Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
 
 
  31#include <linux/hdmi.h>
  32#include <linux/i2c.h>
  33#include <linux/kernel.h>
  34#include <linux/module.h>
 
  35#include <linux/slab.h>
  36#include <linux/vga_switcheroo.h>
  37
  38#include <drm/drm_displayid.h>
  39#include <drm/drm_drv.h>
  40#include <drm/drm_edid.h>
 
  41#include <drm/drm_encoder.h>
  42#include <drm/drm_print.h>
  43#include <drm/drm_scdc_helper.h>
  44
  45#include "drm_crtc_internal.h"
 
  46
  47#define version_greater(edid, maj, min) \
  48	(((edid)->version > (maj)) || \
  49	 ((edid)->version == (maj) && (edid)->revision > (min)))
 
  50
  51#define EDID_EST_TIMINGS 16
  52#define EDID_STD_TIMINGS 8
  53#define EDID_DETAILED_TIMINGS 4
  54
  55/*
  56 * EDID blocks out in the wild have a variety of bugs, try to collect
  57 * them here (note that userspace may work around broken monitors first,
  58 * but fixes should make their way here so that the kernel "just works"
  59 * on as many displays as possible).
  60 */
  61
  62/* First detailed mode wrong, use largest 60Hz mode */
  63#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  64/* Reported 135MHz pixel clock is too high, needs adjustment */
  65#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  66/* Prefer the largest mode at 75 Hz */
  67#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  68/* Detail timing is in cm not mm */
  69#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  70/* Detailed timing descriptors have bogus size values, so just take the
  71 * maximum size and use that.
  72 */
  73#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  74/* use +hsync +vsync for detailed mode */
  75#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  76/* Force reduced-blanking timings for detailed modes */
  77#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  78/* Force 8bpc */
  79#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  80/* Force 12bpc */
  81#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  82/* Force 6bpc */
  83#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  84/* Force 10bpc */
  85#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  86/* Non desktop display (i.e. HMD) */
  87#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
 
 
 
 
  88
  89struct detailed_mode_closure {
  90	struct drm_connector *connector;
  91	struct edid *edid;
  92	bool preferred;
  93	u32 quirks;
  94	int modes;
  95};
  96
  97#define LEVEL_DMT	0
  98#define LEVEL_GTF	1
  99#define LEVEL_GTF2	2
 100#define LEVEL_CVT	3
 101
 
 
 
 
 
 
 
 102static const struct edid_quirk {
 103	char vendor[4];
 104	int product_id;
 105	u32 quirks;
 106} edid_quirk_list[] = {
 107	/* Acer AL1706 */
 108	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
 109	/* Acer F51 */
 110	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
 111
 112	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 113	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
 
 
 
 114
 115	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 116	{ "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
 117
 118	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 119	{ "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
 120
 121	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 122	{ "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
 123
 124	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 125	{ "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
 126
 127	/* Belinea 10 15 55 */
 128	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
 129	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
 130
 131	/* Envision Peripherals, Inc. EN-7100e */
 132	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
 133	/* Envision EN2028 */
 134	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
 135
 136	/* Funai Electronics PM36B */
 137	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
 138	  EDID_QUIRK_DETAILED_IN_CM },
 
 
 
 
 
 
 139
 140	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 141	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
 142
 143	/* LG Philips LCD LP154W01-A5 */
 144	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 145	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
 146
 147	/* Samsung SyncMaster 205BW.  Note: irony */
 148	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
 149	/* Samsung SyncMaster 22[5-6]BW */
 150	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
 151	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
 152
 153	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 154	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
 155
 156	/* ViewSonic VA2026w */
 157	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
 158
 159	/* Medion MD 30217 PG */
 160	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
 161
 162	/* Lenovo G50 */
 163	{ "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
 164
 165	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 166	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
 167
 168	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 169	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
 170
 171	/* Valve Index Headset */
 172	{ "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
 173	{ "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
 174	{ "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
 175	{ "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
 176	{ "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
 177	{ "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
 178	{ "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
 179	{ "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
 180	{ "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
 181	{ "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
 182	{ "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
 183	{ "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
 184	{ "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
 185	{ "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
 186	{ "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
 187	{ "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
 188	{ "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
 189
 190	/* HTC Vive and Vive Pro VR Headsets */
 191	{ "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
 192	{ "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
 193
 194	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 195	{ "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
 196	{ "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
 197	{ "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
 198	{ "OVR", 0x0012, EDID_QUIRK_NON_DESKTOP },
 199
 200	/* Windows Mixed Reality Headsets */
 201	{ "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 202	{ "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
 203	{ "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
 204	{ "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
 205	{ "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
 206	{ "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
 207	{ "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
 208	{ "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
 209
 210	/* Sony PlayStation VR Headset */
 211	{ "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
 212
 213	/* Sensics VR Headsets */
 214	{ "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
 215
 216	/* OSVR HDK and HDK2 VR Headsets */
 217	{ "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
 
 218};
 219
 220/*
 221 * Autogenerated from the DMT spec.
 222 * This table is copied from xfree86/modes/xf86EdidModes.c.
 223 */
 224static const struct drm_display_mode drm_dmt_modes[] = {
 225	/* 0x01 - 640x350@85Hz */
 226	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 227		   736, 832, 0, 350, 382, 385, 445, 0,
 228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 229	/* 0x02 - 640x400@85Hz */
 230	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 231		   736, 832, 0, 400, 401, 404, 445, 0,
 232		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 233	/* 0x03 - 720x400@85Hz */
 234	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 235		   828, 936, 0, 400, 401, 404, 446, 0,
 236		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 237	/* 0x04 - 640x480@60Hz */
 238	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 239		   752, 800, 0, 480, 490, 492, 525, 0,
 240		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 241	/* 0x05 - 640x480@72Hz */
 242	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 243		   704, 832, 0, 480, 489, 492, 520, 0,
 244		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 245	/* 0x06 - 640x480@75Hz */
 246	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 247		   720, 840, 0, 480, 481, 484, 500, 0,
 248		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 249	/* 0x07 - 640x480@85Hz */
 250	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 251		   752, 832, 0, 480, 481, 484, 509, 0,
 252		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 253	/* 0x08 - 800x600@56Hz */
 254	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 255		   896, 1024, 0, 600, 601, 603, 625, 0,
 256		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 257	/* 0x09 - 800x600@60Hz */
 258	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 259		   968, 1056, 0, 600, 601, 605, 628, 0,
 260		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 261	/* 0x0a - 800x600@72Hz */
 262	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 263		   976, 1040, 0, 600, 637, 643, 666, 0,
 264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 265	/* 0x0b - 800x600@75Hz */
 266	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 267		   896, 1056, 0, 600, 601, 604, 625, 0,
 268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 269	/* 0x0c - 800x600@85Hz */
 270	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 271		   896, 1048, 0, 600, 601, 604, 631, 0,
 272		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 273	/* 0x0d - 800x600@120Hz RB */
 274	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 275		   880, 960, 0, 600, 603, 607, 636, 0,
 276		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 277	/* 0x0e - 848x480@60Hz */
 278	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 279		   976, 1088, 0, 480, 486, 494, 517, 0,
 280		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 281	/* 0x0f - 1024x768@43Hz, interlace */
 282	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 283		   1208, 1264, 0, 768, 768, 776, 817, 0,
 284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 285		   DRM_MODE_FLAG_INTERLACE) },
 286	/* 0x10 - 1024x768@60Hz */
 287	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 288		   1184, 1344, 0, 768, 771, 777, 806, 0,
 289		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 290	/* 0x11 - 1024x768@70Hz */
 291	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 292		   1184, 1328, 0, 768, 771, 777, 806, 0,
 293		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 294	/* 0x12 - 1024x768@75Hz */
 295	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 296		   1136, 1312, 0, 768, 769, 772, 800, 0,
 297		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 298	/* 0x13 - 1024x768@85Hz */
 299	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 300		   1168, 1376, 0, 768, 769, 772, 808, 0,
 301		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 302	/* 0x14 - 1024x768@120Hz RB */
 303	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 304		   1104, 1184, 0, 768, 771, 775, 813, 0,
 305		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 306	/* 0x15 - 1152x864@75Hz */
 307	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 308		   1344, 1600, 0, 864, 865, 868, 900, 0,
 309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 310	/* 0x55 - 1280x720@60Hz */
 311	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 312		   1430, 1650, 0, 720, 725, 730, 750, 0,
 313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 314	/* 0x16 - 1280x768@60Hz RB */
 315	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 316		   1360, 1440, 0, 768, 771, 778, 790, 0,
 317		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 318	/* 0x17 - 1280x768@60Hz */
 319	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 320		   1472, 1664, 0, 768, 771, 778, 798, 0,
 321		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 322	/* 0x18 - 1280x768@75Hz */
 323	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 324		   1488, 1696, 0, 768, 771, 778, 805, 0,
 325		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 326	/* 0x19 - 1280x768@85Hz */
 327	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 328		   1496, 1712, 0, 768, 771, 778, 809, 0,
 329		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 330	/* 0x1a - 1280x768@120Hz RB */
 331	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 332		   1360, 1440, 0, 768, 771, 778, 813, 0,
 333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 334	/* 0x1b - 1280x800@60Hz RB */
 335	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 336		   1360, 1440, 0, 800, 803, 809, 823, 0,
 337		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 338	/* 0x1c - 1280x800@60Hz */
 339	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 340		   1480, 1680, 0, 800, 803, 809, 831, 0,
 341		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 342	/* 0x1d - 1280x800@75Hz */
 343	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 344		   1488, 1696, 0, 800, 803, 809, 838, 0,
 345		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 346	/* 0x1e - 1280x800@85Hz */
 347	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 348		   1496, 1712, 0, 800, 803, 809, 843, 0,
 349		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 350	/* 0x1f - 1280x800@120Hz RB */
 351	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 352		   1360, 1440, 0, 800, 803, 809, 847, 0,
 353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 354	/* 0x20 - 1280x960@60Hz */
 355	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 356		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 357		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 358	/* 0x21 - 1280x960@85Hz */
 359	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 360		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 361		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 362	/* 0x22 - 1280x960@120Hz RB */
 363	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 364		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 365		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 366	/* 0x23 - 1280x1024@60Hz */
 367	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 368		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 370	/* 0x24 - 1280x1024@75Hz */
 371	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 372		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 374	/* 0x25 - 1280x1024@85Hz */
 375	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 376		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 377		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 378	/* 0x26 - 1280x1024@120Hz RB */
 379	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 380		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 381		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 382	/* 0x27 - 1360x768@60Hz */
 383	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 384		   1536, 1792, 0, 768, 771, 777, 795, 0,
 385		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 386	/* 0x28 - 1360x768@120Hz RB */
 387	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 388		   1440, 1520, 0, 768, 771, 776, 813, 0,
 389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 390	/* 0x51 - 1366x768@60Hz */
 391	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 392		   1579, 1792, 0, 768, 771, 774, 798, 0,
 393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 394	/* 0x56 - 1366x768@60Hz */
 395	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 396		   1436, 1500, 0, 768, 769, 772, 800, 0,
 397		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 398	/* 0x29 - 1400x1050@60Hz RB */
 399	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 400		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 401		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 402	/* 0x2a - 1400x1050@60Hz */
 403	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 404		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 405		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 406	/* 0x2b - 1400x1050@75Hz */
 407	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 408		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 409		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 410	/* 0x2c - 1400x1050@85Hz */
 411	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 412		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 413		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 414	/* 0x2d - 1400x1050@120Hz RB */
 415	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 416		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 418	/* 0x2e - 1440x900@60Hz RB */
 419	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 420		   1520, 1600, 0, 900, 903, 909, 926, 0,
 421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 422	/* 0x2f - 1440x900@60Hz */
 423	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 424		   1672, 1904, 0, 900, 903, 909, 934, 0,
 425		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 426	/* 0x30 - 1440x900@75Hz */
 427	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 428		   1688, 1936, 0, 900, 903, 909, 942, 0,
 429		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 430	/* 0x31 - 1440x900@85Hz */
 431	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 432		   1696, 1952, 0, 900, 903, 909, 948, 0,
 433		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 434	/* 0x32 - 1440x900@120Hz RB */
 435	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 436		   1520, 1600, 0, 900, 903, 909, 953, 0,
 437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 438	/* 0x53 - 1600x900@60Hz */
 439	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 440		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 442	/* 0x33 - 1600x1200@60Hz */
 443	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 444		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 445		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 446	/* 0x34 - 1600x1200@65Hz */
 447	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 448		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 449		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 450	/* 0x35 - 1600x1200@70Hz */
 451	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 452		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 453		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 454	/* 0x36 - 1600x1200@75Hz */
 455	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 456		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 458	/* 0x37 - 1600x1200@85Hz */
 459	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 460		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 462	/* 0x38 - 1600x1200@120Hz RB */
 463	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 464		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 465		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 466	/* 0x39 - 1680x1050@60Hz RB */
 467	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 468		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 469		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 470	/* 0x3a - 1680x1050@60Hz */
 471	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 472		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 473		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 474	/* 0x3b - 1680x1050@75Hz */
 475	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 476		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 477		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 478	/* 0x3c - 1680x1050@85Hz */
 479	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 480		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 481		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 482	/* 0x3d - 1680x1050@120Hz RB */
 483	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 484		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 485		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 486	/* 0x3e - 1792x1344@60Hz */
 487	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 488		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 489		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 490	/* 0x3f - 1792x1344@75Hz */
 491	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 492		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 493		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 494	/* 0x40 - 1792x1344@120Hz RB */
 495	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 496		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 498	/* 0x41 - 1856x1392@60Hz */
 499	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 500		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 501		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 502	/* 0x42 - 1856x1392@75Hz */
 503	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 504		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 505		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 506	/* 0x43 - 1856x1392@120Hz RB */
 507	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 508		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 509		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 510	/* 0x52 - 1920x1080@60Hz */
 511	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 512		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 513		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 514	/* 0x44 - 1920x1200@60Hz RB */
 515	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 516		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 518	/* 0x45 - 1920x1200@60Hz */
 519	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 520		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 521		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 522	/* 0x46 - 1920x1200@75Hz */
 523	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 524		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 525		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 526	/* 0x47 - 1920x1200@85Hz */
 527	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 528		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 529		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 530	/* 0x48 - 1920x1200@120Hz RB */
 531	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 532		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 533		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 534	/* 0x49 - 1920x1440@60Hz */
 535	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 536		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 537		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 538	/* 0x4a - 1920x1440@75Hz */
 539	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 540		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 541		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 542	/* 0x4b - 1920x1440@120Hz RB */
 543	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 544		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 545		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 546	/* 0x54 - 2048x1152@60Hz */
 547	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 548		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 549		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 550	/* 0x4c - 2560x1600@60Hz RB */
 551	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 552		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 553		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 554	/* 0x4d - 2560x1600@60Hz */
 555	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 556		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 557		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 558	/* 0x4e - 2560x1600@75Hz */
 559	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 560		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 561		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 562	/* 0x4f - 2560x1600@85Hz */
 563	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 564		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 565		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 566	/* 0x50 - 2560x1600@120Hz RB */
 567	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 568		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 569		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 570	/* 0x57 - 4096x2160@60Hz RB */
 571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 572		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 573		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 574	/* 0x58 - 4096x2160@59.94Hz RB */
 575	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 576		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 577		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 578};
 579
 580/*
 581 * These more or less come from the DMT spec.  The 720x400 modes are
 582 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 583 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 584 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 585 * mode.
 586 *
 587 * The DMT modes have been fact-checked; the rest are mild guesses.
 588 */
 589static const struct drm_display_mode edid_est_modes[] = {
 590	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 591		   968, 1056, 0, 600, 601, 605, 628, 0,
 592		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 593	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 594		   896, 1024, 0, 600, 601, 603,  625, 0,
 595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 596	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 597		   720, 840, 0, 480, 481, 484, 500, 0,
 598		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 599	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 600		   704,  832, 0, 480, 489, 492, 520, 0,
 601		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 602	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 603		   768,  864, 0, 480, 483, 486, 525, 0,
 604		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 605	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 606		   752, 800, 0, 480, 490, 492, 525, 0,
 607		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 608	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 609		   846, 900, 0, 400, 421, 423,  449, 0,
 610		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 611	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 612		   846,  900, 0, 400, 412, 414, 449, 0,
 613		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 614	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 615		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 616		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 617	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 618		   1136, 1312, 0,  768, 769, 772, 800, 0,
 619		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 620	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 621		   1184, 1328, 0,  768, 771, 777, 806, 0,
 622		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 623	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 624		   1184, 1344, 0,  768, 771, 777, 806, 0,
 625		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 626	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 627		   1208, 1264, 0, 768, 768, 776, 817, 0,
 628		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 629	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 630		   928, 1152, 0, 624, 625, 628, 667, 0,
 631		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 632	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 633		   896, 1056, 0, 600, 601, 604,  625, 0,
 634		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 635	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 636		   976, 1040, 0, 600, 637, 643, 666, 0,
 637		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 638	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 639		   1344, 1600, 0,  864, 865, 868, 900, 0,
 640		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 641};
 642
 643struct minimode {
 644	short w;
 645	short h;
 646	short r;
 647	short rb;
 648};
 649
 650static const struct minimode est3_modes[] = {
 651	/* byte 6 */
 652	{ 640, 350, 85, 0 },
 653	{ 640, 400, 85, 0 },
 654	{ 720, 400, 85, 0 },
 655	{ 640, 480, 85, 0 },
 656	{ 848, 480, 60, 0 },
 657	{ 800, 600, 85, 0 },
 658	{ 1024, 768, 85, 0 },
 659	{ 1152, 864, 75, 0 },
 660	/* byte 7 */
 661	{ 1280, 768, 60, 1 },
 662	{ 1280, 768, 60, 0 },
 663	{ 1280, 768, 75, 0 },
 664	{ 1280, 768, 85, 0 },
 665	{ 1280, 960, 60, 0 },
 666	{ 1280, 960, 85, 0 },
 667	{ 1280, 1024, 60, 0 },
 668	{ 1280, 1024, 85, 0 },
 669	/* byte 8 */
 670	{ 1360, 768, 60, 0 },
 671	{ 1440, 900, 60, 1 },
 672	{ 1440, 900, 60, 0 },
 673	{ 1440, 900, 75, 0 },
 674	{ 1440, 900, 85, 0 },
 675	{ 1400, 1050, 60, 1 },
 676	{ 1400, 1050, 60, 0 },
 677	{ 1400, 1050, 75, 0 },
 678	/* byte 9 */
 679	{ 1400, 1050, 85, 0 },
 680	{ 1680, 1050, 60, 1 },
 681	{ 1680, 1050, 60, 0 },
 682	{ 1680, 1050, 75, 0 },
 683	{ 1680, 1050, 85, 0 },
 684	{ 1600, 1200, 60, 0 },
 685	{ 1600, 1200, 65, 0 },
 686	{ 1600, 1200, 70, 0 },
 687	/* byte 10 */
 688	{ 1600, 1200, 75, 0 },
 689	{ 1600, 1200, 85, 0 },
 690	{ 1792, 1344, 60, 0 },
 691	{ 1792, 1344, 75, 0 },
 692	{ 1856, 1392, 60, 0 },
 693	{ 1856, 1392, 75, 0 },
 694	{ 1920, 1200, 60, 1 },
 695	{ 1920, 1200, 60, 0 },
 696	/* byte 11 */
 697	{ 1920, 1200, 75, 0 },
 698	{ 1920, 1200, 85, 0 },
 699	{ 1920, 1440, 60, 0 },
 700	{ 1920, 1440, 75, 0 },
 701};
 702
 703static const struct minimode extra_modes[] = {
 704	{ 1024, 576,  60, 0 },
 705	{ 1366, 768,  60, 0 },
 706	{ 1600, 900,  60, 0 },
 707	{ 1680, 945,  60, 0 },
 708	{ 1920, 1080, 60, 0 },
 709	{ 2048, 1152, 60, 0 },
 710	{ 2048, 1536, 60, 0 },
 711};
 712
 713/*
 714 * From CEA/CTA-861 spec.
 715 *
 716 * Do not access directly, instead always use cea_mode_for_vic().
 717 */
 718static const struct drm_display_mode edid_cea_modes_1[] = {
 719	/* 1 - 640x480@60Hz 4:3 */
 720	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 721		   752, 800, 0, 480, 490, 492, 525, 0,
 722		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 723	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 724	/* 2 - 720x480@60Hz 4:3 */
 725	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 726		   798, 858, 0, 480, 489, 495, 525, 0,
 727		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 728	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 729	/* 3 - 720x480@60Hz 16:9 */
 730	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 731		   798, 858, 0, 480, 489, 495, 525, 0,
 732		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 733	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 734	/* 4 - 1280x720@60Hz 16:9 */
 735	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 736		   1430, 1650, 0, 720, 725, 730, 750, 0,
 737		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 738	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 739	/* 5 - 1920x1080i@60Hz 16:9 */
 740	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 741		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 742		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 743		   DRM_MODE_FLAG_INTERLACE),
 744	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 745	/* 6 - 720(1440)x480i@60Hz 4:3 */
 746	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 747		   801, 858, 0, 480, 488, 494, 525, 0,
 748		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 749		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 751	/* 7 - 720(1440)x480i@60Hz 16:9 */
 752	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 753		   801, 858, 0, 480, 488, 494, 525, 0,
 754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 755		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 756	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 757	/* 8 - 720(1440)x240@60Hz 4:3 */
 758	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 759		   801, 858, 0, 240, 244, 247, 262, 0,
 760		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 761		   DRM_MODE_FLAG_DBLCLK),
 762	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 763	/* 9 - 720(1440)x240@60Hz 16:9 */
 764	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 765		   801, 858, 0, 240, 244, 247, 262, 0,
 766		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 767		   DRM_MODE_FLAG_DBLCLK),
 768	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 769	/* 10 - 2880x480i@60Hz 4:3 */
 770	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 771		   3204, 3432, 0, 480, 488, 494, 525, 0,
 772		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 773		   DRM_MODE_FLAG_INTERLACE),
 774	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 775	/* 11 - 2880x480i@60Hz 16:9 */
 776	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 777		   3204, 3432, 0, 480, 488, 494, 525, 0,
 778		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 779		   DRM_MODE_FLAG_INTERLACE),
 780	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 781	/* 12 - 2880x240@60Hz 4:3 */
 782	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 783		   3204, 3432, 0, 240, 244, 247, 262, 0,
 784		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 785	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 786	/* 13 - 2880x240@60Hz 16:9 */
 787	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 788		   3204, 3432, 0, 240, 244, 247, 262, 0,
 789		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 14 - 1440x480@60Hz 4:3 */
 792	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 793		   1596, 1716, 0, 480, 489, 495, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 795	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 796	/* 15 - 1440x480@60Hz 16:9 */
 797	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 798		   1596, 1716, 0, 480, 489, 495, 525, 0,
 799		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 800	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 801	/* 16 - 1920x1080@60Hz 16:9 */
 802	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 803		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 804		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 805	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 806	/* 17 - 720x576@50Hz 4:3 */
 807	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 808		   796, 864, 0, 576, 581, 586, 625, 0,
 809		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 810	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 811	/* 18 - 720x576@50Hz 16:9 */
 812	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 813		   796, 864, 0, 576, 581, 586, 625, 0,
 814		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 815	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 816	/* 19 - 1280x720@50Hz 16:9 */
 817	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 818		   1760, 1980, 0, 720, 725, 730, 750, 0,
 819		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 820	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 821	/* 20 - 1920x1080i@50Hz 16:9 */
 822	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 823		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 824		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 825		   DRM_MODE_FLAG_INTERLACE),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 827	/* 21 - 720(1440)x576i@50Hz 4:3 */
 828	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 829		   795, 864, 0, 576, 580, 586, 625, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 831		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 833	/* 22 - 720(1440)x576i@50Hz 16:9 */
 834	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 835		   795, 864, 0, 576, 580, 586, 625, 0,
 836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 837		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 838	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 839	/* 23 - 720(1440)x288@50Hz 4:3 */
 840	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 841		   795, 864, 0, 288, 290, 293, 312, 0,
 842		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 843		   DRM_MODE_FLAG_DBLCLK),
 844	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 845	/* 24 - 720(1440)x288@50Hz 16:9 */
 846	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 847		   795, 864, 0, 288, 290, 293, 312, 0,
 848		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 849		   DRM_MODE_FLAG_DBLCLK),
 850	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 851	/* 25 - 2880x576i@50Hz 4:3 */
 852	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 853		   3180, 3456, 0, 576, 580, 586, 625, 0,
 854		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 855		   DRM_MODE_FLAG_INTERLACE),
 856	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 857	/* 26 - 2880x576i@50Hz 16:9 */
 858	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 859		   3180, 3456, 0, 576, 580, 586, 625, 0,
 860		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 861		   DRM_MODE_FLAG_INTERLACE),
 862	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 863	/* 27 - 2880x288@50Hz 4:3 */
 864	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 865		   3180, 3456, 0, 288, 290, 293, 312, 0,
 866		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 867	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 868	/* 28 - 2880x288@50Hz 16:9 */
 869	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 870		   3180, 3456, 0, 288, 290, 293, 312, 0,
 871		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 873	/* 29 - 1440x576@50Hz 4:3 */
 874	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 875		   1592, 1728, 0, 576, 581, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 877	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 878	/* 30 - 1440x576@50Hz 16:9 */
 879	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 880		   1592, 1728, 0, 576, 581, 586, 625, 0,
 881		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 882	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 883	/* 31 - 1920x1080@50Hz 16:9 */
 884	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 885		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 886		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 887	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 888	/* 32 - 1920x1080@24Hz 16:9 */
 889	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 890		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 891		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 892	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 893	/* 33 - 1920x1080@25Hz 16:9 */
 894	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 895		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 896		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 897	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 898	/* 34 - 1920x1080@30Hz 16:9 */
 899	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 900		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 901		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 902	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 903	/* 35 - 2880x480@60Hz 4:3 */
 904	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 905		   3192, 3432, 0, 480, 489, 495, 525, 0,
 906		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 907	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 908	/* 36 - 2880x480@60Hz 16:9 */
 909	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 910		   3192, 3432, 0, 480, 489, 495, 525, 0,
 911		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 912	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 913	/* 37 - 2880x576@50Hz 4:3 */
 914	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 915		   3184, 3456, 0, 576, 581, 586, 625, 0,
 916		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 917	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 918	/* 38 - 2880x576@50Hz 16:9 */
 919	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 920		   3184, 3456, 0, 576, 581, 586, 625, 0,
 921		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 922	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 923	/* 39 - 1920x1080i@50Hz 16:9 */
 924	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 925		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 926		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 927		   DRM_MODE_FLAG_INTERLACE),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 40 - 1920x1080i@100Hz 16:9 */
 930	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 931		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 932		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 933		   DRM_MODE_FLAG_INTERLACE),
 934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 935	/* 41 - 1280x720@100Hz 16:9 */
 936	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 937		   1760, 1980, 0, 720, 725, 730, 750, 0,
 938		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 940	/* 42 - 720x576@100Hz 4:3 */
 941	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 942		   796, 864, 0, 576, 581, 586, 625, 0,
 943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 945	/* 43 - 720x576@100Hz 16:9 */
 946	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 947		   796, 864, 0, 576, 581, 586, 625, 0,
 948		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 949	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 950	/* 44 - 720(1440)x576i@100Hz 4:3 */
 951	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 952		   795, 864, 0, 576, 580, 586, 625, 0,
 953		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 954		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 955	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 956	/* 45 - 720(1440)x576i@100Hz 16:9 */
 957	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 958		   795, 864, 0, 576, 580, 586, 625, 0,
 959		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 960		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 962	/* 46 - 1920x1080i@120Hz 16:9 */
 963	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 964		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 965		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 966		   DRM_MODE_FLAG_INTERLACE),
 967	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 968	/* 47 - 1280x720@120Hz 16:9 */
 969	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 970		   1430, 1650, 0, 720, 725, 730, 750, 0,
 971		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 972	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 973	/* 48 - 720x480@120Hz 4:3 */
 974	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 975		   798, 858, 0, 480, 489, 495, 525, 0,
 976		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 978	/* 49 - 720x480@120Hz 16:9 */
 979	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 980		   798, 858, 0, 480, 489, 495, 525, 0,
 981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 982	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 983	/* 50 - 720(1440)x480i@120Hz 4:3 */
 984	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 985		   801, 858, 0, 480, 488, 494, 525, 0,
 986		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 987		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 988	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 989	/* 51 - 720(1440)x480i@120Hz 16:9 */
 990	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
 991		   801, 858, 0, 480, 488, 494, 525, 0,
 992		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 993		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 995	/* 52 - 720x576@200Hz 4:3 */
 996	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
 997		   796, 864, 0, 576, 581, 586, 625, 0,
 998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 53 - 720x576@200Hz 16:9 */
1001	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1002		   796, 864, 0, 576, 581, 586, 625, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 54 - 720(1440)x576i@200Hz 4:3 */
1006	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1007		   795, 864, 0, 576, 580, 586, 625, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 55 - 720(1440)x576i@200Hz 16:9 */
1012	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1013		   795, 864, 0, 576, 580, 586, 625, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 56 - 720x480@240Hz 4:3 */
1018	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1019		   798, 858, 0, 480, 489, 495, 525, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 57 - 720x480@240Hz 16:9 */
1023	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1024		   798, 858, 0, 480, 489, 495, 525, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 58 - 720(1440)x480i@240Hz 4:3 */
1028	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1029		   801, 858, 0, 480, 488, 494, 525, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 59 - 720(1440)x480i@240Hz 16:9 */
1034	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1035		   801, 858, 0, 480, 488, 494, 525, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 60 - 1280x720@24Hz 16:9 */
1040	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1041		   3080, 3300, 0, 720, 725, 730, 750, 0,
1042		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1044	/* 61 - 1280x720@25Hz 16:9 */
1045	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1046		   3740, 3960, 0, 720, 725, 730, 750, 0,
1047		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 62 - 1280x720@30Hz 16:9 */
1050	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1051		   3080, 3300, 0, 720, 725, 730, 750, 0,
1052		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1053	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1054	/* 63 - 1920x1080@120Hz 16:9 */
1055	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1056		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1057		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1058	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059	/* 64 - 1920x1080@100Hz 16:9 */
1060	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1061		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1062		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1064	/* 65 - 1280x720@24Hz 64:27 */
1065	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1066		   3080, 3300, 0, 720, 725, 730, 750, 0,
1067		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1069	/* 66 - 1280x720@25Hz 64:27 */
1070	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1071		   3740, 3960, 0, 720, 725, 730, 750, 0,
1072		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1074	/* 67 - 1280x720@30Hz 64:27 */
1075	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1076		   3080, 3300, 0, 720, 725, 730, 750, 0,
1077		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1079	/* 68 - 1280x720@50Hz 64:27 */
1080	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1081		   1760, 1980, 0, 720, 725, 730, 750, 0,
1082		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1084	/* 69 - 1280x720@60Hz 64:27 */
1085	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1086		   1430, 1650, 0, 720, 725, 730, 750, 0,
1087		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089	/* 70 - 1280x720@100Hz 64:27 */
1090	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1091		   1760, 1980, 0, 720, 725, 730, 750, 0,
1092		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094	/* 71 - 1280x720@120Hz 64:27 */
1095	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1096		   1430, 1650, 0, 720, 725, 730, 750, 0,
1097		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099	/* 72 - 1920x1080@24Hz 64:27 */
1100	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1101		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1102		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104	/* 73 - 1920x1080@25Hz 64:27 */
1105	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1106		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1107		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109	/* 74 - 1920x1080@30Hz 64:27 */
1110	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1111		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1112		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114	/* 75 - 1920x1080@50Hz 64:27 */
1115	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1116		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1117		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119	/* 76 - 1920x1080@60Hz 64:27 */
1120	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1121		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1122		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124	/* 77 - 1920x1080@100Hz 64:27 */
1125	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1126		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1127		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129	/* 78 - 1920x1080@120Hz 64:27 */
1130	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1131		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1132		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134	/* 79 - 1680x720@24Hz 64:27 */
1135	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1136		   3080, 3300, 0, 720, 725, 730, 750, 0,
1137		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139	/* 80 - 1680x720@25Hz 64:27 */
1140	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1141		   2948, 3168, 0, 720, 725, 730, 750, 0,
1142		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144	/* 81 - 1680x720@30Hz 64:27 */
1145	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1146		   2420, 2640, 0, 720, 725, 730, 750, 0,
1147		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149	/* 82 - 1680x720@50Hz 64:27 */
1150	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1151		   1980, 2200, 0, 720, 725, 730, 750, 0,
1152		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154	/* 83 - 1680x720@60Hz 64:27 */
1155	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1156		   1980, 2200, 0, 720, 725, 730, 750, 0,
1157		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1159	/* 84 - 1680x720@100Hz 64:27 */
1160	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1161		   1780, 2000, 0, 720, 725, 730, 825, 0,
1162		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1164	/* 85 - 1680x720@120Hz 64:27 */
1165	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1166		   1780, 2000, 0, 720, 725, 730, 825, 0,
1167		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1169	/* 86 - 2560x1080@24Hz 64:27 */
1170	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1171		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1172		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1174	/* 87 - 2560x1080@25Hz 64:27 */
1175	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1176		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1177		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1179	/* 88 - 2560x1080@30Hz 64:27 */
1180	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1181		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1182		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1184	/* 89 - 2560x1080@50Hz 64:27 */
1185	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1186		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1187		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1189	/* 90 - 2560x1080@60Hz 64:27 */
1190	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1191		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1192		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1194	/* 91 - 2560x1080@100Hz 64:27 */
1195	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1196		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1197		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1199	/* 92 - 2560x1080@120Hz 64:27 */
1200	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1201		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1202		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1204	/* 93 - 3840x2160@24Hz 16:9 */
1205	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1206		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1207		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1209	/* 94 - 3840x2160@25Hz 16:9 */
1210	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1211		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1212		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1214	/* 95 - 3840x2160@30Hz 16:9 */
1215	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1216		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1217		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1219	/* 96 - 3840x2160@50Hz 16:9 */
1220	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1221		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1222		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1224	/* 97 - 3840x2160@60Hz 16:9 */
1225	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1226		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1227		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1229	/* 98 - 4096x2160@24Hz 256:135 */
1230	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1231		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1232		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1233	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1234	/* 99 - 4096x2160@25Hz 256:135 */
1235	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1236		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1237		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1238	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1239	/* 100 - 4096x2160@30Hz 256:135 */
1240	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1241		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1242		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1243	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1244	/* 101 - 4096x2160@50Hz 256:135 */
1245	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1246		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1247		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1249	/* 102 - 4096x2160@60Hz 256:135 */
1250	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1251		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1252		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1253	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1254	/* 103 - 3840x2160@24Hz 64:27 */
1255	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1256		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1257		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1258	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1259	/* 104 - 3840x2160@25Hz 64:27 */
1260	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1261		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1262		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1264	/* 105 - 3840x2160@30Hz 64:27 */
1265	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1266		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1267		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1268	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1269	/* 106 - 3840x2160@50Hz 64:27 */
1270	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1271		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1272		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1274	/* 107 - 3840x2160@60Hz 64:27 */
1275	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1276		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1277		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1278	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1279	/* 108 - 1280x720@48Hz 16:9 */
1280	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1281		   2280, 2500, 0, 720, 725, 730, 750, 0,
1282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1283	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1284	/* 109 - 1280x720@48Hz 64:27 */
1285	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1286		   2280, 2500, 0, 720, 725, 730, 750, 0,
1287		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1288	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1289	/* 110 - 1680x720@48Hz 64:27 */
1290	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1291		   2530, 2750, 0, 720, 725, 730, 750, 0,
1292		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1293	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1294	/* 111 - 1920x1080@48Hz 16:9 */
1295	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1296		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1297		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1298	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1299	/* 112 - 1920x1080@48Hz 64:27 */
1300	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1301		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1303	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1304	/* 113 - 2560x1080@48Hz 64:27 */
1305	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1306		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1307		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1308	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1309	/* 114 - 3840x2160@48Hz 16:9 */
1310	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1311		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1312		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1313	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1314	/* 115 - 4096x2160@48Hz 256:135 */
1315	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1316		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1317		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1318	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1319	/* 116 - 3840x2160@48Hz 64:27 */
1320	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1321		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1322		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1323	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1324	/* 117 - 3840x2160@100Hz 16:9 */
1325	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1326		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1328	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1329	/* 118 - 3840x2160@120Hz 16:9 */
1330	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1331		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1332		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1333	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1334	/* 119 - 3840x2160@100Hz 64:27 */
1335	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1336		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1337		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1338	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1339	/* 120 - 3840x2160@120Hz 64:27 */
1340	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1341		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1342		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1343	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1344	/* 121 - 5120x2160@24Hz 64:27 */
1345	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1346		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1347		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1348	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1349	/* 122 - 5120x2160@25Hz 64:27 */
1350	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1351		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1352		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1353	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1354	/* 123 - 5120x2160@30Hz 64:27 */
1355	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1356		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1357		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1358	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1359	/* 124 - 5120x2160@48Hz 64:27 */
1360	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1361		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1362		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1363	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1364	/* 125 - 5120x2160@50Hz 64:27 */
1365	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1366		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1367		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1368	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1369	/* 126 - 5120x2160@60Hz 64:27 */
1370	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1371		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1372		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1373	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1374	/* 127 - 5120x2160@100Hz 64:27 */
1375	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1376		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1377		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1378	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1379};
1380
1381/*
1382 * From CEA/CTA-861 spec.
1383 *
1384 * Do not access directly, instead always use cea_mode_for_vic().
1385 */
1386static const struct drm_display_mode edid_cea_modes_193[] = {
1387	/* 193 - 5120x2160@120Hz 64:27 */
1388	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1389		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1390		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1391	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1392	/* 194 - 7680x4320@24Hz 16:9 */
1393	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1394		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1396	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1397	/* 195 - 7680x4320@25Hz 16:9 */
1398	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1399		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1400		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1401	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1402	/* 196 - 7680x4320@30Hz 16:9 */
1403	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1404		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1405		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1406	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1407	/* 197 - 7680x4320@48Hz 16:9 */
1408	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1409		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1410		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1411	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1412	/* 198 - 7680x4320@50Hz 16:9 */
1413	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1414		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1416	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1417	/* 199 - 7680x4320@60Hz 16:9 */
1418	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1419		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1420		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1421	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1422	/* 200 - 7680x4320@100Hz 16:9 */
1423	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1424		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1425		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1426	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1427	/* 201 - 7680x4320@120Hz 16:9 */
1428	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1429		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1430		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1431	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1432	/* 202 - 7680x4320@24Hz 64:27 */
1433	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1434		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1435		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1436	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1437	/* 203 - 7680x4320@25Hz 64:27 */
1438	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1439		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1440		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1441	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1442	/* 204 - 7680x4320@30Hz 64:27 */
1443	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1444		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1445		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1446	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1447	/* 205 - 7680x4320@48Hz 64:27 */
1448	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1449		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1450		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1451	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1452	/* 206 - 7680x4320@50Hz 64:27 */
1453	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1454		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1455		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1456	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1457	/* 207 - 7680x4320@60Hz 64:27 */
1458	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1459		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1460		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1461	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1462	/* 208 - 7680x4320@100Hz 64:27 */
1463	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1464		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1465		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1466	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1467	/* 209 - 7680x4320@120Hz 64:27 */
1468	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1469		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1470		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1471	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1472	/* 210 - 10240x4320@24Hz 64:27 */
1473	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1474		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1476	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1477	/* 211 - 10240x4320@25Hz 64:27 */
1478	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1479		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1480		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1481	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1482	/* 212 - 10240x4320@30Hz 64:27 */
1483	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1484		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1485		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1486	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1487	/* 213 - 10240x4320@48Hz 64:27 */
1488	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1489		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1490		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1491	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1492	/* 214 - 10240x4320@50Hz 64:27 */
1493	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1494		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1495		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1496	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1497	/* 215 - 10240x4320@60Hz 64:27 */
1498	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1499		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1500		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1501	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1502	/* 216 - 10240x4320@100Hz 64:27 */
1503	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1504		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1505		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1506	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1507	/* 217 - 10240x4320@120Hz 64:27 */
1508	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1509		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1510		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1512	/* 218 - 4096x2160@100Hz 256:135 */
1513	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1514		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1515		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1517	/* 219 - 4096x2160@120Hz 256:135 */
1518	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1519		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1520		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1522};
1523
1524/*
1525 * HDMI 1.4 4k modes. Index using the VIC.
1526 */
1527static const struct drm_display_mode edid_4k_modes[] = {
1528	/* 0 - dummy, VICs start at 1 */
1529	{ },
1530	/* 1 - 3840x2160@30Hz */
1531	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1532		   3840, 4016, 4104, 4400, 0,
1533		   2160, 2168, 2178, 2250, 0,
1534		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1535	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1536	/* 2 - 3840x2160@25Hz */
1537	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1538		   3840, 4896, 4984, 5280, 0,
1539		   2160, 2168, 2178, 2250, 0,
1540		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1541	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1542	/* 3 - 3840x2160@24Hz */
1543	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1544		   3840, 5116, 5204, 5500, 0,
1545		   2160, 2168, 2178, 2250, 0,
1546		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1548	/* 4 - 4096x2160@24Hz (SMPTE) */
1549	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1550		   4096, 5116, 5204, 5500, 0,
1551		   2160, 2168, 2178, 2250, 0,
1552		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1554};
1555
1556/*** DDC fetch and block validation ***/
1557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558static const u8 edid_header[] = {
1559	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1560};
1561
 
 
 
 
 
1562/**
1563 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1564 * @raw_edid: pointer to raw base EDID block
1565 *
1566 * Sanity check the header of the base EDID block.
1567 *
1568 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1569 */
1570int drm_edid_header_is_valid(const u8 *raw_edid)
1571{
 
1572	int i, score = 0;
1573
1574	for (i = 0; i < sizeof(edid_header); i++)
1575		if (raw_edid[i] == edid_header[i])
1576			score++;
 
1577
1578	return score;
1579}
1580EXPORT_SYMBOL(drm_edid_header_is_valid);
1581
1582static int edid_fixup __read_mostly = 6;
1583module_param_named(edid_fixup, edid_fixup, int, 0400);
1584MODULE_PARM_DESC(edid_fixup,
1585		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1586
1587static int validate_displayid(u8 *displayid, int length, int idx);
1588
1589static int drm_edid_block_checksum(const u8 *raw_edid)
1590{
 
1591	int i;
1592	u8 csum = 0, crc = 0;
1593
1594	for (i = 0; i < EDID_LENGTH - 1; i++)
1595		csum += raw_edid[i];
1596
1597	crc = 0x100 - csum;
1598
1599	return crc;
1600}
1601
1602static bool drm_edid_block_checksum_diff(const u8 *raw_edid, u8 real_checksum)
1603{
1604	if (raw_edid[EDID_LENGTH - 1] != real_checksum)
1605		return true;
1606	else
1607		return false;
1608}
1609
1610static bool drm_edid_is_zero(const u8 *in_edid, int length)
1611{
1612	if (memchr_inv(in_edid, 0, length))
1613		return false;
1614
1615	return true;
 
 
 
 
 
1616}
1617
1618/**
1619 * drm_edid_are_equal - compare two edid blobs.
1620 * @edid1: pointer to first blob
1621 * @edid2: pointer to second blob
1622 * This helper can be used during probing to determine if
1623 * edid had changed.
1624 */
1625bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1626{
1627	int edid1_len, edid2_len;
1628	bool edid1_present = edid1 != NULL;
1629	bool edid2_present = edid2 != NULL;
1630
1631	if (edid1_present != edid2_present)
1632		return false;
1633
1634	if (edid1) {
1635		edid1_len = EDID_LENGTH * (1 + edid1->extensions);
1636		edid2_len = EDID_LENGTH * (1 + edid2->extensions);
1637
1638		if (edid1_len != edid2_len)
1639			return false;
1640
1641		if (memcmp(edid1, edid2, edid1_len))
1642			return false;
1643	}
1644
1645	return true;
1646}
1647EXPORT_SYMBOL(drm_edid_are_equal);
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649/**
1650 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1651 * @raw_edid: pointer to raw EDID block
1652 * @block: type of block to validate (0 for base, extension otherwise)
1653 * @print_bad_edid: if true, dump bad EDID blocks to the console
1654 * @edid_corrupt: if true, the header or checksum is invalid
1655 *
1656 * Validate a base or extension EDID block and optionally dump bad blocks to
1657 * the console.
1658 *
1659 * Return: True if the block is valid, false otherwise.
1660 */
1661bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1662			  bool *edid_corrupt)
1663{
1664	u8 csum;
1665	struct edid *edid = (struct edid *)raw_edid;
 
 
1666
1667	if (WARN_ON(!raw_edid))
1668		return false;
1669
1670	if (edid_fixup > 8 || edid_fixup < 0)
1671		edid_fixup = 6;
1672
1673	if (block == 0) {
1674		int score = drm_edid_header_is_valid(raw_edid);
1675
1676		if (score == 8) {
1677			if (edid_corrupt)
1678				*edid_corrupt = false;
1679		} else if (score >= edid_fixup) {
1680			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1681			 * The corrupt flag needs to be set here otherwise, the
1682			 * fix-up code here will correct the problem, the
1683			 * checksum is correct and the test fails
1684			 */
1685			if (edid_corrupt)
1686				*edid_corrupt = true;
1687			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1688			memcpy(raw_edid, edid_header, sizeof(edid_header));
1689		} else {
1690			if (edid_corrupt)
1691				*edid_corrupt = true;
1692			goto bad;
1693		}
1694	}
1695
1696	csum = drm_edid_block_checksum(raw_edid);
1697	if (drm_edid_block_checksum_diff(raw_edid, csum)) {
1698		if (edid_corrupt)
 
 
 
 
 
 
1699			*edid_corrupt = true;
1700
1701		/* allow CEA to slide through, switches mangle this */
1702		if (raw_edid[0] == CEA_EXT) {
1703			DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1704			DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1705		} else {
1706			if (print_bad_edid)
1707				DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1708
1709			goto bad;
1710		}
1711	}
1712
1713	/* per-block-type checks */
1714	switch (raw_edid[0]) {
1715	case 0: /* base */
1716		if (edid->version != 1) {
1717			DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1718			goto bad;
1719		}
1720
1721		if (edid->revision > 4)
1722			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1723		break;
1724
1725	default:
1726		break;
 
1727	}
1728
1729	return true;
1730
1731bad:
1732	if (print_bad_edid) {
1733		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1734			pr_notice("EDID block is all zeroes\n");
1735		} else {
1736			pr_notice("Raw EDID:\n");
1737			print_hex_dump(KERN_NOTICE,
1738				       " \t", DUMP_PREFIX_NONE, 16, 1,
1739				       raw_edid, EDID_LENGTH, false);
1740		}
1741	}
1742	return false;
1743}
1744EXPORT_SYMBOL(drm_edid_block_valid);
1745
1746/**
1747 * drm_edid_is_valid - sanity check EDID data
1748 * @edid: EDID data
1749 *
1750 * Sanity-check an entire EDID record (including extensions)
1751 *
1752 * Return: True if the EDID data is valid, false otherwise.
1753 */
1754bool drm_edid_is_valid(struct edid *edid)
1755{
1756	int i;
1757	u8 *raw = (u8 *)edid;
1758
1759	if (!edid)
1760		return false;
1761
1762	for (i = 0; i <= edid->extensions; i++)
1763		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
 
 
1764			return false;
 
1765
1766	return true;
1767}
1768EXPORT_SYMBOL(drm_edid_is_valid);
1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770#define DDC_SEGMENT_ADDR 0x30
1771/**
1772 * drm_do_probe_ddc_edid() - get EDID information via I2C
1773 * @data: I2C device adapter
1774 * @buf: EDID data buffer to be filled
1775 * @block: 128 byte EDID block to start fetching from
1776 * @len: EDID data buffer length to fetch
1777 *
1778 * Try to fetch EDID information by calling I2C driver functions.
1779 *
1780 * Return: 0 on success or -1 on failure.
1781 */
1782static int
1783drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1784{
1785	struct i2c_adapter *adapter = data;
1786	unsigned char start = block * EDID_LENGTH;
1787	unsigned char segment = block >> 1;
1788	unsigned char xfers = segment ? 3 : 2;
1789	int ret, retries = 5;
1790
1791	/*
1792	 * The core I2C driver will automatically retry the transfer if the
1793	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1794	 * are susceptible to errors under a heavily loaded machine and
1795	 * generate spurious NAKs and timeouts. Retrying the transfer
1796	 * of the individual block a few times seems to overcome this.
1797	 */
1798	do {
1799		struct i2c_msg msgs[] = {
1800			{
1801				.addr	= DDC_SEGMENT_ADDR,
1802				.flags	= 0,
1803				.len	= 1,
1804				.buf	= &segment,
1805			}, {
1806				.addr	= DDC_ADDR,
1807				.flags	= 0,
1808				.len	= 1,
1809				.buf	= &start,
1810			}, {
1811				.addr	= DDC_ADDR,
1812				.flags	= I2C_M_RD,
1813				.len	= len,
1814				.buf	= buf,
1815			}
1816		};
1817
1818		/*
1819		 * Avoid sending the segment addr to not upset non-compliant
1820		 * DDC monitors.
1821		 */
1822		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1823
1824		if (ret == -ENXIO) {
1825			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1826					adapter->name);
1827			break;
1828		}
1829	} while (ret != xfers && --retries);
1830
1831	return ret == xfers ? 0 : -1;
1832}
1833
1834static void connector_bad_edid(struct drm_connector *connector,
1835			       u8 *edid, int num_blocks)
1836{
1837	int i;
1838	u8 num_of_ext = edid[0x7e];
 
 
 
 
 
 
 
 
1839
1840	/* Calculate real checksum for the last edid extension block data */
1841	connector->real_edid_checksum =
1842		drm_edid_block_checksum(edid + num_of_ext * EDID_LENGTH);
 
1843
1844	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
1845		return;
1846
1847	drm_warn(connector->dev, "%s: EDID is invalid:\n", connector->name);
1848	for (i = 0; i < num_blocks; i++) {
1849		u8 *block = edid + i * EDID_LENGTH;
1850		char prefix[20];
1851
1852		if (drm_edid_is_zero(block, EDID_LENGTH))
1853			sprintf(prefix, "\t[%02x] ZERO ", i);
1854		else if (!drm_edid_block_valid(block, i, false, NULL))
1855			sprintf(prefix, "\t[%02x] BAD  ", i);
1856		else
1857			sprintf(prefix, "\t[%02x] GOOD ", i);
1858
1859		print_hex_dump(KERN_WARNING,
1860			       prefix, DUMP_PREFIX_NONE, 16, 1,
1861			       block, EDID_LENGTH, false);
1862	}
1863}
1864
1865/* Get override or firmware EDID */
1866static struct edid *drm_get_override_edid(struct drm_connector *connector)
1867{
1868	struct edid *override = NULL;
 
 
1869
1870	if (connector->override_edid)
1871		override = drm_edid_duplicate(connector->edid_blob_ptr->data);
 
 
1872
1873	if (!override)
1874		override = drm_load_edid_firmware(connector);
1875
1876	return IS_ERR(override) ? NULL : override;
1877}
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879/**
1880 * drm_add_override_edid_modes - add modes from override/firmware EDID
1881 * @connector: connector we're probing
1882 *
1883 * Add modes from the override/firmware EDID, if available. Only to be used from
1884 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
1885 * failed during drm_get_edid() and caused the override/firmware EDID to be
1886 * skipped.
1887 *
1888 * Return: The number of modes added or 0 if we couldn't find any.
1889 */
1890int drm_add_override_edid_modes(struct drm_connector *connector)
1891{
1892	struct edid *override;
1893	int num_modes = 0;
1894
1895	override = drm_get_override_edid(connector);
1896	if (override) {
1897		drm_connector_update_edid_property(connector, override);
1898		num_modes = drm_add_edid_modes(connector, override);
1899		kfree(override);
 
1900
1901		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
1902			      connector->base.id, connector->name, num_modes);
 
1903	}
1904
1905	return num_modes;
1906}
1907EXPORT_SYMBOL(drm_add_override_edid_modes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908
1909/**
1910 * drm_do_get_edid - get EDID data using a custom EDID block read function
1911 * @connector: connector we're probing
1912 * @get_edid_block: EDID block read function
1913 * @data: private data passed to the block read function
1914 *
1915 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1916 * exposes a different interface to read EDID blocks this function can be used
1917 * to get EDID data using a custom block read function.
1918 *
1919 * As in the general case the DDC bus is accessible by the kernel at the I2C
1920 * level, drivers must make all reasonable efforts to expose it as an I2C
1921 * adapter and use drm_get_edid() instead of abusing this function.
1922 *
1923 * The EDID may be overridden using debugfs override_edid or firmare EDID
1924 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1925 * order. Having either of them bypasses actual EDID reads.
1926 *
1927 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1928 */
1929struct edid *drm_do_get_edid(struct drm_connector *connector,
1930	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1931			      size_t len),
1932	void *data)
1933{
1934	int i, j = 0, valid_extensions = 0;
1935	u8 *edid, *new;
1936	struct edid *override;
1937
1938	override = drm_get_override_edid(connector);
1939	if (override)
1940		return override;
1941
1942	if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
1943		return NULL;
1944
1945	/* base block fetch */
1946	for (i = 0; i < 4; i++) {
1947		if (get_edid_block(data, edid, 0, EDID_LENGTH))
1948			goto out;
1949		if (drm_edid_block_valid(edid, 0, false,
1950					 &connector->edid_corrupt))
1951			break;
1952		if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1953			connector->null_edid_counter++;
1954			goto carp;
1955		}
1956	}
1957	if (i == 4)
1958		goto carp;
1959
1960	/* if there's no extensions, we're done */
1961	valid_extensions = edid[0x7e];
1962	if (valid_extensions == 0)
1963		return (struct edid *)edid;
1964
1965	new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1966	if (!new)
1967		goto out;
1968	edid = new;
1969
1970	for (j = 1; j <= edid[0x7e]; j++) {
1971		u8 *block = edid + j * EDID_LENGTH;
 
 
1972
1973		for (i = 0; i < 4; i++) {
1974			if (get_edid_block(data, block, j, EDID_LENGTH))
1975				goto out;
1976			if (drm_edid_block_valid(block, j, false, NULL))
1977				break;
1978		}
1979
1980		if (i == 4)
1981			valid_extensions--;
 
 
1982	}
1983
1984	if (valid_extensions != edid[0x7e]) {
1985		u8 *base;
1986
1987		connector_bad_edid(connector, edid, edid[0x7e] + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988
1989		edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1990		edid[0x7e] = valid_extensions;
1991
1992		new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1993				    GFP_KERNEL);
1994		if (!new)
1995			goto out;
1996
1997		base = new;
1998		for (i = 0; i <= edid[0x7e]; i++) {
1999			u8 *block = edid + i * EDID_LENGTH;
2000
2001			if (!drm_edid_block_valid(block, i, false, NULL))
2002				continue;
 
2003
2004			memcpy(base, block, EDID_LENGTH);
2005			base += EDID_LENGTH;
2006		}
 
 
 
 
 
 
 
 
 
2007
2008		kfree(edid);
2009		edid = new;
2010	}
2011
2012	return (struct edid *)edid;
 
 
 
 
 
 
 
2013
2014carp:
2015	connector_bad_edid(connector, edid, 1);
2016out:
2017	kfree(edid);
2018	return NULL;
2019}
2020EXPORT_SYMBOL_GPL(drm_do_get_edid);
2021
2022/**
2023 * drm_probe_ddc() - probe DDC presence
2024 * @adapter: I2C adapter to probe
2025 *
2026 * Return: True on success, false on failure.
2027 */
2028bool
2029drm_probe_ddc(struct i2c_adapter *adapter)
2030{
2031	unsigned char out;
2032
2033	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2034}
2035EXPORT_SYMBOL(drm_probe_ddc);
2036
2037/**
2038 * drm_get_edid - get EDID data, if available
2039 * @connector: connector we're probing
2040 * @adapter: I2C adapter to use for DDC
2041 *
2042 * Poke the given I2C channel to grab EDID data if possible.  If found,
2043 * attach it to the connector.
2044 *
2045 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2046 */
2047struct edid *drm_get_edid(struct drm_connector *connector,
2048			  struct i2c_adapter *adapter)
2049{
2050	struct edid *edid;
2051
2052	if (connector->force == DRM_FORCE_OFF)
2053		return NULL;
2054
2055	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2056		return NULL;
2057
2058	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
2059	drm_connector_update_edid_property(connector, edid);
2060	return edid;
2061}
2062EXPORT_SYMBOL(drm_get_edid);
2063
2064/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2066 * @connector: connector we're probing
2067 * @adapter: I2C adapter to use for DDC
2068 *
2069 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2070 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2071 * switch DDC to the GPU which is retrieving EDID.
2072 *
2073 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2074 */
2075struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2076				     struct i2c_adapter *adapter)
2077{
2078	struct pci_dev *pdev = connector->dev->pdev;
 
2079	struct edid *edid;
2080
 
 
 
2081	vga_switcheroo_lock_ddc(pdev);
2082	edid = drm_get_edid(connector, adapter);
2083	vga_switcheroo_unlock_ddc(pdev);
2084
2085	return edid;
2086}
2087EXPORT_SYMBOL(drm_get_edid_switcheroo);
2088
2089/**
2090 * drm_edid_duplicate - duplicate an EDID and the extensions
2091 * @edid: EDID to duplicate
 
2092 *
2093 * Return: Pointer to duplicated EDID or NULL on allocation failure.
 
 
 
 
2094 */
2095struct edid *drm_edid_duplicate(const struct edid *edid)
 
2096{
2097	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
2098}
2099EXPORT_SYMBOL(drm_edid_duplicate);
2100
2101/*** EDID parsing ***/
 
 
 
 
 
 
 
 
 
2102
2103/**
2104 * edid_vendor - match a string against EDID's obfuscated vendor field
2105 * @edid: EDID to match
2106 * @vendor: vendor string
2107 *
2108 * Returns true if @vendor is in @edid, false otherwise
2109 */
2110static bool edid_vendor(const struct edid *edid, const char *vendor)
2111{
2112	char edid_vendor[3];
2113
2114	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
2115	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
2116			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
2117	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
2118
2119	return !strncmp(edid_vendor, vendor, 3);
2120}
 
 
 
2121
2122/**
2123 * edid_get_quirks - return quirk flags for a given EDID
2124 * @edid: EDID to process
2125 *
2126 * This tells subsequent routines what fixes they need to apply.
2127 */
2128static u32 edid_get_quirks(const struct edid *edid)
2129{
 
2130	const struct edid_quirk *quirk;
2131	int i;
2132
2133	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2134		quirk = &edid_quirk_list[i];
2135
2136		if (edid_vendor(edid, quirk->vendor) &&
2137		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
2138			return quirk->quirks;
2139	}
2140
2141	return 0;
2142}
2143
2144#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2145#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2146
2147/**
2148 * edid_fixup_preferred - set preferred modes based on quirk list
2149 * @connector: has mode list to fix up
2150 * @quirks: quirks list
2151 *
2152 * Walk the mode list for @connector, clearing the preferred status
2153 * on existing modes and setting it anew for the right mode ala @quirks.
2154 */
2155static void edid_fixup_preferred(struct drm_connector *connector,
2156				 u32 quirks)
2157{
 
2158	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2159	int target_refresh = 0;
2160	int cur_vrefresh, preferred_vrefresh;
2161
2162	if (list_empty(&connector->probed_modes))
2163		return;
2164
2165	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2166		target_refresh = 60;
2167	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2168		target_refresh = 75;
2169
2170	preferred_mode = list_first_entry(&connector->probed_modes,
2171					  struct drm_display_mode, head);
2172
2173	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2174		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2175
2176		if (cur_mode == preferred_mode)
2177			continue;
2178
2179		/* Largest mode is preferred */
2180		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2181			preferred_mode = cur_mode;
2182
2183		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2184		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2185		/* At a given size, try to get closest to target refresh */
2186		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2187		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2188		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2189			preferred_mode = cur_mode;
2190		}
2191	}
2192
2193	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2194}
2195
2196static bool
2197mode_is_rb(const struct drm_display_mode *mode)
2198{
2199	return (mode->htotal - mode->hdisplay == 160) &&
2200	       (mode->hsync_end - mode->hdisplay == 80) &&
2201	       (mode->hsync_end - mode->hsync_start == 32) &&
2202	       (mode->vsync_start - mode->vdisplay == 3);
2203}
2204
2205/*
2206 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2207 * @dev: Device to duplicate against
2208 * @hsize: Mode width
2209 * @vsize: Mode height
2210 * @fresh: Mode refresh rate
2211 * @rb: Mode reduced-blanking-ness
2212 *
2213 * Walk the DMT mode list looking for a match for the given parameters.
2214 *
2215 * Return: A newly allocated copy of the mode, or NULL if not found.
2216 */
2217struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2218					   int hsize, int vsize, int fresh,
2219					   bool rb)
2220{
2221	int i;
2222
2223	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2224		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2225
2226		if (hsize != ptr->hdisplay)
2227			continue;
2228		if (vsize != ptr->vdisplay)
2229			continue;
2230		if (fresh != drm_mode_vrefresh(ptr))
2231			continue;
2232		if (rb != mode_is_rb(ptr))
2233			continue;
2234
2235		return drm_mode_duplicate(dev, ptr);
2236	}
2237
2238	return NULL;
2239}
2240EXPORT_SYMBOL(drm_mode_find_dmt);
2241
2242static bool is_display_descriptor(const u8 d[18], u8 tag)
2243{
2244	return d[0] == 0x00 && d[1] == 0x00 &&
2245		d[2] == 0x00 && d[3] == tag;
 
 
 
 
 
2246}
2247
2248static bool is_detailed_timing_descriptor(const u8 d[18])
2249{
2250	return d[0] != 0x00 || d[1] != 0x00;
 
 
2251}
2252
2253typedef void detailed_cb(struct detailed_timing *timing, void *closure);
2254
2255static void
2256cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
2257{
2258	int i, n;
2259	u8 d = ext[0x02];
2260	u8 *det_base = ext + d;
2261
2262	if (d < 4 || d > 127)
2263		return;
2264
2265	n = (127 - d) / 18;
2266	for (i = 0; i < n; i++)
2267		cb((struct detailed_timing *)(det_base + 18 * i), closure);
2268}
2269
2270static void
2271vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
2272{
2273	unsigned int i, n = min((int)ext[0x02], 6);
2274	u8 *det_base = ext + 5;
2275
2276	if (ext[0x01] != 1)
2277		return; /* unknown version */
2278
2279	for (i = 0; i < n; i++)
2280		cb((struct detailed_timing *)(det_base + 18 * i), closure);
2281}
2282
2283static void
2284drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
2285{
 
 
2286	int i;
2287	struct edid *edid = (struct edid *)raw_edid;
2288
2289	if (edid == NULL)
2290		return;
2291
2292	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
2293		cb(&(edid->detailed_timings[i]), closure);
2294
2295	for (i = 1; i <= raw_edid[0x7e]; i++) {
2296		u8 *ext = raw_edid + (i * EDID_LENGTH);
2297
 
 
2298		switch (*ext) {
2299		case CEA_EXT:
2300			cea_for_each_detailed_block(ext, cb, closure);
2301			break;
2302		case VTB_EXT:
2303			vtb_for_each_detailed_block(ext, cb, closure);
2304			break;
2305		default:
2306			break;
2307		}
2308	}
 
2309}
2310
2311static void
2312is_rb(struct detailed_timing *t, void *data)
2313{
2314	u8 *r = (u8 *)t;
2315
2316	if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
2317		return;
2318
2319	if (r[15] & 0x10)
2320		*(bool *)data = true;
 
 
 
 
2321}
2322
2323/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
2324static bool
2325drm_monitor_supports_rb(struct edid *edid)
2326{
2327	if (edid->revision >= 4) {
2328		bool ret = false;
2329
2330		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
2331		return ret;
2332	}
2333
2334	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2335}
2336
2337static void
2338find_gtf2(struct detailed_timing *t, void *data)
2339{
2340	u8 *r = (u8 *)t;
2341
2342	if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
2343		return;
2344
2345	if (r[10] == 0x02)
2346		*(u8 **)data = r;
 
 
2347}
2348
2349/* Secondary GTF curve kicks in above some break frequency */
2350static int
2351drm_gtf2_hbreak(struct edid *edid)
2352{
2353	u8 *r = NULL;
 
 
2354
2355	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2356	return r ? (r[12] * 2) : 0;
 
2357}
2358
2359static int
2360drm_gtf2_2c(struct edid *edid)
2361{
2362	u8 *r = NULL;
 
 
 
 
2363
2364	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2365	return r ? r[13] : 0;
2366}
2367
2368static int
2369drm_gtf2_m(struct edid *edid)
2370{
2371	u8 *r = NULL;
2372
2373	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2374	return r ? (r[15] << 8) + r[14] : 0;
 
 
 
2375}
2376
2377static int
2378drm_gtf2_k(struct edid *edid)
2379{
2380	u8 *r = NULL;
 
 
2381
2382	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2383	return r ? r[16] : 0;
 
2384}
2385
2386static int
2387drm_gtf2_2j(struct edid *edid)
2388{
2389	u8 *r = NULL;
 
 
2390
2391	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2392	return r ? r[17] : 0;
 
2393}
2394
2395/**
2396 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2397 * @edid: EDID block to scan
2398 */
2399static int standard_timing_level(struct edid *edid)
2400{
2401	if (edid->revision >= 2) {
2402		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2403			return LEVEL_CVT;
2404		if (drm_gtf2_hbreak(edid))
2405			return LEVEL_GTF2;
2406		if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2407			return LEVEL_GTF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408	}
2409	return LEVEL_DMT;
2410}
2411
2412/*
2413 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
2414 * monitors fill with ascii space (0x20) instead.
2415 */
2416static int
2417bad_std_timing(u8 a, u8 b)
2418{
2419	return (a == 0x00 && b == 0x00) ||
2420	       (a == 0x01 && b == 0x01) ||
2421	       (a == 0x20 && b == 0x20);
2422}
2423
2424static int drm_mode_hsync(const struct drm_display_mode *mode)
2425{
2426	if (mode->htotal <= 0)
2427		return 0;
2428
2429	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
2430}
2431
2432/**
2433 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2434 * @connector: connector of for the EDID block
2435 * @edid: EDID block to scan
2436 * @t: standard timing params
2437 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438 * Take the standard timing params (in this case width, aspect, and refresh)
2439 * and convert them into a real mode using CVT/GTF/DMT.
2440 */
2441static struct drm_display_mode *
2442drm_mode_std(struct drm_connector *connector, struct edid *edid,
2443	     struct std_timing *t)
2444{
2445	struct drm_device *dev = connector->dev;
2446	struct drm_display_mode *m, *mode = NULL;
2447	int hsize, vsize;
2448	int vrefresh_rate;
2449	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2450		>> EDID_TIMING_ASPECT_SHIFT;
2451	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2452		>> EDID_TIMING_VFREQ_SHIFT;
2453	int timing_level = standard_timing_level(edid);
2454
2455	if (bad_std_timing(t->hsize, t->vfreq_aspect))
2456		return NULL;
2457
2458	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2459	hsize = t->hsize * 8 + 248;
2460	/* vrefresh_rate = vfreq + 60 */
2461	vrefresh_rate = vfreq + 60;
2462	/* the vdisplay is calculated based on the aspect ratio */
2463	if (aspect_ratio == 0) {
2464		if (edid->revision < 3)
2465			vsize = hsize;
2466		else
2467			vsize = (hsize * 10) / 16;
2468	} else if (aspect_ratio == 1)
2469		vsize = (hsize * 3) / 4;
2470	else if (aspect_ratio == 2)
2471		vsize = (hsize * 4) / 5;
2472	else
2473		vsize = (hsize * 9) / 16;
2474
2475	/* HDTV hack, part 1 */
2476	if (vrefresh_rate == 60 &&
2477	    ((hsize == 1360 && vsize == 765) ||
2478	     (hsize == 1368 && vsize == 769))) {
2479		hsize = 1366;
2480		vsize = 768;
2481	}
2482
2483	/*
2484	 * If this connector already has a mode for this size and refresh
2485	 * rate (because it came from detailed or CVT info), use that
2486	 * instead.  This way we don't have to guess at interlace or
2487	 * reduced blanking.
2488	 */
2489	list_for_each_entry(m, &connector->probed_modes, head)
2490		if (m->hdisplay == hsize && m->vdisplay == vsize &&
2491		    drm_mode_vrefresh(m) == vrefresh_rate)
2492			return NULL;
2493
2494	/* HDTV hack, part 2 */
2495	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2496		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2497				    false);
2498		if (!mode)
2499			return NULL;
2500		mode->hdisplay = 1366;
2501		mode->hsync_start = mode->hsync_start - 1;
2502		mode->hsync_end = mode->hsync_end - 1;
2503		return mode;
2504	}
2505
2506	/* check whether it can be found in default mode table */
2507	if (drm_monitor_supports_rb(edid)) {
2508		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2509					 true);
2510		if (mode)
2511			return mode;
2512	}
2513	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2514	if (mode)
2515		return mode;
2516
2517	/* okay, generate it */
2518	switch (timing_level) {
2519	case LEVEL_DMT:
2520		break;
2521	case LEVEL_GTF:
2522		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2523		break;
2524	case LEVEL_GTF2:
2525		/*
2526		 * This is potentially wrong if there's ever a monitor with
2527		 * more than one ranges section, each claiming a different
2528		 * secondary GTF curve.  Please don't do that.
2529		 */
2530		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2531		if (!mode)
2532			return NULL;
2533		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2534			drm_mode_destroy(dev, mode);
2535			mode = drm_gtf_mode_complex(dev, hsize, vsize,
2536						    vrefresh_rate, 0, 0,
2537						    drm_gtf2_m(edid),
2538						    drm_gtf2_2c(edid),
2539						    drm_gtf2_k(edid),
2540						    drm_gtf2_2j(edid));
2541		}
2542		break;
2543	case LEVEL_CVT:
2544		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2545				    false);
2546		break;
2547	}
2548	return mode;
2549}
2550
2551/*
2552 * EDID is delightfully ambiguous about how interlaced modes are to be
2553 * encoded.  Our internal representation is of frame height, but some
2554 * HDTV detailed timings are encoded as field height.
2555 *
2556 * The format list here is from CEA, in frame size.  Technically we
2557 * should be checking refresh rate too.  Whatever.
2558 */
2559static void
2560drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2561			    struct detailed_pixel_timing *pt)
2562{
2563	int i;
2564	static const struct {
2565		int w, h;
2566	} cea_interlaced[] = {
2567		{ 1920, 1080 },
2568		{  720,  480 },
2569		{ 1440,  480 },
2570		{ 2880,  480 },
2571		{  720,  576 },
2572		{ 1440,  576 },
2573		{ 2880,  576 },
2574	};
2575
2576	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2577		return;
2578
2579	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2580		if ((mode->hdisplay == cea_interlaced[i].w) &&
2581		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
2582			mode->vdisplay *= 2;
2583			mode->vsync_start *= 2;
2584			mode->vsync_end *= 2;
2585			mode->vtotal *= 2;
2586			mode->vtotal |= 1;
2587		}
2588	}
2589
2590	mode->flags |= DRM_MODE_FLAG_INTERLACE;
2591}
2592
2593/**
2594 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2595 * @dev: DRM device (needed to create new mode)
2596 * @edid: EDID block
2597 * @timing: EDID detailed timing info
2598 * @quirks: quirks to apply
2599 *
2600 * An EDID detailed timing block contains enough info for us to create and
2601 * return a new struct drm_display_mode.
2602 */
2603static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2604						  struct edid *edid,
2605						  struct detailed_timing *timing,
2606						  u32 quirks)
2607{
 
 
2608	struct drm_display_mode *mode;
2609	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2610	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2611	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2612	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2613	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2614	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2615	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2616	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2617	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2618
2619	/* ignore tiny modes */
2620	if (hactive < 64 || vactive < 64)
2621		return NULL;
2622
2623	if (pt->misc & DRM_EDID_PT_STEREO) {
2624		DRM_DEBUG_KMS("stereo mode not supported\n");
 
2625		return NULL;
2626	}
2627	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2628		DRM_DEBUG_KMS("composite sync not supported\n");
 
2629	}
2630
2631	/* it is incorrect if hsync/vsync width is zero */
2632	if (!hsync_pulse_width || !vsync_pulse_width) {
2633		DRM_DEBUG_KMS("Incorrect Detailed timing. "
2634				"Wrong Hsync/Vsync pulse width\n");
2635		return NULL;
2636	}
2637
2638	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2639		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2640		if (!mode)
2641			return NULL;
2642
2643		goto set_size;
2644	}
2645
2646	mode = drm_mode_create(dev);
2647	if (!mode)
2648		return NULL;
2649
2650	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2651		timing->pixel_clock = cpu_to_le16(1088);
2652
2653	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2654
2655	mode->hdisplay = hactive;
2656	mode->hsync_start = mode->hdisplay + hsync_offset;
2657	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2658	mode->htotal = mode->hdisplay + hblank;
2659
2660	mode->vdisplay = vactive;
2661	mode->vsync_start = mode->vdisplay + vsync_offset;
2662	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2663	mode->vtotal = mode->vdisplay + vblank;
2664
2665	/* Some EDIDs have bogus h/vtotal values */
2666	if (mode->hsync_end > mode->htotal)
2667		mode->htotal = mode->hsync_end + 1;
2668	if (mode->vsync_end > mode->vtotal)
2669		mode->vtotal = mode->vsync_end + 1;
 
 
 
 
 
 
 
 
2670
2671	drm_mode_do_interlace_quirk(mode, pt);
2672
2673	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2674		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
 
 
 
 
 
2675	}
2676
2677	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2678		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2679	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2680		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2681
2682set_size:
2683	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2684	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2685
2686	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2687		mode->width_mm *= 10;
2688		mode->height_mm *= 10;
2689	}
2690
2691	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2692		mode->width_mm = edid->width_cm * 10;
2693		mode->height_mm = edid->height_cm * 10;
2694	}
2695
2696	mode->type = DRM_MODE_TYPE_DRIVER;
2697	drm_mode_set_name(mode);
2698
2699	return mode;
2700}
2701
2702static bool
2703mode_in_hsync_range(const struct drm_display_mode *mode,
2704		    struct edid *edid, u8 *t)
2705{
2706	int hsync, hmin, hmax;
2707
2708	hmin = t[7];
2709	if (edid->revision >= 4)
2710	    hmin += ((t[4] & 0x04) ? 255 : 0);
2711	hmax = t[8];
2712	if (edid->revision >= 4)
2713	    hmax += ((t[4] & 0x08) ? 255 : 0);
2714	hsync = drm_mode_hsync(mode);
2715
2716	return (hsync <= hmax && hsync >= hmin);
2717}
2718
2719static bool
2720mode_in_vsync_range(const struct drm_display_mode *mode,
2721		    struct edid *edid, u8 *t)
2722{
2723	int vsync, vmin, vmax;
2724
2725	vmin = t[5];
2726	if (edid->revision >= 4)
2727	    vmin += ((t[4] & 0x01) ? 255 : 0);
2728	vmax = t[6];
2729	if (edid->revision >= 4)
2730	    vmax += ((t[4] & 0x02) ? 255 : 0);
2731	vsync = drm_mode_vrefresh(mode);
2732
2733	return (vsync <= vmax && vsync >= vmin);
2734}
2735
2736static u32
2737range_pixel_clock(struct edid *edid, u8 *t)
2738{
2739	/* unspecified */
2740	if (t[9] == 0 || t[9] == 255)
2741		return 0;
2742
2743	/* 1.4 with CVT support gives us real precision, yay */
2744	if (edid->revision >= 4 && t[10] == 0x04)
2745		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2746
2747	/* 1.3 is pathetic, so fuzz up a bit */
2748	return t[9] * 10000 + 5001;
2749}
2750
2751static bool
2752mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2753	      struct detailed_timing *timing)
2754{
 
2755	u32 max_clock;
2756	u8 *t = (u8 *)timing;
2757
2758	if (!mode_in_hsync_range(mode, edid, t))
2759		return false;
2760
2761	if (!mode_in_vsync_range(mode, edid, t))
2762		return false;
2763
2764	if ((max_clock = range_pixel_clock(edid, t)))
2765		if (mode->clock > max_clock)
2766			return false;
2767
2768	/* 1.4 max horizontal check */
2769	if (edid->revision >= 4 && t[10] == 0x04)
2770		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2771			return false;
2772
2773	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2774		return false;
2775
2776	return true;
2777}
2778
2779static bool valid_inferred_mode(const struct drm_connector *connector,
2780				const struct drm_display_mode *mode)
2781{
2782	const struct drm_display_mode *m;
2783	bool ok = false;
2784
2785	list_for_each_entry(m, &connector->probed_modes, head) {
2786		if (mode->hdisplay == m->hdisplay &&
2787		    mode->vdisplay == m->vdisplay &&
2788		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2789			return false; /* duplicated */
2790		if (mode->hdisplay <= m->hdisplay &&
2791		    mode->vdisplay <= m->vdisplay)
2792			ok = true;
2793	}
2794	return ok;
2795}
2796
2797static int
2798drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2799			struct detailed_timing *timing)
2800{
2801	int i, modes = 0;
2802	struct drm_display_mode *newmode;
2803	struct drm_device *dev = connector->dev;
2804
2805	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2806		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2807		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2808			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2809			if (newmode) {
2810				drm_mode_probed_add(connector, newmode);
2811				modes++;
2812			}
2813		}
2814	}
2815
2816	return modes;
2817}
2818
2819/* fix up 1366x768 mode from 1368x768;
2820 * GFT/CVT can't express 1366 width which isn't dividable by 8
2821 */
2822void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2823{
2824	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2825		mode->hdisplay = 1366;
2826		mode->hsync_start--;
2827		mode->hsync_end--;
2828		drm_mode_set_name(mode);
2829	}
2830}
2831
2832static int
2833drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2834			struct detailed_timing *timing)
2835{
2836	int i, modes = 0;
2837	struct drm_display_mode *newmode;
2838	struct drm_device *dev = connector->dev;
2839
2840	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2841		const struct minimode *m = &extra_modes[i];
2842
2843		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2844		if (!newmode)
2845			return modes;
2846
2847		drm_mode_fixup_1366x768(newmode);
2848		if (!mode_in_range(newmode, edid, timing) ||
2849		    !valid_inferred_mode(connector, newmode)) {
2850			drm_mode_destroy(dev, newmode);
2851			continue;
2852		}
2853
2854		drm_mode_probed_add(connector, newmode);
2855		modes++;
2856	}
2857
2858	return modes;
2859}
2860
2861static int
2862drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2863			struct detailed_timing *timing)
2864{
2865	int i, modes = 0;
2866	struct drm_display_mode *newmode;
2867	struct drm_device *dev = connector->dev;
2868	bool rb = drm_monitor_supports_rb(edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869
2870	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2871		const struct minimode *m = &extra_modes[i];
2872
2873		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2874		if (!newmode)
2875			return modes;
2876
2877		drm_mode_fixup_1366x768(newmode);
2878		if (!mode_in_range(newmode, edid, timing) ||
2879		    !valid_inferred_mode(connector, newmode)) {
2880			drm_mode_destroy(dev, newmode);
2881			continue;
2882		}
2883
2884		drm_mode_probed_add(connector, newmode);
2885		modes++;
2886	}
2887
2888	return modes;
2889}
2890
2891static void
2892do_inferred_modes(struct detailed_timing *timing, void *c)
2893{
2894	struct detailed_mode_closure *closure = c;
2895	struct detailed_non_pixel *data = &timing->data.other_data;
2896	struct detailed_data_monitor_range *range = &data->data.range;
2897
2898	if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
2899		return;
2900
2901	closure->modes += drm_dmt_modes_for_range(closure->connector,
2902						  closure->edid,
2903						  timing);
2904
2905	if (!version_greater(closure->edid, 1, 1))
2906		return; /* GTF not defined yet */
2907
2908	switch (range->flags) {
2909	case 0x02: /* secondary gtf, XXX could do more */
2910	case 0x00: /* default gtf */
 
 
 
 
2911		closure->modes += drm_gtf_modes_for_range(closure->connector,
2912							  closure->edid,
2913							  timing);
2914		break;
2915	case 0x04: /* cvt, only in 1.4+ */
2916		if (!version_greater(closure->edid, 1, 3))
2917			break;
2918
2919		closure->modes += drm_cvt_modes_for_range(closure->connector,
2920							  closure->edid,
2921							  timing);
2922		break;
2923	case 0x01: /* just the ranges, no formula */
2924	default:
2925		break;
2926	}
2927}
2928
2929static int
2930add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2931{
2932	struct detailed_mode_closure closure = {
2933		.connector = connector,
2934		.edid = edid,
2935	};
2936
2937	if (version_greater(edid, 1, 0))
2938		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2939					    &closure);
2940
2941	return closure.modes;
2942}
2943
2944static int
2945drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2946{
2947	int i, j, m, modes = 0;
2948	struct drm_display_mode *mode;
2949	u8 *est = ((u8 *)timing) + 6;
2950
2951	for (i = 0; i < 6; i++) {
2952		for (j = 7; j >= 0; j--) {
2953			m = (i * 8) + (7 - j);
2954			if (m >= ARRAY_SIZE(est3_modes))
2955				break;
2956			if (est[i] & (1 << j)) {
2957				mode = drm_mode_find_dmt(connector->dev,
2958							 est3_modes[m].w,
2959							 est3_modes[m].h,
2960							 est3_modes[m].r,
2961							 est3_modes[m].rb);
2962				if (mode) {
2963					drm_mode_probed_add(connector, mode);
2964					modes++;
2965				}
2966			}
2967		}
2968	}
2969
2970	return modes;
2971}
2972
2973static void
2974do_established_modes(struct detailed_timing *timing, void *c)
2975{
2976	struct detailed_mode_closure *closure = c;
2977
2978	if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_EST_TIMINGS))
2979		return;
2980
2981	closure->modes += drm_est3_modes(closure->connector, timing);
2982}
2983
2984/**
2985 * add_established_modes - get est. modes from EDID and add them
2986 * @connector: connector to add mode(s) to
2987 * @edid: EDID block to scan
2988 *
2989 * Each EDID block contains a bitmap of the supported "established modes" list
2990 * (defined above).  Tease them out and add them to the global modes list.
2991 */
2992static int
2993add_established_modes(struct drm_connector *connector, struct edid *edid)
2994{
2995	struct drm_device *dev = connector->dev;
 
2996	unsigned long est_bits = edid->established_timings.t1 |
2997		(edid->established_timings.t2 << 8) |
2998		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2999	int i, modes = 0;
3000	struct detailed_mode_closure closure = {
3001		.connector = connector,
3002		.edid = edid,
3003	};
3004
3005	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3006		if (est_bits & (1<<i)) {
3007			struct drm_display_mode *newmode;
3008
3009			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3010			if (newmode) {
3011				drm_mode_probed_add(connector, newmode);
3012				modes++;
3013			}
3014		}
3015	}
3016
3017	if (version_greater(edid, 1, 0))
3018		    drm_for_each_detailed_block((u8 *)edid,
3019						do_established_modes, &closure);
3020
3021	return modes + closure.modes;
3022}
3023
3024static void
3025do_standard_modes(struct detailed_timing *timing, void *c)
3026{
3027	struct detailed_mode_closure *closure = c;
3028	struct detailed_non_pixel *data = &timing->data.other_data;
3029	struct drm_connector *connector = closure->connector;
3030	struct edid *edid = closure->edid;
3031	int i;
3032
3033	if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_STD_MODES))
3034		return;
3035
3036	for (i = 0; i < 6; i++) {
3037		struct std_timing *std = &data->data.timings[i];
3038		struct drm_display_mode *newmode;
3039
3040		newmode = drm_mode_std(connector, edid, std);
3041		if (newmode) {
3042			drm_mode_probed_add(connector, newmode);
3043			closure->modes++;
3044		}
3045	}
3046}
3047
3048/**
3049 * add_standard_modes - get std. modes from EDID and add them
3050 * @connector: connector to add mode(s) to
3051 * @edid: EDID block to scan
3052 *
3053 * Standard modes can be calculated using the appropriate standard (DMT,
3054 * GTF or CVT. Grab them from @edid and add them to the list.
3055 */
3056static int
3057add_standard_modes(struct drm_connector *connector, struct edid *edid)
3058{
3059	int i, modes = 0;
3060	struct detailed_mode_closure closure = {
3061		.connector = connector,
3062		.edid = edid,
3063	};
3064
3065	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3066		struct drm_display_mode *newmode;
3067
3068		newmode = drm_mode_std(connector, edid,
3069				       &edid->standard_timings[i]);
3070		if (newmode) {
3071			drm_mode_probed_add(connector, newmode);
3072			modes++;
3073		}
3074	}
3075
3076	if (version_greater(edid, 1, 0))
3077		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
3078					    &closure);
3079
3080	/* XXX should also look for standard codes in VTB blocks */
3081
3082	return modes + closure.modes;
3083}
3084
3085static int drm_cvt_modes(struct drm_connector *connector,
3086			 struct detailed_timing *timing)
3087{
3088	int i, j, modes = 0;
3089	struct drm_display_mode *newmode;
3090	struct drm_device *dev = connector->dev;
3091	struct cvt_timing *cvt;
3092	const int rates[] = { 60, 85, 75, 60, 50 };
3093	const u8 empty[3] = { 0, 0, 0 };
3094
3095	for (i = 0; i < 4; i++) {
3096		int width, height;
3097
3098		cvt = &(timing->data.other_data.data.cvt[i]);
3099
3100		if (!memcmp(cvt->code, empty, 3))
3101			continue;
3102
3103		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3104		switch (cvt->code[1] & 0x0c) {
 
 
3105		case 0x00:
3106			width = height * 4 / 3;
3107			break;
3108		case 0x04:
3109			width = height * 16 / 9;
3110			break;
3111		case 0x08:
3112			width = height * 16 / 10;
3113			break;
3114		case 0x0c:
3115			width = height * 15 / 9;
3116			break;
3117		}
3118
3119		for (j = 1; j < 5; j++) {
3120			if (cvt->code[2] & (1 << j)) {
3121				newmode = drm_cvt_mode(dev, width, height,
3122						       rates[j], j == 0,
3123						       false, false);
3124				if (newmode) {
3125					drm_mode_probed_add(connector, newmode);
3126					modes++;
3127				}
3128			}
3129		}
3130	}
3131
3132	return modes;
3133}
3134
3135static void
3136do_cvt_mode(struct detailed_timing *timing, void *c)
3137{
3138	struct detailed_mode_closure *closure = c;
3139
3140	if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_CVT_3BYTE))
3141		return;
3142
3143	closure->modes += drm_cvt_modes(closure->connector, timing);
3144}
3145
3146static int
3147add_cvt_modes(struct drm_connector *connector, struct edid *edid)
3148{
3149	struct detailed_mode_closure closure = {
3150		.connector = connector,
3151		.edid = edid,
3152	};
3153
3154	if (version_greater(edid, 1, 2))
3155		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
3156
3157	/* XXX should also look for CVT codes in VTB blocks */
3158
3159	return closure.modes;
3160}
3161
3162static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
 
3163
3164static void
3165do_detailed_mode(struct detailed_timing *timing, void *c)
3166{
3167	struct detailed_mode_closure *closure = c;
3168	struct drm_display_mode *newmode;
3169
3170	if (!is_detailed_timing_descriptor((const u8 *)timing))
3171		return;
3172
3173	newmode = drm_mode_detailed(closure->connector->dev,
3174				    closure->edid, timing,
3175				    closure->quirks);
3176	if (!newmode)
3177		return;
3178
3179	if (closure->preferred)
3180		newmode->type |= DRM_MODE_TYPE_PREFERRED;
3181
3182	/*
3183	 * Detailed modes are limited to 10kHz pixel clock resolution,
3184	 * so fix up anything that looks like CEA/HDMI mode, but the clock
3185	 * is just slightly off.
3186	 */
3187	fixup_detailed_cea_mode_clock(newmode);
3188
3189	drm_mode_probed_add(closure->connector, newmode);
3190	closure->modes++;
3191	closure->preferred = false;
3192}
3193
3194/*
3195 * add_detailed_modes - Add modes from detailed timings
3196 * @connector: attached connector
3197 * @edid: EDID block to scan
3198 * @quirks: quirks to apply
3199 */
3200static int
3201add_detailed_modes(struct drm_connector *connector, struct edid *edid,
3202		   u32 quirks)
3203{
3204	struct detailed_mode_closure closure = {
3205		.connector = connector,
3206		.edid = edid,
3207		.preferred = true,
3208		.quirks = quirks,
3209	};
3210
3211	if (closure.preferred && !version_greater(edid, 1, 3))
 
 
3212		closure.preferred =
3213		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
3214
3215	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
3216
3217	return closure.modes;
3218}
3219
3220#define AUDIO_BLOCK	0x01
3221#define VIDEO_BLOCK     0x02
3222#define VENDOR_BLOCK    0x03
3223#define SPEAKER_BLOCK	0x04
3224#define HDR_STATIC_METADATA_BLOCK	0x6
3225#define USE_EXTENDED_TAG 0x07
3226#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
3227#define EXT_VIDEO_DATA_BLOCK_420	0x0E
3228#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
 
 
 
 
 
 
 
3229#define EDID_BASIC_AUDIO	(1 << 6)
3230#define EDID_CEA_YCRCB444	(1 << 5)
3231#define EDID_CEA_YCRCB422	(1 << 4)
3232#define EDID_CEA_VCDB_QS	(1 << 6)
3233
3234/*
3235 * Search EDID for CEA extension block.
 
 
3236 */
3237static u8 *drm_find_edid_extension(const struct edid *edid,
3238				   int ext_id, int *ext_index)
3239{
3240	u8 *edid_ext = NULL;
3241	int i;
3242
3243	/* No EDID or EDID extensions */
3244	if (edid == NULL || edid->extensions == 0)
3245		return NULL;
3246
3247	/* Find CEA extension */
3248	for (i = *ext_index; i < edid->extensions; i++) {
3249		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
3250		if (edid_ext[0] == ext_id)
3251			break;
3252	}
3253
3254	if (i >= edid->extensions)
3255		return NULL;
3256
3257	*ext_index = i + 1;
3258
3259	return edid_ext;
3260}
3261
3262
3263static u8 *drm_find_displayid_extension(const struct edid *edid,
3264					int *length, int *idx,
3265					int *ext_index)
3266{
3267	u8 *displayid = drm_find_edid_extension(edid, DISPLAYID_EXT, ext_index);
3268	struct displayid_hdr *base;
3269	int ret;
3270
3271	if (!displayid)
3272		return NULL;
3273
3274	/* EDID extensions block checksum isn't for us */
3275	*length = EDID_LENGTH - 1;
3276	*idx = 1;
3277
3278	ret = validate_displayid(displayid, *length, *idx);
3279	if (ret)
3280		return NULL;
3281
3282	base = (struct displayid_hdr *)&displayid[*idx];
3283	*length = *idx + sizeof(*base) + base->bytes;
3284
3285	return displayid;
3286}
3287
3288static u8 *drm_find_cea_extension(const struct edid *edid)
3289{
3290	int length, idx;
3291	struct displayid_block *block;
3292	u8 *cea;
3293	u8 *displayid;
3294	int ext_index;
3295
3296	/* Look for a top level CEA extension block */
3297	/* FIXME: make callers iterate through multiple CEA ext blocks? */
3298	ext_index = 0;
3299	cea = drm_find_edid_extension(edid, CEA_EXT, &ext_index);
3300	if (cea)
3301		return cea;
3302
3303	/* CEA blocks can also be found embedded in a DisplayID block */
3304	ext_index = 0;
3305	for (;;) {
3306		displayid = drm_find_displayid_extension(edid, &length, &idx,
3307							 &ext_index);
3308		if (!displayid)
3309			return NULL;
3310
3311		idx += sizeof(struct displayid_hdr);
3312		for_each_displayid_db(displayid, block, idx, length) {
3313			if (block->tag == DATA_BLOCK_CTA)
3314				return (u8 *)block;
3315		}
3316	}
 
3317
3318	return NULL;
3319}
3320
3321static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
3322{
3323	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
3324	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
3325
3326	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
3327		return &edid_cea_modes_1[vic - 1];
3328	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
3329		return &edid_cea_modes_193[vic - 193];
3330	return NULL;
3331}
3332
3333static u8 cea_num_vics(void)
3334{
3335	return 193 + ARRAY_SIZE(edid_cea_modes_193);
3336}
3337
3338static u8 cea_next_vic(u8 vic)
3339{
3340	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
3341		vic = 193;
3342	return vic;
3343}
3344
3345/*
3346 * Calculate the alternate clock for the CEA mode
3347 * (60Hz vs. 59.94Hz etc.)
3348 */
3349static unsigned int
3350cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3351{
3352	unsigned int clock = cea_mode->clock;
3353
3354	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
3355		return clock;
3356
3357	/*
3358	 * edid_cea_modes contains the 59.94Hz
3359	 * variant for 240 and 480 line modes,
3360	 * and the 60Hz variant otherwise.
3361	 */
3362	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3363		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3364	else
3365		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3366
3367	return clock;
3368}
3369
3370static bool
3371cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3372{
3373	/*
3374	 * For certain VICs the spec allows the vertical
3375	 * front porch to vary by one or two lines.
3376	 *
3377	 * cea_modes[] stores the variant with the shortest
3378	 * vertical front porch. We can adjust the mode to
3379	 * get the other variants by simply increasing the
3380	 * vertical front porch length.
3381	 */
3382	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
3383		     cea_mode_for_vic(9)->vtotal != 262 ||
3384		     cea_mode_for_vic(12)->vtotal != 262 ||
3385		     cea_mode_for_vic(13)->vtotal != 262 ||
3386		     cea_mode_for_vic(23)->vtotal != 312 ||
3387		     cea_mode_for_vic(24)->vtotal != 312 ||
3388		     cea_mode_for_vic(27)->vtotal != 312 ||
3389		     cea_mode_for_vic(28)->vtotal != 312);
3390
3391	if (((vic == 8 || vic == 9 ||
3392	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
3393	    ((vic == 23 || vic == 24 ||
3394	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
3395		mode->vsync_start++;
3396		mode->vsync_end++;
3397		mode->vtotal++;
3398
3399		return true;
3400	}
3401
3402	return false;
3403}
3404
3405static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3406					     unsigned int clock_tolerance)
3407{
3408	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3409	u8 vic;
3410
3411	if (!to_match->clock)
3412		return 0;
3413
3414	if (to_match->picture_aspect_ratio)
3415		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3416
3417	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3418		struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
3419		unsigned int clock1, clock2;
3420
 
 
3421		/* Check both 60Hz and 59.94Hz */
3422		clock1 = cea_mode.clock;
3423		clock2 = cea_mode_alternate_clock(&cea_mode);
3424
3425		if (abs(to_match->clock - clock1) > clock_tolerance &&
3426		    abs(to_match->clock - clock2) > clock_tolerance)
3427			continue;
3428
3429		do {
3430			if (drm_mode_match(to_match, &cea_mode, match_flags))
3431				return vic;
3432		} while (cea_mode_alternate_timings(vic, &cea_mode));
3433	}
3434
3435	return 0;
3436}
3437
3438/**
3439 * drm_match_cea_mode - look for a CEA mode matching given mode
3440 * @to_match: display mode
3441 *
3442 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3443 * mode.
3444 */
3445u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3446{
3447	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3448	u8 vic;
3449
3450	if (!to_match->clock)
3451		return 0;
3452
3453	if (to_match->picture_aspect_ratio)
3454		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3455
3456	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3457		struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
3458		unsigned int clock1, clock2;
3459
 
 
3460		/* Check both 60Hz and 59.94Hz */
3461		clock1 = cea_mode.clock;
3462		clock2 = cea_mode_alternate_clock(&cea_mode);
3463
3464		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3465		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3466			continue;
3467
3468		do {
3469			if (drm_mode_match(to_match, &cea_mode, match_flags))
3470				return vic;
3471		} while (cea_mode_alternate_timings(vic, &cea_mode));
3472	}
3473
3474	return 0;
3475}
3476EXPORT_SYMBOL(drm_match_cea_mode);
3477
3478static bool drm_valid_cea_vic(u8 vic)
3479{
3480	return cea_mode_for_vic(vic) != NULL;
3481}
3482
3483static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3484{
3485	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
3486
3487	if (mode)
3488		return mode->picture_aspect_ratio;
3489
3490	return HDMI_PICTURE_ASPECT_NONE;
3491}
3492
3493static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
3494{
3495	return edid_4k_modes[video_code].picture_aspect_ratio;
3496}
3497
3498/*
3499 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3500 * specific block).
3501 */
3502static unsigned int
3503hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3504{
3505	return cea_mode_alternate_clock(hdmi_mode);
3506}
3507
3508static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3509					      unsigned int clock_tolerance)
3510{
3511	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3512	u8 vic;
3513
3514	if (!to_match->clock)
3515		return 0;
3516
3517	if (to_match->picture_aspect_ratio)
3518		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3519
3520	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3521		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3522		unsigned int clock1, clock2;
3523
3524		/* Make sure to also match alternate clocks */
3525		clock1 = hdmi_mode->clock;
3526		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3527
3528		if (abs(to_match->clock - clock1) > clock_tolerance &&
3529		    abs(to_match->clock - clock2) > clock_tolerance)
3530			continue;
3531
3532		if (drm_mode_match(to_match, hdmi_mode, match_flags))
3533			return vic;
3534	}
3535
3536	return 0;
3537}
3538
3539/*
3540 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3541 * @to_match: display mode
3542 *
3543 * An HDMI mode is one defined in the HDMI vendor specific block.
3544 *
3545 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3546 */
3547static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3548{
3549	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3550	u8 vic;
3551
3552	if (!to_match->clock)
3553		return 0;
3554
3555	if (to_match->picture_aspect_ratio)
3556		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3557
3558	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3559		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3560		unsigned int clock1, clock2;
3561
3562		/* Make sure to also match alternate clocks */
3563		clock1 = hdmi_mode->clock;
3564		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3565
3566		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3567		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3568		    drm_mode_match(to_match, hdmi_mode, match_flags))
3569			return vic;
3570	}
3571	return 0;
3572}
3573
3574static bool drm_valid_hdmi_vic(u8 vic)
3575{
3576	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3577}
3578
3579static int
3580add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3581{
3582	struct drm_device *dev = connector->dev;
3583	struct drm_display_mode *mode, *tmp;
3584	LIST_HEAD(list);
3585	int modes = 0;
3586
3587	/* Don't add CEA modes if the CEA extension block is missing */
3588	if (!drm_find_cea_extension(edid))
3589		return 0;
3590
3591	/*
3592	 * Go through all probed modes and create a new mode
3593	 * with the alternate clock for certain CEA modes.
3594	 */
3595	list_for_each_entry(mode, &connector->probed_modes, head) {
3596		const struct drm_display_mode *cea_mode = NULL;
3597		struct drm_display_mode *newmode;
3598		u8 vic = drm_match_cea_mode(mode);
3599		unsigned int clock1, clock2;
3600
3601		if (drm_valid_cea_vic(vic)) {
3602			cea_mode = cea_mode_for_vic(vic);
3603			clock2 = cea_mode_alternate_clock(cea_mode);
3604		} else {
3605			vic = drm_match_hdmi_mode(mode);
3606			if (drm_valid_hdmi_vic(vic)) {
3607				cea_mode = &edid_4k_modes[vic];
3608				clock2 = hdmi_mode_alternate_clock(cea_mode);
3609			}
3610		}
3611
3612		if (!cea_mode)
3613			continue;
3614
3615		clock1 = cea_mode->clock;
3616
3617		if (clock1 == clock2)
3618			continue;
3619
3620		if (mode->clock != clock1 && mode->clock != clock2)
3621			continue;
3622
3623		newmode = drm_mode_duplicate(dev, cea_mode);
3624		if (!newmode)
3625			continue;
3626
3627		/* Carry over the stereo flags */
3628		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3629
3630		/*
3631		 * The current mode could be either variant. Make
3632		 * sure to pick the "other" clock for the new mode.
3633		 */
3634		if (mode->clock != clock1)
3635			newmode->clock = clock1;
3636		else
3637			newmode->clock = clock2;
3638
3639		list_add_tail(&newmode->head, &list);
3640	}
3641
3642	list_for_each_entry_safe(mode, tmp, &list, head) {
3643		list_del(&mode->head);
3644		drm_mode_probed_add(connector, mode);
3645		modes++;
3646	}
3647
3648	return modes;
3649}
3650
3651static u8 svd_to_vic(u8 svd)
3652{
3653	/* 0-6 bit vic, 7th bit native mode indicator */
3654	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
3655		return svd & 127;
3656
3657	return svd;
3658}
3659
 
 
 
 
3660static struct drm_display_mode *
3661drm_display_mode_from_vic_index(struct drm_connector *connector,
3662				const u8 *video_db, u8 video_len,
3663				u8 video_index)
3664{
 
3665	struct drm_device *dev = connector->dev;
3666	struct drm_display_mode *newmode;
3667	u8 vic;
3668
3669	if (video_db == NULL || video_index >= video_len)
3670		return NULL;
3671
3672	/* CEA modes are numbered 1..127 */
3673	vic = svd_to_vic(video_db[video_index]);
3674	if (!drm_valid_cea_vic(vic))
3675		return NULL;
3676
3677	newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
3678	if (!newmode)
3679		return NULL;
3680
3681	return newmode;
3682}
3683
3684/*
3685 * do_y420vdb_modes - Parse YCBCR 420 only modes
3686 * @connector: connector corresponding to the HDMI sink
3687 * @svds: start of the data block of CEA YCBCR 420 VDB
3688 * @len: length of the CEA YCBCR 420 VDB
3689 *
3690 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3691 * which contains modes which can be supported in YCBCR 420
3692 * output format only.
3693 */
3694static int do_y420vdb_modes(struct drm_connector *connector,
3695			    const u8 *svds, u8 svds_len)
3696{
3697	int modes = 0, i;
3698	struct drm_device *dev = connector->dev;
3699	struct drm_display_info *info = &connector->display_info;
3700	struct drm_hdmi_info *hdmi = &info->hdmi;
3701
3702	for (i = 0; i < svds_len; i++) {
3703		u8 vic = svd_to_vic(svds[i]);
3704		struct drm_display_mode *newmode;
3705
3706		if (!drm_valid_cea_vic(vic))
3707			continue;
3708
3709		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
3710		if (!newmode)
3711			break;
3712		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3713		drm_mode_probed_add(connector, newmode);
3714		modes++;
3715	}
3716
3717	if (modes > 0)
3718		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3719	return modes;
3720}
3721
3722/*
3723 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3724 * @connector: connector corresponding to the HDMI sink
3725 * @vic: CEA vic for the video mode to be added in the map
 
 
3726 *
3727 * Makes an entry for a videomode in the YCBCR 420 bitmap
3728 */
3729static void
3730drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
 
3731{
3732	u8 vic = svd_to_vic(svd);
3733	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3734
3735	if (!drm_valid_cea_vic(vic))
3736		return;
 
 
 
 
 
3737
3738	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3739}
 
3740
3741static int
3742do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3743{
 
3744	int i, modes = 0;
3745	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3746
3747	for (i = 0; i < len; i++) {
 
 
 
3748		struct drm_display_mode *mode;
3749
3750		mode = drm_display_mode_from_vic_index(connector, db, len, i);
3751		if (mode) {
3752			/*
3753			 * YCBCR420 capability block contains a bitmap which
3754			 * gives the index of CEA modes from CEA VDB, which
3755			 * can support YCBCR 420 sampling output also (apart
3756			 * from RGB/YCBCR444 etc).
3757			 * For example, if the bit 0 in bitmap is set,
3758			 * first mode in VDB can support YCBCR420 output too.
3759			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3760			 */
3761			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3762				drm_add_cmdb_modes(connector, db[i]);
3763
3764			drm_mode_probed_add(connector, mode);
3765			modes++;
3766		}
3767	}
3768
3769	return modes;
3770}
3771
3772struct stereo_mandatory_mode {
3773	int width, height, vrefresh;
3774	unsigned int flags;
3775};
3776
3777static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3778	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3779	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3780	{ 1920, 1080, 50,
3781	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3782	{ 1920, 1080, 60,
3783	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3784	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3785	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3786	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3787	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3788};
3789
3790static bool
3791stereo_match_mandatory(const struct drm_display_mode *mode,
3792		       const struct stereo_mandatory_mode *stereo_mode)
3793{
3794	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3795
3796	return mode->hdisplay == stereo_mode->width &&
3797	       mode->vdisplay == stereo_mode->height &&
3798	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3799	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3800}
3801
3802static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3803{
3804	struct drm_device *dev = connector->dev;
3805	const struct drm_display_mode *mode;
3806	struct list_head stereo_modes;
3807	int modes = 0, i;
3808
3809	INIT_LIST_HEAD(&stereo_modes);
3810
3811	list_for_each_entry(mode, &connector->probed_modes, head) {
3812		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3813			const struct stereo_mandatory_mode *mandatory;
3814			struct drm_display_mode *new_mode;
3815
3816			if (!stereo_match_mandatory(mode,
3817						    &stereo_mandatory_modes[i]))
3818				continue;
3819
3820			mandatory = &stereo_mandatory_modes[i];
3821			new_mode = drm_mode_duplicate(dev, mode);
3822			if (!new_mode)
3823				continue;
3824
3825			new_mode->flags |= mandatory->flags;
3826			list_add_tail(&new_mode->head, &stereo_modes);
3827			modes++;
3828		}
3829	}
3830
3831	list_splice_tail(&stereo_modes, &connector->probed_modes);
3832
3833	return modes;
3834}
3835
3836static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3837{
3838	struct drm_device *dev = connector->dev;
3839	struct drm_display_mode *newmode;
3840
3841	if (!drm_valid_hdmi_vic(vic)) {
3842		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
 
3843		return 0;
3844	}
3845
3846	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3847	if (!newmode)
3848		return 0;
3849
3850	drm_mode_probed_add(connector, newmode);
3851
3852	return 1;
3853}
3854
3855static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3856			       const u8 *video_db, u8 video_len, u8 video_index)
3857{
3858	struct drm_display_mode *newmode;
3859	int modes = 0;
3860
3861	if (structure & (1 << 0)) {
3862		newmode = drm_display_mode_from_vic_index(connector, video_db,
3863							  video_len,
3864							  video_index);
3865		if (newmode) {
3866			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3867			drm_mode_probed_add(connector, newmode);
3868			modes++;
3869		}
3870	}
3871	if (structure & (1 << 6)) {
3872		newmode = drm_display_mode_from_vic_index(connector, video_db,
3873							  video_len,
3874							  video_index);
3875		if (newmode) {
3876			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3877			drm_mode_probed_add(connector, newmode);
3878			modes++;
3879		}
3880	}
3881	if (structure & (1 << 8)) {
3882		newmode = drm_display_mode_from_vic_index(connector, video_db,
3883							  video_len,
3884							  video_index);
3885		if (newmode) {
3886			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3887			drm_mode_probed_add(connector, newmode);
3888			modes++;
3889		}
3890	}
3891
3892	return modes;
3893}
3894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3895/*
3896 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3897 * @connector: connector corresponding to the HDMI sink
3898 * @db: start of the CEA vendor specific block
3899 * @len: length of the CEA block payload, ie. one can access up to db[len]
3900 *
3901 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3902 * also adds the stereo 3d modes when applicable.
3903 */
3904static int
3905do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3906		   const u8 *video_db, u8 video_len)
3907{
3908	struct drm_display_info *info = &connector->display_info;
3909	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3910	u8 vic_len, hdmi_3d_len = 0;
3911	u16 mask;
3912	u16 structure_all;
3913
3914	if (len < 8)
3915		goto out;
3916
3917	/* no HDMI_Video_Present */
3918	if (!(db[8] & (1 << 5)))
3919		goto out;
3920
3921	/* Latency_Fields_Present */
3922	if (db[8] & (1 << 7))
3923		offset += 2;
3924
3925	/* I_Latency_Fields_Present */
3926	if (db[8] & (1 << 6))
3927		offset += 2;
3928
3929	/* the declared length is not long enough for the 2 first bytes
3930	 * of additional video format capabilities */
3931	if (len < (8 + offset + 2))
3932		goto out;
3933
3934	/* 3D_Present */
3935	offset++;
3936	if (db[8 + offset] & (1 << 7)) {
3937		modes += add_hdmi_mandatory_stereo_modes(connector);
3938
3939		/* 3D_Multi_present */
3940		multi_present = (db[8 + offset] & 0x60) >> 5;
3941	}
3942
3943	offset++;
3944	vic_len = db[8 + offset] >> 5;
3945	hdmi_3d_len = db[8 + offset] & 0x1f;
3946
3947	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3948		u8 vic;
3949
3950		vic = db[9 + offset + i];
3951		modes += add_hdmi_mode(connector, vic);
3952	}
3953	offset += 1 + vic_len;
3954
3955	if (multi_present == 1)
3956		multi_len = 2;
3957	else if (multi_present == 2)
3958		multi_len = 4;
3959	else
3960		multi_len = 0;
3961
3962	if (len < (8 + offset + hdmi_3d_len - 1))
3963		goto out;
3964
3965	if (hdmi_3d_len < multi_len)
3966		goto out;
3967
3968	if (multi_present == 1 || multi_present == 2) {
3969		/* 3D_Structure_ALL */
3970		structure_all = (db[8 + offset] << 8) | db[9 + offset];
3971
3972		/* check if 3D_MASK is present */
3973		if (multi_present == 2)
3974			mask = (db[10 + offset] << 8) | db[11 + offset];
3975		else
3976			mask = 0xffff;
3977
3978		for (i = 0; i < 16; i++) {
3979			if (mask & (1 << i))
3980				modes += add_3d_struct_modes(connector,
3981						structure_all,
3982						video_db,
3983						video_len, i);
3984		}
3985	}
3986
3987	offset += multi_len;
3988
3989	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3990		int vic_index;
3991		struct drm_display_mode *newmode = NULL;
3992		unsigned int newflag = 0;
3993		bool detail_present;
3994
3995		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3996
3997		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3998			break;
3999
4000		/* 2D_VIC_order_X */
4001		vic_index = db[8 + offset + i] >> 4;
4002
4003		/* 3D_Structure_X */
4004		switch (db[8 + offset + i] & 0x0f) {
4005		case 0:
4006			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4007			break;
4008		case 6:
4009			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4010			break;
4011		case 8:
4012			/* 3D_Detail_X */
4013			if ((db[9 + offset + i] >> 4) == 1)
4014				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4015			break;
4016		}
4017
4018		if (newflag != 0) {
4019			newmode = drm_display_mode_from_vic_index(connector,
4020								  video_db,
4021								  video_len,
4022								  vic_index);
4023
4024			if (newmode) {
4025				newmode->flags |= newflag;
4026				drm_mode_probed_add(connector, newmode);
4027				modes++;
4028			}
4029		}
4030
4031		if (detail_present)
4032			i++;
4033	}
4034
4035out:
4036	if (modes > 0)
4037		info->has_hdmi_infoframe = true;
4038	return modes;
4039}
4040
4041static int
4042cea_db_payload_len(const u8 *db)
4043{
4044	return db[0] & 0x1f;
4045}
4046
4047static int
4048cea_db_extended_tag(const u8 *db)
4049{
4050	return db[1];
4051}
4052
4053static int
4054cea_db_tag(const u8 *db)
4055{
4056	return db[0] >> 5;
4057}
4058
4059static int
4060cea_revision(const u8 *cea)
4061{
4062	/*
4063	 * FIXME is this correct for the DispID variant?
4064	 * The DispID spec doesn't really specify whether
4065	 * this is the revision of the CEA extension or
4066	 * the DispID CEA data block. And the only value
4067	 * given as an example is 0.
4068	 */
4069	return cea[1];
4070}
4071
4072static int
4073cea_db_offsets(const u8 *cea, int *start, int *end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074{
4075	/* DisplayID CTA extension blocks and top-level CEA EDID
4076	 * block header definitions differ in the following bytes:
4077	 *   1) Byte 2 of the header specifies length differently,
4078	 *   2) Byte 3 is only present in the CEA top level block.
4079	 *
4080	 * The different definitions for byte 2 follow.
4081	 *
4082	 * DisplayID CTA extension block defines byte 2 as:
4083	 *   Number of payload bytes
4084	 *
4085	 * CEA EDID block defines byte 2 as:
4086	 *   Byte number (decimal) within this block where the 18-byte
4087	 *   DTDs begin. If no non-DTD data is present in this extension
4088	 *   block, the value should be set to 04h (the byte after next).
4089	 *   If set to 00h, there are no DTDs present in this block and
4090	 *   no non-DTD data.
4091	 */
4092	if (cea[0] == DATA_BLOCK_CTA) {
4093		/*
4094		 * for_each_displayid_db() has already verified
4095		 * that these stay within expected bounds.
4096		 */
4097		*start = 3;
4098		*end = *start + cea[2];
4099	} else if (cea[0] == CEA_EXT) {
4100		/* Data block offset in CEA extension block */
4101		*start = 4;
4102		*end = cea[2];
4103		if (*end == 0)
4104			*end = 127;
4105		if (*end < 4 || *end > 127)
4106			return -ERANGE;
4107	} else {
4108		return -EOPNOTSUPP;
4109	}
4110
4111	return 0;
 
 
 
 
 
4112}
4113
4114static bool cea_db_is_hdmi_vsdb(const u8 *db)
4115{
4116	int hdmi_id;
 
4117
4118	if (cea_db_tag(db) != VENDOR_BLOCK)
4119		return false;
 
 
 
 
4120
4121	if (cea_db_payload_len(db) < 5)
4122		return false;
 
4123
4124	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
 
 
 
 
 
 
 
 
4125
4126	return hdmi_id == HDMI_IEEE_OUI;
 
4127}
4128
4129static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
 
4130{
4131	unsigned int oui;
4132
4133	if (cea_db_tag(db) != VENDOR_BLOCK)
4134		return false;
4135
4136	if (cea_db_payload_len(db) < 7)
4137		return false;
4138
4139	oui = db[3] << 16 | db[2] << 8 | db[1];
 
 
4140
4141	return oui == HDMI_FORUM_IEEE_OUI;
4142}
4143
4144static bool cea_db_is_vcdb(const u8 *db)
 
 
 
 
4145{
4146	if (cea_db_tag(db) != USE_EXTENDED_TAG)
4147		return false;
4148
4149	if (cea_db_payload_len(db) != 2)
4150		return false;
4151
4152	if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
4153		return false;
4154
4155	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4156}
4157
4158static bool cea_db_is_y420cmdb(const u8 *db)
 
 
 
 
 
 
 
 
4159{
4160	if (cea_db_tag(db) != USE_EXTENDED_TAG)
4161		return false;
4162
4163	if (!cea_db_payload_len(db))
4164		return false;
 
4165
4166	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
4167		return false;
 
 
 
 
4168
4169	return true;
 
 
 
4170}
4171
4172static bool cea_db_is_y420vdb(const u8 *db)
4173{
4174	if (cea_db_tag(db) != USE_EXTENDED_TAG)
4175		return false;
4176
4177	if (!cea_db_payload_len(db))
4178		return false;
 
 
 
 
 
4179
4180	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
4181		return false;
4182
4183	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4184}
4185
4186#define for_each_cea_db(cea, i, start, end) \
4187	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
 
 
 
4188
4189static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
4190				      const u8 *db)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4191{
4192	struct drm_display_info *info = &connector->display_info;
4193	struct drm_hdmi_info *hdmi = &info->hdmi;
4194	u8 map_len = cea_db_payload_len(db) - 1;
4195	u8 count;
4196	u64 map = 0;
4197
4198	if (map_len == 0) {
4199		/* All CEA modes support ycbcr420 sampling also.*/
4200		hdmi->y420_cmdb_map = U64_MAX;
4201		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
4202		return;
4203	}
4204
4205	/*
4206	 * This map indicates which of the existing CEA block modes
4207	 * from VDB can support YCBCR420 output too. So if bit=0 is
4208	 * set, first mode from VDB can support YCBCR420 output too.
4209	 * We will parse and keep this map, before parsing VDB itself
4210	 * to avoid going through the same block again and again.
4211	 *
4212	 * Spec is not clear about max possible size of this block.
4213	 * Clamping max bitmap block size at 8 bytes. Every byte can
4214	 * address 8 CEA modes, in this way this map can address
4215	 * 8*8 = first 64 SVDs.
4216	 */
4217	if (WARN_ON_ONCE(map_len > 8))
4218		map_len = 8;
4219
4220	for (count = 0; count < map_len; count++)
4221		map |= (u64)db[2 + count] << (8 * count);
4222
 
4223	if (map)
4224		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
4225
4226	hdmi->y420_cmdb_map = map;
4227}
4228
4229static int
4230add_cea_modes(struct drm_connector *connector, struct edid *edid)
4231{
4232	const u8 *cea = drm_find_cea_extension(edid);
4233	const u8 *db, *hdmi = NULL, *video = NULL;
4234	u8 dbl, hdmi_len, video_len = 0;
4235	int modes = 0;
4236
4237	if (cea && cea_revision(cea) >= 3) {
4238		int i, start, end;
4239
4240		if (cea_db_offsets(cea, &start, &end))
4241			return 0;
4242
4243		for_each_cea_db(cea, i, start, end) {
4244			db = &cea[i];
4245			dbl = cea_db_payload_len(db);
4246
4247			if (cea_db_tag(db) == VIDEO_BLOCK) {
4248				video = db + 1;
4249				video_len = dbl;
4250				modes += do_cea_modes(connector, video, dbl);
4251			} else if (cea_db_is_hdmi_vsdb(db)) {
4252				hdmi = db;
4253				hdmi_len = dbl;
4254			} else if (cea_db_is_y420vdb(db)) {
4255				const u8 *vdb420 = &db[2];
4256
4257				/* Add 4:2:0(only) modes present in EDID */
4258				modes += do_y420vdb_modes(connector,
4259							  vdb420,
4260							  dbl - 1);
4261			}
4262		}
4263	}
4264
4265	/*
4266	 * We parse the HDMI VSDB after having added the cea modes as we will
4267	 * be patching their flags when the sink supports stereo 3D.
4268	 */
4269	if (hdmi)
4270		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
4271					    video_len);
4272
4273	return modes;
4274}
4275
4276static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
 
4277{
4278	const struct drm_display_mode *cea_mode;
4279	int clock1, clock2, clock;
4280	u8 vic;
4281	const char *type;
4282
4283	/*
4284	 * allow 5kHz clock difference either way to account for
4285	 * the 10kHz clock resolution limit of detailed timings.
4286	 */
4287	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4288	if (drm_valid_cea_vic(vic)) {
4289		type = "CEA";
4290		cea_mode = cea_mode_for_vic(vic);
4291		clock1 = cea_mode->clock;
4292		clock2 = cea_mode_alternate_clock(cea_mode);
4293	} else {
4294		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4295		if (drm_valid_hdmi_vic(vic)) {
4296			type = "HDMI";
4297			cea_mode = &edid_4k_modes[vic];
4298			clock1 = cea_mode->clock;
4299			clock2 = hdmi_mode_alternate_clock(cea_mode);
4300		} else {
4301			return;
4302		}
4303	}
4304
4305	/* pick whichever is closest */
4306	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4307		clock = clock1;
4308	else
4309		clock = clock2;
4310
4311	if (mode->clock == clock)
4312		return;
4313
4314	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4315		  type, vic, mode->clock, clock);
 
 
4316	mode->clock = clock;
4317}
4318
4319static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
4320{
4321	if (cea_db_tag(db) != USE_EXTENDED_TAG)
4322		return false;
 
 
 
 
 
 
4323
4324	if (db[1] != HDR_STATIC_METADATA_BLOCK)
4325		return false;
4326
4327	if (cea_db_payload_len(db) < 3)
4328		return false;
4329
4330	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4331}
4332
4333static uint8_t eotf_supported(const u8 *edid_ext)
4334{
4335	return edid_ext[2] &
4336		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
4337		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
4338		 BIT(HDMI_EOTF_SMPTE_ST2084) |
4339		 BIT(HDMI_EOTF_BT_2100_HLG));
4340}
4341
4342static uint8_t hdr_metadata_type(const u8 *edid_ext)
4343{
4344	return edid_ext[3] &
4345		BIT(HDMI_STATIC_METADATA_TYPE1);
4346}
4347
4348static void
4349drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
4350{
4351	u16 len;
4352
4353	len = cea_db_payload_len(db);
4354
4355	connector->hdr_sink_metadata.hdmi_type1.eotf =
4356						eotf_supported(db);
4357	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
4358						hdr_metadata_type(db);
4359
4360	if (len >= 4)
4361		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
4362	if (len >= 5)
4363		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
4364	if (len >= 6)
4365		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
 
 
 
 
4366}
4367
 
4368static void
4369drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
4370{
4371	u8 len = cea_db_payload_len(db);
4372
4373	if (len >= 6 && (db[6] & (1 << 7)))
4374		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
4375	if (len >= 8) {
4376		connector->latency_present[0] = db[8] >> 7;
4377		connector->latency_present[1] = (db[8] >> 6) & 1;
4378	}
4379	if (len >= 9)
4380		connector->video_latency[0] = db[9];
4381	if (len >= 10)
4382		connector->audio_latency[0] = db[10];
4383	if (len >= 11)
 
 
 
4384		connector->video_latency[1] = db[11];
4385	if (len >= 12)
4386		connector->audio_latency[1] = db[12];
 
4387
4388	DRM_DEBUG_KMS("HDMI: latency present %d %d, "
4389		      "video latency %d %d, "
4390		      "audio latency %d %d\n",
4391		      connector->latency_present[0],
4392		      connector->latency_present[1],
4393		      connector->video_latency[0],
4394		      connector->video_latency[1],
4395		      connector->audio_latency[0],
4396		      connector->audio_latency[1]);
4397}
4398
4399static void
4400monitor_name(struct detailed_timing *t, void *data)
4401{
4402	if (!is_display_descriptor((const u8 *)t, EDID_DETAIL_MONITOR_NAME))
 
 
4403		return;
4404
4405	*(u8 **)data = t->data.other_data.data.str.str;
4406}
4407
4408static int get_monitor_name(struct edid *edid, char name[13])
4409{
4410	char *edid_name = NULL;
4411	int mnl;
4412
4413	if (!edid || !name)
4414		return 0;
4415
4416	drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
4417	for (mnl = 0; edid_name && mnl < 13; mnl++) {
4418		if (edid_name[mnl] == 0x0a)
4419			break;
4420
4421		name[mnl] = edid_name[mnl];
4422	}
4423
4424	return mnl;
4425}
4426
4427/**
4428 * drm_edid_get_monitor_name - fetch the monitor name from the edid
4429 * @edid: monitor EDID information
4430 * @name: pointer to a character array to hold the name of the monitor
4431 * @bufsize: The size of the name buffer (should be at least 14 chars.)
4432 *
4433 */
4434void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
4435{
4436	int name_length;
4437	char buf[13];
4438
4439	if (bufsize <= 0)
4440		return;
4441
4442	name_length = min(get_monitor_name(edid, buf), bufsize - 1);
4443	memcpy(name, buf, name_length);
 
 
 
 
 
 
 
 
 
4444	name[name_length] = '\0';
4445}
4446EXPORT_SYMBOL(drm_edid_get_monitor_name);
4447
4448static void clear_eld(struct drm_connector *connector)
4449{
4450	memset(connector->eld, 0, sizeof(connector->eld));
4451
4452	connector->latency_present[0] = false;
4453	connector->latency_present[1] = false;
4454	connector->video_latency[0] = 0;
4455	connector->audio_latency[0] = 0;
4456	connector->video_latency[1] = 0;
4457	connector->audio_latency[1] = 0;
4458}
4459
4460/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4461 * drm_edid_to_eld - build ELD from EDID
4462 * @connector: connector corresponding to the HDMI/DP sink
4463 * @edid: EDID to parse
4464 *
4465 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
4466 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
4467 */
4468static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
 
4469{
 
 
 
4470	uint8_t *eld = connector->eld;
4471	u8 *cea;
4472	u8 *db;
4473	int total_sad_count = 0;
4474	int mnl;
4475	int dbl;
4476
4477	clear_eld(connector);
4478
4479	if (!edid)
4480		return;
4481
4482	cea = drm_find_cea_extension(edid);
4483	if (!cea) {
4484		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
4485		return;
4486	}
4487
4488	mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
4489	DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
4490
4491	eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
4492	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
4493
4494	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
4495
4496	eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
4497	eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
4498	eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
4499	eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
4500
4501	if (cea_revision(cea) >= 3) {
4502		int i, start, end;
 
 
4503		int sad_count;
4504
4505		if (cea_db_offsets(cea, &start, &end)) {
4506			start = 0;
4507			end = 0;
4508		}
4509
4510		for_each_cea_db(cea, i, start, end) {
4511			db = &cea[i];
4512			dbl = cea_db_payload_len(db);
4513
4514			switch (cea_db_tag(db)) {
4515			case AUDIO_BLOCK:
4516				/* Audio Data Block, contains SADs */
4517				sad_count = min(dbl / 3, 15 - total_sad_count);
4518				if (sad_count >= 1)
4519					memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
4520					       &db[1], sad_count * 3);
4521				total_sad_count += sad_count;
4522				break;
4523			case SPEAKER_BLOCK:
4524				/* Speaker Allocation Data Block */
4525				if (dbl >= 1)
4526					eld[DRM_ELD_SPEAKER] = db[1];
4527				break;
4528			case VENDOR_BLOCK:
4529				/* HDMI Vendor-Specific Data Block */
4530				if (cea_db_is_hdmi_vsdb(db))
4531					drm_parse_hdmi_vsdb_audio(connector, db);
4532				break;
4533			default:
4534				break;
4535			}
4536		}
4537	}
 
 
4538	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
4539
4540	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4541	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4542		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
4543	else
4544		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
4545
4546	eld[DRM_ELD_BASELINE_ELD_LEN] =
4547		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
4548
4549	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4550		      drm_eld_size(eld), total_sad_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4551}
4552
4553/**
4554 * drm_edid_to_sad - extracts SADs from EDID
4555 * @edid: EDID to parse
4556 * @sads: pointer that will be set to the extracted SADs
4557 *
4558 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4559 *
4560 * Note: The returned pointer needs to be freed using kfree().
4561 *
4562 * Return: The number of found SADs or negative number on error.
4563 */
4564int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4565{
4566	int count = 0;
4567	int i, start, end, dbl;
4568	u8 *cea;
4569
4570	cea = drm_find_cea_extension(edid);
4571	if (!cea) {
4572		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4573		return 0;
4574	}
4575
4576	if (cea_revision(cea) < 3) {
4577		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4578		return 0;
4579	}
4580
4581	if (cea_db_offsets(cea, &start, &end)) {
4582		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4583		return -EPROTO;
4584	}
4585
4586	for_each_cea_db(cea, i, start, end) {
4587		u8 *db = &cea[i];
4588
4589		if (cea_db_tag(db) == AUDIO_BLOCK) {
4590			int j;
4591
4592			dbl = cea_db_payload_len(db);
 
 
 
 
 
4593
4594			count = dbl / 3; /* SAD is 3B */
4595			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4596			if (!*sads)
 
 
 
 
4597				return -ENOMEM;
4598			for (j = 0; j < count; j++) {
4599				u8 *sad = &db[1 + j * 3];
4600
4601				(*sads)[j].format = (sad[0] & 0x78) >> 3;
4602				(*sads)[j].channels = sad[0] & 0x7;
4603				(*sads)[j].freq = sad[1] & 0x7F;
4604				(*sads)[j].byte2 = sad[2];
4605			}
4606			break;
4607		}
4608	}
 
 
 
4609
4610	return count;
4611}
4612EXPORT_SYMBOL(drm_edid_to_sad);
4613
4614/**
4615 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4616 * @edid: EDID to parse
4617 * @sadb: pointer to the speaker block
4618 *
4619 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4620 *
4621 * Note: The returned pointer needs to be freed using kfree().
4622 *
4623 * Return: The number of found Speaker Allocation Blocks or negative number on
4624 * error.
4625 */
4626int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4627{
4628	int count = 0;
4629	int i, start, end, dbl;
4630	const u8 *cea;
4631
4632	cea = drm_find_cea_extension(edid);
4633	if (!cea) {
4634		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4635		return 0;
4636	}
4637
4638	if (cea_revision(cea) < 3) {
4639		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4640		return 0;
4641	}
4642
4643	if (cea_db_offsets(cea, &start, &end)) {
4644		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4645		return -EPROTO;
4646	}
4647
4648	for_each_cea_db(cea, i, start, end) {
4649		const u8 *db = &cea[i];
4650
4651		if (cea_db_tag(db) == SPEAKER_BLOCK) {
4652			dbl = cea_db_payload_len(db);
4653
4654			/* Speaker Allocation Data Block */
4655			if (dbl == 3) {
4656				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4657				if (!*sadb)
4658					return -ENOMEM;
4659				count = dbl;
4660				break;
4661			}
4662		}
4663	}
4664
4665	return count;
4666}
4667EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4668
4669/**
4670 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4671 * @connector: connector associated with the HDMI/DP sink
4672 * @mode: the display mode
4673 *
4674 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4675 * the sink doesn't support audio or video.
4676 */
4677int drm_av_sync_delay(struct drm_connector *connector,
4678		      const struct drm_display_mode *mode)
4679{
4680	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4681	int a, v;
4682
4683	if (!connector->latency_present[0])
4684		return 0;
4685	if (!connector->latency_present[1])
4686		i = 0;
4687
4688	a = connector->audio_latency[i];
4689	v = connector->video_latency[i];
4690
4691	/*
4692	 * HDMI/DP sink doesn't support audio or video?
4693	 */
4694	if (a == 255 || v == 255)
4695		return 0;
4696
4697	/*
4698	 * Convert raw EDID values to millisecond.
4699	 * Treat unknown latency as 0ms.
4700	 */
4701	if (a)
4702		a = min(2 * (a - 1), 500);
4703	if (v)
4704		v = min(2 * (v - 1), 500);
4705
4706	return max(v - a, 0);
4707}
4708EXPORT_SYMBOL(drm_av_sync_delay);
4709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4710/**
4711 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4712 * @edid: monitor EDID information
4713 *
4714 * Parse the CEA extension according to CEA-861-B.
4715 *
4716 * Drivers that have added the modes parsed from EDID to drm_display_info
4717 * should use &drm_display_info.is_hdmi instead of calling this function.
4718 *
4719 * Return: True if the monitor is HDMI, false if not or unknown.
4720 */
4721bool drm_detect_hdmi_monitor(struct edid *edid)
4722{
4723	u8 *edid_ext;
4724	int i;
4725	int start_offset, end_offset;
4726
4727	edid_ext = drm_find_cea_extension(edid);
4728	if (!edid_ext)
4729		return false;
4730
4731	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4732		return false;
 
 
 
 
 
4733
4734	/*
4735	 * Because HDMI identifier is in Vendor Specific Block,
4736	 * search it from all data blocks of CEA extension.
4737	 */
4738	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4739		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4740			return true;
4741	}
 
4742
4743	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4744}
4745EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4746
4747/**
4748 * drm_detect_monitor_audio - check monitor audio capability
4749 * @edid: EDID block to scan
4750 *
4751 * Monitor should have CEA extension block.
4752 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4753 * audio' only. If there is any audio extension block and supported
4754 * audio format, assume at least 'basic audio' support, even if 'basic
4755 * audio' is not defined in EDID.
4756 *
4757 * Return: True if the monitor supports audio, false otherwise.
4758 */
4759bool drm_detect_monitor_audio(struct edid *edid)
4760{
4761	u8 *edid_ext;
4762	int i, j;
4763	bool has_audio = false;
4764	int start_offset, end_offset;
4765
4766	edid_ext = drm_find_cea_extension(edid);
4767	if (!edid_ext)
4768		goto end;
4769
4770	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4771
4772	if (has_audio) {
4773		DRM_DEBUG_KMS("Monitor has basic audio support\n");
4774		goto end;
4775	}
4776
4777	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4778		goto end;
4779
4780	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4781		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4782			has_audio = true;
4783			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4784				DRM_DEBUG_KMS("CEA audio format %d\n",
4785					      (edid_ext[i + j] >> 3) & 0xf);
4786			goto end;
4787		}
4788	}
4789end:
4790	return has_audio;
4791}
4792EXPORT_SYMBOL(drm_detect_monitor_audio);
4793
4794
4795/**
4796 * drm_default_rgb_quant_range - default RGB quantization range
4797 * @mode: display mode
4798 *
4799 * Determine the default RGB quantization range for the mode,
4800 * as specified in CEA-861.
4801 *
4802 * Return: The default RGB quantization range for the mode
4803 */
4804enum hdmi_quantization_range
4805drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4806{
4807	/* All CEA modes other than VIC 1 use limited quantization range. */
4808	return drm_match_cea_mode(mode) > 1 ?
4809		HDMI_QUANTIZATION_RANGE_LIMITED :
4810		HDMI_QUANTIZATION_RANGE_FULL;
4811}
4812EXPORT_SYMBOL(drm_default_rgb_quant_range);
4813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4814static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4815{
4816	struct drm_display_info *info = &connector->display_info;
4817
4818	DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
 
4819
4820	if (db[2] & EDID_CEA_VCDB_QS)
4821		info->rgb_quant_range_selectable = true;
4822}
4823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4824static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4825					       const u8 *db)
4826{
4827	u8 dc_mask;
4828	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4829
4830	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4831	hdmi->y420_dc_modes = dc_mask;
4832}
4833
4834static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4835				 const u8 *hf_vsdb)
4836{
4837	struct drm_display_info *display = &connector->display_info;
4838	struct drm_hdmi_info *hdmi = &display->hdmi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4839
4840	display->has_hdmi_infoframe = true;
 
 
4841
4842	if (hf_vsdb[6] & 0x80) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4843		hdmi->scdc.supported = true;
4844		if (hf_vsdb[6] & 0x40)
4845			hdmi->scdc.read_request = true;
4846	}
4847
4848	/*
4849	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4850	 * And as per the spec, three factors confirm this:
4851	 * * Availability of a HF-VSDB block in EDID (check)
4852	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4853	 * * SCDC support available (let's check)
4854	 * Lets check it out.
4855	 */
4856
4857	if (hf_vsdb[5]) {
4858		/* max clock is 5000 KHz times block value */
4859		u32 max_tmds_clock = hf_vsdb[5] * 5000;
4860		struct drm_scdc *scdc = &hdmi->scdc;
4861
 
 
 
4862		if (max_tmds_clock > 340000) {
4863			display->max_tmds_clock = max_tmds_clock;
4864			DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4865				display->max_tmds_clock);
4866		}
4867
4868		if (scdc->supported) {
4869			scdc->scrambling.supported = true;
4870
4871			/* Few sinks support scrambling for clocks < 340M */
4872			if ((hf_vsdb[6] & 0x8))
4873				scdc->scrambling.low_rates = true;
4874		}
4875	}
4876
4877	drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4878}
4879
4880static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4881					   const u8 *hdmi)
4882{
4883	struct drm_display_info *info = &connector->display_info;
4884	unsigned int dc_bpc = 0;
4885
4886	/* HDMI supports at least 8 bpc */
4887	info->bpc = 8;
4888
4889	if (cea_db_payload_len(hdmi) < 6)
4890		return;
4891
4892	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4893		dc_bpc = 10;
4894		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4895		DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4896			  connector->name);
4897	}
4898
4899	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4900		dc_bpc = 12;
4901		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4902		DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4903			  connector->name);
4904	}
4905
4906	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4907		dc_bpc = 16;
4908		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4909		DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4910			  connector->name);
4911	}
4912
4913	if (dc_bpc == 0) {
4914		DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4915			  connector->name);
4916		return;
4917	}
4918
4919	DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4920		  connector->name, dc_bpc);
4921	info->bpc = dc_bpc;
4922
4923	/*
4924	 * Deep color support mandates RGB444 support for all video
4925	 * modes and forbids YCRCB422 support for all video modes per
4926	 * HDMI 1.3 spec.
4927	 */
4928	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4929
4930	/* YCRCB444 is optional according to spec. */
4931	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4932		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4933		DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4934			  connector->name);
4935	}
4936
4937	/*
4938	 * Spec says that if any deep color mode is supported at all,
4939	 * then deep color 36 bit must be supported.
4940	 */
4941	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4942		DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4943			  connector->name);
4944	}
4945}
4946
 
4947static void
4948drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4949{
4950	struct drm_display_info *info = &connector->display_info;
4951	u8 len = cea_db_payload_len(db);
4952
4953	info->is_hdmi = true;
4954
 
 
4955	if (len >= 6)
4956		info->dvi_dual = db[6] & 1;
4957	if (len >= 7)
4958		info->max_tmds_clock = db[7] * 5000;
4959
4960	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4961		      "max TMDS clock %d kHz\n",
4962		      info->dvi_dual,
4963		      info->max_tmds_clock);
 
 
 
 
 
 
 
 
4964
4965	drm_parse_hdmi_deep_color_info(connector, db);
4966}
4967
4968static void drm_parse_cea_ext(struct drm_connector *connector,
4969			      const struct edid *edid)
 
 
 
 
4970{
4971	struct drm_display_info *info = &connector->display_info;
4972	const u8 *edid_ext;
4973	int i, start, end;
4974
4975	edid_ext = drm_find_cea_extension(edid);
4976	if (!edid_ext)
4977		return;
 
 
 
 
 
4978
4979	info->cea_rev = edid_ext[1];
 
 
 
 
 
 
 
 
4980
4981	/* The existence of a CEA block should imply RGB support */
4982	info->color_formats = DRM_COLOR_FORMAT_RGB444;
4983	if (edid_ext[3] & EDID_CEA_YCRCB444)
4984		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4985	if (edid_ext[3] & EDID_CEA_YCRCB422)
4986		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4987
4988	if (cea_db_offsets(edid_ext, &start, &end))
4989		return;
4990
4991	for_each_cea_db(edid_ext, i, start, end) {
4992		const u8 *db = &edid_ext[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4993
4994		if (cea_db_is_hdmi_vsdb(db))
4995			drm_parse_hdmi_vsdb_video(connector, db);
4996		if (cea_db_is_hdmi_forum_vsdb(db))
4997			drm_parse_hdmi_forum_vsdb(connector, db);
4998		if (cea_db_is_y420cmdb(db))
4999			drm_parse_y420cmdb_bitmap(connector, db);
5000		if (cea_db_is_vcdb(db))
5001			drm_parse_vcdb(connector, db);
5002		if (cea_db_is_hdmi_hdr_metadata_block(db))
5003			drm_parse_hdr_metadata_block(connector, db);
 
 
 
 
 
 
 
 
 
5004	}
 
 
 
 
5005}
5006
5007static
5008void get_monitor_range(struct detailed_timing *timing,
5009		       void *info_monitor_range)
5010{
5011	struct drm_monitor_range_info *monitor_range = info_monitor_range;
 
 
5012	const struct detailed_non_pixel *data = &timing->data.other_data;
5013	const struct detailed_data_monitor_range *range = &data->data.range;
 
5014
5015	if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
5016		return;
5017
5018	/*
5019	 * Check for flag range limits only. If flag == 1 then
5020	 * no additional timing information provided.
5021	 * Default GTF, GTF Secondary curve and CVT are not
5022	 * supported
 
 
 
5023	 */
5024	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
5025		return;
5026
5027	monitor_range->min_vfreq = range->min_vfreq;
5028	monitor_range->max_vfreq = range->max_vfreq;
 
 
 
 
 
 
 
5029}
5030
5031static
5032void drm_get_monitor_range(struct drm_connector *connector,
5033			   const struct edid *edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5034{
 
 
5035	struct drm_display_info *info = &connector->display_info;
5036
5037	if (!version_greater(edid, 1, 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039
5040	drm_for_each_detailed_block((u8 *)edid, get_monitor_range,
5041				    &info->monitor_range);
 
 
 
5042
5043	DRM_DEBUG_KMS("Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
5044		      info->monitor_range.min_vfreq,
5045		      info->monitor_range.max_vfreq);
 
 
 
5046}
5047
5048/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
5049 * all of the values which would have been set from EDID
5050 */
5051void
5052drm_reset_display_info(struct drm_connector *connector)
5053{
5054	struct drm_display_info *info = &connector->display_info;
5055
5056	info->width_mm = 0;
5057	info->height_mm = 0;
5058
5059	info->bpc = 0;
5060	info->color_formats = 0;
5061	info->cea_rev = 0;
5062	info->max_tmds_clock = 0;
5063	info->dvi_dual = false;
5064	info->is_hdmi = false;
 
5065	info->has_hdmi_infoframe = false;
5066	info->rgb_quant_range_selectable = false;
5067	memset(&info->hdmi, 0, sizeof(info->hdmi));
5068
 
 
 
5069	info->non_desktop = 0;
5070	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
 
 
 
 
 
 
 
 
 
 
 
 
 
5071}
5072
5073u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
 
5074{
5075	struct drm_display_info *info = &connector->display_info;
 
 
5076
5077	u32 quirks = edid_get_quirks(edid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5078
5079	drm_reset_display_info(connector);
 
5080
5081	info->width_mm = edid->width_cm * 10;
5082	info->height_mm = edid->height_cm * 10;
5083
5084	info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
5085
5086	drm_get_monitor_range(connector, edid);
5087
5088	DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
 
 
 
5089
5090	if (edid->revision < 3)
5091		return quirks;
 
 
 
5092
5093	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
5094		return quirks;
5095
5096	drm_parse_cea_ext(connector, edid);
5097
5098	/*
5099	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
5100	 *
5101	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
5102	 * tells us to assume 8 bpc color depth if the EDID doesn't have
5103	 * extensions which tell otherwise.
5104	 */
5105	if (info->bpc == 0 && edid->revision == 3 &&
5106	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
5107		info->bpc = 8;
5108		DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
5109			  connector->name, info->bpc);
 
5110	}
5111
5112	/* Only defined for 1.4 with digital displays */
5113	if (edid->revision < 4)
5114		return quirks;
5115
5116	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
5117	case DRM_EDID_DIGITAL_DEPTH_6:
5118		info->bpc = 6;
5119		break;
5120	case DRM_EDID_DIGITAL_DEPTH_8:
5121		info->bpc = 8;
5122		break;
5123	case DRM_EDID_DIGITAL_DEPTH_10:
5124		info->bpc = 10;
5125		break;
5126	case DRM_EDID_DIGITAL_DEPTH_12:
5127		info->bpc = 12;
5128		break;
5129	case DRM_EDID_DIGITAL_DEPTH_14:
5130		info->bpc = 14;
5131		break;
5132	case DRM_EDID_DIGITAL_DEPTH_16:
5133		info->bpc = 16;
5134		break;
5135	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
5136	default:
5137		info->bpc = 0;
5138		break;
5139	}
5140
5141	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
5142			  connector->name, info->bpc);
 
5143
5144	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
5145	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
5146		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
5147	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
5148		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
5149	return quirks;
5150}
5151
5152static int validate_displayid(u8 *displayid, int length, int idx)
5153{
5154	int i, dispid_length;
5155	u8 csum = 0;
5156	struct displayid_hdr *base;
5157
5158	base = (struct displayid_hdr *)&displayid[idx];
 
 
 
 
 
 
5159
5160	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
5161		      base->rev, base->bytes, base->prod_id, base->ext_count);
5162
5163	/* +1 for DispID checksum */
5164	dispid_length = sizeof(*base) + base->bytes + 1;
5165	if (dispid_length > length - idx)
5166		return -EINVAL;
5167
5168	for (i = 0; i < dispid_length; i++)
5169		csum += displayid[idx + i];
5170	if (csum) {
5171		DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
5172		return -EINVAL;
5173	}
5174
5175	return 0;
 
 
 
 
 
 
 
5176}
5177
5178static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
5179							    struct displayid_detailed_timings_1 *timings)
 
5180{
5181	struct drm_display_mode *mode;
5182	unsigned pixel_clock = (timings->pixel_clock[0] |
5183				(timings->pixel_clock[1] << 8) |
5184				(timings->pixel_clock[2] << 16)) + 1;
5185	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
5186	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
5187	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
5188	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
5189	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
5190	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
5191	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
5192	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
5193	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
5194	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
5195
5196	mode = drm_mode_create(dev);
5197	if (!mode)
5198		return NULL;
5199
5200	mode->clock = pixel_clock * 10;
 
5201	mode->hdisplay = hactive;
5202	mode->hsync_start = mode->hdisplay + hsync;
5203	mode->hsync_end = mode->hsync_start + hsync_width;
5204	mode->htotal = mode->hdisplay + hblank;
5205
5206	mode->vdisplay = vactive;
5207	mode->vsync_start = mode->vdisplay + vsync;
5208	mode->vsync_end = mode->vsync_start + vsync_width;
5209	mode->vtotal = mode->vdisplay + vblank;
5210
5211	mode->flags = 0;
5212	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
5213	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
5214	mode->type = DRM_MODE_TYPE_DRIVER;
5215
5216	if (timings->flags & 0x80)
5217		mode->type |= DRM_MODE_TYPE_PREFERRED;
5218	drm_mode_set_name(mode);
5219
5220	return mode;
5221}
5222
5223static int add_displayid_detailed_1_modes(struct drm_connector *connector,
5224					  struct displayid_block *block)
5225{
5226	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
5227	int i;
5228	int num_timings;
5229	struct drm_display_mode *newmode;
5230	int num_modes = 0;
 
5231	/* blocks must be multiple of 20 bytes length */
5232	if (block->num_bytes % 20)
5233		return 0;
5234
5235	num_timings = block->num_bytes / 20;
5236	for (i = 0; i < num_timings; i++) {
5237		struct displayid_detailed_timings_1 *timings = &det->timings[i];
5238
5239		newmode = drm_mode_displayid_detailed(connector->dev, timings);
5240		if (!newmode)
5241			continue;
5242
5243		drm_mode_probed_add(connector, newmode);
5244		num_modes++;
5245	}
5246	return num_modes;
5247}
5248
5249static int add_displayid_detailed_modes(struct drm_connector *connector,
5250					struct edid *edid)
5251{
5252	u8 *displayid;
5253	int length, idx;
5254	struct displayid_block *block;
5255	int num_modes = 0;
5256	int ext_index = 0;
5257
5258	for (;;) {
5259		displayid = drm_find_displayid_extension(edid, &length, &idx,
5260							 &ext_index);
5261		if (!displayid)
5262			break;
5263
5264		idx += sizeof(struct displayid_hdr);
5265		for_each_displayid_db(displayid, block, idx, length) {
5266			switch (block->tag) {
5267			case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5268				num_modes += add_displayid_detailed_1_modes(connector, block);
5269				break;
5270			}
5271		}
5272	}
 
5273
5274	return num_modes;
5275}
5276
5277/**
5278 * drm_add_edid_modes - add modes from EDID data, if available
5279 * @connector: connector we're probing
5280 * @edid: EDID data
5281 *
5282 * Add the specified modes to the connector's mode list. Also fills out the
5283 * &drm_display_info structure and ELD in @connector with any information which
5284 * can be derived from the edid.
5285 *
5286 * Return: The number of modes added or 0 if we couldn't find any.
5287 */
5288int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
5289{
 
5290	int num_modes = 0;
5291	u32 quirks;
5292
5293	if (edid == NULL) {
5294		clear_eld(connector);
5295		return 0;
5296	}
5297	if (!drm_edid_is_valid(edid)) {
5298		clear_eld(connector);
5299		drm_warn(connector->dev, "%s: EDID invalid.\n",
5300			 connector->name);
5301		return 0;
5302	}
5303
5304	drm_edid_to_eld(connector, edid);
5305
5306	/*
5307	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5308	 * To avoid multiple parsing of same block, lets parse that map
5309	 * from sink info, before parsing CEA modes.
5310	 */
5311	quirks = drm_add_display_info(connector, edid);
5312
5313	/*
5314	 * EDID spec says modes should be preferred in this order:
5315	 * - preferred detailed mode
5316	 * - other detailed modes from base block
5317	 * - detailed modes from extension blocks
5318	 * - CVT 3-byte code modes
5319	 * - standard timing codes
5320	 * - established timing codes
5321	 * - modes inferred from GTF or CVT range information
5322	 *
5323	 * We get this pretty much right.
5324	 *
5325	 * XXX order for additional mode types in extension blocks?
5326	 */
5327	num_modes += add_detailed_modes(connector, edid, quirks);
5328	num_modes += add_cvt_modes(connector, edid);
5329	num_modes += add_standard_modes(connector, edid);
5330	num_modes += add_established_modes(connector, edid);
5331	num_modes += add_cea_modes(connector, edid);
5332	num_modes += add_alternate_cea_modes(connector, edid);
5333	num_modes += add_displayid_detailed_modes(connector, edid);
5334	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5335		num_modes += add_inferred_modes(connector, edid);
5336
5337	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5338		edid_fixup_preferred(connector, quirks);
5339
5340	if (quirks & EDID_QUIRK_FORCE_6BPC)
5341		connector->display_info.bpc = 6;
5342
5343	if (quirks & EDID_QUIRK_FORCE_8BPC)
5344		connector->display_info.bpc = 8;
5345
5346	if (quirks & EDID_QUIRK_FORCE_10BPC)
5347		connector->display_info.bpc = 10;
5348
5349	if (quirks & EDID_QUIRK_FORCE_12BPC)
5350		connector->display_info.bpc = 12;
5351
5352	return num_modes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5353}
5354EXPORT_SYMBOL(drm_add_edid_modes);
5355
5356/**
5357 * drm_add_modes_noedid - add modes for the connectors without EDID
5358 * @connector: connector we're probing
5359 * @hdisplay: the horizontal display limit
5360 * @vdisplay: the vertical display limit
5361 *
5362 * Add the specified modes to the connector's mode list. Only when the
5363 * hdisplay/vdisplay is not beyond the given limit, it will be added.
5364 *
5365 * Return: The number of modes added or 0 if we couldn't find any.
5366 */
5367int drm_add_modes_noedid(struct drm_connector *connector,
5368			int hdisplay, int vdisplay)
5369{
5370	int i, count, num_modes = 0;
5371	struct drm_display_mode *mode;
5372	struct drm_device *dev = connector->dev;
5373
5374	count = ARRAY_SIZE(drm_dmt_modes);
5375	if (hdisplay < 0)
5376		hdisplay = 0;
5377	if (vdisplay < 0)
5378		vdisplay = 0;
5379
5380	for (i = 0; i < count; i++) {
5381		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
5382
5383		if (hdisplay && vdisplay) {
5384			/*
5385			 * Only when two are valid, they will be used to check
5386			 * whether the mode should be added to the mode list of
5387			 * the connector.
5388			 */
5389			if (ptr->hdisplay > hdisplay ||
5390					ptr->vdisplay > vdisplay)
5391				continue;
5392		}
5393		if (drm_mode_vrefresh(ptr) > 61)
5394			continue;
5395		mode = drm_mode_duplicate(dev, ptr);
5396		if (mode) {
5397			drm_mode_probed_add(connector, mode);
5398			num_modes++;
5399		}
5400	}
5401	return num_modes;
5402}
5403EXPORT_SYMBOL(drm_add_modes_noedid);
5404
5405/**
5406 * drm_set_preferred_mode - Sets the preferred mode of a connector
5407 * @connector: connector whose mode list should be processed
5408 * @hpref: horizontal resolution of preferred mode
5409 * @vpref: vertical resolution of preferred mode
5410 *
5411 * Marks a mode as preferred if it matches the resolution specified by @hpref
5412 * and @vpref.
5413 */
5414void drm_set_preferred_mode(struct drm_connector *connector,
5415			   int hpref, int vpref)
5416{
5417	struct drm_display_mode *mode;
5418
5419	list_for_each_entry(mode, &connector->probed_modes, head) {
5420		if (mode->hdisplay == hpref &&
5421		    mode->vdisplay == vpref)
5422			mode->type |= DRM_MODE_TYPE_PREFERRED;
5423	}
5424}
5425EXPORT_SYMBOL(drm_set_preferred_mode);
5426
5427static bool is_hdmi2_sink(const struct drm_connector *connector)
5428{
5429	/*
5430	 * FIXME: sil-sii8620 doesn't have a connector around when
5431	 * we need one, so we have to be prepared for a NULL connector.
5432	 */
5433	if (!connector)
5434		return true;
5435
5436	return connector->display_info.hdmi.scdc.supported ||
5437		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
5438}
5439
5440static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
5441{
5442	return sink_eotf & BIT(output_eotf);
5443}
5444
5445/**
5446 * drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
5447 *                                         HDR metadata from userspace
5448 * @frame: HDMI DRM infoframe
5449 * @conn_state: Connector state containing HDR metadata
5450 *
5451 * Return: 0 on success or a negative error code on failure.
5452 */
5453int
5454drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
5455				    const struct drm_connector_state *conn_state)
5456{
5457	struct drm_connector *connector;
5458	struct hdr_output_metadata *hdr_metadata;
5459	int err;
5460
5461	if (!frame || !conn_state)
5462		return -EINVAL;
5463
5464	connector = conn_state->connector;
5465
5466	if (!conn_state->hdr_output_metadata)
5467		return -EINVAL;
5468
5469	hdr_metadata = conn_state->hdr_output_metadata->data;
5470
5471	if (!hdr_metadata || !connector)
5472		return -EINVAL;
5473
5474	/* Sink EOTF is Bit map while infoframe is absolute values */
5475	if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
5476	    connector->hdr_sink_metadata.hdmi_type1.eotf)) {
5477		DRM_DEBUG_KMS("EOTF Not Supported\n");
5478		return -EINVAL;
5479	}
5480
5481	err = hdmi_drm_infoframe_init(frame);
5482	if (err < 0)
5483		return err;
5484
5485	frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
5486	frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
5487
5488	BUILD_BUG_ON(sizeof(frame->display_primaries) !=
5489		     sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
5490	BUILD_BUG_ON(sizeof(frame->white_point) !=
5491		     sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
5492
5493	memcpy(&frame->display_primaries,
5494	       &hdr_metadata->hdmi_metadata_type1.display_primaries,
5495	       sizeof(frame->display_primaries));
5496
5497	memcpy(&frame->white_point,
5498	       &hdr_metadata->hdmi_metadata_type1.white_point,
5499	       sizeof(frame->white_point));
5500
5501	frame->max_display_mastering_luminance =
5502		hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
5503	frame->min_display_mastering_luminance =
5504		hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
5505	frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
5506	frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
5507
5508	return 0;
5509}
5510EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
5511
5512static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
5513			    const struct drm_display_mode *mode)
5514{
5515	bool has_hdmi_infoframe = connector ?
5516		connector->display_info.has_hdmi_infoframe : false;
5517
5518	if (!has_hdmi_infoframe)
5519		return 0;
5520
5521	/* No HDMI VIC when signalling 3D video format */
5522	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
5523		return 0;
5524
5525	return drm_match_hdmi_mode(mode);
5526}
5527
5528static u8 drm_mode_cea_vic(const struct drm_connector *connector,
5529			   const struct drm_display_mode *mode)
5530{
5531	u8 vic;
5532
5533	/*
5534	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5535	 * we should send its VIC in vendor infoframes, else send the
5536	 * VIC in AVI infoframes. Lets check if this mode is present in
5537	 * HDMI 1.4b 4K modes
5538	 */
5539	if (drm_mode_hdmi_vic(connector, mode))
5540		return 0;
5541
5542	vic = drm_match_cea_mode(mode);
 
5543
5544	/*
5545	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5546	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5547	 * have to make sure we dont break HDMI 1.4 sinks.
5548	 */
5549	if (!is_hdmi2_sink(connector) && vic > 64)
 
 
 
 
 
 
 
 
5550		return 0;
5551
5552	return vic;
5553}
5554
5555/**
5556 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
5557 *                                              data from a DRM display mode
5558 * @frame: HDMI AVI infoframe
5559 * @connector: the connector
5560 * @mode: DRM display mode
5561 *
5562 * Return: 0 on success or a negative error code on failure.
5563 */
5564int
5565drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5566					 const struct drm_connector *connector,
5567					 const struct drm_display_mode *mode)
5568{
5569	enum hdmi_picture_aspect picture_aspect;
5570	u8 vic, hdmi_vic;
5571
5572	if (!frame || !mode)
5573		return -EINVAL;
5574
5575	hdmi_avi_infoframe_init(frame);
5576
5577	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5578		frame->pixel_repeat = 1;
5579
5580	vic = drm_mode_cea_vic(connector, mode);
5581	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
5582
5583	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5584
5585	/*
5586	 * As some drivers don't support atomic, we can't use connector state.
5587	 * So just initialize the frame with default values, just the same way
5588	 * as it's done with other properties here.
5589	 */
5590	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
5591	frame->itc = 0;
5592
5593	/*
5594	 * Populate picture aspect ratio from either
5595	 * user input (if specified) or from the CEA/HDMI mode lists.
5596	 */
5597	picture_aspect = mode->picture_aspect_ratio;
5598	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
5599		if (vic)
5600			picture_aspect = drm_get_cea_aspect_ratio(vic);
5601		else if (hdmi_vic)
5602			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
5603	}
5604
5605	/*
5606	 * The infoframe can't convey anything but none, 4:3
5607	 * and 16:9, so if the user has asked for anything else
5608	 * we can only satisfy it by specifying the right VIC.
5609	 */
5610	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
5611		if (vic) {
5612			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
5613				return -EINVAL;
5614		} else if (hdmi_vic) {
5615			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
5616				return -EINVAL;
5617		} else {
5618			return -EINVAL;
5619		}
5620
5621		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5622	}
5623
5624	frame->video_code = vic;
5625	frame->picture_aspect = picture_aspect;
5626	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5627	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5628
5629	return 0;
5630}
5631EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
5632
5633/* HDMI Colorspace Spec Definitions */
5634#define FULL_COLORIMETRY_MASK		0x1FF
5635#define NORMAL_COLORIMETRY_MASK		0x3
5636#define EXTENDED_COLORIMETRY_MASK	0x7
5637#define EXTENDED_ACE_COLORIMETRY_MASK	0xF
5638
5639#define C(x) ((x) << 0)
5640#define EC(x) ((x) << 2)
5641#define ACE(x) ((x) << 5)
5642
5643#define HDMI_COLORIMETRY_NO_DATA		0x0
5644#define HDMI_COLORIMETRY_SMPTE_170M_YCC		(C(1) | EC(0) | ACE(0))
5645#define HDMI_COLORIMETRY_BT709_YCC		(C(2) | EC(0) | ACE(0))
5646#define HDMI_COLORIMETRY_XVYCC_601		(C(3) | EC(0) | ACE(0))
5647#define HDMI_COLORIMETRY_XVYCC_709		(C(3) | EC(1) | ACE(0))
5648#define HDMI_COLORIMETRY_SYCC_601		(C(3) | EC(2) | ACE(0))
5649#define HDMI_COLORIMETRY_OPYCC_601		(C(3) | EC(3) | ACE(0))
5650#define HDMI_COLORIMETRY_OPRGB			(C(3) | EC(4) | ACE(0))
5651#define HDMI_COLORIMETRY_BT2020_CYCC		(C(3) | EC(5) | ACE(0))
5652#define HDMI_COLORIMETRY_BT2020_RGB		(C(3) | EC(6) | ACE(0))
5653#define HDMI_COLORIMETRY_BT2020_YCC		(C(3) | EC(6) | ACE(0))
5654#define HDMI_COLORIMETRY_DCI_P3_RGB_D65		(C(3) | EC(7) | ACE(0))
5655#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER	(C(3) | EC(7) | ACE(1))
5656
5657static const u32 hdmi_colorimetry_val[] = {
5658	[DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
5659	[DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
5660	[DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
5661	[DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
5662	[DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
5663	[DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
5664	[DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
5665	[DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
5666	[DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
5667	[DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
5668	[DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
5669};
5670
5671#undef C
5672#undef EC
5673#undef ACE
5674
5675/**
5676 * drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
5677 *                                       colorspace information
5678 * @frame: HDMI AVI infoframe
5679 * @conn_state: connector state
5680 */
5681void
5682drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
5683				  const struct drm_connector_state *conn_state)
5684{
5685	u32 colorimetry_val;
5686	u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
5687
5688	if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
5689		colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
5690	else
5691		colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
5692
5693	frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
5694	/*
5695	 * ToDo: Extend it for ACE formats as well. Modify the infoframe
5696	 * structure and extend it in drivers/video/hdmi
5697	 */
5698	frame->extended_colorimetry = (colorimetry_val >> 2) &
5699					EXTENDED_COLORIMETRY_MASK;
5700}
5701EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
5702
5703/**
5704 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5705 *                                        quantization range information
5706 * @frame: HDMI AVI infoframe
5707 * @connector: the connector
5708 * @mode: DRM display mode
5709 * @rgb_quant_range: RGB quantization range (Q)
5710 */
5711void
5712drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5713				   const struct drm_connector *connector,
5714				   const struct drm_display_mode *mode,
5715				   enum hdmi_quantization_range rgb_quant_range)
5716{
5717	const struct drm_display_info *info = &connector->display_info;
5718
5719	/*
5720	 * CEA-861:
5721	 * "A Source shall not send a non-zero Q value that does not correspond
5722	 *  to the default RGB Quantization Range for the transmitted Picture
5723	 *  unless the Sink indicates support for the Q bit in a Video
5724	 *  Capabilities Data Block."
5725	 *
5726	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5727	 * default RGB quantization range for the mode, even when QS=0.
5728	 */
5729	if (info->rgb_quant_range_selectable ||
5730	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5731		frame->quantization_range = rgb_quant_range;
5732	else
5733		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5734
5735	/*
5736	 * CEA-861-F:
5737	 * "When transmitting any RGB colorimetry, the Source should set the
5738	 *  YQ-field to match the RGB Quantization Range being transmitted
5739	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5740	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5741	 *
5742	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
5743	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
5744	 * good way to tell which version of CEA-861 the sink supports, so
5745	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
5746	 * on on CEA-861-F.
5747	 */
5748	if (!is_hdmi2_sink(connector) ||
5749	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5750		frame->ycc_quantization_range =
5751			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5752	else
5753		frame->ycc_quantization_range =
5754			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5755}
5756EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
5757
5758/**
5759 * drm_hdmi_avi_infoframe_bars() - fill the HDMI AVI infoframe
5760 *                                 bar information
5761 * @frame: HDMI AVI infoframe
5762 * @conn_state: connector state
5763 */
5764void
5765drm_hdmi_avi_infoframe_bars(struct hdmi_avi_infoframe *frame,
5766			    const struct drm_connector_state *conn_state)
5767{
5768	frame->right_bar = conn_state->tv.margins.right;
5769	frame->left_bar = conn_state->tv.margins.left;
5770	frame->top_bar = conn_state->tv.margins.top;
5771	frame->bottom_bar = conn_state->tv.margins.bottom;
5772}
5773EXPORT_SYMBOL(drm_hdmi_avi_infoframe_bars);
5774
5775static enum hdmi_3d_structure
5776s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5777{
5778	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5779
5780	switch (layout) {
5781	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5782		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5783	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5784		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5785	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5786		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5787	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5788		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5789	case DRM_MODE_FLAG_3D_L_DEPTH:
5790		return HDMI_3D_STRUCTURE_L_DEPTH;
5791	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5792		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5793	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5794		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5795	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5796		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5797	default:
5798		return HDMI_3D_STRUCTURE_INVALID;
5799	}
5800}
5801
5802/**
5803 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5804 * data from a DRM display mode
5805 * @frame: HDMI vendor infoframe
5806 * @connector: the connector
5807 * @mode: DRM display mode
5808 *
5809 * Note that there's is a need to send HDMI vendor infoframes only when using a
5810 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5811 * function will return -EINVAL, error that can be safely ignored.
5812 *
5813 * Return: 0 on success or a negative error code on failure.
5814 */
5815int
5816drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5817					    const struct drm_connector *connector,
5818					    const struct drm_display_mode *mode)
5819{
5820	/*
5821	 * FIXME: sil-sii8620 doesn't have a connector around when
5822	 * we need one, so we have to be prepared for a NULL connector.
5823	 */
5824	bool has_hdmi_infoframe = connector ?
5825		connector->display_info.has_hdmi_infoframe : false;
5826	int err;
5827
5828	if (!frame || !mode)
5829		return -EINVAL;
5830
5831	if (!has_hdmi_infoframe)
5832		return -EINVAL;
5833
5834	err = hdmi_vendor_infoframe_init(frame);
5835	if (err < 0)
5836		return err;
5837
5838	/*
5839	 * Even if it's not absolutely necessary to send the infoframe
5840	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5841	 * know that the sink can handle it. This is based on a
5842	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5843	 * have trouble realizing that they shuld switch from 3D to 2D
5844	 * mode if the source simply stops sending the infoframe when
5845	 * it wants to switch from 3D to 2D.
5846	 */
5847	frame->vic = drm_mode_hdmi_vic(connector, mode);
5848	frame->s3d_struct = s3d_structure_from_display_mode(mode);
5849
5850	return 0;
5851}
5852EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5853
5854static void drm_parse_tiled_block(struct drm_connector *connector,
5855				  const struct displayid_block *block)
5856{
5857	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5858	u16 w, h;
5859	u8 tile_v_loc, tile_h_loc;
5860	u8 num_v_tile, num_h_tile;
5861	struct drm_tile_group *tg;
5862
5863	w = tile->tile_size[0] | tile->tile_size[1] << 8;
5864	h = tile->tile_size[2] | tile->tile_size[3] << 8;
5865
5866	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5867	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5868	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5869	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5870
5871	connector->has_tile = true;
5872	if (tile->tile_cap & 0x80)
5873		connector->tile_is_single_monitor = true;
5874
5875	connector->num_h_tile = num_h_tile + 1;
5876	connector->num_v_tile = num_v_tile + 1;
5877	connector->tile_h_loc = tile_h_loc;
5878	connector->tile_v_loc = tile_v_loc;
5879	connector->tile_h_size = w + 1;
5880	connector->tile_v_size = h + 1;
5881
5882	DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5883	DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5884	DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5885		      num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5886	DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
 
 
 
5887
5888	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5889	if (!tg)
5890		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5891	if (!tg)
5892		return;
5893
5894	if (connector->tile_group != tg) {
5895		/* if we haven't got a pointer,
5896		   take the reference, drop ref to old tile group */
5897		if (connector->tile_group)
5898			drm_mode_put_tile_group(connector->dev, connector->tile_group);
5899		connector->tile_group = tg;
5900	} else {
5901		/* if same tile group, then release the ref we just took. */
5902		drm_mode_put_tile_group(connector->dev, tg);
5903	}
5904}
5905
5906static void drm_displayid_parse_tiled(struct drm_connector *connector,
5907				      const u8 *displayid, int length, int idx)
5908{
5909	const struct displayid_block *block;
5910
5911	idx += sizeof(struct displayid_hdr);
5912	for_each_displayid_db(displayid, block, idx, length) {
5913		DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5914			      block->tag, block->rev, block->num_bytes);
5915
5916		switch (block->tag) {
5917		case DATA_BLOCK_TILED_DISPLAY:
5918			drm_parse_tiled_block(connector, block);
5919			break;
5920		default:
5921			DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5922			break;
5923		}
5924	}
5925}
5926
5927void drm_update_tile_info(struct drm_connector *connector,
5928			  const struct edid *edid)
5929{
5930	const void *displayid = NULL;
5931	int ext_index = 0;
5932	int length, idx;
5933
5934	connector->has_tile = false;
5935	for (;;) {
5936		displayid = drm_find_displayid_extension(edid, &length, &idx,
5937							 &ext_index);
5938		if (!displayid)
5939			break;
5940
5941		drm_displayid_parse_tiled(connector, displayid, length, idx);
 
 
 
5942	}
 
5943
5944	if (!connector->has_tile && connector->tile_group) {
5945		drm_mode_put_tile_group(connector->dev, connector->tile_group);
5946		connector->tile_group = NULL;
5947	}
5948}
v6.8
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/cec.h>
  33#include <linux/hdmi.h>
  34#include <linux/i2c.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/pci.h>
  38#include <linux/slab.h>
  39#include <linux/vga_switcheroo.h>
  40
  41#include <drm/drm_displayid.h>
  42#include <drm/drm_drv.h>
  43#include <drm/drm_edid.h>
  44#include <drm/drm_eld.h>
  45#include <drm/drm_encoder.h>
  46#include <drm/drm_print.h>
 
  47
  48#include "drm_crtc_internal.h"
  49#include "drm_internal.h"
  50
  51static int oui(u8 first, u8 second, u8 third)
  52{
  53	return (first << 16) | (second << 8) | third;
  54}
  55
  56#define EDID_EST_TIMINGS 16
  57#define EDID_STD_TIMINGS 8
  58#define EDID_DETAILED_TIMINGS 4
  59
  60/*
  61 * EDID blocks out in the wild have a variety of bugs, try to collect
  62 * them here (note that userspace may work around broken monitors first,
  63 * but fixes should make their way here so that the kernel "just works"
  64 * on as many displays as possible).
  65 */
  66
  67/* First detailed mode wrong, use largest 60Hz mode */
  68#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  69/* Reported 135MHz pixel clock is too high, needs adjustment */
  70#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  71/* Prefer the largest mode at 75 Hz */
  72#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  73/* Detail timing is in cm not mm */
  74#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  75/* Detailed timing descriptors have bogus size values, so just take the
  76 * maximum size and use that.
  77 */
  78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  79/* use +hsync +vsync for detailed mode */
  80#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  81/* Force reduced-blanking timings for detailed modes */
  82#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  83/* Force 8bpc */
  84#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  85/* Force 12bpc */
  86#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  87/* Force 6bpc */
  88#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  89/* Force 10bpc */
  90#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  91/* Non desktop display (i.e. HMD) */
  92#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  93/* Cap the DSC target bitrate to 15bpp */
  94#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  95
  96#define MICROSOFT_IEEE_OUI	0xca125c
  97
  98struct detailed_mode_closure {
  99	struct drm_connector *connector;
 100	const struct drm_edid *drm_edid;
 101	bool preferred;
 
 102	int modes;
 103};
 104
 105#define LEVEL_DMT	0
 106#define LEVEL_GTF	1
 107#define LEVEL_GTF2	2
 108#define LEVEL_CVT	3
 109
 110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 111{ \
 112	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 113					     product_id), \
 114	.quirks = _quirks \
 115}
 116
 117static const struct edid_quirk {
 118	u32 panel_id;
 
 119	u32 quirks;
 120} edid_quirk_list[] = {
 121	/* Acer AL1706 */
 122	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 123	/* Acer F51 */
 124	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 125
 126	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 127	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 128
 129	/* BenQ GW2765 */
 130	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 131
 132	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 133	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 134
 135	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 139	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 140
 141	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* Belinea 10 15 55 */
 145	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 146	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Envision Peripherals, Inc. EN-7100e */
 149	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 150	/* Envision EN2028 */
 151	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 152
 153	/* Funai Electronics PM36B */
 154	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 155				       EDID_QUIRK_DETAILED_IN_CM),
 156
 157	/* LG 27GP950 */
 158	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 159
 160	/* LG 27GN950 */
 161	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 162
 163	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 164	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 165
 166	/* LG Philips LCD LP154W01-A5 */
 167	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 168	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 169
 170	/* Samsung SyncMaster 205BW.  Note: irony */
 171	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 172	/* Samsung SyncMaster 22[5-6]BW */
 173	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 174	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 175
 176	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 177	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 178
 179	/* ViewSonic VA2026w */
 180	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 181
 182	/* Medion MD 30217 PG */
 183	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 184
 185	/* Lenovo G50 */
 186	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 187
 188	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 189	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 190
 191	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 192	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 193
 194	/* Valve Index Headset */
 195	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 212
 213	/* HTC Vive and Vive Pro VR Headsets */
 214	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 216
 217	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 218	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 222
 223	/* Windows Mixed Reality Headsets */
 224	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 225	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 226	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 227	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 
 
 230
 231	/* Sony PlayStation VR Headset */
 232	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 233
 234	/* Sensics VR Headsets */
 235	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 236
 237	/* OSVR HDK and HDK2 VR Headsets */
 238	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 239	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 240};
 241
 242/*
 243 * Autogenerated from the DMT spec.
 244 * This table is copied from xfree86/modes/xf86EdidModes.c.
 245 */
 246static const struct drm_display_mode drm_dmt_modes[] = {
 247	/* 0x01 - 640x350@85Hz */
 248	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 249		   736, 832, 0, 350, 382, 385, 445, 0,
 250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 251	/* 0x02 - 640x400@85Hz */
 252	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 253		   736, 832, 0, 400, 401, 404, 445, 0,
 254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 255	/* 0x03 - 720x400@85Hz */
 256	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 257		   828, 936, 0, 400, 401, 404, 446, 0,
 258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 259	/* 0x04 - 640x480@60Hz */
 260	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 261		   752, 800, 0, 480, 490, 492, 525, 0,
 262		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 263	/* 0x05 - 640x480@72Hz */
 264	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 265		   704, 832, 0, 480, 489, 492, 520, 0,
 266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 267	/* 0x06 - 640x480@75Hz */
 268	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 269		   720, 840, 0, 480, 481, 484, 500, 0,
 270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 271	/* 0x07 - 640x480@85Hz */
 272	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 273		   752, 832, 0, 480, 481, 484, 509, 0,
 274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 275	/* 0x08 - 800x600@56Hz */
 276	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 277		   896, 1024, 0, 600, 601, 603, 625, 0,
 278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 279	/* 0x09 - 800x600@60Hz */
 280	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 281		   968, 1056, 0, 600, 601, 605, 628, 0,
 282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 283	/* 0x0a - 800x600@72Hz */
 284	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 285		   976, 1040, 0, 600, 637, 643, 666, 0,
 286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 287	/* 0x0b - 800x600@75Hz */
 288	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 289		   896, 1056, 0, 600, 601, 604, 625, 0,
 290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 291	/* 0x0c - 800x600@85Hz */
 292	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 293		   896, 1048, 0, 600, 601, 604, 631, 0,
 294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 295	/* 0x0d - 800x600@120Hz RB */
 296	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 297		   880, 960, 0, 600, 603, 607, 636, 0,
 298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 299	/* 0x0e - 848x480@60Hz */
 300	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 301		   976, 1088, 0, 480, 486, 494, 517, 0,
 302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 303	/* 0x0f - 1024x768@43Hz, interlace */
 304	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 305		   1208, 1264, 0, 768, 768, 776, 817, 0,
 306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 307		   DRM_MODE_FLAG_INTERLACE) },
 308	/* 0x10 - 1024x768@60Hz */
 309	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 310		   1184, 1344, 0, 768, 771, 777, 806, 0,
 311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 312	/* 0x11 - 1024x768@70Hz */
 313	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 314		   1184, 1328, 0, 768, 771, 777, 806, 0,
 315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 316	/* 0x12 - 1024x768@75Hz */
 317	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 318		   1136, 1312, 0, 768, 769, 772, 800, 0,
 319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 320	/* 0x13 - 1024x768@85Hz */
 321	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 322		   1168, 1376, 0, 768, 769, 772, 808, 0,
 323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 324	/* 0x14 - 1024x768@120Hz RB */
 325	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 326		   1104, 1184, 0, 768, 771, 775, 813, 0,
 327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 328	/* 0x15 - 1152x864@75Hz */
 329	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 330		   1344, 1600, 0, 864, 865, 868, 900, 0,
 331		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 332	/* 0x55 - 1280x720@60Hz */
 333	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 334		   1430, 1650, 0, 720, 725, 730, 750, 0,
 335		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 336	/* 0x16 - 1280x768@60Hz RB */
 337	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 338		   1360, 1440, 0, 768, 771, 778, 790, 0,
 339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 340	/* 0x17 - 1280x768@60Hz */
 341	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 342		   1472, 1664, 0, 768, 771, 778, 798, 0,
 343		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 344	/* 0x18 - 1280x768@75Hz */
 345	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 346		   1488, 1696, 0, 768, 771, 778, 805, 0,
 347		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 348	/* 0x19 - 1280x768@85Hz */
 349	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 350		   1496, 1712, 0, 768, 771, 778, 809, 0,
 351		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 352	/* 0x1a - 1280x768@120Hz RB */
 353	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 354		   1360, 1440, 0, 768, 771, 778, 813, 0,
 355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 356	/* 0x1b - 1280x800@60Hz RB */
 357	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 358		   1360, 1440, 0, 800, 803, 809, 823, 0,
 359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 360	/* 0x1c - 1280x800@60Hz */
 361	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 362		   1480, 1680, 0, 800, 803, 809, 831, 0,
 363		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 364	/* 0x1d - 1280x800@75Hz */
 365	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 366		   1488, 1696, 0, 800, 803, 809, 838, 0,
 367		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 368	/* 0x1e - 1280x800@85Hz */
 369	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 370		   1496, 1712, 0, 800, 803, 809, 843, 0,
 371		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 372	/* 0x1f - 1280x800@120Hz RB */
 373	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 374		   1360, 1440, 0, 800, 803, 809, 847, 0,
 375		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 376	/* 0x20 - 1280x960@60Hz */
 377	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 378		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 380	/* 0x21 - 1280x960@85Hz */
 381	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 382		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 384	/* 0x22 - 1280x960@120Hz RB */
 385	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 386		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 388	/* 0x23 - 1280x1024@60Hz */
 389	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 390		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 391		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 392	/* 0x24 - 1280x1024@75Hz */
 393	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 394		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 396	/* 0x25 - 1280x1024@85Hz */
 397	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 398		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 400	/* 0x26 - 1280x1024@120Hz RB */
 401	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 402		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 404	/* 0x27 - 1360x768@60Hz */
 405	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 406		   1536, 1792, 0, 768, 771, 777, 795, 0,
 407		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 408	/* 0x28 - 1360x768@120Hz RB */
 409	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 410		   1440, 1520, 0, 768, 771, 776, 813, 0,
 411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 412	/* 0x51 - 1366x768@60Hz */
 413	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 414		   1579, 1792, 0, 768, 771, 774, 798, 0,
 415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 416	/* 0x56 - 1366x768@60Hz */
 417	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 418		   1436, 1500, 0, 768, 769, 772, 800, 0,
 419		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 420	/* 0x29 - 1400x1050@60Hz RB */
 421	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 422		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 423		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 424	/* 0x2a - 1400x1050@60Hz */
 425	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 426		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 428	/* 0x2b - 1400x1050@75Hz */
 429	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 430		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 431		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 432	/* 0x2c - 1400x1050@85Hz */
 433	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 434		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 436	/* 0x2d - 1400x1050@120Hz RB */
 437	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 438		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 439		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 440	/* 0x2e - 1440x900@60Hz RB */
 441	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 442		   1520, 1600, 0, 900, 903, 909, 926, 0,
 443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 444	/* 0x2f - 1440x900@60Hz */
 445	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 446		   1672, 1904, 0, 900, 903, 909, 934, 0,
 447		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 448	/* 0x30 - 1440x900@75Hz */
 449	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 450		   1688, 1936, 0, 900, 903, 909, 942, 0,
 451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 452	/* 0x31 - 1440x900@85Hz */
 453	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 454		   1696, 1952, 0, 900, 903, 909, 948, 0,
 455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 456	/* 0x32 - 1440x900@120Hz RB */
 457	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 458		   1520, 1600, 0, 900, 903, 909, 953, 0,
 459		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 460	/* 0x53 - 1600x900@60Hz */
 461	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 462		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 464	/* 0x33 - 1600x1200@60Hz */
 465	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 466		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 468	/* 0x34 - 1600x1200@65Hz */
 469	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 470		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 472	/* 0x35 - 1600x1200@70Hz */
 473	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 474		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 476	/* 0x36 - 1600x1200@75Hz */
 477	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 478		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 479		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 480	/* 0x37 - 1600x1200@85Hz */
 481	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 482		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 483		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 484	/* 0x38 - 1600x1200@120Hz RB */
 485	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 486		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 488	/* 0x39 - 1680x1050@60Hz RB */
 489	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 490		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 492	/* 0x3a - 1680x1050@60Hz */
 493	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 494		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 495		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 496	/* 0x3b - 1680x1050@75Hz */
 497	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 498		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 500	/* 0x3c - 1680x1050@85Hz */
 501	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 502		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 504	/* 0x3d - 1680x1050@120Hz RB */
 505	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 506		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 508	/* 0x3e - 1792x1344@60Hz */
 509	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 510		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 512	/* 0x3f - 1792x1344@75Hz */
 513	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 514		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 515		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 516	/* 0x40 - 1792x1344@120Hz RB */
 517	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 518		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 520	/* 0x41 - 1856x1392@60Hz */
 521	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 522		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 524	/* 0x42 - 1856x1392@75Hz */
 525	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 526		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 527		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 528	/* 0x43 - 1856x1392@120Hz RB */
 529	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 530		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 532	/* 0x52 - 1920x1080@60Hz */
 533	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 534		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 536	/* 0x44 - 1920x1200@60Hz RB */
 537	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 538		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 539		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 540	/* 0x45 - 1920x1200@60Hz */
 541	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 542		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 543		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 544	/* 0x46 - 1920x1200@75Hz */
 545	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 546		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 548	/* 0x47 - 1920x1200@85Hz */
 549	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 550		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 551		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 552	/* 0x48 - 1920x1200@120Hz RB */
 553	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 554		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 555		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 556	/* 0x49 - 1920x1440@60Hz */
 557	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 558		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 559		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 560	/* 0x4a - 1920x1440@75Hz */
 561	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 562		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 563		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 564	/* 0x4b - 1920x1440@120Hz RB */
 565	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 566		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 567		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 568	/* 0x54 - 2048x1152@60Hz */
 569	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 570		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 572	/* 0x4c - 2560x1600@60Hz RB */
 573	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 574		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 575		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 576	/* 0x4d - 2560x1600@60Hz */
 577	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 578		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 579		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 580	/* 0x4e - 2560x1600@75Hz */
 581	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 582		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 583		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 584	/* 0x4f - 2560x1600@85Hz */
 585	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 586		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 587		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 588	/* 0x50 - 2560x1600@120Hz RB */
 589	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 590		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 592	/* 0x57 - 4096x2160@60Hz RB */
 593	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 594		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 596	/* 0x58 - 4096x2160@59.94Hz RB */
 597	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 598		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 599		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 600};
 601
 602/*
 603 * These more or less come from the DMT spec.  The 720x400 modes are
 604 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 605 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 607 * mode.
 608 *
 609 * The DMT modes have been fact-checked; the rest are mild guesses.
 610 */
 611static const struct drm_display_mode edid_est_modes[] = {
 612	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 613		   968, 1056, 0, 600, 601, 605, 628, 0,
 614		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 615	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 616		   896, 1024, 0, 600, 601, 603,  625, 0,
 617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 619		   720, 840, 0, 480, 481, 484, 500, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 622		   704,  832, 0, 480, 489, 492, 520, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 624	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 625		   768,  864, 0, 480, 483, 486, 525, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 628		   752, 800, 0, 480, 490, 492, 525, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 630	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 631		   846, 900, 0, 400, 421, 423,  449, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 633	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 634		   846,  900, 0, 400, 412, 414, 449, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 636	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 637		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 638		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 640		   1136, 1312, 0,  768, 769, 772, 800, 0,
 641		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 642	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 643		   1184, 1328, 0,  768, 771, 777, 806, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 645	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 646		   1184, 1344, 0,  768, 771, 777, 806, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 648	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 649		   1208, 1264, 0, 768, 768, 776, 817, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 651	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 652		   928, 1152, 0, 624, 625, 628, 667, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 654	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 655		   896, 1056, 0, 600, 601, 604,  625, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 657	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 658		   976, 1040, 0, 600, 637, 643, 666, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 660	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 661		   1344, 1600, 0,  864, 865, 868, 900, 0,
 662		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 663};
 664
 665struct minimode {
 666	short w;
 667	short h;
 668	short r;
 669	short rb;
 670};
 671
 672static const struct minimode est3_modes[] = {
 673	/* byte 6 */
 674	{ 640, 350, 85, 0 },
 675	{ 640, 400, 85, 0 },
 676	{ 720, 400, 85, 0 },
 677	{ 640, 480, 85, 0 },
 678	{ 848, 480, 60, 0 },
 679	{ 800, 600, 85, 0 },
 680	{ 1024, 768, 85, 0 },
 681	{ 1152, 864, 75, 0 },
 682	/* byte 7 */
 683	{ 1280, 768, 60, 1 },
 684	{ 1280, 768, 60, 0 },
 685	{ 1280, 768, 75, 0 },
 686	{ 1280, 768, 85, 0 },
 687	{ 1280, 960, 60, 0 },
 688	{ 1280, 960, 85, 0 },
 689	{ 1280, 1024, 60, 0 },
 690	{ 1280, 1024, 85, 0 },
 691	/* byte 8 */
 692	{ 1360, 768, 60, 0 },
 693	{ 1440, 900, 60, 1 },
 694	{ 1440, 900, 60, 0 },
 695	{ 1440, 900, 75, 0 },
 696	{ 1440, 900, 85, 0 },
 697	{ 1400, 1050, 60, 1 },
 698	{ 1400, 1050, 60, 0 },
 699	{ 1400, 1050, 75, 0 },
 700	/* byte 9 */
 701	{ 1400, 1050, 85, 0 },
 702	{ 1680, 1050, 60, 1 },
 703	{ 1680, 1050, 60, 0 },
 704	{ 1680, 1050, 75, 0 },
 705	{ 1680, 1050, 85, 0 },
 706	{ 1600, 1200, 60, 0 },
 707	{ 1600, 1200, 65, 0 },
 708	{ 1600, 1200, 70, 0 },
 709	/* byte 10 */
 710	{ 1600, 1200, 75, 0 },
 711	{ 1600, 1200, 85, 0 },
 712	{ 1792, 1344, 60, 0 },
 713	{ 1792, 1344, 75, 0 },
 714	{ 1856, 1392, 60, 0 },
 715	{ 1856, 1392, 75, 0 },
 716	{ 1920, 1200, 60, 1 },
 717	{ 1920, 1200, 60, 0 },
 718	/* byte 11 */
 719	{ 1920, 1200, 75, 0 },
 720	{ 1920, 1200, 85, 0 },
 721	{ 1920, 1440, 60, 0 },
 722	{ 1920, 1440, 75, 0 },
 723};
 724
 725static const struct minimode extra_modes[] = {
 726	{ 1024, 576,  60, 0 },
 727	{ 1366, 768,  60, 0 },
 728	{ 1600, 900,  60, 0 },
 729	{ 1680, 945,  60, 0 },
 730	{ 1920, 1080, 60, 0 },
 731	{ 2048, 1152, 60, 0 },
 732	{ 2048, 1536, 60, 0 },
 733};
 734
 735/*
 736 * From CEA/CTA-861 spec.
 737 *
 738 * Do not access directly, instead always use cea_mode_for_vic().
 739 */
 740static const struct drm_display_mode edid_cea_modes_1[] = {
 741	/* 1 - 640x480@60Hz 4:3 */
 742	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 743		   752, 800, 0, 480, 490, 492, 525, 0,
 744		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 745	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 746	/* 2 - 720x480@60Hz 4:3 */
 747	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 748		   798, 858, 0, 480, 489, 495, 525, 0,
 749		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 751	/* 3 - 720x480@60Hz 16:9 */
 752	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 753		   798, 858, 0, 480, 489, 495, 525, 0,
 754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 755	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 756	/* 4 - 1280x720@60Hz 16:9 */
 757	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 758		   1430, 1650, 0, 720, 725, 730, 750, 0,
 759		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 5 - 1920x1080i@60Hz 16:9 */
 762	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 763		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 764		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 767	/* 6 - 720(1440)x480i@60Hz 4:3 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 773	/* 7 - 720(1440)x480i@60Hz 16:9 */
 774	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 480, 488, 494, 525, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 779	/* 8 - 720(1440)x240@60Hz 4:3 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 785	/* 9 - 720(1440)x240@60Hz 16:9 */
 786	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 787		   801, 858, 0, 240, 244, 247, 262, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_DBLCLK),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 10 - 2880x480i@60Hz 4:3 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 797	/* 11 - 2880x480i@60Hz 16:9 */
 798	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 480, 488, 494, 525, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 801		   DRM_MODE_FLAG_INTERLACE),
 802	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 12 - 2880x240@60Hz 4:3 */
 804	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 805		   3204, 3432, 0, 240, 244, 247, 262, 0,
 806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 807	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 808	/* 13 - 2880x240@60Hz 16:9 */
 809	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 810		   3204, 3432, 0, 240, 244, 247, 262, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 813	/* 14 - 1440x480@60Hz 4:3 */
 814	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 815		   1596, 1716, 0, 480, 489, 495, 525, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 818	/* 15 - 1440x480@60Hz 16:9 */
 819	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 820		   1596, 1716, 0, 480, 489, 495, 525, 0,
 821		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 822	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 16 - 1920x1080@60Hz 16:9 */
 824	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 825		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 827	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 828	/* 17 - 720x576@50Hz 4:3 */
 829	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 830		   796, 864, 0, 576, 581, 586, 625, 0,
 831		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 833	/* 18 - 720x576@50Hz 16:9 */
 834	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 835		   796, 864, 0, 576, 581, 586, 625, 0,
 836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 837	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 838	/* 19 - 1280x720@50Hz 16:9 */
 839	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 840		   1760, 1980, 0, 720, 725, 730, 750, 0,
 841		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 20 - 1920x1080i@50Hz 16:9 */
 844	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 845		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 846		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 849	/* 21 - 720(1440)x576i@50Hz 4:3 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 855	/* 22 - 720(1440)x576i@50Hz 16:9 */
 856	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 576, 580, 586, 625, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 861	/* 23 - 720(1440)x288@50Hz 4:3 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 867	/* 24 - 720(1440)x288@50Hz 16:9 */
 868	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 869		   795, 864, 0, 288, 290, 293, 312, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_DBLCLK),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 873	/* 25 - 2880x576i@50Hz 4:3 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 879	/* 26 - 2880x576i@50Hz 16:9 */
 880	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 576, 580, 586, 625, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 883		   DRM_MODE_FLAG_INTERLACE),
 884	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 27 - 2880x288@50Hz 4:3 */
 886	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 887		   3180, 3456, 0, 288, 290, 293, 312, 0,
 888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 889	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 890	/* 28 - 2880x288@50Hz 16:9 */
 891	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 892		   3180, 3456, 0, 288, 290, 293, 312, 0,
 893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 894	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 29 - 1440x576@50Hz 4:3 */
 896	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 897		   1592, 1728, 0, 576, 581, 586, 625, 0,
 898		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 899	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 900	/* 30 - 1440x576@50Hz 16:9 */
 901	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 902		   1592, 1728, 0, 576, 581, 586, 625, 0,
 903		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 904	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 31 - 1920x1080@50Hz 16:9 */
 906	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 907		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 908		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 909	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 910	/* 32 - 1920x1080@24Hz 16:9 */
 911	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 912		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 913		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 914	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 33 - 1920x1080@25Hz 16:9 */
 916	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 917		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 918		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 919	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 920	/* 34 - 1920x1080@30Hz 16:9 */
 921	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 922		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 923		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 924	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 35 - 2880x480@60Hz 4:3 */
 926	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 927		   3192, 3432, 0, 480, 489, 495, 525, 0,
 928		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 929	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 930	/* 36 - 2880x480@60Hz 16:9 */
 931	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 932		   3192, 3432, 0, 480, 489, 495, 525, 0,
 933		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 935	/* 37 - 2880x576@50Hz 4:3 */
 936	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 937		   3184, 3456, 0, 576, 581, 586, 625, 0,
 938		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 940	/* 38 - 2880x576@50Hz 16:9 */
 941	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 942		   3184, 3456, 0, 576, 581, 586, 625, 0,
 943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 39 - 1920x1080i@50Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 947		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 40 - 1920x1080i@100Hz 16:9 */
 952	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 953		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 955		   DRM_MODE_FLAG_INTERLACE),
 956	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 957	/* 41 - 1280x720@100Hz 16:9 */
 958	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 959		   1760, 1980, 0, 720, 725, 730, 750, 0,
 960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 962	/* 42 - 720x576@100Hz 4:3 */
 963	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 964		   796, 864, 0, 576, 581, 586, 625, 0,
 965		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 966	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 967	/* 43 - 720x576@100Hz 16:9 */
 968	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 969		   796, 864, 0, 576, 581, 586, 625, 0,
 970		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 972	/* 44 - 720(1440)x576i@100Hz 4:3 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 978	/* 45 - 720(1440)x576i@100Hz 16:9 */
 979	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 980		   795, 864, 0, 576, 580, 586, 625, 0,
 981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 46 - 1920x1080i@120Hz 16:9 */
 985	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 986		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 988		   DRM_MODE_FLAG_INTERLACE),
 989	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 990	/* 47 - 1280x720@120Hz 16:9 */
 991	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 992		   1430, 1650, 0, 720, 725, 730, 750, 0,
 993		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 995	/* 48 - 720x480@120Hz 4:3 */
 996	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 997		   798, 858, 0, 480, 489, 495, 525, 0,
 998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 49 - 720x480@120Hz 16:9 */
1001	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002		   798, 858, 0, 480, 489, 495, 525, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013		   801, 858, 0, 480, 488, 494, 525, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 52 - 720x576@200Hz 4:3 */
1018	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019		   796, 864, 0, 576, 581, 586, 625, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 53 - 720x576@200Hz 16:9 */
1023	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024		   796, 864, 0, 576, 581, 586, 625, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035		   795, 864, 0, 576, 580, 586, 625, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 56 - 720x480@240Hz 4:3 */
1040	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041		   798, 858, 0, 480, 489, 495, 525, 0,
1042		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044	/* 57 - 720x480@240Hz 16:9 */
1045	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046		   798, 858, 0, 480, 489, 495, 525, 0,
1047		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057		   801, 858, 0, 480, 488, 494, 525, 0,
1058		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 60 - 1280x720@24Hz 16:9 */
1062	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 61 - 1280x720@25Hz 16:9 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071	/* 62 - 1280x720@30Hz 16:9 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076	/* 63 - 1920x1080@120Hz 16:9 */
1077	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081	/* 64 - 1920x1080@100Hz 16:9 */
1082	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086	/* 65 - 1280x720@24Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 66 - 1280x720@25Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 67 - 1280x720@30Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 68 - 1280x720@50Hz 64:27 */
1102	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 69 - 1280x720@60Hz 64:27 */
1107	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 70 - 1280x720@100Hz 64:27 */
1112	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 71 - 1280x720@120Hz 64:27 */
1117	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 72 - 1920x1080@24Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 73 - 1920x1080@25Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 74 - 1920x1080@30Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 75 - 1920x1080@50Hz 64:27 */
1137	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 76 - 1920x1080@60Hz 64:27 */
1142	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 77 - 1920x1080@100Hz 64:27 */
1147	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 78 - 1920x1080@120Hz 64:27 */
1152	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 79 - 1680x720@24Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 80 - 1680x720@25Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 81 - 1680x720@30Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 82 - 1680x720@50Hz 64:27 */
1172	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 83 - 1680x720@60Hz 64:27 */
1177	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 84 - 1680x720@100Hz 64:27 */
1182	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 85 - 1680x720@120Hz 64:27 */
1187	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 86 - 2560x1080@24Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 87 - 2560x1080@25Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 88 - 2560x1080@30Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 89 - 2560x1080@50Hz 64:27 */
1207	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211	/* 90 - 2560x1080@60Hz 64:27 */
1212	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216	/* 91 - 2560x1080@100Hz 64:27 */
1217	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221	/* 92 - 2560x1080@120Hz 64:27 */
1222	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226	/* 93 - 3840x2160@24Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 94 - 3840x2160@25Hz 16:9 */
1232	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236	/* 95 - 3840x2160@30Hz 16:9 */
1237	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241	/* 96 - 3840x2160@50Hz 16:9 */
1242	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246	/* 97 - 3840x2160@60Hz 16:9 */
1247	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251	/* 98 - 4096x2160@24Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 99 - 4096x2160@25Hz 256:135 */
1257	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261	/* 100 - 4096x2160@30Hz 256:135 */
1262	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266	/* 101 - 4096x2160@50Hz 256:135 */
1267	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271	/* 102 - 4096x2160@60Hz 256:135 */
1272	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276	/* 103 - 3840x2160@24Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281	/* 104 - 3840x2160@25Hz 64:27 */
1282	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286	/* 105 - 3840x2160@30Hz 64:27 */
1287	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291	/* 106 - 3840x2160@50Hz 64:27 */
1292	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296	/* 107 - 3840x2160@60Hz 64:27 */
1297	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301	/* 108 - 1280x720@48Hz 16:9 */
1302	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306	/* 109 - 1280x720@48Hz 64:27 */
1307	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311	/* 110 - 1680x720@48Hz 64:27 */
1312	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316	/* 111 - 1920x1080@48Hz 16:9 */
1317	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321	/* 112 - 1920x1080@48Hz 64:27 */
1322	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326	/* 113 - 2560x1080@48Hz 64:27 */
1327	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331	/* 114 - 3840x2160@48Hz 16:9 */
1332	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336	/* 115 - 4096x2160@48Hz 256:135 */
1337	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341	/* 116 - 3840x2160@48Hz 64:27 */
1342	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346	/* 117 - 3840x2160@100Hz 16:9 */
1347	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351	/* 118 - 3840x2160@120Hz 16:9 */
1352	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356	/* 119 - 3840x2160@100Hz 64:27 */
1357	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361	/* 120 - 3840x2160@120Hz 64:27 */
1362	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366	/* 121 - 5120x2160@24Hz 64:27 */
1367	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371	/* 122 - 5120x2160@25Hz 64:27 */
1372	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376	/* 123 - 5120x2160@30Hz 64:27 */
1377	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381	/* 124 - 5120x2160@48Hz 64:27 */
1382	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386	/* 125 - 5120x2160@50Hz 64:27 */
1387	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391	/* 126 - 5120x2160@60Hz 64:27 */
1392	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396	/* 127 - 5120x2160@100Hz 64:27 */
1397	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409	/* 193 - 5120x2160@120Hz 64:27 */
1410	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414	/* 194 - 7680x4320@24Hz 16:9 */
1415	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419	/* 195 - 7680x4320@25Hz 16:9 */
1420	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424	/* 196 - 7680x4320@30Hz 16:9 */
1425	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429	/* 197 - 7680x4320@48Hz 16:9 */
1430	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434	/* 198 - 7680x4320@50Hz 16:9 */
1435	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439	/* 199 - 7680x4320@60Hz 16:9 */
1440	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444	/* 200 - 7680x4320@100Hz 16:9 */
1445	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449	/* 201 - 7680x4320@120Hz 16:9 */
1450	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454	/* 202 - 7680x4320@24Hz 64:27 */
1455	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459	/* 203 - 7680x4320@25Hz 64:27 */
1460	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464	/* 204 - 7680x4320@30Hz 64:27 */
1465	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469	/* 205 - 7680x4320@48Hz 64:27 */
1470	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474	/* 206 - 7680x4320@50Hz 64:27 */
1475	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479	/* 207 - 7680x4320@60Hz 64:27 */
1480	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484	/* 208 - 7680x4320@100Hz 64:27 */
1485	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489	/* 209 - 7680x4320@120Hz 64:27 */
1490	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494	/* 210 - 10240x4320@24Hz 64:27 */
1495	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499	/* 211 - 10240x4320@25Hz 64:27 */
1500	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504	/* 212 - 10240x4320@30Hz 64:27 */
1505	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509	/* 213 - 10240x4320@48Hz 64:27 */
1510	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514	/* 214 - 10240x4320@50Hz 64:27 */
1515	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519	/* 215 - 10240x4320@60Hz 64:27 */
1520	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524	/* 216 - 10240x4320@100Hz 64:27 */
1525	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529	/* 217 - 10240x4320@120Hz 64:27 */
1530	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534	/* 218 - 4096x2160@100Hz 256:135 */
1535	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539	/* 219 - 4096x2160@120Hz 256:135 */
1540	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550	/* 0 - dummy, VICs start at 1 */
1551	{ },
1552	/* 1 - 3840x2160@30Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4016, 4104, 4400, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 2 - 3840x2160@25Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 4896, 4984, 5280, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 3 - 3840x2160@24Hz */
1565	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   3840, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570	/* 4 - 4096x2160@24Hz (SMPTE) */
1571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572		   4096, 5116, 5204, 5500, 0,
1573		   2160, 2168, 2178, 2250, 0,
1574		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584	/* Size allocated for edid */
1585	size_t size;
1586	const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595	return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600	return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605	return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610	return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615	return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622	return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627	return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633	int num_blocks;
1634
1635	/* Starting point */
1636	num_blocks = edid_block_count(drm_edid->edid);
1637
1638	/* HF-EEODB override */
1639	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640		int eeodb;
1641
1642		/*
1643		 * Note: HF-EEODB may specify a smaller extension count than the
1644		 * regular one. Unlike in buffer allocation, here we can use it.
1645		 */
1646		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647		if (eeodb)
1648			num_blocks = eeodb;
1649	}
1650
1651	return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657	/* Limit by allocated size */
1658	return min(__drm_edid_block_count(drm_edid),
1659		   (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665	return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670	return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674						 int index)
1675{
1676	return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684						   const struct edid *edid)
1685{
1686	if (!edid)
1687		return NULL;
1688
1689	memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691	drm_edid->edid = edid;
1692	drm_edid->size = edid_size(edid);
1693
1694	return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 *         // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710	const struct drm_edid *drm_edid;
1711
1712	/* Current block index. */
1713	int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717				struct drm_edid_iter *iter)
1718{
1719	memset(iter, 0, sizeof(*iter));
1720
1721	iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726	const void *block = NULL;
1727
1728	if (!iter->drm_edid)
1729		return NULL;
1730
1731	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734	return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter)			\
1738	while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742	memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751	memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764	const struct edid *edid = _edid;
1765	int i, score = 0;
1766
1767	for (i = 0; i < sizeof(edid_header); i++) {
1768		if (edid->header[i] == edid_header[i])
1769			score++;
1770	}
1771
1772	return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
 
 
1782{
1783	const u8 *block = _block;
1784	int i;
1785	u8 csum = 0, crc = 0;
1786
1787	for (i = 0; i < EDID_LENGTH - 1; i++)
1788		csum += block[i];
1789
1790	crc = 0x100 - csum;
1791
1792	return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797	const struct edid *block = _block;
1798
1799	return block->checksum;
 
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804	const u8 *block = _block;
 
1805
1806	return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811	return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823	int edid1_len, edid2_len;
1824	bool edid1_present = edid1 != NULL;
1825	bool edid2_present = edid2 != NULL;
1826
1827	if (edid1_present != edid2_present)
1828		return false;
1829
1830	if (edid1) {
1831		edid1_len = edid_size(edid1);
1832		edid2_len = edid_size(edid2);
1833
1834		if (edid1_len != edid2_len)
1835			return false;
1836
1837		if (memcmp(edid1, edid2, edid1_len))
1838			return false;
1839	}
1840
1841	return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846	EDID_BLOCK_OK = 0,
1847	EDID_BLOCK_READ_FAIL,
1848	EDID_BLOCK_NULL,
1849	EDID_BLOCK_ZERO,
1850	EDID_BLOCK_HEADER_CORRUPT,
1851	EDID_BLOCK_HEADER_REPAIR,
1852	EDID_BLOCK_HEADER_FIXED,
1853	EDID_BLOCK_CHECKSUM,
1854	EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858					       bool is_base_block)
1859{
1860	const struct edid *block = _block;
1861
1862	if (!block)
1863		return EDID_BLOCK_NULL;
1864
1865	if (is_base_block) {
1866		int score = drm_edid_header_is_valid(block);
1867
1868		if (score < clamp(edid_fixup, 0, 8)) {
1869			if (edid_block_is_zero(block))
1870				return EDID_BLOCK_ZERO;
1871			else
1872				return EDID_BLOCK_HEADER_CORRUPT;
1873		}
1874
1875		if (score < 8)
1876			return EDID_BLOCK_HEADER_REPAIR;
1877	}
1878
1879	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880		if (edid_block_is_zero(block))
1881			return EDID_BLOCK_ZERO;
1882		else
1883			return EDID_BLOCK_CHECKSUM;
1884	}
1885
1886	if (is_base_block) {
1887		if (block->version != 1)
1888			return EDID_BLOCK_VERSION;
1889	}
1890
1891	return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896	return status == EDID_BLOCK_OK ||
1897		status == EDID_BLOCK_HEADER_FIXED ||
1898		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903	return edid_block_status_valid(edid_block_check(block, base),
1904				       edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908				    const struct edid *block,
1909				    int block_num)
1910{
1911	switch (status) {
1912	case EDID_BLOCK_OK:
1913		break;
1914	case EDID_BLOCK_READ_FAIL:
1915		pr_debug("EDID block %d read failed\n", block_num);
1916		break;
1917	case EDID_BLOCK_NULL:
1918		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919		break;
1920	case EDID_BLOCK_ZERO:
1921		pr_notice("EDID block %d is all zeroes\n", block_num);
1922		break;
1923	case EDID_BLOCK_HEADER_CORRUPT:
1924		pr_notice("EDID has corrupt header\n");
1925		break;
1926	case EDID_BLOCK_HEADER_REPAIR:
1927		pr_debug("EDID corrupt header needs repair\n");
1928		break;
1929	case EDID_BLOCK_HEADER_FIXED:
1930		pr_debug("EDID corrupt header fixed\n");
1931		break;
1932	case EDID_BLOCK_CHECKSUM:
1933		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935				 block_num, edid_block_tag(block),
1936				 edid_block_compute_checksum(block));
1937		} else {
1938			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939				  block_num, edid_block_tag(block),
1940				  edid_block_compute_checksum(block));
1941		}
1942		break;
1943	case EDID_BLOCK_VERSION:
1944		pr_notice("EDID has major version %d, instead of 1\n",
1945			  block->version);
1946		break;
1947	default:
1948		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949		     block_num, status);
1950		break;
1951	}
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956	enum edid_block_status status;
1957	char prefix[20];
1958
1959	status = edid_block_check(block, block_num == 0);
1960	if (status == EDID_BLOCK_ZERO)
1961		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964	else
1965		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968		       block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984			  bool *edid_corrupt)
1985{
1986	struct edid *block = (struct edid *)_block;
1987	enum edid_block_status status;
1988	bool is_base_block = block_num == 0;
1989	bool valid;
1990
1991	if (WARN_ON(!block))
1992		return false;
1993
1994	status = edid_block_check(block, is_base_block);
1995	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997		edid_header_fix(block);
1998
1999		/* Retry with fixed header, update status if that worked. */
2000		status = edid_block_check(block, is_base_block);
2001		if (status == EDID_BLOCK_OK)
2002			status = EDID_BLOCK_HEADER_FIXED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	}
2004
2005	if (edid_corrupt) {
2006		/*
2007		 * Unknown major version isn't corrupt but we can't use it. Only
2008		 * the base block can reset edid_corrupt to false.
2009		 */
2010		if (is_base_block &&
2011		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012			*edid_corrupt = false;
2013		else if (status != EDID_BLOCK_OK)
2014			*edid_corrupt = true;
 
 
 
 
 
 
 
 
 
 
 
2015	}
2016
2017	edid_block_status_print(status, block, block_num);
 
 
 
 
 
 
2018
2019	/* Determine whether we can use this block with this status. */
2020	valid = edid_block_status_valid(status, edid_block_tag(block));
 
2021
2022	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023		pr_notice("Raw EDID:\n");
2024		edid_block_dump(KERN_NOTICE, block, block_num);
2025	}
2026
2027	return valid;
 
 
 
 
 
 
 
 
 
 
 
 
 
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041	int i;
 
2042
2043	if (!edid)
2044		return false;
2045
2046	for (i = 0; i < edid_block_count(edid); i++) {
2047		void *block = (void *)edid_block_data(edid, i);
2048
2049		if (!drm_edid_block_valid(block, i, true, NULL))
2050			return false;
2051	}
2052
2053	return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068	int i;
2069
2070	if (!drm_edid)
2071		return false;
2072
2073	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074		return false;
2075
2076	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077		const void *block = drm_edid_block_data(drm_edid, i);
2078
2079		if (!edid_block_valid(block, i == 0))
2080			return false;
2081	}
2082
2083	return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088					       size_t *alloc_size)
2089{
2090	struct edid *new;
2091	int i, valid_blocks = 0;
2092
2093	/*
2094	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095	 * back to regular extension count here. We don't want to start
2096	 * modifying the HF-EEODB extension too.
2097	 */
2098	for (i = 0; i < edid_block_count(edid); i++) {
2099		const void *src_block = edid_block_data(edid, i);
2100
2101		if (edid_block_valid(src_block, i == 0)) {
2102			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104			memmove(dst_block, src_block, EDID_LENGTH);
2105			valid_blocks++;
2106		}
2107	}
2108
2109	/* We already trusted the base block to be valid here... */
2110	if (WARN_ON(!valid_blocks)) {
2111		kfree(edid);
2112		return NULL;
2113	}
2114
2115	edid->extensions = valid_blocks - 1;
2116	edid->checksum = edid_block_compute_checksum(edid);
2117
2118	*alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121	if (!new)
2122		kfree(edid);
2123
2124	return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142	struct i2c_adapter *adapter = data;
2143	unsigned char start = block * EDID_LENGTH;
2144	unsigned char segment = block >> 1;
2145	unsigned char xfers = segment ? 3 : 2;
2146	int ret, retries = 5;
2147
2148	/*
2149	 * The core I2C driver will automatically retry the transfer if the
2150	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151	 * are susceptible to errors under a heavily loaded machine and
2152	 * generate spurious NAKs and timeouts. Retrying the transfer
2153	 * of the individual block a few times seems to overcome this.
2154	 */
2155	do {
2156		struct i2c_msg msgs[] = {
2157			{
2158				.addr	= DDC_SEGMENT_ADDR,
2159				.flags	= 0,
2160				.len	= 1,
2161				.buf	= &segment,
2162			}, {
2163				.addr	= DDC_ADDR,
2164				.flags	= 0,
2165				.len	= 1,
2166				.buf	= &start,
2167			}, {
2168				.addr	= DDC_ADDR,
2169				.flags	= I2C_M_RD,
2170				.len	= len,
2171				.buf	= buf,
2172			}
2173		};
2174
2175		/*
2176		 * Avoid sending the segment addr to not upset non-compliant
2177		 * DDC monitors.
2178		 */
2179		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181		if (ret == -ENXIO) {
2182			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183					adapter->name);
2184			break;
2185		}
2186	} while (ret != xfers && --retries);
2187
2188	return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192			       const struct edid *edid, int num_blocks)
2193{
2194	int i;
2195	u8 last_block;
2196
2197	/*
2198	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200	 * of 0x7e in the EDID of the _index_ of the last block in the
2201	 * combined chunk of memory.
2202	 */
2203	last_block = edid->extensions;
2204
2205	/* Calculate real checksum for the last edid extension block data */
2206	if (last_block < num_blocks)
2207		connector->real_edid_checksum =
2208			edid_block_compute_checksum(edid + last_block);
2209
2210	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211		return;
2212
2213	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214		    connector->base.id, connector->name);
2215	for (i = 0; i < num_blocks; i++)
2216		edid_block_dump(KERN_DEBUG, edid + i, i);
 
 
 
 
 
 
 
 
 
 
 
 
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222	const struct drm_edid *override = NULL;
2223
2224	mutex_lock(&connector->edid_override_mutex);
2225
2226	if (connector->edid_override)
2227		override = drm_edid_dup(connector->edid_override);
2228
2229	mutex_unlock(&connector->edid_override_mutex);
2230
2231	if (!override)
2232		override = drm_edid_load_firmware(connector);
2233
2234	return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240	const struct drm_edid *drm_edid;
2241
2242	mutex_lock(&connector->edid_override_mutex);
2243
2244	drm_edid = connector->edid_override;
2245	if (drm_edid)
2246		seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248	mutex_unlock(&connector->edid_override_mutex);
2249
2250	return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255			  size_t size)
2256{
2257	const struct drm_edid *drm_edid;
2258
2259	drm_edid = drm_edid_alloc(edid, size);
2260	if (!drm_edid_valid(drm_edid)) {
2261		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262			    connector->base.id, connector->name);
2263		drm_edid_free(drm_edid);
2264		return -EINVAL;
2265	}
2266
2267	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268		    connector->base.id, connector->name);
2269
2270	mutex_lock(&connector->edid_override_mutex);
2271
2272	drm_edid_free(connector->edid_override);
2273	connector->edid_override = drm_edid;
2274
2275	mutex_unlock(&connector->edid_override_mutex);
2276
2277	return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284		    connector->base.id, connector->name);
2285
2286	mutex_lock(&connector->edid_override_mutex);
2287
2288	drm_edid_free(connector->edid_override);
2289	connector->edid_override = NULL;
2290
2291	mutex_unlock(&connector->edid_override_mutex);
2292
2293	return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309	const struct drm_edid *override;
2310	int num_modes = 0;
2311
2312	override = drm_edid_override_get(connector);
2313	if (override) {
2314		if (drm_edid_connector_update(connector, override) == 0)
2315			num_modes = drm_edid_connector_add_modes(connector);
2316
2317		drm_edid_free(override);
2318
2319		drm_dbg_kms(connector->dev,
2320			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321			    connector->base.id, connector->name, num_modes);
2322	}
2323
2324	return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331					      read_block_fn read_block,
2332					      void *context)
2333{
2334	enum edid_block_status status;
2335	bool is_base_block = block_num == 0;
2336	int try;
2337
2338	for (try = 0; try < 4; try++) {
2339		if (read_block(context, block, block_num, EDID_LENGTH))
2340			return EDID_BLOCK_READ_FAIL;
2341
2342		status = edid_block_check(block, is_base_block);
2343		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344			edid_header_fix(block);
2345
2346			/* Retry with fixed header, update status if that worked. */
2347			status = edid_block_check(block, is_base_block);
2348			if (status == EDID_BLOCK_OK)
2349				status = EDID_BLOCK_HEADER_FIXED;
2350		}
2351
2352		if (edid_block_status_valid(status, edid_block_tag(block)))
2353			break;
2354
2355		/* Fail early for unrepairable base block all zeros. */
2356		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357			break;
2358	}
2359
2360	return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364				     read_block_fn read_block, void *context,
2365				     size_t *size)
2366{
2367	enum edid_block_status status;
2368	int i, num_blocks, invalid_blocks = 0;
2369	const struct drm_edid *override;
2370	struct edid *edid, *new;
2371	size_t alloc_size = EDID_LENGTH;
2372
2373	override = drm_edid_override_get(connector);
2374	if (override) {
2375		alloc_size = override->size;
2376		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377		drm_edid_free(override);
2378		if (!edid)
2379			return NULL;
2380		goto ok;
2381	}
2382
2383	edid = kmalloc(alloc_size, GFP_KERNEL);
2384	if (!edid)
2385		return NULL;
2386
2387	status = edid_block_read(edid, 0, read_block, context);
2388
2389	edid_block_status_print(status, edid, 0);
2390
2391	if (status == EDID_BLOCK_READ_FAIL)
2392		goto fail;
2393
2394	/* FIXME: Clarify what a corrupt EDID actually means. */
2395	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396		connector->edid_corrupt = false;
2397	else
2398		connector->edid_corrupt = true;
2399
2400	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401		if (status == EDID_BLOCK_ZERO)
2402			connector->null_edid_counter++;
2403
2404		connector_bad_edid(connector, edid, 1);
2405		goto fail;
2406	}
2407
2408	if (!edid_extension_block_count(edid))
2409		goto ok;
2410
2411	alloc_size = edid_size(edid);
2412	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413	if (!new)
2414		goto fail;
2415	edid = new;
2416
2417	num_blocks = edid_block_count(edid);
2418	for (i = 1; i < num_blocks; i++) {
2419		void *block = (void *)edid_block_data(edid, i);
2420
2421		status = edid_block_read(block, i, read_block, context);
2422
2423		edid_block_status_print(status, block, i);
2424
2425		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426			if (status == EDID_BLOCK_READ_FAIL)
2427				goto fail;
2428			invalid_blocks++;
2429		} else if (i == 1) {
2430			/*
2431			 * If the first EDID extension is a CTA extension, and
2432			 * the first Data Block is HF-EEODB, override the
2433			 * extension block count.
2434			 *
2435			 * Note: HF-EEODB could specify a smaller extension
2436			 * count too, but we can't risk allocating a smaller
2437			 * amount.
2438			 */
2439			int eeodb = edid_hfeeodb_block_count(edid);
2440
2441			if (eeodb > num_blocks) {
2442				num_blocks = eeodb;
2443				alloc_size = edid_size_by_blocks(num_blocks);
2444				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445				if (!new)
2446					goto fail;
2447				edid = new;
2448			}
2449		}
2450	}
2451
2452	if (invalid_blocks) {
2453		connector_bad_edid(connector, edid, num_blocks);
2454
2455		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456	}
2457
2458ok:
2459	if (size)
2460		*size = alloc_size;
2461
2462	return edid;
2463
2464fail:
2465	kfree(edid);
2466	return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490			     read_block_fn read_block,
2491			     void *context)
2492{
2493	return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
 
 
 
 
 
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509	if (!drm_edid || !drm_edid->size)
2510		return NULL;
2511
2512	/*
2513	 * Do not return pointers where relying on EDID extension count would
2514	 * lead to buffer overflow.
2515	 */
2516	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2518
2519	return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
 
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526	struct drm_edid *drm_edid;
2527
2528	if (!edid || !size || size < EDID_LENGTH)
2529		return NULL;
 
 
 
 
2530
2531	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532	if (drm_edid) {
2533		drm_edid->edid = edid;
2534		drm_edid->size = size;
2535	}
2536
2537	return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556	const struct drm_edid *drm_edid;
2557
2558	if (!edid || !size || size < EDID_LENGTH)
2559		return NULL;
2560
2561	edid = kmemdup(edid, size, GFP_KERNEL);
2562	if (!edid)
2563		return NULL;
 
2564
2565	drm_edid = _drm_edid_alloc(edid, size);
2566	if (!drm_edid)
2567		kfree(edid);
2568
2569	return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583	if (!drm_edid)
2584		return NULL;
2585
2586	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596	if (!drm_edid)
2597		return;
2598
2599	kfree(drm_edid->edid);
2600	kfree(drm_edid);
 
 
 
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613	unsigned char out;
2614
2615	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible.  If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630			  struct i2c_adapter *adapter)
2631{
2632	struct edid *edid;
2633
2634	if (connector->force == DRM_FORCE_OFF)
2635		return NULL;
2636
2637	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638		return NULL;
2639
2640	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641	drm_connector_update_edid_property(connector, edid);
2642	return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670					    read_block_fn read_block,
2671					    void *context)
2672{
2673	const struct drm_edid *drm_edid;
2674	struct edid *edid;
2675	size_t size = 0;
2676
2677	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678	if (!edid)
2679		return NULL;
2680
2681	/* Sanity check for now */
2682	drm_WARN_ON(connector->dev, !size);
2683
2684	drm_edid = _drm_edid_alloc(edid, size);
2685	if (!drm_edid)
2686		kfree(edid);
2687
2688	return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711					 struct i2c_adapter *adapter)
2712{
2713	const struct drm_edid *drm_edid;
2714
2715	if (connector->force == DRM_FORCE_OFF)
2716		return NULL;
2717
2718	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719		return NULL;
2720
2721	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723	/* Note: Do *not* call connector updates here. */
2724
2725	return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746		return NULL;
2747
2748	return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754	/*
2755	 * We represent the ID as a 32-bit number so it can easily be compared
2756	 * with "==".
2757	 *
2758	 * NOTE that we deal with endianness differently for the top half
2759	 * of this ID than for the bottom half. The bottom half (the product
2760	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762	 * gets stored as big endian because that makes
2763	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764	 * to write (it's easier to extract the ASCII). It doesn't really
2765	 * matter, though, as long as the number here is unique.
2766	 */
2767	return (u32)edid->mfg_id[0] << 24   |
2768	       (u32)edid->mfg_id[1] << 16   |
2769	       (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 *         See the functions drm_edid_encode_panel_id() and
2792 *         drm_edid_decode_panel_id() for some details on the structure of this
2793 *         ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798	enum edid_block_status status;
2799	void *base_block;
2800	u32 panel_id = 0;
2801
2802	/*
2803	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804	 * the EDID then we'll just return 0.
2805	 */
2806
2807	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808	if (!base_block)
2809		return 0;
2810
2811	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813	edid_block_status_print(status, base_block, 0);
2814
2815	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816		panel_id = edid_extract_panel_id(base_block);
2817	else
2818		edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820	kfree(base_block);
2821
2822	return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838				     struct i2c_adapter *adapter)
2839{
2840	struct drm_device *dev = connector->dev;
2841	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842	struct edid *edid;
2843
2844	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845		return NULL;
2846
2847	vga_switcheroo_lock_ddc(pdev);
2848	edid = drm_get_edid(connector, adapter);
2849	vga_switcheroo_unlock_ddc(pdev);
2850
2851	return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867						struct i2c_adapter *adapter)
2868{
2869	struct drm_device *dev = connector->dev;
2870	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871	const struct drm_edid *drm_edid;
2872
2873	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874		return NULL;
2875
2876	vga_switcheroo_lock_ddc(pdev);
2877	drm_edid = drm_edid_read_ddc(connector, adapter);
2878	vga_switcheroo_unlock_ddc(pdev);
2879
2880	return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
 
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892	if (!edid)
2893		return NULL;
 
 
 
 
2894
2895	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910	const struct edid_quirk *quirk;
2911	int i;
2912
2913	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914		quirk = &edid_quirk_list[i];
2915		if (quirk->panel_id == panel_id)
 
 
2916			return quirk->quirks;
2917	}
2918
2919	return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
 
 
 
 
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
 
2930{
2931	const struct drm_display_info *info = &connector->display_info;
2932	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933	int target_refresh = 0;
2934	int cur_vrefresh, preferred_vrefresh;
2935
2936	if (list_empty(&connector->probed_modes))
2937		return;
2938
2939	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940		target_refresh = 60;
2941	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942		target_refresh = 75;
2943
2944	preferred_mode = list_first_entry(&connector->probed_modes,
2945					  struct drm_display_mode, head);
2946
2947	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950		if (cur_mode == preferred_mode)
2951			continue;
2952
2953		/* Largest mode is preferred */
2954		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955			preferred_mode = cur_mode;
2956
2957		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959		/* At a given size, try to get closest to target refresh */
2960		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963			preferred_mode = cur_mode;
2964		}
2965	}
2966
2967	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973	return (mode->htotal - mode->hdisplay == 160) &&
2974	       (mode->hsync_end - mode->hdisplay == 80) &&
2975	       (mode->hsync_end - mode->hsync_start == 32) &&
2976	       (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992					   int hsize, int vsize, int fresh,
2993					   bool rb)
2994{
2995	int i;
2996
2997	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000		if (hsize != ptr->hdisplay)
3001			continue;
3002		if (vsize != ptr->vdisplay)
3003			continue;
3004		if (fresh != drm_mode_vrefresh(ptr))
3005			continue;
3006		if (rb != mode_is_rb(ptr))
3007			continue;
3008
3009		return drm_mode_duplicate(dev, ptr);
3010	}
3011
3012	return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022	return descriptor->pixel_clock == 0 &&
3023		descriptor->data.other_data.pad1 == 0 &&
3024		descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031	return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039	int i, n;
3040	u8 d = ext[0x02];
3041	const u8 *det_base = ext + d;
3042
3043	if (d < 4 || d > 127)
3044		return;
3045
3046	n = (127 - d) / 18;
3047	for (i = 0; i < n; i++)
3048		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054	unsigned int i, n = min((int)ext[0x02], 6);
3055	const u8 *det_base = ext + 5;
3056
3057	if (ext[0x01] != 1)
3058		return; /* unknown version */
3059
3060	for (i = 0; i < n; i++)
3061		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065					detailed_cb *cb, void *closure)
3066{
3067	struct drm_edid_iter edid_iter;
3068	const u8 *ext;
3069	int i;
 
3070
3071	if (!drm_edid)
3072		return;
3073
3074	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075		cb(&drm_edid->edid->detailed_timings[i], closure);
 
 
 
3076
3077	drm_edid_iter_begin(drm_edid, &edid_iter);
3078	drm_edid_iter_for_each(ext, &edid_iter) {
3079		switch (*ext) {
3080		case CEA_EXT:
3081			cea_for_each_detailed_block(ext, cb, closure);
3082			break;
3083		case VTB_EXT:
3084			vtb_for_each_detailed_block(ext, cb, closure);
3085			break;
3086		default:
3087			break;
3088		}
3089	}
3090	drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096	bool *res = data;
3097
3098	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099		return;
3100
3101	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106		*res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113	if (drm_edid->edid->revision >= 4) {
3114		bool ret = false;
3115
3116		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117		return ret;
3118	}
3119
3120	return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126	const struct detailed_timing **res = data;
3127
3128	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129		return;
3130
3131	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134		*res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141	const struct detailed_timing *descriptor = NULL;
3142
3143	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153	const struct detailed_timing *descriptor = NULL;
3154
3155	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
 
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165	const struct detailed_timing *descriptor = NULL;
3166
3167	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177	const struct detailed_timing *descriptor = NULL;
3178
3179	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189	const struct detailed_timing *descriptor = NULL;
3190
3191	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
 
 
 
3200{
3201	int *res = data;
3202
3203	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204		return;
3205
3206	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208	switch (descriptor->data.other_data.data.range.flags) {
3209	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210		*res = LEVEL_GTF;
3211		break;
3212	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213		*res = LEVEL_GTF2;
3214		break;
3215	case DRM_EDID_CVT_SUPPORT_FLAG:
3216		*res = LEVEL_CVT;
3217		break;
3218	default:
3219		break;
3220	}
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226	const struct edid *edid = drm_edid->edid;
3227
3228	if (edid->revision >= 4) {
3229		/*
3230		 * If the range descriptor doesn't
3231		 * indicate otherwise default to CVT
3232		 */
3233		int ret = LEVEL_CVT;
3234
3235		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237		return ret;
3238	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239		return LEVEL_GTF2;
3240	} else if (edid->revision >= 2) {
3241		return LEVEL_GTF;
3242	} else {
3243		return LEVEL_DMT;
3244	}
 
3245}
3246
3247/*
3248 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254	return (a == 0x00 && b == 0x00) ||
3255	       (a == 0x01 && b == 0x01) ||
3256	       (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261	if (mode->htotal <= 0)
3262		return 0;
3263
3264	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269	      const struct drm_edid *drm_edid,
3270	      int hsize, int vsize, int vrefresh_rate)
3271{
3272	struct drm_display_mode *mode;
3273
3274	/*
3275	 * This is potentially wrong if there's ever a monitor with
3276	 * more than one ranges section, each claiming a different
3277	 * secondary GTF curve.  Please don't do that.
3278	 */
3279	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280	if (!mode)
3281		return NULL;
3282
3283	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284		drm_mode_destroy(dev, mode);
3285		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286					    vrefresh_rate, 0, 0,
3287					    drm_gtf2_m(drm_edid),
3288					    drm_gtf2_2c(drm_edid),
3289					    drm_gtf2_k(drm_edid),
3290					    drm_gtf2_2j(drm_edid));
3291	}
3292
3293	return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301					     const struct drm_edid *drm_edid,
3302					     const struct std_timing *t)
3303{
3304	struct drm_device *dev = connector->dev;
3305	struct drm_display_mode *m, *mode = NULL;
3306	int hsize, vsize;
3307	int vrefresh_rate;
3308	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309		>> EDID_TIMING_ASPECT_SHIFT;
3310	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311		>> EDID_TIMING_VFREQ_SHIFT;
3312	int timing_level = standard_timing_level(drm_edid);
3313
3314	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315		return NULL;
3316
3317	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318	hsize = t->hsize * 8 + 248;
3319	/* vrefresh_rate = vfreq + 60 */
3320	vrefresh_rate = vfreq + 60;
3321	/* the vdisplay is calculated based on the aspect ratio */
3322	if (aspect_ratio == 0) {
3323		if (drm_edid->edid->revision < 3)
3324			vsize = hsize;
3325		else
3326			vsize = (hsize * 10) / 16;
3327	} else if (aspect_ratio == 1)
3328		vsize = (hsize * 3) / 4;
3329	else if (aspect_ratio == 2)
3330		vsize = (hsize * 4) / 5;
3331	else
3332		vsize = (hsize * 9) / 16;
3333
3334	/* HDTV hack, part 1 */
3335	if (vrefresh_rate == 60 &&
3336	    ((hsize == 1360 && vsize == 765) ||
3337	     (hsize == 1368 && vsize == 769))) {
3338		hsize = 1366;
3339		vsize = 768;
3340	}
3341
3342	/*
3343	 * If this connector already has a mode for this size and refresh
3344	 * rate (because it came from detailed or CVT info), use that
3345	 * instead.  This way we don't have to guess at interlace or
3346	 * reduced blanking.
3347	 */
3348	list_for_each_entry(m, &connector->probed_modes, head)
3349		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350		    drm_mode_vrefresh(m) == vrefresh_rate)
3351			return NULL;
3352
3353	/* HDTV hack, part 2 */
3354	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356				    false);
3357		if (!mode)
3358			return NULL;
3359		mode->hdisplay = 1366;
3360		mode->hsync_start = mode->hsync_start - 1;
3361		mode->hsync_end = mode->hsync_end - 1;
3362		return mode;
3363	}
3364
3365	/* check whether it can be found in default mode table */
3366	if (drm_monitor_supports_rb(drm_edid)) {
3367		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368					 true);
3369		if (mode)
3370			return mode;
3371	}
3372	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373	if (mode)
3374		return mode;
3375
3376	/* okay, generate it */
3377	switch (timing_level) {
3378	case LEVEL_DMT:
3379		break;
3380	case LEVEL_GTF:
3381		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382		break;
3383	case LEVEL_GTF2:
3384		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3385		break;
3386	case LEVEL_CVT:
3387		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388				    false);
3389		break;
3390	}
3391	return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded.  Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size.  Technically we
3400 * should be checking refresh rate too.  Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404			    const struct detailed_pixel_timing *pt)
3405{
3406	int i;
3407	static const struct {
3408		int w, h;
3409	} cea_interlaced[] = {
3410		{ 1920, 1080 },
3411		{  720,  480 },
3412		{ 1440,  480 },
3413		{ 2880,  480 },
3414		{  720,  576 },
3415		{ 1440,  576 },
3416		{ 2880,  576 },
3417	};
3418
3419	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420		return;
3421
3422	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425			mode->vdisplay *= 2;
3426			mode->vsync_start *= 2;
3427			mode->vsync_end *= 2;
3428			mode->vtotal *= 2;
3429			mode->vtotal |= 1;
3430		}
3431	}
3432
3433	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442						  const struct drm_edid *drm_edid,
3443						  const struct detailed_timing *timing)
 
 
 
 
 
 
3444{
3445	const struct drm_display_info *info = &connector->display_info;
3446	struct drm_device *dev = connector->dev;
3447	struct drm_display_mode *mode;
3448	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458	/* ignore tiny modes */
3459	if (hactive < 64 || vactive < 64)
3460		return NULL;
3461
3462	if (pt->misc & DRM_EDID_PT_STEREO) {
3463		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464			    connector->base.id, connector->name);
3465		return NULL;
3466	}
3467	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469			    connector->base.id, connector->name);
3470	}
3471
3472	/* it is incorrect if hsync/vsync width is zero */
3473	if (!hsync_pulse_width || !vsync_pulse_width) {
3474		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475			    connector->base.id, connector->name);
3476		return NULL;
3477	}
3478
3479	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481		if (!mode)
3482			return NULL;
3483
3484		goto set_size;
3485	}
3486
3487	mode = drm_mode_create(dev);
3488	if (!mode)
3489		return NULL;
3490
3491	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492		mode->clock = 1088 * 10;
3493	else
3494		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496	mode->hdisplay = hactive;
3497	mode->hsync_start = mode->hdisplay + hsync_offset;
3498	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499	mode->htotal = mode->hdisplay + hblank;
3500
3501	mode->vdisplay = vactive;
3502	mode->vsync_start = mode->vdisplay + vsync_offset;
3503	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504	mode->vtotal = mode->vdisplay + vblank;
3505
3506	/* Some EDIDs have bogus h/vsync_end values */
3507	if (mode->hsync_end > mode->htotal) {
3508		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509			    connector->base.id, connector->name,
3510			    mode->hsync_end, mode->htotal);
3511		mode->hsync_end = mode->htotal;
3512	}
3513	if (mode->vsync_end > mode->vtotal) {
3514		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515			    connector->base.id, connector->name,
3516			    mode->vsync_end, mode->vtotal);
3517		mode->vsync_end = mode->vtotal;
3518	}
3519
3520	drm_mode_do_interlace_quirk(mode, pt);
3521
3522	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524	} else {
3525		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529	}
3530
 
 
 
 
 
3531set_size:
3532	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536		mode->width_mm *= 10;
3537		mode->height_mm *= 10;
3538	}
3539
3540	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541		mode->width_mm = drm_edid->edid->width_cm * 10;
3542		mode->height_mm = drm_edid->edid->height_cm * 10;
3543	}
3544
3545	mode->type = DRM_MODE_TYPE_DRIVER;
3546	drm_mode_set_name(mode);
3547
3548	return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553		    const struct edid *edid, const u8 *t)
3554{
3555	int hsync, hmin, hmax;
3556
3557	hmin = t[7];
3558	if (edid->revision >= 4)
3559	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560	hmax = t[8];
3561	if (edid->revision >= 4)
3562	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563	hsync = drm_mode_hsync(mode);
3564
3565	return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570		    const struct edid *edid, const u8 *t)
3571{
3572	int vsync, vmin, vmax;
3573
3574	vmin = t[5];
3575	if (edid->revision >= 4)
3576	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577	vmax = t[6];
3578	if (edid->revision >= 4)
3579	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580	vsync = drm_mode_vrefresh(mode);
3581
3582	return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588	/* unspecified */
3589	if (t[9] == 0 || t[9] == 255)
3590		return 0;
3591
3592	/* 1.4 with CVT support gives us real precision, yay */
3593	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596	/* 1.3 is pathetic, so fuzz up a bit */
3597	return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601			  const struct drm_edid *drm_edid,
3602			  const struct detailed_timing *timing)
3603{
3604	const struct edid *edid = drm_edid->edid;
3605	u32 max_clock;
3606	const u8 *t = (const u8 *)timing;
3607
3608	if (!mode_in_hsync_range(mode, edid, t))
3609		return false;
3610
3611	if (!mode_in_vsync_range(mode, edid, t))
3612		return false;
3613
3614	if ((max_clock = range_pixel_clock(edid, t)))
3615		if (mode->clock > max_clock)
3616			return false;
3617
3618	/* 1.4 max horizontal check */
3619	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3620		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3621			return false;
3622
3623	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3624		return false;
3625
3626	return true;
3627}
3628
3629static bool valid_inferred_mode(const struct drm_connector *connector,
3630				const struct drm_display_mode *mode)
3631{
3632	const struct drm_display_mode *m;
3633	bool ok = false;
3634
3635	list_for_each_entry(m, &connector->probed_modes, head) {
3636		if (mode->hdisplay == m->hdisplay &&
3637		    mode->vdisplay == m->vdisplay &&
3638		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3639			return false; /* duplicated */
3640		if (mode->hdisplay <= m->hdisplay &&
3641		    mode->vdisplay <= m->vdisplay)
3642			ok = true;
3643	}
3644	return ok;
3645}
3646
3647static int drm_dmt_modes_for_range(struct drm_connector *connector,
3648				   const struct drm_edid *drm_edid,
3649				   const struct detailed_timing *timing)
3650{
3651	int i, modes = 0;
3652	struct drm_display_mode *newmode;
3653	struct drm_device *dev = connector->dev;
3654
3655	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3656		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3657		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3658			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659			if (newmode) {
3660				drm_mode_probed_add(connector, newmode);
3661				modes++;
3662			}
3663		}
3664	}
3665
3666	return modes;
3667}
3668
3669/* fix up 1366x768 mode from 1368x768;
3670 * GFT/CVT can't express 1366 width which isn't dividable by 8
3671 */
3672void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673{
3674	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3675		mode->hdisplay = 1366;
3676		mode->hsync_start--;
3677		mode->hsync_end--;
3678		drm_mode_set_name(mode);
3679	}
3680}
3681
3682static int drm_gtf_modes_for_range(struct drm_connector *connector,
3683				   const struct drm_edid *drm_edid,
3684				   const struct detailed_timing *timing)
3685{
3686	int i, modes = 0;
3687	struct drm_display_mode *newmode;
3688	struct drm_device *dev = connector->dev;
3689
3690	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3691		const struct minimode *m = &extra_modes[i];
3692
3693		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3694		if (!newmode)
3695			return modes;
3696
3697		drm_mode_fixup_1366x768(newmode);
3698		if (!mode_in_range(newmode, drm_edid, timing) ||
3699		    !valid_inferred_mode(connector, newmode)) {
3700			drm_mode_destroy(dev, newmode);
3701			continue;
3702		}
3703
3704		drm_mode_probed_add(connector, newmode);
3705		modes++;
3706	}
3707
3708	return modes;
3709}
3710
3711static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3712				    const struct drm_edid *drm_edid,
3713				    const struct detailed_timing *timing)
3714{
3715	int i, modes = 0;
3716	struct drm_display_mode *newmode;
3717	struct drm_device *dev = connector->dev;
3718
3719	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3720		const struct minimode *m = &extra_modes[i];
3721
3722		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3723		if (!newmode)
3724			return modes;
3725
3726		drm_mode_fixup_1366x768(newmode);
3727		if (!mode_in_range(newmode, drm_edid, timing) ||
3728		    !valid_inferred_mode(connector, newmode)) {
3729			drm_mode_destroy(dev, newmode);
3730			continue;
3731		}
3732
3733		drm_mode_probed_add(connector, newmode);
3734		modes++;
3735	}
3736
3737	return modes;
3738}
3739
3740static int drm_cvt_modes_for_range(struct drm_connector *connector,
3741				   const struct drm_edid *drm_edid,
3742				   const struct detailed_timing *timing)
3743{
3744	int i, modes = 0;
3745	struct drm_display_mode *newmode;
3746	struct drm_device *dev = connector->dev;
3747	bool rb = drm_monitor_supports_rb(drm_edid);
3748
3749	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3750		const struct minimode *m = &extra_modes[i];
3751
3752		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3753		if (!newmode)
3754			return modes;
3755
3756		drm_mode_fixup_1366x768(newmode);
3757		if (!mode_in_range(newmode, drm_edid, timing) ||
3758		    !valid_inferred_mode(connector, newmode)) {
3759			drm_mode_destroy(dev, newmode);
3760			continue;
3761		}
3762
3763		drm_mode_probed_add(connector, newmode);
3764		modes++;
3765	}
3766
3767	return modes;
3768}
3769
3770static void
3771do_inferred_modes(const struct detailed_timing *timing, void *c)
3772{
3773	struct detailed_mode_closure *closure = c;
3774	const struct detailed_non_pixel *data = &timing->data.other_data;
3775	const struct detailed_data_monitor_range *range = &data->data.range;
3776
3777	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3778		return;
3779
3780	closure->modes += drm_dmt_modes_for_range(closure->connector,
3781						  closure->drm_edid,
3782						  timing);
3783
3784	if (closure->drm_edid->edid->revision < 2)
3785		return; /* GTF not defined yet */
3786
3787	switch (range->flags) {
3788	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3789		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3790							   closure->drm_edid,
3791							   timing);
3792		break;
3793	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3794		closure->modes += drm_gtf_modes_for_range(closure->connector,
3795							  closure->drm_edid,
3796							  timing);
3797		break;
3798	case DRM_EDID_CVT_SUPPORT_FLAG:
3799		if (closure->drm_edid->edid->revision < 4)
3800			break;
3801
3802		closure->modes += drm_cvt_modes_for_range(closure->connector,
3803							  closure->drm_edid,
3804							  timing);
3805		break;
3806	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3807	default:
3808		break;
3809	}
3810}
3811
3812static int add_inferred_modes(struct drm_connector *connector,
3813			      const struct drm_edid *drm_edid)
3814{
3815	struct detailed_mode_closure closure = {
3816		.connector = connector,
3817		.drm_edid = drm_edid,
3818	};
3819
3820	if (drm_edid->edid->revision >= 1)
3821		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
 
3822
3823	return closure.modes;
3824}
3825
3826static int
3827drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828{
3829	int i, j, m, modes = 0;
3830	struct drm_display_mode *mode;
3831	const u8 *est = ((const u8 *)timing) + 6;
3832
3833	for (i = 0; i < 6; i++) {
3834		for (j = 7; j >= 0; j--) {
3835			m = (i * 8) + (7 - j);
3836			if (m >= ARRAY_SIZE(est3_modes))
3837				break;
3838			if (est[i] & (1 << j)) {
3839				mode = drm_mode_find_dmt(connector->dev,
3840							 est3_modes[m].w,
3841							 est3_modes[m].h,
3842							 est3_modes[m].r,
3843							 est3_modes[m].rb);
3844				if (mode) {
3845					drm_mode_probed_add(connector, mode);
3846					modes++;
3847				}
3848			}
3849		}
3850	}
3851
3852	return modes;
3853}
3854
3855static void
3856do_established_modes(const struct detailed_timing *timing, void *c)
3857{
3858	struct detailed_mode_closure *closure = c;
3859
3860	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3861		return;
3862
3863	closure->modes += drm_est3_modes(closure->connector, timing);
3864}
3865
3866/*
3867 * Get established modes from EDID and add them. Each EDID block contains a
3868 * bitmap of the supported "established modes" list (defined above). Tease them
3869 * out and add them to the global modes list.
 
 
 
3870 */
3871static int add_established_modes(struct drm_connector *connector,
3872				 const struct drm_edid *drm_edid)
3873{
3874	struct drm_device *dev = connector->dev;
3875	const struct edid *edid = drm_edid->edid;
3876	unsigned long est_bits = edid->established_timings.t1 |
3877		(edid->established_timings.t2 << 8) |
3878		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879	int i, modes = 0;
3880	struct detailed_mode_closure closure = {
3881		.connector = connector,
3882		.drm_edid = drm_edid,
3883	};
3884
3885	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3886		if (est_bits & (1<<i)) {
3887			struct drm_display_mode *newmode;
3888
3889			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890			if (newmode) {
3891				drm_mode_probed_add(connector, newmode);
3892				modes++;
3893			}
3894		}
3895	}
3896
3897	if (edid->revision >= 1)
3898		drm_for_each_detailed_block(drm_edid, do_established_modes,
3899					    &closure);
3900
3901	return modes + closure.modes;
3902}
3903
3904static void
3905do_standard_modes(const struct detailed_timing *timing, void *c)
3906{
3907	struct detailed_mode_closure *closure = c;
3908	const struct detailed_non_pixel *data = &timing->data.other_data;
3909	struct drm_connector *connector = closure->connector;
 
3910	int i;
3911
3912	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3913		return;
3914
3915	for (i = 0; i < 6; i++) {
3916		const struct std_timing *std = &data->data.timings[i];
3917		struct drm_display_mode *newmode;
3918
3919		newmode = drm_mode_std(connector, closure->drm_edid, std);
3920		if (newmode) {
3921			drm_mode_probed_add(connector, newmode);
3922			closure->modes++;
3923		}
3924	}
3925}
3926
3927/*
3928 * Get standard modes from EDID and add them. Standard modes can be calculated
3929 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3930 * add them to the list.
 
 
 
3931 */
3932static int add_standard_modes(struct drm_connector *connector,
3933			      const struct drm_edid *drm_edid)
3934{
3935	int i, modes = 0;
3936	struct detailed_mode_closure closure = {
3937		.connector = connector,
3938		.drm_edid = drm_edid,
3939	};
3940
3941	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3942		struct drm_display_mode *newmode;
3943
3944		newmode = drm_mode_std(connector, drm_edid,
3945				       &drm_edid->edid->standard_timings[i]);
3946		if (newmode) {
3947			drm_mode_probed_add(connector, newmode);
3948			modes++;
3949		}
3950	}
3951
3952	if (drm_edid->edid->revision >= 1)
3953		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3954					    &closure);
3955
3956	/* XXX should also look for standard codes in VTB blocks */
3957
3958	return modes + closure.modes;
3959}
3960
3961static int drm_cvt_modes(struct drm_connector *connector,
3962			 const struct detailed_timing *timing)
3963{
3964	int i, j, modes = 0;
3965	struct drm_display_mode *newmode;
3966	struct drm_device *dev = connector->dev;
3967	const struct cvt_timing *cvt;
3968	static const int rates[] = { 60, 85, 75, 60, 50 };
3969	const u8 empty[3] = { 0, 0, 0 };
3970
3971	for (i = 0; i < 4; i++) {
3972		int width, height;
3973
3974		cvt = &(timing->data.other_data.data.cvt[i]);
3975
3976		if (!memcmp(cvt->code, empty, 3))
3977			continue;
3978
3979		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3980		switch (cvt->code[1] & 0x0c) {
3981		/* default - because compiler doesn't see that we've enumerated all cases */
3982		default:
3983		case 0x00:
3984			width = height * 4 / 3;
3985			break;
3986		case 0x04:
3987			width = height * 16 / 9;
3988			break;
3989		case 0x08:
3990			width = height * 16 / 10;
3991			break;
3992		case 0x0c:
3993			width = height * 15 / 9;
3994			break;
3995		}
3996
3997		for (j = 1; j < 5; j++) {
3998			if (cvt->code[2] & (1 << j)) {
3999				newmode = drm_cvt_mode(dev, width, height,
4000						       rates[j], j == 0,
4001						       false, false);
4002				if (newmode) {
4003					drm_mode_probed_add(connector, newmode);
4004					modes++;
4005				}
4006			}
4007		}
4008	}
4009
4010	return modes;
4011}
4012
4013static void
4014do_cvt_mode(const struct detailed_timing *timing, void *c)
4015{
4016	struct detailed_mode_closure *closure = c;
4017
4018	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4019		return;
4020
4021	closure->modes += drm_cvt_modes(closure->connector, timing);
4022}
4023
4024static int
4025add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026{
4027	struct detailed_mode_closure closure = {
4028		.connector = connector,
4029		.drm_edid = drm_edid,
4030	};
4031
4032	if (drm_edid->edid->revision >= 3)
4033		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034
4035	/* XXX should also look for CVT codes in VTB blocks */
4036
4037	return closure.modes;
4038}
4039
4040static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4041					  struct drm_display_mode *mode);
4042
4043static void
4044do_detailed_mode(const struct detailed_timing *timing, void *c)
4045{
4046	struct detailed_mode_closure *closure = c;
4047	struct drm_display_mode *newmode;
4048
4049	if (!is_detailed_timing_descriptor(timing))
4050		return;
4051
4052	newmode = drm_mode_detailed(closure->connector,
4053				    closure->drm_edid, timing);
 
4054	if (!newmode)
4055		return;
4056
4057	if (closure->preferred)
4058		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4059
4060	/*
4061	 * Detailed modes are limited to 10kHz pixel clock resolution,
4062	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4063	 * is just slightly off.
4064	 */
4065	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066
4067	drm_mode_probed_add(closure->connector, newmode);
4068	closure->modes++;
4069	closure->preferred = false;
4070}
4071
4072/*
4073 * add_detailed_modes - Add modes from detailed timings
4074 * @connector: attached connector
4075 * @drm_edid: EDID block to scan
 
4076 */
4077static int add_detailed_modes(struct drm_connector *connector,
4078			      const struct drm_edid *drm_edid)
 
4079{
4080	struct detailed_mode_closure closure = {
4081		.connector = connector,
4082		.drm_edid = drm_edid,
 
 
4083	};
4084
4085	if (drm_edid->edid->revision >= 4)
4086		closure.preferred = true; /* first detailed timing is always preferred */
4087	else
4088		closure.preferred =
4089			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090
4091	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092
4093	return closure.modes;
4094}
4095
4096/* CTA-861-H Table 60 - CTA Tag Codes */
4097#define CTA_DB_AUDIO			1
4098#define CTA_DB_VIDEO			2
4099#define CTA_DB_VENDOR			3
4100#define CTA_DB_SPEAKER			4
4101#define CTA_DB_EXTENDED_TAG		7
4102
4103/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4104#define CTA_EXT_DB_VIDEO_CAP		0
4105#define CTA_EXT_DB_VENDOR		1
4106#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4107#define CTA_EXT_DB_420_VIDEO_DATA	14
4108#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4109#define CTA_EXT_DB_HF_EEODB		0x78
4110#define CTA_EXT_DB_HF_SCDB		0x79
4111
4112#define EDID_BASIC_AUDIO	(1 << 6)
4113#define EDID_CEA_YCRCB444	(1 << 5)
4114#define EDID_CEA_YCRCB422	(1 << 4)
4115#define EDID_CEA_VCDB_QS	(1 << 6)
4116
4117/*
4118 * Search EDID for CEA extension block.
4119 *
4120 * FIXME: Prefer not returning pointers to raw EDID data.
4121 */
4122const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4123				  int ext_id, int *ext_index)
4124{
4125	const u8 *edid_ext = NULL;
4126	int i;
4127
4128	/* No EDID or EDID extensions */
4129	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4130		return NULL;
4131
4132	/* Find CEA extension */
4133	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4134		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4135		if (edid_block_tag(edid_ext) == ext_id)
4136			break;
4137	}
4138
4139	if (i >= drm_edid_extension_block_count(drm_edid))
4140		return NULL;
4141
4142	*ext_index = i + 1;
4143
4144	return edid_ext;
4145}
4146
4147/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4148static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4149{
4150	const struct displayid_block *block;
4151	struct displayid_iter iter;
4152	int ext_index = 0;
4153	bool found = false;
 
4154
4155	/* Look for a top level CEA extension block */
4156	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4157		return true;
 
 
 
4158
4159	/* CEA blocks can also be found embedded in a DisplayID block */
4160	displayid_iter_edid_begin(drm_edid, &iter);
4161	displayid_iter_for_each(block, &iter) {
4162		if (block->tag == DATA_BLOCK_CTA) {
4163			found = true;
4164			break;
 
 
 
 
 
 
4165		}
4166	}
4167	displayid_iter_end(&iter);
4168
4169	return found;
4170}
4171
4172static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173{
4174	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4175	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176
4177	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4178		return &edid_cea_modes_1[vic - 1];
4179	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4180		return &edid_cea_modes_193[vic - 193];
4181	return NULL;
4182}
4183
4184static u8 cea_num_vics(void)
4185{
4186	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4187}
4188
4189static u8 cea_next_vic(u8 vic)
4190{
4191	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4192		vic = 193;
4193	return vic;
4194}
4195
4196/*
4197 * Calculate the alternate clock for the CEA mode
4198 * (60Hz vs. 59.94Hz etc.)
4199 */
4200static unsigned int
4201cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202{
4203	unsigned int clock = cea_mode->clock;
4204
4205	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4206		return clock;
4207
4208	/*
4209	 * edid_cea_modes contains the 59.94Hz
4210	 * variant for 240 and 480 line modes,
4211	 * and the 60Hz variant otherwise.
4212	 */
4213	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4214		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215	else
4216		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4217
4218	return clock;
4219}
4220
4221static bool
4222cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4223{
4224	/*
4225	 * For certain VICs the spec allows the vertical
4226	 * front porch to vary by one or two lines.
4227	 *
4228	 * cea_modes[] stores the variant with the shortest
4229	 * vertical front porch. We can adjust the mode to
4230	 * get the other variants by simply increasing the
4231	 * vertical front porch length.
4232	 */
4233	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4234		     cea_mode_for_vic(9)->vtotal != 262 ||
4235		     cea_mode_for_vic(12)->vtotal != 262 ||
4236		     cea_mode_for_vic(13)->vtotal != 262 ||
4237		     cea_mode_for_vic(23)->vtotal != 312 ||
4238		     cea_mode_for_vic(24)->vtotal != 312 ||
4239		     cea_mode_for_vic(27)->vtotal != 312 ||
4240		     cea_mode_for_vic(28)->vtotal != 312);
4241
4242	if (((vic == 8 || vic == 9 ||
4243	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4244	    ((vic == 23 || vic == 24 ||
4245	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4246		mode->vsync_start++;
4247		mode->vsync_end++;
4248		mode->vtotal++;
4249
4250		return true;
4251	}
4252
4253	return false;
4254}
4255
4256static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4257					     unsigned int clock_tolerance)
4258{
4259	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4260	u8 vic;
4261
4262	if (!to_match->clock)
4263		return 0;
4264
4265	if (to_match->picture_aspect_ratio)
4266		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267
4268	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4269		struct drm_display_mode cea_mode;
4270		unsigned int clock1, clock2;
4271
4272		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273
4274		/* Check both 60Hz and 59.94Hz */
4275		clock1 = cea_mode.clock;
4276		clock2 = cea_mode_alternate_clock(&cea_mode);
4277
4278		if (abs(to_match->clock - clock1) > clock_tolerance &&
4279		    abs(to_match->clock - clock2) > clock_tolerance)
4280			continue;
4281
4282		do {
4283			if (drm_mode_match(to_match, &cea_mode, match_flags))
4284				return vic;
4285		} while (cea_mode_alternate_timings(vic, &cea_mode));
4286	}
4287
4288	return 0;
4289}
4290
4291/**
4292 * drm_match_cea_mode - look for a CEA mode matching given mode
4293 * @to_match: display mode
4294 *
4295 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4296 * mode.
4297 */
4298u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299{
4300	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4301	u8 vic;
4302
4303	if (!to_match->clock)
4304		return 0;
4305
4306	if (to_match->picture_aspect_ratio)
4307		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308
4309	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4310		struct drm_display_mode cea_mode;
4311		unsigned int clock1, clock2;
4312
4313		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314
4315		/* Check both 60Hz and 59.94Hz */
4316		clock1 = cea_mode.clock;
4317		clock2 = cea_mode_alternate_clock(&cea_mode);
4318
4319		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4320		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4321			continue;
4322
4323		do {
4324			if (drm_mode_match(to_match, &cea_mode, match_flags))
4325				return vic;
4326		} while (cea_mode_alternate_timings(vic, &cea_mode));
4327	}
4328
4329	return 0;
4330}
4331EXPORT_SYMBOL(drm_match_cea_mode);
4332
4333static bool drm_valid_cea_vic(u8 vic)
4334{
4335	return cea_mode_for_vic(vic) != NULL;
4336}
4337
4338static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339{
4340	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4341
4342	if (mode)
4343		return mode->picture_aspect_ratio;
4344
4345	return HDMI_PICTURE_ASPECT_NONE;
4346}
4347
4348static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349{
4350	return edid_4k_modes[video_code].picture_aspect_ratio;
4351}
4352
4353/*
4354 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4355 * specific block).
4356 */
4357static unsigned int
4358hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359{
4360	return cea_mode_alternate_clock(hdmi_mode);
4361}
4362
4363static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4364					      unsigned int clock_tolerance)
4365{
4366	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4367	u8 vic;
4368
4369	if (!to_match->clock)
4370		return 0;
4371
4372	if (to_match->picture_aspect_ratio)
4373		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374
4375	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4376		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4377		unsigned int clock1, clock2;
4378
4379		/* Make sure to also match alternate clocks */
4380		clock1 = hdmi_mode->clock;
4381		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382
4383		if (abs(to_match->clock - clock1) > clock_tolerance &&
4384		    abs(to_match->clock - clock2) > clock_tolerance)
4385			continue;
4386
4387		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4388			return vic;
4389	}
4390
4391	return 0;
4392}
4393
4394/*
4395 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4396 * @to_match: display mode
4397 *
4398 * An HDMI mode is one defined in the HDMI vendor specific block.
4399 *
4400 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401 */
4402static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403{
4404	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4405	u8 vic;
4406
4407	if (!to_match->clock)
4408		return 0;
4409
4410	if (to_match->picture_aspect_ratio)
4411		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412
4413	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4414		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4415		unsigned int clock1, clock2;
4416
4417		/* Make sure to also match alternate clocks */
4418		clock1 = hdmi_mode->clock;
4419		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420
4421		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4422		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4423		    drm_mode_match(to_match, hdmi_mode, match_flags))
4424			return vic;
4425	}
4426	return 0;
4427}
4428
4429static bool drm_valid_hdmi_vic(u8 vic)
4430{
4431	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4432}
4433
4434static int add_alternate_cea_modes(struct drm_connector *connector,
4435				   const struct drm_edid *drm_edid)
4436{
4437	struct drm_device *dev = connector->dev;
4438	struct drm_display_mode *mode, *tmp;
4439	LIST_HEAD(list);
4440	int modes = 0;
4441
4442	/* Don't add CTA modes if the CTA extension block is missing */
4443	if (!drm_edid_has_cta_extension(drm_edid))
4444		return 0;
4445
4446	/*
4447	 * Go through all probed modes and create a new mode
4448	 * with the alternate clock for certain CEA modes.
4449	 */
4450	list_for_each_entry(mode, &connector->probed_modes, head) {
4451		const struct drm_display_mode *cea_mode = NULL;
4452		struct drm_display_mode *newmode;
4453		u8 vic = drm_match_cea_mode(mode);
4454		unsigned int clock1, clock2;
4455
4456		if (drm_valid_cea_vic(vic)) {
4457			cea_mode = cea_mode_for_vic(vic);
4458			clock2 = cea_mode_alternate_clock(cea_mode);
4459		} else {
4460			vic = drm_match_hdmi_mode(mode);
4461			if (drm_valid_hdmi_vic(vic)) {
4462				cea_mode = &edid_4k_modes[vic];
4463				clock2 = hdmi_mode_alternate_clock(cea_mode);
4464			}
4465		}
4466
4467		if (!cea_mode)
4468			continue;
4469
4470		clock1 = cea_mode->clock;
4471
4472		if (clock1 == clock2)
4473			continue;
4474
4475		if (mode->clock != clock1 && mode->clock != clock2)
4476			continue;
4477
4478		newmode = drm_mode_duplicate(dev, cea_mode);
4479		if (!newmode)
4480			continue;
4481
4482		/* Carry over the stereo flags */
4483		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4484
4485		/*
4486		 * The current mode could be either variant. Make
4487		 * sure to pick the "other" clock for the new mode.
4488		 */
4489		if (mode->clock != clock1)
4490			newmode->clock = clock1;
4491		else
4492			newmode->clock = clock2;
4493
4494		list_add_tail(&newmode->head, &list);
4495	}
4496
4497	list_for_each_entry_safe(mode, tmp, &list, head) {
4498		list_del(&mode->head);
4499		drm_mode_probed_add(connector, mode);
4500		modes++;
4501	}
4502
4503	return modes;
4504}
4505
4506static u8 svd_to_vic(u8 svd)
4507{
4508	/* 0-6 bit vic, 7th bit native mode indicator */
4509	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4510		return svd & 127;
4511
4512	return svd;
4513}
4514
4515/*
4516 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4517 * the EDID, or NULL on errors.
4518 */
4519static struct drm_display_mode *
4520drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
 
 
4521{
4522	const struct drm_display_info *info = &connector->display_info;
4523	struct drm_device *dev = connector->dev;
 
 
 
 
 
4524
4525	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
 
 
4526		return NULL;
4527
4528	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
 
 
 
 
4529}
4530
4531/*
4532 * do_y420vdb_modes - Parse YCBCR 420 only modes
4533 * @connector: connector corresponding to the HDMI sink
4534 * @svds: start of the data block of CEA YCBCR 420 VDB
4535 * @len: length of the CEA YCBCR 420 VDB
4536 *
4537 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4538 * which contains modes which can be supported in YCBCR 420
4539 * output format only.
4540 */
4541static int do_y420vdb_modes(struct drm_connector *connector,
4542			    const u8 *svds, u8 svds_len)
4543{
 
4544	struct drm_device *dev = connector->dev;
4545	int modes = 0, i;
 
4546
4547	for (i = 0; i < svds_len; i++) {
4548		u8 vic = svd_to_vic(svds[i]);
4549		struct drm_display_mode *newmode;
4550
4551		if (!drm_valid_cea_vic(vic))
4552			continue;
4553
4554		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4555		if (!newmode)
4556			break;
 
4557		drm_mode_probed_add(connector, newmode);
4558		modes++;
4559	}
4560
 
 
4561	return modes;
4562}
4563
4564/**
4565 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566 * @dev: DRM device
4567 * @video_code: CEA VIC of the mode
4568 *
4569 * Creates a new mode matching the specified CEA VIC.
4570 *
4571 * Returns: A new drm_display_mode on success or NULL on failure
4572 */
4573struct drm_display_mode *
4574drm_display_mode_from_cea_vic(struct drm_device *dev,
4575			      u8 video_code)
4576{
4577	const struct drm_display_mode *cea_mode;
4578	struct drm_display_mode *newmode;
4579
4580	cea_mode = cea_mode_for_vic(video_code);
4581	if (!cea_mode)
4582		return NULL;
4583
4584	newmode = drm_mode_duplicate(dev, cea_mode);
4585	if (!newmode)
4586		return NULL;
4587
4588	return newmode;
4589}
4590EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591
4592/* Add modes based on VICs parsed in parse_cta_vdb() */
4593static int add_cta_vdb_modes(struct drm_connector *connector)
4594{
4595	const struct drm_display_info *info = &connector->display_info;
4596	int i, modes = 0;
 
4597
4598	if (!info->vics)
4599		return 0;
4600
4601	for (i = 0; i < info->vics_len; i++) {
4602		struct drm_display_mode *mode;
4603
4604		mode = drm_display_mode_from_vic_index(connector, i);
4605		if (mode) {
 
 
 
 
 
 
 
 
 
 
 
 
4606			drm_mode_probed_add(connector, mode);
4607			modes++;
4608		}
4609	}
4610
4611	return modes;
4612}
4613
4614struct stereo_mandatory_mode {
4615	int width, height, vrefresh;
4616	unsigned int flags;
4617};
4618
4619static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4620	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622	{ 1920, 1080, 50,
4623	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624	{ 1920, 1080, 60,
4625	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4627	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4628	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4629	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630};
4631
4632static bool
4633stereo_match_mandatory(const struct drm_display_mode *mode,
4634		       const struct stereo_mandatory_mode *stereo_mode)
4635{
4636	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637
4638	return mode->hdisplay == stereo_mode->width &&
4639	       mode->vdisplay == stereo_mode->height &&
4640	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4641	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4642}
4643
4644static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645{
4646	struct drm_device *dev = connector->dev;
4647	const struct drm_display_mode *mode;
4648	struct list_head stereo_modes;
4649	int modes = 0, i;
4650
4651	INIT_LIST_HEAD(&stereo_modes);
4652
4653	list_for_each_entry(mode, &connector->probed_modes, head) {
4654		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4655			const struct stereo_mandatory_mode *mandatory;
4656			struct drm_display_mode *new_mode;
4657
4658			if (!stereo_match_mandatory(mode,
4659						    &stereo_mandatory_modes[i]))
4660				continue;
4661
4662			mandatory = &stereo_mandatory_modes[i];
4663			new_mode = drm_mode_duplicate(dev, mode);
4664			if (!new_mode)
4665				continue;
4666
4667			new_mode->flags |= mandatory->flags;
4668			list_add_tail(&new_mode->head, &stereo_modes);
4669			modes++;
4670		}
4671	}
4672
4673	list_splice_tail(&stereo_modes, &connector->probed_modes);
4674
4675	return modes;
4676}
4677
4678static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679{
4680	struct drm_device *dev = connector->dev;
4681	struct drm_display_mode *newmode;
4682
4683	if (!drm_valid_hdmi_vic(vic)) {
4684		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4685			connector->base.id, connector->name, vic);
4686		return 0;
4687	}
4688
4689	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690	if (!newmode)
4691		return 0;
4692
4693	drm_mode_probed_add(connector, newmode);
4694
4695	return 1;
4696}
4697
4698static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4699			       int vic_index)
4700{
4701	struct drm_display_mode *newmode;
4702	int modes = 0;
4703
4704	if (structure & (1 << 0)) {
4705		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4706		if (newmode) {
4707			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4708			drm_mode_probed_add(connector, newmode);
4709			modes++;
4710		}
4711	}
4712	if (structure & (1 << 6)) {
4713		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4714		if (newmode) {
4715			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4716			drm_mode_probed_add(connector, newmode);
4717			modes++;
4718		}
4719	}
4720	if (structure & (1 << 8)) {
4721		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4722		if (newmode) {
4723			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4724			drm_mode_probed_add(connector, newmode);
4725			modes++;
4726		}
4727	}
4728
4729	return modes;
4730}
4731
4732static bool hdmi_vsdb_latency_present(const u8 *db)
4733{
4734	return db[8] & BIT(7);
4735}
4736
4737static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738{
4739	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4740}
4741
4742static int hdmi_vsdb_latency_length(const u8 *db)
4743{
4744	if (hdmi_vsdb_i_latency_present(db))
4745		return 4;
4746	else if (hdmi_vsdb_latency_present(db))
4747		return 2;
4748	else
4749		return 0;
4750}
4751
4752/*
4753 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4754 * @connector: connector corresponding to the HDMI sink
4755 * @db: start of the CEA vendor specific block
4756 * @len: length of the CEA block payload, ie. one can access up to db[len]
4757 *
4758 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4759 * also adds the stereo 3d modes when applicable.
4760 */
4761static int
4762do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
 
4763{
 
4764	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4765	u8 vic_len, hdmi_3d_len = 0;
4766	u16 mask;
4767	u16 structure_all;
4768
4769	if (len < 8)
4770		goto out;
4771
4772	/* no HDMI_Video_Present */
4773	if (!(db[8] & (1 << 5)))
4774		goto out;
4775
4776	offset += hdmi_vsdb_latency_length(db);
 
 
 
 
 
 
4777
4778	/* the declared length is not long enough for the 2 first bytes
4779	 * of additional video format capabilities */
4780	if (len < (8 + offset + 2))
4781		goto out;
4782
4783	/* 3D_Present */
4784	offset++;
4785	if (db[8 + offset] & (1 << 7)) {
4786		modes += add_hdmi_mandatory_stereo_modes(connector);
4787
4788		/* 3D_Multi_present */
4789		multi_present = (db[8 + offset] & 0x60) >> 5;
4790	}
4791
4792	offset++;
4793	vic_len = db[8 + offset] >> 5;
4794	hdmi_3d_len = db[8 + offset] & 0x1f;
4795
4796	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4797		u8 vic;
4798
4799		vic = db[9 + offset + i];
4800		modes += add_hdmi_mode(connector, vic);
4801	}
4802	offset += 1 + vic_len;
4803
4804	if (multi_present == 1)
4805		multi_len = 2;
4806	else if (multi_present == 2)
4807		multi_len = 4;
4808	else
4809		multi_len = 0;
4810
4811	if (len < (8 + offset + hdmi_3d_len - 1))
4812		goto out;
4813
4814	if (hdmi_3d_len < multi_len)
4815		goto out;
4816
4817	if (multi_present == 1 || multi_present == 2) {
4818		/* 3D_Structure_ALL */
4819		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820
4821		/* check if 3D_MASK is present */
4822		if (multi_present == 2)
4823			mask = (db[10 + offset] << 8) | db[11 + offset];
4824		else
4825			mask = 0xffff;
4826
4827		for (i = 0; i < 16; i++) {
4828			if (mask & (1 << i))
4829				modes += add_3d_struct_modes(connector,
4830							     structure_all, i);
 
 
4831		}
4832	}
4833
4834	offset += multi_len;
4835
4836	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837		int vic_index;
4838		struct drm_display_mode *newmode = NULL;
4839		unsigned int newflag = 0;
4840		bool detail_present;
4841
4842		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843
4844		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4845			break;
4846
4847		/* 2D_VIC_order_X */
4848		vic_index = db[8 + offset + i] >> 4;
4849
4850		/* 3D_Structure_X */
4851		switch (db[8 + offset + i] & 0x0f) {
4852		case 0:
4853			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4854			break;
4855		case 6:
4856			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4857			break;
4858		case 8:
4859			/* 3D_Detail_X */
4860			if ((db[9 + offset + i] >> 4) == 1)
4861				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4862			break;
4863		}
4864
4865		if (newflag != 0) {
4866			newmode = drm_display_mode_from_vic_index(connector,
 
 
4867								  vic_index);
4868
4869			if (newmode) {
4870				newmode->flags |= newflag;
4871				drm_mode_probed_add(connector, newmode);
4872				modes++;
4873			}
4874		}
4875
4876		if (detail_present)
4877			i++;
4878	}
4879
4880out:
 
 
4881	return modes;
4882}
4883
4884static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4885cea_revision(const u8 *cea)
4886{
4887	/*
4888	 * FIXME is this correct for the DispID variant?
4889	 * The DispID spec doesn't really specify whether
4890	 * this is the revision of the CEA extension or
4891	 * the DispID CEA data block. And the only value
4892	 * given as an example is 0.
4893	 */
4894	return cea[1];
4895}
4896
4897/*
4898 * CTA Data Block iterator.
4899 *
4900 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4901 * CTA Data Blocks.
4902 *
4903 * struct cea_db *db:
4904 * struct cea_db_iter iter;
4905 *
4906 * cea_db_iter_edid_begin(edid, &iter);
4907 * cea_db_iter_for_each(db, &iter) {
4908 *         // do stuff with db
4909 * }
4910 * cea_db_iter_end(&iter);
4911 */
4912struct cea_db_iter {
4913	struct drm_edid_iter edid_iter;
4914	struct displayid_iter displayid_iter;
4915
4916	/* Current Data Block Collection. */
4917	const u8 *collection;
4918
4919	/* Current Data Block index in current collection. */
4920	int index;
4921
4922	/* End index in current collection. */
4923	int end;
4924};
4925
4926/* CTA-861-H section 7.4 CTA Data BLock Collection */
4927struct cea_db {
4928	u8 tag_length;
4929	u8 data[];
4930} __packed;
4931
4932static int cea_db_tag(const struct cea_db *db)
4933{
4934	return db->tag_length >> 5;
4935}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936
4937static int cea_db_payload_len(const void *_db)
4938{
4939	/* FIXME: Transition to passing struct cea_db * everywhere. */
4940	const struct cea_db *db = _db;
4941
4942	return db->tag_length & 0x1f;
4943}
4944
4945static const void *cea_db_data(const struct cea_db *db)
4946{
4947	return db->data;
4948}
4949
4950static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951{
4952	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4953		cea_db_payload_len(db) >= 1 &&
4954		db->data[0] == tag;
4955}
4956
4957static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958{
4959	const u8 *data = cea_db_data(db);
4960
4961	return cea_db_tag(db) == CTA_DB_VENDOR &&
4962		cea_db_payload_len(db) >= 3 &&
4963		oui(data[2], data[1], data[0]) == vendor_oui;
4964}
4965
4966static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4967				   struct cea_db_iter *iter)
4968{
4969	memset(iter, 0, sizeof(*iter));
4970
4971	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4972	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4973}
4974
4975static const struct cea_db *
4976__cea_db_iter_current_block(const struct cea_db_iter *iter)
4977{
4978	const struct cea_db *db;
4979
4980	if (!iter->collection)
4981		return NULL;
4982
4983	db = (const struct cea_db *)&iter->collection[iter->index];
 
4984
4985	if (iter->index + sizeof(*db) <= iter->end &&
4986	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4987		return db;
4988
4989	return NULL;
4990}
4991
4992/*
4993 * References:
4994 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995 */
4996static int cea_db_collection_size(const u8 *cta)
4997{
4998	u8 d = cta[2];
 
4999
5000	if (d < 4 || d > 127)
5001		return 0;
5002
5003	return d - 4;
5004}
5005
5006/*
5007 * References:
5008 * - VESA E-EDID v1.4
5009 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010 */
5011static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012{
5013	const u8 *ext;
5014
5015	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5016		int size;
5017
5018		/* Only support CTA Extension revision 3+ */
5019		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5020			continue;
5021
5022		size = cea_db_collection_size(ext);
5023		if (!size)
5024			continue;
5025
5026		iter->index = 4;
5027		iter->end = iter->index + size;
5028
5029		return ext;
5030	}
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5038 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039 *
5040 * Note that the above do not specify any connection between DisplayID Data
5041 * Block revision and CTA Extension versions.
5042 */
5043static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044{
5045	const struct displayid_block *block;
 
5046
5047	displayid_iter_for_each(block, &iter->displayid_iter) {
5048		if (block->tag != DATA_BLOCK_CTA)
5049			continue;
5050
5051		/*
5052		 * The displayid iterator has already verified the block bounds
5053		 * in displayid_iter_block().
5054		 */
5055		iter->index = sizeof(*block);
5056		iter->end = iter->index + block->num_bytes;
5057
5058		return block;
5059	}
5060
5061	return NULL;
5062}
5063
5064static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065{
5066	const struct cea_db *db;
 
5067
5068	if (iter->collection) {
5069		/* Current collection should always be valid. */
5070		db = __cea_db_iter_current_block(iter);
5071		if (WARN_ON(!db)) {
5072			iter->collection = NULL;
5073			return NULL;
5074		}
5075
5076		/* Next block in CTA Data Block Collection */
5077		iter->index += sizeof(*db) + cea_db_payload_len(db);
5078
5079		db = __cea_db_iter_current_block(iter);
5080		if (db)
5081			return db;
5082	}
5083
5084	for (;;) {
5085		/*
5086		 * Find the next CTA Data Block Collection. First iterate all
5087		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088		 *
5089		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5090		 * Extension, it's recommended that DisplayID extensions are
5091		 * exposed after all of the CTA Extensions.
5092		 */
5093		iter->collection = __cea_db_iter_edid_next(iter);
5094		if (!iter->collection)
5095			iter->collection = __cea_db_iter_displayid_next(iter);
5096
5097		if (!iter->collection)
5098			return NULL;
5099
5100		db = __cea_db_iter_current_block(iter);
5101		if (db)
5102			return db;
5103	}
5104}
5105
5106#define cea_db_iter_for_each(__db, __iter) \
5107	while (((__db) = __cea_db_iter_next(__iter)))
5108
5109static void cea_db_iter_end(struct cea_db_iter *iter)
5110{
5111	displayid_iter_end(&iter->displayid_iter);
5112	drm_edid_iter_end(&iter->edid_iter);
5113
5114	memset(iter, 0, sizeof(*iter));
5115}
5116
5117static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118{
5119	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5120		cea_db_payload_len(db) >= 5;
5121}
5122
5123static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124{
5125	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5126		cea_db_payload_len(db) >= 7;
5127}
5128
5129static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130{
5131	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5132		cea_db_payload_len(db) >= 2;
5133}
5134
5135static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136{
5137	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5138		cea_db_payload_len(db) == 21;
5139}
5140
5141static bool cea_db_is_vcdb(const struct cea_db *db)
5142{
5143	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5144		cea_db_payload_len(db) == 2;
5145}
5146
5147static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148{
5149	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5150		cea_db_payload_len(db) >= 7;
5151}
5152
5153static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154{
5155	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5156}
5157
5158static bool cea_db_is_y420vdb(const struct cea_db *db)
5159{
5160	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5161}
5162
5163static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164{
5165	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5166		cea_db_payload_len(db) >= 3;
5167}
5168
5169/*
5170 * Get the HF-EEODB override extension block count from EDID.
5171 *
5172 * The passed in EDID may be partially read, as long as it has at least two
5173 * blocks (base block and one extension block) if EDID extension count is > 0.
5174 *
5175 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5176 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5177 * iterators instead.
5178 *
5179 * References:
5180 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181 */
5182static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183{
5184	const u8 *cta;
5185
5186	/* No extensions according to base block, no HF-EEODB. */
5187	if (!edid_extension_block_count(edid))
5188		return 0;
5189
5190	/* HF-EEODB is always in the first EDID extension block only */
5191	cta = edid_extension_block_data(edid, 0);
5192	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5193		return 0;
5194
5195	/* Need to have the data block collection, and at least 3 bytes. */
5196	if (cea_db_collection_size(cta) < 3)
5197		return 0;
5198
5199	/*
5200	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5201	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5202	 * through 6 of Block 1 of the E-EDID.
5203	 */
5204	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205		return 0;
5206
5207	return cta[4 + 2];
5208}
5209
5210/*
5211 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212 *
5213 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5214 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5215 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5216 * support YCBCR420 output too.
5217 */
5218static void parse_cta_y420cmdb(struct drm_connector *connector,
5219			       const struct cea_db *db, u64 *y420cmdb_map)
5220{
5221	struct drm_display_info *info = &connector->display_info;
5222	int i, map_len = cea_db_payload_len(db) - 1;
5223	const u8 *data = cea_db_data(db) + 1;
 
5224	u64 map = 0;
5225
5226	if (map_len == 0) {
5227		/* All CEA modes support ycbcr420 sampling also.*/
5228		map = U64_MAX;
5229		goto out;
 
5230	}
5231
5232	/*
5233	 * This map indicates which of the existing CEA block modes
5234	 * from VDB can support YCBCR420 output too. So if bit=0 is
5235	 * set, first mode from VDB can support YCBCR420 output too.
5236	 * We will parse and keep this map, before parsing VDB itself
5237	 * to avoid going through the same block again and again.
5238	 *
5239	 * Spec is not clear about max possible size of this block.
5240	 * Clamping max bitmap block size at 8 bytes. Every byte can
5241	 * address 8 CEA modes, in this way this map can address
5242	 * 8*8 = first 64 SVDs.
5243	 */
5244	if (WARN_ON_ONCE(map_len > 8))
5245		map_len = 8;
5246
5247	for (i = 0; i < map_len; i++)
5248		map |= (u64)data[i] << (8 * i);
5249
5250out:
5251	if (map)
5252		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253
5254	*y420cmdb_map = map;
5255}
5256
5257static int add_cea_modes(struct drm_connector *connector,
5258			 const struct drm_edid *drm_edid)
5259{
5260	const struct cea_db *db;
5261	struct cea_db_iter iter;
5262	int modes;
 
 
 
 
5263
5264	/* CTA VDB block VICs parsed earlier */
5265	modes = add_cta_vdb_modes(connector);
5266
5267	cea_db_iter_edid_begin(drm_edid, &iter);
5268	cea_db_iter_for_each(db, &iter) {
5269		if (cea_db_is_hdmi_vsdb(db)) {
5270			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5271						    cea_db_payload_len(db));
5272		} else if (cea_db_is_y420vdb(db)) {
5273			const u8 *vdb420 = cea_db_data(db) + 1;
5274
5275			/* Add 4:2:0(only) modes present in EDID */
5276			modes += do_y420vdb_modes(connector, vdb420,
5277						  cea_db_payload_len(db) - 1);
 
 
 
 
 
 
 
 
5278		}
5279	}
5280	cea_db_iter_end(&iter);
 
 
 
 
 
 
 
5281
5282	return modes;
5283}
5284
5285static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5286					  struct drm_display_mode *mode)
5287{
5288	const struct drm_display_mode *cea_mode;
5289	int clock1, clock2, clock;
5290	u8 vic;
5291	const char *type;
5292
5293	/*
5294	 * allow 5kHz clock difference either way to account for
5295	 * the 10kHz clock resolution limit of detailed timings.
5296	 */
5297	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5298	if (drm_valid_cea_vic(vic)) {
5299		type = "CEA";
5300		cea_mode = cea_mode_for_vic(vic);
5301		clock1 = cea_mode->clock;
5302		clock2 = cea_mode_alternate_clock(cea_mode);
5303	} else {
5304		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5305		if (drm_valid_hdmi_vic(vic)) {
5306			type = "HDMI";
5307			cea_mode = &edid_4k_modes[vic];
5308			clock1 = cea_mode->clock;
5309			clock2 = hdmi_mode_alternate_clock(cea_mode);
5310		} else {
5311			return;
5312		}
5313	}
5314
5315	/* pick whichever is closest */
5316	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5317		clock = clock1;
5318	else
5319		clock = clock2;
5320
5321	if (mode->clock == clock)
5322		return;
5323
5324	drm_dbg_kms(connector->dev,
5325		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5326		    connector->base.id, connector->name,
5327		    type, vic, mode->clock, clock);
5328	mode->clock = clock;
5329}
5330
5331static void drm_calculate_luminance_range(struct drm_connector *connector)
5332{
5333	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5334	struct drm_luminance_range_info *luminance_range =
5335		&connector->display_info.luminance_range;
5336	static const u8 pre_computed_values[] = {
5337		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5338		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339	};
5340	u32 max_avg, min_cll, max, min, q, r;
5341
5342	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5343		return;
5344
5345	max_avg = hdr_metadata->max_fall;
5346	min_cll = hdr_metadata->min_cll;
5347
5348	/*
5349	 * From the specification (CTA-861-G), for calculating the maximum
5350	 * luminance we need to use:
5351	 *	Luminance = 50*2**(CV/32)
5352	 * Where CV is a one-byte value.
5353	 * For calculating this expression we may need float point precision;
5354	 * to avoid this complexity level, we take advantage that CV is divided
5355	 * by a constant. From the Euclids division algorithm, we know that CV
5356	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5357	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5358	 * need to pre-compute the value of r/32. For pre-computing the values
5359	 * We just used the following Ruby line:
5360	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5361	 * The results of the above expressions can be verified at
5362	 * pre_computed_values.
5363	 */
5364	q = max_avg >> 5;
5365	r = max_avg % 32;
5366	max = (1 << q) * pre_computed_values[r];
5367
5368	/* min luminance: maxLum * (CV/255)^2 / 100 */
5369	q = DIV_ROUND_CLOSEST(min_cll, 255);
5370	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371
5372	luminance_range->min_luminance = min;
5373	luminance_range->max_luminance = max;
5374}
5375
5376static uint8_t eotf_supported(const u8 *edid_ext)
5377{
5378	return edid_ext[2] &
5379		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5380		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5381		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5382		 BIT(HDMI_EOTF_BT_2100_HLG));
5383}
5384
5385static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386{
5387	return edid_ext[3] &
5388		BIT(HDMI_STATIC_METADATA_TYPE1);
5389}
5390
5391static void
5392drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5393{
5394	u16 len;
5395
5396	len = cea_db_payload_len(db);
5397
5398	connector->hdr_sink_metadata.hdmi_type1.eotf =
5399						eotf_supported(db);
5400	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5401						hdr_metadata_type(db);
5402
5403	if (len >= 4)
5404		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405	if (len >= 5)
5406		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407	if (len >= 6) {
5408		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409
5410		/* Calculate only when all values are available */
5411		drm_calculate_luminance_range(connector);
5412	}
5413}
5414
5415/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416static void
5417drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418{
5419	u8 len = cea_db_payload_len(db);
5420
5421	if (len >= 6 && (db[6] & (1 << 7)))
5422		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423
5424	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5425		connector->latency_present[0] = true;
 
 
5426		connector->video_latency[0] = db[9];
 
5427		connector->audio_latency[0] = db[10];
5428	}
5429
5430	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5431		connector->latency_present[1] = true;
5432		connector->video_latency[1] = db[11];
 
5433		connector->audio_latency[1] = db[12];
5434	}
5435
5436	drm_dbg_kms(connector->dev,
5437		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5438		    connector->base.id, connector->name,
5439		    connector->latency_present[0], connector->latency_present[1],
5440		    connector->video_latency[0], connector->video_latency[1],
5441		    connector->audio_latency[0], connector->audio_latency[1]);
 
 
 
5442}
5443
5444static void
5445monitor_name(const struct detailed_timing *timing, void *data)
5446{
5447	const char **res = data;
5448
5449	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5450		return;
5451
5452	*res = timing->data.other_data.data.str.str;
5453}
5454
5455static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456{
5457	const char *edid_name = NULL;
5458	int mnl;
5459
5460	if (!drm_edid || !name)
5461		return 0;
5462
5463	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5464	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5465		if (edid_name[mnl] == 0x0a)
5466			break;
5467
5468		name[mnl] = edid_name[mnl];
5469	}
5470
5471	return mnl;
5472}
5473
5474/**
5475 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5476 * @edid: monitor EDID information
5477 * @name: pointer to a character array to hold the name of the monitor
5478 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5479 *
5480 */
5481void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482{
5483	int name_length = 0;
 
5484
5485	if (bufsize <= 0)
5486		return;
5487
5488	if (edid) {
5489		char buf[13];
5490		struct drm_edid drm_edid = {
5491			.edid = edid,
5492			.size = edid_size(edid),
5493		};
5494
5495		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5496		memcpy(name, buf, name_length);
5497	}
5498
5499	name[name_length] = '\0';
5500}
5501EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502
5503static void clear_eld(struct drm_connector *connector)
5504{
5505	memset(connector->eld, 0, sizeof(connector->eld));
5506
5507	connector->latency_present[0] = false;
5508	connector->latency_present[1] = false;
5509	connector->video_latency[0] = 0;
5510	connector->audio_latency[0] = 0;
5511	connector->video_latency[1] = 0;
5512	connector->audio_latency[1] = 0;
5513}
5514
5515/*
5516 * Get 3-byte SAD buffer from struct cea_sad.
5517 */
5518void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519{
5520	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5521	sad[1] = cta_sad->freq;
5522	sad[2] = cta_sad->byte2;
5523}
5524
5525/*
5526 * Set struct cea_sad from 3-byte SAD buffer.
5527 */
5528void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529{
5530	cta_sad->format = (sad[0] & 0x78) >> 3;
5531	cta_sad->channels = sad[0] & 0x07;
5532	cta_sad->freq = sad[1] & 0x7f;
5533	cta_sad->byte2 = sad[2];
5534}
5535
5536/*
5537 * drm_edid_to_eld - build ELD from EDID
5538 * @connector: connector corresponding to the HDMI/DP sink
5539 * @drm_edid: EDID to parse
5540 *
5541 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5542 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543 */
5544static void drm_edid_to_eld(struct drm_connector *connector,
5545			    const struct drm_edid *drm_edid)
5546{
5547	const struct drm_display_info *info = &connector->display_info;
5548	const struct cea_db *db;
5549	struct cea_db_iter iter;
5550	uint8_t *eld = connector->eld;
 
 
5551	int total_sad_count = 0;
5552	int mnl;
 
5553
5554	if (!drm_edid)
 
 
5555		return;
5556
5557	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5558	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5559		    connector->base.id, connector->name,
5560		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
 
 
 
 
5561
5562	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5563	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564
5565	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566
5567	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5568	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5569	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5570	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571
5572	cea_db_iter_edid_begin(drm_edid, &iter);
5573	cea_db_iter_for_each(db, &iter) {
5574		const u8 *data = cea_db_data(db);
5575		int len = cea_db_payload_len(db);
5576		int sad_count;
5577
5578		switch (cea_db_tag(db)) {
5579		case CTA_DB_AUDIO:
5580			/* Audio Data Block, contains SADs */
5581			sad_count = min(len / 3, 15 - total_sad_count);
5582			if (sad_count >= 1)
5583				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5584				       data, sad_count * 3);
5585			total_sad_count += sad_count;
5586			break;
5587		case CTA_DB_SPEAKER:
5588			/* Speaker Allocation Data Block */
5589			if (len >= 1)
5590				eld[DRM_ELD_SPEAKER] = data[0];
5591			break;
5592		case CTA_DB_VENDOR:
5593			/* HDMI Vendor-Specific Data Block */
5594			if (cea_db_is_hdmi_vsdb(db))
5595				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5596			break;
5597		default:
5598			break;
 
 
 
 
 
 
 
 
 
 
5599		}
5600	}
5601	cea_db_iter_end(&iter);
5602
5603	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604
5605	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5606	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5607		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608	else
5609		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610
5611	eld[DRM_ELD_BASELINE_ELD_LEN] =
5612		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613
5614	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5615		    connector->base.id, connector->name,
5616		    drm_eld_size(eld), total_sad_count);
5617}
5618
5619static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5620			    struct cea_sad **psads)
5621{
5622	const struct cea_db *db;
5623	struct cea_db_iter iter;
5624	int count = 0;
5625
5626	cea_db_iter_edid_begin(drm_edid, &iter);
5627	cea_db_iter_for_each(db, &iter) {
5628		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5629			struct cea_sad *sads;
5630			int i;
5631
5632			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5633			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5634			*psads = sads;
5635			if (!sads)
5636				return -ENOMEM;
5637			for (i = 0; i < count; i++)
5638				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5639			break;
5640		}
5641	}
5642	cea_db_iter_end(&iter);
5643
5644	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5645
5646	return count;
5647}
5648
5649/**
5650 * drm_edid_to_sad - extracts SADs from EDID
5651 * @edid: EDID to parse
5652 * @sads: pointer that will be set to the extracted SADs
5653 *
5654 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655 *
5656 * Note: The returned pointer needs to be freed using kfree().
5657 *
5658 * Return: The number of found SADs or negative number on error.
5659 */
5660int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661{
5662	struct drm_edid drm_edid;
 
 
5663
5664	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665}
5666EXPORT_SYMBOL(drm_edid_to_sad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5667
5668static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5669					   u8 **sadb)
5670{
5671	const struct cea_db *db;
5672	struct cea_db_iter iter;
5673	int count = 0;
5674
5675	cea_db_iter_edid_begin(drm_edid, &iter);
5676	cea_db_iter_for_each(db, &iter) {
5677		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5678		    cea_db_payload_len(db) == 3) {
5679			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5680					GFP_KERNEL);
5681			if (!*sadb)
5682				return -ENOMEM;
5683			count = cea_db_payload_len(db);
 
 
 
 
 
 
 
5684			break;
5685		}
5686	}
5687	cea_db_iter_end(&iter);
5688
5689	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5690
5691	return count;
5692}
 
5693
5694/**
5695 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5696 * @edid: EDID to parse
5697 * @sadb: pointer to the speaker block
5698 *
5699 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700 *
5701 * Note: The returned pointer needs to be freed using kfree().
5702 *
5703 * Return: The number of found Speaker Allocation Blocks or negative number on
5704 * error.
5705 */
5706int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707{
5708	struct drm_edid drm_edid;
 
 
5709
5710	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5711					       sadb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5712}
5713EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5714
5715/**
5716 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5717 * @connector: connector associated with the HDMI/DP sink
5718 * @mode: the display mode
5719 *
5720 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5721 * the sink doesn't support audio or video.
5722 */
5723int drm_av_sync_delay(struct drm_connector *connector,
5724		      const struct drm_display_mode *mode)
5725{
5726	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5727	int a, v;
5728
5729	if (!connector->latency_present[0])
5730		return 0;
5731	if (!connector->latency_present[1])
5732		i = 0;
5733
5734	a = connector->audio_latency[i];
5735	v = connector->video_latency[i];
5736
5737	/*
5738	 * HDMI/DP sink doesn't support audio or video?
5739	 */
5740	if (a == 255 || v == 255)
5741		return 0;
5742
5743	/*
5744	 * Convert raw EDID values to millisecond.
5745	 * Treat unknown latency as 0ms.
5746	 */
5747	if (a)
5748		a = min(2 * (a - 1), 500);
5749	if (v)
5750		v = min(2 * (v - 1), 500);
5751
5752	return max(v - a, 0);
5753}
5754EXPORT_SYMBOL(drm_av_sync_delay);
5755
5756static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757{
5758	const struct cea_db *db;
5759	struct cea_db_iter iter;
5760	bool hdmi = false;
5761
5762	/*
5763	 * Because HDMI identifier is in Vendor Specific Block,
5764	 * search it from all data blocks of CEA extension.
5765	 */
5766	cea_db_iter_edid_begin(drm_edid, &iter);
5767	cea_db_iter_for_each(db, &iter) {
5768		if (cea_db_is_hdmi_vsdb(db)) {
5769			hdmi = true;
5770			break;
5771		}
5772	}
5773	cea_db_iter_end(&iter);
5774
5775	return hdmi;
5776}
5777
5778/**
5779 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5780 * @edid: monitor EDID information
5781 *
5782 * Parse the CEA extension according to CEA-861-B.
5783 *
5784 * Drivers that have added the modes parsed from EDID to drm_display_info
5785 * should use &drm_display_info.is_hdmi instead of calling this function.
5786 *
5787 * Return: True if the monitor is HDMI, false if not or unknown.
5788 */
5789bool drm_detect_hdmi_monitor(const struct edid *edid)
5790{
5791	struct drm_edid drm_edid;
 
 
5792
5793	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794}
5795EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796
5797static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798{
5799	struct drm_edid_iter edid_iter;
5800	const struct cea_db *db;
5801	struct cea_db_iter iter;
5802	const u8 *edid_ext;
5803	bool has_audio = false;
5804
5805	drm_edid_iter_begin(drm_edid, &edid_iter);
5806	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5807		if (edid_ext[0] == CEA_EXT) {
5808			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5809			if (has_audio)
5810				break;
5811		}
5812	}
5813	drm_edid_iter_end(&edid_iter);
5814
5815	if (has_audio) {
5816		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5817		goto end;
5818	}
5819
5820	cea_db_iter_edid_begin(drm_edid, &iter);
5821	cea_db_iter_for_each(db, &iter) {
5822		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5823			const u8 *data = cea_db_data(db);
5824			int i;
5825
5826			for (i = 0; i < cea_db_payload_len(db); i += 3)
5827				DRM_DEBUG_KMS("CEA audio format %d\n",
5828					      (data[i] >> 3) & 0xf);
5829			has_audio = true;
5830			break;
5831		}
5832	}
5833	cea_db_iter_end(&iter);
5834
5835end:
5836	return has_audio;
5837}
 
5838
5839/**
5840 * drm_detect_monitor_audio - check monitor audio capability
5841 * @edid: EDID block to scan
5842 *
5843 * Monitor should have CEA extension block.
5844 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5845 * audio' only. If there is any audio extension block and supported
5846 * audio format, assume at least 'basic audio' support, even if 'basic
5847 * audio' is not defined in EDID.
5848 *
5849 * Return: True if the monitor supports audio, false otherwise.
5850 */
5851bool drm_detect_monitor_audio(const struct edid *edid)
5852{
5853	struct drm_edid drm_edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5854
5855	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
 
 
 
 
 
 
 
 
 
 
5856}
5857EXPORT_SYMBOL(drm_detect_monitor_audio);
5858
5859
5860/**
5861 * drm_default_rgb_quant_range - default RGB quantization range
5862 * @mode: display mode
5863 *
5864 * Determine the default RGB quantization range for the mode,
5865 * as specified in CEA-861.
5866 *
5867 * Return: The default RGB quantization range for the mode
5868 */
5869enum hdmi_quantization_range
5870drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871{
5872	/* All CEA modes other than VIC 1 use limited quantization range. */
5873	return drm_match_cea_mode(mode) > 1 ?
5874		HDMI_QUANTIZATION_RANGE_LIMITED :
5875		HDMI_QUANTIZATION_RANGE_FULL;
5876}
5877EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878
5879/* CTA-861 Video Data Block (CTA VDB) */
5880static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881{
5882	struct drm_display_info *info = &connector->display_info;
5883	int i, vic_index, len = cea_db_payload_len(db);
5884	const u8 *svds = cea_db_data(db);
5885	u8 *vics;
5886
5887	if (!len)
5888		return;
5889
5890	/* Gracefully handle multiple VDBs, however unlikely that is */
5891	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5892	if (!vics)
5893		return;
5894
5895	vic_index = info->vics_len;
5896	info->vics_len += len;
5897	info->vics = vics;
5898
5899	for (i = 0; i < len; i++) {
5900		u8 vic = svd_to_vic(svds[i]);
5901
5902		if (!drm_valid_cea_vic(vic))
5903			vic = 0;
5904
5905		info->vics[vic_index++] = vic;
5906	}
5907}
5908
5909/*
5910 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911 *
5912 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5913 * using the VICs themselves.
5914 */
5915static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916{
5917	struct drm_display_info *info = &connector->display_info;
5918	struct drm_hdmi_info *hdmi = &info->hdmi;
5919	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920
5921	for (i = 0; i < len; i++) {
5922		u8 vic = info->vics[i];
5923
5924		if (vic && y420cmdb_map & BIT_ULL(i))
5925			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5926	}
5927}
5928
5929static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930{
5931	const struct drm_display_info *info = &connector->display_info;
5932	int i;
5933
5934	if (!vic || !info->vics)
5935		return false;
5936
5937	for (i = 0; i < info->vics_len; i++) {
5938		if (info->vics[i] == vic)
5939			return true;
5940	}
5941
5942	return false;
5943}
5944
5945/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5946static void parse_cta_y420vdb(struct drm_connector *connector,
5947			      const struct cea_db *db)
5948{
5949	struct drm_display_info *info = &connector->display_info;
5950	struct drm_hdmi_info *hdmi = &info->hdmi;
5951	const u8 *svds = cea_db_data(db) + 1;
5952	int i;
5953
5954	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5955		u8 vic = svd_to_vic(svds[i]);
5956
5957		if (!drm_valid_cea_vic(vic))
5958			continue;
5959
5960		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5961		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5962	}
5963}
5964
5965static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966{
5967	struct drm_display_info *info = &connector->display_info;
5968
5969	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5970		    connector->base.id, connector->name, db[2]);
5971
5972	if (db[2] & EDID_CEA_VCDB_QS)
5973		info->rgb_quant_range_selectable = true;
5974}
5975
5976static
5977void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978{
5979	switch (max_frl_rate) {
5980	case 1:
5981		*max_lanes = 3;
5982		*max_rate_per_lane = 3;
5983		break;
5984	case 2:
5985		*max_lanes = 3;
5986		*max_rate_per_lane = 6;
5987		break;
5988	case 3:
5989		*max_lanes = 4;
5990		*max_rate_per_lane = 6;
5991		break;
5992	case 4:
5993		*max_lanes = 4;
5994		*max_rate_per_lane = 8;
5995		break;
5996	case 5:
5997		*max_lanes = 4;
5998		*max_rate_per_lane = 10;
5999		break;
6000	case 6:
6001		*max_lanes = 4;
6002		*max_rate_per_lane = 12;
6003		break;
6004	case 0:
6005	default:
6006		*max_lanes = 0;
6007		*max_rate_per_lane = 0;
6008	}
6009}
6010
6011static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6012					       const u8 *db)
6013{
6014	u8 dc_mask;
6015	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016
6017	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6018	hdmi->y420_dc_modes = dc_mask;
6019}
6020
6021static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6022			       const u8 *hf_scds)
6023{
6024	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025
6026	if (!hdmi_dsc->v_1p2)
6027		return;
6028
6029	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6030	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031
6032	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6033		hdmi_dsc->bpc_supported = 16;
6034	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6035		hdmi_dsc->bpc_supported = 12;
6036	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6037		hdmi_dsc->bpc_supported = 10;
6038	else
6039		/* Supports min 8 BPC if DSC 1.2 is supported*/
6040		hdmi_dsc->bpc_supported = 8;
6041
6042	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043		u8 dsc_max_slices;
6044		u8 dsc_max_frl_rate;
6045
6046		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6047		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6048				     &hdmi_dsc->max_frl_rate_per_lane);
6049
6050		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051
6052		switch (dsc_max_slices) {
6053		case 1:
6054			hdmi_dsc->max_slices = 1;
6055			hdmi_dsc->clk_per_slice = 340;
6056			break;
6057		case 2:
6058			hdmi_dsc->max_slices = 2;
6059			hdmi_dsc->clk_per_slice = 340;
6060			break;
6061		case 3:
6062			hdmi_dsc->max_slices = 4;
6063			hdmi_dsc->clk_per_slice = 340;
6064			break;
6065		case 4:
6066			hdmi_dsc->max_slices = 8;
6067			hdmi_dsc->clk_per_slice = 340;
6068			break;
6069		case 5:
6070			hdmi_dsc->max_slices = 8;
6071			hdmi_dsc->clk_per_slice = 400;
6072			break;
6073		case 6:
6074			hdmi_dsc->max_slices = 12;
6075			hdmi_dsc->clk_per_slice = 400;
6076			break;
6077		case 7:
6078			hdmi_dsc->max_slices = 16;
6079			hdmi_dsc->clk_per_slice = 400;
6080			break;
6081		case 0:
6082		default:
6083			hdmi_dsc->max_slices = 0;
6084			hdmi_dsc->clk_per_slice = 0;
6085		}
6086	}
6087
6088	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6089		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6090}
6091
6092/* Sink Capability Data Structure */
6093static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6094				      const u8 *hf_scds)
6095{
6096	struct drm_display_info *info = &connector->display_info;
6097	struct drm_hdmi_info *hdmi = &info->hdmi;
6098	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6099	int max_tmds_clock = 0;
6100	u8 max_frl_rate = 0;
6101	bool dsc_support = false;
6102
6103	info->has_hdmi_infoframe = true;
6104
6105	if (hf_scds[6] & 0x80) {
6106		hdmi->scdc.supported = true;
6107		if (hf_scds[6] & 0x40)
6108			hdmi->scdc.read_request = true;
6109	}
6110
6111	/*
6112	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6113	 * And as per the spec, three factors confirm this:
6114	 * * Availability of a HF-VSDB block in EDID (check)
6115	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6116	 * * SCDC support available (let's check)
6117	 * Lets check it out.
6118	 */
6119
6120	if (hf_scds[5]) {
 
 
6121		struct drm_scdc *scdc = &hdmi->scdc;
6122
6123		/* max clock is 5000 KHz times block value */
6124		max_tmds_clock = hf_scds[5] * 5000;
6125
6126		if (max_tmds_clock > 340000) {
6127			info->max_tmds_clock = max_tmds_clock;
 
 
6128		}
6129
6130		if (scdc->supported) {
6131			scdc->scrambling.supported = true;
6132
6133			/* Few sinks support scrambling for clocks < 340M */
6134			if ((hf_scds[6] & 0x8))
6135				scdc->scrambling.low_rates = true;
6136		}
6137	}
6138
6139	if (hf_scds[7]) {
6140		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6141		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6142				     &hdmi->max_frl_rate_per_lane);
6143	}
6144
6145	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146
6147	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6148		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6149		dsc_support = true;
6150	}
6151
6152	drm_dbg_kms(connector->dev,
6153		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6154		    connector->base.id, connector->name,
6155		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6156}
6157
6158static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6159					   const u8 *hdmi)
6160{
6161	struct drm_display_info *info = &connector->display_info;
6162	unsigned int dc_bpc = 0;
6163
6164	/* HDMI supports at least 8 bpc */
6165	info->bpc = 8;
6166
6167	if (cea_db_payload_len(hdmi) < 6)
6168		return;
6169
6170	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171		dc_bpc = 10;
6172		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6173		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6174			    connector->base.id, connector->name);
6175	}
6176
6177	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178		dc_bpc = 12;
6179		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6180		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6181			    connector->base.id, connector->name);
6182	}
6183
6184	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185		dc_bpc = 16;
6186		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6187		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6188			    connector->base.id, connector->name);
6189	}
6190
6191	if (dc_bpc == 0) {
6192		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6193			    connector->base.id, connector->name);
6194		return;
6195	}
6196
6197	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6198		    connector->base.id, connector->name, dc_bpc);
6199	info->bpc = dc_bpc;
6200
 
 
 
 
 
 
 
6201	/* YCRCB444 is optional according to spec. */
6202	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6203		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6204		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6205			    connector->base.id, connector->name);
6206	}
6207
6208	/*
6209	 * Spec says that if any deep color mode is supported at all,
6210	 * then deep color 36 bit must be supported.
6211	 */
6212	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6213		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6214			    connector->base.id, connector->name);
6215	}
6216}
6217
6218/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219static void
6220drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221{
6222	struct drm_display_info *info = &connector->display_info;
6223	u8 len = cea_db_payload_len(db);
6224
6225	info->is_hdmi = true;
6226
6227	info->source_physical_address = (db[4] << 8) | db[5];
6228
6229	if (len >= 6)
6230		info->dvi_dual = db[6] & 1;
6231	if (len >= 7)
6232		info->max_tmds_clock = db[7] * 5000;
6233
6234	/*
6235	 * Try to infer whether the sink supports HDMI infoframes.
6236	 *
6237	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6238	 * supports infoframes if HDMI_Video_present is set.
6239	 */
6240	if (len >= 8 && db[8] & BIT(5))
6241		info->has_hdmi_infoframe = true;
6242
6243	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6244		    connector->base.id, connector->name,
6245		    info->dvi_dual, info->max_tmds_clock);
6246
6247	drm_parse_hdmi_deep_color_info(connector, db);
6248}
6249
6250/*
6251 * See EDID extension for head-mounted and specialized monitors, specified at:
6252 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253 */
6254static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6255				     const u8 *db)
6256{
6257	struct drm_display_info *info = &connector->display_info;
6258	u8 version = db[4];
6259	bool desktop_usage = db[5] & BIT(6);
6260
6261	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6262	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6263		info->non_desktop = true;
6264
6265	drm_dbg_kms(connector->dev,
6266		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6267		    connector->base.id, connector->name, version, db[5]);
6268}
6269
6270static void drm_parse_cea_ext(struct drm_connector *connector,
6271			      const struct drm_edid *drm_edid)
6272{
6273	struct drm_display_info *info = &connector->display_info;
6274	struct drm_edid_iter edid_iter;
6275	const struct cea_db *db;
6276	struct cea_db_iter iter;
6277	const u8 *edid_ext;
6278	u64 y420cmdb_map = 0;
6279
6280	drm_edid_iter_begin(drm_edid, &edid_iter);
6281	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6282		if (edid_ext[0] != CEA_EXT)
6283			continue;
 
 
6284
6285		if (!info->cea_rev)
6286			info->cea_rev = edid_ext[1];
6287
6288		if (info->cea_rev != edid_ext[1])
6289			drm_dbg_kms(connector->dev,
6290				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6291				    connector->base.id, connector->name,
6292				    info->cea_rev, edid_ext[1]);
6293
6294		/* The existence of a CTA extension should imply RGB support */
6295		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6296		if (edid_ext[3] & EDID_CEA_YCRCB444)
6297			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6298		if (edid_ext[3] & EDID_CEA_YCRCB422)
6299			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6300		if (edid_ext[3] & EDID_BASIC_AUDIO)
6301			info->has_audio = true;
6302
6303	}
6304	drm_edid_iter_end(&edid_iter);
6305
6306	cea_db_iter_edid_begin(drm_edid, &iter);
6307	cea_db_iter_for_each(db, &iter) {
6308		/* FIXME: convert parsers to use struct cea_db */
6309		const u8 *data = (const u8 *)db;
6310
6311		if (cea_db_is_hdmi_vsdb(db))
6312			drm_parse_hdmi_vsdb_video(connector, data);
6313		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6314			 cea_db_is_hdmi_forum_scdb(db))
6315			drm_parse_hdmi_forum_scds(connector, data);
6316		else if (cea_db_is_microsoft_vsdb(db))
6317			drm_parse_microsoft_vsdb(connector, data);
6318		else if (cea_db_is_y420cmdb(db))
6319			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6320		else if (cea_db_is_y420vdb(db))
6321			parse_cta_y420vdb(connector, db);
6322		else if (cea_db_is_vcdb(db))
6323			drm_parse_vcdb(connector, data);
6324		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6325			drm_parse_hdr_metadata_block(connector, data);
6326		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6327			parse_cta_vdb(connector, db);
6328		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6329			info->has_audio = true;
6330	}
6331	cea_db_iter_end(&iter);
6332
6333	if (y420cmdb_map)
6334		update_cta_y420cmdb(connector, y420cmdb_map);
6335}
6336
6337static
6338void get_monitor_range(const struct detailed_timing *timing, void *c)
 
6339{
6340	struct detailed_mode_closure *closure = c;
6341	struct drm_display_info *info = &closure->connector->display_info;
6342	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6343	const struct detailed_non_pixel *data = &timing->data.other_data;
6344	const struct detailed_data_monitor_range *range = &data->data.range;
6345	const struct edid *edid = closure->drm_edid->edid;
6346
6347	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6348		return;
6349
6350	/*
6351	 * These limits are used to determine the VRR refresh
6352	 * rate range. Only the "range limits only" variant
6353	 * of the range descriptor seems to guarantee that
6354	 * any and all timings are accepted by the sink, as
6355	 * opposed to just timings conforming to the indicated
6356	 * formula (GTF/GTF2/CVT). Thus other variants of the
6357	 * range descriptor are not accepted here.
6358	 */
6359	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6360		return;
6361
6362	monitor_range->min_vfreq = range->min_vfreq;
6363	monitor_range->max_vfreq = range->max_vfreq;
6364
6365	if (edid->revision >= 4) {
6366		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6367			monitor_range->min_vfreq += 255;
6368		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6369			monitor_range->max_vfreq += 255;
6370	}
6371}
6372
6373static void drm_get_monitor_range(struct drm_connector *connector,
6374				  const struct drm_edid *drm_edid)
6375{
6376	const struct drm_display_info *info = &connector->display_info;
6377	struct detailed_mode_closure closure = {
6378		.connector = connector,
6379		.drm_edid = drm_edid,
6380	};
6381
6382	if (drm_edid->edid->revision < 4)
6383		return;
6384
6385	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6386		return;
6387
6388	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389
6390	drm_dbg_kms(connector->dev,
6391		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6392		    connector->base.id, connector->name,
6393		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6394}
6395
6396static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6397				    const struct displayid_block *block)
6398{
6399	struct displayid_vesa_vendor_specific_block *vesa =
6400		(struct displayid_vesa_vendor_specific_block *)block;
6401	struct drm_display_info *info = &connector->display_info;
6402
6403	if (block->num_bytes < 3) {
6404		drm_dbg_kms(connector->dev,
6405			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6406			    connector->base.id, connector->name, block->num_bytes);
6407		return;
6408	}
6409
6410	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6411		return;
6412
6413	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6414		drm_dbg_kms(connector->dev,
6415			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6416			    connector->base.id, connector->name);
6417		return;
6418	}
6419
6420	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421	default:
6422		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6423			    connector->base.id, connector->name);
6424		fallthrough;
6425	case 0:
6426		info->mso_stream_count = 0;
6427		break;
6428	case 1:
6429		info->mso_stream_count = 2; /* 2 or 4 links */
6430		break;
6431	case 2:
6432		info->mso_stream_count = 4; /* 4 links */
6433		break;
6434	}
6435
6436	if (!info->mso_stream_count) {
6437		info->mso_pixel_overlap = 0;
6438		return;
6439	}
6440
6441	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6442	if (info->mso_pixel_overlap > 8) {
6443		drm_dbg_kms(connector->dev,
6444			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6445			    connector->base.id, connector->name,
6446			    info->mso_pixel_overlap);
6447		info->mso_pixel_overlap = 8;
6448	}
6449
6450	drm_dbg_kms(connector->dev,
6451		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6452		    connector->base.id, connector->name,
6453		    info->mso_stream_count, info->mso_pixel_overlap);
6454}
6455
6456static void drm_update_mso(struct drm_connector *connector,
6457			   const struct drm_edid *drm_edid)
6458{
6459	const struct displayid_block *block;
6460	struct displayid_iter iter;
6461
6462	displayid_iter_edid_begin(drm_edid, &iter);
6463	displayid_iter_for_each(block, &iter) {
6464		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6465			drm_parse_vesa_mso_data(connector, block);
6466	}
6467	displayid_iter_end(&iter);
6468}
6469
6470/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6471 * all of the values which would have been set from EDID
6472 */
6473static void drm_reset_display_info(struct drm_connector *connector)
 
6474{
6475	struct drm_display_info *info = &connector->display_info;
6476
6477	info->width_mm = 0;
6478	info->height_mm = 0;
6479
6480	info->bpc = 0;
6481	info->color_formats = 0;
6482	info->cea_rev = 0;
6483	info->max_tmds_clock = 0;
6484	info->dvi_dual = false;
6485	info->is_hdmi = false;
6486	info->has_audio = false;
6487	info->has_hdmi_infoframe = false;
6488	info->rgb_quant_range_selectable = false;
6489	memset(&info->hdmi, 0, sizeof(info->hdmi));
6490
6491	info->edid_hdmi_rgb444_dc_modes = 0;
6492	info->edid_hdmi_ycbcr444_dc_modes = 0;
6493
6494	info->non_desktop = 0;
6495	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6496	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497
6498	info->mso_stream_count = 0;
6499	info->mso_pixel_overlap = 0;
6500	info->max_dsc_bpp = 0;
6501
6502	kfree(info->vics);
6503	info->vics = NULL;
6504	info->vics_len = 0;
6505
6506	info->quirks = 0;
6507
6508	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6509}
6510
6511static void update_displayid_info(struct drm_connector *connector,
6512				  const struct drm_edid *drm_edid)
6513{
6514	struct drm_display_info *info = &connector->display_info;
6515	const struct displayid_block *block;
6516	struct displayid_iter iter;
6517
6518	displayid_iter_edid_begin(drm_edid, &iter);
6519	displayid_iter_for_each(block, &iter) {
6520		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6521		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6522		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6523			info->non_desktop = true;
6524
6525		/*
6526		 * We're only interested in the base section here, no need to
6527		 * iterate further.
6528		 */
6529		break;
6530	}
6531	displayid_iter_end(&iter);
6532}
6533
6534static void update_display_info(struct drm_connector *connector,
6535				const struct drm_edid *drm_edid)
6536{
6537	struct drm_display_info *info = &connector->display_info;
6538	const struct edid *edid;
6539
6540	drm_reset_display_info(connector);
6541	clear_eld(connector);
6542
6543	if (!drm_edid)
6544		return;
6545
6546	edid = drm_edid->edid;
6547
6548	info->quirks = edid_get_quirks(drm_edid);
6549
6550	info->width_mm = edid->width_cm * 10;
6551	info->height_mm = edid->height_cm * 10;
6552
6553	drm_get_monitor_range(connector, drm_edid);
6554
6555	if (edid->revision < 3)
6556		goto out;
6557
6558	if (!drm_edid_is_digital(drm_edid))
6559		goto out;
6560
6561	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6562	drm_parse_cea_ext(connector, drm_edid);
6563
6564	update_displayid_info(connector, drm_edid);
6565
6566	/*
6567	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568	 *
6569	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6570	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6571	 * extensions which tell otherwise.
6572	 */
6573	if (info->bpc == 0 && edid->revision == 3 &&
6574	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575		info->bpc = 8;
6576		drm_dbg_kms(connector->dev,
6577			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6578			    connector->base.id, connector->name, info->bpc);
6579	}
6580
6581	/* Only defined for 1.4 with digital displays */
6582	if (edid->revision < 4)
6583		goto out;
6584
6585	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6586	case DRM_EDID_DIGITAL_DEPTH_6:
6587		info->bpc = 6;
6588		break;
6589	case DRM_EDID_DIGITAL_DEPTH_8:
6590		info->bpc = 8;
6591		break;
6592	case DRM_EDID_DIGITAL_DEPTH_10:
6593		info->bpc = 10;
6594		break;
6595	case DRM_EDID_DIGITAL_DEPTH_12:
6596		info->bpc = 12;
6597		break;
6598	case DRM_EDID_DIGITAL_DEPTH_14:
6599		info->bpc = 14;
6600		break;
6601	case DRM_EDID_DIGITAL_DEPTH_16:
6602		info->bpc = 16;
6603		break;
6604	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6605	default:
6606		info->bpc = 0;
6607		break;
6608	}
6609
6610	drm_dbg_kms(connector->dev,
6611		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6612		    connector->base.id, connector->name, info->bpc);
6613
 
6614	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6615		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6616	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6617		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
 
 
6618
6619	drm_update_mso(connector, drm_edid);
 
 
 
 
6620
6621out:
6622	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6623		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6624			    connector->base.id, connector->name,
6625			    info->non_desktop ? " (redundant quirk)" : "");
6626		info->non_desktop = true;
6627	}
6628
6629	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6630		info->max_dsc_bpp = 15;
6631
6632	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6633		info->bpc = 6;
 
 
6634
6635	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6636		info->bpc = 8;
 
 
 
 
6637
6638	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6639		info->bpc = 10;
6640
6641	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6642		info->bpc = 12;
6643
6644	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6645	drm_edid_to_eld(connector, drm_edid);
6646}
6647
6648static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6649							    struct displayid_detailed_timings_1 *timings,
6650							    bool type_7)
6651{
6652	struct drm_display_mode *mode;
6653	unsigned pixel_clock = (timings->pixel_clock[0] |
6654				(timings->pixel_clock[1] << 8) |
6655				(timings->pixel_clock[2] << 16)) + 1;
6656	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6657	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6658	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6659	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6660	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6661	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6662	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6663	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6664	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6665	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666
6667	mode = drm_mode_create(dev);
6668	if (!mode)
6669		return NULL;
6670
6671	/* resolution is kHz for type VII, and 10 kHz for type I */
6672	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6673	mode->hdisplay = hactive;
6674	mode->hsync_start = mode->hdisplay + hsync;
6675	mode->hsync_end = mode->hsync_start + hsync_width;
6676	mode->htotal = mode->hdisplay + hblank;
6677
6678	mode->vdisplay = vactive;
6679	mode->vsync_start = mode->vdisplay + vsync;
6680	mode->vsync_end = mode->vsync_start + vsync_width;
6681	mode->vtotal = mode->vdisplay + vblank;
6682
6683	mode->flags = 0;
6684	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6685	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6686	mode->type = DRM_MODE_TYPE_DRIVER;
6687
6688	if (timings->flags & 0x80)
6689		mode->type |= DRM_MODE_TYPE_PREFERRED;
6690	drm_mode_set_name(mode);
6691
6692	return mode;
6693}
6694
6695static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6696					  const struct displayid_block *block)
6697{
6698	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6699	int i;
6700	int num_timings;
6701	struct drm_display_mode *newmode;
6702	int num_modes = 0;
6703	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6704	/* blocks must be multiple of 20 bytes length */
6705	if (block->num_bytes % 20)
6706		return 0;
6707
6708	num_timings = block->num_bytes / 20;
6709	for (i = 0; i < num_timings; i++) {
6710		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711
6712		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6713		if (!newmode)
6714			continue;
6715
6716		drm_mode_probed_add(connector, newmode);
6717		num_modes++;
6718	}
6719	return num_modes;
6720}
6721
6722static int add_displayid_detailed_modes(struct drm_connector *connector,
6723					const struct drm_edid *drm_edid)
6724{
6725	const struct displayid_block *block;
6726	struct displayid_iter iter;
 
6727	int num_modes = 0;
 
 
 
 
 
 
 
6728
6729	displayid_iter_edid_begin(drm_edid, &iter);
6730	displayid_iter_for_each(block, &iter) {
6731		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6732		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6733			num_modes += add_displayid_detailed_1_modes(connector, block);
 
 
 
6734	}
6735	displayid_iter_end(&iter);
6736
6737	return num_modes;
6738}
6739
6740static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6741					 const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
6742{
6743	const struct drm_display_info *info = &connector->display_info;
6744	int num_modes = 0;
 
6745
6746	if (!drm_edid)
 
 
 
 
 
 
 
6747		return 0;
 
 
 
 
 
 
 
 
 
 
6748
6749	/*
6750	 * EDID spec says modes should be preferred in this order:
6751	 * - preferred detailed mode
6752	 * - other detailed modes from base block
6753	 * - detailed modes from extension blocks
6754	 * - CVT 3-byte code modes
6755	 * - standard timing codes
6756	 * - established timing codes
6757	 * - modes inferred from GTF or CVT range information
6758	 *
6759	 * We get this pretty much right.
6760	 *
6761	 * XXX order for additional mode types in extension blocks?
6762	 */
6763	num_modes += add_detailed_modes(connector, drm_edid);
6764	num_modes += add_cvt_modes(connector, drm_edid);
6765	num_modes += add_standard_modes(connector, drm_edid);
6766	num_modes += add_established_modes(connector, drm_edid);
6767	num_modes += add_cea_modes(connector, drm_edid);
6768	num_modes += add_alternate_cea_modes(connector, drm_edid);
6769	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6770	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6771		num_modes += add_inferred_modes(connector, drm_edid);
 
 
 
 
 
 
6772
6773	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6774		edid_fixup_preferred(connector);
6775
6776	return num_modes;
6777}
6778
6779static void _drm_update_tile_info(struct drm_connector *connector,
6780				  const struct drm_edid *drm_edid);
6781
6782static int _drm_edid_connector_property_update(struct drm_connector *connector,
6783					       const struct drm_edid *drm_edid)
6784{
6785	struct drm_device *dev = connector->dev;
6786	int ret;
6787
6788	if (connector->edid_blob_ptr) {
6789		const struct edid *old_edid = connector->edid_blob_ptr->data;
6790
6791		if (old_edid) {
6792			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6793				connector->epoch_counter++;
6794				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6795					    connector->base.id, connector->name,
6796					    connector->epoch_counter);
6797			}
6798		}
6799	}
6800
6801	ret = drm_property_replace_global_blob(dev,
6802					       &connector->edid_blob_ptr,
6803					       drm_edid ? drm_edid->size : 0,
6804					       drm_edid ? drm_edid->edid : NULL,
6805					       &connector->base,
6806					       dev->mode_config.edid_property);
6807	if (ret) {
6808		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6809			    connector->base.id, connector->name, ret);
6810		goto out;
6811	}
6812
6813	ret = drm_object_property_set_value(&connector->base,
6814					    dev->mode_config.non_desktop_property,
6815					    connector->display_info.non_desktop);
6816	if (ret) {
6817		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6818			    connector->base.id, connector->name, ret);
6819		goto out;
6820	}
6821
6822	ret = drm_connector_set_tile_property(connector);
6823	if (ret) {
6824		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6825			    connector->base.id, connector->name, ret);
6826		goto out;
6827	}
6828
6829out:
6830	return ret;
6831}
6832
6833/**
6834 * drm_edid_connector_update - Update connector information from EDID
6835 * @connector: Connector
6836 * @drm_edid: EDID
6837 *
6838 * Update the connector display info, ELD, HDR metadata, relevant properties,
6839 * etc. from the passed in EDID.
6840 *
6841 * If EDID is NULL, reset the information.
6842 *
6843 * Must be called before calling drm_edid_connector_add_modes().
6844 *
6845 * Return: 0 on success, negative error on errors.
6846 */
6847int drm_edid_connector_update(struct drm_connector *connector,
6848			      const struct drm_edid *drm_edid)
6849{
6850	update_display_info(connector, drm_edid);
6851
6852	_drm_update_tile_info(connector, drm_edid);
6853
6854	return _drm_edid_connector_property_update(connector, drm_edid);
6855}
6856EXPORT_SYMBOL(drm_edid_connector_update);
6857
6858/**
6859 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6860 * @connector: Connector
6861 *
6862 * Add the modes from the previously updated EDID property to the connector
6863 * probed modes list.
6864 *
6865 * drm_edid_connector_update() must have been called before this to update the
6866 * EDID property.
6867 *
6868 * Return: The number of modes added, or 0 if we couldn't find any.
6869 */
6870int drm_edid_connector_add_modes(struct drm_connector *connector)
6871{
6872	const struct drm_edid *drm_edid = NULL;
6873	int count;
6874
6875	if (connector->edid_blob_ptr)
6876		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6877					  connector->edid_blob_ptr->length);
6878
6879	count = _drm_edid_connector_add_modes(connector, drm_edid);
6880
6881	drm_edid_free(drm_edid);
6882
6883	return count;
6884}
6885EXPORT_SYMBOL(drm_edid_connector_add_modes);
6886
6887/**
6888 * drm_connector_update_edid_property - update the edid property of a connector
6889 * @connector: drm connector
6890 * @edid: new value of the edid property
6891 *
6892 * This function creates a new blob modeset object and assigns its id to the
6893 * connector's edid property.
6894 * Since we also parse tile information from EDID's displayID block, we also
6895 * set the connector's tile property here. See drm_connector_set_tile_property()
6896 * for more details.
6897 *
6898 * This function is deprecated. Use drm_edid_connector_update() instead.
6899 *
6900 * Returns:
6901 * Zero on success, negative errno on failure.
6902 */
6903int drm_connector_update_edid_property(struct drm_connector *connector,
6904				       const struct edid *edid)
6905{
6906	struct drm_edid drm_edid;
6907
6908	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6909}
6910EXPORT_SYMBOL(drm_connector_update_edid_property);
6911
6912/**
6913 * drm_add_edid_modes - add modes from EDID data, if available
6914 * @connector: connector we're probing
6915 * @edid: EDID data
6916 *
6917 * Add the specified modes to the connector's mode list. Also fills out the
6918 * &drm_display_info structure and ELD in @connector with any information which
6919 * can be derived from the edid.
6920 *
6921 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922 *
6923 * Return: The number of modes added or 0 if we couldn't find any.
6924 */
6925int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926{
6927	struct drm_edid _drm_edid;
6928	const struct drm_edid *drm_edid;
6929
6930	if (edid && !drm_edid_is_valid(edid)) {
6931		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6932			 connector->base.id, connector->name);
6933		edid = NULL;
6934	}
6935
6936	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937
6938	update_display_info(connector, drm_edid);
6939
6940	return _drm_edid_connector_add_modes(connector, drm_edid);
6941}
6942EXPORT_SYMBOL(drm_add_edid_modes);
6943
6944/**
6945 * drm_add_modes_noedid - add modes for the connectors without EDID
6946 * @connector: connector we're probing
6947 * @hdisplay: the horizontal display limit
6948 * @vdisplay: the vertical display limit
6949 *
6950 * Add the specified modes to the connector's mode list. Only when the
6951 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952 *
6953 * Return: The number of modes added or 0 if we couldn't find any.
6954 */
6955int drm_add_modes_noedid(struct drm_connector *connector,
6956			int hdisplay, int vdisplay)
6957{
6958	int i, count, num_modes = 0;
6959	struct drm_display_mode *mode;
6960	struct drm_device *dev = connector->dev;
6961
6962	count = ARRAY_SIZE(drm_dmt_modes);
6963	if (hdisplay < 0)
6964		hdisplay = 0;
6965	if (vdisplay < 0)
6966		vdisplay = 0;
6967
6968	for (i = 0; i < count; i++) {
6969		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970
6971		if (hdisplay && vdisplay) {
6972			/*
6973			 * Only when two are valid, they will be used to check
6974			 * whether the mode should be added to the mode list of
6975			 * the connector.
6976			 */
6977			if (ptr->hdisplay > hdisplay ||
6978					ptr->vdisplay > vdisplay)
6979				continue;
6980		}
6981		if (drm_mode_vrefresh(ptr) > 61)
6982			continue;
6983		mode = drm_mode_duplicate(dev, ptr);
6984		if (mode) {
6985			drm_mode_probed_add(connector, mode);
6986			num_modes++;
6987		}
6988	}
6989	return num_modes;
6990}
6991EXPORT_SYMBOL(drm_add_modes_noedid);
6992
6993/**
6994 * drm_set_preferred_mode - Sets the preferred mode of a connector
6995 * @connector: connector whose mode list should be processed
6996 * @hpref: horizontal resolution of preferred mode
6997 * @vpref: vertical resolution of preferred mode
6998 *
6999 * Marks a mode as preferred if it matches the resolution specified by @hpref
7000 * and @vpref.
7001 */
7002void drm_set_preferred_mode(struct drm_connector *connector,
7003			   int hpref, int vpref)
7004{
7005	struct drm_display_mode *mode;
7006
7007	list_for_each_entry(mode, &connector->probed_modes, head) {
7008		if (mode->hdisplay == hpref &&
7009		    mode->vdisplay == vpref)
7010			mode->type |= DRM_MODE_TYPE_PREFERRED;
7011	}
7012}
7013EXPORT_SYMBOL(drm_set_preferred_mode);
7014
7015static bool is_hdmi2_sink(const struct drm_connector *connector)
7016{
7017	/*
7018	 * FIXME: sil-sii8620 doesn't have a connector around when
7019	 * we need one, so we have to be prepared for a NULL connector.
7020	 */
7021	if (!connector)
7022		return true;
7023
7024	return connector->display_info.hdmi.scdc.supported ||
7025		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
 
 
 
 
 
7026}
7027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7028static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7029			    const struct drm_display_mode *mode)
7030{
7031	bool has_hdmi_infoframe = connector ?
7032		connector->display_info.has_hdmi_infoframe : false;
7033
7034	if (!has_hdmi_infoframe)
7035		return 0;
7036
7037	/* No HDMI VIC when signalling 3D video format */
7038	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7039		return 0;
7040
7041	return drm_match_hdmi_mode(mode);
7042}
7043
7044static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7045			   const struct drm_display_mode *mode)
7046{
 
 
7047	/*
7048	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7049	 * we should send its VIC in vendor infoframes, else send the
7050	 * VIC in AVI infoframes. Lets check if this mode is present in
7051	 * HDMI 1.4b 4K modes
7052	 */
7053	if (drm_mode_hdmi_vic(connector, mode))
7054		return 0;
7055
7056	return drm_match_cea_mode(mode);
7057}
7058
7059/*
7060 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7061 * conform to HDMI 1.4.
7062 *
7063 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7064 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065 *
7066 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7067 * version.
7068 */
7069static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070{
7071	if (!is_hdmi2_sink(connector) && vic > 64 &&
7072	    !cta_vdb_has_vic(connector, vic))
7073		return 0;
7074
7075	return vic;
7076}
7077
7078/**
7079 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7080 *                                              data from a DRM display mode
7081 * @frame: HDMI AVI infoframe
7082 * @connector: the connector
7083 * @mode: DRM display mode
7084 *
7085 * Return: 0 on success or a negative error code on failure.
7086 */
7087int
7088drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7089					 const struct drm_connector *connector,
7090					 const struct drm_display_mode *mode)
7091{
7092	enum hdmi_picture_aspect picture_aspect;
7093	u8 vic, hdmi_vic;
7094
7095	if (!frame || !mode)
7096		return -EINVAL;
7097
7098	hdmi_avi_infoframe_init(frame);
7099
7100	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7101		frame->pixel_repeat = 1;
7102
7103	vic = drm_mode_cea_vic(connector, mode);
7104	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105
7106	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7107
7108	/*
7109	 * As some drivers don't support atomic, we can't use connector state.
7110	 * So just initialize the frame with default values, just the same way
7111	 * as it's done with other properties here.
7112	 */
7113	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7114	frame->itc = 0;
7115
7116	/*
7117	 * Populate picture aspect ratio from either
7118	 * user input (if specified) or from the CEA/HDMI mode lists.
7119	 */
7120	picture_aspect = mode->picture_aspect_ratio;
7121	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122		if (vic)
7123			picture_aspect = drm_get_cea_aspect_ratio(vic);
7124		else if (hdmi_vic)
7125			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7126	}
7127
7128	/*
7129	 * The infoframe can't convey anything but none, 4:3
7130	 * and 16:9, so if the user has asked for anything else
7131	 * we can only satisfy it by specifying the right VIC.
7132	 */
7133	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134		if (vic) {
7135			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136				return -EINVAL;
7137		} else if (hdmi_vic) {
7138			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7139				return -EINVAL;
7140		} else {
7141			return -EINVAL;
7142		}
7143
7144		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7145	}
7146
7147	frame->video_code = vic_for_avi_infoframe(connector, vic);
7148	frame->picture_aspect = picture_aspect;
7149	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7150	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7151
7152	return 0;
7153}
7154EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7156/**
7157 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7158 *                                        quantization range information
7159 * @frame: HDMI AVI infoframe
7160 * @connector: the connector
7161 * @mode: DRM display mode
7162 * @rgb_quant_range: RGB quantization range (Q)
7163 */
7164void
7165drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7166				   const struct drm_connector *connector,
7167				   const struct drm_display_mode *mode,
7168				   enum hdmi_quantization_range rgb_quant_range)
7169{
7170	const struct drm_display_info *info = &connector->display_info;
7171
7172	/*
7173	 * CEA-861:
7174	 * "A Source shall not send a non-zero Q value that does not correspond
7175	 *  to the default RGB Quantization Range for the transmitted Picture
7176	 *  unless the Sink indicates support for the Q bit in a Video
7177	 *  Capabilities Data Block."
7178	 *
7179	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7180	 * default RGB quantization range for the mode, even when QS=0.
7181	 */
7182	if (info->rgb_quant_range_selectable ||
7183	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7184		frame->quantization_range = rgb_quant_range;
7185	else
7186		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7187
7188	/*
7189	 * CEA-861-F:
7190	 * "When transmitting any RGB colorimetry, the Source should set the
7191	 *  YQ-field to match the RGB Quantization Range being transmitted
7192	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7193	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7194	 *
7195	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7196	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7197	 * good way to tell which version of CEA-861 the sink supports, so
7198	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7199	 * on CEA-861-F.
7200	 */
7201	if (!is_hdmi2_sink(connector) ||
7202	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7203		frame->ycc_quantization_range =
7204			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205	else
7206		frame->ycc_quantization_range =
7207			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208}
7209EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7211static enum hdmi_3d_structure
7212s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213{
7214	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7215
7216	switch (layout) {
7217	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7218		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7219	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7220		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7221	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7222		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7223	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7224		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7225	case DRM_MODE_FLAG_3D_L_DEPTH:
7226		return HDMI_3D_STRUCTURE_L_DEPTH;
7227	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7228		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7229	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7230		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7231	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7232		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233	default:
7234		return HDMI_3D_STRUCTURE_INVALID;
7235	}
7236}
7237
7238/**
7239 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7240 * data from a DRM display mode
7241 * @frame: HDMI vendor infoframe
7242 * @connector: the connector
7243 * @mode: DRM display mode
7244 *
7245 * Note that there's is a need to send HDMI vendor infoframes only when using a
7246 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7247 * function will return -EINVAL, error that can be safely ignored.
7248 *
7249 * Return: 0 on success or a negative error code on failure.
7250 */
7251int
7252drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7253					    const struct drm_connector *connector,
7254					    const struct drm_display_mode *mode)
7255{
7256	/*
7257	 * FIXME: sil-sii8620 doesn't have a connector around when
7258	 * we need one, so we have to be prepared for a NULL connector.
7259	 */
7260	bool has_hdmi_infoframe = connector ?
7261		connector->display_info.has_hdmi_infoframe : false;
7262	int err;
7263
7264	if (!frame || !mode)
7265		return -EINVAL;
7266
7267	if (!has_hdmi_infoframe)
7268		return -EINVAL;
7269
7270	err = hdmi_vendor_infoframe_init(frame);
7271	if (err < 0)
7272		return err;
7273
7274	/*
7275	 * Even if it's not absolutely necessary to send the infoframe
7276	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7277	 * know that the sink can handle it. This is based on a
7278	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7279	 * have trouble realizing that they should switch from 3D to 2D
7280	 * mode if the source simply stops sending the infoframe when
7281	 * it wants to switch from 3D to 2D.
7282	 */
7283	frame->vic = drm_mode_hdmi_vic(connector, mode);
7284	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7285
7286	return 0;
7287}
7288EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289
7290static void drm_parse_tiled_block(struct drm_connector *connector,
7291				  const struct displayid_block *block)
7292{
7293	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294	u16 w, h;
7295	u8 tile_v_loc, tile_h_loc;
7296	u8 num_v_tile, num_h_tile;
7297	struct drm_tile_group *tg;
7298
7299	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7300	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301
7302	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7303	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7304	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7305	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306
7307	connector->has_tile = true;
7308	if (tile->tile_cap & 0x80)
7309		connector->tile_is_single_monitor = true;
7310
7311	connector->num_h_tile = num_h_tile + 1;
7312	connector->num_v_tile = num_v_tile + 1;
7313	connector->tile_h_loc = tile_h_loc;
7314	connector->tile_v_loc = tile_v_loc;
7315	connector->tile_h_size = w + 1;
7316	connector->tile_v_size = h + 1;
7317
7318	drm_dbg_kms(connector->dev,
7319		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7320		    connector->base.id, connector->name,
7321		    tile->tile_cap,
7322		    connector->tile_h_size, connector->tile_v_size,
7323		    connector->num_h_tile, connector->num_v_tile,
7324		    connector->tile_h_loc, connector->tile_v_loc,
7325		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326
7327	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328	if (!tg)
7329		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7330	if (!tg)
7331		return;
7332
7333	if (connector->tile_group != tg) {
7334		/* if we haven't got a pointer,
7335		   take the reference, drop ref to old tile group */
7336		if (connector->tile_group)
7337			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7338		connector->tile_group = tg;
7339	} else {
7340		/* if same tile group, then release the ref we just took. */
7341		drm_mode_put_tile_group(connector->dev, tg);
7342	}
7343}
7344
7345static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7346				     const struct displayid_block *block)
7347{
7348	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7349		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7350		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7351		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
 
 
 
 
 
 
 
 
 
 
 
 
7352}
7353
7354static void _drm_update_tile_info(struct drm_connector *connector,
7355				  const struct drm_edid *drm_edid)
7356{
7357	const struct displayid_block *block;
7358	struct displayid_iter iter;
 
7359
7360	connector->has_tile = false;
 
 
 
 
 
7361
7362	displayid_iter_edid_begin(drm_edid, &iter);
7363	displayid_iter_for_each(block, &iter) {
7364		if (displayid_is_tiled_block(&iter, block))
7365			drm_parse_tiled_block(connector, block);
7366	}
7367	displayid_iter_end(&iter);
7368
7369	if (!connector->has_tile && connector->tile_group) {
7370		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7371		connector->tile_group = NULL;
7372	}
7373}
7374
7375/**
7376 * drm_edid_is_digital - is digital?
7377 * @drm_edid: The EDID
7378 *
7379 * Return true if input is digital.
7380 */
7381bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382{
7383	return drm_edid && drm_edid->edid &&
7384		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385}
7386EXPORT_SYMBOL(drm_edid_is_digital);