2273		if (hdrv->probe) {
2274			ret = hdrv->probe(hdev, id);
2275		} else { /* default probe */
2276			ret = hid_open_report(hdev);
2277			if (!ret)
2278				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2279		}
2280		if (ret) {
2281			hid_close_report(hdev);
2282			hdev->driver = NULL;
2283		}
2284	}
2285unlock:
2286	if (!hdev->io_started)
2287		up(&hdev->driver_input_lock);
2288end:
2289	return ret;
2290}
2291
2292static int hid_device_remove(struct device *dev)
2293{
2294	struct hid_device *hdev = to_hid_device(dev);
2295	struct hid_driver *hdrv;
2296	int ret = 0;
2297
2298	if (down_interruptible(&hdev->driver_input_lock)) {
2299		ret = -EINTR;
2300		goto end;
2301	}
2302	hdev->io_started = false;
2303
2304	hdrv = hdev->driver;
2305	if (hdrv) {
2306		if (hdrv->remove)
2307			hdrv->remove(hdev);
2308		else /* default remove */
2309			hid_hw_stop(hdev);
 
 
 
 
2310		hid_close_report(hdev);
2311		hdev->driver = NULL;
2312	}
2313
2314	if (!hdev->io_started)
2315		up(&hdev->driver_input_lock);
2316end:
2317	return ret;
2318}
2319
2320static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2321			     char *buf)
2322{
2323	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2324
2325	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2326			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2327}
2328static DEVICE_ATTR_RO(modalias);
2329
2330static struct attribute *hid_dev_attrs[] = {
2331	&dev_attr_modalias.attr,
2332	NULL,
2333};
2334static struct bin_attribute *hid_dev_bin_attrs[] = {
2335	&dev_bin_attr_report_desc,
2336	NULL
2337};
2338static const struct attribute_group hid_dev_group = {
2339	.attrs = hid_dev_attrs,
2340	.bin_attrs = hid_dev_bin_attrs,
2341};
2342__ATTRIBUTE_GROUPS(hid_dev);
2343
2344static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2345{
2346	struct hid_device *hdev = to_hid_device(dev);
2347
2348	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2349			hdev->bus, hdev->vendor, hdev->product))
2350		return -ENOMEM;
2351
2352	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2353		return -ENOMEM;
2354
2355	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2356		return -ENOMEM;
2357
2358	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2359		return -ENOMEM;
2360
2361	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2362			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2363		return -ENOMEM;
2364
2365	return 0;
2366}
2367
2368struct bus_type hid_bus_type = {
2369	.name		= "hid",
2370	.dev_groups	= hid_dev_groups,
2371	.drv_groups	= hid_drv_groups,
2372	.match		= hid_bus_match,
2373	.probe		= hid_device_probe,
2374	.remove		= hid_device_remove,
2375	.uevent		= hid_uevent,
2376};
2377EXPORT_SYMBOL(hid_bus_type);
2378
2379int hid_add_device(struct hid_device *hdev)
2380{
2381	static atomic_t id = ATOMIC_INIT(0);
2382	int ret;
2383
2384	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2385		return -EBUSY;
2386
2387	hdev->quirks = hid_lookup_quirk(hdev);
2388
2389	/* we need to kill them here, otherwise they will stay allocated to
2390	 * wait for coming driver */
2391	if (hid_ignore(hdev))
2392		return -ENODEV;
2393
2394	/*
2395	 * Check for the mandatory transport channel.
2396	 */
2397	 if (!hdev->ll_driver->raw_request) {
2398		hid_err(hdev, "transport driver missing .raw_request()\n");
2399		return -EINVAL;
2400	 }
2401
2402	/*
2403	 * Read the device report descriptor once and use as template
2404	 * for the driver-specific modifications.
2405	 */
2406	ret = hdev->ll_driver->parse(hdev);
2407	if (ret)
2408		return ret;
2409	if (!hdev->dev_rdesc)
2410		return -ENODEV;
2411
2412	/*
2413	 * Scan generic devices for group information
2414	 */
2415	if (hid_ignore_special_drivers) {
2416		hdev->group = HID_GROUP_GENERIC;
2417	} else if (!hdev->group &&
2418		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2419		ret = hid_scan_report(hdev);
2420		if (ret)
2421			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2422	}
2423
 
 
2424	/* XXX hack, any other cleaner solution after the driver core
2425	 * is converted to allow more than 20 bytes as the device name? */
2426	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2427		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2428
2429	hid_debug_register(hdev, dev_name(&hdev->dev));
2430	ret = device_add(&hdev->dev);
2431	if (!ret)
2432		hdev->status |= HID_STAT_ADDED;
2433	else
2434		hid_debug_unregister(hdev);
2435
2436	return ret;
2437}
2438EXPORT_SYMBOL_GPL(hid_add_device);
2439
2440/**
2441 * hid_allocate_device - allocate new hid device descriptor
2442 *
2443 * Allocate and initialize hid device, so that hid_destroy_device might be
2444 * used to free it.
2445 *
2446 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2447 * error value.
2448 */
2449struct hid_device *hid_allocate_device(void)
2450{
2451	struct hid_device *hdev;
2452	int ret = -ENOMEM;
2453
2454	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2455	if (hdev == NULL)
2456		return ERR_PTR(ret);
2457
2458	device_initialize(&hdev->dev);
2459	hdev->dev.release = hid_device_release;
2460	hdev->dev.bus = &hid_bus_type;
2461	device_enable_async_suspend(&hdev->dev);
2462
2463	hid_close_report(hdev);
2464
2465	init_waitqueue_head(&hdev->debug_wait);
2466	INIT_LIST_HEAD(&hdev->debug_list);
2467	spin_lock_init(&hdev->debug_list_lock);
2468	sema_init(&hdev->driver_input_lock, 1);
2469	mutex_init(&hdev->ll_open_lock);
 
 
 
2470
2471	return hdev;
2472}
2473EXPORT_SYMBOL_GPL(hid_allocate_device);
2474
2475static void hid_remove_device(struct hid_device *hdev)
2476{
2477	if (hdev->status & HID_STAT_ADDED) {
2478		device_del(&hdev->dev);
2479		hid_debug_unregister(hdev);
2480		hdev->status &= ~HID_STAT_ADDED;
2481	}
2482	kfree(hdev->dev_rdesc);
2483	hdev->dev_rdesc = NULL;
2484	hdev->dev_rsize = 0;
2485}
2486
2487/**
2488 * hid_destroy_device - free previously allocated device
2489 *
2490 * @hdev: hid device
2491 *
2492 * If you allocate hid_device through hid_allocate_device, you should ever
2493 * free by this function.
2494 */
2495void hid_destroy_device(struct hid_device *hdev)
2496{
 
2497	hid_remove_device(hdev);
2498	put_device(&hdev->dev);
2499}
2500EXPORT_SYMBOL_GPL(hid_destroy_device);
2501
2502
2503static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2504{
2505	struct hid_driver *hdrv = data;
2506	struct hid_device *hdev = to_hid_device(dev);
2507
2508	if (hdev->driver == hdrv &&
2509	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2510	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2511		return device_reprobe(dev);
2512
2513	return 0;
2514}
2515
2516static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2517{
2518	struct hid_driver *hdrv = to_hid_driver(drv);
2519
2520	if (hdrv->match) {
2521		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2522				 __hid_bus_reprobe_drivers);
2523	}
2524
2525	return 0;
2526}
2527
2528static int __bus_removed_driver(struct device_driver *drv, void *data)
2529{
2530	return bus_rescan_devices(&hid_bus_type);
2531}
2532
2533int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2534		const char *mod_name)
2535{
2536	int ret;
2537
2538	hdrv->driver.name = hdrv->name;
2539	hdrv->driver.bus = &hid_bus_type;
2540	hdrv->driver.owner = owner;
2541	hdrv->driver.mod_name = mod_name;
2542
2543	INIT_LIST_HEAD(&hdrv->dyn_list);
2544	spin_lock_init(&hdrv->dyn_lock);
2545
2546	ret = driver_register(&hdrv->driver);
2547
2548	if (ret == 0)
2549		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2550				 __hid_bus_driver_added);
2551
2552	return ret;
2553}
2554EXPORT_SYMBOL_GPL(__hid_register_driver);
2555
2556void hid_unregister_driver(struct hid_driver *hdrv)
2557{
2558	driver_unregister(&hdrv->driver);
2559	hid_free_dynids(hdrv);
2560
2561	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2562}
2563EXPORT_SYMBOL_GPL(hid_unregister_driver);
2564
2565int hid_check_keys_pressed(struct hid_device *hid)
2566{
2567	struct hid_input *hidinput;
2568	int i;
2569
2570	if (!(hid->claimed & HID_CLAIMED_INPUT))
2571		return 0;
2572
2573	list_for_each_entry(hidinput, &hid->inputs, list) {
2574		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2575			if (hidinput->input->key[i])
2576				return 1;
2577	}
2578
2579	return 0;
2580}
2581
2582EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2583
 
 
 
 
 
 
 
 
 
2584static int __init hid_init(void)
2585{
2586	int ret;
2587
2588	if (hid_debug)
2589		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2590			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2591
2592	ret = bus_register(&hid_bus_type);
2593	if (ret) {
2594		pr_err("can't register hid bus\n");
2595		goto err;
2596	}
2597
 
 
 
 
2598	ret = hidraw_init();
2599	if (ret)
2600		goto err_bus;
2601
2602	hid_debug_init();
2603
2604	return 0;
2605err_bus:
2606	bus_unregister(&hid_bus_type);
2607err:
2608	return ret;
2609}
2610
2611static void __exit hid_exit(void)
2612{
 
 
 
2613	hid_debug_exit();
2614	hidraw_exit();
2615	bus_unregister(&hid_bus_type);
2616	hid_quirks_exit(HID_BUS_ANY);
2617}
2618
2619module_init(hid_init);
2620module_exit(hid_exit);
2621
2622MODULE_AUTHOR("Andreas Gal");
2623MODULE_AUTHOR("Vojtech Pavlik");
2624MODULE_AUTHOR("Jiri Kosina");
2625MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
  43
 
 
 
 
 
  44static int hid_ignore_special_drivers = 0;
  45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  47
  48/*
  49 * Register a new report for a device.
  50 */
  51
  52struct hid_report *hid_register_report(struct hid_device *device,
  53				       enum hid_report_type type, unsigned int id,
  54				       unsigned int application)
  55{
  56	struct hid_report_enum *report_enum = device->report_enum + type;
  57	struct hid_report *report;
  58
  59	if (id >= HID_MAX_IDS)
  60		return NULL;
  61	if (report_enum->report_id_hash[id])
  62		return report_enum->report_id_hash[id];
  63
  64	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  65	if (!report)
  66		return NULL;
  67
  68	if (id != 0)
  69		report_enum->numbered = 1;
  70
  71	report->id = id;
  72	report->type = type;
  73	report->size = 0;
  74	report->device = device;
  75	report->application = application;
  76	report_enum->report_id_hash[id] = report;
  77
  78	list_add_tail(&report->list, &report_enum->report_list);
  79	INIT_LIST_HEAD(&report->field_entry_list);
  80
  81	return report;
  82}
  83EXPORT_SYMBOL_GPL(hid_register_report);
  84
  85/*
  86 * Register a new field for this report.
  87 */
  88
  89static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
  90{
  91	struct hid_field *field;
  92
  93	if (report->maxfield == HID_MAX_FIELDS) {
  94		hid_err(report->device, "too many fields in report\n");
  95		return NULL;
  96	}
  97
  98	field = kzalloc((sizeof(struct hid_field) +
  99			 usages * sizeof(struct hid_usage) +
 100			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 101	if (!field)
 102		return NULL;
 103
 104	field->index = report->maxfield++;
 105	report->field[field->index] = field;
 106	field->usage = (struct hid_usage *)(field + 1);
 107	field->value = (s32 *)(field->usage + usages);
 108	field->new_value = (s32 *)(field->value + usages);
 109	field->usages_priorities = (s32 *)(field->new_value + usages);
 110	field->report = report;
 111
 112	return field;
 113}
 114
 115/*
 116 * Open a collection. The type/usage is pushed on the stack.
 117 */
 118
 119static int open_collection(struct hid_parser *parser, unsigned type)
 120{
 121	struct hid_collection *collection;
 122	unsigned usage;
 123	int collection_index;
 124
 125	usage = parser->local.usage[0];
 126
 127	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 128		unsigned int *collection_stack;
 129		unsigned int new_size = parser->collection_stack_size +
 130					HID_COLLECTION_STACK_SIZE;
 131
 132		collection_stack = krealloc(parser->collection_stack,
 133					    new_size * sizeof(unsigned int),
 134					    GFP_KERNEL);
 135		if (!collection_stack)
 136			return -ENOMEM;
 137
 138		parser->collection_stack = collection_stack;
 139		parser->collection_stack_size = new_size;
 140	}
 141
 142	if (parser->device->maxcollection == parser->device->collection_size) {
 143		collection = kmalloc(
 144				array3_size(sizeof(struct hid_collection),
 145					    parser->device->collection_size,
 146					    2),
 147				GFP_KERNEL);
 148		if (collection == NULL) {
 149			hid_err(parser->device, "failed to reallocate collection array\n");
 150			return -ENOMEM;
 151		}
 152		memcpy(collection, parser->device->collection,
 153			sizeof(struct hid_collection) *
 154			parser->device->collection_size);
 155		memset(collection + parser->device->collection_size, 0,
 156			sizeof(struct hid_collection) *
 157			parser->device->collection_size);
 158		kfree(parser->device->collection);
 159		parser->device->collection = collection;
 160		parser->device->collection_size *= 2;
 161	}
 162
 163	parser->collection_stack[parser->collection_stack_ptr++] =
 164		parser->device->maxcollection;
 165
 166	collection_index = parser->device->maxcollection++;
 167	collection = parser->device->collection + collection_index;
 168	collection->type = type;
 169	collection->usage = usage;
 170	collection->level = parser->collection_stack_ptr - 1;
 171	collection->parent_idx = (collection->level == 0) ? -1 :
 172		parser->collection_stack[collection->level - 1];
 173
 174	if (type == HID_COLLECTION_APPLICATION)
 175		parser->device->maxapplication++;
 176
 177	return 0;
 178}
 179
 180/*
 181 * Close a collection.
 182 */
 183
 184static int close_collection(struct hid_parser *parser)
 185{
 186	if (!parser->collection_stack_ptr) {
 187		hid_err(parser->device, "collection stack underflow\n");
 188		return -EINVAL;
 189	}
 190	parser->collection_stack_ptr--;
 191	return 0;
 192}
 193
 194/*
 195 * Climb up the stack, search for the specified collection type
 196 * and return the usage.
 197 */
 198
 199static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 200{
 201	struct hid_collection *collection = parser->device->collection;
 202	int n;
 203
 204	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 205		unsigned index = parser->collection_stack[n];
 206		if (collection[index].type == type)
 207			return collection[index].usage;
 208	}
 209	return 0; /* we know nothing about this usage type */
 210}
 211
 212/*
 213 * Concatenate usage which defines 16 bits or less with the
 214 * currently defined usage page to form a 32 bit usage
 215 */
 216
 217static void complete_usage(struct hid_parser *parser, unsigned int index)
 218{
 219	parser->local.usage[index] &= 0xFFFF;
 220	parser->local.usage[index] |=
 221		(parser->global.usage_page & 0xFFFF) << 16;
 222}
 223
 224/*
 225 * Add a usage to the temporary parser table.
 226 */
 227
 228static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 229{
 230	if (parser->local.usage_index >= HID_MAX_USAGES) {
 231		hid_err(parser->device, "usage index exceeded\n");
 232		return -1;
 233	}
 234	parser->local.usage[parser->local.usage_index] = usage;
 235
 236	/*
 237	 * If Usage item only includes usage id, concatenate it with
 238	 * currently defined usage page
 239	 */
 240	if (size <= 2)
 241		complete_usage(parser, parser->local.usage_index);
 242
 243	parser->local.usage_size[parser->local.usage_index] = size;
 244	parser->local.collection_index[parser->local.usage_index] =
 245		parser->collection_stack_ptr ?
 246		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 247	parser->local.usage_index++;
 248	return 0;
 249}
 250
 251/*
 252 * Register a new field for this report.
 253 */
 254
 255static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 256{
 257	struct hid_report *report;
 258	struct hid_field *field;
 259	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
 260	unsigned int usages;
 261	unsigned int offset;
 262	unsigned int i;
 263	unsigned int application;
 264
 265	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 266
 267	report = hid_register_report(parser->device, report_type,
 268				     parser->global.report_id, application);
 269	if (!report) {
 270		hid_err(parser->device, "hid_register_report failed\n");
 271		return -1;
 272	}
 273
 274	/* Handle both signed and unsigned cases properly */
 275	if ((parser->global.logical_minimum < 0 &&
 276		parser->global.logical_maximum <
 277		parser->global.logical_minimum) ||
 278		(parser->global.logical_minimum >= 0 &&
 279		(__u32)parser->global.logical_maximum <
 280		(__u32)parser->global.logical_minimum)) {
 281		dbg_hid("logical range invalid 0x%x 0x%x\n",
 282			parser->global.logical_minimum,
 283			parser->global.logical_maximum);
 284		return -1;
 285	}
 286
 287	offset = report->size;
 288	report->size += parser->global.report_size * parser->global.report_count;
 289
 290	if (parser->device->ll_driver->max_buffer_size)
 291		max_buffer_size = parser->device->ll_driver->max_buffer_size;
 292
 293	/* Total size check: Allow for possible report index byte */
 294	if (report->size > (max_buffer_size - 1) << 3) {
 295		hid_err(parser->device, "report is too long\n");
 296		return -1;
 297	}
 298
 299	if (!parser->local.usage_index) /* Ignore padding fields */
 300		return 0;
 301
 302	usages = max_t(unsigned, parser->local.usage_index,
 303				 parser->global.report_count);
 304
 305	field = hid_register_field(report, usages);
 306	if (!field)
 307		return 0;
 308
 309	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 310	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 311	field->application = application;
 312
 313	for (i = 0; i < usages; i++) {
 314		unsigned j = i;
 315		/* Duplicate the last usage we parsed if we have excess values */
 316		if (i >= parser->local.usage_index)
 317			j = parser->local.usage_index - 1;
 318		field->usage[i].hid = parser->local.usage[j];
 319		field->usage[i].collection_index =
 320			parser->local.collection_index[j];
 321		field->usage[i].usage_index = i;
 322		field->usage[i].resolution_multiplier = 1;
 323	}
 324
 325	field->maxusage = usages;
 326	field->flags = flags;
 327	field->report_offset = offset;
 328	field->report_type = report_type;
 329	field->report_size = parser->global.report_size;
 330	field->report_count = parser->global.report_count;
 331	field->logical_minimum = parser->global.logical_minimum;
 332	field->logical_maximum = parser->global.logical_maximum;
 333	field->physical_minimum = parser->global.physical_minimum;
 334	field->physical_maximum = parser->global.physical_maximum;
 335	field->unit_exponent = parser->global.unit_exponent;
 336	field->unit = parser->global.unit;
 337
 338	return 0;
 339}
 340
 341/*
 342 * Read data value from item.
 343 */
 344
 345static u32 item_udata(struct hid_item *item)
 346{
 347	switch (item->size) {
 348	case 1: return item->data.u8;
 349	case 2: return item->data.u16;
 350	case 4: return item->data.u32;
 351	}
 352	return 0;
 353}
 354
 355static s32 item_sdata(struct hid_item *item)
 356{
 357	switch (item->size) {
 358	case 1: return item->data.s8;
 359	case 2: return item->data.s16;
 360	case 4: return item->data.s32;
 361	}
 362	return 0;
 363}
 364
 365/*
 366 * Process a global item.
 367 */
 368
 369static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 370{
 371	__s32 raw_value;
 372	switch (item->tag) {
 373	case HID_GLOBAL_ITEM_TAG_PUSH:
 374
 375		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 376			hid_err(parser->device, "global environment stack overflow\n");
 377			return -1;
 378		}
 379
 380		memcpy(parser->global_stack + parser->global_stack_ptr++,
 381			&parser->global, sizeof(struct hid_global));
 382		return 0;
 383
 384	case HID_GLOBAL_ITEM_TAG_POP:
 385
 386		if (!parser->global_stack_ptr) {
 387			hid_err(parser->device, "global environment stack underflow\n");
 388			return -1;
 389		}
 390
 391		memcpy(&parser->global, parser->global_stack +
 392			--parser->global_stack_ptr, sizeof(struct hid_global));
 393		return 0;
 394
 395	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 396		parser->global.usage_page = item_udata(item);
 397		return 0;
 398
 399	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 400		parser->global.logical_minimum = item_sdata(item);
 401		return 0;
 402
 403	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 404		if (parser->global.logical_minimum < 0)
 405			parser->global.logical_maximum = item_sdata(item);
 406		else
 407			parser->global.logical_maximum = item_udata(item);
 408		return 0;
 409
 410	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 411		parser->global.physical_minimum = item_sdata(item);
 412		return 0;
 413
 414	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 415		if (parser->global.physical_minimum < 0)
 416			parser->global.physical_maximum = item_sdata(item);
 417		else
 418			parser->global.physical_maximum = item_udata(item);
 419		return 0;
 420
 421	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 422		/* Many devices provide unit exponent as a two's complement
 423		 * nibble due to the common misunderstanding of HID
 424		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 425		 * both this and the standard encoding. */
 426		raw_value = item_sdata(item);
 427		if (!(raw_value & 0xfffffff0))
 428			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 429		else
 430			parser->global.unit_exponent = raw_value;
 431		return 0;
 432
 433	case HID_GLOBAL_ITEM_TAG_UNIT:
 434		parser->global.unit = item_udata(item);
 435		return 0;
 436
 437	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 438		parser->global.report_size = item_udata(item);
 439		if (parser->global.report_size > 256) {
 440			hid_err(parser->device, "invalid report_size %d\n",
 441					parser->global.report_size);
 442			return -1;
 443		}
 444		return 0;
 445
 446	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 447		parser->global.report_count = item_udata(item);
 448		if (parser->global.report_count > HID_MAX_USAGES) {
 449			hid_err(parser->device, "invalid report_count %d\n",
 450					parser->global.report_count);
 451			return -1;
 452		}
 453		return 0;
 454
 455	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 456		parser->global.report_id = item_udata(item);
 457		if (parser->global.report_id == 0 ||
 458		    parser->global.report_id >= HID_MAX_IDS) {
 459			hid_err(parser->device, "report_id %u is invalid\n",
 460				parser->global.report_id);
 461			return -1;
 462		}
 463		return 0;
 464
 465	default:
 466		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 467		return -1;
 468	}
 469}
 470
 471/*
 472 * Process a local item.
 473 */
 474
 475static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 476{
 477	__u32 data;
 478	unsigned n;
 479	__u32 count;
 480
 481	data = item_udata(item);
 482
 483	switch (item->tag) {
 484	case HID_LOCAL_ITEM_TAG_DELIMITER:
 485
 486		if (data) {
 487			/*
 488			 * We treat items before the first delimiter
 489			 * as global to all usage sets (branch 0).
 490			 * In the moment we process only these global
 491			 * items and the first delimiter set.
 492			 */
 493			if (parser->local.delimiter_depth != 0) {
 494				hid_err(parser->device, "nested delimiters\n");
 495				return -1;
 496			}
 497			parser->local.delimiter_depth++;
 498			parser->local.delimiter_branch++;
 499		} else {
 500			if (parser->local.delimiter_depth < 1) {
 501				hid_err(parser->device, "bogus close delimiter\n");
 502				return -1;
 503			}
 504			parser->local.delimiter_depth--;
 505		}
 506		return 0;
 507
 508	case HID_LOCAL_ITEM_TAG_USAGE:
 509
 510		if (parser->local.delimiter_branch > 1) {
 511			dbg_hid("alternative usage ignored\n");
 512			return 0;
 513		}
 514
 515		return hid_add_usage(parser, data, item->size);
 516
 517	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 518
 519		if (parser->local.delimiter_branch > 1) {
 520			dbg_hid("alternative usage ignored\n");
 521			return 0;
 522		}
 523
 524		parser->local.usage_minimum = data;
 525		return 0;
 526
 527	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 528
 529		if (parser->local.delimiter_branch > 1) {
 530			dbg_hid("alternative usage ignored\n");
 531			return 0;
 532		}
 533
 534		count = data - parser->local.usage_minimum;
 535		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 536			/*
 537			 * We do not warn if the name is not set, we are
 538			 * actually pre-scanning the device.
 539			 */
 540			if (dev_name(&parser->device->dev))
 541				hid_warn(parser->device,
 542					 "ignoring exceeding usage max\n");
 543			data = HID_MAX_USAGES - parser->local.usage_index +
 544				parser->local.usage_minimum - 1;
 545			if (data <= 0) {
 546				hid_err(parser->device,
 547					"no more usage index available\n");
 548				return -1;
 549			}
 550		}
 551
 552		for (n = parser->local.usage_minimum; n <= data; n++)
 553			if (hid_add_usage(parser, n, item->size)) {
 554				dbg_hid("hid_add_usage failed\n");
 555				return -1;
 556			}
 557		return 0;
 558
 559	default:
 560
 561		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 562		return 0;
 563	}
 564	return 0;
 565}
 566
 567/*
 568 * Concatenate Usage Pages into Usages where relevant:
 569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 570 * concatenates the last declared Usage Page with a Usage to form a complete
 571 * usage value."
 572 */
 573
 574static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 575{
 576	int i;
 577	unsigned int usage_page;
 578	unsigned int current_page;
 579
 580	if (!parser->local.usage_index)
 581		return;
 582
 583	usage_page = parser->global.usage_page;
 584
 585	/*
 586	 * Concatenate usage page again only if last declared Usage Page
 587	 * has not been already used in previous usages concatenation
 588	 */
 589	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 590		if (parser->local.usage_size[i] > 2)
 591			/* Ignore extended usages */
 592			continue;
 593
 594		current_page = parser->local.usage[i] >> 16;
 595		if (current_page == usage_page)
 596			break;
 597
 598		complete_usage(parser, i);
 599	}
 600}
 601
 602/*
 603 * Process a main item.
 604 */
 605
 606static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 607{
 608	__u32 data;
 609	int ret;
 610
 611	hid_concatenate_last_usage_page(parser);
 612
 613	data = item_udata(item);
 614
 615	switch (item->tag) {
 616	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 617		ret = open_collection(parser, data & 0xff);
 618		break;
 619	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 620		ret = close_collection(parser);
 621		break;
 622	case HID_MAIN_ITEM_TAG_INPUT:
 623		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 624		break;
 625	case HID_MAIN_ITEM_TAG_OUTPUT:
 626		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 627		break;
 628	case HID_MAIN_ITEM_TAG_FEATURE:
 629		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 630		break;
 631	default:
 632		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 633		ret = 0;
 634	}
 635
 636	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 637
 638	return ret;
 639}
 640
 641/*
 642 * Process a reserved item.
 643 */
 644
 645static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 646{
 647	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 648	return 0;
 649}
 650
 651/*
 652 * Free a report and all registered fields. The field->usage and
 653 * field->value table's are allocated behind the field, so we need
 654 * only to free(field) itself.
 655 */
 656
 657static void hid_free_report(struct hid_report *report)
 658{
 659	unsigned n;
 660
 661	kfree(report->field_entries);
 662
 663	for (n = 0; n < report->maxfield; n++)
 664		kfree(report->field[n]);
 665	kfree(report);
 666}
 667
 668/*
 669 * Close report. This function returns the device
 670 * state to the point prior to hid_open_report().
 671 */
 672static void hid_close_report(struct hid_device *device)
 673{
 674	unsigned i, j;
 675
 676	for (i = 0; i < HID_REPORT_TYPES; i++) {
 677		struct hid_report_enum *report_enum = device->report_enum + i;
 678
 679		for (j = 0; j < HID_MAX_IDS; j++) {
 680			struct hid_report *report = report_enum->report_id_hash[j];
 681			if (report)
 682				hid_free_report(report);
 683		}
 684		memset(report_enum, 0, sizeof(*report_enum));
 685		INIT_LIST_HEAD(&report_enum->report_list);
 686	}
 687
 688	kfree(device->rdesc);
 689	device->rdesc = NULL;
 690	device->rsize = 0;
 691
 692	kfree(device->collection);
 693	device->collection = NULL;
 694	device->collection_size = 0;
 695	device->maxcollection = 0;
 696	device->maxapplication = 0;
 697
 698	device->status &= ~HID_STAT_PARSED;
 699}
 700
 701/*
 702 * Free a device structure, all reports, and all fields.
 703 */
 704
 705void hiddev_free(struct kref *ref)
 706{
 707	struct hid_device *hid = container_of(ref, struct hid_device, ref);
 708
 709	hid_close_report(hid);
 710	kfree(hid->dev_rdesc);
 711	kfree(hid);
 712}
 713
 714static void hid_device_release(struct device *dev)
 715{
 716	struct hid_device *hid = to_hid_device(dev);
 717
 718	kref_put(&hid->ref, hiddev_free);
 719}
 720
 721/*
 722 * Fetch a report description item from the data stream. We support long
 723 * items, though they are not used yet.
 724 */
 725
 726static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 727{
 728	u8 b;
 729
 730	if ((end - start) <= 0)
 731		return NULL;
 732
 733	b = *start++;
 734
 735	item->type = (b >> 2) & 3;
 736	item->tag  = (b >> 4) & 15;
 737
 738	if (item->tag == HID_ITEM_TAG_LONG) {
 739
 740		item->format = HID_ITEM_FORMAT_LONG;
 741
 742		if ((end - start) < 2)
 743			return NULL;
 744
 745		item->size = *start++;
 746		item->tag  = *start++;
 747
 748		if ((end - start) < item->size)
 749			return NULL;
 750
 751		item->data.longdata = start;
 752		start += item->size;
 753		return start;
 754	}
 755
 756	item->format = HID_ITEM_FORMAT_SHORT;
 757	item->size = b & 3;
 758
 759	switch (item->size) {
 760	case 0:
 761		return start;
 762
 763	case 1:
 764		if ((end - start) < 1)
 765			return NULL;
 766		item->data.u8 = *start++;
 767		return start;
 768
 769	case 2:
 770		if ((end - start) < 2)
 771			return NULL;
 772		item->data.u16 = get_unaligned_le16(start);
 773		start = (__u8 *)((__le16 *)start + 1);
 774		return start;
 775
 776	case 3:
 777		item->size++;
 778		if ((end - start) < 4)
 779			return NULL;
 780		item->data.u32 = get_unaligned_le32(start);
 781		start = (__u8 *)((__le32 *)start + 1);
 782		return start;
 783	}
 784
 785	return NULL;
 786}
 787
 788static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 789{
 790	struct hid_device *hid = parser->device;
 791
 792	if (usage == HID_DG_CONTACTID)
 793		hid->group = HID_GROUP_MULTITOUCH;
 794}
 795
 796static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 797{
 798	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 799	    parser->global.report_size == 8)
 800		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 801
 802	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 803	    parser->global.report_size == 8)
 804		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 805}
 806
 807static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 808{
 809	struct hid_device *hid = parser->device;
 810	int i;
 811
 812	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 813	    (type == HID_COLLECTION_PHYSICAL ||
 814	     type == HID_COLLECTION_APPLICATION))
 815		hid->group = HID_GROUP_SENSOR_HUB;
 816
 817	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 818	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 819	    hid->group == HID_GROUP_MULTITOUCH)
 820		hid->group = HID_GROUP_GENERIC;
 821
 822	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 823		for (i = 0; i < parser->local.usage_index; i++)
 824			if (parser->local.usage[i] == HID_GD_POINTER)
 825				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 826
 827	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 828		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 829
 830	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 831		for (i = 0; i < parser->local.usage_index; i++)
 832			if (parser->local.usage[i] ==
 833					(HID_UP_GOOGLEVENDOR | 0x0001))
 834				parser->device->group =
 835					HID_GROUP_VIVALDI;
 836}
 837
 838static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 839{
 840	__u32 data;
 841	int i;
 842
 843	hid_concatenate_last_usage_page(parser);
 844
 845	data = item_udata(item);
 846
 847	switch (item->tag) {
 848	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 849		hid_scan_collection(parser, data & 0xff);
 850		break;
 851	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 852		break;
 853	case HID_MAIN_ITEM_TAG_INPUT:
 854		/* ignore constant inputs, they will be ignored by hid-input */
 855		if (data & HID_MAIN_ITEM_CONSTANT)
 856			break;
 857		for (i = 0; i < parser->local.usage_index; i++)
 858			hid_scan_input_usage(parser, parser->local.usage[i]);
 859		break;
 860	case HID_MAIN_ITEM_TAG_OUTPUT:
 861		break;
 862	case HID_MAIN_ITEM_TAG_FEATURE:
 863		for (i = 0; i < parser->local.usage_index; i++)
 864			hid_scan_feature_usage(parser, parser->local.usage[i]);
 865		break;
 866	}
 867
 868	/* Reset the local parser environment */
 869	memset(&parser->local, 0, sizeof(parser->local));
 870
 871	return 0;
 872}
 873
 874/*
 875 * Scan a report descriptor before the device is added to the bus.
 876 * Sets device groups and other properties that determine what driver
 877 * to load.
 878 */
 879static int hid_scan_report(struct hid_device *hid)
 880{
 881	struct hid_parser *parser;
 882	struct hid_item item;
 883	__u8 *start = hid->dev_rdesc;
 884	__u8 *end = start + hid->dev_rsize;
 885	static int (*dispatch_type[])(struct hid_parser *parser,
 886				      struct hid_item *item) = {
 887		hid_scan_main,
 888		hid_parser_global,
 889		hid_parser_local,
 890		hid_parser_reserved
 891	};
 892
 893	parser = vzalloc(sizeof(struct hid_parser));
 894	if (!parser)
 895		return -ENOMEM;
 896
 897	parser->device = hid;
 898	hid->group = HID_GROUP_GENERIC;
 899
 900	/*
 901	 * The parsing is simpler than the one in hid_open_report() as we should
 902	 * be robust against hid errors. Those errors will be raised by
 903	 * hid_open_report() anyway.
 904	 */
 905	while ((start = fetch_item(start, end, &item)) != NULL)
 906		dispatch_type[item.type](parser, &item);
 907
 908	/*
 909	 * Handle special flags set during scanning.
 910	 */
 911	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 912	    (hid->group == HID_GROUP_MULTITOUCH))
 913		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 914
 915	/*
 916	 * Vendor specific handlings
 917	 */
 918	switch (hid->vendor) {
 919	case USB_VENDOR_ID_WACOM:
 920		hid->group = HID_GROUP_WACOM;
 921		break;
 922	case USB_VENDOR_ID_SYNAPTICS:
 923		if (hid->group == HID_GROUP_GENERIC)
 924			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 925			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 926				/*
 927				 * hid-rmi should take care of them,
 928				 * not hid-generic
 929				 */
 930				hid->group = HID_GROUP_RMI;
 931		break;
 932	}
 933
 934	kfree(parser->collection_stack);
 935	vfree(parser);
 936	return 0;
 937}
 938
 939/**
 940 * hid_parse_report - parse device report
 941 *
 942 * @hid: hid device
 943 * @start: report start
 944 * @size: report size
 945 *
 946 * Allocate the device report as read by the bus driver. This function should
 947 * only be called from parse() in ll drivers.
 948 */
 949int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 950{
 951	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 952	if (!hid->dev_rdesc)
 953		return -ENOMEM;
 954	hid->dev_rsize = size;
 955	return 0;
 956}
 957EXPORT_SYMBOL_GPL(hid_parse_report);
 958
 959static const char * const hid_report_names[] = {
 960	"HID_INPUT_REPORT",
 961	"HID_OUTPUT_REPORT",
 962	"HID_FEATURE_REPORT",
 963};
 964/**
 965 * hid_validate_values - validate existing device report's value indexes
 966 *
 967 * @hid: hid device
 968 * @type: which report type to examine
 969 * @id: which report ID to examine (0 for first)
 970 * @field_index: which report field to examine
 971 * @report_counts: expected number of values
 972 *
 973 * Validate the number of values in a given field of a given report, after
 974 * parsing.
 975 */
 976struct hid_report *hid_validate_values(struct hid_device *hid,
 977				       enum hid_report_type type, unsigned int id,
 978				       unsigned int field_index,
 979				       unsigned int report_counts)
 980{
 981	struct hid_report *report;
 982
 983	if (type > HID_FEATURE_REPORT) {
 984		hid_err(hid, "invalid HID report type %u\n", type);
 985		return NULL;
 986	}
 987
 988	if (id >= HID_MAX_IDS) {
 989		hid_err(hid, "invalid HID report id %u\n", id);
 990		return NULL;
 991	}
 992
 993	/*
 994	 * Explicitly not using hid_get_report() here since it depends on
 995	 * ->numbered being checked, which may not always be the case when
 996	 * drivers go to access report values.
 997	 */
 998	if (id == 0) {
 999		/*
1000		 * Validating on id 0 means we should examine the first
1001		 * report in the list.
1002		 */
1003		report = list_first_entry_or_null(
1004				&hid->report_enum[type].report_list,
1005				struct hid_report, list);
1006	} else {
1007		report = hid->report_enum[type].report_id_hash[id];
1008	}
1009	if (!report) {
1010		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1011		return NULL;
1012	}
1013	if (report->maxfield <= field_index) {
1014		hid_err(hid, "not enough fields in %s %u\n",
1015			hid_report_names[type], id);
1016		return NULL;
1017	}
1018	if (report->field[field_index]->report_count < report_counts) {
1019		hid_err(hid, "not enough values in %s %u field %u\n",
1020			hid_report_names[type], id, field_index);
1021		return NULL;
1022	}
1023	return report;
1024}
1025EXPORT_SYMBOL_GPL(hid_validate_values);
1026
1027static int hid_calculate_multiplier(struct hid_device *hid,
1028				     struct hid_field *multiplier)
1029{
1030	int m;
1031	__s32 v = *multiplier->value;
1032	__s32 lmin = multiplier->logical_minimum;
1033	__s32 lmax = multiplier->logical_maximum;
1034	__s32 pmin = multiplier->physical_minimum;
1035	__s32 pmax = multiplier->physical_maximum;
1036
1037	/*
1038	 * "Because OS implementations will generally divide the control's
1039	 * reported count by the Effective Resolution Multiplier, designers
1040	 * should take care not to establish a potential Effective
1041	 * Resolution Multiplier of zero."
1042	 * HID Usage Table, v1.12, Section 4.3.1, p31
1043	 */
1044	if (lmax - lmin == 0)
1045		return 1;
1046	/*
1047	 * Handling the unit exponent is left as an exercise to whoever
1048	 * finds a device where that exponent is not 0.
1049	 */
1050	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051	if (unlikely(multiplier->unit_exponent != 0)) {
1052		hid_warn(hid,
1053			 "unsupported Resolution Multiplier unit exponent %d\n",
1054			 multiplier->unit_exponent);
1055	}
1056
1057	/* There are no devices with an effective multiplier > 255 */
1058	if (unlikely(m == 0 || m > 255 || m < -255)) {
1059		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1060		m = 1;
1061	}
1062
1063	return m;
1064}
1065
1066static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067					  struct hid_field *field,
1068					  struct hid_collection *multiplier_collection,
1069					  int effective_multiplier)
1070{
1071	struct hid_collection *collection;
1072	struct hid_usage *usage;
1073	int i;
1074
1075	/*
1076	 * If multiplier_collection is NULL, the multiplier applies
1077	 * to all fields in the report.
1078	 * Otherwise, it is the Logical Collection the multiplier applies to
1079	 * but our field may be in a subcollection of that collection.
1080	 */
1081	for (i = 0; i < field->maxusage; i++) {
1082		usage = &field->usage[i];
1083
1084		collection = &hid->collection[usage->collection_index];
1085		while (collection->parent_idx != -1 &&
1086		       collection != multiplier_collection)
1087			collection = &hid->collection[collection->parent_idx];
1088
1089		if (collection->parent_idx != -1 ||
1090		    multiplier_collection == NULL)
1091			usage->resolution_multiplier = effective_multiplier;
1092
1093	}
1094}
1095
1096static void hid_apply_multiplier(struct hid_device *hid,
1097				 struct hid_field *multiplier)
1098{
1099	struct hid_report_enum *rep_enum;
1100	struct hid_report *rep;
1101	struct hid_field *field;
1102	struct hid_collection *multiplier_collection;
1103	int effective_multiplier;
1104	int i;
1105
1106	/*
1107	 * "The Resolution Multiplier control must be contained in the same
1108	 * Logical Collection as the control(s) to which it is to be applied.
1109	 * If no Resolution Multiplier is defined, then the Resolution
1110	 * Multiplier defaults to 1.  If more than one control exists in a
1111	 * Logical Collection, the Resolution Multiplier is associated with
1112	 * all controls in the collection. If no Logical Collection is
1113	 * defined, the Resolution Multiplier is associated with all
1114	 * controls in the report."
1115	 * HID Usage Table, v1.12, Section 4.3.1, p30
1116	 *
1117	 * Thus, search from the current collection upwards until we find a
1118	 * logical collection. Then search all fields for that same parent
1119	 * collection. Those are the fields the multiplier applies to.
1120	 *
1121	 * If we have more than one multiplier, it will overwrite the
1122	 * applicable fields later.
1123	 */
1124	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125	while (multiplier_collection->parent_idx != -1 &&
1126	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1128
1129	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1130
1131	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132	list_for_each_entry(rep, &rep_enum->report_list, list) {
1133		for (i = 0; i < rep->maxfield; i++) {
1134			field = rep->field[i];
1135			hid_apply_multiplier_to_field(hid, field,
1136						      multiplier_collection,
1137						      effective_multiplier);
1138		}
1139	}
1140}
1141
1142/*
1143 * hid_setup_resolution_multiplier - set up all resolution multipliers
1144 *
1145 * @device: hid device
1146 *
1147 * Search for all Resolution Multiplier Feature Reports and apply their
1148 * value to all matching Input items. This only updates the internal struct
1149 * fields.
1150 *
1151 * The Resolution Multiplier is applied by the hardware. If the multiplier
1152 * is anything other than 1, the hardware will send pre-multiplied events
1153 * so that the same physical interaction generates an accumulated
1154 *	accumulated_value = value * * multiplier
1155 * This may be achieved by sending
1156 * - "value * multiplier" for each event, or
1157 * - "value" but "multiplier" times as frequently, or
1158 * - a combination of the above
1159 * The only guarantee is that the same physical interaction always generates
1160 * an accumulated 'value * multiplier'.
1161 *
1162 * This function must be called before any event processing and after
1163 * any SetRequest to the Resolution Multiplier.
1164 */
1165void hid_setup_resolution_multiplier(struct hid_device *hid)
1166{
1167	struct hid_report_enum *rep_enum;
1168	struct hid_report *rep;
1169	struct hid_usage *usage;
1170	int i, j;
1171
1172	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173	list_for_each_entry(rep, &rep_enum->report_list, list) {
1174		for (i = 0; i < rep->maxfield; i++) {
1175			/* Ignore if report count is out of bounds. */
1176			if (rep->field[i]->report_count < 1)
1177				continue;
1178
1179			for (j = 0; j < rep->field[i]->maxusage; j++) {
1180				usage = &rep->field[i]->usage[j];
1181				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182					hid_apply_multiplier(hid,
1183							     rep->field[i]);
1184			}
1185		}
1186	}
1187}
1188EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1189
1190/**
1191 * hid_open_report - open a driver-specific device report
1192 *
1193 * @device: hid device
1194 *
1195 * Parse a report description into a hid_device structure. Reports are
1196 * enumerated, fields are attached to these reports.
1197 * 0 returned on success, otherwise nonzero error value.
1198 *
1199 * This function (or the equivalent hid_parse() macro) should only be
1200 * called from probe() in drivers, before starting the device.
1201 */
1202int hid_open_report(struct hid_device *device)
1203{
1204	struct hid_parser *parser;
1205	struct hid_item item;
1206	unsigned int size;
1207	__u8 *start;
1208	__u8 *buf;
1209	__u8 *end;
1210	__u8 *next;
1211	int ret;
1212	int i;
1213	static int (*dispatch_type[])(struct hid_parser *parser,
1214				      struct hid_item *item) = {
1215		hid_parser_main,
1216		hid_parser_global,
1217		hid_parser_local,
1218		hid_parser_reserved
1219	};
1220
1221	if (WARN_ON(device->status & HID_STAT_PARSED))
1222		return -EBUSY;
1223
1224	start = device->dev_rdesc;
1225	if (WARN_ON(!start))
1226		return -ENODEV;
1227	size = device->dev_rsize;
1228
1229	/* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230	buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1231	if (buf == NULL)
1232		return -ENOMEM;
1233
1234	if (device->driver->report_fixup)
1235		start = device->driver->report_fixup(device, buf, &size);
1236	else
1237		start = buf;
1238
1239	start = kmemdup(start, size, GFP_KERNEL);
1240	kfree(buf);
1241	if (start == NULL)
1242		return -ENOMEM;
1243
1244	device->rdesc = start;
1245	device->rsize = size;
1246
1247	parser = vzalloc(sizeof(struct hid_parser));
1248	if (!parser) {
1249		ret = -ENOMEM;
1250		goto alloc_err;
1251	}
1252
1253	parser->device = device;
1254
1255	end = start + size;
1256
1257	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258				     sizeof(struct hid_collection), GFP_KERNEL);
1259	if (!device->collection) {
1260		ret = -ENOMEM;
1261		goto err;
1262	}
1263	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265		device->collection[i].parent_idx = -1;
1266
1267	ret = -EINVAL;
1268	while ((next = fetch_item(start, end, &item)) != NULL) {
1269		start = next;
1270
1271		if (item.format != HID_ITEM_FORMAT_SHORT) {
1272			hid_err(device, "unexpected long global item\n");
1273			goto err;
1274		}
1275
1276		if (dispatch_type[item.type](parser, &item)) {
1277			hid_err(device, "item %u %u %u %u parsing failed\n",
1278				item.format, (unsigned)item.size,
1279				(unsigned)item.type, (unsigned)item.tag);
1280			goto err;
1281		}
1282
1283		if (start == end) {
1284			if (parser->collection_stack_ptr) {
1285				hid_err(device, "unbalanced collection at end of report description\n");
1286				goto err;
1287			}
1288			if (parser->local.delimiter_depth) {
1289				hid_err(device, "unbalanced delimiter at end of report description\n");
1290				goto err;
1291			}
1292
1293			/*
1294			 * fetch initial values in case the device's
1295			 * default multiplier isn't the recommended 1
1296			 */
1297			hid_setup_resolution_multiplier(device);
1298
1299			kfree(parser->collection_stack);
1300			vfree(parser);
1301			device->status |= HID_STAT_PARSED;
1302
1303			return 0;
1304		}
1305	}
1306
1307	hid_err(device, "item fetching failed at offset %u/%u\n",
1308		size - (unsigned int)(end - start), size);
1309err:
1310	kfree(parser->collection_stack);
1311alloc_err:
1312	vfree(parser);
1313	hid_close_report(device);
1314	return ret;
1315}
1316EXPORT_SYMBOL_GPL(hid_open_report);
1317
1318/*
1319 * Convert a signed n-bit integer to signed 32-bit integer. Common
1320 * cases are done through the compiler, the screwed things has to be
1321 * done by hand.
1322 */
1323
1324static s32 snto32(__u32 value, unsigned n)
1325{
1326	if (!value || !n)
1327		return 0;
1328
1329	if (n > 32)
1330		n = 32;
1331
1332	switch (n) {
1333	case 8:  return ((__s8)value);
1334	case 16: return ((__s16)value);
1335	case 32: return ((__s32)value);
1336	}
1337	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1338}
1339
1340s32 hid_snto32(__u32 value, unsigned n)
1341{
1342	return snto32(value, n);
1343}
1344EXPORT_SYMBOL_GPL(hid_snto32);
1345
1346/*
1347 * Convert a signed 32-bit integer to a signed n-bit integer.
1348 */
1349
1350static u32 s32ton(__s32 value, unsigned n)
1351{
1352	s32 a = value >> (n - 1);
1353	if (a && a != -1)
1354		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355	return value & ((1 << n) - 1);
1356}
1357
1358/*
1359 * Extract/implement a data field from/to a little endian report (bit array).
1360 *
1361 * Code sort-of follows HID spec:
1362 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1363 *
1364 * While the USB HID spec allows unlimited length bit fields in "report
1365 * descriptors", most devices never use more than 16 bits.
1366 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1368 */
1369
1370static u32 __extract(u8 *report, unsigned offset, int n)
1371{
1372	unsigned int idx = offset / 8;
1373	unsigned int bit_nr = 0;
1374	unsigned int bit_shift = offset % 8;
1375	int bits_to_copy = 8 - bit_shift;
1376	u32 value = 0;
1377	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1378
1379	while (n > 0) {
1380		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1381		n -= bits_to_copy;
1382		bit_nr += bits_to_copy;
1383		bits_to_copy = 8;
1384		bit_shift = 0;
1385		idx++;
1386	}
1387
1388	return value & mask;
1389}
1390
1391u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392			unsigned offset, unsigned n)
1393{
1394	if (n > 32) {
1395		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396			      __func__, n, current->comm);
1397		n = 32;
1398	}
1399
1400	return __extract(report, offset, n);
1401}
1402EXPORT_SYMBOL_GPL(hid_field_extract);
1403
1404/*
1405 * "implement" : set bits in a little endian bit stream.
1406 * Same concepts as "extract" (see comments above).
1407 * The data mangled in the bit stream remains in little endian
1408 * order the whole time. It make more sense to talk about
1409 * endianness of register values by considering a register
1410 * a "cached" copy of the little endian bit stream.
1411 */
1412
1413static void __implement(u8 *report, unsigned offset, int n, u32 value)
1414{
1415	unsigned int idx = offset / 8;
1416	unsigned int bit_shift = offset % 8;
1417	int bits_to_set = 8 - bit_shift;
1418
1419	while (n - bits_to_set >= 0) {
1420		report[idx] &= ~(0xff << bit_shift);
1421		report[idx] |= value << bit_shift;
1422		value >>= bits_to_set;
1423		n -= bits_to_set;
1424		bits_to_set = 8;
1425		bit_shift = 0;
1426		idx++;
1427	}
1428
1429	/* last nibble */
1430	if (n) {
1431		u8 bit_mask = ((1U << n) - 1);
1432		report[idx] &= ~(bit_mask << bit_shift);
1433		report[idx] |= value << bit_shift;
1434	}
1435}
1436
1437static void implement(const struct hid_device *hid, u8 *report,
1438		      unsigned offset, unsigned n, u32 value)
1439{
1440	if (unlikely(n > 32)) {
1441		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442			 __func__, n, current->comm);
1443		n = 32;
1444	} else if (n < 32) {
1445		u32 m = (1U << n) - 1;
1446
1447		if (unlikely(value > m)) {
1448			hid_warn(hid,
1449				 "%s() called with too large value %d (n: %d)! (%s)\n",
1450				 __func__, value, n, current->comm);
1451			WARN_ON(1);
1452			value &= m;
1453		}
1454	}
1455
1456	__implement(report, offset, n, value);
1457}
1458
1459/*
1460 * Search an array for a value.
1461 */
1462
1463static int search(__s32 *array, __s32 value, unsigned n)
1464{
1465	while (n--) {
1466		if (*array++ == value)
1467			return 0;
1468	}
1469	return -1;
1470}
1471
1472/**
1473 * hid_match_report - check if driver's raw_event should be called
1474 *
1475 * @hid: hid device
1476 * @report: hid report to match against
1477 *
1478 * compare hid->driver->report_table->report_type to report->type
1479 */
1480static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1481{
1482	const struct hid_report_id *id = hid->driver->report_table;
1483
1484	if (!id) /* NULL means all */
1485		return 1;
1486
1487	for (; id->report_type != HID_TERMINATOR; id++)
1488		if (id->report_type == HID_ANY_ID ||
1489				id->report_type == report->type)
1490			return 1;
1491	return 0;
1492}
1493
1494/**
1495 * hid_match_usage - check if driver's event should be called
1496 *
1497 * @hid: hid device
1498 * @usage: usage to match against
1499 *
1500 * compare hid->driver->usage_table->usage_{type,code} to
1501 * usage->usage_{type,code}
1502 */
1503static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1504{
1505	const struct hid_usage_id *id = hid->driver->usage_table;
1506
1507	if (!id) /* NULL means all */
1508		return 1;
1509
1510	for (; id->usage_type != HID_ANY_ID - 1; id++)
1511		if ((id->usage_hid == HID_ANY_ID ||
1512				id->usage_hid == usage->hid) &&
1513				(id->usage_type == HID_ANY_ID ||
1514				id->usage_type == usage->type) &&
1515				(id->usage_code == HID_ANY_ID ||
1516				 id->usage_code == usage->code))
1517			return 1;
1518	return 0;
1519}
1520
1521static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1522		struct hid_usage *usage, __s32 value, int interrupt)
1523{
1524	struct hid_driver *hdrv = hid->driver;
1525	int ret;
1526
1527	if (!list_empty(&hid->debug_list))
1528		hid_dump_input(hid, usage, value);
1529
1530	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1531		ret = hdrv->event(hid, field, usage, value);
1532		if (ret != 0) {
1533			if (ret < 0)
1534				hid_err(hid, "%s's event failed with %d\n",
1535						hdrv->name, ret);
1536			return;
1537		}
1538	}
1539
1540	if (hid->claimed & HID_CLAIMED_INPUT)
1541		hidinput_hid_event(hid, field, usage, value);
1542	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1543		hid->hiddev_hid_event(hid, field, usage, value);
1544}
1545
1546/*
1547 * Checks if the given value is valid within this field
 
 
1548 */
1549static inline int hid_array_value_is_valid(struct hid_field *field,
1550					   __s32 value)
1551{
1552	__s32 min = field->logical_minimum;
1553
1554	/*
1555	 * Value needs to be between logical min and max, and
1556	 * (value - min) is used as an index in the usage array.
1557	 * This array is of size field->maxusage
1558	 */
1559	return value >= min &&
1560	       value <= field->logical_maximum &&
1561	       value - min < field->maxusage;
1562}
1563
1564/*
1565 * Fetch the field from the data. The field content is stored for next
1566 * report processing (we do differential reporting to the layer).
1567 */
1568static void hid_input_fetch_field(struct hid_device *hid,
1569				  struct hid_field *field,
1570				  __u8 *data)
1571{
1572	unsigned n;
1573	unsigned count = field->report_count;
1574	unsigned offset = field->report_offset;
1575	unsigned size = field->report_size;
1576	__s32 min = field->logical_minimum;
 
1577	__s32 *value;
1578
1579	value = field->new_value;
1580	memset(value, 0, count * sizeof(__s32));
1581	field->ignored = false;
1582
1583	for (n = 0; n < count; n++) {
1584
1585		value[n] = min < 0 ?
1586			snto32(hid_field_extract(hid, data, offset + n * size,
1587			       size), size) :
1588			hid_field_extract(hid, data, offset + n * size, size);
1589
1590		/* Ignore report if ErrorRollOver */
1591		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1592		    hid_array_value_is_valid(field, value[n]) &&
1593		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1594			field->ignored = true;
1595			return;
1596		}
1597	}
1598}
1599
1600/*
1601 * Process a received variable field.
1602 */
1603
1604static void hid_input_var_field(struct hid_device *hid,
1605				struct hid_field *field,
1606				int interrupt)
1607{
1608	unsigned int count = field->report_count;
1609	__s32 *value = field->new_value;
1610	unsigned int n;
1611
1612	for (n = 0; n < count; n++)
1613		hid_process_event(hid,
1614				  field,
1615				  &field->usage[n],
1616				  value[n],
1617				  interrupt);
1618
1619	memcpy(field->value, value, count * sizeof(__s32));
1620}
1621
1622/*
1623 * Process a received array field. The field content is stored for
1624 * next report processing (we do differential reporting to the layer).
1625 */
1626
1627static void hid_input_array_field(struct hid_device *hid,
1628				  struct hid_field *field,
1629				  int interrupt)
1630{
1631	unsigned int n;
1632	unsigned int count = field->report_count;
1633	__s32 min = field->logical_minimum;
1634	__s32 *value;
1635
1636	value = field->new_value;
1637
1638	/* ErrorRollOver */
1639	if (field->ignored)
1640		return;
1641
1642	for (n = 0; n < count; n++) {
1643		if (hid_array_value_is_valid(field, field->value[n]) &&
1644		    search(value, field->value[n], count))
1645			hid_process_event(hid,
1646					  field,
1647					  &field->usage[field->value[n] - min],
1648					  0,
1649					  interrupt);
1650
1651		if (hid_array_value_is_valid(field, value[n]) &&
1652		    search(field->value, value[n], count))
1653			hid_process_event(hid,
1654					  field,
1655					  &field->usage[value[n] - min],
1656					  1,
1657					  interrupt);
1658	}
1659
1660	memcpy(field->value, value, count * sizeof(__s32));
1661}
1662
1663/*
1664 * Analyse a received report, and fetch the data from it. The field
1665 * content is stored for next report processing (we do differential
1666 * reporting to the layer).
1667 */
1668static void hid_process_report(struct hid_device *hid,
1669			       struct hid_report *report,
1670			       __u8 *data,
1671			       int interrupt)
1672{
1673	unsigned int a;
1674	struct hid_field_entry *entry;
1675	struct hid_field *field;
1676
1677	/* first retrieve all incoming values in data */
1678	for (a = 0; a < report->maxfield; a++)
1679		hid_input_fetch_field(hid, report->field[a], data);
1680
1681	if (!list_empty(&report->field_entry_list)) {
1682		/* INPUT_REPORT, we have a priority list of fields */
1683		list_for_each_entry(entry,
1684				    &report->field_entry_list,
1685				    list) {
1686			field = entry->field;
1687
1688			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689				hid_process_event(hid,
1690						  field,
1691						  &field->usage[entry->index],
1692						  field->new_value[entry->index],
1693						  interrupt);
1694			else
1695				hid_input_array_field(hid, field, interrupt);
1696		}
1697
1698		/* we need to do the memcpy at the end for var items */
1699		for (a = 0; a < report->maxfield; a++) {
1700			field = report->field[a];
1701
1702			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1703				memcpy(field->value, field->new_value,
1704				       field->report_count * sizeof(__s32));
1705		}
1706	} else {
1707		/* FEATURE_REPORT, regular processing */
1708		for (a = 0; a < report->maxfield; a++) {
1709			field = report->field[a];
1710
1711			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1712				hid_input_var_field(hid, field, interrupt);
1713			else
1714				hid_input_array_field(hid, field, interrupt);
1715		}
 
 
 
 
 
 
1716	}
1717}
1718
1719/*
1720 * Insert a given usage_index in a field in the list
1721 * of processed usages in the report.
1722 *
1723 * The elements of lower priority score are processed
1724 * first.
1725 */
1726static void __hid_insert_field_entry(struct hid_device *hid,
1727				     struct hid_report *report,
1728				     struct hid_field_entry *entry,
1729				     struct hid_field *field,
1730				     unsigned int usage_index)
1731{
1732	struct hid_field_entry *next;
1733
1734	entry->field = field;
1735	entry->index = usage_index;
1736	entry->priority = field->usages_priorities[usage_index];
1737
1738	/* insert the element at the correct position */
1739	list_for_each_entry(next,
1740			    &report->field_entry_list,
1741			    list) {
1742		/*
1743		 * the priority of our element is strictly higher
1744		 * than the next one, insert it before
1745		 */
1746		if (entry->priority > next->priority) {
1747			list_add_tail(&entry->list, &next->list);
1748			return;
1749		}
1750	}
1751
1752	/* lowest priority score: insert at the end */
1753	list_add_tail(&entry->list, &report->field_entry_list);
1754}
1755
1756static void hid_report_process_ordering(struct hid_device *hid,
1757					struct hid_report *report)
1758{
1759	struct hid_field *field;
1760	struct hid_field_entry *entries;
1761	unsigned int a, u, usages;
1762	unsigned int count = 0;
1763
1764	/* count the number of individual fields in the report */
1765	for (a = 0; a < report->maxfield; a++) {
1766		field = report->field[a];
1767
1768		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1769			count += field->report_count;
1770		else
1771			count++;
1772	}
1773
1774	/* allocate the memory to process the fields */
1775	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1776	if (!entries)
1777		return;
1778
1779	report->field_entries = entries;
1780
1781	/*
1782	 * walk through all fields in the report and
1783	 * store them by priority order in report->field_entry_list
1784	 *
1785	 * - Var elements are individualized (field + usage_index)
1786	 * - Arrays are taken as one, we can not chose an order for them
1787	 */
1788	usages = 0;
1789	for (a = 0; a < report->maxfield; a++) {
1790		field = report->field[a];
1791
1792		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1793			for (u = 0; u < field->report_count; u++) {
1794				__hid_insert_field_entry(hid, report,
1795							 &entries[usages],
1796							 field, u);
1797				usages++;
1798			}
1799		} else {
1800			__hid_insert_field_entry(hid, report, &entries[usages],
1801						 field, 0);
1802			usages++;
1803		}
1804	}
1805}
1806
1807static void hid_process_ordering(struct hid_device *hid)
1808{
1809	struct hid_report *report;
1810	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1811
1812	list_for_each_entry(report, &report_enum->report_list, list)
1813		hid_report_process_ordering(hid, report);
1814}
1815
1816/*
1817 * Output the field into the report.
1818 */
1819
1820static void hid_output_field(const struct hid_device *hid,
1821			     struct hid_field *field, __u8 *data)
1822{
1823	unsigned count = field->report_count;
1824	unsigned offset = field->report_offset;
1825	unsigned size = field->report_size;
1826	unsigned n;
1827
1828	for (n = 0; n < count; n++) {
1829		if (field->logical_minimum < 0)	/* signed values */
1830			implement(hid, data, offset + n * size, size,
1831				  s32ton(field->value[n], size));
1832		else				/* unsigned values */
1833			implement(hid, data, offset + n * size, size,
1834				  field->value[n]);
1835	}
1836}
1837
1838/*
1839 * Compute the size of a report.
1840 */
1841static size_t hid_compute_report_size(struct hid_report *report)
1842{
1843	if (report->size)
1844		return ((report->size - 1) >> 3) + 1;
1845
1846	return 0;
1847}
1848
1849/*
1850 * Create a report. 'data' has to be allocated using
1851 * hid_alloc_report_buf() so that it has proper size.
1852 */
1853
1854void hid_output_report(struct hid_report *report, __u8 *data)
1855{
1856	unsigned n;
1857
1858	if (report->id > 0)
1859		*data++ = report->id;
1860
1861	memset(data, 0, hid_compute_report_size(report));
1862	for (n = 0; n < report->maxfield; n++)
1863		hid_output_field(report->device, report->field[n], data);
1864}
1865EXPORT_SYMBOL_GPL(hid_output_report);
1866
1867/*
1868 * Allocator for buffer that is going to be passed to hid_output_report()
1869 */
1870u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1871{
1872	/*
1873	 * 7 extra bytes are necessary to achieve proper functionality
1874	 * of implement() working on 8 byte chunks
1875	 */
1876
1877	u32 len = hid_report_len(report) + 7;
1878
1879	return kmalloc(len, flags);
1880}
1881EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1882
1883/*
1884 * Set a field value. The report this field belongs to has to be
1885 * created and transferred to the device, to set this value in the
1886 * device.
1887 */
1888
1889int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1890{
1891	unsigned size;
1892
1893	if (!field)
1894		return -1;
1895
1896	size = field->report_size;
1897
1898	hid_dump_input(field->report->device, field->usage + offset, value);
1899
1900	if (offset >= field->report_count) {
1901		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1902				offset, field->report_count);
1903		return -1;
1904	}
1905	if (field->logical_minimum < 0) {
1906		if (value != snto32(s32ton(value, size), size)) {
1907			hid_err(field->report->device, "value %d is out of range\n", value);
1908			return -1;
1909		}
1910	}
1911	field->value[offset] = value;
1912	return 0;
1913}
1914EXPORT_SYMBOL_GPL(hid_set_field);
1915
1916static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1917		const u8 *data)
1918{
1919	struct hid_report *report;
1920	unsigned int n = 0;	/* Normally report number is 0 */
1921
1922	/* Device uses numbered reports, data[0] is report number */
1923	if (report_enum->numbered)
1924		n = *data;
1925
1926	report = report_enum->report_id_hash[n];
1927	if (report == NULL)
1928		dbg_hid("undefined report_id %u received\n", n);
1929
1930	return report;
1931}
1932
1933/*
1934 * Implement a generic .request() callback, using .raw_request()
1935 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1936 */
1937int __hid_request(struct hid_device *hid, struct hid_report *report,
1938		enum hid_class_request reqtype)
1939{
1940	char *buf;
1941	int ret;
1942	u32 len;
1943
1944	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1945	if (!buf)
1946		return -ENOMEM;
1947
1948	len = hid_report_len(report);
1949
1950	if (reqtype == HID_REQ_SET_REPORT)
1951		hid_output_report(report, buf);
1952
1953	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1954					  report->type, reqtype);
1955	if (ret < 0) {
1956		dbg_hid("unable to complete request: %d\n", ret);
1957		goto out;
1958	}
1959
1960	if (reqtype == HID_REQ_GET_REPORT)
1961		hid_input_report(hid, report->type, buf, ret, 0);
1962
1963	ret = 0;
1964
1965out:
1966	kfree(buf);
1967	return ret;
1968}
1969EXPORT_SYMBOL_GPL(__hid_request);
1970
1971int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1972			 int interrupt)
1973{
1974	struct hid_report_enum *report_enum = hid->report_enum + type;
1975	struct hid_report *report;
1976	struct hid_driver *hdrv;
1977	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1978	u32 rsize, csize = size;
1979	u8 *cdata = data;
1980	int ret = 0;
1981
1982	report = hid_get_report(report_enum, data);
1983	if (!report)
1984		goto out;
1985
1986	if (report_enum->numbered) {
1987		cdata++;
1988		csize--;
1989	}
1990
1991	rsize = hid_compute_report_size(report);
1992
1993	if (hid->ll_driver->max_buffer_size)
1994		max_buffer_size = hid->ll_driver->max_buffer_size;
1995
1996	if (report_enum->numbered && rsize >= max_buffer_size)
1997		rsize = max_buffer_size - 1;
1998	else if (rsize > max_buffer_size)
1999		rsize = max_buffer_size;
2000
2001	if (csize < rsize) {
2002		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2003				csize, rsize);
2004		memset(cdata + csize, 0, rsize - csize);
2005	}
2006
2007	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2008		hid->hiddev_report_event(hid, report);
2009	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2010		ret = hidraw_report_event(hid, data, size);
2011		if (ret)
2012			goto out;
2013	}
2014
2015	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2016		hid_process_report(hid, report, cdata, interrupt);
 
2017		hdrv = hid->driver;
2018		if (hdrv && hdrv->report)
2019			hdrv->report(hid, report);
2020	}
2021
2022	if (hid->claimed & HID_CLAIMED_INPUT)
2023		hidinput_report_event(hid, report);
2024out:
2025	return ret;
2026}
2027EXPORT_SYMBOL_GPL(hid_report_raw_event);
2028
2029/**
2030 * hid_input_report - report data from lower layer (usb, bt...)
2031 *
2032 * @hid: hid device
2033 * @type: HID report type (HID_*_REPORT)
2034 * @data: report contents
2035 * @size: size of data parameter
2036 * @interrupt: distinguish between interrupt and control transfers
2037 *
2038 * This is data entry for lower layers.
2039 */
2040int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2041		     int interrupt)
2042{
2043	struct hid_report_enum *report_enum;
2044	struct hid_driver *hdrv;
2045	struct hid_report *report;
2046	int ret = 0;
2047
2048	if (!hid)
2049		return -ENODEV;
2050
2051	if (down_trylock(&hid->driver_input_lock))
2052		return -EBUSY;
2053
2054	if (!hid->driver) {
2055		ret = -ENODEV;
2056		goto unlock;
2057	}
2058	report_enum = hid->report_enum + type;
2059	hdrv = hid->driver;
2060
2061	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2062	if (IS_ERR(data)) {
2063		ret = PTR_ERR(data);
2064		goto unlock;
2065	}
2066
2067	if (!size) {
2068		dbg_hid("empty report\n");
2069		ret = -1;
2070		goto unlock;
2071	}
2072
2073	/* Avoid unnecessary overhead if debugfs is disabled */
2074	if (!list_empty(&hid->debug_list))
2075		hid_dump_report(hid, type, data, size);
2076
2077	report = hid_get_report(report_enum, data);
2078
2079	if (!report) {
2080		ret = -1;
2081		goto unlock;
2082	}
2083
2084	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2085		ret = hdrv->raw_event(hid, report, data, size);
2086		if (ret < 0)
2087			goto unlock;
2088	}
2089
2090	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2091
2092unlock:
2093	up(&hid->driver_input_lock);
2094	return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_input_report);
2097
2098bool hid_match_one_id(const struct hid_device *hdev,
2099		      const struct hid_device_id *id)
2100{
2101	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2102		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2103		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2104		(id->product == HID_ANY_ID || id->product == hdev->product);
2105}
2106
2107const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2108		const struct hid_device_id *id)
2109{
2110	for (; id->bus; id++)
2111		if (hid_match_one_id(hdev, id))
2112			return id;
2113
2114	return NULL;
2115}
2116EXPORT_SYMBOL_GPL(hid_match_id);
2117
2118static const struct hid_device_id hid_hiddev_list[] = {
2119	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2120	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2121	{ }
2122};
2123
2124static bool hid_hiddev(struct hid_device *hdev)
2125{
2126	return !!hid_match_id(hdev, hid_hiddev_list);
2127}
2128
2129
2130static ssize_t
2131read_report_descriptor(struct file *filp, struct kobject *kobj,
2132		struct bin_attribute *attr,
2133		char *buf, loff_t off, size_t count)
2134{
2135	struct device *dev = kobj_to_dev(kobj);
2136	struct hid_device *hdev = to_hid_device(dev);
2137
2138	if (off >= hdev->rsize)
2139		return 0;
2140
2141	if (off + count > hdev->rsize)
2142		count = hdev->rsize - off;
2143
2144	memcpy(buf, hdev->rdesc + off, count);
2145
2146	return count;
2147}
2148
2149static ssize_t
2150show_country(struct device *dev, struct device_attribute *attr,
2151		char *buf)
2152{
2153	struct hid_device *hdev = to_hid_device(dev);
2154
2155	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2156}
2157
2158static struct bin_attribute dev_bin_attr_report_desc = {
2159	.attr = { .name = "report_descriptor", .mode = 0444 },
2160	.read = read_report_descriptor,
2161	.size = HID_MAX_DESCRIPTOR_SIZE,
2162};
2163
2164static const struct device_attribute dev_attr_country = {
2165	.attr = { .name = "country", .mode = 0444 },
2166	.show = show_country,
2167};
2168
2169int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2170{
2171	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2172		"Joystick", "Gamepad", "Keyboard", "Keypad",
2173		"Multi-Axis Controller"
2174	};
2175	const char *type, *bus;
2176	char buf[64] = "";
2177	unsigned int i;
2178	int len;
2179	int ret;
2180
2181	ret = hid_bpf_connect_device(hdev);
2182	if (ret)
2183		return ret;
2184
2185	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2186		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2187	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2188		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2189	if (hdev->bus != BUS_USB)
2190		connect_mask &= ~HID_CONNECT_HIDDEV;
2191	if (hid_hiddev(hdev))
2192		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2193
2194	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2195				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2196		hdev->claimed |= HID_CLAIMED_INPUT;
2197
2198	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2199			!hdev->hiddev_connect(hdev,
2200				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2201		hdev->claimed |= HID_CLAIMED_HIDDEV;
2202	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2203		hdev->claimed |= HID_CLAIMED_HIDRAW;
2204
2205	if (connect_mask & HID_CONNECT_DRIVER)
2206		hdev->claimed |= HID_CLAIMED_DRIVER;
2207
2208	/* Drivers with the ->raw_event callback set are not required to connect
2209	 * to any other listener. */
2210	if (!hdev->claimed && !hdev->driver->raw_event) {
2211		hid_err(hdev, "device has no listeners, quitting\n");
2212		return -ENODEV;
2213	}
2214
2215	hid_process_ordering(hdev);
2216
2217	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2218			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2219		hdev->ff_init(hdev);
2220
2221	len = 0;
2222	if (hdev->claimed & HID_CLAIMED_INPUT)
2223		len += sprintf(buf + len, "input");
2224	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2225		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2226				((struct hiddev *)hdev->hiddev)->minor);
2227	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2228		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2229				((struct hidraw *)hdev->hidraw)->minor);
2230
2231	type = "Device";
2232	for (i = 0; i < hdev->maxcollection; i++) {
2233		struct hid_collection *col = &hdev->collection[i];
2234		if (col->type == HID_COLLECTION_APPLICATION &&
2235		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2236		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2237			type = types[col->usage & 0xffff];
2238			break;
2239		}
2240	}
2241
2242	switch (hdev->bus) {
2243	case BUS_USB:
2244		bus = "USB";
2245		break;
2246	case BUS_BLUETOOTH:
2247		bus = "BLUETOOTH";
2248		break;
2249	case BUS_I2C:
2250		bus = "I2C";
2251		break;
2252	case BUS_VIRTUAL:
2253		bus = "VIRTUAL";
2254		break;
2255	case BUS_INTEL_ISHTP:
2256	case BUS_AMD_SFH:
2257		bus = "SENSOR HUB";
2258		break;
2259	default:
2260		bus = "<UNKNOWN>";
2261	}
2262
2263	ret = device_create_file(&hdev->dev, &dev_attr_country);
2264	if (ret)
2265		hid_warn(hdev,
2266			 "can't create sysfs country code attribute err: %d\n", ret);
2267
2268	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2269		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2270		 type, hdev->name, hdev->phys);
2271
2272	return 0;
2273}
2274EXPORT_SYMBOL_GPL(hid_connect);
2275
2276void hid_disconnect(struct hid_device *hdev)
2277{
2278	device_remove_file(&hdev->dev, &dev_attr_country);
2279	if (hdev->claimed & HID_CLAIMED_INPUT)
2280		hidinput_disconnect(hdev);
2281	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2282		hdev->hiddev_disconnect(hdev);
2283	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2284		hidraw_disconnect(hdev);
2285	hdev->claimed = 0;
2286
2287	hid_bpf_disconnect_device(hdev);
2288}
2289EXPORT_SYMBOL_GPL(hid_disconnect);
2290
2291/**
2292 * hid_hw_start - start underlying HW
2293 * @hdev: hid device
2294 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2295 *
2296 * Call this in probe function *after* hid_parse. This will setup HW
2297 * buffers and start the device (if not defeirred to device open).
2298 * hid_hw_stop must be called if this was successful.
2299 */
2300int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2301{
2302	int error;
2303
2304	error = hdev->ll_driver->start(hdev);
2305	if (error)
2306		return error;
2307
2308	if (connect_mask) {
2309		error = hid_connect(hdev, connect_mask);
2310		if (error) {
2311			hdev->ll_driver->stop(hdev);
2312			return error;
2313		}
2314	}
2315
2316	return 0;
2317}
2318EXPORT_SYMBOL_GPL(hid_hw_start);
2319
2320/**
2321 * hid_hw_stop - stop underlying HW
2322 * @hdev: hid device
2323 *
2324 * This is usually called from remove function or from probe when something
2325 * failed and hid_hw_start was called already.
2326 */
2327void hid_hw_stop(struct hid_device *hdev)
2328{
2329	hid_disconnect(hdev);
2330	hdev->ll_driver->stop(hdev);
2331}
2332EXPORT_SYMBOL_GPL(hid_hw_stop);
2333
2334/**
2335 * hid_hw_open - signal underlying HW to start delivering events
2336 * @hdev: hid device
2337 *
2338 * Tell underlying HW to start delivering events from the device.
2339 * This function should be called sometime after successful call
2340 * to hid_hw_start().
2341 */
2342int hid_hw_open(struct hid_device *hdev)
2343{
2344	int ret;
2345
2346	ret = mutex_lock_killable(&hdev->ll_open_lock);
2347	if (ret)
2348		return ret;
2349
2350	if (!hdev->ll_open_count++) {
2351		ret = hdev->ll_driver->open(hdev);
2352		if (ret)
2353			hdev->ll_open_count--;
2354	}
2355
2356	mutex_unlock(&hdev->ll_open_lock);
2357	return ret;
2358}
2359EXPORT_SYMBOL_GPL(hid_hw_open);
2360
2361/**
2362 * hid_hw_close - signal underlaying HW to stop delivering events
2363 *
2364 * @hdev: hid device
2365 *
2366 * This function indicates that we are not interested in the events
2367 * from this device anymore. Delivery of events may or may not stop,
2368 * depending on the number of users still outstanding.
2369 */
2370void hid_hw_close(struct hid_device *hdev)
2371{
2372	mutex_lock(&hdev->ll_open_lock);
2373	if (!--hdev->ll_open_count)
2374		hdev->ll_driver->close(hdev);
2375	mutex_unlock(&hdev->ll_open_lock);
2376}
2377EXPORT_SYMBOL_GPL(hid_hw_close);
2378
2379/**
2380 * hid_hw_request - send report request to device
2381 *
2382 * @hdev: hid device
2383 * @report: report to send
2384 * @reqtype: hid request type
2385 */
2386void hid_hw_request(struct hid_device *hdev,
2387		    struct hid_report *report, enum hid_class_request reqtype)
2388{
2389	if (hdev->ll_driver->request)
2390		return hdev->ll_driver->request(hdev, report, reqtype);
2391
2392	__hid_request(hdev, report, reqtype);
2393}
2394EXPORT_SYMBOL_GPL(hid_hw_request);
2395
2396/**
2397 * hid_hw_raw_request - send report request to device
2398 *
2399 * @hdev: hid device
2400 * @reportnum: report ID
2401 * @buf: in/out data to transfer
2402 * @len: length of buf
2403 * @rtype: HID report type
2404 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2405 *
2406 * Return: count of data transferred, negative if error
2407 *
2408 * Same behavior as hid_hw_request, but with raw buffers instead.
2409 */
2410int hid_hw_raw_request(struct hid_device *hdev,
2411		       unsigned char reportnum, __u8 *buf,
2412		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2413{
2414	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2415
2416	if (hdev->ll_driver->max_buffer_size)
2417		max_buffer_size = hdev->ll_driver->max_buffer_size;
2418
2419	if (len < 1 || len > max_buffer_size || !buf)
2420		return -EINVAL;
2421
2422	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2423					    rtype, reqtype);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2426
2427/**
2428 * hid_hw_output_report - send output report to device
2429 *
2430 * @hdev: hid device
2431 * @buf: raw data to transfer
2432 * @len: length of buf
2433 *
2434 * Return: count of data transferred, negative if error
2435 */
2436int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2437{
2438	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2439
2440	if (hdev->ll_driver->max_buffer_size)
2441		max_buffer_size = hdev->ll_driver->max_buffer_size;
2442
2443	if (len < 1 || len > max_buffer_size || !buf)
2444		return -EINVAL;
2445
2446	if (hdev->ll_driver->output_report)
2447		return hdev->ll_driver->output_report(hdev, buf, len);
2448
2449	return -ENOSYS;
2450}
2451EXPORT_SYMBOL_GPL(hid_hw_output_report);
2452
2453#ifdef CONFIG_PM
2454int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2455{
2456	if (hdev->driver && hdev->driver->suspend)
2457		return hdev->driver->suspend(hdev, state);
2458
2459	return 0;
2460}
2461EXPORT_SYMBOL_GPL(hid_driver_suspend);
2462
2463int hid_driver_reset_resume(struct hid_device *hdev)
2464{
2465	if (hdev->driver && hdev->driver->reset_resume)
2466		return hdev->driver->reset_resume(hdev);
2467
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2471
2472int hid_driver_resume(struct hid_device *hdev)
2473{
2474	if (hdev->driver && hdev->driver->resume)
2475		return hdev->driver->resume(hdev);
2476
2477	return 0;
2478}
2479EXPORT_SYMBOL_GPL(hid_driver_resume);
2480#endif /* CONFIG_PM */
2481
2482struct hid_dynid {
2483	struct list_head list;
2484	struct hid_device_id id;
2485};
2486
2487/**
2488 * new_id_store - add a new HID device ID to this driver and re-probe devices
2489 * @drv: target device driver
2490 * @buf: buffer for scanning device ID data
2491 * @count: input size
2492 *
2493 * Adds a new dynamic hid device ID to this driver,
2494 * and causes the driver to probe for all devices again.
2495 */
2496static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2497		size_t count)
2498{
2499	struct hid_driver *hdrv = to_hid_driver(drv);
2500	struct hid_dynid *dynid;
2501	__u32 bus, vendor, product;
2502	unsigned long driver_data = 0;
2503	int ret;
2504
2505	ret = sscanf(buf, "%x %x %x %lx",
2506			&bus, &vendor, &product, &driver_data);
2507	if (ret < 3)
2508		return -EINVAL;
2509
2510	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2511	if (!dynid)
2512		return -ENOMEM;
2513
2514	dynid->id.bus = bus;
2515	dynid->id.group = HID_GROUP_ANY;
2516	dynid->id.vendor = vendor;
2517	dynid->id.product = product;
2518	dynid->id.driver_data = driver_data;
2519
2520	spin_lock(&hdrv->dyn_lock);
2521	list_add_tail(&dynid->list, &hdrv->dyn_list);
2522	spin_unlock(&hdrv->dyn_lock);
2523
2524	ret = driver_attach(&hdrv->driver);
2525
2526	return ret ? : count;
2527}
2528static DRIVER_ATTR_WO(new_id);
2529
2530static struct attribute *hid_drv_attrs[] = {
2531	&driver_attr_new_id.attr,
2532	NULL,
2533};
2534ATTRIBUTE_GROUPS(hid_drv);
2535
2536static void hid_free_dynids(struct hid_driver *hdrv)
2537{
2538	struct hid_dynid *dynid, *n;
2539
2540	spin_lock(&hdrv->dyn_lock);
2541	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2542		list_del(&dynid->list);
2543		kfree(dynid);
2544	}
2545	spin_unlock(&hdrv->dyn_lock);
2546}
2547
2548const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2549					     struct hid_driver *hdrv)
2550{
2551	struct hid_dynid *dynid;
2552
2553	spin_lock(&hdrv->dyn_lock);
2554	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2555		if (hid_match_one_id(hdev, &dynid->id)) {
2556			spin_unlock(&hdrv->dyn_lock);
2557			return &dynid->id;
2558		}
2559	}
2560	spin_unlock(&hdrv->dyn_lock);
2561
2562	return hid_match_id(hdev, hdrv->id_table);
2563}
2564EXPORT_SYMBOL_GPL(hid_match_device);
2565
2566static int hid_bus_match(struct device *dev, struct device_driver *drv)
2567{
2568	struct hid_driver *hdrv = to_hid_driver(drv);
2569	struct hid_device *hdev = to_hid_device(dev);
2570
2571	return hid_match_device(hdev, hdrv) != NULL;
2572}
2573
2574/**
2575 * hid_compare_device_paths - check if both devices share the same path
2576 * @hdev_a: hid device
2577 * @hdev_b: hid device
2578 * @separator: char to use as separator
2579 *
2580 * Check if two devices share the same path up to the last occurrence of
2581 * the separator char. Both paths must exist (i.e., zero-length paths
2582 * don't match).
2583 */
2584bool hid_compare_device_paths(struct hid_device *hdev_a,
2585			      struct hid_device *hdev_b, char separator)
2586{
2587	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2588	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2589
2590	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2591		return false;
2592
2593	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2594}
2595EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2596
2597static bool hid_check_device_match(struct hid_device *hdev,
2598				   struct hid_driver *hdrv,
2599				   const struct hid_device_id **id)
2600{
2601	*id = hid_match_device(hdev, hdrv);
2602	if (!*id)
2603		return false;
2604
2605	if (hdrv->match)
2606		return hdrv->match(hdev, hid_ignore_special_drivers);
2607
2608	/*
2609	 * hid-generic implements .match(), so we must be dealing with a
2610	 * different HID driver here, and can simply check if
2611	 * hid_ignore_special_drivers is set or not.
2612	 */
2613	return !hid_ignore_special_drivers;
2614}
2615
2616static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2617{
2618	const struct hid_device_id *id;
2619	int ret;
2620
2621	if (!hid_check_device_match(hdev, hdrv, &id))
2622		return -ENODEV;
2623
2624	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2625	if (!hdev->devres_group_id)
2626		return -ENOMEM;
2627
2628	/* reset the quirks that has been previously set */
2629	hdev->quirks = hid_lookup_quirk(hdev);
2630	hdev->driver = hdrv;
2631
2632	if (hdrv->probe) {
2633		ret = hdrv->probe(hdev, id);
2634	} else { /* default probe */
2635		ret = hid_open_report(hdev);
2636		if (!ret)
2637			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2638	}
2639
2640	/*
2641	 * Note that we are not closing the devres group opened above so
2642	 * even resources that were attached to the device after probe is
2643	 * run are released when hid_device_remove() is executed. This is
2644	 * needed as some drivers would allocate additional resources,
2645	 * for example when updating firmware.
2646	 */
2647
2648	if (ret) {
2649		devres_release_group(&hdev->dev, hdev->devres_group_id);
2650		hid_close_report(hdev);
2651		hdev->driver = NULL;
2652	}
2653
2654	return ret;
2655}
2656
2657static int hid_device_probe(struct device *dev)
2658{
 
2659	struct hid_device *hdev = to_hid_device(dev);
2660	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2661	int ret = 0;
2662
2663	if (down_interruptible(&hdev->driver_input_lock))
2664		return -EINTR;
 
 
 
2665
2666	hdev->io_started = false;
2667	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2668
2669	if (!hdev->driver)
2670		ret = __hid_device_probe(hdev, hdrv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2672	if (!hdev->io_started)
2673		up(&hdev->driver_input_lock);
2674
2675	return ret;
2676}
2677
2678static void hid_device_remove(struct device *dev)
2679{
2680	struct hid_device *hdev = to_hid_device(dev);
2681	struct hid_driver *hdrv;
 
2682
2683	down(&hdev->driver_input_lock);
 
 
 
2684	hdev->io_started = false;
2685
2686	hdrv = hdev->driver;
2687	if (hdrv) {
2688		if (hdrv->remove)
2689			hdrv->remove(hdev);
2690		else /* default remove */
2691			hid_hw_stop(hdev);
2692
2693		/* Release all devres resources allocated by the driver */
2694		devres_release_group(&hdev->dev, hdev->devres_group_id);
2695
2696		hid_close_report(hdev);
2697		hdev->driver = NULL;
2698	}
2699
2700	if (!hdev->io_started)
2701		up(&hdev->driver_input_lock);
 
 
2702}
2703
2704static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2705			     char *buf)
2706{
2707	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2708
2709	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2710			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2711}
2712static DEVICE_ATTR_RO(modalias);
2713
2714static struct attribute *hid_dev_attrs[] = {
2715	&dev_attr_modalias.attr,
2716	NULL,
2717};
2718static struct bin_attribute *hid_dev_bin_attrs[] = {
2719	&dev_bin_attr_report_desc,
2720	NULL
2721};
2722static const struct attribute_group hid_dev_group = {
2723	.attrs = hid_dev_attrs,
2724	.bin_attrs = hid_dev_bin_attrs,
2725};
2726__ATTRIBUTE_GROUPS(hid_dev);
2727
2728static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2729{
2730	const struct hid_device *hdev = to_hid_device(dev);
2731
2732	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2733			hdev->bus, hdev->vendor, hdev->product))
2734		return -ENOMEM;
2735
2736	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2737		return -ENOMEM;
2738
2739	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2740		return -ENOMEM;
2741
2742	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2743		return -ENOMEM;
2744
2745	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2746			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2747		return -ENOMEM;
2748
2749	return 0;
2750}
2751
2752const struct bus_type hid_bus_type = {
2753	.name		= "hid",
2754	.dev_groups	= hid_dev_groups,
2755	.drv_groups	= hid_drv_groups,
2756	.match		= hid_bus_match,
2757	.probe		= hid_device_probe,
2758	.remove		= hid_device_remove,
2759	.uevent		= hid_uevent,
2760};
2761EXPORT_SYMBOL(hid_bus_type);
2762
2763int hid_add_device(struct hid_device *hdev)
2764{
2765	static atomic_t id = ATOMIC_INIT(0);
2766	int ret;
2767
2768	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2769		return -EBUSY;
2770
2771	hdev->quirks = hid_lookup_quirk(hdev);
2772
2773	/* we need to kill them here, otherwise they will stay allocated to
2774	 * wait for coming driver */
2775	if (hid_ignore(hdev))
2776		return -ENODEV;
2777
2778	/*
2779	 * Check for the mandatory transport channel.
2780	 */
2781	 if (!hdev->ll_driver->raw_request) {
2782		hid_err(hdev, "transport driver missing .raw_request()\n");
2783		return -EINVAL;
2784	 }
2785
2786	/*
2787	 * Read the device report descriptor once and use as template
2788	 * for the driver-specific modifications.
2789	 */
2790	ret = hdev->ll_driver->parse(hdev);
2791	if (ret)
2792		return ret;
2793	if (!hdev->dev_rdesc)
2794		return -ENODEV;
2795
2796	/*
2797	 * Scan generic devices for group information
2798	 */
2799	if (hid_ignore_special_drivers) {
2800		hdev->group = HID_GROUP_GENERIC;
2801	} else if (!hdev->group &&
2802		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2803		ret = hid_scan_report(hdev);
2804		if (ret)
2805			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2806	}
2807
2808	hdev->id = atomic_inc_return(&id);
2809
2810	/* XXX hack, any other cleaner solution after the driver core
2811	 * is converted to allow more than 20 bytes as the device name? */
2812	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2813		     hdev->vendor, hdev->product, hdev->id);
2814
2815	hid_debug_register(hdev, dev_name(&hdev->dev));
2816	ret = device_add(&hdev->dev);
2817	if (!ret)
2818		hdev->status |= HID_STAT_ADDED;
2819	else
2820		hid_debug_unregister(hdev);
2821
2822	return ret;
2823}
2824EXPORT_SYMBOL_GPL(hid_add_device);
2825
2826/**
2827 * hid_allocate_device - allocate new hid device descriptor
2828 *
2829 * Allocate and initialize hid device, so that hid_destroy_device might be
2830 * used to free it.
2831 *
2832 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2833 * error value.
2834 */
2835struct hid_device *hid_allocate_device(void)
2836{
2837	struct hid_device *hdev;
2838	int ret = -ENOMEM;
2839
2840	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2841	if (hdev == NULL)
2842		return ERR_PTR(ret);
2843
2844	device_initialize(&hdev->dev);
2845	hdev->dev.release = hid_device_release;
2846	hdev->dev.bus = &hid_bus_type;
2847	device_enable_async_suspend(&hdev->dev);
2848
2849	hid_close_report(hdev);
2850
2851	init_waitqueue_head(&hdev->debug_wait);
2852	INIT_LIST_HEAD(&hdev->debug_list);
2853	spin_lock_init(&hdev->debug_list_lock);
2854	sema_init(&hdev->driver_input_lock, 1);
2855	mutex_init(&hdev->ll_open_lock);
2856	kref_init(&hdev->ref);
2857
2858	hid_bpf_device_init(hdev);
2859
2860	return hdev;
2861}
2862EXPORT_SYMBOL_GPL(hid_allocate_device);
2863
2864static void hid_remove_device(struct hid_device *hdev)
2865{
2866	if (hdev->status & HID_STAT_ADDED) {
2867		device_del(&hdev->dev);
2868		hid_debug_unregister(hdev);
2869		hdev->status &= ~HID_STAT_ADDED;
2870	}
2871	kfree(hdev->dev_rdesc);
2872	hdev->dev_rdesc = NULL;
2873	hdev->dev_rsize = 0;
2874}
2875
2876/**
2877 * hid_destroy_device - free previously allocated device
2878 *
2879 * @hdev: hid device
2880 *
2881 * If you allocate hid_device through hid_allocate_device, you should ever
2882 * free by this function.
2883 */
2884void hid_destroy_device(struct hid_device *hdev)
2885{
2886	hid_bpf_destroy_device(hdev);
2887	hid_remove_device(hdev);
2888	put_device(&hdev->dev);
2889}
2890EXPORT_SYMBOL_GPL(hid_destroy_device);
2891
2892
2893static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2894{
2895	struct hid_driver *hdrv = data;
2896	struct hid_device *hdev = to_hid_device(dev);
2897
2898	if (hdev->driver == hdrv &&
2899	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2900	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2901		return device_reprobe(dev);
2902
2903	return 0;
2904}
2905
2906static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2907{
2908	struct hid_driver *hdrv = to_hid_driver(drv);
2909
2910	if (hdrv->match) {
2911		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2912				 __hid_bus_reprobe_drivers);
2913	}
2914
2915	return 0;
2916}
2917
2918static int __bus_removed_driver(struct device_driver *drv, void *data)
2919{
2920	return bus_rescan_devices(&hid_bus_type);
2921}
2922
2923int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2924		const char *mod_name)
2925{
2926	int ret;
2927
2928	hdrv->driver.name = hdrv->name;
2929	hdrv->driver.bus = &hid_bus_type;
2930	hdrv->driver.owner = owner;
2931	hdrv->driver.mod_name = mod_name;
2932
2933	INIT_LIST_HEAD(&hdrv->dyn_list);
2934	spin_lock_init(&hdrv->dyn_lock);
2935
2936	ret = driver_register(&hdrv->driver);
2937
2938	if (ret == 0)
2939		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2940				 __hid_bus_driver_added);
2941
2942	return ret;
2943}
2944EXPORT_SYMBOL_GPL(__hid_register_driver);
2945
2946void hid_unregister_driver(struct hid_driver *hdrv)
2947{
2948	driver_unregister(&hdrv->driver);
2949	hid_free_dynids(hdrv);
2950
2951	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2952}
2953EXPORT_SYMBOL_GPL(hid_unregister_driver);
2954
2955int hid_check_keys_pressed(struct hid_device *hid)
2956{
2957	struct hid_input *hidinput;
2958	int i;
2959
2960	if (!(hid->claimed & HID_CLAIMED_INPUT))
2961		return 0;
2962
2963	list_for_each_entry(hidinput, &hid->inputs, list) {
2964		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2965			if (hidinput->input->key[i])
2966				return 1;
2967	}
2968
2969	return 0;
2970}
 
2971EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2972
2973#ifdef CONFIG_HID_BPF
2974static struct hid_bpf_ops hid_ops = {
2975	.hid_get_report = hid_get_report,
2976	.hid_hw_raw_request = hid_hw_raw_request,
2977	.owner = THIS_MODULE,
2978	.bus_type = &hid_bus_type,
2979};
2980#endif
2981
2982static int __init hid_init(void)
2983{
2984	int ret;
2985
 
 
 
 
2986	ret = bus_register(&hid_bus_type);
2987	if (ret) {
2988		pr_err("can't register hid bus\n");
2989		goto err;
2990	}
2991
2992#ifdef CONFIG_HID_BPF
2993	hid_bpf_ops = &hid_ops;
2994#endif
2995
2996	ret = hidraw_init();
2997	if (ret)
2998		goto err_bus;
2999
3000	hid_debug_init();
3001
3002	return 0;
3003err_bus:
3004	bus_unregister(&hid_bus_type);
3005err:
3006	return ret;
3007}
3008
3009static void __exit hid_exit(void)
3010{
3011#ifdef CONFIG_HID_BPF
3012	hid_bpf_ops = NULL;
3013#endif
3014	hid_debug_exit();
3015	hidraw_exit();
3016	bus_unregister(&hid_bus_type);
3017	hid_quirks_exit(HID_BUS_ANY);
3018}
3019
3020module_init(hid_init);
3021module_exit(hid_exit);
3022
3023MODULE_AUTHOR("Andreas Gal");
3024MODULE_AUTHOR("Vojtech Pavlik");
3025MODULE_AUTHOR("Jiri Kosina");
3026MODULE_LICENSE("GPL");