Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44int hid_debug = 0;
45module_param_named(debug, hid_debug, int, 0600);
46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47EXPORT_SYMBOL_GPL(hid_debug);
48
49static int hid_ignore_special_drivers = 0;
50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53/*
54 * Register a new report for a device.
55 */
56
57struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60{
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84
85 return report;
86}
87EXPORT_SYMBOL_GPL(hid_register_report);
88
89/*
90 * Register a new field for this report.
91 */
92
93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94{
95 struct hid_field *field;
96
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
100 }
101
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
107
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
113
114 return field;
115}
116
117/*
118 * Open a collection. The type/usage is pushed on the stack.
119 */
120
121static int open_collection(struct hid_parser *parser, unsigned type)
122{
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
133
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
139
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
142 }
143
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
148 2),
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
153 }
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
163 }
164
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
167
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
175
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
178
179 return 0;
180}
181
182/*
183 * Close a collection.
184 */
185
186static int close_collection(struct hid_parser *parser)
187{
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
191 }
192 parser->collection_stack_ptr--;
193 return 0;
194}
195
196/*
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
199 */
200
201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202{
203 struct hid_collection *collection = parser->device->collection;
204 int n;
205
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
210 }
211 return 0; /* we know nothing about this usage type */
212}
213
214/*
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
217 */
218
219static void complete_usage(struct hid_parser *parser, unsigned int index)
220{
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
224}
225
226/*
227 * Add a usage to the temporary parser table.
228 */
229
230static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231{
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
235 }
236 parser->local.usage[parser->local.usage_index] = usage;
237
238 /*
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
241 */
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
244
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
251}
252
253/*
254 * Register a new field for this report.
255 */
256
257static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258{
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int usages;
262 unsigned int offset;
263 unsigned int i;
264 unsigned int application;
265
266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267
268 report = hid_register_report(parser->device, report_type,
269 parser->global.report_id, application);
270 if (!report) {
271 hid_err(parser->device, "hid_register_report failed\n");
272 return -1;
273 }
274
275 /* Handle both signed and unsigned cases properly */
276 if ((parser->global.logical_minimum < 0 &&
277 parser->global.logical_maximum <
278 parser->global.logical_minimum) ||
279 (parser->global.logical_minimum >= 0 &&
280 (__u32)parser->global.logical_maximum <
281 (__u32)parser->global.logical_minimum)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser->global.logical_minimum,
284 parser->global.logical_maximum);
285 return -1;
286 }
287
288 offset = report->size;
289 report->size += parser->global.report_size * parser->global.report_count;
290
291 /* Total size check: Allow for possible report index byte */
292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293 hid_err(parser->device, "report is too long\n");
294 return -1;
295 }
296
297 if (!parser->local.usage_index) /* Ignore padding fields */
298 return 0;
299
300 usages = max_t(unsigned, parser->local.usage_index,
301 parser->global.report_count);
302
303 field = hid_register_field(report, usages, parser->global.report_count);
304 if (!field)
305 return 0;
306
307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309 field->application = application;
310
311 for (i = 0; i < usages; i++) {
312 unsigned j = i;
313 /* Duplicate the last usage we parsed if we have excess values */
314 if (i >= parser->local.usage_index)
315 j = parser->local.usage_index - 1;
316 field->usage[i].hid = parser->local.usage[j];
317 field->usage[i].collection_index =
318 parser->local.collection_index[j];
319 field->usage[i].usage_index = i;
320 field->usage[i].resolution_multiplier = 1;
321 }
322
323 field->maxusage = usages;
324 field->flags = flags;
325 field->report_offset = offset;
326 field->report_type = report_type;
327 field->report_size = parser->global.report_size;
328 field->report_count = parser->global.report_count;
329 field->logical_minimum = parser->global.logical_minimum;
330 field->logical_maximum = parser->global.logical_maximum;
331 field->physical_minimum = parser->global.physical_minimum;
332 field->physical_maximum = parser->global.physical_maximum;
333 field->unit_exponent = parser->global.unit_exponent;
334 field->unit = parser->global.unit;
335
336 return 0;
337}
338
339/*
340 * Read data value from item.
341 */
342
343static u32 item_udata(struct hid_item *item)
344{
345 switch (item->size) {
346 case 1: return item->data.u8;
347 case 2: return item->data.u16;
348 case 4: return item->data.u32;
349 }
350 return 0;
351}
352
353static s32 item_sdata(struct hid_item *item)
354{
355 switch (item->size) {
356 case 1: return item->data.s8;
357 case 2: return item->data.s16;
358 case 4: return item->data.s32;
359 }
360 return 0;
361}
362
363/*
364 * Process a global item.
365 */
366
367static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368{
369 __s32 raw_value;
370 switch (item->tag) {
371 case HID_GLOBAL_ITEM_TAG_PUSH:
372
373 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374 hid_err(parser->device, "global environment stack overflow\n");
375 return -1;
376 }
377
378 memcpy(parser->global_stack + parser->global_stack_ptr++,
379 &parser->global, sizeof(struct hid_global));
380 return 0;
381
382 case HID_GLOBAL_ITEM_TAG_POP:
383
384 if (!parser->global_stack_ptr) {
385 hid_err(parser->device, "global environment stack underflow\n");
386 return -1;
387 }
388
389 memcpy(&parser->global, parser->global_stack +
390 --parser->global_stack_ptr, sizeof(struct hid_global));
391 return 0;
392
393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394 parser->global.usage_page = item_udata(item);
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398 parser->global.logical_minimum = item_sdata(item);
399 return 0;
400
401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402 if (parser->global.logical_minimum < 0)
403 parser->global.logical_maximum = item_sdata(item);
404 else
405 parser->global.logical_maximum = item_udata(item);
406 return 0;
407
408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409 parser->global.physical_minimum = item_sdata(item);
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413 if (parser->global.physical_minimum < 0)
414 parser->global.physical_maximum = item_sdata(item);
415 else
416 parser->global.physical_maximum = item_udata(item);
417 return 0;
418
419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420 /* Many devices provide unit exponent as a two's complement
421 * nibble due to the common misunderstanding of HID
422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423 * both this and the standard encoding. */
424 raw_value = item_sdata(item);
425 if (!(raw_value & 0xfffffff0))
426 parser->global.unit_exponent = hid_snto32(raw_value, 4);
427 else
428 parser->global.unit_exponent = raw_value;
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_UNIT:
432 parser->global.unit = item_udata(item);
433 return 0;
434
435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436 parser->global.report_size = item_udata(item);
437 if (parser->global.report_size > 256) {
438 hid_err(parser->device, "invalid report_size %d\n",
439 parser->global.report_size);
440 return -1;
441 }
442 return 0;
443
444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445 parser->global.report_count = item_udata(item);
446 if (parser->global.report_count > HID_MAX_USAGES) {
447 hid_err(parser->device, "invalid report_count %d\n",
448 parser->global.report_count);
449 return -1;
450 }
451 return 0;
452
453 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454 parser->global.report_id = item_udata(item);
455 if (parser->global.report_id == 0 ||
456 parser->global.report_id >= HID_MAX_IDS) {
457 hid_err(parser->device, "report_id %u is invalid\n",
458 parser->global.report_id);
459 return -1;
460 }
461 return 0;
462
463 default:
464 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465 return -1;
466 }
467}
468
469/*
470 * Process a local item.
471 */
472
473static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474{
475 __u32 data;
476 unsigned n;
477 __u32 count;
478
479 data = item_udata(item);
480
481 switch (item->tag) {
482 case HID_LOCAL_ITEM_TAG_DELIMITER:
483
484 if (data) {
485 /*
486 * We treat items before the first delimiter
487 * as global to all usage sets (branch 0).
488 * In the moment we process only these global
489 * items and the first delimiter set.
490 */
491 if (parser->local.delimiter_depth != 0) {
492 hid_err(parser->device, "nested delimiters\n");
493 return -1;
494 }
495 parser->local.delimiter_depth++;
496 parser->local.delimiter_branch++;
497 } else {
498 if (parser->local.delimiter_depth < 1) {
499 hid_err(parser->device, "bogus close delimiter\n");
500 return -1;
501 }
502 parser->local.delimiter_depth--;
503 }
504 return 0;
505
506 case HID_LOCAL_ITEM_TAG_USAGE:
507
508 if (parser->local.delimiter_branch > 1) {
509 dbg_hid("alternative usage ignored\n");
510 return 0;
511 }
512
513 return hid_add_usage(parser, data, item->size);
514
515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516
517 if (parser->local.delimiter_branch > 1) {
518 dbg_hid("alternative usage ignored\n");
519 return 0;
520 }
521
522 parser->local.usage_minimum = data;
523 return 0;
524
525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526
527 if (parser->local.delimiter_branch > 1) {
528 dbg_hid("alternative usage ignored\n");
529 return 0;
530 }
531
532 count = data - parser->local.usage_minimum;
533 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534 /*
535 * We do not warn if the name is not set, we are
536 * actually pre-scanning the device.
537 */
538 if (dev_name(&parser->device->dev))
539 hid_warn(parser->device,
540 "ignoring exceeding usage max\n");
541 data = HID_MAX_USAGES - parser->local.usage_index +
542 parser->local.usage_minimum - 1;
543 if (data <= 0) {
544 hid_err(parser->device,
545 "no more usage index available\n");
546 return -1;
547 }
548 }
549
550 for (n = parser->local.usage_minimum; n <= data; n++)
551 if (hid_add_usage(parser, n, item->size)) {
552 dbg_hid("hid_add_usage failed\n");
553 return -1;
554 }
555 return 0;
556
557 default:
558
559 dbg_hid("unknown local item tag 0x%x\n", item->tag);
560 return 0;
561 }
562 return 0;
563}
564
565/*
566 * Concatenate Usage Pages into Usages where relevant:
567 * As per specification, 6.2.2.8: "When the parser encounters a main item it
568 * concatenates the last declared Usage Page with a Usage to form a complete
569 * usage value."
570 */
571
572static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573{
574 int i;
575 unsigned int usage_page;
576 unsigned int current_page;
577
578 if (!parser->local.usage_index)
579 return;
580
581 usage_page = parser->global.usage_page;
582
583 /*
584 * Concatenate usage page again only if last declared Usage Page
585 * has not been already used in previous usages concatenation
586 */
587 for (i = parser->local.usage_index - 1; i >= 0; i--) {
588 if (parser->local.usage_size[i] > 2)
589 /* Ignore extended usages */
590 continue;
591
592 current_page = parser->local.usage[i] >> 16;
593 if (current_page == usage_page)
594 break;
595
596 complete_usage(parser, i);
597 }
598}
599
600/*
601 * Process a main item.
602 */
603
604static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605{
606 __u32 data;
607 int ret;
608
609 hid_concatenate_last_usage_page(parser);
610
611 data = item_udata(item);
612
613 switch (item->tag) {
614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615 ret = open_collection(parser, data & 0xff);
616 break;
617 case HID_MAIN_ITEM_TAG_END_COLLECTION:
618 ret = close_collection(parser);
619 break;
620 case HID_MAIN_ITEM_TAG_INPUT:
621 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622 break;
623 case HID_MAIN_ITEM_TAG_OUTPUT:
624 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_FEATURE:
627 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628 break;
629 default:
630 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631 ret = 0;
632 }
633
634 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
635
636 return ret;
637}
638
639/*
640 * Process a reserved item.
641 */
642
643static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644{
645 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646 return 0;
647}
648
649/*
650 * Free a report and all registered fields. The field->usage and
651 * field->value table's are allocated behind the field, so we need
652 * only to free(field) itself.
653 */
654
655static void hid_free_report(struct hid_report *report)
656{
657 unsigned n;
658
659 for (n = 0; n < report->maxfield; n++)
660 kfree(report->field[n]);
661 kfree(report);
662}
663
664/*
665 * Close report. This function returns the device
666 * state to the point prior to hid_open_report().
667 */
668static void hid_close_report(struct hid_device *device)
669{
670 unsigned i, j;
671
672 for (i = 0; i < HID_REPORT_TYPES; i++) {
673 struct hid_report_enum *report_enum = device->report_enum + i;
674
675 for (j = 0; j < HID_MAX_IDS; j++) {
676 struct hid_report *report = report_enum->report_id_hash[j];
677 if (report)
678 hid_free_report(report);
679 }
680 memset(report_enum, 0, sizeof(*report_enum));
681 INIT_LIST_HEAD(&report_enum->report_list);
682 }
683
684 kfree(device->rdesc);
685 device->rdesc = NULL;
686 device->rsize = 0;
687
688 kfree(device->collection);
689 device->collection = NULL;
690 device->collection_size = 0;
691 device->maxcollection = 0;
692 device->maxapplication = 0;
693
694 device->status &= ~HID_STAT_PARSED;
695}
696
697/*
698 * Free a device structure, all reports, and all fields.
699 */
700
701static void hid_device_release(struct device *dev)
702{
703 struct hid_device *hid = to_hid_device(dev);
704
705 hid_close_report(hid);
706 kfree(hid->dev_rdesc);
707 kfree(hid);
708}
709
710/*
711 * Fetch a report description item from the data stream. We support long
712 * items, though they are not used yet.
713 */
714
715static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716{
717 u8 b;
718
719 if ((end - start) <= 0)
720 return NULL;
721
722 b = *start++;
723
724 item->type = (b >> 2) & 3;
725 item->tag = (b >> 4) & 15;
726
727 if (item->tag == HID_ITEM_TAG_LONG) {
728
729 item->format = HID_ITEM_FORMAT_LONG;
730
731 if ((end - start) < 2)
732 return NULL;
733
734 item->size = *start++;
735 item->tag = *start++;
736
737 if ((end - start) < item->size)
738 return NULL;
739
740 item->data.longdata = start;
741 start += item->size;
742 return start;
743 }
744
745 item->format = HID_ITEM_FORMAT_SHORT;
746 item->size = b & 3;
747
748 switch (item->size) {
749 case 0:
750 return start;
751
752 case 1:
753 if ((end - start) < 1)
754 return NULL;
755 item->data.u8 = *start++;
756 return start;
757
758 case 2:
759 if ((end - start) < 2)
760 return NULL;
761 item->data.u16 = get_unaligned_le16(start);
762 start = (__u8 *)((__le16 *)start + 1);
763 return start;
764
765 case 3:
766 item->size++;
767 if ((end - start) < 4)
768 return NULL;
769 item->data.u32 = get_unaligned_le32(start);
770 start = (__u8 *)((__le32 *)start + 1);
771 return start;
772 }
773
774 return NULL;
775}
776
777static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778{
779 struct hid_device *hid = parser->device;
780
781 if (usage == HID_DG_CONTACTID)
782 hid->group = HID_GROUP_MULTITOUCH;
783}
784
785static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786{
787 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 parser->global.report_size == 8)
789 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 parser->global.report_size == 8)
793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794}
795
796static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797{
798 struct hid_device *hid = parser->device;
799 int i;
800
801 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 type == HID_COLLECTION_PHYSICAL)
803 hid->group = HID_GROUP_SENSOR_HUB;
804
805 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807 hid->group == HID_GROUP_MULTITOUCH)
808 hid->group = HID_GROUP_GENERIC;
809
810 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811 for (i = 0; i < parser->local.usage_index; i++)
812 if (parser->local.usage[i] == HID_GD_POINTER)
813 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814
815 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817}
818
819static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
820{
821 __u32 data;
822 int i;
823
824 hid_concatenate_last_usage_page(parser);
825
826 data = item_udata(item);
827
828 switch (item->tag) {
829 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
830 hid_scan_collection(parser, data & 0xff);
831 break;
832 case HID_MAIN_ITEM_TAG_END_COLLECTION:
833 break;
834 case HID_MAIN_ITEM_TAG_INPUT:
835 /* ignore constant inputs, they will be ignored by hid-input */
836 if (data & HID_MAIN_ITEM_CONSTANT)
837 break;
838 for (i = 0; i < parser->local.usage_index; i++)
839 hid_scan_input_usage(parser, parser->local.usage[i]);
840 break;
841 case HID_MAIN_ITEM_TAG_OUTPUT:
842 break;
843 case HID_MAIN_ITEM_TAG_FEATURE:
844 for (i = 0; i < parser->local.usage_index; i++)
845 hid_scan_feature_usage(parser, parser->local.usage[i]);
846 break;
847 }
848
849 /* Reset the local parser environment */
850 memset(&parser->local, 0, sizeof(parser->local));
851
852 return 0;
853}
854
855/*
856 * Scan a report descriptor before the device is added to the bus.
857 * Sets device groups and other properties that determine what driver
858 * to load.
859 */
860static int hid_scan_report(struct hid_device *hid)
861{
862 struct hid_parser *parser;
863 struct hid_item item;
864 __u8 *start = hid->dev_rdesc;
865 __u8 *end = start + hid->dev_rsize;
866 static int (*dispatch_type[])(struct hid_parser *parser,
867 struct hid_item *item) = {
868 hid_scan_main,
869 hid_parser_global,
870 hid_parser_local,
871 hid_parser_reserved
872 };
873
874 parser = vzalloc(sizeof(struct hid_parser));
875 if (!parser)
876 return -ENOMEM;
877
878 parser->device = hid;
879 hid->group = HID_GROUP_GENERIC;
880
881 /*
882 * The parsing is simpler than the one in hid_open_report() as we should
883 * be robust against hid errors. Those errors will be raised by
884 * hid_open_report() anyway.
885 */
886 while ((start = fetch_item(start, end, &item)) != NULL)
887 dispatch_type[item.type](parser, &item);
888
889 /*
890 * Handle special flags set during scanning.
891 */
892 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
893 (hid->group == HID_GROUP_MULTITOUCH))
894 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
895
896 /*
897 * Vendor specific handlings
898 */
899 switch (hid->vendor) {
900 case USB_VENDOR_ID_WACOM:
901 hid->group = HID_GROUP_WACOM;
902 break;
903 case USB_VENDOR_ID_SYNAPTICS:
904 if (hid->group == HID_GROUP_GENERIC)
905 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
906 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
907 /*
908 * hid-rmi should take care of them,
909 * not hid-generic
910 */
911 hid->group = HID_GROUP_RMI;
912 break;
913 }
914
915 kfree(parser->collection_stack);
916 vfree(parser);
917 return 0;
918}
919
920/**
921 * hid_parse_report - parse device report
922 *
923 * @device: hid device
924 * @start: report start
925 * @size: report size
926 *
927 * Allocate the device report as read by the bus driver. This function should
928 * only be called from parse() in ll drivers.
929 */
930int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
931{
932 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
933 if (!hid->dev_rdesc)
934 return -ENOMEM;
935 hid->dev_rsize = size;
936 return 0;
937}
938EXPORT_SYMBOL_GPL(hid_parse_report);
939
940static const char * const hid_report_names[] = {
941 "HID_INPUT_REPORT",
942 "HID_OUTPUT_REPORT",
943 "HID_FEATURE_REPORT",
944};
945/**
946 * hid_validate_values - validate existing device report's value indexes
947 *
948 * @device: hid device
949 * @type: which report type to examine
950 * @id: which report ID to examine (0 for first)
951 * @field_index: which report field to examine
952 * @report_counts: expected number of values
953 *
954 * Validate the number of values in a given field of a given report, after
955 * parsing.
956 */
957struct hid_report *hid_validate_values(struct hid_device *hid,
958 unsigned int type, unsigned int id,
959 unsigned int field_index,
960 unsigned int report_counts)
961{
962 struct hid_report *report;
963
964 if (type > HID_FEATURE_REPORT) {
965 hid_err(hid, "invalid HID report type %u\n", type);
966 return NULL;
967 }
968
969 if (id >= HID_MAX_IDS) {
970 hid_err(hid, "invalid HID report id %u\n", id);
971 return NULL;
972 }
973
974 /*
975 * Explicitly not using hid_get_report() here since it depends on
976 * ->numbered being checked, which may not always be the case when
977 * drivers go to access report values.
978 */
979 if (id == 0) {
980 /*
981 * Validating on id 0 means we should examine the first
982 * report in the list.
983 */
984 report = list_entry(
985 hid->report_enum[type].report_list.next,
986 struct hid_report, list);
987 } else {
988 report = hid->report_enum[type].report_id_hash[id];
989 }
990 if (!report) {
991 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
992 return NULL;
993 }
994 if (report->maxfield <= field_index) {
995 hid_err(hid, "not enough fields in %s %u\n",
996 hid_report_names[type], id);
997 return NULL;
998 }
999 if (report->field[field_index]->report_count < report_counts) {
1000 hid_err(hid, "not enough values in %s %u field %u\n",
1001 hid_report_names[type], id, field_index);
1002 return NULL;
1003 }
1004 return report;
1005}
1006EXPORT_SYMBOL_GPL(hid_validate_values);
1007
1008static int hid_calculate_multiplier(struct hid_device *hid,
1009 struct hid_field *multiplier)
1010{
1011 int m;
1012 __s32 v = *multiplier->value;
1013 __s32 lmin = multiplier->logical_minimum;
1014 __s32 lmax = multiplier->logical_maximum;
1015 __s32 pmin = multiplier->physical_minimum;
1016 __s32 pmax = multiplier->physical_maximum;
1017
1018 /*
1019 * "Because OS implementations will generally divide the control's
1020 * reported count by the Effective Resolution Multiplier, designers
1021 * should take care not to establish a potential Effective
1022 * Resolution Multiplier of zero."
1023 * HID Usage Table, v1.12, Section 4.3.1, p31
1024 */
1025 if (lmax - lmin == 0)
1026 return 1;
1027 /*
1028 * Handling the unit exponent is left as an exercise to whoever
1029 * finds a device where that exponent is not 0.
1030 */
1031 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1032 if (unlikely(multiplier->unit_exponent != 0)) {
1033 hid_warn(hid,
1034 "unsupported Resolution Multiplier unit exponent %d\n",
1035 multiplier->unit_exponent);
1036 }
1037
1038 /* There are no devices with an effective multiplier > 255 */
1039 if (unlikely(m == 0 || m > 255 || m < -255)) {
1040 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1041 m = 1;
1042 }
1043
1044 return m;
1045}
1046
1047static void hid_apply_multiplier_to_field(struct hid_device *hid,
1048 struct hid_field *field,
1049 struct hid_collection *multiplier_collection,
1050 int effective_multiplier)
1051{
1052 struct hid_collection *collection;
1053 struct hid_usage *usage;
1054 int i;
1055
1056 /*
1057 * If multiplier_collection is NULL, the multiplier applies
1058 * to all fields in the report.
1059 * Otherwise, it is the Logical Collection the multiplier applies to
1060 * but our field may be in a subcollection of that collection.
1061 */
1062 for (i = 0; i < field->maxusage; i++) {
1063 usage = &field->usage[i];
1064
1065 collection = &hid->collection[usage->collection_index];
1066 while (collection->parent_idx != -1 &&
1067 collection != multiplier_collection)
1068 collection = &hid->collection[collection->parent_idx];
1069
1070 if (collection->parent_idx != -1 ||
1071 multiplier_collection == NULL)
1072 usage->resolution_multiplier = effective_multiplier;
1073
1074 }
1075}
1076
1077static void hid_apply_multiplier(struct hid_device *hid,
1078 struct hid_field *multiplier)
1079{
1080 struct hid_report_enum *rep_enum;
1081 struct hid_report *rep;
1082 struct hid_field *field;
1083 struct hid_collection *multiplier_collection;
1084 int effective_multiplier;
1085 int i;
1086
1087 /*
1088 * "The Resolution Multiplier control must be contained in the same
1089 * Logical Collection as the control(s) to which it is to be applied.
1090 * If no Resolution Multiplier is defined, then the Resolution
1091 * Multiplier defaults to 1. If more than one control exists in a
1092 * Logical Collection, the Resolution Multiplier is associated with
1093 * all controls in the collection. If no Logical Collection is
1094 * defined, the Resolution Multiplier is associated with all
1095 * controls in the report."
1096 * HID Usage Table, v1.12, Section 4.3.1, p30
1097 *
1098 * Thus, search from the current collection upwards until we find a
1099 * logical collection. Then search all fields for that same parent
1100 * collection. Those are the fields the multiplier applies to.
1101 *
1102 * If we have more than one multiplier, it will overwrite the
1103 * applicable fields later.
1104 */
1105 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1106 while (multiplier_collection->parent_idx != -1 &&
1107 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1108 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1109
1110 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1111
1112 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1113 list_for_each_entry(rep, &rep_enum->report_list, list) {
1114 for (i = 0; i < rep->maxfield; i++) {
1115 field = rep->field[i];
1116 hid_apply_multiplier_to_field(hid, field,
1117 multiplier_collection,
1118 effective_multiplier);
1119 }
1120 }
1121}
1122
1123/*
1124 * hid_setup_resolution_multiplier - set up all resolution multipliers
1125 *
1126 * @device: hid device
1127 *
1128 * Search for all Resolution Multiplier Feature Reports and apply their
1129 * value to all matching Input items. This only updates the internal struct
1130 * fields.
1131 *
1132 * The Resolution Multiplier is applied by the hardware. If the multiplier
1133 * is anything other than 1, the hardware will send pre-multiplied events
1134 * so that the same physical interaction generates an accumulated
1135 * accumulated_value = value * * multiplier
1136 * This may be achieved by sending
1137 * - "value * multiplier" for each event, or
1138 * - "value" but "multiplier" times as frequently, or
1139 * - a combination of the above
1140 * The only guarantee is that the same physical interaction always generates
1141 * an accumulated 'value * multiplier'.
1142 *
1143 * This function must be called before any event processing and after
1144 * any SetRequest to the Resolution Multiplier.
1145 */
1146void hid_setup_resolution_multiplier(struct hid_device *hid)
1147{
1148 struct hid_report_enum *rep_enum;
1149 struct hid_report *rep;
1150 struct hid_usage *usage;
1151 int i, j;
1152
1153 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1154 list_for_each_entry(rep, &rep_enum->report_list, list) {
1155 for (i = 0; i < rep->maxfield; i++) {
1156 /* Ignore if report count is out of bounds. */
1157 if (rep->field[i]->report_count < 1)
1158 continue;
1159
1160 for (j = 0; j < rep->field[i]->maxusage; j++) {
1161 usage = &rep->field[i]->usage[j];
1162 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1163 hid_apply_multiplier(hid,
1164 rep->field[i]);
1165 }
1166 }
1167 }
1168}
1169EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1170
1171/**
1172 * hid_open_report - open a driver-specific device report
1173 *
1174 * @device: hid device
1175 *
1176 * Parse a report description into a hid_device structure. Reports are
1177 * enumerated, fields are attached to these reports.
1178 * 0 returned on success, otherwise nonzero error value.
1179 *
1180 * This function (or the equivalent hid_parse() macro) should only be
1181 * called from probe() in drivers, before starting the device.
1182 */
1183int hid_open_report(struct hid_device *device)
1184{
1185 struct hid_parser *parser;
1186 struct hid_item item;
1187 unsigned int size;
1188 __u8 *start;
1189 __u8 *buf;
1190 __u8 *end;
1191 __u8 *next;
1192 int ret;
1193 static int (*dispatch_type[])(struct hid_parser *parser,
1194 struct hid_item *item) = {
1195 hid_parser_main,
1196 hid_parser_global,
1197 hid_parser_local,
1198 hid_parser_reserved
1199 };
1200
1201 if (WARN_ON(device->status & HID_STAT_PARSED))
1202 return -EBUSY;
1203
1204 start = device->dev_rdesc;
1205 if (WARN_ON(!start))
1206 return -ENODEV;
1207 size = device->dev_rsize;
1208
1209 buf = kmemdup(start, size, GFP_KERNEL);
1210 if (buf == NULL)
1211 return -ENOMEM;
1212
1213 if (device->driver->report_fixup)
1214 start = device->driver->report_fixup(device, buf, &size);
1215 else
1216 start = buf;
1217
1218 start = kmemdup(start, size, GFP_KERNEL);
1219 kfree(buf);
1220 if (start == NULL)
1221 return -ENOMEM;
1222
1223 device->rdesc = start;
1224 device->rsize = size;
1225
1226 parser = vzalloc(sizeof(struct hid_parser));
1227 if (!parser) {
1228 ret = -ENOMEM;
1229 goto alloc_err;
1230 }
1231
1232 parser->device = device;
1233
1234 end = start + size;
1235
1236 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1237 sizeof(struct hid_collection), GFP_KERNEL);
1238 if (!device->collection) {
1239 ret = -ENOMEM;
1240 goto err;
1241 }
1242 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1243
1244 ret = -EINVAL;
1245 while ((next = fetch_item(start, end, &item)) != NULL) {
1246 start = next;
1247
1248 if (item.format != HID_ITEM_FORMAT_SHORT) {
1249 hid_err(device, "unexpected long global item\n");
1250 goto err;
1251 }
1252
1253 if (dispatch_type[item.type](parser, &item)) {
1254 hid_err(device, "item %u %u %u %u parsing failed\n",
1255 item.format, (unsigned)item.size,
1256 (unsigned)item.type, (unsigned)item.tag);
1257 goto err;
1258 }
1259
1260 if (start == end) {
1261 if (parser->collection_stack_ptr) {
1262 hid_err(device, "unbalanced collection at end of report description\n");
1263 goto err;
1264 }
1265 if (parser->local.delimiter_depth) {
1266 hid_err(device, "unbalanced delimiter at end of report description\n");
1267 goto err;
1268 }
1269
1270 /*
1271 * fetch initial values in case the device's
1272 * default multiplier isn't the recommended 1
1273 */
1274 hid_setup_resolution_multiplier(device);
1275
1276 kfree(parser->collection_stack);
1277 vfree(parser);
1278 device->status |= HID_STAT_PARSED;
1279
1280 return 0;
1281 }
1282 }
1283
1284 hid_err(device, "item fetching failed at offset %u/%u\n",
1285 size - (unsigned int)(end - start), size);
1286err:
1287 kfree(parser->collection_stack);
1288alloc_err:
1289 vfree(parser);
1290 hid_close_report(device);
1291 return ret;
1292}
1293EXPORT_SYMBOL_GPL(hid_open_report);
1294
1295/*
1296 * Convert a signed n-bit integer to signed 32-bit integer. Common
1297 * cases are done through the compiler, the screwed things has to be
1298 * done by hand.
1299 */
1300
1301static s32 snto32(__u32 value, unsigned n)
1302{
1303 switch (n) {
1304 case 8: return ((__s8)value);
1305 case 16: return ((__s16)value);
1306 case 32: return ((__s32)value);
1307 }
1308 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1309}
1310
1311s32 hid_snto32(__u32 value, unsigned n)
1312{
1313 return snto32(value, n);
1314}
1315EXPORT_SYMBOL_GPL(hid_snto32);
1316
1317/*
1318 * Convert a signed 32-bit integer to a signed n-bit integer.
1319 */
1320
1321static u32 s32ton(__s32 value, unsigned n)
1322{
1323 s32 a = value >> (n - 1);
1324 if (a && a != -1)
1325 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1326 return value & ((1 << n) - 1);
1327}
1328
1329/*
1330 * Extract/implement a data field from/to a little endian report (bit array).
1331 *
1332 * Code sort-of follows HID spec:
1333 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1334 *
1335 * While the USB HID spec allows unlimited length bit fields in "report
1336 * descriptors", most devices never use more than 16 bits.
1337 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1339 */
1340
1341static u32 __extract(u8 *report, unsigned offset, int n)
1342{
1343 unsigned int idx = offset / 8;
1344 unsigned int bit_nr = 0;
1345 unsigned int bit_shift = offset % 8;
1346 int bits_to_copy = 8 - bit_shift;
1347 u32 value = 0;
1348 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1349
1350 while (n > 0) {
1351 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1352 n -= bits_to_copy;
1353 bit_nr += bits_to_copy;
1354 bits_to_copy = 8;
1355 bit_shift = 0;
1356 idx++;
1357 }
1358
1359 return value & mask;
1360}
1361
1362u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1363 unsigned offset, unsigned n)
1364{
1365 if (n > 32) {
1366 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1367 __func__, n, current->comm);
1368 n = 32;
1369 }
1370
1371 return __extract(report, offset, n);
1372}
1373EXPORT_SYMBOL_GPL(hid_field_extract);
1374
1375/*
1376 * "implement" : set bits in a little endian bit stream.
1377 * Same concepts as "extract" (see comments above).
1378 * The data mangled in the bit stream remains in little endian
1379 * order the whole time. It make more sense to talk about
1380 * endianness of register values by considering a register
1381 * a "cached" copy of the little endian bit stream.
1382 */
1383
1384static void __implement(u8 *report, unsigned offset, int n, u32 value)
1385{
1386 unsigned int idx = offset / 8;
1387 unsigned int bit_shift = offset % 8;
1388 int bits_to_set = 8 - bit_shift;
1389
1390 while (n - bits_to_set >= 0) {
1391 report[idx] &= ~(0xff << bit_shift);
1392 report[idx] |= value << bit_shift;
1393 value >>= bits_to_set;
1394 n -= bits_to_set;
1395 bits_to_set = 8;
1396 bit_shift = 0;
1397 idx++;
1398 }
1399
1400 /* last nibble */
1401 if (n) {
1402 u8 bit_mask = ((1U << n) - 1);
1403 report[idx] &= ~(bit_mask << bit_shift);
1404 report[idx] |= value << bit_shift;
1405 }
1406}
1407
1408static void implement(const struct hid_device *hid, u8 *report,
1409 unsigned offset, unsigned n, u32 value)
1410{
1411 if (unlikely(n > 32)) {
1412 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1413 __func__, n, current->comm);
1414 n = 32;
1415 } else if (n < 32) {
1416 u32 m = (1U << n) - 1;
1417
1418 if (unlikely(value > m)) {
1419 hid_warn(hid,
1420 "%s() called with too large value %d (n: %d)! (%s)\n",
1421 __func__, value, n, current->comm);
1422 WARN_ON(1);
1423 value &= m;
1424 }
1425 }
1426
1427 __implement(report, offset, n, value);
1428}
1429
1430/*
1431 * Search an array for a value.
1432 */
1433
1434static int search(__s32 *array, __s32 value, unsigned n)
1435{
1436 while (n--) {
1437 if (*array++ == value)
1438 return 0;
1439 }
1440 return -1;
1441}
1442
1443/**
1444 * hid_match_report - check if driver's raw_event should be called
1445 *
1446 * @hid: hid device
1447 * @report_type: type to match against
1448 *
1449 * compare hid->driver->report_table->report_type to report->type
1450 */
1451static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1452{
1453 const struct hid_report_id *id = hid->driver->report_table;
1454
1455 if (!id) /* NULL means all */
1456 return 1;
1457
1458 for (; id->report_type != HID_TERMINATOR; id++)
1459 if (id->report_type == HID_ANY_ID ||
1460 id->report_type == report->type)
1461 return 1;
1462 return 0;
1463}
1464
1465/**
1466 * hid_match_usage - check if driver's event should be called
1467 *
1468 * @hid: hid device
1469 * @usage: usage to match against
1470 *
1471 * compare hid->driver->usage_table->usage_{type,code} to
1472 * usage->usage_{type,code}
1473 */
1474static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1475{
1476 const struct hid_usage_id *id = hid->driver->usage_table;
1477
1478 if (!id) /* NULL means all */
1479 return 1;
1480
1481 for (; id->usage_type != HID_ANY_ID - 1; id++)
1482 if ((id->usage_hid == HID_ANY_ID ||
1483 id->usage_hid == usage->hid) &&
1484 (id->usage_type == HID_ANY_ID ||
1485 id->usage_type == usage->type) &&
1486 (id->usage_code == HID_ANY_ID ||
1487 id->usage_code == usage->code))
1488 return 1;
1489 return 0;
1490}
1491
1492static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1493 struct hid_usage *usage, __s32 value, int interrupt)
1494{
1495 struct hid_driver *hdrv = hid->driver;
1496 int ret;
1497
1498 if (!list_empty(&hid->debug_list))
1499 hid_dump_input(hid, usage, value);
1500
1501 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1502 ret = hdrv->event(hid, field, usage, value);
1503 if (ret != 0) {
1504 if (ret < 0)
1505 hid_err(hid, "%s's event failed with %d\n",
1506 hdrv->name, ret);
1507 return;
1508 }
1509 }
1510
1511 if (hid->claimed & HID_CLAIMED_INPUT)
1512 hidinput_hid_event(hid, field, usage, value);
1513 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1514 hid->hiddev_hid_event(hid, field, usage, value);
1515}
1516
1517/*
1518 * Analyse a received field, and fetch the data from it. The field
1519 * content is stored for next report processing (we do differential
1520 * reporting to the layer).
1521 */
1522
1523static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1524 __u8 *data, int interrupt)
1525{
1526 unsigned n;
1527 unsigned count = field->report_count;
1528 unsigned offset = field->report_offset;
1529 unsigned size = field->report_size;
1530 __s32 min = field->logical_minimum;
1531 __s32 max = field->logical_maximum;
1532 __s32 *value;
1533
1534 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1535 if (!value)
1536 return;
1537
1538 for (n = 0; n < count; n++) {
1539
1540 value[n] = min < 0 ?
1541 snto32(hid_field_extract(hid, data, offset + n * size,
1542 size), size) :
1543 hid_field_extract(hid, data, offset + n * size, size);
1544
1545 /* Ignore report if ErrorRollOver */
1546 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1547 value[n] >= min && value[n] <= max &&
1548 value[n] - min < field->maxusage &&
1549 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1550 goto exit;
1551 }
1552
1553 for (n = 0; n < count; n++) {
1554
1555 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1556 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1557 continue;
1558 }
1559
1560 if (field->value[n] >= min && field->value[n] <= max
1561 && field->value[n] - min < field->maxusage
1562 && field->usage[field->value[n] - min].hid
1563 && search(value, field->value[n], count))
1564 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1565
1566 if (value[n] >= min && value[n] <= max
1567 && value[n] - min < field->maxusage
1568 && field->usage[value[n] - min].hid
1569 && search(field->value, value[n], count))
1570 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1571 }
1572
1573 memcpy(field->value, value, count * sizeof(__s32));
1574exit:
1575 kfree(value);
1576}
1577
1578/*
1579 * Output the field into the report.
1580 */
1581
1582static void hid_output_field(const struct hid_device *hid,
1583 struct hid_field *field, __u8 *data)
1584{
1585 unsigned count = field->report_count;
1586 unsigned offset = field->report_offset;
1587 unsigned size = field->report_size;
1588 unsigned n;
1589
1590 for (n = 0; n < count; n++) {
1591 if (field->logical_minimum < 0) /* signed values */
1592 implement(hid, data, offset + n * size, size,
1593 s32ton(field->value[n], size));
1594 else /* unsigned values */
1595 implement(hid, data, offset + n * size, size,
1596 field->value[n]);
1597 }
1598}
1599
1600/*
1601 * Compute the size of a report.
1602 */
1603static size_t hid_compute_report_size(struct hid_report *report)
1604{
1605 if (report->size)
1606 return ((report->size - 1) >> 3) + 1;
1607
1608 return 0;
1609}
1610
1611/*
1612 * Create a report. 'data' has to be allocated using
1613 * hid_alloc_report_buf() so that it has proper size.
1614 */
1615
1616void hid_output_report(struct hid_report *report, __u8 *data)
1617{
1618 unsigned n;
1619
1620 if (report->id > 0)
1621 *data++ = report->id;
1622
1623 memset(data, 0, hid_compute_report_size(report));
1624 for (n = 0; n < report->maxfield; n++)
1625 hid_output_field(report->device, report->field[n], data);
1626}
1627EXPORT_SYMBOL_GPL(hid_output_report);
1628
1629/*
1630 * Allocator for buffer that is going to be passed to hid_output_report()
1631 */
1632u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1633{
1634 /*
1635 * 7 extra bytes are necessary to achieve proper functionality
1636 * of implement() working on 8 byte chunks
1637 */
1638
1639 u32 len = hid_report_len(report) + 7;
1640
1641 return kmalloc(len, flags);
1642}
1643EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1644
1645/*
1646 * Set a field value. The report this field belongs to has to be
1647 * created and transferred to the device, to set this value in the
1648 * device.
1649 */
1650
1651int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1652{
1653 unsigned size;
1654
1655 if (!field)
1656 return -1;
1657
1658 size = field->report_size;
1659
1660 hid_dump_input(field->report->device, field->usage + offset, value);
1661
1662 if (offset >= field->report_count) {
1663 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1664 offset, field->report_count);
1665 return -1;
1666 }
1667 if (field->logical_minimum < 0) {
1668 if (value != snto32(s32ton(value, size), size)) {
1669 hid_err(field->report->device, "value %d is out of range\n", value);
1670 return -1;
1671 }
1672 }
1673 field->value[offset] = value;
1674 return 0;
1675}
1676EXPORT_SYMBOL_GPL(hid_set_field);
1677
1678static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1679 const u8 *data)
1680{
1681 struct hid_report *report;
1682 unsigned int n = 0; /* Normally report number is 0 */
1683
1684 /* Device uses numbered reports, data[0] is report number */
1685 if (report_enum->numbered)
1686 n = *data;
1687
1688 report = report_enum->report_id_hash[n];
1689 if (report == NULL)
1690 dbg_hid("undefined report_id %u received\n", n);
1691
1692 return report;
1693}
1694
1695/*
1696 * Implement a generic .request() callback, using .raw_request()
1697 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1698 */
1699int __hid_request(struct hid_device *hid, struct hid_report *report,
1700 int reqtype)
1701{
1702 char *buf;
1703 int ret;
1704 u32 len;
1705
1706 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1707 if (!buf)
1708 return -ENOMEM;
1709
1710 len = hid_report_len(report);
1711
1712 if (reqtype == HID_REQ_SET_REPORT)
1713 hid_output_report(report, buf);
1714
1715 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1716 report->type, reqtype);
1717 if (ret < 0) {
1718 dbg_hid("unable to complete request: %d\n", ret);
1719 goto out;
1720 }
1721
1722 if (reqtype == HID_REQ_GET_REPORT)
1723 hid_input_report(hid, report->type, buf, ret, 0);
1724
1725 ret = 0;
1726
1727out:
1728 kfree(buf);
1729 return ret;
1730}
1731EXPORT_SYMBOL_GPL(__hid_request);
1732
1733int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1734 int interrupt)
1735{
1736 struct hid_report_enum *report_enum = hid->report_enum + type;
1737 struct hid_report *report;
1738 struct hid_driver *hdrv;
1739 unsigned int a;
1740 u32 rsize, csize = size;
1741 u8 *cdata = data;
1742 int ret = 0;
1743
1744 report = hid_get_report(report_enum, data);
1745 if (!report)
1746 goto out;
1747
1748 if (report_enum->numbered) {
1749 cdata++;
1750 csize--;
1751 }
1752
1753 rsize = hid_compute_report_size(report);
1754
1755 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1756 rsize = HID_MAX_BUFFER_SIZE - 1;
1757 else if (rsize > HID_MAX_BUFFER_SIZE)
1758 rsize = HID_MAX_BUFFER_SIZE;
1759
1760 if (csize < rsize) {
1761 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1762 csize, rsize);
1763 memset(cdata + csize, 0, rsize - csize);
1764 }
1765
1766 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1767 hid->hiddev_report_event(hid, report);
1768 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1769 ret = hidraw_report_event(hid, data, size);
1770 if (ret)
1771 goto out;
1772 }
1773
1774 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1775 for (a = 0; a < report->maxfield; a++)
1776 hid_input_field(hid, report->field[a], cdata, interrupt);
1777 hdrv = hid->driver;
1778 if (hdrv && hdrv->report)
1779 hdrv->report(hid, report);
1780 }
1781
1782 if (hid->claimed & HID_CLAIMED_INPUT)
1783 hidinput_report_event(hid, report);
1784out:
1785 return ret;
1786}
1787EXPORT_SYMBOL_GPL(hid_report_raw_event);
1788
1789/**
1790 * hid_input_report - report data from lower layer (usb, bt...)
1791 *
1792 * @hid: hid device
1793 * @type: HID report type (HID_*_REPORT)
1794 * @data: report contents
1795 * @size: size of data parameter
1796 * @interrupt: distinguish between interrupt and control transfers
1797 *
1798 * This is data entry for lower layers.
1799 */
1800int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1801{
1802 struct hid_report_enum *report_enum;
1803 struct hid_driver *hdrv;
1804 struct hid_report *report;
1805 int ret = 0;
1806
1807 if (!hid)
1808 return -ENODEV;
1809
1810 if (down_trylock(&hid->driver_input_lock))
1811 return -EBUSY;
1812
1813 if (!hid->driver) {
1814 ret = -ENODEV;
1815 goto unlock;
1816 }
1817 report_enum = hid->report_enum + type;
1818 hdrv = hid->driver;
1819
1820 if (!size) {
1821 dbg_hid("empty report\n");
1822 ret = -1;
1823 goto unlock;
1824 }
1825
1826 /* Avoid unnecessary overhead if debugfs is disabled */
1827 if (!list_empty(&hid->debug_list))
1828 hid_dump_report(hid, type, data, size);
1829
1830 report = hid_get_report(report_enum, data);
1831
1832 if (!report) {
1833 ret = -1;
1834 goto unlock;
1835 }
1836
1837 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1838 ret = hdrv->raw_event(hid, report, data, size);
1839 if (ret < 0)
1840 goto unlock;
1841 }
1842
1843 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1844
1845unlock:
1846 up(&hid->driver_input_lock);
1847 return ret;
1848}
1849EXPORT_SYMBOL_GPL(hid_input_report);
1850
1851bool hid_match_one_id(const struct hid_device *hdev,
1852 const struct hid_device_id *id)
1853{
1854 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1855 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1856 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1857 (id->product == HID_ANY_ID || id->product == hdev->product);
1858}
1859
1860const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1861 const struct hid_device_id *id)
1862{
1863 for (; id->bus; id++)
1864 if (hid_match_one_id(hdev, id))
1865 return id;
1866
1867 return NULL;
1868}
1869
1870static const struct hid_device_id hid_hiddev_list[] = {
1871 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1873 { }
1874};
1875
1876static bool hid_hiddev(struct hid_device *hdev)
1877{
1878 return !!hid_match_id(hdev, hid_hiddev_list);
1879}
1880
1881
1882static ssize_t
1883read_report_descriptor(struct file *filp, struct kobject *kobj,
1884 struct bin_attribute *attr,
1885 char *buf, loff_t off, size_t count)
1886{
1887 struct device *dev = kobj_to_dev(kobj);
1888 struct hid_device *hdev = to_hid_device(dev);
1889
1890 if (off >= hdev->rsize)
1891 return 0;
1892
1893 if (off + count > hdev->rsize)
1894 count = hdev->rsize - off;
1895
1896 memcpy(buf, hdev->rdesc + off, count);
1897
1898 return count;
1899}
1900
1901static ssize_t
1902show_country(struct device *dev, struct device_attribute *attr,
1903 char *buf)
1904{
1905 struct hid_device *hdev = to_hid_device(dev);
1906
1907 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1908}
1909
1910static struct bin_attribute dev_bin_attr_report_desc = {
1911 .attr = { .name = "report_descriptor", .mode = 0444 },
1912 .read = read_report_descriptor,
1913 .size = HID_MAX_DESCRIPTOR_SIZE,
1914};
1915
1916static const struct device_attribute dev_attr_country = {
1917 .attr = { .name = "country", .mode = 0444 },
1918 .show = show_country,
1919};
1920
1921int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1922{
1923 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1924 "Joystick", "Gamepad", "Keyboard", "Keypad",
1925 "Multi-Axis Controller"
1926 };
1927 const char *type, *bus;
1928 char buf[64] = "";
1929 unsigned int i;
1930 int len;
1931 int ret;
1932
1933 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1934 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1935 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1936 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1937 if (hdev->bus != BUS_USB)
1938 connect_mask &= ~HID_CONNECT_HIDDEV;
1939 if (hid_hiddev(hdev))
1940 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1941
1942 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1943 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1944 hdev->claimed |= HID_CLAIMED_INPUT;
1945
1946 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1947 !hdev->hiddev_connect(hdev,
1948 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1949 hdev->claimed |= HID_CLAIMED_HIDDEV;
1950 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1951 hdev->claimed |= HID_CLAIMED_HIDRAW;
1952
1953 if (connect_mask & HID_CONNECT_DRIVER)
1954 hdev->claimed |= HID_CLAIMED_DRIVER;
1955
1956 /* Drivers with the ->raw_event callback set are not required to connect
1957 * to any other listener. */
1958 if (!hdev->claimed && !hdev->driver->raw_event) {
1959 hid_err(hdev, "device has no listeners, quitting\n");
1960 return -ENODEV;
1961 }
1962
1963 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1964 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1965 hdev->ff_init(hdev);
1966
1967 len = 0;
1968 if (hdev->claimed & HID_CLAIMED_INPUT)
1969 len += sprintf(buf + len, "input");
1970 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1971 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1972 ((struct hiddev *)hdev->hiddev)->minor);
1973 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1974 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1975 ((struct hidraw *)hdev->hidraw)->minor);
1976
1977 type = "Device";
1978 for (i = 0; i < hdev->maxcollection; i++) {
1979 struct hid_collection *col = &hdev->collection[i];
1980 if (col->type == HID_COLLECTION_APPLICATION &&
1981 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1982 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1983 type = types[col->usage & 0xffff];
1984 break;
1985 }
1986 }
1987
1988 switch (hdev->bus) {
1989 case BUS_USB:
1990 bus = "USB";
1991 break;
1992 case BUS_BLUETOOTH:
1993 bus = "BLUETOOTH";
1994 break;
1995 case BUS_I2C:
1996 bus = "I2C";
1997 break;
1998 default:
1999 bus = "<UNKNOWN>";
2000 }
2001
2002 ret = device_create_file(&hdev->dev, &dev_attr_country);
2003 if (ret)
2004 hid_warn(hdev,
2005 "can't create sysfs country code attribute err: %d\n", ret);
2006
2007 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2008 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2009 type, hdev->name, hdev->phys);
2010
2011 return 0;
2012}
2013EXPORT_SYMBOL_GPL(hid_connect);
2014
2015void hid_disconnect(struct hid_device *hdev)
2016{
2017 device_remove_file(&hdev->dev, &dev_attr_country);
2018 if (hdev->claimed & HID_CLAIMED_INPUT)
2019 hidinput_disconnect(hdev);
2020 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2021 hdev->hiddev_disconnect(hdev);
2022 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2023 hidraw_disconnect(hdev);
2024 hdev->claimed = 0;
2025}
2026EXPORT_SYMBOL_GPL(hid_disconnect);
2027
2028/**
2029 * hid_hw_start - start underlying HW
2030 * @hdev: hid device
2031 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2032 *
2033 * Call this in probe function *after* hid_parse. This will setup HW
2034 * buffers and start the device (if not defeirred to device open).
2035 * hid_hw_stop must be called if this was successful.
2036 */
2037int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2038{
2039 int error;
2040
2041 error = hdev->ll_driver->start(hdev);
2042 if (error)
2043 return error;
2044
2045 if (connect_mask) {
2046 error = hid_connect(hdev, connect_mask);
2047 if (error) {
2048 hdev->ll_driver->stop(hdev);
2049 return error;
2050 }
2051 }
2052
2053 return 0;
2054}
2055EXPORT_SYMBOL_GPL(hid_hw_start);
2056
2057/**
2058 * hid_hw_stop - stop underlying HW
2059 * @hdev: hid device
2060 *
2061 * This is usually called from remove function or from probe when something
2062 * failed and hid_hw_start was called already.
2063 */
2064void hid_hw_stop(struct hid_device *hdev)
2065{
2066 hid_disconnect(hdev);
2067 hdev->ll_driver->stop(hdev);
2068}
2069EXPORT_SYMBOL_GPL(hid_hw_stop);
2070
2071/**
2072 * hid_hw_open - signal underlying HW to start delivering events
2073 * @hdev: hid device
2074 *
2075 * Tell underlying HW to start delivering events from the device.
2076 * This function should be called sometime after successful call
2077 * to hid_hw_start().
2078 */
2079int hid_hw_open(struct hid_device *hdev)
2080{
2081 int ret;
2082
2083 ret = mutex_lock_killable(&hdev->ll_open_lock);
2084 if (ret)
2085 return ret;
2086
2087 if (!hdev->ll_open_count++) {
2088 ret = hdev->ll_driver->open(hdev);
2089 if (ret)
2090 hdev->ll_open_count--;
2091 }
2092
2093 mutex_unlock(&hdev->ll_open_lock);
2094 return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_hw_open);
2097
2098/**
2099 * hid_hw_close - signal underlaying HW to stop delivering events
2100 *
2101 * @hdev: hid device
2102 *
2103 * This function indicates that we are not interested in the events
2104 * from this device anymore. Delivery of events may or may not stop,
2105 * depending on the number of users still outstanding.
2106 */
2107void hid_hw_close(struct hid_device *hdev)
2108{
2109 mutex_lock(&hdev->ll_open_lock);
2110 if (!--hdev->ll_open_count)
2111 hdev->ll_driver->close(hdev);
2112 mutex_unlock(&hdev->ll_open_lock);
2113}
2114EXPORT_SYMBOL_GPL(hid_hw_close);
2115
2116struct hid_dynid {
2117 struct list_head list;
2118 struct hid_device_id id;
2119};
2120
2121/**
2122 * store_new_id - add a new HID device ID to this driver and re-probe devices
2123 * @driver: target device driver
2124 * @buf: buffer for scanning device ID data
2125 * @count: input size
2126 *
2127 * Adds a new dynamic hid device ID to this driver,
2128 * and causes the driver to probe for all devices again.
2129 */
2130static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2131 size_t count)
2132{
2133 struct hid_driver *hdrv = to_hid_driver(drv);
2134 struct hid_dynid *dynid;
2135 __u32 bus, vendor, product;
2136 unsigned long driver_data = 0;
2137 int ret;
2138
2139 ret = sscanf(buf, "%x %x %x %lx",
2140 &bus, &vendor, &product, &driver_data);
2141 if (ret < 3)
2142 return -EINVAL;
2143
2144 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2145 if (!dynid)
2146 return -ENOMEM;
2147
2148 dynid->id.bus = bus;
2149 dynid->id.group = HID_GROUP_ANY;
2150 dynid->id.vendor = vendor;
2151 dynid->id.product = product;
2152 dynid->id.driver_data = driver_data;
2153
2154 spin_lock(&hdrv->dyn_lock);
2155 list_add_tail(&dynid->list, &hdrv->dyn_list);
2156 spin_unlock(&hdrv->dyn_lock);
2157
2158 ret = driver_attach(&hdrv->driver);
2159
2160 return ret ? : count;
2161}
2162static DRIVER_ATTR_WO(new_id);
2163
2164static struct attribute *hid_drv_attrs[] = {
2165 &driver_attr_new_id.attr,
2166 NULL,
2167};
2168ATTRIBUTE_GROUPS(hid_drv);
2169
2170static void hid_free_dynids(struct hid_driver *hdrv)
2171{
2172 struct hid_dynid *dynid, *n;
2173
2174 spin_lock(&hdrv->dyn_lock);
2175 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2176 list_del(&dynid->list);
2177 kfree(dynid);
2178 }
2179 spin_unlock(&hdrv->dyn_lock);
2180}
2181
2182const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2183 struct hid_driver *hdrv)
2184{
2185 struct hid_dynid *dynid;
2186
2187 spin_lock(&hdrv->dyn_lock);
2188 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2189 if (hid_match_one_id(hdev, &dynid->id)) {
2190 spin_unlock(&hdrv->dyn_lock);
2191 return &dynid->id;
2192 }
2193 }
2194 spin_unlock(&hdrv->dyn_lock);
2195
2196 return hid_match_id(hdev, hdrv->id_table);
2197}
2198EXPORT_SYMBOL_GPL(hid_match_device);
2199
2200static int hid_bus_match(struct device *dev, struct device_driver *drv)
2201{
2202 struct hid_driver *hdrv = to_hid_driver(drv);
2203 struct hid_device *hdev = to_hid_device(dev);
2204
2205 return hid_match_device(hdev, hdrv) != NULL;
2206}
2207
2208/**
2209 * hid_compare_device_paths - check if both devices share the same path
2210 * @hdev_a: hid device
2211 * @hdev_b: hid device
2212 * @separator: char to use as separator
2213 *
2214 * Check if two devices share the same path up to the last occurrence of
2215 * the separator char. Both paths must exist (i.e., zero-length paths
2216 * don't match).
2217 */
2218bool hid_compare_device_paths(struct hid_device *hdev_a,
2219 struct hid_device *hdev_b, char separator)
2220{
2221 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2222 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2223
2224 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2225 return false;
2226
2227 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2228}
2229EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2230
2231static int hid_device_probe(struct device *dev)
2232{
2233 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2234 struct hid_device *hdev = to_hid_device(dev);
2235 const struct hid_device_id *id;
2236 int ret = 0;
2237
2238 if (down_interruptible(&hdev->driver_input_lock)) {
2239 ret = -EINTR;
2240 goto end;
2241 }
2242 hdev->io_started = false;
2243
2244 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2245
2246 if (!hdev->driver) {
2247 id = hid_match_device(hdev, hdrv);
2248 if (id == NULL) {
2249 ret = -ENODEV;
2250 goto unlock;
2251 }
2252
2253 if (hdrv->match) {
2254 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2255 ret = -ENODEV;
2256 goto unlock;
2257 }
2258 } else {
2259 /*
2260 * hid-generic implements .match(), so if
2261 * hid_ignore_special_drivers is set, we can safely
2262 * return.
2263 */
2264 if (hid_ignore_special_drivers) {
2265 ret = -ENODEV;
2266 goto unlock;
2267 }
2268 }
2269
2270 /* reset the quirks that has been previously set */
2271 hdev->quirks = hid_lookup_quirk(hdev);
2272 hdev->driver = hdrv;
2273 if (hdrv->probe) {
2274 ret = hdrv->probe(hdev, id);
2275 } else { /* default probe */
2276 ret = hid_open_report(hdev);
2277 if (!ret)
2278 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2279 }
2280 if (ret) {
2281 hid_close_report(hdev);
2282 hdev->driver = NULL;
2283 }
2284 }
2285unlock:
2286 if (!hdev->io_started)
2287 up(&hdev->driver_input_lock);
2288end:
2289 return ret;
2290}
2291
2292static int hid_device_remove(struct device *dev)
2293{
2294 struct hid_device *hdev = to_hid_device(dev);
2295 struct hid_driver *hdrv;
2296 int ret = 0;
2297
2298 if (down_interruptible(&hdev->driver_input_lock)) {
2299 ret = -EINTR;
2300 goto end;
2301 }
2302 hdev->io_started = false;
2303
2304 hdrv = hdev->driver;
2305 if (hdrv) {
2306 if (hdrv->remove)
2307 hdrv->remove(hdev);
2308 else /* default remove */
2309 hid_hw_stop(hdev);
2310 hid_close_report(hdev);
2311 hdev->driver = NULL;
2312 }
2313
2314 if (!hdev->io_started)
2315 up(&hdev->driver_input_lock);
2316end:
2317 return ret;
2318}
2319
2320static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2321 char *buf)
2322{
2323 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2324
2325 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2326 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2327}
2328static DEVICE_ATTR_RO(modalias);
2329
2330static struct attribute *hid_dev_attrs[] = {
2331 &dev_attr_modalias.attr,
2332 NULL,
2333};
2334static struct bin_attribute *hid_dev_bin_attrs[] = {
2335 &dev_bin_attr_report_desc,
2336 NULL
2337};
2338static const struct attribute_group hid_dev_group = {
2339 .attrs = hid_dev_attrs,
2340 .bin_attrs = hid_dev_bin_attrs,
2341};
2342__ATTRIBUTE_GROUPS(hid_dev);
2343
2344static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2345{
2346 struct hid_device *hdev = to_hid_device(dev);
2347
2348 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2349 hdev->bus, hdev->vendor, hdev->product))
2350 return -ENOMEM;
2351
2352 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2353 return -ENOMEM;
2354
2355 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2356 return -ENOMEM;
2357
2358 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2359 return -ENOMEM;
2360
2361 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2362 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2363 return -ENOMEM;
2364
2365 return 0;
2366}
2367
2368struct bus_type hid_bus_type = {
2369 .name = "hid",
2370 .dev_groups = hid_dev_groups,
2371 .drv_groups = hid_drv_groups,
2372 .match = hid_bus_match,
2373 .probe = hid_device_probe,
2374 .remove = hid_device_remove,
2375 .uevent = hid_uevent,
2376};
2377EXPORT_SYMBOL(hid_bus_type);
2378
2379int hid_add_device(struct hid_device *hdev)
2380{
2381 static atomic_t id = ATOMIC_INIT(0);
2382 int ret;
2383
2384 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2385 return -EBUSY;
2386
2387 hdev->quirks = hid_lookup_quirk(hdev);
2388
2389 /* we need to kill them here, otherwise they will stay allocated to
2390 * wait for coming driver */
2391 if (hid_ignore(hdev))
2392 return -ENODEV;
2393
2394 /*
2395 * Check for the mandatory transport channel.
2396 */
2397 if (!hdev->ll_driver->raw_request) {
2398 hid_err(hdev, "transport driver missing .raw_request()\n");
2399 return -EINVAL;
2400 }
2401
2402 /*
2403 * Read the device report descriptor once and use as template
2404 * for the driver-specific modifications.
2405 */
2406 ret = hdev->ll_driver->parse(hdev);
2407 if (ret)
2408 return ret;
2409 if (!hdev->dev_rdesc)
2410 return -ENODEV;
2411
2412 /*
2413 * Scan generic devices for group information
2414 */
2415 if (hid_ignore_special_drivers) {
2416 hdev->group = HID_GROUP_GENERIC;
2417 } else if (!hdev->group &&
2418 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2419 ret = hid_scan_report(hdev);
2420 if (ret)
2421 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2422 }
2423
2424 /* XXX hack, any other cleaner solution after the driver core
2425 * is converted to allow more than 20 bytes as the device name? */
2426 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2427 hdev->vendor, hdev->product, atomic_inc_return(&id));
2428
2429 hid_debug_register(hdev, dev_name(&hdev->dev));
2430 ret = device_add(&hdev->dev);
2431 if (!ret)
2432 hdev->status |= HID_STAT_ADDED;
2433 else
2434 hid_debug_unregister(hdev);
2435
2436 return ret;
2437}
2438EXPORT_SYMBOL_GPL(hid_add_device);
2439
2440/**
2441 * hid_allocate_device - allocate new hid device descriptor
2442 *
2443 * Allocate and initialize hid device, so that hid_destroy_device might be
2444 * used to free it.
2445 *
2446 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2447 * error value.
2448 */
2449struct hid_device *hid_allocate_device(void)
2450{
2451 struct hid_device *hdev;
2452 int ret = -ENOMEM;
2453
2454 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2455 if (hdev == NULL)
2456 return ERR_PTR(ret);
2457
2458 device_initialize(&hdev->dev);
2459 hdev->dev.release = hid_device_release;
2460 hdev->dev.bus = &hid_bus_type;
2461 device_enable_async_suspend(&hdev->dev);
2462
2463 hid_close_report(hdev);
2464
2465 init_waitqueue_head(&hdev->debug_wait);
2466 INIT_LIST_HEAD(&hdev->debug_list);
2467 spin_lock_init(&hdev->debug_list_lock);
2468 sema_init(&hdev->driver_input_lock, 1);
2469 mutex_init(&hdev->ll_open_lock);
2470
2471 return hdev;
2472}
2473EXPORT_SYMBOL_GPL(hid_allocate_device);
2474
2475static void hid_remove_device(struct hid_device *hdev)
2476{
2477 if (hdev->status & HID_STAT_ADDED) {
2478 device_del(&hdev->dev);
2479 hid_debug_unregister(hdev);
2480 hdev->status &= ~HID_STAT_ADDED;
2481 }
2482 kfree(hdev->dev_rdesc);
2483 hdev->dev_rdesc = NULL;
2484 hdev->dev_rsize = 0;
2485}
2486
2487/**
2488 * hid_destroy_device - free previously allocated device
2489 *
2490 * @hdev: hid device
2491 *
2492 * If you allocate hid_device through hid_allocate_device, you should ever
2493 * free by this function.
2494 */
2495void hid_destroy_device(struct hid_device *hdev)
2496{
2497 hid_remove_device(hdev);
2498 put_device(&hdev->dev);
2499}
2500EXPORT_SYMBOL_GPL(hid_destroy_device);
2501
2502
2503static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2504{
2505 struct hid_driver *hdrv = data;
2506 struct hid_device *hdev = to_hid_device(dev);
2507
2508 if (hdev->driver == hdrv &&
2509 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2510 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2511 return device_reprobe(dev);
2512
2513 return 0;
2514}
2515
2516static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2517{
2518 struct hid_driver *hdrv = to_hid_driver(drv);
2519
2520 if (hdrv->match) {
2521 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2522 __hid_bus_reprobe_drivers);
2523 }
2524
2525 return 0;
2526}
2527
2528static int __bus_removed_driver(struct device_driver *drv, void *data)
2529{
2530 return bus_rescan_devices(&hid_bus_type);
2531}
2532
2533int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2534 const char *mod_name)
2535{
2536 int ret;
2537
2538 hdrv->driver.name = hdrv->name;
2539 hdrv->driver.bus = &hid_bus_type;
2540 hdrv->driver.owner = owner;
2541 hdrv->driver.mod_name = mod_name;
2542
2543 INIT_LIST_HEAD(&hdrv->dyn_list);
2544 spin_lock_init(&hdrv->dyn_lock);
2545
2546 ret = driver_register(&hdrv->driver);
2547
2548 if (ret == 0)
2549 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2550 __hid_bus_driver_added);
2551
2552 return ret;
2553}
2554EXPORT_SYMBOL_GPL(__hid_register_driver);
2555
2556void hid_unregister_driver(struct hid_driver *hdrv)
2557{
2558 driver_unregister(&hdrv->driver);
2559 hid_free_dynids(hdrv);
2560
2561 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2562}
2563EXPORT_SYMBOL_GPL(hid_unregister_driver);
2564
2565int hid_check_keys_pressed(struct hid_device *hid)
2566{
2567 struct hid_input *hidinput;
2568 int i;
2569
2570 if (!(hid->claimed & HID_CLAIMED_INPUT))
2571 return 0;
2572
2573 list_for_each_entry(hidinput, &hid->inputs, list) {
2574 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2575 if (hidinput->input->key[i])
2576 return 1;
2577 }
2578
2579 return 0;
2580}
2581
2582EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2583
2584static int __init hid_init(void)
2585{
2586 int ret;
2587
2588 if (hid_debug)
2589 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2590 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2591
2592 ret = bus_register(&hid_bus_type);
2593 if (ret) {
2594 pr_err("can't register hid bus\n");
2595 goto err;
2596 }
2597
2598 ret = hidraw_init();
2599 if (ret)
2600 goto err_bus;
2601
2602 hid_debug_init();
2603
2604 return 0;
2605err_bus:
2606 bus_unregister(&hid_bus_type);
2607err:
2608 return ret;
2609}
2610
2611static void __exit hid_exit(void)
2612{
2613 hid_debug_exit();
2614 hidraw_exit();
2615 bus_unregister(&hid_bus_type);
2616 hid_quirks_exit(HID_BUS_ANY);
2617}
2618
2619module_init(hid_init);
2620module_exit(hid_exit);
2621
2622MODULE_AUTHOR("Andreas Gal");
2623MODULE_AUTHOR("Vojtech Pavlik");
2624MODULE_AUTHOR("Jiri Kosina");
2625MODULE_LICENSE("GPL");
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32#include <linux/semaphore.h>
33
34#include <linux/hid.h>
35#include <linux/hiddev.h>
36#include <linux/hid-debug.h>
37#include <linux/hidraw.h>
38
39#include "hid-ids.h"
40
41/*
42 * Version Information
43 */
44
45#define DRIVER_DESC "HID core driver"
46#define DRIVER_LICENSE "GPL"
47
48int hid_debug = 0;
49module_param_named(debug, hid_debug, int, 0600);
50MODULE_PARM_DESC(debug, "toggle HID debugging messages");
51EXPORT_SYMBOL_GPL(hid_debug);
52
53static int hid_ignore_special_drivers = 0;
54module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
55MODULE_PARM_DESC(debug, "Ignore any special drivers and handle all devices by generic driver");
56
57/*
58 * Register a new report for a device.
59 */
60
61struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
62{
63 struct hid_report_enum *report_enum = device->report_enum + type;
64 struct hid_report *report;
65
66 if (id >= HID_MAX_IDS)
67 return NULL;
68 if (report_enum->report_id_hash[id])
69 return report_enum->report_id_hash[id];
70
71 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
72 if (!report)
73 return NULL;
74
75 if (id != 0)
76 report_enum->numbered = 1;
77
78 report->id = id;
79 report->type = type;
80 report->size = 0;
81 report->device = device;
82 report_enum->report_id_hash[id] = report;
83
84 list_add_tail(&report->list, &report_enum->report_list);
85
86 return report;
87}
88EXPORT_SYMBOL_GPL(hid_register_report);
89
90/*
91 * Register a new field for this report.
92 */
93
94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95{
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 values * sizeof(unsigned)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->report = report;
114
115 return field;
116}
117
118/*
119 * Open a collection. The type/usage is pushed on the stack.
120 */
121
122static int open_collection(struct hid_parser *parser, unsigned type)
123{
124 struct hid_collection *collection;
125 unsigned usage;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
130 hid_err(parser->device, "collection stack overflow\n");
131 return -EINVAL;
132 }
133
134 if (parser->device->maxcollection == parser->device->collection_size) {
135 collection = kmalloc(sizeof(struct hid_collection) *
136 parser->device->collection_size * 2, GFP_KERNEL);
137 if (collection == NULL) {
138 hid_err(parser->device, "failed to reallocate collection array\n");
139 return -ENOMEM;
140 }
141 memcpy(collection, parser->device->collection,
142 sizeof(struct hid_collection) *
143 parser->device->collection_size);
144 memset(collection + parser->device->collection_size, 0,
145 sizeof(struct hid_collection) *
146 parser->device->collection_size);
147 kfree(parser->device->collection);
148 parser->device->collection = collection;
149 parser->device->collection_size *= 2;
150 }
151
152 parser->collection_stack[parser->collection_stack_ptr++] =
153 parser->device->maxcollection;
154
155 collection = parser->device->collection +
156 parser->device->maxcollection++;
157 collection->type = type;
158 collection->usage = usage;
159 collection->level = parser->collection_stack_ptr - 1;
160
161 if (type == HID_COLLECTION_APPLICATION)
162 parser->device->maxapplication++;
163
164 return 0;
165}
166
167/*
168 * Close a collection.
169 */
170
171static int close_collection(struct hid_parser *parser)
172{
173 if (!parser->collection_stack_ptr) {
174 hid_err(parser->device, "collection stack underflow\n");
175 return -EINVAL;
176 }
177 parser->collection_stack_ptr--;
178 return 0;
179}
180
181/*
182 * Climb up the stack, search for the specified collection type
183 * and return the usage.
184 */
185
186static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
187{
188 struct hid_collection *collection = parser->device->collection;
189 int n;
190
191 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
192 unsigned index = parser->collection_stack[n];
193 if (collection[index].type == type)
194 return collection[index].usage;
195 }
196 return 0; /* we know nothing about this usage type */
197}
198
199/*
200 * Add a usage to the temporary parser table.
201 */
202
203static int hid_add_usage(struct hid_parser *parser, unsigned usage)
204{
205 if (parser->local.usage_index >= HID_MAX_USAGES) {
206 hid_err(parser->device, "usage index exceeded\n");
207 return -1;
208 }
209 parser->local.usage[parser->local.usage_index] = usage;
210 parser->local.collection_index[parser->local.usage_index] =
211 parser->collection_stack_ptr ?
212 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
213 parser->local.usage_index++;
214 return 0;
215}
216
217/*
218 * Register a new field for this report.
219 */
220
221static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
222{
223 struct hid_report *report;
224 struct hid_field *field;
225 unsigned usages;
226 unsigned offset;
227 unsigned i;
228
229 report = hid_register_report(parser->device, report_type, parser->global.report_id);
230 if (!report) {
231 hid_err(parser->device, "hid_register_report failed\n");
232 return -1;
233 }
234
235 /* Handle both signed and unsigned cases properly */
236 if ((parser->global.logical_minimum < 0 &&
237 parser->global.logical_maximum <
238 parser->global.logical_minimum) ||
239 (parser->global.logical_minimum >= 0 &&
240 (__u32)parser->global.logical_maximum <
241 (__u32)parser->global.logical_minimum)) {
242 dbg_hid("logical range invalid 0x%x 0x%x\n",
243 parser->global.logical_minimum,
244 parser->global.logical_maximum);
245 return -1;
246 }
247
248 offset = report->size;
249 report->size += parser->global.report_size * parser->global.report_count;
250
251 if (!parser->local.usage_index) /* Ignore padding fields */
252 return 0;
253
254 usages = max_t(unsigned, parser->local.usage_index,
255 parser->global.report_count);
256
257 field = hid_register_field(report, usages, parser->global.report_count);
258 if (!field)
259 return 0;
260
261 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
262 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
263 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
264
265 for (i = 0; i < usages; i++) {
266 unsigned j = i;
267 /* Duplicate the last usage we parsed if we have excess values */
268 if (i >= parser->local.usage_index)
269 j = parser->local.usage_index - 1;
270 field->usage[i].hid = parser->local.usage[j];
271 field->usage[i].collection_index =
272 parser->local.collection_index[j];
273 field->usage[i].usage_index = i;
274 }
275
276 field->maxusage = usages;
277 field->flags = flags;
278 field->report_offset = offset;
279 field->report_type = report_type;
280 field->report_size = parser->global.report_size;
281 field->report_count = parser->global.report_count;
282 field->logical_minimum = parser->global.logical_minimum;
283 field->logical_maximum = parser->global.logical_maximum;
284 field->physical_minimum = parser->global.physical_minimum;
285 field->physical_maximum = parser->global.physical_maximum;
286 field->unit_exponent = parser->global.unit_exponent;
287 field->unit = parser->global.unit;
288
289 return 0;
290}
291
292/*
293 * Read data value from item.
294 */
295
296static u32 item_udata(struct hid_item *item)
297{
298 switch (item->size) {
299 case 1: return item->data.u8;
300 case 2: return item->data.u16;
301 case 4: return item->data.u32;
302 }
303 return 0;
304}
305
306static s32 item_sdata(struct hid_item *item)
307{
308 switch (item->size) {
309 case 1: return item->data.s8;
310 case 2: return item->data.s16;
311 case 4: return item->data.s32;
312 }
313 return 0;
314}
315
316/*
317 * Process a global item.
318 */
319
320static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
321{
322 __s32 raw_value;
323 switch (item->tag) {
324 case HID_GLOBAL_ITEM_TAG_PUSH:
325
326 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
327 hid_err(parser->device, "global environment stack overflow\n");
328 return -1;
329 }
330
331 memcpy(parser->global_stack + parser->global_stack_ptr++,
332 &parser->global, sizeof(struct hid_global));
333 return 0;
334
335 case HID_GLOBAL_ITEM_TAG_POP:
336
337 if (!parser->global_stack_ptr) {
338 hid_err(parser->device, "global environment stack underflow\n");
339 return -1;
340 }
341
342 memcpy(&parser->global, parser->global_stack +
343 --parser->global_stack_ptr, sizeof(struct hid_global));
344 return 0;
345
346 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
347 parser->global.usage_page = item_udata(item);
348 return 0;
349
350 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
351 parser->global.logical_minimum = item_sdata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
355 if (parser->global.logical_minimum < 0)
356 parser->global.logical_maximum = item_sdata(item);
357 else
358 parser->global.logical_maximum = item_udata(item);
359 return 0;
360
361 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
362 parser->global.physical_minimum = item_sdata(item);
363 return 0;
364
365 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
366 if (parser->global.physical_minimum < 0)
367 parser->global.physical_maximum = item_sdata(item);
368 else
369 parser->global.physical_maximum = item_udata(item);
370 return 0;
371
372 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
373 /* Many devices provide unit exponent as a two's complement
374 * nibble due to the common misunderstanding of HID
375 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
376 * both this and the standard encoding. */
377 raw_value = item_sdata(item);
378 if (!(raw_value & 0xfffffff0))
379 parser->global.unit_exponent = hid_snto32(raw_value, 4);
380 else
381 parser->global.unit_exponent = raw_value;
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_UNIT:
385 parser->global.unit = item_udata(item);
386 return 0;
387
388 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
389 parser->global.report_size = item_udata(item);
390 if (parser->global.report_size > 128) {
391 hid_err(parser->device, "invalid report_size %d\n",
392 parser->global.report_size);
393 return -1;
394 }
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
398 parser->global.report_count = item_udata(item);
399 if (parser->global.report_count > HID_MAX_USAGES) {
400 hid_err(parser->device, "invalid report_count %d\n",
401 parser->global.report_count);
402 return -1;
403 }
404 return 0;
405
406 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
407 parser->global.report_id = item_udata(item);
408 if (parser->global.report_id == 0 ||
409 parser->global.report_id >= HID_MAX_IDS) {
410 hid_err(parser->device, "report_id %u is invalid\n",
411 parser->global.report_id);
412 return -1;
413 }
414 return 0;
415
416 default:
417 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
418 return -1;
419 }
420}
421
422/*
423 * Process a local item.
424 */
425
426static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
427{
428 __u32 data;
429 unsigned n;
430
431 data = item_udata(item);
432
433 switch (item->tag) {
434 case HID_LOCAL_ITEM_TAG_DELIMITER:
435
436 if (data) {
437 /*
438 * We treat items before the first delimiter
439 * as global to all usage sets (branch 0).
440 * In the moment we process only these global
441 * items and the first delimiter set.
442 */
443 if (parser->local.delimiter_depth != 0) {
444 hid_err(parser->device, "nested delimiters\n");
445 return -1;
446 }
447 parser->local.delimiter_depth++;
448 parser->local.delimiter_branch++;
449 } else {
450 if (parser->local.delimiter_depth < 1) {
451 hid_err(parser->device, "bogus close delimiter\n");
452 return -1;
453 }
454 parser->local.delimiter_depth--;
455 }
456 return 0;
457
458 case HID_LOCAL_ITEM_TAG_USAGE:
459
460 if (parser->local.delimiter_branch > 1) {
461 dbg_hid("alternative usage ignored\n");
462 return 0;
463 }
464
465 if (item->size <= 2)
466 data = (parser->global.usage_page << 16) + data;
467
468 return hid_add_usage(parser, data);
469
470 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
471
472 if (parser->local.delimiter_branch > 1) {
473 dbg_hid("alternative usage ignored\n");
474 return 0;
475 }
476
477 if (item->size <= 2)
478 data = (parser->global.usage_page << 16) + data;
479
480 parser->local.usage_minimum = data;
481 return 0;
482
483 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
484
485 if (parser->local.delimiter_branch > 1) {
486 dbg_hid("alternative usage ignored\n");
487 return 0;
488 }
489
490 if (item->size <= 2)
491 data = (parser->global.usage_page << 16) + data;
492
493 for (n = parser->local.usage_minimum; n <= data; n++)
494 if (hid_add_usage(parser, n)) {
495 dbg_hid("hid_add_usage failed\n");
496 return -1;
497 }
498 return 0;
499
500 default:
501
502 dbg_hid("unknown local item tag 0x%x\n", item->tag);
503 return 0;
504 }
505 return 0;
506}
507
508/*
509 * Process a main item.
510 */
511
512static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
513{
514 __u32 data;
515 int ret;
516
517 data = item_udata(item);
518
519 switch (item->tag) {
520 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
521 ret = open_collection(parser, data & 0xff);
522 break;
523 case HID_MAIN_ITEM_TAG_END_COLLECTION:
524 ret = close_collection(parser);
525 break;
526 case HID_MAIN_ITEM_TAG_INPUT:
527 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
528 break;
529 case HID_MAIN_ITEM_TAG_OUTPUT:
530 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
531 break;
532 case HID_MAIN_ITEM_TAG_FEATURE:
533 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
534 break;
535 default:
536 hid_err(parser->device, "unknown main item tag 0x%x\n", item->tag);
537 ret = 0;
538 }
539
540 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
541
542 return ret;
543}
544
545/*
546 * Process a reserved item.
547 */
548
549static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
550{
551 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
552 return 0;
553}
554
555/*
556 * Free a report and all registered fields. The field->usage and
557 * field->value table's are allocated behind the field, so we need
558 * only to free(field) itself.
559 */
560
561static void hid_free_report(struct hid_report *report)
562{
563 unsigned n;
564
565 for (n = 0; n < report->maxfield; n++)
566 kfree(report->field[n]);
567 kfree(report);
568}
569
570/*
571 * Close report. This function returns the device
572 * state to the point prior to hid_open_report().
573 */
574static void hid_close_report(struct hid_device *device)
575{
576 unsigned i, j;
577
578 for (i = 0; i < HID_REPORT_TYPES; i++) {
579 struct hid_report_enum *report_enum = device->report_enum + i;
580
581 for (j = 0; j < HID_MAX_IDS; j++) {
582 struct hid_report *report = report_enum->report_id_hash[j];
583 if (report)
584 hid_free_report(report);
585 }
586 memset(report_enum, 0, sizeof(*report_enum));
587 INIT_LIST_HEAD(&report_enum->report_list);
588 }
589
590 kfree(device->rdesc);
591 device->rdesc = NULL;
592 device->rsize = 0;
593
594 kfree(device->collection);
595 device->collection = NULL;
596 device->collection_size = 0;
597 device->maxcollection = 0;
598 device->maxapplication = 0;
599
600 device->status &= ~HID_STAT_PARSED;
601}
602
603/*
604 * Free a device structure, all reports, and all fields.
605 */
606
607static void hid_device_release(struct device *dev)
608{
609 struct hid_device *hid = container_of(dev, struct hid_device, dev);
610
611 hid_close_report(hid);
612 kfree(hid->dev_rdesc);
613 kfree(hid);
614}
615
616/*
617 * Fetch a report description item from the data stream. We support long
618 * items, though they are not used yet.
619 */
620
621static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
622{
623 u8 b;
624
625 if ((end - start) <= 0)
626 return NULL;
627
628 b = *start++;
629
630 item->type = (b >> 2) & 3;
631 item->tag = (b >> 4) & 15;
632
633 if (item->tag == HID_ITEM_TAG_LONG) {
634
635 item->format = HID_ITEM_FORMAT_LONG;
636
637 if ((end - start) < 2)
638 return NULL;
639
640 item->size = *start++;
641 item->tag = *start++;
642
643 if ((end - start) < item->size)
644 return NULL;
645
646 item->data.longdata = start;
647 start += item->size;
648 return start;
649 }
650
651 item->format = HID_ITEM_FORMAT_SHORT;
652 item->size = b & 3;
653
654 switch (item->size) {
655 case 0:
656 return start;
657
658 case 1:
659 if ((end - start) < 1)
660 return NULL;
661 item->data.u8 = *start++;
662 return start;
663
664 case 2:
665 if ((end - start) < 2)
666 return NULL;
667 item->data.u16 = get_unaligned_le16(start);
668 start = (__u8 *)((__le16 *)start + 1);
669 return start;
670
671 case 3:
672 item->size++;
673 if ((end - start) < 4)
674 return NULL;
675 item->data.u32 = get_unaligned_le32(start);
676 start = (__u8 *)((__le32 *)start + 1);
677 return start;
678 }
679
680 return NULL;
681}
682
683static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
684{
685 struct hid_device *hid = parser->device;
686
687 if (usage == HID_DG_CONTACTID)
688 hid->group = HID_GROUP_MULTITOUCH;
689}
690
691static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
692{
693 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
694 parser->global.report_size == 8)
695 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
696}
697
698static void hid_scan_collection(struct hid_parser *parser, unsigned type)
699{
700 struct hid_device *hid = parser->device;
701
702 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
703 type == HID_COLLECTION_PHYSICAL)
704 hid->group = HID_GROUP_SENSOR_HUB;
705}
706
707static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
708{
709 __u32 data;
710 int i;
711
712 data = item_udata(item);
713
714 switch (item->tag) {
715 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
716 hid_scan_collection(parser, data & 0xff);
717 break;
718 case HID_MAIN_ITEM_TAG_END_COLLECTION:
719 break;
720 case HID_MAIN_ITEM_TAG_INPUT:
721 /* ignore constant inputs, they will be ignored by hid-input */
722 if (data & HID_MAIN_ITEM_CONSTANT)
723 break;
724 for (i = 0; i < parser->local.usage_index; i++)
725 hid_scan_input_usage(parser, parser->local.usage[i]);
726 break;
727 case HID_MAIN_ITEM_TAG_OUTPUT:
728 break;
729 case HID_MAIN_ITEM_TAG_FEATURE:
730 for (i = 0; i < parser->local.usage_index; i++)
731 hid_scan_feature_usage(parser, parser->local.usage[i]);
732 break;
733 }
734
735 /* Reset the local parser environment */
736 memset(&parser->local, 0, sizeof(parser->local));
737
738 return 0;
739}
740
741/*
742 * Scan a report descriptor before the device is added to the bus.
743 * Sets device groups and other properties that determine what driver
744 * to load.
745 */
746static int hid_scan_report(struct hid_device *hid)
747{
748 struct hid_parser *parser;
749 struct hid_item item;
750 __u8 *start = hid->dev_rdesc;
751 __u8 *end = start + hid->dev_rsize;
752 static int (*dispatch_type[])(struct hid_parser *parser,
753 struct hid_item *item) = {
754 hid_scan_main,
755 hid_parser_global,
756 hid_parser_local,
757 hid_parser_reserved
758 };
759
760 parser = vzalloc(sizeof(struct hid_parser));
761 if (!parser)
762 return -ENOMEM;
763
764 parser->device = hid;
765 hid->group = HID_GROUP_GENERIC;
766
767 /*
768 * The parsing is simpler than the one in hid_open_report() as we should
769 * be robust against hid errors. Those errors will be raised by
770 * hid_open_report() anyway.
771 */
772 while ((start = fetch_item(start, end, &item)) != NULL)
773 dispatch_type[item.type](parser, &item);
774
775 /*
776 * Handle special flags set during scanning.
777 */
778 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
779 (hid->group == HID_GROUP_MULTITOUCH))
780 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
781
782 vfree(parser);
783 return 0;
784}
785
786/**
787 * hid_parse_report - parse device report
788 *
789 * @device: hid device
790 * @start: report start
791 * @size: report size
792 *
793 * Allocate the device report as read by the bus driver. This function should
794 * only be called from parse() in ll drivers.
795 */
796int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
797{
798 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
799 if (!hid->dev_rdesc)
800 return -ENOMEM;
801 hid->dev_rsize = size;
802 return 0;
803}
804EXPORT_SYMBOL_GPL(hid_parse_report);
805
806static const char * const hid_report_names[] = {
807 "HID_INPUT_REPORT",
808 "HID_OUTPUT_REPORT",
809 "HID_FEATURE_REPORT",
810};
811/**
812 * hid_validate_values - validate existing device report's value indexes
813 *
814 * @device: hid device
815 * @type: which report type to examine
816 * @id: which report ID to examine (0 for first)
817 * @field_index: which report field to examine
818 * @report_counts: expected number of values
819 *
820 * Validate the number of values in a given field of a given report, after
821 * parsing.
822 */
823struct hid_report *hid_validate_values(struct hid_device *hid,
824 unsigned int type, unsigned int id,
825 unsigned int field_index,
826 unsigned int report_counts)
827{
828 struct hid_report *report;
829
830 if (type > HID_FEATURE_REPORT) {
831 hid_err(hid, "invalid HID report type %u\n", type);
832 return NULL;
833 }
834
835 if (id >= HID_MAX_IDS) {
836 hid_err(hid, "invalid HID report id %u\n", id);
837 return NULL;
838 }
839
840 /*
841 * Explicitly not using hid_get_report() here since it depends on
842 * ->numbered being checked, which may not always be the case when
843 * drivers go to access report values.
844 */
845 report = hid->report_enum[type].report_id_hash[id];
846 if (!report) {
847 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
848 return NULL;
849 }
850 if (report->maxfield <= field_index) {
851 hid_err(hid, "not enough fields in %s %u\n",
852 hid_report_names[type], id);
853 return NULL;
854 }
855 if (report->field[field_index]->report_count < report_counts) {
856 hid_err(hid, "not enough values in %s %u field %u\n",
857 hid_report_names[type], id, field_index);
858 return NULL;
859 }
860 return report;
861}
862EXPORT_SYMBOL_GPL(hid_validate_values);
863
864/**
865 * hid_open_report - open a driver-specific device report
866 *
867 * @device: hid device
868 *
869 * Parse a report description into a hid_device structure. Reports are
870 * enumerated, fields are attached to these reports.
871 * 0 returned on success, otherwise nonzero error value.
872 *
873 * This function (or the equivalent hid_parse() macro) should only be
874 * called from probe() in drivers, before starting the device.
875 */
876int hid_open_report(struct hid_device *device)
877{
878 struct hid_parser *parser;
879 struct hid_item item;
880 unsigned int size;
881 __u8 *start;
882 __u8 *buf;
883 __u8 *end;
884 int ret;
885 static int (*dispatch_type[])(struct hid_parser *parser,
886 struct hid_item *item) = {
887 hid_parser_main,
888 hid_parser_global,
889 hid_parser_local,
890 hid_parser_reserved
891 };
892
893 if (WARN_ON(device->status & HID_STAT_PARSED))
894 return -EBUSY;
895
896 start = device->dev_rdesc;
897 if (WARN_ON(!start))
898 return -ENODEV;
899 size = device->dev_rsize;
900
901 buf = kmemdup(start, size, GFP_KERNEL);
902 if (buf == NULL)
903 return -ENOMEM;
904
905 if (device->driver->report_fixup)
906 start = device->driver->report_fixup(device, buf, &size);
907 else
908 start = buf;
909
910 start = kmemdup(start, size, GFP_KERNEL);
911 kfree(buf);
912 if (start == NULL)
913 return -ENOMEM;
914
915 device->rdesc = start;
916 device->rsize = size;
917
918 parser = vzalloc(sizeof(struct hid_parser));
919 if (!parser) {
920 ret = -ENOMEM;
921 goto err;
922 }
923
924 parser->device = device;
925
926 end = start + size;
927
928 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
929 sizeof(struct hid_collection), GFP_KERNEL);
930 if (!device->collection) {
931 ret = -ENOMEM;
932 goto err;
933 }
934 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
935
936 ret = -EINVAL;
937 while ((start = fetch_item(start, end, &item)) != NULL) {
938
939 if (item.format != HID_ITEM_FORMAT_SHORT) {
940 hid_err(device, "unexpected long global item\n");
941 goto err;
942 }
943
944 if (dispatch_type[item.type](parser, &item)) {
945 hid_err(device, "item %u %u %u %u parsing failed\n",
946 item.format, (unsigned)item.size,
947 (unsigned)item.type, (unsigned)item.tag);
948 goto err;
949 }
950
951 if (start == end) {
952 if (parser->collection_stack_ptr) {
953 hid_err(device, "unbalanced collection at end of report description\n");
954 goto err;
955 }
956 if (parser->local.delimiter_depth) {
957 hid_err(device, "unbalanced delimiter at end of report description\n");
958 goto err;
959 }
960 vfree(parser);
961 device->status |= HID_STAT_PARSED;
962 return 0;
963 }
964 }
965
966 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
967err:
968 vfree(parser);
969 hid_close_report(device);
970 return ret;
971}
972EXPORT_SYMBOL_GPL(hid_open_report);
973
974/*
975 * Convert a signed n-bit integer to signed 32-bit integer. Common
976 * cases are done through the compiler, the screwed things has to be
977 * done by hand.
978 */
979
980static s32 snto32(__u32 value, unsigned n)
981{
982 switch (n) {
983 case 8: return ((__s8)value);
984 case 16: return ((__s16)value);
985 case 32: return ((__s32)value);
986 }
987 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
988}
989
990s32 hid_snto32(__u32 value, unsigned n)
991{
992 return snto32(value, n);
993}
994EXPORT_SYMBOL_GPL(hid_snto32);
995
996/*
997 * Convert a signed 32-bit integer to a signed n-bit integer.
998 */
999
1000static u32 s32ton(__s32 value, unsigned n)
1001{
1002 s32 a = value >> (n - 1);
1003 if (a && a != -1)
1004 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1005 return value & ((1 << n) - 1);
1006}
1007
1008/*
1009 * Extract/implement a data field from/to a little endian report (bit array).
1010 *
1011 * Code sort-of follows HID spec:
1012 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
1013 *
1014 * While the USB HID spec allows unlimited length bit fields in "report
1015 * descriptors", most devices never use more than 16 bits.
1016 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1017 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1018 */
1019
1020static __u32 extract(const struct hid_device *hid, __u8 *report,
1021 unsigned offset, unsigned n)
1022{
1023 u64 x;
1024
1025 if (n > 32)
1026 hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
1027 n, current->comm);
1028
1029 report += offset >> 3; /* adjust byte index */
1030 offset &= 7; /* now only need bit offset into one byte */
1031 x = get_unaligned_le64(report);
1032 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
1033 return (u32) x;
1034}
1035
1036/*
1037 * "implement" : set bits in a little endian bit stream.
1038 * Same concepts as "extract" (see comments above).
1039 * The data mangled in the bit stream remains in little endian
1040 * order the whole time. It make more sense to talk about
1041 * endianness of register values by considering a register
1042 * a "cached" copy of the little endiad bit stream.
1043 */
1044static void implement(const struct hid_device *hid, __u8 *report,
1045 unsigned offset, unsigned n, __u32 value)
1046{
1047 u64 x;
1048 u64 m = (1ULL << n) - 1;
1049
1050 if (n > 32)
1051 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1052 __func__, n, current->comm);
1053
1054 if (value > m)
1055 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
1056 __func__, value, current->comm);
1057 WARN_ON(value > m);
1058 value &= m;
1059
1060 report += offset >> 3;
1061 offset &= 7;
1062
1063 x = get_unaligned_le64(report);
1064 x &= ~(m << offset);
1065 x |= ((u64)value) << offset;
1066 put_unaligned_le64(x, report);
1067}
1068
1069/*
1070 * Search an array for a value.
1071 */
1072
1073static int search(__s32 *array, __s32 value, unsigned n)
1074{
1075 while (n--) {
1076 if (*array++ == value)
1077 return 0;
1078 }
1079 return -1;
1080}
1081
1082/**
1083 * hid_match_report - check if driver's raw_event should be called
1084 *
1085 * @hid: hid device
1086 * @report_type: type to match against
1087 *
1088 * compare hid->driver->report_table->report_type to report->type
1089 */
1090static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1091{
1092 const struct hid_report_id *id = hid->driver->report_table;
1093
1094 if (!id) /* NULL means all */
1095 return 1;
1096
1097 for (; id->report_type != HID_TERMINATOR; id++)
1098 if (id->report_type == HID_ANY_ID ||
1099 id->report_type == report->type)
1100 return 1;
1101 return 0;
1102}
1103
1104/**
1105 * hid_match_usage - check if driver's event should be called
1106 *
1107 * @hid: hid device
1108 * @usage: usage to match against
1109 *
1110 * compare hid->driver->usage_table->usage_{type,code} to
1111 * usage->usage_{type,code}
1112 */
1113static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1114{
1115 const struct hid_usage_id *id = hid->driver->usage_table;
1116
1117 if (!id) /* NULL means all */
1118 return 1;
1119
1120 for (; id->usage_type != HID_ANY_ID - 1; id++)
1121 if ((id->usage_hid == HID_ANY_ID ||
1122 id->usage_hid == usage->hid) &&
1123 (id->usage_type == HID_ANY_ID ||
1124 id->usage_type == usage->type) &&
1125 (id->usage_code == HID_ANY_ID ||
1126 id->usage_code == usage->code))
1127 return 1;
1128 return 0;
1129}
1130
1131static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1132 struct hid_usage *usage, __s32 value, int interrupt)
1133{
1134 struct hid_driver *hdrv = hid->driver;
1135 int ret;
1136
1137 if (!list_empty(&hid->debug_list))
1138 hid_dump_input(hid, usage, value);
1139
1140 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1141 ret = hdrv->event(hid, field, usage, value);
1142 if (ret != 0) {
1143 if (ret < 0)
1144 hid_err(hid, "%s's event failed with %d\n",
1145 hdrv->name, ret);
1146 return;
1147 }
1148 }
1149
1150 if (hid->claimed & HID_CLAIMED_INPUT)
1151 hidinput_hid_event(hid, field, usage, value);
1152 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1153 hid->hiddev_hid_event(hid, field, usage, value);
1154}
1155
1156/*
1157 * Analyse a received field, and fetch the data from it. The field
1158 * content is stored for next report processing (we do differential
1159 * reporting to the layer).
1160 */
1161
1162static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1163 __u8 *data, int interrupt)
1164{
1165 unsigned n;
1166 unsigned count = field->report_count;
1167 unsigned offset = field->report_offset;
1168 unsigned size = field->report_size;
1169 __s32 min = field->logical_minimum;
1170 __s32 max = field->logical_maximum;
1171 __s32 *value;
1172
1173 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1174 if (!value)
1175 return;
1176
1177 for (n = 0; n < count; n++) {
1178
1179 value[n] = min < 0 ?
1180 snto32(extract(hid, data, offset + n * size, size),
1181 size) :
1182 extract(hid, data, offset + n * size, size);
1183
1184 /* Ignore report if ErrorRollOver */
1185 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1186 value[n] >= min && value[n] <= max &&
1187 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1188 goto exit;
1189 }
1190
1191 for (n = 0; n < count; n++) {
1192
1193 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1194 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1195 continue;
1196 }
1197
1198 if (field->value[n] >= min && field->value[n] <= max
1199 && field->usage[field->value[n] - min].hid
1200 && search(value, field->value[n], count))
1201 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1202
1203 if (value[n] >= min && value[n] <= max
1204 && field->usage[value[n] - min].hid
1205 && search(field->value, value[n], count))
1206 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1207 }
1208
1209 memcpy(field->value, value, count * sizeof(__s32));
1210exit:
1211 kfree(value);
1212}
1213
1214/*
1215 * Output the field into the report.
1216 */
1217
1218static void hid_output_field(const struct hid_device *hid,
1219 struct hid_field *field, __u8 *data)
1220{
1221 unsigned count = field->report_count;
1222 unsigned offset = field->report_offset;
1223 unsigned size = field->report_size;
1224 unsigned n;
1225
1226 for (n = 0; n < count; n++) {
1227 if (field->logical_minimum < 0) /* signed values */
1228 implement(hid, data, offset + n * size, size,
1229 s32ton(field->value[n], size));
1230 else /* unsigned values */
1231 implement(hid, data, offset + n * size, size,
1232 field->value[n]);
1233 }
1234}
1235
1236/*
1237 * Create a report. 'data' has to be allocated using
1238 * hid_alloc_report_buf() so that it has proper size.
1239 */
1240
1241void hid_output_report(struct hid_report *report, __u8 *data)
1242{
1243 unsigned n;
1244
1245 if (report->id > 0)
1246 *data++ = report->id;
1247
1248 memset(data, 0, ((report->size - 1) >> 3) + 1);
1249 for (n = 0; n < report->maxfield; n++)
1250 hid_output_field(report->device, report->field[n], data);
1251}
1252EXPORT_SYMBOL_GPL(hid_output_report);
1253
1254static int hid_report_len(struct hid_report *report)
1255{
1256 /* equivalent to DIV_ROUND_UP(report->size, 8) + !!(report->id > 0) */
1257 return ((report->size - 1) >> 3) + 1 + (report->id > 0);
1258}
1259
1260/*
1261 * Allocator for buffer that is going to be passed to hid_output_report()
1262 */
1263u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1264{
1265 /*
1266 * 7 extra bytes are necessary to achieve proper functionality
1267 * of implement() working on 8 byte chunks
1268 */
1269
1270 int len = hid_report_len(report) + 7;
1271
1272 return kmalloc(len, flags);
1273}
1274EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1275
1276/*
1277 * Set a field value. The report this field belongs to has to be
1278 * created and transferred to the device, to set this value in the
1279 * device.
1280 */
1281
1282int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1283{
1284 unsigned size;
1285
1286 if (!field)
1287 return -1;
1288
1289 size = field->report_size;
1290
1291 hid_dump_input(field->report->device, field->usage + offset, value);
1292
1293 if (offset >= field->report_count) {
1294 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1295 offset, field->report_count);
1296 return -1;
1297 }
1298 if (field->logical_minimum < 0) {
1299 if (value != snto32(s32ton(value, size), size)) {
1300 hid_err(field->report->device, "value %d is out of range\n", value);
1301 return -1;
1302 }
1303 }
1304 field->value[offset] = value;
1305 return 0;
1306}
1307EXPORT_SYMBOL_GPL(hid_set_field);
1308
1309static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1310 const u8 *data)
1311{
1312 struct hid_report *report;
1313 unsigned int n = 0; /* Normally report number is 0 */
1314
1315 /* Device uses numbered reports, data[0] is report number */
1316 if (report_enum->numbered)
1317 n = *data;
1318
1319 report = report_enum->report_id_hash[n];
1320 if (report == NULL)
1321 dbg_hid("undefined report_id %u received\n", n);
1322
1323 return report;
1324}
1325
1326/*
1327 * Implement a generic .request() callback, using .raw_request()
1328 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1329 */
1330void __hid_request(struct hid_device *hid, struct hid_report *report,
1331 int reqtype)
1332{
1333 char *buf;
1334 int ret;
1335 int len;
1336
1337 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1338 if (!buf)
1339 return;
1340
1341 len = hid_report_len(report);
1342
1343 if (reqtype == HID_REQ_SET_REPORT)
1344 hid_output_report(report, buf);
1345
1346 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1347 report->type, reqtype);
1348 if (ret < 0) {
1349 dbg_hid("unable to complete request: %d\n", ret);
1350 goto out;
1351 }
1352
1353 if (reqtype == HID_REQ_GET_REPORT)
1354 hid_input_report(hid, report->type, buf, ret, 0);
1355
1356out:
1357 kfree(buf);
1358}
1359EXPORT_SYMBOL_GPL(__hid_request);
1360
1361int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1362 int interrupt)
1363{
1364 struct hid_report_enum *report_enum = hid->report_enum + type;
1365 struct hid_report *report;
1366 struct hid_driver *hdrv;
1367 unsigned int a;
1368 int rsize, csize = size;
1369 u8 *cdata = data;
1370 int ret = 0;
1371
1372 report = hid_get_report(report_enum, data);
1373 if (!report)
1374 goto out;
1375
1376 if (report_enum->numbered) {
1377 cdata++;
1378 csize--;
1379 }
1380
1381 rsize = ((report->size - 1) >> 3) + 1;
1382
1383 if (rsize > HID_MAX_BUFFER_SIZE)
1384 rsize = HID_MAX_BUFFER_SIZE;
1385
1386 if (csize < rsize) {
1387 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1388 csize, rsize);
1389 memset(cdata + csize, 0, rsize - csize);
1390 }
1391
1392 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1393 hid->hiddev_report_event(hid, report);
1394 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1395 ret = hidraw_report_event(hid, data, size);
1396 if (ret)
1397 goto out;
1398 }
1399
1400 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1401 for (a = 0; a < report->maxfield; a++)
1402 hid_input_field(hid, report->field[a], cdata, interrupt);
1403 hdrv = hid->driver;
1404 if (hdrv && hdrv->report)
1405 hdrv->report(hid, report);
1406 }
1407
1408 if (hid->claimed & HID_CLAIMED_INPUT)
1409 hidinput_report_event(hid, report);
1410out:
1411 return ret;
1412}
1413EXPORT_SYMBOL_GPL(hid_report_raw_event);
1414
1415/**
1416 * hid_input_report - report data from lower layer (usb, bt...)
1417 *
1418 * @hid: hid device
1419 * @type: HID report type (HID_*_REPORT)
1420 * @data: report contents
1421 * @size: size of data parameter
1422 * @interrupt: distinguish between interrupt and control transfers
1423 *
1424 * This is data entry for lower layers.
1425 */
1426int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1427{
1428 struct hid_report_enum *report_enum;
1429 struct hid_driver *hdrv;
1430 struct hid_report *report;
1431 int ret = 0;
1432
1433 if (!hid)
1434 return -ENODEV;
1435
1436 if (down_trylock(&hid->driver_input_lock))
1437 return -EBUSY;
1438
1439 if (!hid->driver) {
1440 ret = -ENODEV;
1441 goto unlock;
1442 }
1443 report_enum = hid->report_enum + type;
1444 hdrv = hid->driver;
1445
1446 if (!size) {
1447 dbg_hid("empty report\n");
1448 ret = -1;
1449 goto unlock;
1450 }
1451
1452 /* Avoid unnecessary overhead if debugfs is disabled */
1453 if (!list_empty(&hid->debug_list))
1454 hid_dump_report(hid, type, data, size);
1455
1456 report = hid_get_report(report_enum, data);
1457
1458 if (!report) {
1459 ret = -1;
1460 goto unlock;
1461 }
1462
1463 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1464 ret = hdrv->raw_event(hid, report, data, size);
1465 if (ret < 0)
1466 goto unlock;
1467 }
1468
1469 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1470
1471unlock:
1472 up(&hid->driver_input_lock);
1473 return ret;
1474}
1475EXPORT_SYMBOL_GPL(hid_input_report);
1476
1477static bool hid_match_one_id(struct hid_device *hdev,
1478 const struct hid_device_id *id)
1479{
1480 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1481 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1482 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1483 (id->product == HID_ANY_ID || id->product == hdev->product);
1484}
1485
1486const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1487 const struct hid_device_id *id)
1488{
1489 for (; id->bus; id++)
1490 if (hid_match_one_id(hdev, id))
1491 return id;
1492
1493 return NULL;
1494}
1495
1496static const struct hid_device_id hid_hiddev_list[] = {
1497 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1498 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1499 { }
1500};
1501
1502static bool hid_hiddev(struct hid_device *hdev)
1503{
1504 return !!hid_match_id(hdev, hid_hiddev_list);
1505}
1506
1507
1508static ssize_t
1509read_report_descriptor(struct file *filp, struct kobject *kobj,
1510 struct bin_attribute *attr,
1511 char *buf, loff_t off, size_t count)
1512{
1513 struct device *dev = container_of(kobj, struct device, kobj);
1514 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1515
1516 if (off >= hdev->rsize)
1517 return 0;
1518
1519 if (off + count > hdev->rsize)
1520 count = hdev->rsize - off;
1521
1522 memcpy(buf, hdev->rdesc + off, count);
1523
1524 return count;
1525}
1526
1527static struct bin_attribute dev_bin_attr_report_desc = {
1528 .attr = { .name = "report_descriptor", .mode = 0444 },
1529 .read = read_report_descriptor,
1530 .size = HID_MAX_DESCRIPTOR_SIZE,
1531};
1532
1533int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1534{
1535 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1536 "Joystick", "Gamepad", "Keyboard", "Keypad",
1537 "Multi-Axis Controller"
1538 };
1539 const char *type, *bus;
1540 char buf[64];
1541 unsigned int i;
1542 int len;
1543 int ret;
1544
1545 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1546 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1547 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1548 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1549 if (hdev->bus != BUS_USB)
1550 connect_mask &= ~HID_CONNECT_HIDDEV;
1551 if (hid_hiddev(hdev))
1552 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1553
1554 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1555 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1556 hdev->claimed |= HID_CLAIMED_INPUT;
1557
1558 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1559 !hdev->hiddev_connect(hdev,
1560 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1561 hdev->claimed |= HID_CLAIMED_HIDDEV;
1562 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1563 hdev->claimed |= HID_CLAIMED_HIDRAW;
1564
1565 /* Drivers with the ->raw_event callback set are not required to connect
1566 * to any other listener. */
1567 if (!hdev->claimed && !hdev->driver->raw_event) {
1568 hid_err(hdev, "device has no listeners, quitting\n");
1569 return -ENODEV;
1570 }
1571
1572 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1573 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1574 hdev->ff_init(hdev);
1575
1576 len = 0;
1577 if (hdev->claimed & HID_CLAIMED_INPUT)
1578 len += sprintf(buf + len, "input");
1579 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1580 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1581 hdev->minor);
1582 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1583 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1584 ((struct hidraw *)hdev->hidraw)->minor);
1585
1586 type = "Device";
1587 for (i = 0; i < hdev->maxcollection; i++) {
1588 struct hid_collection *col = &hdev->collection[i];
1589 if (col->type == HID_COLLECTION_APPLICATION &&
1590 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1591 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1592 type = types[col->usage & 0xffff];
1593 break;
1594 }
1595 }
1596
1597 switch (hdev->bus) {
1598 case BUS_USB:
1599 bus = "USB";
1600 break;
1601 case BUS_BLUETOOTH:
1602 bus = "BLUETOOTH";
1603 break;
1604 default:
1605 bus = "<UNKNOWN>";
1606 }
1607
1608 ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1609 if (ret)
1610 hid_warn(hdev,
1611 "can't create sysfs report descriptor attribute err: %d\n", ret);
1612
1613 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1614 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1615 type, hdev->name, hdev->phys);
1616
1617 return 0;
1618}
1619EXPORT_SYMBOL_GPL(hid_connect);
1620
1621void hid_disconnect(struct hid_device *hdev)
1622{
1623 device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1624 if (hdev->claimed & HID_CLAIMED_INPUT)
1625 hidinput_disconnect(hdev);
1626 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1627 hdev->hiddev_disconnect(hdev);
1628 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1629 hidraw_disconnect(hdev);
1630}
1631EXPORT_SYMBOL_GPL(hid_disconnect);
1632
1633/*
1634 * A list of devices for which there is a specialized driver on HID bus.
1635 *
1636 * Please note that for multitouch devices (driven by hid-multitouch driver),
1637 * there is a proper autodetection and autoloading in place (based on presence
1638 * of HID_DG_CONTACTID), so those devices don't need to be added to this list,
1639 * as we are doing the right thing in hid_scan_usage().
1640 *
1641 * Autodetection for (USB) HID sensor hubs exists too. If a collection of type
1642 * physical is found inside a usage page of type sensor, hid-sensor-hub will be
1643 * used as a driver. See hid_scan_report().
1644 */
1645static const struct hid_device_id hid_have_special_driver[] = {
1646 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1647 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1648 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1649 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1650 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0xf705) },
1651 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1652 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1653 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1654 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1655 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1656 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1657 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1658 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1659 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1660 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1661 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1662 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1663 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1664 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1665 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1666 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1667 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1668 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1669 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1670 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1671 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1672 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1673 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1674 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL) },
1675 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL2) },
1676 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL3) },
1677 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1678 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL5) },
1679 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1680 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1681 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1682 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1683 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1684 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1685 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1686 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1687 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1688 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1689 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1690 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1691 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1692 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1693 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1694 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1695 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1696 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1697 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1698 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1699 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1700 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
1701 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
1702 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
1703 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1704 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1705 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1706 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
1707 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
1708 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
1709 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
1710 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
1711 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
1712 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
1713 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
1714 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
1715 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
1716 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
1717 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
1718 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
1719 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
1720 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
1721 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1722 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1723 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1724 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
1725 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
1726 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS) },
1727 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1728 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1729 { HID_USB_DEVICE(USB_VENDOR_ID_AUREAL, USB_DEVICE_ID_AUREAL_W01RN) },
1730 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1731 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1732 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1733 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1734 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1735 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1736 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1737 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS2) },
1738 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_AK1D) },
1739 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1740 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_CP2112) },
1741 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1742 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1743 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1744 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_4) },
1745 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1746 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1747 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1748 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1749 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0009) },
1750 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0030) },
1751 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1752 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1753 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1754 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1755 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1756 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1757 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1758 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1759 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1760 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1761 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_KEYBOARD) },
1762 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A04A) },
1763 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A067) },
1764 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A070) },
1765 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A072) },
1766 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A081) },
1767 { HID_USB_DEVICE(USB_VENDOR_ID_HUION, USB_DEVICE_ID_HUION_580) },
1768 { HID_USB_DEVICE(USB_VENDOR_ID_JESS2, USB_DEVICE_ID_JESS2_COLOR_RUMBLE_PAD) },
1769 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ION, USB_DEVICE_ID_ICADE) },
1770 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1771 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1772 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GILA_GAMING_MOUSE) },
1773 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_MANTICORE) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GX_IMPERATOR) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_I405X) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_M610X) },
1779 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1780 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1781#if IS_ENABLED(CONFIG_HID_LENOVO_TPKBD)
1782 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPKBD) },
1783#endif
1784 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1787 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1788 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_VIBRATION_WHEEL) },
1806 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1807 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFGT_WHEEL) },
1808 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1810#if IS_ENABLED(CONFIG_HID_LOGITECH_DJ)
1811 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER_2) },
1813#endif
1814 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K_JP) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_OFFICE_KB) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1851 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1852 { HID_USB_DEVICE(USB_VENDOR_ID_PRIMAX, USB_DEVICE_ID_PRIMAX_KEYBOARD) },
1853#if IS_ENABLED(CONFIG_HID_ROCCAT)
1854 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1855 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKU) },
1856 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKUFX) },
1857 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1858 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1859 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE) },
1860 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE_OPTICAL) },
1861 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEXTD) },
1862 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1863 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_LUA) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_GLOW) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_PRO) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_SAVU) },
1870#endif
1871 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_PS1000) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_BUZZ_CONTROLLER) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_WIRELESS_BUZZ_CONTROLLER) },
1877 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1880 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
1882 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1884 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGP_MOUSE) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_STEELSERIES, USB_DEVICE_ID_STEELSERIES_SRWS1) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_THINGM, USB_DEVICE_ID_BLINK1) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1896 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_BT) },
1897 { HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE) },
1898 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1899 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1900 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1901 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1902 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1903 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1904 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1905 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1906 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_WIRELESS_TABLET_TWHL850) },
1907 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_TWHA60) },
1908 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1909 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SUPER_JOY_BOX_3) },
1910 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_DUAL_USB_JOYPAD) },
1911 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_3_PRO) },
1912 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_DUAL_BOX_PRO) },
1913 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_5_PRO) },
1914 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1915 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS4_BLUETOOTH) },
1916 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1917 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1918 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_Q_PAD) },
1919 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_PID_0038) },
1920 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1921 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1922 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SIRIUS_BATTERY_FREE_TABLET) },
1923 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1924 { HID_USB_DEVICE(USB_VENDOR_ID_XIN_MO, USB_DEVICE_ID_XIN_MO_DUAL_ARCADE) },
1925 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1926 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1927 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1928
1929 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1930 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1931 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE2) },
1932 { }
1933};
1934
1935struct hid_dynid {
1936 struct list_head list;
1937 struct hid_device_id id;
1938};
1939
1940/**
1941 * store_new_id - add a new HID device ID to this driver and re-probe devices
1942 * @driver: target device driver
1943 * @buf: buffer for scanning device ID data
1944 * @count: input size
1945 *
1946 * Adds a new dynamic hid device ID to this driver,
1947 * and causes the driver to probe for all devices again.
1948 */
1949static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1950 size_t count)
1951{
1952 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1953 struct hid_dynid *dynid;
1954 __u32 bus, vendor, product;
1955 unsigned long driver_data = 0;
1956 int ret;
1957
1958 ret = sscanf(buf, "%x %x %x %lx",
1959 &bus, &vendor, &product, &driver_data);
1960 if (ret < 3)
1961 return -EINVAL;
1962
1963 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1964 if (!dynid)
1965 return -ENOMEM;
1966
1967 dynid->id.bus = bus;
1968 dynid->id.group = HID_GROUP_ANY;
1969 dynid->id.vendor = vendor;
1970 dynid->id.product = product;
1971 dynid->id.driver_data = driver_data;
1972
1973 spin_lock(&hdrv->dyn_lock);
1974 list_add_tail(&dynid->list, &hdrv->dyn_list);
1975 spin_unlock(&hdrv->dyn_lock);
1976
1977 ret = driver_attach(&hdrv->driver);
1978
1979 return ret ? : count;
1980}
1981static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
1982
1983static void hid_free_dynids(struct hid_driver *hdrv)
1984{
1985 struct hid_dynid *dynid, *n;
1986
1987 spin_lock(&hdrv->dyn_lock);
1988 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1989 list_del(&dynid->list);
1990 kfree(dynid);
1991 }
1992 spin_unlock(&hdrv->dyn_lock);
1993}
1994
1995static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1996 struct hid_driver *hdrv)
1997{
1998 struct hid_dynid *dynid;
1999
2000 spin_lock(&hdrv->dyn_lock);
2001 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2002 if (hid_match_one_id(hdev, &dynid->id)) {
2003 spin_unlock(&hdrv->dyn_lock);
2004 return &dynid->id;
2005 }
2006 }
2007 spin_unlock(&hdrv->dyn_lock);
2008
2009 return hid_match_id(hdev, hdrv->id_table);
2010}
2011
2012static int hid_bus_match(struct device *dev, struct device_driver *drv)
2013{
2014 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
2015 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2016
2017 return hid_match_device(hdev, hdrv) != NULL;
2018}
2019
2020static int hid_device_probe(struct device *dev)
2021{
2022 struct hid_driver *hdrv = container_of(dev->driver,
2023 struct hid_driver, driver);
2024 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2025 const struct hid_device_id *id;
2026 int ret = 0;
2027
2028 if (down_interruptible(&hdev->driver_lock))
2029 return -EINTR;
2030 if (down_interruptible(&hdev->driver_input_lock)) {
2031 ret = -EINTR;
2032 goto unlock_driver_lock;
2033 }
2034 hdev->io_started = false;
2035
2036 if (!hdev->driver) {
2037 id = hid_match_device(hdev, hdrv);
2038 if (id == NULL) {
2039 ret = -ENODEV;
2040 goto unlock;
2041 }
2042
2043 hdev->driver = hdrv;
2044 if (hdrv->probe) {
2045 ret = hdrv->probe(hdev, id);
2046 } else { /* default probe */
2047 ret = hid_open_report(hdev);
2048 if (!ret)
2049 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2050 }
2051 if (ret) {
2052 hid_close_report(hdev);
2053 hdev->driver = NULL;
2054 }
2055 }
2056unlock:
2057 if (!hdev->io_started)
2058 up(&hdev->driver_input_lock);
2059unlock_driver_lock:
2060 up(&hdev->driver_lock);
2061 return ret;
2062}
2063
2064static int hid_device_remove(struct device *dev)
2065{
2066 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2067 struct hid_driver *hdrv;
2068 int ret = 0;
2069
2070 if (down_interruptible(&hdev->driver_lock))
2071 return -EINTR;
2072 if (down_interruptible(&hdev->driver_input_lock)) {
2073 ret = -EINTR;
2074 goto unlock_driver_lock;
2075 }
2076 hdev->io_started = false;
2077
2078 hdrv = hdev->driver;
2079 if (hdrv) {
2080 if (hdrv->remove)
2081 hdrv->remove(hdev);
2082 else /* default remove */
2083 hid_hw_stop(hdev);
2084 hid_close_report(hdev);
2085 hdev->driver = NULL;
2086 }
2087
2088 if (!hdev->io_started)
2089 up(&hdev->driver_input_lock);
2090unlock_driver_lock:
2091 up(&hdev->driver_lock);
2092 return ret;
2093}
2094
2095static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2096 char *buf)
2097{
2098 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2099 int len;
2100
2101 len = snprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2102 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2103
2104 return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
2105}
2106static DEVICE_ATTR_RO(modalias);
2107
2108static struct attribute *hid_dev_attrs[] = {
2109 &dev_attr_modalias.attr,
2110 NULL,
2111};
2112ATTRIBUTE_GROUPS(hid_dev);
2113
2114static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2115{
2116 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2117
2118 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2119 hdev->bus, hdev->vendor, hdev->product))
2120 return -ENOMEM;
2121
2122 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2123 return -ENOMEM;
2124
2125 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2126 return -ENOMEM;
2127
2128 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2129 return -ENOMEM;
2130
2131 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2132 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2133 return -ENOMEM;
2134
2135 return 0;
2136}
2137
2138static struct bus_type hid_bus_type = {
2139 .name = "hid",
2140 .dev_groups = hid_dev_groups,
2141 .match = hid_bus_match,
2142 .probe = hid_device_probe,
2143 .remove = hid_device_remove,
2144 .uevent = hid_uevent,
2145};
2146
2147/* a list of devices that shouldn't be handled by HID core at all */
2148static const struct hid_device_id hid_ignore_list[] = {
2149 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
2150 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
2151 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
2152 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
2153 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
2154 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
2155 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
2156 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
2157 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
2158 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
2159 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
2160 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
2161 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
2162 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
2163 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
2164 { HID_USB_DEVICE(USB_VENDOR_ID_AXENTIA, USB_DEVICE_ID_AXENTIA_FM_RADIO) },
2165 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
2166 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
2167 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
2168 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI4713) },
2169 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
2170 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
2171 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
2172 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
2173 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
2174 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
2175 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
2176 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x000a) },
2177 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
2178 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
2179 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
2180 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
2181 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
2182 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
2183 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
2184 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
2185 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
2186 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
2187 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
2188 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
2189 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
2190 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
2191 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
2192 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
2193 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
2194 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
2195 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
2196 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
2197 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_RADIOSHARK) },
2198 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
2199 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
2200 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
2201 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
2202 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
2203 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
2204 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
2205 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
2206 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
2207 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
2208 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
2209 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
2210 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
2211 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
2212 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
2213 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
2214 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
2215 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
2216 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
2217 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
2218 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
2219 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
2220 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
2221 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
2222 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
2223 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
2224 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
2225 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
2226 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
2227 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
2228 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
2229 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
2230 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
2231 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
2232 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
2233 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
2234 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
2235 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
2236 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
2237 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
2238 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
2239 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
2240 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
2241 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
2242 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
2243 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
2244 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
2245 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_410) },
2246 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_510) },
2247 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
2248 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
2249 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
2250 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
2251 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
2252 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
2253 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
2254 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
2255 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
2256 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
2257 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
2258 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
2259 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
2260 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
2261 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
2262 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
2263 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
2264 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
2265 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
2266 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
2267 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
2268 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
2269 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
2270 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
2271 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
2272 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
2273 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
2274 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
2275 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
2276 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
2277 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
2278 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
2279 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
2280 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
2281 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
2282 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
2283 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_BEATPAD) },
2284 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
2285 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
2286 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
2287 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
2288 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
2289 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
2290 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
2291 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
2292 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
2293 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
2294 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
2295 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
2296 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
2297 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
2298 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
2299 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
2300 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
2301 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
2302 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
2303 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
2304 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
2305#if defined(CONFIG_MOUSE_SYNAPTICS_USB) || defined(CONFIG_MOUSE_SYNAPTICS_USB_MODULE)
2306 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_TP) },
2307 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_INT_TP) },
2308 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_CPAD) },
2309 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_STICK) },
2310 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WP) },
2311 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_COMP_TP) },
2312 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WTP) },
2313 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_DPAD) },
2314#endif
2315 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
2316 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
2317 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
2318 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
2319 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
2320 { HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
2321 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
2322 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
2323 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
2324 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
2325 { HID_USB_DEVICE(USB_VENDOR_ID_RISO_KAGAKU, USB_DEVICE_ID_RI_KA_WEBMAIL) },
2326 { }
2327};
2328
2329/**
2330 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
2331 *
2332 * There are composite devices for which we want to ignore only a certain
2333 * interface. This is a list of devices for which only the mouse interface will
2334 * be ignored. This allows a dedicated driver to take care of the interface.
2335 */
2336static const struct hid_device_id hid_mouse_ignore_list[] = {
2337 /* appletouch driver */
2338 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
2339 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
2340 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
2341 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
2342 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
2343 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
2344 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
2345 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
2346 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
2347 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
2348 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
2349 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
2350 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
2351 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
2352 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
2353 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
2354 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
2355 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
2356 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
2357 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
2358 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
2359 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
2360 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
2361 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
2362 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
2363 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
2364 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
2365 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
2366 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
2367 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
2368 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
2369 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
2370 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
2371 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
2372 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
2373 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
2374 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
2375 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
2376 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
2377 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
2378 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
2379 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
2380 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
2381 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
2382 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
2383 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
2384 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
2385 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
2386 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
2387 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
2388 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
2389 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
2390 { }
2391};
2392
2393bool hid_ignore(struct hid_device *hdev)
2394{
2395 if (hdev->quirks & HID_QUIRK_NO_IGNORE)
2396 return false;
2397 if (hdev->quirks & HID_QUIRK_IGNORE)
2398 return true;
2399
2400 switch (hdev->vendor) {
2401 case USB_VENDOR_ID_CODEMERCS:
2402 /* ignore all Code Mercenaries IOWarrior devices */
2403 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
2404 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
2405 return true;
2406 break;
2407 case USB_VENDOR_ID_LOGITECH:
2408 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
2409 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
2410 return true;
2411 /*
2412 * The Keene FM transmitter USB device has the same USB ID as
2413 * the Logitech AudioHub Speaker, but it should ignore the hid.
2414 * Check if the name is that of the Keene device.
2415 * For reference: the name of the AudioHub is
2416 * "HOLTEK AudioHub Speaker".
2417 */
2418 if (hdev->product == USB_DEVICE_ID_LOGITECH_AUDIOHUB &&
2419 !strcmp(hdev->name, "HOLTEK B-LINK USB Audio "))
2420 return true;
2421 break;
2422 case USB_VENDOR_ID_SOUNDGRAPH:
2423 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
2424 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
2425 return true;
2426 break;
2427 case USB_VENDOR_ID_HANWANG:
2428 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
2429 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
2430 return true;
2431 break;
2432 case USB_VENDOR_ID_JESS:
2433 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
2434 hdev->type == HID_TYPE_USBNONE)
2435 return true;
2436 break;
2437 case USB_VENDOR_ID_VELLEMAN:
2438 /* These are not HID devices. They are handled by comedi. */
2439 if ((hdev->product >= USB_DEVICE_ID_VELLEMAN_K8055_FIRST &&
2440 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8055_LAST) ||
2441 (hdev->product >= USB_DEVICE_ID_VELLEMAN_K8061_FIRST &&
2442 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8061_LAST))
2443 return true;
2444 break;
2445 case USB_VENDOR_ID_ATMEL_V_USB:
2446 /* Masterkit MA901 usb radio based on Atmel tiny85 chip and
2447 * it has the same USB ID as many Atmel V-USB devices. This
2448 * usb radio is handled by radio-ma901.c driver so we want
2449 * ignore the hid. Check the name, bus, product and ignore
2450 * if we have MA901 usb radio.
2451 */
2452 if (hdev->product == USB_DEVICE_ID_ATMEL_V_USB &&
2453 hdev->bus == BUS_USB &&
2454 strncmp(hdev->name, "www.masterkit.ru MA901", 22) == 0)
2455 return true;
2456 break;
2457 }
2458
2459 if (hdev->type == HID_TYPE_USBMOUSE &&
2460 hid_match_id(hdev, hid_mouse_ignore_list))
2461 return true;
2462
2463 return !!hid_match_id(hdev, hid_ignore_list);
2464}
2465EXPORT_SYMBOL_GPL(hid_ignore);
2466
2467int hid_add_device(struct hid_device *hdev)
2468{
2469 static atomic_t id = ATOMIC_INIT(0);
2470 int ret;
2471
2472 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2473 return -EBUSY;
2474
2475 /* we need to kill them here, otherwise they will stay allocated to
2476 * wait for coming driver */
2477 if (hid_ignore(hdev))
2478 return -ENODEV;
2479
2480 /*
2481 * Check for the mandatory transport channel.
2482 */
2483 if (!hdev->ll_driver->raw_request) {
2484 hid_err(hdev, "transport driver missing .raw_request()\n");
2485 return -EINVAL;
2486 }
2487
2488 /*
2489 * Read the device report descriptor once and use as template
2490 * for the driver-specific modifications.
2491 */
2492 ret = hdev->ll_driver->parse(hdev);
2493 if (ret)
2494 return ret;
2495 if (!hdev->dev_rdesc)
2496 return -ENODEV;
2497
2498 /*
2499 * Scan generic devices for group information
2500 */
2501 if (hid_ignore_special_drivers ||
2502 !hid_match_id(hdev, hid_have_special_driver)) {
2503 ret = hid_scan_report(hdev);
2504 if (ret)
2505 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2506 }
2507
2508 /* XXX hack, any other cleaner solution after the driver core
2509 * is converted to allow more than 20 bytes as the device name? */
2510 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2511 hdev->vendor, hdev->product, atomic_inc_return(&id));
2512
2513 hid_debug_register(hdev, dev_name(&hdev->dev));
2514 ret = device_add(&hdev->dev);
2515 if (!ret)
2516 hdev->status |= HID_STAT_ADDED;
2517 else
2518 hid_debug_unregister(hdev);
2519
2520 return ret;
2521}
2522EXPORT_SYMBOL_GPL(hid_add_device);
2523
2524/**
2525 * hid_allocate_device - allocate new hid device descriptor
2526 *
2527 * Allocate and initialize hid device, so that hid_destroy_device might be
2528 * used to free it.
2529 *
2530 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2531 * error value.
2532 */
2533struct hid_device *hid_allocate_device(void)
2534{
2535 struct hid_device *hdev;
2536 int ret = -ENOMEM;
2537
2538 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2539 if (hdev == NULL)
2540 return ERR_PTR(ret);
2541
2542 device_initialize(&hdev->dev);
2543 hdev->dev.release = hid_device_release;
2544 hdev->dev.bus = &hid_bus_type;
2545
2546 hid_close_report(hdev);
2547
2548 init_waitqueue_head(&hdev->debug_wait);
2549 INIT_LIST_HEAD(&hdev->debug_list);
2550 spin_lock_init(&hdev->debug_list_lock);
2551 sema_init(&hdev->driver_lock, 1);
2552 sema_init(&hdev->driver_input_lock, 1);
2553
2554 return hdev;
2555}
2556EXPORT_SYMBOL_GPL(hid_allocate_device);
2557
2558static void hid_remove_device(struct hid_device *hdev)
2559{
2560 if (hdev->status & HID_STAT_ADDED) {
2561 device_del(&hdev->dev);
2562 hid_debug_unregister(hdev);
2563 hdev->status &= ~HID_STAT_ADDED;
2564 }
2565 kfree(hdev->dev_rdesc);
2566 hdev->dev_rdesc = NULL;
2567 hdev->dev_rsize = 0;
2568}
2569
2570/**
2571 * hid_destroy_device - free previously allocated device
2572 *
2573 * @hdev: hid device
2574 *
2575 * If you allocate hid_device through hid_allocate_device, you should ever
2576 * free by this function.
2577 */
2578void hid_destroy_device(struct hid_device *hdev)
2579{
2580 hid_remove_device(hdev);
2581 put_device(&hdev->dev);
2582}
2583EXPORT_SYMBOL_GPL(hid_destroy_device);
2584
2585int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2586 const char *mod_name)
2587{
2588 int ret;
2589
2590 hdrv->driver.name = hdrv->name;
2591 hdrv->driver.bus = &hid_bus_type;
2592 hdrv->driver.owner = owner;
2593 hdrv->driver.mod_name = mod_name;
2594
2595 INIT_LIST_HEAD(&hdrv->dyn_list);
2596 spin_lock_init(&hdrv->dyn_lock);
2597
2598 ret = driver_register(&hdrv->driver);
2599 if (ret)
2600 return ret;
2601
2602 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2603 if (ret)
2604 driver_unregister(&hdrv->driver);
2605
2606 return ret;
2607}
2608EXPORT_SYMBOL_GPL(__hid_register_driver);
2609
2610void hid_unregister_driver(struct hid_driver *hdrv)
2611{
2612 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2613 driver_unregister(&hdrv->driver);
2614 hid_free_dynids(hdrv);
2615}
2616EXPORT_SYMBOL_GPL(hid_unregister_driver);
2617
2618int hid_check_keys_pressed(struct hid_device *hid)
2619{
2620 struct hid_input *hidinput;
2621 int i;
2622
2623 if (!(hid->claimed & HID_CLAIMED_INPUT))
2624 return 0;
2625
2626 list_for_each_entry(hidinput, &hid->inputs, list) {
2627 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2628 if (hidinput->input->key[i])
2629 return 1;
2630 }
2631
2632 return 0;
2633}
2634
2635EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2636
2637static int __init hid_init(void)
2638{
2639 int ret;
2640
2641 if (hid_debug)
2642 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2643 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2644
2645 ret = bus_register(&hid_bus_type);
2646 if (ret) {
2647 pr_err("can't register hid bus\n");
2648 goto err;
2649 }
2650
2651 ret = hidraw_init();
2652 if (ret)
2653 goto err_bus;
2654
2655 hid_debug_init();
2656
2657 return 0;
2658err_bus:
2659 bus_unregister(&hid_bus_type);
2660err:
2661 return ret;
2662}
2663
2664static void __exit hid_exit(void)
2665{
2666 hid_debug_exit();
2667 hidraw_exit();
2668 bus_unregister(&hid_bus_type);
2669}
2670
2671module_init(hid_init);
2672module_exit(hid_exit);
2673
2674MODULE_AUTHOR("Andreas Gal");
2675MODULE_AUTHOR("Vojtech Pavlik");
2676MODULE_AUTHOR("Jiri Kosina");
2677MODULE_LICENSE(DRIVER_LICENSE);
2678