Loading...
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/hdmi.h>
32#include <linux/i2c.h>
33#include <linux/kernel.h>
34#include <linux/module.h>
35#include <linux/slab.h>
36#include <linux/vga_switcheroo.h>
37
38#include <drm/drm_displayid.h>
39#include <drm/drm_drv.h>
40#include <drm/drm_edid.h>
41#include <drm/drm_encoder.h>
42#include <drm/drm_print.h>
43#include <drm/drm_scdc_helper.h>
44
45#include "drm_crtc_internal.h"
46
47#define version_greater(edid, maj, min) \
48 (((edid)->version > (maj)) || \
49 ((edid)->version == (maj) && (edid)->revision > (min)))
50
51#define EDID_EST_TIMINGS 16
52#define EDID_STD_TIMINGS 8
53#define EDID_DETAILED_TIMINGS 4
54
55/*
56 * EDID blocks out in the wild have a variety of bugs, try to collect
57 * them here (note that userspace may work around broken monitors first,
58 * but fixes should make their way here so that the kernel "just works"
59 * on as many displays as possible).
60 */
61
62/* First detailed mode wrong, use largest 60Hz mode */
63#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
64/* Reported 135MHz pixel clock is too high, needs adjustment */
65#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
66/* Prefer the largest mode at 75 Hz */
67#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
68/* Detail timing is in cm not mm */
69#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
70/* Detailed timing descriptors have bogus size values, so just take the
71 * maximum size and use that.
72 */
73#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
74/* use +hsync +vsync for detailed mode */
75#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
76/* Force reduced-blanking timings for detailed modes */
77#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
78/* Force 8bpc */
79#define EDID_QUIRK_FORCE_8BPC (1 << 8)
80/* Force 12bpc */
81#define EDID_QUIRK_FORCE_12BPC (1 << 9)
82/* Force 6bpc */
83#define EDID_QUIRK_FORCE_6BPC (1 << 10)
84/* Force 10bpc */
85#define EDID_QUIRK_FORCE_10BPC (1 << 11)
86/* Non desktop display (i.e. HMD) */
87#define EDID_QUIRK_NON_DESKTOP (1 << 12)
88
89struct detailed_mode_closure {
90 struct drm_connector *connector;
91 struct edid *edid;
92 bool preferred;
93 u32 quirks;
94 int modes;
95};
96
97#define LEVEL_DMT 0
98#define LEVEL_GTF 1
99#define LEVEL_GTF2 2
100#define LEVEL_CVT 3
101
102static const struct edid_quirk {
103 char vendor[4];
104 int product_id;
105 u32 quirks;
106} edid_quirk_list[] = {
107 /* Acer AL1706 */
108 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
109 /* Acer F51 */
110 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
111
112 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
113 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
114
115 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
116 { "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC },
117
118 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
119 { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
120
121 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
122 { "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC },
123
124 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
125 { "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC },
126
127 /* Belinea 10 15 55 */
128 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
129 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
130
131 /* Envision Peripherals, Inc. EN-7100e */
132 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
133 /* Envision EN2028 */
134 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
135
136 /* Funai Electronics PM36B */
137 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
138 EDID_QUIRK_DETAILED_IN_CM },
139
140 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
141 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
142
143 /* LG Philips LCD LP154W01-A5 */
144 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
145 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
146
147 /* Samsung SyncMaster 205BW. Note: irony */
148 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
149 /* Samsung SyncMaster 22[5-6]BW */
150 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
151 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
152
153 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
154 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
155
156 /* ViewSonic VA2026w */
157 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
158
159 /* Medion MD 30217 PG */
160 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
161
162 /* Lenovo G50 */
163 { "SDC", 18514, EDID_QUIRK_FORCE_6BPC },
164
165 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
166 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
167
168 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
169 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
170
171 /* Valve Index Headset */
172 { "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP },
173 { "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP },
174 { "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP },
175 { "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP },
176 { "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP },
177 { "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP },
178 { "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP },
179 { "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP },
180 { "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP },
181 { "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP },
182 { "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP },
183 { "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP },
184 { "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP },
185 { "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP },
186 { "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP },
187 { "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP },
188 { "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP },
189
190 /* HTC Vive and Vive Pro VR Headsets */
191 { "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP },
192 { "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP },
193
194 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
195 { "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP },
196 { "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP },
197 { "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP },
198 { "OVR", 0x0012, EDID_QUIRK_NON_DESKTOP },
199
200 /* Windows Mixed Reality Headsets */
201 { "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP },
202 { "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP },
203 { "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP },
204 { "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP },
205 { "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP },
206 { "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP },
207 { "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP },
208 { "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP },
209
210 /* Sony PlayStation VR Headset */
211 { "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP },
212
213 /* Sensics VR Headsets */
214 { "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP },
215
216 /* OSVR HDK and HDK2 VR Headsets */
217 { "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP },
218};
219
220/*
221 * Autogenerated from the DMT spec.
222 * This table is copied from xfree86/modes/xf86EdidModes.c.
223 */
224static const struct drm_display_mode drm_dmt_modes[] = {
225 /* 0x01 - 640x350@85Hz */
226 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
227 736, 832, 0, 350, 382, 385, 445, 0,
228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
229 /* 0x02 - 640x400@85Hz */
230 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
231 736, 832, 0, 400, 401, 404, 445, 0,
232 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
233 /* 0x03 - 720x400@85Hz */
234 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
235 828, 936, 0, 400, 401, 404, 446, 0,
236 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
237 /* 0x04 - 640x480@60Hz */
238 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
239 752, 800, 0, 480, 490, 492, 525, 0,
240 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
241 /* 0x05 - 640x480@72Hz */
242 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
243 704, 832, 0, 480, 489, 492, 520, 0,
244 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 /* 0x06 - 640x480@75Hz */
246 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
247 720, 840, 0, 480, 481, 484, 500, 0,
248 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
249 /* 0x07 - 640x480@85Hz */
250 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
251 752, 832, 0, 480, 481, 484, 509, 0,
252 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
253 /* 0x08 - 800x600@56Hz */
254 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
255 896, 1024, 0, 600, 601, 603, 625, 0,
256 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
257 /* 0x09 - 800x600@60Hz */
258 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
259 968, 1056, 0, 600, 601, 605, 628, 0,
260 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
261 /* 0x0a - 800x600@72Hz */
262 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
263 976, 1040, 0, 600, 637, 643, 666, 0,
264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
265 /* 0x0b - 800x600@75Hz */
266 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
267 896, 1056, 0, 600, 601, 604, 625, 0,
268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
269 /* 0x0c - 800x600@85Hz */
270 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
271 896, 1048, 0, 600, 601, 604, 631, 0,
272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 /* 0x0d - 800x600@120Hz RB */
274 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
275 880, 960, 0, 600, 603, 607, 636, 0,
276 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
277 /* 0x0e - 848x480@60Hz */
278 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
279 976, 1088, 0, 480, 486, 494, 517, 0,
280 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 /* 0x0f - 1024x768@43Hz, interlace */
282 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
283 1208, 1264, 0, 768, 768, 776, 817, 0,
284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
285 DRM_MODE_FLAG_INTERLACE) },
286 /* 0x10 - 1024x768@60Hz */
287 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
288 1184, 1344, 0, 768, 771, 777, 806, 0,
289 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
290 /* 0x11 - 1024x768@70Hz */
291 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
292 1184, 1328, 0, 768, 771, 777, 806, 0,
293 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
294 /* 0x12 - 1024x768@75Hz */
295 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
296 1136, 1312, 0, 768, 769, 772, 800, 0,
297 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 /* 0x13 - 1024x768@85Hz */
299 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
300 1168, 1376, 0, 768, 769, 772, 808, 0,
301 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
302 /* 0x14 - 1024x768@120Hz RB */
303 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
304 1104, 1184, 0, 768, 771, 775, 813, 0,
305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x15 - 1152x864@75Hz */
307 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
308 1344, 1600, 0, 864, 865, 868, 900, 0,
309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 /* 0x55 - 1280x720@60Hz */
311 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
312 1430, 1650, 0, 720, 725, 730, 750, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x16 - 1280x768@60Hz RB */
315 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
316 1360, 1440, 0, 768, 771, 778, 790, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
318 /* 0x17 - 1280x768@60Hz */
319 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
320 1472, 1664, 0, 768, 771, 778, 798, 0,
321 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 /* 0x18 - 1280x768@75Hz */
323 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
324 1488, 1696, 0, 768, 771, 778, 805, 0,
325 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x19 - 1280x768@85Hz */
327 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
328 1496, 1712, 0, 768, 771, 778, 809, 0,
329 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x1a - 1280x768@120Hz RB */
331 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
332 1360, 1440, 0, 768, 771, 778, 813, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x1b - 1280x800@60Hz RB */
335 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
336 1360, 1440, 0, 800, 803, 809, 823, 0,
337 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
338 /* 0x1c - 1280x800@60Hz */
339 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
340 1480, 1680, 0, 800, 803, 809, 831, 0,
341 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 /* 0x1d - 1280x800@75Hz */
343 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
344 1488, 1696, 0, 800, 803, 809, 838, 0,
345 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x1e - 1280x800@85Hz */
347 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
348 1496, 1712, 0, 800, 803, 809, 843, 0,
349 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 /* 0x1f - 1280x800@120Hz RB */
351 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
352 1360, 1440, 0, 800, 803, 809, 847, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 /* 0x20 - 1280x960@60Hz */
355 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
356 1488, 1800, 0, 960, 961, 964, 1000, 0,
357 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x21 - 1280x960@85Hz */
359 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
360 1504, 1728, 0, 960, 961, 964, 1011, 0,
361 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x22 - 1280x960@120Hz RB */
363 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
364 1360, 1440, 0, 960, 963, 967, 1017, 0,
365 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
366 /* 0x23 - 1280x1024@60Hz */
367 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
368 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 /* 0x24 - 1280x1024@75Hz */
371 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
372 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x25 - 1280x1024@85Hz */
375 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
376 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x26 - 1280x1024@120Hz RB */
379 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
380 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 /* 0x27 - 1360x768@60Hz */
383 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
384 1536, 1792, 0, 768, 771, 777, 795, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x28 - 1360x768@120Hz RB */
387 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
388 1440, 1520, 0, 768, 771, 776, 813, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 /* 0x51 - 1366x768@60Hz */
391 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
392 1579, 1792, 0, 768, 771, 774, 798, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x56 - 1366x768@60Hz */
395 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
396 1436, 1500, 0, 768, 769, 772, 800, 0,
397 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 /* 0x29 - 1400x1050@60Hz RB */
399 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
400 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
401 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
402 /* 0x2a - 1400x1050@60Hz */
403 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
404 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
405 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 /* 0x2b - 1400x1050@75Hz */
407 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
408 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
409 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x2c - 1400x1050@85Hz */
411 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
412 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
413 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x2d - 1400x1050@120Hz RB */
415 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
416 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 /* 0x2e - 1440x900@60Hz RB */
419 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
420 1520, 1600, 0, 900, 903, 909, 926, 0,
421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422 /* 0x2f - 1440x900@60Hz */
423 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
424 1672, 1904, 0, 900, 903, 909, 934, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x30 - 1440x900@75Hz */
427 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
428 1688, 1936, 0, 900, 903, 909, 942, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x31 - 1440x900@85Hz */
431 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
432 1696, 1952, 0, 900, 903, 909, 948, 0,
433 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
434 /* 0x32 - 1440x900@120Hz RB */
435 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
436 1520, 1600, 0, 900, 903, 909, 953, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x53 - 1600x900@60Hz */
439 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
440 1704, 1800, 0, 900, 901, 904, 1000, 0,
441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x33 - 1600x1200@60Hz */
443 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
444 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
445 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x34 - 1600x1200@65Hz */
447 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
448 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
449 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x35 - 1600x1200@70Hz */
451 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
452 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
453 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 /* 0x36 - 1600x1200@75Hz */
455 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
456 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x37 - 1600x1200@85Hz */
459 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
460 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x38 - 1600x1200@120Hz RB */
463 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
464 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
466 /* 0x39 - 1680x1050@60Hz RB */
467 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
468 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
470 /* 0x3a - 1680x1050@60Hz */
471 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
472 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
473 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x3b - 1680x1050@75Hz */
475 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
476 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
477 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 /* 0x3c - 1680x1050@85Hz */
479 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
480 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
481 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 /* 0x3d - 1680x1050@120Hz RB */
483 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
484 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x3e - 1792x1344@60Hz */
487 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
488 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x3f - 1792x1344@75Hz */
491 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
492 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x40 - 1792x1344@120Hz RB */
495 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
496 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
498 /* 0x41 - 1856x1392@60Hz */
499 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
500 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
501 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
502 /* 0x42 - 1856x1392@75Hz */
503 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
504 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
505 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 /* 0x43 - 1856x1392@120Hz RB */
507 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
508 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
509 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
510 /* 0x52 - 1920x1080@60Hz */
511 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
512 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
513 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 /* 0x44 - 1920x1200@60Hz RB */
515 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
516 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
518 /* 0x45 - 1920x1200@60Hz */
519 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
520 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
521 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 /* 0x46 - 1920x1200@75Hz */
523 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
524 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
525 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
526 /* 0x47 - 1920x1200@85Hz */
527 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
528 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
529 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
530 /* 0x48 - 1920x1200@120Hz RB */
531 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
532 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
533 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 /* 0x49 - 1920x1440@60Hz */
535 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
536 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 /* 0x4a - 1920x1440@75Hz */
539 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
540 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
541 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 /* 0x4b - 1920x1440@120Hz RB */
543 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
544 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
545 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
546 /* 0x54 - 2048x1152@60Hz */
547 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
548 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
550 /* 0x4c - 2560x1600@60Hz RB */
551 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
552 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
553 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
554 /* 0x4d - 2560x1600@60Hz */
555 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
556 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
557 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 /* 0x4e - 2560x1600@75Hz */
559 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
560 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
561 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
562 /* 0x4f - 2560x1600@85Hz */
563 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
564 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
565 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 /* 0x50 - 2560x1600@120Hz RB */
567 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
568 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
569 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
570 /* 0x57 - 4096x2160@60Hz RB */
571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
572 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
573 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
574 /* 0x58 - 4096x2160@59.94Hz RB */
575 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
576 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
577 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
578};
579
580/*
581 * These more or less come from the DMT spec. The 720x400 modes are
582 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
583 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
584 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
585 * mode.
586 *
587 * The DMT modes have been fact-checked; the rest are mild guesses.
588 */
589static const struct drm_display_mode edid_est_modes[] = {
590 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
591 968, 1056, 0, 600, 601, 605, 628, 0,
592 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
593 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
594 896, 1024, 0, 600, 601, 603, 625, 0,
595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
596 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
597 720, 840, 0, 480, 481, 484, 500, 0,
598 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
599 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
600 704, 832, 0, 480, 489, 492, 520, 0,
601 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
602 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
603 768, 864, 0, 480, 483, 486, 525, 0,
604 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
605 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
606 752, 800, 0, 480, 490, 492, 525, 0,
607 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
608 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
609 846, 900, 0, 400, 421, 423, 449, 0,
610 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
611 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
612 846, 900, 0, 400, 412, 414, 449, 0,
613 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
614 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
615 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
616 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
617 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
618 1136, 1312, 0, 768, 769, 772, 800, 0,
619 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
620 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
621 1184, 1328, 0, 768, 771, 777, 806, 0,
622 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
623 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
624 1184, 1344, 0, 768, 771, 777, 806, 0,
625 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
626 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
627 1208, 1264, 0, 768, 768, 776, 817, 0,
628 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
629 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
630 928, 1152, 0, 624, 625, 628, 667, 0,
631 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
632 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
633 896, 1056, 0, 600, 601, 604, 625, 0,
634 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
635 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
636 976, 1040, 0, 600, 637, 643, 666, 0,
637 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
638 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
639 1344, 1600, 0, 864, 865, 868, 900, 0,
640 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
641};
642
643struct minimode {
644 short w;
645 short h;
646 short r;
647 short rb;
648};
649
650static const struct minimode est3_modes[] = {
651 /* byte 6 */
652 { 640, 350, 85, 0 },
653 { 640, 400, 85, 0 },
654 { 720, 400, 85, 0 },
655 { 640, 480, 85, 0 },
656 { 848, 480, 60, 0 },
657 { 800, 600, 85, 0 },
658 { 1024, 768, 85, 0 },
659 { 1152, 864, 75, 0 },
660 /* byte 7 */
661 { 1280, 768, 60, 1 },
662 { 1280, 768, 60, 0 },
663 { 1280, 768, 75, 0 },
664 { 1280, 768, 85, 0 },
665 { 1280, 960, 60, 0 },
666 { 1280, 960, 85, 0 },
667 { 1280, 1024, 60, 0 },
668 { 1280, 1024, 85, 0 },
669 /* byte 8 */
670 { 1360, 768, 60, 0 },
671 { 1440, 900, 60, 1 },
672 { 1440, 900, 60, 0 },
673 { 1440, 900, 75, 0 },
674 { 1440, 900, 85, 0 },
675 { 1400, 1050, 60, 1 },
676 { 1400, 1050, 60, 0 },
677 { 1400, 1050, 75, 0 },
678 /* byte 9 */
679 { 1400, 1050, 85, 0 },
680 { 1680, 1050, 60, 1 },
681 { 1680, 1050, 60, 0 },
682 { 1680, 1050, 75, 0 },
683 { 1680, 1050, 85, 0 },
684 { 1600, 1200, 60, 0 },
685 { 1600, 1200, 65, 0 },
686 { 1600, 1200, 70, 0 },
687 /* byte 10 */
688 { 1600, 1200, 75, 0 },
689 { 1600, 1200, 85, 0 },
690 { 1792, 1344, 60, 0 },
691 { 1792, 1344, 75, 0 },
692 { 1856, 1392, 60, 0 },
693 { 1856, 1392, 75, 0 },
694 { 1920, 1200, 60, 1 },
695 { 1920, 1200, 60, 0 },
696 /* byte 11 */
697 { 1920, 1200, 75, 0 },
698 { 1920, 1200, 85, 0 },
699 { 1920, 1440, 60, 0 },
700 { 1920, 1440, 75, 0 },
701};
702
703static const struct minimode extra_modes[] = {
704 { 1024, 576, 60, 0 },
705 { 1366, 768, 60, 0 },
706 { 1600, 900, 60, 0 },
707 { 1680, 945, 60, 0 },
708 { 1920, 1080, 60, 0 },
709 { 2048, 1152, 60, 0 },
710 { 2048, 1536, 60, 0 },
711};
712
713/*
714 * From CEA/CTA-861 spec.
715 *
716 * Do not access directly, instead always use cea_mode_for_vic().
717 */
718static const struct drm_display_mode edid_cea_modes_1[] = {
719 /* 1 - 640x480@60Hz 4:3 */
720 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
721 752, 800, 0, 480, 490, 492, 525, 0,
722 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
723 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
724 /* 2 - 720x480@60Hz 4:3 */
725 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
726 798, 858, 0, 480, 489, 495, 525, 0,
727 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
728 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
729 /* 3 - 720x480@60Hz 16:9 */
730 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
731 798, 858, 0, 480, 489, 495, 525, 0,
732 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
733 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
734 /* 4 - 1280x720@60Hz 16:9 */
735 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
736 1430, 1650, 0, 720, 725, 730, 750, 0,
737 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
738 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
739 /* 5 - 1920x1080i@60Hz 16:9 */
740 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
741 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
742 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
743 DRM_MODE_FLAG_INTERLACE),
744 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
745 /* 6 - 720(1440)x480i@60Hz 4:3 */
746 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
747 801, 858, 0, 480, 488, 494, 525, 0,
748 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
749 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 /* 7 - 720(1440)x480i@60Hz 16:9 */
752 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
753 801, 858, 0, 480, 488, 494, 525, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
755 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
756 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
757 /* 8 - 720(1440)x240@60Hz 4:3 */
758 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
759 801, 858, 0, 240, 244, 247, 262, 0,
760 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
761 DRM_MODE_FLAG_DBLCLK),
762 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
763 /* 9 - 720(1440)x240@60Hz 16:9 */
764 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
765 801, 858, 0, 240, 244, 247, 262, 0,
766 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
767 DRM_MODE_FLAG_DBLCLK),
768 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
769 /* 10 - 2880x480i@60Hz 4:3 */
770 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
771 3204, 3432, 0, 480, 488, 494, 525, 0,
772 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
773 DRM_MODE_FLAG_INTERLACE),
774 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
775 /* 11 - 2880x480i@60Hz 16:9 */
776 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
777 3204, 3432, 0, 480, 488, 494, 525, 0,
778 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
779 DRM_MODE_FLAG_INTERLACE),
780 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
781 /* 12 - 2880x240@60Hz 4:3 */
782 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
783 3204, 3432, 0, 240, 244, 247, 262, 0,
784 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
785 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
786 /* 13 - 2880x240@60Hz 16:9 */
787 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
788 3204, 3432, 0, 240, 244, 247, 262, 0,
789 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 /* 14 - 1440x480@60Hz 4:3 */
792 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
793 1596, 1716, 0, 480, 489, 495, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
795 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
796 /* 15 - 1440x480@60Hz 16:9 */
797 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
798 1596, 1716, 0, 480, 489, 495, 525, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
801 /* 16 - 1920x1080@60Hz 16:9 */
802 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
803 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
804 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
805 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806 /* 17 - 720x576@50Hz 4:3 */
807 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
808 796, 864, 0, 576, 581, 586, 625, 0,
809 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
810 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
811 /* 18 - 720x576@50Hz 16:9 */
812 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
813 796, 864, 0, 576, 581, 586, 625, 0,
814 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
815 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816 /* 19 - 1280x720@50Hz 16:9 */
817 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
818 1760, 1980, 0, 720, 725, 730, 750, 0,
819 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 /* 20 - 1920x1080i@50Hz 16:9 */
822 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
823 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
824 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
825 DRM_MODE_FLAG_INTERLACE),
826 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
827 /* 21 - 720(1440)x576i@50Hz 4:3 */
828 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
829 795, 864, 0, 576, 580, 586, 625, 0,
830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
831 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 /* 22 - 720(1440)x576i@50Hz 16:9 */
834 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
835 795, 864, 0, 576, 580, 586, 625, 0,
836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
837 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
838 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 /* 23 - 720(1440)x288@50Hz 4:3 */
840 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
841 795, 864, 0, 288, 290, 293, 312, 0,
842 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
843 DRM_MODE_FLAG_DBLCLK),
844 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
845 /* 24 - 720(1440)x288@50Hz 16:9 */
846 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
847 795, 864, 0, 288, 290, 293, 312, 0,
848 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
849 DRM_MODE_FLAG_DBLCLK),
850 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
851 /* 25 - 2880x576i@50Hz 4:3 */
852 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
853 3180, 3456, 0, 576, 580, 586, 625, 0,
854 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
855 DRM_MODE_FLAG_INTERLACE),
856 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
857 /* 26 - 2880x576i@50Hz 16:9 */
858 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
859 3180, 3456, 0, 576, 580, 586, 625, 0,
860 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
861 DRM_MODE_FLAG_INTERLACE),
862 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
863 /* 27 - 2880x288@50Hz 4:3 */
864 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
865 3180, 3456, 0, 288, 290, 293, 312, 0,
866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
868 /* 28 - 2880x288@50Hz 16:9 */
869 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
870 3180, 3456, 0, 288, 290, 293, 312, 0,
871 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 29 - 1440x576@50Hz 4:3 */
874 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
875 1592, 1728, 0, 576, 581, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
877 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
878 /* 30 - 1440x576@50Hz 16:9 */
879 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
880 1592, 1728, 0, 576, 581, 586, 625, 0,
881 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
882 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
883 /* 31 - 1920x1080@50Hz 16:9 */
884 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
885 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
886 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
887 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
888 /* 32 - 1920x1080@24Hz 16:9 */
889 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
890 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
891 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
892 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
893 /* 33 - 1920x1080@25Hz 16:9 */
894 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
895 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
896 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
897 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
898 /* 34 - 1920x1080@30Hz 16:9 */
899 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
900 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
901 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
902 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
903 /* 35 - 2880x480@60Hz 4:3 */
904 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
905 3192, 3432, 0, 480, 489, 495, 525, 0,
906 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
907 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
908 /* 36 - 2880x480@60Hz 16:9 */
909 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
910 3192, 3432, 0, 480, 489, 495, 525, 0,
911 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
912 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 /* 37 - 2880x576@50Hz 4:3 */
914 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
915 3184, 3456, 0, 576, 581, 586, 625, 0,
916 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
917 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
918 /* 38 - 2880x576@50Hz 16:9 */
919 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
920 3184, 3456, 0, 576, 581, 586, 625, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
923 /* 39 - 1920x1080i@50Hz 16:9 */
924 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
925 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
926 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
927 DRM_MODE_FLAG_INTERLACE),
928 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 40 - 1920x1080i@100Hz 16:9 */
930 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
931 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
933 DRM_MODE_FLAG_INTERLACE),
934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 /* 41 - 1280x720@100Hz 16:9 */
936 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
937 1760, 1980, 0, 720, 725, 730, 750, 0,
938 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940 /* 42 - 720x576@100Hz 4:3 */
941 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
942 796, 864, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
945 /* 43 - 720x576@100Hz 16:9 */
946 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
947 796, 864, 0, 576, 581, 586, 625, 0,
948 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 /* 44 - 720(1440)x576i@100Hz 4:3 */
951 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
952 795, 864, 0, 576, 580, 586, 625, 0,
953 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
954 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
955 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
956 /* 45 - 720(1440)x576i@100Hz 16:9 */
957 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
958 795, 864, 0, 576, 580, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
960 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 46 - 1920x1080i@120Hz 16:9 */
963 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
964 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
965 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
966 DRM_MODE_FLAG_INTERLACE),
967 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
968 /* 47 - 1280x720@120Hz 16:9 */
969 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
970 1430, 1650, 0, 720, 725, 730, 750, 0,
971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
973 /* 48 - 720x480@120Hz 4:3 */
974 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
975 798, 858, 0, 480, 489, 495, 525, 0,
976 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 49 - 720x480@120Hz 16:9 */
979 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
980 798, 858, 0, 480, 489, 495, 525, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
982 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
983 /* 50 - 720(1440)x480i@120Hz 4:3 */
984 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
985 801, 858, 0, 480, 488, 494, 525, 0,
986 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
987 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
988 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
989 /* 51 - 720(1440)x480i@120Hz 16:9 */
990 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
991 801, 858, 0, 480, 488, 494, 525, 0,
992 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
993 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 52 - 720x576@200Hz 4:3 */
996 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
997 796, 864, 0, 576, 581, 586, 625, 0,
998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 /* 53 - 720x576@200Hz 16:9 */
1001 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1002 796, 864, 0, 576, 581, 586, 625, 0,
1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 54 - 720(1440)x576i@200Hz 4:3 */
1006 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1007 795, 864, 0, 576, 580, 586, 625, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 /* 55 - 720(1440)x576i@200Hz 16:9 */
1012 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1013 795, 864, 0, 576, 580, 586, 625, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 /* 56 - 720x480@240Hz 4:3 */
1018 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1019 798, 858, 0, 480, 489, 495, 525, 0,
1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 /* 57 - 720x480@240Hz 16:9 */
1023 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1024 798, 858, 0, 480, 489, 495, 525, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 /* 58 - 720(1440)x480i@240Hz 4:3 */
1028 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1029 801, 858, 0, 480, 488, 494, 525, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 /* 59 - 720(1440)x480i@240Hz 16:9 */
1034 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1035 801, 858, 0, 480, 488, 494, 525, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 /* 60 - 1280x720@24Hz 16:9 */
1040 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1041 3080, 3300, 0, 720, 725, 730, 750, 0,
1042 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1044 /* 61 - 1280x720@25Hz 16:9 */
1045 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1046 3740, 3960, 0, 720, 725, 730, 750, 0,
1047 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 /* 62 - 1280x720@30Hz 16:9 */
1050 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1051 3080, 3300, 0, 720, 725, 730, 750, 0,
1052 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1053 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1054 /* 63 - 1920x1080@120Hz 16:9 */
1055 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1056 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1057 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1058 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059 /* 64 - 1920x1080@100Hz 16:9 */
1060 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1061 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1062 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1063 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1064 /* 65 - 1280x720@24Hz 64:27 */
1065 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1066 3080, 3300, 0, 720, 725, 730, 750, 0,
1067 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1068 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1069 /* 66 - 1280x720@25Hz 64:27 */
1070 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1071 3740, 3960, 0, 720, 725, 730, 750, 0,
1072 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1073 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1074 /* 67 - 1280x720@30Hz 64:27 */
1075 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1076 3080, 3300, 0, 720, 725, 730, 750, 0,
1077 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1078 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1079 /* 68 - 1280x720@50Hz 64:27 */
1080 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1081 1760, 1980, 0, 720, 725, 730, 750, 0,
1082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1083 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1084 /* 69 - 1280x720@60Hz 64:27 */
1085 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1086 1430, 1650, 0, 720, 725, 730, 750, 0,
1087 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1088 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1089 /* 70 - 1280x720@100Hz 64:27 */
1090 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1091 1760, 1980, 0, 720, 725, 730, 750, 0,
1092 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1093 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1094 /* 71 - 1280x720@120Hz 64:27 */
1095 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1096 1430, 1650, 0, 720, 725, 730, 750, 0,
1097 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1098 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1099 /* 72 - 1920x1080@24Hz 64:27 */
1100 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1101 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1102 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1103 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1104 /* 73 - 1920x1080@25Hz 64:27 */
1105 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1106 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1107 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1108 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1109 /* 74 - 1920x1080@30Hz 64:27 */
1110 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1111 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1112 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1113 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1114 /* 75 - 1920x1080@50Hz 64:27 */
1115 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1116 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1117 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1118 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1119 /* 76 - 1920x1080@60Hz 64:27 */
1120 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1121 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1122 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1123 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1124 /* 77 - 1920x1080@100Hz 64:27 */
1125 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1126 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1127 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1128 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1129 /* 78 - 1920x1080@120Hz 64:27 */
1130 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1131 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1132 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1133 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1134 /* 79 - 1680x720@24Hz 64:27 */
1135 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1136 3080, 3300, 0, 720, 725, 730, 750, 0,
1137 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1138 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1139 /* 80 - 1680x720@25Hz 64:27 */
1140 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1141 2948, 3168, 0, 720, 725, 730, 750, 0,
1142 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1143 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1144 /* 81 - 1680x720@30Hz 64:27 */
1145 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1146 2420, 2640, 0, 720, 725, 730, 750, 0,
1147 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1148 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1149 /* 82 - 1680x720@50Hz 64:27 */
1150 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1151 1980, 2200, 0, 720, 725, 730, 750, 0,
1152 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1153 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1154 /* 83 - 1680x720@60Hz 64:27 */
1155 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1156 1980, 2200, 0, 720, 725, 730, 750, 0,
1157 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1158 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1159 /* 84 - 1680x720@100Hz 64:27 */
1160 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1161 1780, 2000, 0, 720, 725, 730, 825, 0,
1162 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1163 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1164 /* 85 - 1680x720@120Hz 64:27 */
1165 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1166 1780, 2000, 0, 720, 725, 730, 825, 0,
1167 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1168 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1169 /* 86 - 2560x1080@24Hz 64:27 */
1170 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1171 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1172 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1173 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1174 /* 87 - 2560x1080@25Hz 64:27 */
1175 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1176 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1177 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1178 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1179 /* 88 - 2560x1080@30Hz 64:27 */
1180 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1181 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1182 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1183 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1184 /* 89 - 2560x1080@50Hz 64:27 */
1185 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1186 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1187 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1188 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1189 /* 90 - 2560x1080@60Hz 64:27 */
1190 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1191 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1192 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1193 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1194 /* 91 - 2560x1080@100Hz 64:27 */
1195 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1196 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1197 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1198 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1199 /* 92 - 2560x1080@120Hz 64:27 */
1200 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1201 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1203 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1204 /* 93 - 3840x2160@24Hz 16:9 */
1205 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1206 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1207 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1208 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1209 /* 94 - 3840x2160@25Hz 16:9 */
1210 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1211 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1212 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1213 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1214 /* 95 - 3840x2160@30Hz 16:9 */
1215 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1216 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1217 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1218 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1219 /* 96 - 3840x2160@50Hz 16:9 */
1220 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1221 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1222 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1223 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1224 /* 97 - 3840x2160@60Hz 16:9 */
1225 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1226 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1228 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1229 /* 98 - 4096x2160@24Hz 256:135 */
1230 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1231 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1232 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1233 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1234 /* 99 - 4096x2160@25Hz 256:135 */
1235 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1236 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1237 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1238 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1239 /* 100 - 4096x2160@30Hz 256:135 */
1240 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1241 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1243 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1244 /* 101 - 4096x2160@50Hz 256:135 */
1245 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1246 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1248 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1249 /* 102 - 4096x2160@60Hz 256:135 */
1250 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1251 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1252 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1253 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1254 /* 103 - 3840x2160@24Hz 64:27 */
1255 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1256 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1257 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1258 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1259 /* 104 - 3840x2160@25Hz 64:27 */
1260 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1261 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1262 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1263 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1264 /* 105 - 3840x2160@30Hz 64:27 */
1265 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1266 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1268 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1269 /* 106 - 3840x2160@50Hz 64:27 */
1270 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1271 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1273 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1274 /* 107 - 3840x2160@60Hz 64:27 */
1275 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1276 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1277 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1278 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1279 /* 108 - 1280x720@48Hz 16:9 */
1280 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1281 2280, 2500, 0, 720, 725, 730, 750, 0,
1282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1283 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1284 /* 109 - 1280x720@48Hz 64:27 */
1285 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1286 2280, 2500, 0, 720, 725, 730, 750, 0,
1287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1288 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1289 /* 110 - 1680x720@48Hz 64:27 */
1290 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1291 2530, 2750, 0, 720, 725, 730, 750, 0,
1292 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1293 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1294 /* 111 - 1920x1080@48Hz 16:9 */
1295 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1296 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1297 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1298 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1299 /* 112 - 1920x1080@48Hz 64:27 */
1300 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1301 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1303 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1304 /* 113 - 2560x1080@48Hz 64:27 */
1305 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1306 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1308 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1309 /* 114 - 3840x2160@48Hz 16:9 */
1310 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1311 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1312 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1313 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1314 /* 115 - 4096x2160@48Hz 256:135 */
1315 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1316 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1318 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1319 /* 116 - 3840x2160@48Hz 64:27 */
1320 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1321 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1323 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1324 /* 117 - 3840x2160@100Hz 16:9 */
1325 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1326 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1328 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1329 /* 118 - 3840x2160@120Hz 16:9 */
1330 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1331 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1332 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1333 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1334 /* 119 - 3840x2160@100Hz 64:27 */
1335 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1336 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1337 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1338 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1339 /* 120 - 3840x2160@120Hz 64:27 */
1340 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1341 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1342 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1343 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1344 /* 121 - 5120x2160@24Hz 64:27 */
1345 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1346 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1348 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1349 /* 122 - 5120x2160@25Hz 64:27 */
1350 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1351 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1352 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1353 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1354 /* 123 - 5120x2160@30Hz 64:27 */
1355 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1356 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1357 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1358 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1359 /* 124 - 5120x2160@48Hz 64:27 */
1360 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1361 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1362 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1363 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1364 /* 125 - 5120x2160@50Hz 64:27 */
1365 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1366 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1368 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1369 /* 126 - 5120x2160@60Hz 64:27 */
1370 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1371 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1372 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1373 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1374 /* 127 - 5120x2160@100Hz 64:27 */
1375 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1376 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1378 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1379};
1380
1381/*
1382 * From CEA/CTA-861 spec.
1383 *
1384 * Do not access directly, instead always use cea_mode_for_vic().
1385 */
1386static const struct drm_display_mode edid_cea_modes_193[] = {
1387 /* 193 - 5120x2160@120Hz 64:27 */
1388 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1389 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1390 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1391 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1392 /* 194 - 7680x4320@24Hz 16:9 */
1393 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1394 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1396 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1397 /* 195 - 7680x4320@25Hz 16:9 */
1398 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1399 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1400 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1401 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1402 /* 196 - 7680x4320@30Hz 16:9 */
1403 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1404 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1406 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1407 /* 197 - 7680x4320@48Hz 16:9 */
1408 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1409 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1410 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1411 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1412 /* 198 - 7680x4320@50Hz 16:9 */
1413 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1414 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1416 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1417 /* 199 - 7680x4320@60Hz 16:9 */
1418 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1419 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1420 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1421 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1422 /* 200 - 7680x4320@100Hz 16:9 */
1423 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1424 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1425 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1426 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1427 /* 201 - 7680x4320@120Hz 16:9 */
1428 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1429 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1430 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1431 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1432 /* 202 - 7680x4320@24Hz 64:27 */
1433 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1434 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1435 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1436 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1437 /* 203 - 7680x4320@25Hz 64:27 */
1438 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1439 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1440 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1441 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1442 /* 204 - 7680x4320@30Hz 64:27 */
1443 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1444 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1445 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1446 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1447 /* 205 - 7680x4320@48Hz 64:27 */
1448 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1449 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1450 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1451 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1452 /* 206 - 7680x4320@50Hz 64:27 */
1453 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1454 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1455 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1456 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1457 /* 207 - 7680x4320@60Hz 64:27 */
1458 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1459 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1460 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1461 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1462 /* 208 - 7680x4320@100Hz 64:27 */
1463 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1464 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1466 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1467 /* 209 - 7680x4320@120Hz 64:27 */
1468 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1469 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1470 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1471 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1472 /* 210 - 10240x4320@24Hz 64:27 */
1473 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1474 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1476 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1477 /* 211 - 10240x4320@25Hz 64:27 */
1478 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1479 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1480 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1481 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1482 /* 212 - 10240x4320@30Hz 64:27 */
1483 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1484 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1486 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1487 /* 213 - 10240x4320@48Hz 64:27 */
1488 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1489 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1490 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1491 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1492 /* 214 - 10240x4320@50Hz 64:27 */
1493 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1494 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1495 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1496 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1497 /* 215 - 10240x4320@60Hz 64:27 */
1498 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1499 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1500 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1501 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1502 /* 216 - 10240x4320@100Hz 64:27 */
1503 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1504 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1506 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1507 /* 217 - 10240x4320@120Hz 64:27 */
1508 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1509 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1510 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1511 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1512 /* 218 - 4096x2160@100Hz 256:135 */
1513 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1514 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1515 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1516 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1517 /* 219 - 4096x2160@120Hz 256:135 */
1518 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1519 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1520 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1521 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1522};
1523
1524/*
1525 * HDMI 1.4 4k modes. Index using the VIC.
1526 */
1527static const struct drm_display_mode edid_4k_modes[] = {
1528 /* 0 - dummy, VICs start at 1 */
1529 { },
1530 /* 1 - 3840x2160@30Hz */
1531 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1532 3840, 4016, 4104, 4400, 0,
1533 2160, 2168, 2178, 2250, 0,
1534 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1535 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1536 /* 2 - 3840x2160@25Hz */
1537 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1538 3840, 4896, 4984, 5280, 0,
1539 2160, 2168, 2178, 2250, 0,
1540 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1541 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1542 /* 3 - 3840x2160@24Hz */
1543 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1544 3840, 5116, 5204, 5500, 0,
1545 2160, 2168, 2178, 2250, 0,
1546 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1547 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1548 /* 4 - 4096x2160@24Hz (SMPTE) */
1549 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1550 4096, 5116, 5204, 5500, 0,
1551 2160, 2168, 2178, 2250, 0,
1552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1554};
1555
1556/*** DDC fetch and block validation ***/
1557
1558static const u8 edid_header[] = {
1559 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1560};
1561
1562/**
1563 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1564 * @raw_edid: pointer to raw base EDID block
1565 *
1566 * Sanity check the header of the base EDID block.
1567 *
1568 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1569 */
1570int drm_edid_header_is_valid(const u8 *raw_edid)
1571{
1572 int i, score = 0;
1573
1574 for (i = 0; i < sizeof(edid_header); i++)
1575 if (raw_edid[i] == edid_header[i])
1576 score++;
1577
1578 return score;
1579}
1580EXPORT_SYMBOL(drm_edid_header_is_valid);
1581
1582static int edid_fixup __read_mostly = 6;
1583module_param_named(edid_fixup, edid_fixup, int, 0400);
1584MODULE_PARM_DESC(edid_fixup,
1585 "Minimum number of valid EDID header bytes (0-8, default 6)");
1586
1587static int validate_displayid(u8 *displayid, int length, int idx);
1588
1589static int drm_edid_block_checksum(const u8 *raw_edid)
1590{
1591 int i;
1592 u8 csum = 0, crc = 0;
1593
1594 for (i = 0; i < EDID_LENGTH - 1; i++)
1595 csum += raw_edid[i];
1596
1597 crc = 0x100 - csum;
1598
1599 return crc;
1600}
1601
1602static bool drm_edid_block_checksum_diff(const u8 *raw_edid, u8 real_checksum)
1603{
1604 if (raw_edid[EDID_LENGTH - 1] != real_checksum)
1605 return true;
1606 else
1607 return false;
1608}
1609
1610static bool drm_edid_is_zero(const u8 *in_edid, int length)
1611{
1612 if (memchr_inv(in_edid, 0, length))
1613 return false;
1614
1615 return true;
1616}
1617
1618/**
1619 * drm_edid_are_equal - compare two edid blobs.
1620 * @edid1: pointer to first blob
1621 * @edid2: pointer to second blob
1622 * This helper can be used during probing to determine if
1623 * edid had changed.
1624 */
1625bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1626{
1627 int edid1_len, edid2_len;
1628 bool edid1_present = edid1 != NULL;
1629 bool edid2_present = edid2 != NULL;
1630
1631 if (edid1_present != edid2_present)
1632 return false;
1633
1634 if (edid1) {
1635 edid1_len = EDID_LENGTH * (1 + edid1->extensions);
1636 edid2_len = EDID_LENGTH * (1 + edid2->extensions);
1637
1638 if (edid1_len != edid2_len)
1639 return false;
1640
1641 if (memcmp(edid1, edid2, edid1_len))
1642 return false;
1643 }
1644
1645 return true;
1646}
1647EXPORT_SYMBOL(drm_edid_are_equal);
1648
1649/**
1650 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1651 * @raw_edid: pointer to raw EDID block
1652 * @block: type of block to validate (0 for base, extension otherwise)
1653 * @print_bad_edid: if true, dump bad EDID blocks to the console
1654 * @edid_corrupt: if true, the header or checksum is invalid
1655 *
1656 * Validate a base or extension EDID block and optionally dump bad blocks to
1657 * the console.
1658 *
1659 * Return: True if the block is valid, false otherwise.
1660 */
1661bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1662 bool *edid_corrupt)
1663{
1664 u8 csum;
1665 struct edid *edid = (struct edid *)raw_edid;
1666
1667 if (WARN_ON(!raw_edid))
1668 return false;
1669
1670 if (edid_fixup > 8 || edid_fixup < 0)
1671 edid_fixup = 6;
1672
1673 if (block == 0) {
1674 int score = drm_edid_header_is_valid(raw_edid);
1675
1676 if (score == 8) {
1677 if (edid_corrupt)
1678 *edid_corrupt = false;
1679 } else if (score >= edid_fixup) {
1680 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1681 * The corrupt flag needs to be set here otherwise, the
1682 * fix-up code here will correct the problem, the
1683 * checksum is correct and the test fails
1684 */
1685 if (edid_corrupt)
1686 *edid_corrupt = true;
1687 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1688 memcpy(raw_edid, edid_header, sizeof(edid_header));
1689 } else {
1690 if (edid_corrupt)
1691 *edid_corrupt = true;
1692 goto bad;
1693 }
1694 }
1695
1696 csum = drm_edid_block_checksum(raw_edid);
1697 if (drm_edid_block_checksum_diff(raw_edid, csum)) {
1698 if (edid_corrupt)
1699 *edid_corrupt = true;
1700
1701 /* allow CEA to slide through, switches mangle this */
1702 if (raw_edid[0] == CEA_EXT) {
1703 DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum);
1704 DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n");
1705 } else {
1706 if (print_bad_edid)
1707 DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum);
1708
1709 goto bad;
1710 }
1711 }
1712
1713 /* per-block-type checks */
1714 switch (raw_edid[0]) {
1715 case 0: /* base */
1716 if (edid->version != 1) {
1717 DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version);
1718 goto bad;
1719 }
1720
1721 if (edid->revision > 4)
1722 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1723 break;
1724
1725 default:
1726 break;
1727 }
1728
1729 return true;
1730
1731bad:
1732 if (print_bad_edid) {
1733 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1734 pr_notice("EDID block is all zeroes\n");
1735 } else {
1736 pr_notice("Raw EDID:\n");
1737 print_hex_dump(KERN_NOTICE,
1738 " \t", DUMP_PREFIX_NONE, 16, 1,
1739 raw_edid, EDID_LENGTH, false);
1740 }
1741 }
1742 return false;
1743}
1744EXPORT_SYMBOL(drm_edid_block_valid);
1745
1746/**
1747 * drm_edid_is_valid - sanity check EDID data
1748 * @edid: EDID data
1749 *
1750 * Sanity-check an entire EDID record (including extensions)
1751 *
1752 * Return: True if the EDID data is valid, false otherwise.
1753 */
1754bool drm_edid_is_valid(struct edid *edid)
1755{
1756 int i;
1757 u8 *raw = (u8 *)edid;
1758
1759 if (!edid)
1760 return false;
1761
1762 for (i = 0; i <= edid->extensions; i++)
1763 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1764 return false;
1765
1766 return true;
1767}
1768EXPORT_SYMBOL(drm_edid_is_valid);
1769
1770#define DDC_SEGMENT_ADDR 0x30
1771/**
1772 * drm_do_probe_ddc_edid() - get EDID information via I2C
1773 * @data: I2C device adapter
1774 * @buf: EDID data buffer to be filled
1775 * @block: 128 byte EDID block to start fetching from
1776 * @len: EDID data buffer length to fetch
1777 *
1778 * Try to fetch EDID information by calling I2C driver functions.
1779 *
1780 * Return: 0 on success or -1 on failure.
1781 */
1782static int
1783drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1784{
1785 struct i2c_adapter *adapter = data;
1786 unsigned char start = block * EDID_LENGTH;
1787 unsigned char segment = block >> 1;
1788 unsigned char xfers = segment ? 3 : 2;
1789 int ret, retries = 5;
1790
1791 /*
1792 * The core I2C driver will automatically retry the transfer if the
1793 * adapter reports EAGAIN. However, we find that bit-banging transfers
1794 * are susceptible to errors under a heavily loaded machine and
1795 * generate spurious NAKs and timeouts. Retrying the transfer
1796 * of the individual block a few times seems to overcome this.
1797 */
1798 do {
1799 struct i2c_msg msgs[] = {
1800 {
1801 .addr = DDC_SEGMENT_ADDR,
1802 .flags = 0,
1803 .len = 1,
1804 .buf = &segment,
1805 }, {
1806 .addr = DDC_ADDR,
1807 .flags = 0,
1808 .len = 1,
1809 .buf = &start,
1810 }, {
1811 .addr = DDC_ADDR,
1812 .flags = I2C_M_RD,
1813 .len = len,
1814 .buf = buf,
1815 }
1816 };
1817
1818 /*
1819 * Avoid sending the segment addr to not upset non-compliant
1820 * DDC monitors.
1821 */
1822 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1823
1824 if (ret == -ENXIO) {
1825 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1826 adapter->name);
1827 break;
1828 }
1829 } while (ret != xfers && --retries);
1830
1831 return ret == xfers ? 0 : -1;
1832}
1833
1834static void connector_bad_edid(struct drm_connector *connector,
1835 u8 *edid, int num_blocks)
1836{
1837 int i;
1838 u8 num_of_ext = edid[0x7e];
1839
1840 /* Calculate real checksum for the last edid extension block data */
1841 connector->real_edid_checksum =
1842 drm_edid_block_checksum(edid + num_of_ext * EDID_LENGTH);
1843
1844 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
1845 return;
1846
1847 drm_warn(connector->dev, "%s: EDID is invalid:\n", connector->name);
1848 for (i = 0; i < num_blocks; i++) {
1849 u8 *block = edid + i * EDID_LENGTH;
1850 char prefix[20];
1851
1852 if (drm_edid_is_zero(block, EDID_LENGTH))
1853 sprintf(prefix, "\t[%02x] ZERO ", i);
1854 else if (!drm_edid_block_valid(block, i, false, NULL))
1855 sprintf(prefix, "\t[%02x] BAD ", i);
1856 else
1857 sprintf(prefix, "\t[%02x] GOOD ", i);
1858
1859 print_hex_dump(KERN_WARNING,
1860 prefix, DUMP_PREFIX_NONE, 16, 1,
1861 block, EDID_LENGTH, false);
1862 }
1863}
1864
1865/* Get override or firmware EDID */
1866static struct edid *drm_get_override_edid(struct drm_connector *connector)
1867{
1868 struct edid *override = NULL;
1869
1870 if (connector->override_edid)
1871 override = drm_edid_duplicate(connector->edid_blob_ptr->data);
1872
1873 if (!override)
1874 override = drm_load_edid_firmware(connector);
1875
1876 return IS_ERR(override) ? NULL : override;
1877}
1878
1879/**
1880 * drm_add_override_edid_modes - add modes from override/firmware EDID
1881 * @connector: connector we're probing
1882 *
1883 * Add modes from the override/firmware EDID, if available. Only to be used from
1884 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
1885 * failed during drm_get_edid() and caused the override/firmware EDID to be
1886 * skipped.
1887 *
1888 * Return: The number of modes added or 0 if we couldn't find any.
1889 */
1890int drm_add_override_edid_modes(struct drm_connector *connector)
1891{
1892 struct edid *override;
1893 int num_modes = 0;
1894
1895 override = drm_get_override_edid(connector);
1896 if (override) {
1897 drm_connector_update_edid_property(connector, override);
1898 num_modes = drm_add_edid_modes(connector, override);
1899 kfree(override);
1900
1901 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
1902 connector->base.id, connector->name, num_modes);
1903 }
1904
1905 return num_modes;
1906}
1907EXPORT_SYMBOL(drm_add_override_edid_modes);
1908
1909/**
1910 * drm_do_get_edid - get EDID data using a custom EDID block read function
1911 * @connector: connector we're probing
1912 * @get_edid_block: EDID block read function
1913 * @data: private data passed to the block read function
1914 *
1915 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1916 * exposes a different interface to read EDID blocks this function can be used
1917 * to get EDID data using a custom block read function.
1918 *
1919 * As in the general case the DDC bus is accessible by the kernel at the I2C
1920 * level, drivers must make all reasonable efforts to expose it as an I2C
1921 * adapter and use drm_get_edid() instead of abusing this function.
1922 *
1923 * The EDID may be overridden using debugfs override_edid or firmare EDID
1924 * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority
1925 * order. Having either of them bypasses actual EDID reads.
1926 *
1927 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1928 */
1929struct edid *drm_do_get_edid(struct drm_connector *connector,
1930 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1931 size_t len),
1932 void *data)
1933{
1934 int i, j = 0, valid_extensions = 0;
1935 u8 *edid, *new;
1936 struct edid *override;
1937
1938 override = drm_get_override_edid(connector);
1939 if (override)
1940 return override;
1941
1942 if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1943 return NULL;
1944
1945 /* base block fetch */
1946 for (i = 0; i < 4; i++) {
1947 if (get_edid_block(data, edid, 0, EDID_LENGTH))
1948 goto out;
1949 if (drm_edid_block_valid(edid, 0, false,
1950 &connector->edid_corrupt))
1951 break;
1952 if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) {
1953 connector->null_edid_counter++;
1954 goto carp;
1955 }
1956 }
1957 if (i == 4)
1958 goto carp;
1959
1960 /* if there's no extensions, we're done */
1961 valid_extensions = edid[0x7e];
1962 if (valid_extensions == 0)
1963 return (struct edid *)edid;
1964
1965 new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1966 if (!new)
1967 goto out;
1968 edid = new;
1969
1970 for (j = 1; j <= edid[0x7e]; j++) {
1971 u8 *block = edid + j * EDID_LENGTH;
1972
1973 for (i = 0; i < 4; i++) {
1974 if (get_edid_block(data, block, j, EDID_LENGTH))
1975 goto out;
1976 if (drm_edid_block_valid(block, j, false, NULL))
1977 break;
1978 }
1979
1980 if (i == 4)
1981 valid_extensions--;
1982 }
1983
1984 if (valid_extensions != edid[0x7e]) {
1985 u8 *base;
1986
1987 connector_bad_edid(connector, edid, edid[0x7e] + 1);
1988
1989 edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions;
1990 edid[0x7e] = valid_extensions;
1991
1992 new = kmalloc_array(valid_extensions + 1, EDID_LENGTH,
1993 GFP_KERNEL);
1994 if (!new)
1995 goto out;
1996
1997 base = new;
1998 for (i = 0; i <= edid[0x7e]; i++) {
1999 u8 *block = edid + i * EDID_LENGTH;
2000
2001 if (!drm_edid_block_valid(block, i, false, NULL))
2002 continue;
2003
2004 memcpy(base, block, EDID_LENGTH);
2005 base += EDID_LENGTH;
2006 }
2007
2008 kfree(edid);
2009 edid = new;
2010 }
2011
2012 return (struct edid *)edid;
2013
2014carp:
2015 connector_bad_edid(connector, edid, 1);
2016out:
2017 kfree(edid);
2018 return NULL;
2019}
2020EXPORT_SYMBOL_GPL(drm_do_get_edid);
2021
2022/**
2023 * drm_probe_ddc() - probe DDC presence
2024 * @adapter: I2C adapter to probe
2025 *
2026 * Return: True on success, false on failure.
2027 */
2028bool
2029drm_probe_ddc(struct i2c_adapter *adapter)
2030{
2031 unsigned char out;
2032
2033 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2034}
2035EXPORT_SYMBOL(drm_probe_ddc);
2036
2037/**
2038 * drm_get_edid - get EDID data, if available
2039 * @connector: connector we're probing
2040 * @adapter: I2C adapter to use for DDC
2041 *
2042 * Poke the given I2C channel to grab EDID data if possible. If found,
2043 * attach it to the connector.
2044 *
2045 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2046 */
2047struct edid *drm_get_edid(struct drm_connector *connector,
2048 struct i2c_adapter *adapter)
2049{
2050 struct edid *edid;
2051
2052 if (connector->force == DRM_FORCE_OFF)
2053 return NULL;
2054
2055 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2056 return NULL;
2057
2058 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
2059 drm_connector_update_edid_property(connector, edid);
2060 return edid;
2061}
2062EXPORT_SYMBOL(drm_get_edid);
2063
2064/**
2065 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2066 * @connector: connector we're probing
2067 * @adapter: I2C adapter to use for DDC
2068 *
2069 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2070 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2071 * switch DDC to the GPU which is retrieving EDID.
2072 *
2073 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2074 */
2075struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2076 struct i2c_adapter *adapter)
2077{
2078 struct pci_dev *pdev = connector->dev->pdev;
2079 struct edid *edid;
2080
2081 vga_switcheroo_lock_ddc(pdev);
2082 edid = drm_get_edid(connector, adapter);
2083 vga_switcheroo_unlock_ddc(pdev);
2084
2085 return edid;
2086}
2087EXPORT_SYMBOL(drm_get_edid_switcheroo);
2088
2089/**
2090 * drm_edid_duplicate - duplicate an EDID and the extensions
2091 * @edid: EDID to duplicate
2092 *
2093 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2094 */
2095struct edid *drm_edid_duplicate(const struct edid *edid)
2096{
2097 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
2098}
2099EXPORT_SYMBOL(drm_edid_duplicate);
2100
2101/*** EDID parsing ***/
2102
2103/**
2104 * edid_vendor - match a string against EDID's obfuscated vendor field
2105 * @edid: EDID to match
2106 * @vendor: vendor string
2107 *
2108 * Returns true if @vendor is in @edid, false otherwise
2109 */
2110static bool edid_vendor(const struct edid *edid, const char *vendor)
2111{
2112 char edid_vendor[3];
2113
2114 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
2115 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
2116 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
2117 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
2118
2119 return !strncmp(edid_vendor, vendor, 3);
2120}
2121
2122/**
2123 * edid_get_quirks - return quirk flags for a given EDID
2124 * @edid: EDID to process
2125 *
2126 * This tells subsequent routines what fixes they need to apply.
2127 */
2128static u32 edid_get_quirks(const struct edid *edid)
2129{
2130 const struct edid_quirk *quirk;
2131 int i;
2132
2133 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2134 quirk = &edid_quirk_list[i];
2135
2136 if (edid_vendor(edid, quirk->vendor) &&
2137 (EDID_PRODUCT_ID(edid) == quirk->product_id))
2138 return quirk->quirks;
2139 }
2140
2141 return 0;
2142}
2143
2144#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2145#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2146
2147/**
2148 * edid_fixup_preferred - set preferred modes based on quirk list
2149 * @connector: has mode list to fix up
2150 * @quirks: quirks list
2151 *
2152 * Walk the mode list for @connector, clearing the preferred status
2153 * on existing modes and setting it anew for the right mode ala @quirks.
2154 */
2155static void edid_fixup_preferred(struct drm_connector *connector,
2156 u32 quirks)
2157{
2158 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2159 int target_refresh = 0;
2160 int cur_vrefresh, preferred_vrefresh;
2161
2162 if (list_empty(&connector->probed_modes))
2163 return;
2164
2165 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2166 target_refresh = 60;
2167 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2168 target_refresh = 75;
2169
2170 preferred_mode = list_first_entry(&connector->probed_modes,
2171 struct drm_display_mode, head);
2172
2173 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2174 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2175
2176 if (cur_mode == preferred_mode)
2177 continue;
2178
2179 /* Largest mode is preferred */
2180 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2181 preferred_mode = cur_mode;
2182
2183 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2184 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2185 /* At a given size, try to get closest to target refresh */
2186 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2187 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2188 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2189 preferred_mode = cur_mode;
2190 }
2191 }
2192
2193 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2194}
2195
2196static bool
2197mode_is_rb(const struct drm_display_mode *mode)
2198{
2199 return (mode->htotal - mode->hdisplay == 160) &&
2200 (mode->hsync_end - mode->hdisplay == 80) &&
2201 (mode->hsync_end - mode->hsync_start == 32) &&
2202 (mode->vsync_start - mode->vdisplay == 3);
2203}
2204
2205/*
2206 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2207 * @dev: Device to duplicate against
2208 * @hsize: Mode width
2209 * @vsize: Mode height
2210 * @fresh: Mode refresh rate
2211 * @rb: Mode reduced-blanking-ness
2212 *
2213 * Walk the DMT mode list looking for a match for the given parameters.
2214 *
2215 * Return: A newly allocated copy of the mode, or NULL if not found.
2216 */
2217struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2218 int hsize, int vsize, int fresh,
2219 bool rb)
2220{
2221 int i;
2222
2223 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2224 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2225
2226 if (hsize != ptr->hdisplay)
2227 continue;
2228 if (vsize != ptr->vdisplay)
2229 continue;
2230 if (fresh != drm_mode_vrefresh(ptr))
2231 continue;
2232 if (rb != mode_is_rb(ptr))
2233 continue;
2234
2235 return drm_mode_duplicate(dev, ptr);
2236 }
2237
2238 return NULL;
2239}
2240EXPORT_SYMBOL(drm_mode_find_dmt);
2241
2242static bool is_display_descriptor(const u8 d[18], u8 tag)
2243{
2244 return d[0] == 0x00 && d[1] == 0x00 &&
2245 d[2] == 0x00 && d[3] == tag;
2246}
2247
2248static bool is_detailed_timing_descriptor(const u8 d[18])
2249{
2250 return d[0] != 0x00 || d[1] != 0x00;
2251}
2252
2253typedef void detailed_cb(struct detailed_timing *timing, void *closure);
2254
2255static void
2256cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
2257{
2258 int i, n;
2259 u8 d = ext[0x02];
2260 u8 *det_base = ext + d;
2261
2262 if (d < 4 || d > 127)
2263 return;
2264
2265 n = (127 - d) / 18;
2266 for (i = 0; i < n; i++)
2267 cb((struct detailed_timing *)(det_base + 18 * i), closure);
2268}
2269
2270static void
2271vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
2272{
2273 unsigned int i, n = min((int)ext[0x02], 6);
2274 u8 *det_base = ext + 5;
2275
2276 if (ext[0x01] != 1)
2277 return; /* unknown version */
2278
2279 for (i = 0; i < n; i++)
2280 cb((struct detailed_timing *)(det_base + 18 * i), closure);
2281}
2282
2283static void
2284drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
2285{
2286 int i;
2287 struct edid *edid = (struct edid *)raw_edid;
2288
2289 if (edid == NULL)
2290 return;
2291
2292 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
2293 cb(&(edid->detailed_timings[i]), closure);
2294
2295 for (i = 1; i <= raw_edid[0x7e]; i++) {
2296 u8 *ext = raw_edid + (i * EDID_LENGTH);
2297
2298 switch (*ext) {
2299 case CEA_EXT:
2300 cea_for_each_detailed_block(ext, cb, closure);
2301 break;
2302 case VTB_EXT:
2303 vtb_for_each_detailed_block(ext, cb, closure);
2304 break;
2305 default:
2306 break;
2307 }
2308 }
2309}
2310
2311static void
2312is_rb(struct detailed_timing *t, void *data)
2313{
2314 u8 *r = (u8 *)t;
2315
2316 if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
2317 return;
2318
2319 if (r[15] & 0x10)
2320 *(bool *)data = true;
2321}
2322
2323/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
2324static bool
2325drm_monitor_supports_rb(struct edid *edid)
2326{
2327 if (edid->revision >= 4) {
2328 bool ret = false;
2329
2330 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
2331 return ret;
2332 }
2333
2334 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
2335}
2336
2337static void
2338find_gtf2(struct detailed_timing *t, void *data)
2339{
2340 u8 *r = (u8 *)t;
2341
2342 if (!is_display_descriptor(r, EDID_DETAIL_MONITOR_RANGE))
2343 return;
2344
2345 if (r[10] == 0x02)
2346 *(u8 **)data = r;
2347}
2348
2349/* Secondary GTF curve kicks in above some break frequency */
2350static int
2351drm_gtf2_hbreak(struct edid *edid)
2352{
2353 u8 *r = NULL;
2354
2355 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2356 return r ? (r[12] * 2) : 0;
2357}
2358
2359static int
2360drm_gtf2_2c(struct edid *edid)
2361{
2362 u8 *r = NULL;
2363
2364 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2365 return r ? r[13] : 0;
2366}
2367
2368static int
2369drm_gtf2_m(struct edid *edid)
2370{
2371 u8 *r = NULL;
2372
2373 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2374 return r ? (r[15] << 8) + r[14] : 0;
2375}
2376
2377static int
2378drm_gtf2_k(struct edid *edid)
2379{
2380 u8 *r = NULL;
2381
2382 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2383 return r ? r[16] : 0;
2384}
2385
2386static int
2387drm_gtf2_2j(struct edid *edid)
2388{
2389 u8 *r = NULL;
2390
2391 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
2392 return r ? r[17] : 0;
2393}
2394
2395/**
2396 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
2397 * @edid: EDID block to scan
2398 */
2399static int standard_timing_level(struct edid *edid)
2400{
2401 if (edid->revision >= 2) {
2402 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
2403 return LEVEL_CVT;
2404 if (drm_gtf2_hbreak(edid))
2405 return LEVEL_GTF2;
2406 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
2407 return LEVEL_GTF;
2408 }
2409 return LEVEL_DMT;
2410}
2411
2412/*
2413 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
2414 * monitors fill with ascii space (0x20) instead.
2415 */
2416static int
2417bad_std_timing(u8 a, u8 b)
2418{
2419 return (a == 0x00 && b == 0x00) ||
2420 (a == 0x01 && b == 0x01) ||
2421 (a == 0x20 && b == 0x20);
2422}
2423
2424static int drm_mode_hsync(const struct drm_display_mode *mode)
2425{
2426 if (mode->htotal <= 0)
2427 return 0;
2428
2429 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
2430}
2431
2432/**
2433 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
2434 * @connector: connector of for the EDID block
2435 * @edid: EDID block to scan
2436 * @t: standard timing params
2437 *
2438 * Take the standard timing params (in this case width, aspect, and refresh)
2439 * and convert them into a real mode using CVT/GTF/DMT.
2440 */
2441static struct drm_display_mode *
2442drm_mode_std(struct drm_connector *connector, struct edid *edid,
2443 struct std_timing *t)
2444{
2445 struct drm_device *dev = connector->dev;
2446 struct drm_display_mode *m, *mode = NULL;
2447 int hsize, vsize;
2448 int vrefresh_rate;
2449 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
2450 >> EDID_TIMING_ASPECT_SHIFT;
2451 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
2452 >> EDID_TIMING_VFREQ_SHIFT;
2453 int timing_level = standard_timing_level(edid);
2454
2455 if (bad_std_timing(t->hsize, t->vfreq_aspect))
2456 return NULL;
2457
2458 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
2459 hsize = t->hsize * 8 + 248;
2460 /* vrefresh_rate = vfreq + 60 */
2461 vrefresh_rate = vfreq + 60;
2462 /* the vdisplay is calculated based on the aspect ratio */
2463 if (aspect_ratio == 0) {
2464 if (edid->revision < 3)
2465 vsize = hsize;
2466 else
2467 vsize = (hsize * 10) / 16;
2468 } else if (aspect_ratio == 1)
2469 vsize = (hsize * 3) / 4;
2470 else if (aspect_ratio == 2)
2471 vsize = (hsize * 4) / 5;
2472 else
2473 vsize = (hsize * 9) / 16;
2474
2475 /* HDTV hack, part 1 */
2476 if (vrefresh_rate == 60 &&
2477 ((hsize == 1360 && vsize == 765) ||
2478 (hsize == 1368 && vsize == 769))) {
2479 hsize = 1366;
2480 vsize = 768;
2481 }
2482
2483 /*
2484 * If this connector already has a mode for this size and refresh
2485 * rate (because it came from detailed or CVT info), use that
2486 * instead. This way we don't have to guess at interlace or
2487 * reduced blanking.
2488 */
2489 list_for_each_entry(m, &connector->probed_modes, head)
2490 if (m->hdisplay == hsize && m->vdisplay == vsize &&
2491 drm_mode_vrefresh(m) == vrefresh_rate)
2492 return NULL;
2493
2494 /* HDTV hack, part 2 */
2495 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
2496 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
2497 false);
2498 if (!mode)
2499 return NULL;
2500 mode->hdisplay = 1366;
2501 mode->hsync_start = mode->hsync_start - 1;
2502 mode->hsync_end = mode->hsync_end - 1;
2503 return mode;
2504 }
2505
2506 /* check whether it can be found in default mode table */
2507 if (drm_monitor_supports_rb(edid)) {
2508 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
2509 true);
2510 if (mode)
2511 return mode;
2512 }
2513 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
2514 if (mode)
2515 return mode;
2516
2517 /* okay, generate it */
2518 switch (timing_level) {
2519 case LEVEL_DMT:
2520 break;
2521 case LEVEL_GTF:
2522 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2523 break;
2524 case LEVEL_GTF2:
2525 /*
2526 * This is potentially wrong if there's ever a monitor with
2527 * more than one ranges section, each claiming a different
2528 * secondary GTF curve. Please don't do that.
2529 */
2530 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
2531 if (!mode)
2532 return NULL;
2533 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
2534 drm_mode_destroy(dev, mode);
2535 mode = drm_gtf_mode_complex(dev, hsize, vsize,
2536 vrefresh_rate, 0, 0,
2537 drm_gtf2_m(edid),
2538 drm_gtf2_2c(edid),
2539 drm_gtf2_k(edid),
2540 drm_gtf2_2j(edid));
2541 }
2542 break;
2543 case LEVEL_CVT:
2544 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
2545 false);
2546 break;
2547 }
2548 return mode;
2549}
2550
2551/*
2552 * EDID is delightfully ambiguous about how interlaced modes are to be
2553 * encoded. Our internal representation is of frame height, but some
2554 * HDTV detailed timings are encoded as field height.
2555 *
2556 * The format list here is from CEA, in frame size. Technically we
2557 * should be checking refresh rate too. Whatever.
2558 */
2559static void
2560drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
2561 struct detailed_pixel_timing *pt)
2562{
2563 int i;
2564 static const struct {
2565 int w, h;
2566 } cea_interlaced[] = {
2567 { 1920, 1080 },
2568 { 720, 480 },
2569 { 1440, 480 },
2570 { 2880, 480 },
2571 { 720, 576 },
2572 { 1440, 576 },
2573 { 2880, 576 },
2574 };
2575
2576 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
2577 return;
2578
2579 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
2580 if ((mode->hdisplay == cea_interlaced[i].w) &&
2581 (mode->vdisplay == cea_interlaced[i].h / 2)) {
2582 mode->vdisplay *= 2;
2583 mode->vsync_start *= 2;
2584 mode->vsync_end *= 2;
2585 mode->vtotal *= 2;
2586 mode->vtotal |= 1;
2587 }
2588 }
2589
2590 mode->flags |= DRM_MODE_FLAG_INTERLACE;
2591}
2592
2593/**
2594 * drm_mode_detailed - create a new mode from an EDID detailed timing section
2595 * @dev: DRM device (needed to create new mode)
2596 * @edid: EDID block
2597 * @timing: EDID detailed timing info
2598 * @quirks: quirks to apply
2599 *
2600 * An EDID detailed timing block contains enough info for us to create and
2601 * return a new struct drm_display_mode.
2602 */
2603static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
2604 struct edid *edid,
2605 struct detailed_timing *timing,
2606 u32 quirks)
2607{
2608 struct drm_display_mode *mode;
2609 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
2610 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
2611 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
2612 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
2613 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
2614 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
2615 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
2616 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
2617 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
2618
2619 /* ignore tiny modes */
2620 if (hactive < 64 || vactive < 64)
2621 return NULL;
2622
2623 if (pt->misc & DRM_EDID_PT_STEREO) {
2624 DRM_DEBUG_KMS("stereo mode not supported\n");
2625 return NULL;
2626 }
2627 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
2628 DRM_DEBUG_KMS("composite sync not supported\n");
2629 }
2630
2631 /* it is incorrect if hsync/vsync width is zero */
2632 if (!hsync_pulse_width || !vsync_pulse_width) {
2633 DRM_DEBUG_KMS("Incorrect Detailed timing. "
2634 "Wrong Hsync/Vsync pulse width\n");
2635 return NULL;
2636 }
2637
2638 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
2639 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
2640 if (!mode)
2641 return NULL;
2642
2643 goto set_size;
2644 }
2645
2646 mode = drm_mode_create(dev);
2647 if (!mode)
2648 return NULL;
2649
2650 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
2651 timing->pixel_clock = cpu_to_le16(1088);
2652
2653 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
2654
2655 mode->hdisplay = hactive;
2656 mode->hsync_start = mode->hdisplay + hsync_offset;
2657 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
2658 mode->htotal = mode->hdisplay + hblank;
2659
2660 mode->vdisplay = vactive;
2661 mode->vsync_start = mode->vdisplay + vsync_offset;
2662 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
2663 mode->vtotal = mode->vdisplay + vblank;
2664
2665 /* Some EDIDs have bogus h/vtotal values */
2666 if (mode->hsync_end > mode->htotal)
2667 mode->htotal = mode->hsync_end + 1;
2668 if (mode->vsync_end > mode->vtotal)
2669 mode->vtotal = mode->vsync_end + 1;
2670
2671 drm_mode_do_interlace_quirk(mode, pt);
2672
2673 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
2674 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
2675 }
2676
2677 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
2678 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
2679 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
2680 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
2681
2682set_size:
2683 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
2684 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
2685
2686 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
2687 mode->width_mm *= 10;
2688 mode->height_mm *= 10;
2689 }
2690
2691 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
2692 mode->width_mm = edid->width_cm * 10;
2693 mode->height_mm = edid->height_cm * 10;
2694 }
2695
2696 mode->type = DRM_MODE_TYPE_DRIVER;
2697 drm_mode_set_name(mode);
2698
2699 return mode;
2700}
2701
2702static bool
2703mode_in_hsync_range(const struct drm_display_mode *mode,
2704 struct edid *edid, u8 *t)
2705{
2706 int hsync, hmin, hmax;
2707
2708 hmin = t[7];
2709 if (edid->revision >= 4)
2710 hmin += ((t[4] & 0x04) ? 255 : 0);
2711 hmax = t[8];
2712 if (edid->revision >= 4)
2713 hmax += ((t[4] & 0x08) ? 255 : 0);
2714 hsync = drm_mode_hsync(mode);
2715
2716 return (hsync <= hmax && hsync >= hmin);
2717}
2718
2719static bool
2720mode_in_vsync_range(const struct drm_display_mode *mode,
2721 struct edid *edid, u8 *t)
2722{
2723 int vsync, vmin, vmax;
2724
2725 vmin = t[5];
2726 if (edid->revision >= 4)
2727 vmin += ((t[4] & 0x01) ? 255 : 0);
2728 vmax = t[6];
2729 if (edid->revision >= 4)
2730 vmax += ((t[4] & 0x02) ? 255 : 0);
2731 vsync = drm_mode_vrefresh(mode);
2732
2733 return (vsync <= vmax && vsync >= vmin);
2734}
2735
2736static u32
2737range_pixel_clock(struct edid *edid, u8 *t)
2738{
2739 /* unspecified */
2740 if (t[9] == 0 || t[9] == 255)
2741 return 0;
2742
2743 /* 1.4 with CVT support gives us real precision, yay */
2744 if (edid->revision >= 4 && t[10] == 0x04)
2745 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2746
2747 /* 1.3 is pathetic, so fuzz up a bit */
2748 return t[9] * 10000 + 5001;
2749}
2750
2751static bool
2752mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2753 struct detailed_timing *timing)
2754{
2755 u32 max_clock;
2756 u8 *t = (u8 *)timing;
2757
2758 if (!mode_in_hsync_range(mode, edid, t))
2759 return false;
2760
2761 if (!mode_in_vsync_range(mode, edid, t))
2762 return false;
2763
2764 if ((max_clock = range_pixel_clock(edid, t)))
2765 if (mode->clock > max_clock)
2766 return false;
2767
2768 /* 1.4 max horizontal check */
2769 if (edid->revision >= 4 && t[10] == 0x04)
2770 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2771 return false;
2772
2773 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2774 return false;
2775
2776 return true;
2777}
2778
2779static bool valid_inferred_mode(const struct drm_connector *connector,
2780 const struct drm_display_mode *mode)
2781{
2782 const struct drm_display_mode *m;
2783 bool ok = false;
2784
2785 list_for_each_entry(m, &connector->probed_modes, head) {
2786 if (mode->hdisplay == m->hdisplay &&
2787 mode->vdisplay == m->vdisplay &&
2788 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2789 return false; /* duplicated */
2790 if (mode->hdisplay <= m->hdisplay &&
2791 mode->vdisplay <= m->vdisplay)
2792 ok = true;
2793 }
2794 return ok;
2795}
2796
2797static int
2798drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2799 struct detailed_timing *timing)
2800{
2801 int i, modes = 0;
2802 struct drm_display_mode *newmode;
2803 struct drm_device *dev = connector->dev;
2804
2805 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2806 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2807 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2808 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2809 if (newmode) {
2810 drm_mode_probed_add(connector, newmode);
2811 modes++;
2812 }
2813 }
2814 }
2815
2816 return modes;
2817}
2818
2819/* fix up 1366x768 mode from 1368x768;
2820 * GFT/CVT can't express 1366 width which isn't dividable by 8
2821 */
2822void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
2823{
2824 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2825 mode->hdisplay = 1366;
2826 mode->hsync_start--;
2827 mode->hsync_end--;
2828 drm_mode_set_name(mode);
2829 }
2830}
2831
2832static int
2833drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2834 struct detailed_timing *timing)
2835{
2836 int i, modes = 0;
2837 struct drm_display_mode *newmode;
2838 struct drm_device *dev = connector->dev;
2839
2840 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2841 const struct minimode *m = &extra_modes[i];
2842
2843 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2844 if (!newmode)
2845 return modes;
2846
2847 drm_mode_fixup_1366x768(newmode);
2848 if (!mode_in_range(newmode, edid, timing) ||
2849 !valid_inferred_mode(connector, newmode)) {
2850 drm_mode_destroy(dev, newmode);
2851 continue;
2852 }
2853
2854 drm_mode_probed_add(connector, newmode);
2855 modes++;
2856 }
2857
2858 return modes;
2859}
2860
2861static int
2862drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2863 struct detailed_timing *timing)
2864{
2865 int i, modes = 0;
2866 struct drm_display_mode *newmode;
2867 struct drm_device *dev = connector->dev;
2868 bool rb = drm_monitor_supports_rb(edid);
2869
2870 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2871 const struct minimode *m = &extra_modes[i];
2872
2873 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2874 if (!newmode)
2875 return modes;
2876
2877 drm_mode_fixup_1366x768(newmode);
2878 if (!mode_in_range(newmode, edid, timing) ||
2879 !valid_inferred_mode(connector, newmode)) {
2880 drm_mode_destroy(dev, newmode);
2881 continue;
2882 }
2883
2884 drm_mode_probed_add(connector, newmode);
2885 modes++;
2886 }
2887
2888 return modes;
2889}
2890
2891static void
2892do_inferred_modes(struct detailed_timing *timing, void *c)
2893{
2894 struct detailed_mode_closure *closure = c;
2895 struct detailed_non_pixel *data = &timing->data.other_data;
2896 struct detailed_data_monitor_range *range = &data->data.range;
2897
2898 if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
2899 return;
2900
2901 closure->modes += drm_dmt_modes_for_range(closure->connector,
2902 closure->edid,
2903 timing);
2904
2905 if (!version_greater(closure->edid, 1, 1))
2906 return; /* GTF not defined yet */
2907
2908 switch (range->flags) {
2909 case 0x02: /* secondary gtf, XXX could do more */
2910 case 0x00: /* default gtf */
2911 closure->modes += drm_gtf_modes_for_range(closure->connector,
2912 closure->edid,
2913 timing);
2914 break;
2915 case 0x04: /* cvt, only in 1.4+ */
2916 if (!version_greater(closure->edid, 1, 3))
2917 break;
2918
2919 closure->modes += drm_cvt_modes_for_range(closure->connector,
2920 closure->edid,
2921 timing);
2922 break;
2923 case 0x01: /* just the ranges, no formula */
2924 default:
2925 break;
2926 }
2927}
2928
2929static int
2930add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2931{
2932 struct detailed_mode_closure closure = {
2933 .connector = connector,
2934 .edid = edid,
2935 };
2936
2937 if (version_greater(edid, 1, 0))
2938 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2939 &closure);
2940
2941 return closure.modes;
2942}
2943
2944static int
2945drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2946{
2947 int i, j, m, modes = 0;
2948 struct drm_display_mode *mode;
2949 u8 *est = ((u8 *)timing) + 6;
2950
2951 for (i = 0; i < 6; i++) {
2952 for (j = 7; j >= 0; j--) {
2953 m = (i * 8) + (7 - j);
2954 if (m >= ARRAY_SIZE(est3_modes))
2955 break;
2956 if (est[i] & (1 << j)) {
2957 mode = drm_mode_find_dmt(connector->dev,
2958 est3_modes[m].w,
2959 est3_modes[m].h,
2960 est3_modes[m].r,
2961 est3_modes[m].rb);
2962 if (mode) {
2963 drm_mode_probed_add(connector, mode);
2964 modes++;
2965 }
2966 }
2967 }
2968 }
2969
2970 return modes;
2971}
2972
2973static void
2974do_established_modes(struct detailed_timing *timing, void *c)
2975{
2976 struct detailed_mode_closure *closure = c;
2977
2978 if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_EST_TIMINGS))
2979 return;
2980
2981 closure->modes += drm_est3_modes(closure->connector, timing);
2982}
2983
2984/**
2985 * add_established_modes - get est. modes from EDID and add them
2986 * @connector: connector to add mode(s) to
2987 * @edid: EDID block to scan
2988 *
2989 * Each EDID block contains a bitmap of the supported "established modes" list
2990 * (defined above). Tease them out and add them to the global modes list.
2991 */
2992static int
2993add_established_modes(struct drm_connector *connector, struct edid *edid)
2994{
2995 struct drm_device *dev = connector->dev;
2996 unsigned long est_bits = edid->established_timings.t1 |
2997 (edid->established_timings.t2 << 8) |
2998 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2999 int i, modes = 0;
3000 struct detailed_mode_closure closure = {
3001 .connector = connector,
3002 .edid = edid,
3003 };
3004
3005 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3006 if (est_bits & (1<<i)) {
3007 struct drm_display_mode *newmode;
3008
3009 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3010 if (newmode) {
3011 drm_mode_probed_add(connector, newmode);
3012 modes++;
3013 }
3014 }
3015 }
3016
3017 if (version_greater(edid, 1, 0))
3018 drm_for_each_detailed_block((u8 *)edid,
3019 do_established_modes, &closure);
3020
3021 return modes + closure.modes;
3022}
3023
3024static void
3025do_standard_modes(struct detailed_timing *timing, void *c)
3026{
3027 struct detailed_mode_closure *closure = c;
3028 struct detailed_non_pixel *data = &timing->data.other_data;
3029 struct drm_connector *connector = closure->connector;
3030 struct edid *edid = closure->edid;
3031 int i;
3032
3033 if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_STD_MODES))
3034 return;
3035
3036 for (i = 0; i < 6; i++) {
3037 struct std_timing *std = &data->data.timings[i];
3038 struct drm_display_mode *newmode;
3039
3040 newmode = drm_mode_std(connector, edid, std);
3041 if (newmode) {
3042 drm_mode_probed_add(connector, newmode);
3043 closure->modes++;
3044 }
3045 }
3046}
3047
3048/**
3049 * add_standard_modes - get std. modes from EDID and add them
3050 * @connector: connector to add mode(s) to
3051 * @edid: EDID block to scan
3052 *
3053 * Standard modes can be calculated using the appropriate standard (DMT,
3054 * GTF or CVT. Grab them from @edid and add them to the list.
3055 */
3056static int
3057add_standard_modes(struct drm_connector *connector, struct edid *edid)
3058{
3059 int i, modes = 0;
3060 struct detailed_mode_closure closure = {
3061 .connector = connector,
3062 .edid = edid,
3063 };
3064
3065 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3066 struct drm_display_mode *newmode;
3067
3068 newmode = drm_mode_std(connector, edid,
3069 &edid->standard_timings[i]);
3070 if (newmode) {
3071 drm_mode_probed_add(connector, newmode);
3072 modes++;
3073 }
3074 }
3075
3076 if (version_greater(edid, 1, 0))
3077 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
3078 &closure);
3079
3080 /* XXX should also look for standard codes in VTB blocks */
3081
3082 return modes + closure.modes;
3083}
3084
3085static int drm_cvt_modes(struct drm_connector *connector,
3086 struct detailed_timing *timing)
3087{
3088 int i, j, modes = 0;
3089 struct drm_display_mode *newmode;
3090 struct drm_device *dev = connector->dev;
3091 struct cvt_timing *cvt;
3092 const int rates[] = { 60, 85, 75, 60, 50 };
3093 const u8 empty[3] = { 0, 0, 0 };
3094
3095 for (i = 0; i < 4; i++) {
3096 int width, height;
3097
3098 cvt = &(timing->data.other_data.data.cvt[i]);
3099
3100 if (!memcmp(cvt->code, empty, 3))
3101 continue;
3102
3103 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3104 switch (cvt->code[1] & 0x0c) {
3105 case 0x00:
3106 width = height * 4 / 3;
3107 break;
3108 case 0x04:
3109 width = height * 16 / 9;
3110 break;
3111 case 0x08:
3112 width = height * 16 / 10;
3113 break;
3114 case 0x0c:
3115 width = height * 15 / 9;
3116 break;
3117 }
3118
3119 for (j = 1; j < 5; j++) {
3120 if (cvt->code[2] & (1 << j)) {
3121 newmode = drm_cvt_mode(dev, width, height,
3122 rates[j], j == 0,
3123 false, false);
3124 if (newmode) {
3125 drm_mode_probed_add(connector, newmode);
3126 modes++;
3127 }
3128 }
3129 }
3130 }
3131
3132 return modes;
3133}
3134
3135static void
3136do_cvt_mode(struct detailed_timing *timing, void *c)
3137{
3138 struct detailed_mode_closure *closure = c;
3139
3140 if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_CVT_3BYTE))
3141 return;
3142
3143 closure->modes += drm_cvt_modes(closure->connector, timing);
3144}
3145
3146static int
3147add_cvt_modes(struct drm_connector *connector, struct edid *edid)
3148{
3149 struct detailed_mode_closure closure = {
3150 .connector = connector,
3151 .edid = edid,
3152 };
3153
3154 if (version_greater(edid, 1, 2))
3155 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
3156
3157 /* XXX should also look for CVT codes in VTB blocks */
3158
3159 return closure.modes;
3160}
3161
3162static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
3163
3164static void
3165do_detailed_mode(struct detailed_timing *timing, void *c)
3166{
3167 struct detailed_mode_closure *closure = c;
3168 struct drm_display_mode *newmode;
3169
3170 if (!is_detailed_timing_descriptor((const u8 *)timing))
3171 return;
3172
3173 newmode = drm_mode_detailed(closure->connector->dev,
3174 closure->edid, timing,
3175 closure->quirks);
3176 if (!newmode)
3177 return;
3178
3179 if (closure->preferred)
3180 newmode->type |= DRM_MODE_TYPE_PREFERRED;
3181
3182 /*
3183 * Detailed modes are limited to 10kHz pixel clock resolution,
3184 * so fix up anything that looks like CEA/HDMI mode, but the clock
3185 * is just slightly off.
3186 */
3187 fixup_detailed_cea_mode_clock(newmode);
3188
3189 drm_mode_probed_add(closure->connector, newmode);
3190 closure->modes++;
3191 closure->preferred = false;
3192}
3193
3194/*
3195 * add_detailed_modes - Add modes from detailed timings
3196 * @connector: attached connector
3197 * @edid: EDID block to scan
3198 * @quirks: quirks to apply
3199 */
3200static int
3201add_detailed_modes(struct drm_connector *connector, struct edid *edid,
3202 u32 quirks)
3203{
3204 struct detailed_mode_closure closure = {
3205 .connector = connector,
3206 .edid = edid,
3207 .preferred = true,
3208 .quirks = quirks,
3209 };
3210
3211 if (closure.preferred && !version_greater(edid, 1, 3))
3212 closure.preferred =
3213 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
3214
3215 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
3216
3217 return closure.modes;
3218}
3219
3220#define AUDIO_BLOCK 0x01
3221#define VIDEO_BLOCK 0x02
3222#define VENDOR_BLOCK 0x03
3223#define SPEAKER_BLOCK 0x04
3224#define HDR_STATIC_METADATA_BLOCK 0x6
3225#define USE_EXTENDED_TAG 0x07
3226#define EXT_VIDEO_CAPABILITY_BLOCK 0x00
3227#define EXT_VIDEO_DATA_BLOCK_420 0x0E
3228#define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F
3229#define EDID_BASIC_AUDIO (1 << 6)
3230#define EDID_CEA_YCRCB444 (1 << 5)
3231#define EDID_CEA_YCRCB422 (1 << 4)
3232#define EDID_CEA_VCDB_QS (1 << 6)
3233
3234/*
3235 * Search EDID for CEA extension block.
3236 */
3237static u8 *drm_find_edid_extension(const struct edid *edid,
3238 int ext_id, int *ext_index)
3239{
3240 u8 *edid_ext = NULL;
3241 int i;
3242
3243 /* No EDID or EDID extensions */
3244 if (edid == NULL || edid->extensions == 0)
3245 return NULL;
3246
3247 /* Find CEA extension */
3248 for (i = *ext_index; i < edid->extensions; i++) {
3249 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
3250 if (edid_ext[0] == ext_id)
3251 break;
3252 }
3253
3254 if (i >= edid->extensions)
3255 return NULL;
3256
3257 *ext_index = i + 1;
3258
3259 return edid_ext;
3260}
3261
3262
3263static u8 *drm_find_displayid_extension(const struct edid *edid,
3264 int *length, int *idx,
3265 int *ext_index)
3266{
3267 u8 *displayid = drm_find_edid_extension(edid, DISPLAYID_EXT, ext_index);
3268 struct displayid_hdr *base;
3269 int ret;
3270
3271 if (!displayid)
3272 return NULL;
3273
3274 /* EDID extensions block checksum isn't for us */
3275 *length = EDID_LENGTH - 1;
3276 *idx = 1;
3277
3278 ret = validate_displayid(displayid, *length, *idx);
3279 if (ret)
3280 return NULL;
3281
3282 base = (struct displayid_hdr *)&displayid[*idx];
3283 *length = *idx + sizeof(*base) + base->bytes;
3284
3285 return displayid;
3286}
3287
3288static u8 *drm_find_cea_extension(const struct edid *edid)
3289{
3290 int length, idx;
3291 struct displayid_block *block;
3292 u8 *cea;
3293 u8 *displayid;
3294 int ext_index;
3295
3296 /* Look for a top level CEA extension block */
3297 /* FIXME: make callers iterate through multiple CEA ext blocks? */
3298 ext_index = 0;
3299 cea = drm_find_edid_extension(edid, CEA_EXT, &ext_index);
3300 if (cea)
3301 return cea;
3302
3303 /* CEA blocks can also be found embedded in a DisplayID block */
3304 ext_index = 0;
3305 for (;;) {
3306 displayid = drm_find_displayid_extension(edid, &length, &idx,
3307 &ext_index);
3308 if (!displayid)
3309 return NULL;
3310
3311 idx += sizeof(struct displayid_hdr);
3312 for_each_displayid_db(displayid, block, idx, length) {
3313 if (block->tag == DATA_BLOCK_CTA)
3314 return (u8 *)block;
3315 }
3316 }
3317
3318 return NULL;
3319}
3320
3321static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
3322{
3323 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
3324 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
3325
3326 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
3327 return &edid_cea_modes_1[vic - 1];
3328 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
3329 return &edid_cea_modes_193[vic - 193];
3330 return NULL;
3331}
3332
3333static u8 cea_num_vics(void)
3334{
3335 return 193 + ARRAY_SIZE(edid_cea_modes_193);
3336}
3337
3338static u8 cea_next_vic(u8 vic)
3339{
3340 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
3341 vic = 193;
3342 return vic;
3343}
3344
3345/*
3346 * Calculate the alternate clock for the CEA mode
3347 * (60Hz vs. 59.94Hz etc.)
3348 */
3349static unsigned int
3350cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3351{
3352 unsigned int clock = cea_mode->clock;
3353
3354 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
3355 return clock;
3356
3357 /*
3358 * edid_cea_modes contains the 59.94Hz
3359 * variant for 240 and 480 line modes,
3360 * and the 60Hz variant otherwise.
3361 */
3362 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3363 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3364 else
3365 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3366
3367 return clock;
3368}
3369
3370static bool
3371cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
3372{
3373 /*
3374 * For certain VICs the spec allows the vertical
3375 * front porch to vary by one or two lines.
3376 *
3377 * cea_modes[] stores the variant with the shortest
3378 * vertical front porch. We can adjust the mode to
3379 * get the other variants by simply increasing the
3380 * vertical front porch length.
3381 */
3382 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
3383 cea_mode_for_vic(9)->vtotal != 262 ||
3384 cea_mode_for_vic(12)->vtotal != 262 ||
3385 cea_mode_for_vic(13)->vtotal != 262 ||
3386 cea_mode_for_vic(23)->vtotal != 312 ||
3387 cea_mode_for_vic(24)->vtotal != 312 ||
3388 cea_mode_for_vic(27)->vtotal != 312 ||
3389 cea_mode_for_vic(28)->vtotal != 312);
3390
3391 if (((vic == 8 || vic == 9 ||
3392 vic == 12 || vic == 13) && mode->vtotal < 263) ||
3393 ((vic == 23 || vic == 24 ||
3394 vic == 27 || vic == 28) && mode->vtotal < 314)) {
3395 mode->vsync_start++;
3396 mode->vsync_end++;
3397 mode->vtotal++;
3398
3399 return true;
3400 }
3401
3402 return false;
3403}
3404
3405static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3406 unsigned int clock_tolerance)
3407{
3408 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3409 u8 vic;
3410
3411 if (!to_match->clock)
3412 return 0;
3413
3414 if (to_match->picture_aspect_ratio)
3415 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3416
3417 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3418 struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
3419 unsigned int clock1, clock2;
3420
3421 /* Check both 60Hz and 59.94Hz */
3422 clock1 = cea_mode.clock;
3423 clock2 = cea_mode_alternate_clock(&cea_mode);
3424
3425 if (abs(to_match->clock - clock1) > clock_tolerance &&
3426 abs(to_match->clock - clock2) > clock_tolerance)
3427 continue;
3428
3429 do {
3430 if (drm_mode_match(to_match, &cea_mode, match_flags))
3431 return vic;
3432 } while (cea_mode_alternate_timings(vic, &cea_mode));
3433 }
3434
3435 return 0;
3436}
3437
3438/**
3439 * drm_match_cea_mode - look for a CEA mode matching given mode
3440 * @to_match: display mode
3441 *
3442 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
3443 * mode.
3444 */
3445u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
3446{
3447 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3448 u8 vic;
3449
3450 if (!to_match->clock)
3451 return 0;
3452
3453 if (to_match->picture_aspect_ratio)
3454 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3455
3456 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3457 struct drm_display_mode cea_mode = *cea_mode_for_vic(vic);
3458 unsigned int clock1, clock2;
3459
3460 /* Check both 60Hz and 59.94Hz */
3461 clock1 = cea_mode.clock;
3462 clock2 = cea_mode_alternate_clock(&cea_mode);
3463
3464 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
3465 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
3466 continue;
3467
3468 do {
3469 if (drm_mode_match(to_match, &cea_mode, match_flags))
3470 return vic;
3471 } while (cea_mode_alternate_timings(vic, &cea_mode));
3472 }
3473
3474 return 0;
3475}
3476EXPORT_SYMBOL(drm_match_cea_mode);
3477
3478static bool drm_valid_cea_vic(u8 vic)
3479{
3480 return cea_mode_for_vic(vic) != NULL;
3481}
3482
3483static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
3484{
3485 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
3486
3487 if (mode)
3488 return mode->picture_aspect_ratio;
3489
3490 return HDMI_PICTURE_ASPECT_NONE;
3491}
3492
3493static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
3494{
3495 return edid_4k_modes[video_code].picture_aspect_ratio;
3496}
3497
3498/*
3499 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
3500 * specific block).
3501 */
3502static unsigned int
3503hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3504{
3505 return cea_mode_alternate_clock(hdmi_mode);
3506}
3507
3508static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3509 unsigned int clock_tolerance)
3510{
3511 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3512 u8 vic;
3513
3514 if (!to_match->clock)
3515 return 0;
3516
3517 if (to_match->picture_aspect_ratio)
3518 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3519
3520 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3521 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3522 unsigned int clock1, clock2;
3523
3524 /* Make sure to also match alternate clocks */
3525 clock1 = hdmi_mode->clock;
3526 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3527
3528 if (abs(to_match->clock - clock1) > clock_tolerance &&
3529 abs(to_match->clock - clock2) > clock_tolerance)
3530 continue;
3531
3532 if (drm_mode_match(to_match, hdmi_mode, match_flags))
3533 return vic;
3534 }
3535
3536 return 0;
3537}
3538
3539/*
3540 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
3541 * @to_match: display mode
3542 *
3543 * An HDMI mode is one defined in the HDMI vendor specific block.
3544 *
3545 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
3546 */
3547static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
3548{
3549 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
3550 u8 vic;
3551
3552 if (!to_match->clock)
3553 return 0;
3554
3555 if (to_match->picture_aspect_ratio)
3556 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
3557
3558 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3559 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3560 unsigned int clock1, clock2;
3561
3562 /* Make sure to also match alternate clocks */
3563 clock1 = hdmi_mode->clock;
3564 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3565
3566 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
3567 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
3568 drm_mode_match(to_match, hdmi_mode, match_flags))
3569 return vic;
3570 }
3571 return 0;
3572}
3573
3574static bool drm_valid_hdmi_vic(u8 vic)
3575{
3576 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
3577}
3578
3579static int
3580add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
3581{
3582 struct drm_device *dev = connector->dev;
3583 struct drm_display_mode *mode, *tmp;
3584 LIST_HEAD(list);
3585 int modes = 0;
3586
3587 /* Don't add CEA modes if the CEA extension block is missing */
3588 if (!drm_find_cea_extension(edid))
3589 return 0;
3590
3591 /*
3592 * Go through all probed modes and create a new mode
3593 * with the alternate clock for certain CEA modes.
3594 */
3595 list_for_each_entry(mode, &connector->probed_modes, head) {
3596 const struct drm_display_mode *cea_mode = NULL;
3597 struct drm_display_mode *newmode;
3598 u8 vic = drm_match_cea_mode(mode);
3599 unsigned int clock1, clock2;
3600
3601 if (drm_valid_cea_vic(vic)) {
3602 cea_mode = cea_mode_for_vic(vic);
3603 clock2 = cea_mode_alternate_clock(cea_mode);
3604 } else {
3605 vic = drm_match_hdmi_mode(mode);
3606 if (drm_valid_hdmi_vic(vic)) {
3607 cea_mode = &edid_4k_modes[vic];
3608 clock2 = hdmi_mode_alternate_clock(cea_mode);
3609 }
3610 }
3611
3612 if (!cea_mode)
3613 continue;
3614
3615 clock1 = cea_mode->clock;
3616
3617 if (clock1 == clock2)
3618 continue;
3619
3620 if (mode->clock != clock1 && mode->clock != clock2)
3621 continue;
3622
3623 newmode = drm_mode_duplicate(dev, cea_mode);
3624 if (!newmode)
3625 continue;
3626
3627 /* Carry over the stereo flags */
3628 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
3629
3630 /*
3631 * The current mode could be either variant. Make
3632 * sure to pick the "other" clock for the new mode.
3633 */
3634 if (mode->clock != clock1)
3635 newmode->clock = clock1;
3636 else
3637 newmode->clock = clock2;
3638
3639 list_add_tail(&newmode->head, &list);
3640 }
3641
3642 list_for_each_entry_safe(mode, tmp, &list, head) {
3643 list_del(&mode->head);
3644 drm_mode_probed_add(connector, mode);
3645 modes++;
3646 }
3647
3648 return modes;
3649}
3650
3651static u8 svd_to_vic(u8 svd)
3652{
3653 /* 0-6 bit vic, 7th bit native mode indicator */
3654 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
3655 return svd & 127;
3656
3657 return svd;
3658}
3659
3660static struct drm_display_mode *
3661drm_display_mode_from_vic_index(struct drm_connector *connector,
3662 const u8 *video_db, u8 video_len,
3663 u8 video_index)
3664{
3665 struct drm_device *dev = connector->dev;
3666 struct drm_display_mode *newmode;
3667 u8 vic;
3668
3669 if (video_db == NULL || video_index >= video_len)
3670 return NULL;
3671
3672 /* CEA modes are numbered 1..127 */
3673 vic = svd_to_vic(video_db[video_index]);
3674 if (!drm_valid_cea_vic(vic))
3675 return NULL;
3676
3677 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
3678 if (!newmode)
3679 return NULL;
3680
3681 return newmode;
3682}
3683
3684/*
3685 * do_y420vdb_modes - Parse YCBCR 420 only modes
3686 * @connector: connector corresponding to the HDMI sink
3687 * @svds: start of the data block of CEA YCBCR 420 VDB
3688 * @len: length of the CEA YCBCR 420 VDB
3689 *
3690 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
3691 * which contains modes which can be supported in YCBCR 420
3692 * output format only.
3693 */
3694static int do_y420vdb_modes(struct drm_connector *connector,
3695 const u8 *svds, u8 svds_len)
3696{
3697 int modes = 0, i;
3698 struct drm_device *dev = connector->dev;
3699 struct drm_display_info *info = &connector->display_info;
3700 struct drm_hdmi_info *hdmi = &info->hdmi;
3701
3702 for (i = 0; i < svds_len; i++) {
3703 u8 vic = svd_to_vic(svds[i]);
3704 struct drm_display_mode *newmode;
3705
3706 if (!drm_valid_cea_vic(vic))
3707 continue;
3708
3709 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
3710 if (!newmode)
3711 break;
3712 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
3713 drm_mode_probed_add(connector, newmode);
3714 modes++;
3715 }
3716
3717 if (modes > 0)
3718 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3719 return modes;
3720}
3721
3722/*
3723 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
3724 * @connector: connector corresponding to the HDMI sink
3725 * @vic: CEA vic for the video mode to be added in the map
3726 *
3727 * Makes an entry for a videomode in the YCBCR 420 bitmap
3728 */
3729static void
3730drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
3731{
3732 u8 vic = svd_to_vic(svd);
3733 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3734
3735 if (!drm_valid_cea_vic(vic))
3736 return;
3737
3738 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
3739}
3740
3741static int
3742do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
3743{
3744 int i, modes = 0;
3745 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3746
3747 for (i = 0; i < len; i++) {
3748 struct drm_display_mode *mode;
3749
3750 mode = drm_display_mode_from_vic_index(connector, db, len, i);
3751 if (mode) {
3752 /*
3753 * YCBCR420 capability block contains a bitmap which
3754 * gives the index of CEA modes from CEA VDB, which
3755 * can support YCBCR 420 sampling output also (apart
3756 * from RGB/YCBCR444 etc).
3757 * For example, if the bit 0 in bitmap is set,
3758 * first mode in VDB can support YCBCR420 output too.
3759 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
3760 */
3761 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
3762 drm_add_cmdb_modes(connector, db[i]);
3763
3764 drm_mode_probed_add(connector, mode);
3765 modes++;
3766 }
3767 }
3768
3769 return modes;
3770}
3771
3772struct stereo_mandatory_mode {
3773 int width, height, vrefresh;
3774 unsigned int flags;
3775};
3776
3777static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
3778 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3779 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
3780 { 1920, 1080, 50,
3781 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3782 { 1920, 1080, 60,
3783 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
3784 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3785 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
3786 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
3787 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
3788};
3789
3790static bool
3791stereo_match_mandatory(const struct drm_display_mode *mode,
3792 const struct stereo_mandatory_mode *stereo_mode)
3793{
3794 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
3795
3796 return mode->hdisplay == stereo_mode->width &&
3797 mode->vdisplay == stereo_mode->height &&
3798 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
3799 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
3800}
3801
3802static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
3803{
3804 struct drm_device *dev = connector->dev;
3805 const struct drm_display_mode *mode;
3806 struct list_head stereo_modes;
3807 int modes = 0, i;
3808
3809 INIT_LIST_HEAD(&stereo_modes);
3810
3811 list_for_each_entry(mode, &connector->probed_modes, head) {
3812 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
3813 const struct stereo_mandatory_mode *mandatory;
3814 struct drm_display_mode *new_mode;
3815
3816 if (!stereo_match_mandatory(mode,
3817 &stereo_mandatory_modes[i]))
3818 continue;
3819
3820 mandatory = &stereo_mandatory_modes[i];
3821 new_mode = drm_mode_duplicate(dev, mode);
3822 if (!new_mode)
3823 continue;
3824
3825 new_mode->flags |= mandatory->flags;
3826 list_add_tail(&new_mode->head, &stereo_modes);
3827 modes++;
3828 }
3829 }
3830
3831 list_splice_tail(&stereo_modes, &connector->probed_modes);
3832
3833 return modes;
3834}
3835
3836static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
3837{
3838 struct drm_device *dev = connector->dev;
3839 struct drm_display_mode *newmode;
3840
3841 if (!drm_valid_hdmi_vic(vic)) {
3842 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
3843 return 0;
3844 }
3845
3846 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
3847 if (!newmode)
3848 return 0;
3849
3850 drm_mode_probed_add(connector, newmode);
3851
3852 return 1;
3853}
3854
3855static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
3856 const u8 *video_db, u8 video_len, u8 video_index)
3857{
3858 struct drm_display_mode *newmode;
3859 int modes = 0;
3860
3861 if (structure & (1 << 0)) {
3862 newmode = drm_display_mode_from_vic_index(connector, video_db,
3863 video_len,
3864 video_index);
3865 if (newmode) {
3866 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
3867 drm_mode_probed_add(connector, newmode);
3868 modes++;
3869 }
3870 }
3871 if (structure & (1 << 6)) {
3872 newmode = drm_display_mode_from_vic_index(connector, video_db,
3873 video_len,
3874 video_index);
3875 if (newmode) {
3876 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3877 drm_mode_probed_add(connector, newmode);
3878 modes++;
3879 }
3880 }
3881 if (structure & (1 << 8)) {
3882 newmode = drm_display_mode_from_vic_index(connector, video_db,
3883 video_len,
3884 video_index);
3885 if (newmode) {
3886 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3887 drm_mode_probed_add(connector, newmode);
3888 modes++;
3889 }
3890 }
3891
3892 return modes;
3893}
3894
3895/*
3896 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
3897 * @connector: connector corresponding to the HDMI sink
3898 * @db: start of the CEA vendor specific block
3899 * @len: length of the CEA block payload, ie. one can access up to db[len]
3900 *
3901 * Parses the HDMI VSDB looking for modes to add to @connector. This function
3902 * also adds the stereo 3d modes when applicable.
3903 */
3904static int
3905do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
3906 const u8 *video_db, u8 video_len)
3907{
3908 struct drm_display_info *info = &connector->display_info;
3909 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
3910 u8 vic_len, hdmi_3d_len = 0;
3911 u16 mask;
3912 u16 structure_all;
3913
3914 if (len < 8)
3915 goto out;
3916
3917 /* no HDMI_Video_Present */
3918 if (!(db[8] & (1 << 5)))
3919 goto out;
3920
3921 /* Latency_Fields_Present */
3922 if (db[8] & (1 << 7))
3923 offset += 2;
3924
3925 /* I_Latency_Fields_Present */
3926 if (db[8] & (1 << 6))
3927 offset += 2;
3928
3929 /* the declared length is not long enough for the 2 first bytes
3930 * of additional video format capabilities */
3931 if (len < (8 + offset + 2))
3932 goto out;
3933
3934 /* 3D_Present */
3935 offset++;
3936 if (db[8 + offset] & (1 << 7)) {
3937 modes += add_hdmi_mandatory_stereo_modes(connector);
3938
3939 /* 3D_Multi_present */
3940 multi_present = (db[8 + offset] & 0x60) >> 5;
3941 }
3942
3943 offset++;
3944 vic_len = db[8 + offset] >> 5;
3945 hdmi_3d_len = db[8 + offset] & 0x1f;
3946
3947 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3948 u8 vic;
3949
3950 vic = db[9 + offset + i];
3951 modes += add_hdmi_mode(connector, vic);
3952 }
3953 offset += 1 + vic_len;
3954
3955 if (multi_present == 1)
3956 multi_len = 2;
3957 else if (multi_present == 2)
3958 multi_len = 4;
3959 else
3960 multi_len = 0;
3961
3962 if (len < (8 + offset + hdmi_3d_len - 1))
3963 goto out;
3964
3965 if (hdmi_3d_len < multi_len)
3966 goto out;
3967
3968 if (multi_present == 1 || multi_present == 2) {
3969 /* 3D_Structure_ALL */
3970 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3971
3972 /* check if 3D_MASK is present */
3973 if (multi_present == 2)
3974 mask = (db[10 + offset] << 8) | db[11 + offset];
3975 else
3976 mask = 0xffff;
3977
3978 for (i = 0; i < 16; i++) {
3979 if (mask & (1 << i))
3980 modes += add_3d_struct_modes(connector,
3981 structure_all,
3982 video_db,
3983 video_len, i);
3984 }
3985 }
3986
3987 offset += multi_len;
3988
3989 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3990 int vic_index;
3991 struct drm_display_mode *newmode = NULL;
3992 unsigned int newflag = 0;
3993 bool detail_present;
3994
3995 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3996
3997 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3998 break;
3999
4000 /* 2D_VIC_order_X */
4001 vic_index = db[8 + offset + i] >> 4;
4002
4003 /* 3D_Structure_X */
4004 switch (db[8 + offset + i] & 0x0f) {
4005 case 0:
4006 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4007 break;
4008 case 6:
4009 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4010 break;
4011 case 8:
4012 /* 3D_Detail_X */
4013 if ((db[9 + offset + i] >> 4) == 1)
4014 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4015 break;
4016 }
4017
4018 if (newflag != 0) {
4019 newmode = drm_display_mode_from_vic_index(connector,
4020 video_db,
4021 video_len,
4022 vic_index);
4023
4024 if (newmode) {
4025 newmode->flags |= newflag;
4026 drm_mode_probed_add(connector, newmode);
4027 modes++;
4028 }
4029 }
4030
4031 if (detail_present)
4032 i++;
4033 }
4034
4035out:
4036 if (modes > 0)
4037 info->has_hdmi_infoframe = true;
4038 return modes;
4039}
4040
4041static int
4042cea_db_payload_len(const u8 *db)
4043{
4044 return db[0] & 0x1f;
4045}
4046
4047static int
4048cea_db_extended_tag(const u8 *db)
4049{
4050 return db[1];
4051}
4052
4053static int
4054cea_db_tag(const u8 *db)
4055{
4056 return db[0] >> 5;
4057}
4058
4059static int
4060cea_revision(const u8 *cea)
4061{
4062 /*
4063 * FIXME is this correct for the DispID variant?
4064 * The DispID spec doesn't really specify whether
4065 * this is the revision of the CEA extension or
4066 * the DispID CEA data block. And the only value
4067 * given as an example is 0.
4068 */
4069 return cea[1];
4070}
4071
4072static int
4073cea_db_offsets(const u8 *cea, int *start, int *end)
4074{
4075 /* DisplayID CTA extension blocks and top-level CEA EDID
4076 * block header definitions differ in the following bytes:
4077 * 1) Byte 2 of the header specifies length differently,
4078 * 2) Byte 3 is only present in the CEA top level block.
4079 *
4080 * The different definitions for byte 2 follow.
4081 *
4082 * DisplayID CTA extension block defines byte 2 as:
4083 * Number of payload bytes
4084 *
4085 * CEA EDID block defines byte 2 as:
4086 * Byte number (decimal) within this block where the 18-byte
4087 * DTDs begin. If no non-DTD data is present in this extension
4088 * block, the value should be set to 04h (the byte after next).
4089 * If set to 00h, there are no DTDs present in this block and
4090 * no non-DTD data.
4091 */
4092 if (cea[0] == DATA_BLOCK_CTA) {
4093 /*
4094 * for_each_displayid_db() has already verified
4095 * that these stay within expected bounds.
4096 */
4097 *start = 3;
4098 *end = *start + cea[2];
4099 } else if (cea[0] == CEA_EXT) {
4100 /* Data block offset in CEA extension block */
4101 *start = 4;
4102 *end = cea[2];
4103 if (*end == 0)
4104 *end = 127;
4105 if (*end < 4 || *end > 127)
4106 return -ERANGE;
4107 } else {
4108 return -EOPNOTSUPP;
4109 }
4110
4111 return 0;
4112}
4113
4114static bool cea_db_is_hdmi_vsdb(const u8 *db)
4115{
4116 int hdmi_id;
4117
4118 if (cea_db_tag(db) != VENDOR_BLOCK)
4119 return false;
4120
4121 if (cea_db_payload_len(db) < 5)
4122 return false;
4123
4124 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
4125
4126 return hdmi_id == HDMI_IEEE_OUI;
4127}
4128
4129static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
4130{
4131 unsigned int oui;
4132
4133 if (cea_db_tag(db) != VENDOR_BLOCK)
4134 return false;
4135
4136 if (cea_db_payload_len(db) < 7)
4137 return false;
4138
4139 oui = db[3] << 16 | db[2] << 8 | db[1];
4140
4141 return oui == HDMI_FORUM_IEEE_OUI;
4142}
4143
4144static bool cea_db_is_vcdb(const u8 *db)
4145{
4146 if (cea_db_tag(db) != USE_EXTENDED_TAG)
4147 return false;
4148
4149 if (cea_db_payload_len(db) != 2)
4150 return false;
4151
4152 if (cea_db_extended_tag(db) != EXT_VIDEO_CAPABILITY_BLOCK)
4153 return false;
4154
4155 return true;
4156}
4157
4158static bool cea_db_is_y420cmdb(const u8 *db)
4159{
4160 if (cea_db_tag(db) != USE_EXTENDED_TAG)
4161 return false;
4162
4163 if (!cea_db_payload_len(db))
4164 return false;
4165
4166 if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
4167 return false;
4168
4169 return true;
4170}
4171
4172static bool cea_db_is_y420vdb(const u8 *db)
4173{
4174 if (cea_db_tag(db) != USE_EXTENDED_TAG)
4175 return false;
4176
4177 if (!cea_db_payload_len(db))
4178 return false;
4179
4180 if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
4181 return false;
4182
4183 return true;
4184}
4185
4186#define for_each_cea_db(cea, i, start, end) \
4187 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
4188
4189static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
4190 const u8 *db)
4191{
4192 struct drm_display_info *info = &connector->display_info;
4193 struct drm_hdmi_info *hdmi = &info->hdmi;
4194 u8 map_len = cea_db_payload_len(db) - 1;
4195 u8 count;
4196 u64 map = 0;
4197
4198 if (map_len == 0) {
4199 /* All CEA modes support ycbcr420 sampling also.*/
4200 hdmi->y420_cmdb_map = U64_MAX;
4201 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
4202 return;
4203 }
4204
4205 /*
4206 * This map indicates which of the existing CEA block modes
4207 * from VDB can support YCBCR420 output too. So if bit=0 is
4208 * set, first mode from VDB can support YCBCR420 output too.
4209 * We will parse and keep this map, before parsing VDB itself
4210 * to avoid going through the same block again and again.
4211 *
4212 * Spec is not clear about max possible size of this block.
4213 * Clamping max bitmap block size at 8 bytes. Every byte can
4214 * address 8 CEA modes, in this way this map can address
4215 * 8*8 = first 64 SVDs.
4216 */
4217 if (WARN_ON_ONCE(map_len > 8))
4218 map_len = 8;
4219
4220 for (count = 0; count < map_len; count++)
4221 map |= (u64)db[2 + count] << (8 * count);
4222
4223 if (map)
4224 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
4225
4226 hdmi->y420_cmdb_map = map;
4227}
4228
4229static int
4230add_cea_modes(struct drm_connector *connector, struct edid *edid)
4231{
4232 const u8 *cea = drm_find_cea_extension(edid);
4233 const u8 *db, *hdmi = NULL, *video = NULL;
4234 u8 dbl, hdmi_len, video_len = 0;
4235 int modes = 0;
4236
4237 if (cea && cea_revision(cea) >= 3) {
4238 int i, start, end;
4239
4240 if (cea_db_offsets(cea, &start, &end))
4241 return 0;
4242
4243 for_each_cea_db(cea, i, start, end) {
4244 db = &cea[i];
4245 dbl = cea_db_payload_len(db);
4246
4247 if (cea_db_tag(db) == VIDEO_BLOCK) {
4248 video = db + 1;
4249 video_len = dbl;
4250 modes += do_cea_modes(connector, video, dbl);
4251 } else if (cea_db_is_hdmi_vsdb(db)) {
4252 hdmi = db;
4253 hdmi_len = dbl;
4254 } else if (cea_db_is_y420vdb(db)) {
4255 const u8 *vdb420 = &db[2];
4256
4257 /* Add 4:2:0(only) modes present in EDID */
4258 modes += do_y420vdb_modes(connector,
4259 vdb420,
4260 dbl - 1);
4261 }
4262 }
4263 }
4264
4265 /*
4266 * We parse the HDMI VSDB after having added the cea modes as we will
4267 * be patching their flags when the sink supports stereo 3D.
4268 */
4269 if (hdmi)
4270 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
4271 video_len);
4272
4273 return modes;
4274}
4275
4276static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
4277{
4278 const struct drm_display_mode *cea_mode;
4279 int clock1, clock2, clock;
4280 u8 vic;
4281 const char *type;
4282
4283 /*
4284 * allow 5kHz clock difference either way to account for
4285 * the 10kHz clock resolution limit of detailed timings.
4286 */
4287 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4288 if (drm_valid_cea_vic(vic)) {
4289 type = "CEA";
4290 cea_mode = cea_mode_for_vic(vic);
4291 clock1 = cea_mode->clock;
4292 clock2 = cea_mode_alternate_clock(cea_mode);
4293 } else {
4294 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4295 if (drm_valid_hdmi_vic(vic)) {
4296 type = "HDMI";
4297 cea_mode = &edid_4k_modes[vic];
4298 clock1 = cea_mode->clock;
4299 clock2 = hdmi_mode_alternate_clock(cea_mode);
4300 } else {
4301 return;
4302 }
4303 }
4304
4305 /* pick whichever is closest */
4306 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4307 clock = clock1;
4308 else
4309 clock = clock2;
4310
4311 if (mode->clock == clock)
4312 return;
4313
4314 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4315 type, vic, mode->clock, clock);
4316 mode->clock = clock;
4317}
4318
4319static bool cea_db_is_hdmi_hdr_metadata_block(const u8 *db)
4320{
4321 if (cea_db_tag(db) != USE_EXTENDED_TAG)
4322 return false;
4323
4324 if (db[1] != HDR_STATIC_METADATA_BLOCK)
4325 return false;
4326
4327 if (cea_db_payload_len(db) < 3)
4328 return false;
4329
4330 return true;
4331}
4332
4333static uint8_t eotf_supported(const u8 *edid_ext)
4334{
4335 return edid_ext[2] &
4336 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
4337 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
4338 BIT(HDMI_EOTF_SMPTE_ST2084) |
4339 BIT(HDMI_EOTF_BT_2100_HLG));
4340}
4341
4342static uint8_t hdr_metadata_type(const u8 *edid_ext)
4343{
4344 return edid_ext[3] &
4345 BIT(HDMI_STATIC_METADATA_TYPE1);
4346}
4347
4348static void
4349drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
4350{
4351 u16 len;
4352
4353 len = cea_db_payload_len(db);
4354
4355 connector->hdr_sink_metadata.hdmi_type1.eotf =
4356 eotf_supported(db);
4357 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
4358 hdr_metadata_type(db);
4359
4360 if (len >= 4)
4361 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
4362 if (len >= 5)
4363 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
4364 if (len >= 6)
4365 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
4366}
4367
4368static void
4369drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
4370{
4371 u8 len = cea_db_payload_len(db);
4372
4373 if (len >= 6 && (db[6] & (1 << 7)))
4374 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
4375 if (len >= 8) {
4376 connector->latency_present[0] = db[8] >> 7;
4377 connector->latency_present[1] = (db[8] >> 6) & 1;
4378 }
4379 if (len >= 9)
4380 connector->video_latency[0] = db[9];
4381 if (len >= 10)
4382 connector->audio_latency[0] = db[10];
4383 if (len >= 11)
4384 connector->video_latency[1] = db[11];
4385 if (len >= 12)
4386 connector->audio_latency[1] = db[12];
4387
4388 DRM_DEBUG_KMS("HDMI: latency present %d %d, "
4389 "video latency %d %d, "
4390 "audio latency %d %d\n",
4391 connector->latency_present[0],
4392 connector->latency_present[1],
4393 connector->video_latency[0],
4394 connector->video_latency[1],
4395 connector->audio_latency[0],
4396 connector->audio_latency[1]);
4397}
4398
4399static void
4400monitor_name(struct detailed_timing *t, void *data)
4401{
4402 if (!is_display_descriptor((const u8 *)t, EDID_DETAIL_MONITOR_NAME))
4403 return;
4404
4405 *(u8 **)data = t->data.other_data.data.str.str;
4406}
4407
4408static int get_monitor_name(struct edid *edid, char name[13])
4409{
4410 char *edid_name = NULL;
4411 int mnl;
4412
4413 if (!edid || !name)
4414 return 0;
4415
4416 drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name);
4417 for (mnl = 0; edid_name && mnl < 13; mnl++) {
4418 if (edid_name[mnl] == 0x0a)
4419 break;
4420
4421 name[mnl] = edid_name[mnl];
4422 }
4423
4424 return mnl;
4425}
4426
4427/**
4428 * drm_edid_get_monitor_name - fetch the monitor name from the edid
4429 * @edid: monitor EDID information
4430 * @name: pointer to a character array to hold the name of the monitor
4431 * @bufsize: The size of the name buffer (should be at least 14 chars.)
4432 *
4433 */
4434void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize)
4435{
4436 int name_length;
4437 char buf[13];
4438
4439 if (bufsize <= 0)
4440 return;
4441
4442 name_length = min(get_monitor_name(edid, buf), bufsize - 1);
4443 memcpy(name, buf, name_length);
4444 name[name_length] = '\0';
4445}
4446EXPORT_SYMBOL(drm_edid_get_monitor_name);
4447
4448static void clear_eld(struct drm_connector *connector)
4449{
4450 memset(connector->eld, 0, sizeof(connector->eld));
4451
4452 connector->latency_present[0] = false;
4453 connector->latency_present[1] = false;
4454 connector->video_latency[0] = 0;
4455 connector->audio_latency[0] = 0;
4456 connector->video_latency[1] = 0;
4457 connector->audio_latency[1] = 0;
4458}
4459
4460/*
4461 * drm_edid_to_eld - build ELD from EDID
4462 * @connector: connector corresponding to the HDMI/DP sink
4463 * @edid: EDID to parse
4464 *
4465 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
4466 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
4467 */
4468static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
4469{
4470 uint8_t *eld = connector->eld;
4471 u8 *cea;
4472 u8 *db;
4473 int total_sad_count = 0;
4474 int mnl;
4475 int dbl;
4476
4477 clear_eld(connector);
4478
4479 if (!edid)
4480 return;
4481
4482 cea = drm_find_cea_extension(edid);
4483 if (!cea) {
4484 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
4485 return;
4486 }
4487
4488 mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
4489 DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]);
4490
4491 eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT;
4492 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
4493
4494 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
4495
4496 eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0];
4497 eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1];
4498 eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0];
4499 eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1];
4500
4501 if (cea_revision(cea) >= 3) {
4502 int i, start, end;
4503 int sad_count;
4504
4505 if (cea_db_offsets(cea, &start, &end)) {
4506 start = 0;
4507 end = 0;
4508 }
4509
4510 for_each_cea_db(cea, i, start, end) {
4511 db = &cea[i];
4512 dbl = cea_db_payload_len(db);
4513
4514 switch (cea_db_tag(db)) {
4515 case AUDIO_BLOCK:
4516 /* Audio Data Block, contains SADs */
4517 sad_count = min(dbl / 3, 15 - total_sad_count);
4518 if (sad_count >= 1)
4519 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
4520 &db[1], sad_count * 3);
4521 total_sad_count += sad_count;
4522 break;
4523 case SPEAKER_BLOCK:
4524 /* Speaker Allocation Data Block */
4525 if (dbl >= 1)
4526 eld[DRM_ELD_SPEAKER] = db[1];
4527 break;
4528 case VENDOR_BLOCK:
4529 /* HDMI Vendor-Specific Data Block */
4530 if (cea_db_is_hdmi_vsdb(db))
4531 drm_parse_hdmi_vsdb_audio(connector, db);
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537 }
4538 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
4539
4540 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4541 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4542 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
4543 else
4544 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
4545
4546 eld[DRM_ELD_BASELINE_ELD_LEN] =
4547 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
4548
4549 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
4550 drm_eld_size(eld), total_sad_count);
4551}
4552
4553/**
4554 * drm_edid_to_sad - extracts SADs from EDID
4555 * @edid: EDID to parse
4556 * @sads: pointer that will be set to the extracted SADs
4557 *
4558 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
4559 *
4560 * Note: The returned pointer needs to be freed using kfree().
4561 *
4562 * Return: The number of found SADs or negative number on error.
4563 */
4564int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
4565{
4566 int count = 0;
4567 int i, start, end, dbl;
4568 u8 *cea;
4569
4570 cea = drm_find_cea_extension(edid);
4571 if (!cea) {
4572 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4573 return 0;
4574 }
4575
4576 if (cea_revision(cea) < 3) {
4577 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4578 return 0;
4579 }
4580
4581 if (cea_db_offsets(cea, &start, &end)) {
4582 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4583 return -EPROTO;
4584 }
4585
4586 for_each_cea_db(cea, i, start, end) {
4587 u8 *db = &cea[i];
4588
4589 if (cea_db_tag(db) == AUDIO_BLOCK) {
4590 int j;
4591
4592 dbl = cea_db_payload_len(db);
4593
4594 count = dbl / 3; /* SAD is 3B */
4595 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
4596 if (!*sads)
4597 return -ENOMEM;
4598 for (j = 0; j < count; j++) {
4599 u8 *sad = &db[1 + j * 3];
4600
4601 (*sads)[j].format = (sad[0] & 0x78) >> 3;
4602 (*sads)[j].channels = sad[0] & 0x7;
4603 (*sads)[j].freq = sad[1] & 0x7F;
4604 (*sads)[j].byte2 = sad[2];
4605 }
4606 break;
4607 }
4608 }
4609
4610 return count;
4611}
4612EXPORT_SYMBOL(drm_edid_to_sad);
4613
4614/**
4615 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
4616 * @edid: EDID to parse
4617 * @sadb: pointer to the speaker block
4618 *
4619 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
4620 *
4621 * Note: The returned pointer needs to be freed using kfree().
4622 *
4623 * Return: The number of found Speaker Allocation Blocks or negative number on
4624 * error.
4625 */
4626int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
4627{
4628 int count = 0;
4629 int i, start, end, dbl;
4630 const u8 *cea;
4631
4632 cea = drm_find_cea_extension(edid);
4633 if (!cea) {
4634 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
4635 return 0;
4636 }
4637
4638 if (cea_revision(cea) < 3) {
4639 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
4640 return 0;
4641 }
4642
4643 if (cea_db_offsets(cea, &start, &end)) {
4644 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
4645 return -EPROTO;
4646 }
4647
4648 for_each_cea_db(cea, i, start, end) {
4649 const u8 *db = &cea[i];
4650
4651 if (cea_db_tag(db) == SPEAKER_BLOCK) {
4652 dbl = cea_db_payload_len(db);
4653
4654 /* Speaker Allocation Data Block */
4655 if (dbl == 3) {
4656 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
4657 if (!*sadb)
4658 return -ENOMEM;
4659 count = dbl;
4660 break;
4661 }
4662 }
4663 }
4664
4665 return count;
4666}
4667EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
4668
4669/**
4670 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
4671 * @connector: connector associated with the HDMI/DP sink
4672 * @mode: the display mode
4673 *
4674 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
4675 * the sink doesn't support audio or video.
4676 */
4677int drm_av_sync_delay(struct drm_connector *connector,
4678 const struct drm_display_mode *mode)
4679{
4680 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
4681 int a, v;
4682
4683 if (!connector->latency_present[0])
4684 return 0;
4685 if (!connector->latency_present[1])
4686 i = 0;
4687
4688 a = connector->audio_latency[i];
4689 v = connector->video_latency[i];
4690
4691 /*
4692 * HDMI/DP sink doesn't support audio or video?
4693 */
4694 if (a == 255 || v == 255)
4695 return 0;
4696
4697 /*
4698 * Convert raw EDID values to millisecond.
4699 * Treat unknown latency as 0ms.
4700 */
4701 if (a)
4702 a = min(2 * (a - 1), 500);
4703 if (v)
4704 v = min(2 * (v - 1), 500);
4705
4706 return max(v - a, 0);
4707}
4708EXPORT_SYMBOL(drm_av_sync_delay);
4709
4710/**
4711 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
4712 * @edid: monitor EDID information
4713 *
4714 * Parse the CEA extension according to CEA-861-B.
4715 *
4716 * Drivers that have added the modes parsed from EDID to drm_display_info
4717 * should use &drm_display_info.is_hdmi instead of calling this function.
4718 *
4719 * Return: True if the monitor is HDMI, false if not or unknown.
4720 */
4721bool drm_detect_hdmi_monitor(struct edid *edid)
4722{
4723 u8 *edid_ext;
4724 int i;
4725 int start_offset, end_offset;
4726
4727 edid_ext = drm_find_cea_extension(edid);
4728 if (!edid_ext)
4729 return false;
4730
4731 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4732 return false;
4733
4734 /*
4735 * Because HDMI identifier is in Vendor Specific Block,
4736 * search it from all data blocks of CEA extension.
4737 */
4738 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4739 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
4740 return true;
4741 }
4742
4743 return false;
4744}
4745EXPORT_SYMBOL(drm_detect_hdmi_monitor);
4746
4747/**
4748 * drm_detect_monitor_audio - check monitor audio capability
4749 * @edid: EDID block to scan
4750 *
4751 * Monitor should have CEA extension block.
4752 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
4753 * audio' only. If there is any audio extension block and supported
4754 * audio format, assume at least 'basic audio' support, even if 'basic
4755 * audio' is not defined in EDID.
4756 *
4757 * Return: True if the monitor supports audio, false otherwise.
4758 */
4759bool drm_detect_monitor_audio(struct edid *edid)
4760{
4761 u8 *edid_ext;
4762 int i, j;
4763 bool has_audio = false;
4764 int start_offset, end_offset;
4765
4766 edid_ext = drm_find_cea_extension(edid);
4767 if (!edid_ext)
4768 goto end;
4769
4770 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
4771
4772 if (has_audio) {
4773 DRM_DEBUG_KMS("Monitor has basic audio support\n");
4774 goto end;
4775 }
4776
4777 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
4778 goto end;
4779
4780 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
4781 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
4782 has_audio = true;
4783 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
4784 DRM_DEBUG_KMS("CEA audio format %d\n",
4785 (edid_ext[i + j] >> 3) & 0xf);
4786 goto end;
4787 }
4788 }
4789end:
4790 return has_audio;
4791}
4792EXPORT_SYMBOL(drm_detect_monitor_audio);
4793
4794
4795/**
4796 * drm_default_rgb_quant_range - default RGB quantization range
4797 * @mode: display mode
4798 *
4799 * Determine the default RGB quantization range for the mode,
4800 * as specified in CEA-861.
4801 *
4802 * Return: The default RGB quantization range for the mode
4803 */
4804enum hdmi_quantization_range
4805drm_default_rgb_quant_range(const struct drm_display_mode *mode)
4806{
4807 /* All CEA modes other than VIC 1 use limited quantization range. */
4808 return drm_match_cea_mode(mode) > 1 ?
4809 HDMI_QUANTIZATION_RANGE_LIMITED :
4810 HDMI_QUANTIZATION_RANGE_FULL;
4811}
4812EXPORT_SYMBOL(drm_default_rgb_quant_range);
4813
4814static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
4815{
4816 struct drm_display_info *info = &connector->display_info;
4817
4818 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", db[2]);
4819
4820 if (db[2] & EDID_CEA_VCDB_QS)
4821 info->rgb_quant_range_selectable = true;
4822}
4823
4824static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
4825 const u8 *db)
4826{
4827 u8 dc_mask;
4828 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4829
4830 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
4831 hdmi->y420_dc_modes = dc_mask;
4832}
4833
4834static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector,
4835 const u8 *hf_vsdb)
4836{
4837 struct drm_display_info *display = &connector->display_info;
4838 struct drm_hdmi_info *hdmi = &display->hdmi;
4839
4840 display->has_hdmi_infoframe = true;
4841
4842 if (hf_vsdb[6] & 0x80) {
4843 hdmi->scdc.supported = true;
4844 if (hf_vsdb[6] & 0x40)
4845 hdmi->scdc.read_request = true;
4846 }
4847
4848 /*
4849 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
4850 * And as per the spec, three factors confirm this:
4851 * * Availability of a HF-VSDB block in EDID (check)
4852 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
4853 * * SCDC support available (let's check)
4854 * Lets check it out.
4855 */
4856
4857 if (hf_vsdb[5]) {
4858 /* max clock is 5000 KHz times block value */
4859 u32 max_tmds_clock = hf_vsdb[5] * 5000;
4860 struct drm_scdc *scdc = &hdmi->scdc;
4861
4862 if (max_tmds_clock > 340000) {
4863 display->max_tmds_clock = max_tmds_clock;
4864 DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n",
4865 display->max_tmds_clock);
4866 }
4867
4868 if (scdc->supported) {
4869 scdc->scrambling.supported = true;
4870
4871 /* Few sinks support scrambling for clocks < 340M */
4872 if ((hf_vsdb[6] & 0x8))
4873 scdc->scrambling.low_rates = true;
4874 }
4875 }
4876
4877 drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb);
4878}
4879
4880static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
4881 const u8 *hdmi)
4882{
4883 struct drm_display_info *info = &connector->display_info;
4884 unsigned int dc_bpc = 0;
4885
4886 /* HDMI supports at least 8 bpc */
4887 info->bpc = 8;
4888
4889 if (cea_db_payload_len(hdmi) < 6)
4890 return;
4891
4892 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
4893 dc_bpc = 10;
4894 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
4895 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
4896 connector->name);
4897 }
4898
4899 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
4900 dc_bpc = 12;
4901 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
4902 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
4903 connector->name);
4904 }
4905
4906 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
4907 dc_bpc = 16;
4908 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
4909 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
4910 connector->name);
4911 }
4912
4913 if (dc_bpc == 0) {
4914 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
4915 connector->name);
4916 return;
4917 }
4918
4919 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
4920 connector->name, dc_bpc);
4921 info->bpc = dc_bpc;
4922
4923 /*
4924 * Deep color support mandates RGB444 support for all video
4925 * modes and forbids YCRCB422 support for all video modes per
4926 * HDMI 1.3 spec.
4927 */
4928 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4929
4930 /* YCRCB444 is optional according to spec. */
4931 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
4932 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4933 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
4934 connector->name);
4935 }
4936
4937 /*
4938 * Spec says that if any deep color mode is supported at all,
4939 * then deep color 36 bit must be supported.
4940 */
4941 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
4942 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
4943 connector->name);
4944 }
4945}
4946
4947static void
4948drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
4949{
4950 struct drm_display_info *info = &connector->display_info;
4951 u8 len = cea_db_payload_len(db);
4952
4953 info->is_hdmi = true;
4954
4955 if (len >= 6)
4956 info->dvi_dual = db[6] & 1;
4957 if (len >= 7)
4958 info->max_tmds_clock = db[7] * 5000;
4959
4960 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
4961 "max TMDS clock %d kHz\n",
4962 info->dvi_dual,
4963 info->max_tmds_clock);
4964
4965 drm_parse_hdmi_deep_color_info(connector, db);
4966}
4967
4968static void drm_parse_cea_ext(struct drm_connector *connector,
4969 const struct edid *edid)
4970{
4971 struct drm_display_info *info = &connector->display_info;
4972 const u8 *edid_ext;
4973 int i, start, end;
4974
4975 edid_ext = drm_find_cea_extension(edid);
4976 if (!edid_ext)
4977 return;
4978
4979 info->cea_rev = edid_ext[1];
4980
4981 /* The existence of a CEA block should imply RGB support */
4982 info->color_formats = DRM_COLOR_FORMAT_RGB444;
4983 if (edid_ext[3] & EDID_CEA_YCRCB444)
4984 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
4985 if (edid_ext[3] & EDID_CEA_YCRCB422)
4986 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
4987
4988 if (cea_db_offsets(edid_ext, &start, &end))
4989 return;
4990
4991 for_each_cea_db(edid_ext, i, start, end) {
4992 const u8 *db = &edid_ext[i];
4993
4994 if (cea_db_is_hdmi_vsdb(db))
4995 drm_parse_hdmi_vsdb_video(connector, db);
4996 if (cea_db_is_hdmi_forum_vsdb(db))
4997 drm_parse_hdmi_forum_vsdb(connector, db);
4998 if (cea_db_is_y420cmdb(db))
4999 drm_parse_y420cmdb_bitmap(connector, db);
5000 if (cea_db_is_vcdb(db))
5001 drm_parse_vcdb(connector, db);
5002 if (cea_db_is_hdmi_hdr_metadata_block(db))
5003 drm_parse_hdr_metadata_block(connector, db);
5004 }
5005}
5006
5007static
5008void get_monitor_range(struct detailed_timing *timing,
5009 void *info_monitor_range)
5010{
5011 struct drm_monitor_range_info *monitor_range = info_monitor_range;
5012 const struct detailed_non_pixel *data = &timing->data.other_data;
5013 const struct detailed_data_monitor_range *range = &data->data.range;
5014
5015 if (!is_display_descriptor((const u8 *)timing, EDID_DETAIL_MONITOR_RANGE))
5016 return;
5017
5018 /*
5019 * Check for flag range limits only. If flag == 1 then
5020 * no additional timing information provided.
5021 * Default GTF, GTF Secondary curve and CVT are not
5022 * supported
5023 */
5024 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
5025 return;
5026
5027 monitor_range->min_vfreq = range->min_vfreq;
5028 monitor_range->max_vfreq = range->max_vfreq;
5029}
5030
5031static
5032void drm_get_monitor_range(struct drm_connector *connector,
5033 const struct edid *edid)
5034{
5035 struct drm_display_info *info = &connector->display_info;
5036
5037 if (!version_greater(edid, 1, 1))
5038 return;
5039
5040 drm_for_each_detailed_block((u8 *)edid, get_monitor_range,
5041 &info->monitor_range);
5042
5043 DRM_DEBUG_KMS("Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
5044 info->monitor_range.min_vfreq,
5045 info->monitor_range.max_vfreq);
5046}
5047
5048/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
5049 * all of the values which would have been set from EDID
5050 */
5051void
5052drm_reset_display_info(struct drm_connector *connector)
5053{
5054 struct drm_display_info *info = &connector->display_info;
5055
5056 info->width_mm = 0;
5057 info->height_mm = 0;
5058
5059 info->bpc = 0;
5060 info->color_formats = 0;
5061 info->cea_rev = 0;
5062 info->max_tmds_clock = 0;
5063 info->dvi_dual = false;
5064 info->is_hdmi = false;
5065 info->has_hdmi_infoframe = false;
5066 info->rgb_quant_range_selectable = false;
5067 memset(&info->hdmi, 0, sizeof(info->hdmi));
5068
5069 info->non_desktop = 0;
5070 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
5071}
5072
5073u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid)
5074{
5075 struct drm_display_info *info = &connector->display_info;
5076
5077 u32 quirks = edid_get_quirks(edid);
5078
5079 drm_reset_display_info(connector);
5080
5081 info->width_mm = edid->width_cm * 10;
5082 info->height_mm = edid->height_cm * 10;
5083
5084 info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP);
5085
5086 drm_get_monitor_range(connector, edid);
5087
5088 DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop);
5089
5090 if (edid->revision < 3)
5091 return quirks;
5092
5093 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
5094 return quirks;
5095
5096 drm_parse_cea_ext(connector, edid);
5097
5098 /*
5099 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
5100 *
5101 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
5102 * tells us to assume 8 bpc color depth if the EDID doesn't have
5103 * extensions which tell otherwise.
5104 */
5105 if (info->bpc == 0 && edid->revision == 3 &&
5106 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
5107 info->bpc = 8;
5108 DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n",
5109 connector->name, info->bpc);
5110 }
5111
5112 /* Only defined for 1.4 with digital displays */
5113 if (edid->revision < 4)
5114 return quirks;
5115
5116 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
5117 case DRM_EDID_DIGITAL_DEPTH_6:
5118 info->bpc = 6;
5119 break;
5120 case DRM_EDID_DIGITAL_DEPTH_8:
5121 info->bpc = 8;
5122 break;
5123 case DRM_EDID_DIGITAL_DEPTH_10:
5124 info->bpc = 10;
5125 break;
5126 case DRM_EDID_DIGITAL_DEPTH_12:
5127 info->bpc = 12;
5128 break;
5129 case DRM_EDID_DIGITAL_DEPTH_14:
5130 info->bpc = 14;
5131 break;
5132 case DRM_EDID_DIGITAL_DEPTH_16:
5133 info->bpc = 16;
5134 break;
5135 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
5136 default:
5137 info->bpc = 0;
5138 break;
5139 }
5140
5141 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
5142 connector->name, info->bpc);
5143
5144 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
5145 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
5146 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
5147 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
5148 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
5149 return quirks;
5150}
5151
5152static int validate_displayid(u8 *displayid, int length, int idx)
5153{
5154 int i, dispid_length;
5155 u8 csum = 0;
5156 struct displayid_hdr *base;
5157
5158 base = (struct displayid_hdr *)&displayid[idx];
5159
5160 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
5161 base->rev, base->bytes, base->prod_id, base->ext_count);
5162
5163 /* +1 for DispID checksum */
5164 dispid_length = sizeof(*base) + base->bytes + 1;
5165 if (dispid_length > length - idx)
5166 return -EINVAL;
5167
5168 for (i = 0; i < dispid_length; i++)
5169 csum += displayid[idx + i];
5170 if (csum) {
5171 DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum);
5172 return -EINVAL;
5173 }
5174
5175 return 0;
5176}
5177
5178static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
5179 struct displayid_detailed_timings_1 *timings)
5180{
5181 struct drm_display_mode *mode;
5182 unsigned pixel_clock = (timings->pixel_clock[0] |
5183 (timings->pixel_clock[1] << 8) |
5184 (timings->pixel_clock[2] << 16)) + 1;
5185 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
5186 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
5187 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
5188 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
5189 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
5190 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
5191 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
5192 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
5193 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
5194 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
5195
5196 mode = drm_mode_create(dev);
5197 if (!mode)
5198 return NULL;
5199
5200 mode->clock = pixel_clock * 10;
5201 mode->hdisplay = hactive;
5202 mode->hsync_start = mode->hdisplay + hsync;
5203 mode->hsync_end = mode->hsync_start + hsync_width;
5204 mode->htotal = mode->hdisplay + hblank;
5205
5206 mode->vdisplay = vactive;
5207 mode->vsync_start = mode->vdisplay + vsync;
5208 mode->vsync_end = mode->vsync_start + vsync_width;
5209 mode->vtotal = mode->vdisplay + vblank;
5210
5211 mode->flags = 0;
5212 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
5213 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
5214 mode->type = DRM_MODE_TYPE_DRIVER;
5215
5216 if (timings->flags & 0x80)
5217 mode->type |= DRM_MODE_TYPE_PREFERRED;
5218 drm_mode_set_name(mode);
5219
5220 return mode;
5221}
5222
5223static int add_displayid_detailed_1_modes(struct drm_connector *connector,
5224 struct displayid_block *block)
5225{
5226 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
5227 int i;
5228 int num_timings;
5229 struct drm_display_mode *newmode;
5230 int num_modes = 0;
5231 /* blocks must be multiple of 20 bytes length */
5232 if (block->num_bytes % 20)
5233 return 0;
5234
5235 num_timings = block->num_bytes / 20;
5236 for (i = 0; i < num_timings; i++) {
5237 struct displayid_detailed_timings_1 *timings = &det->timings[i];
5238
5239 newmode = drm_mode_displayid_detailed(connector->dev, timings);
5240 if (!newmode)
5241 continue;
5242
5243 drm_mode_probed_add(connector, newmode);
5244 num_modes++;
5245 }
5246 return num_modes;
5247}
5248
5249static int add_displayid_detailed_modes(struct drm_connector *connector,
5250 struct edid *edid)
5251{
5252 u8 *displayid;
5253 int length, idx;
5254 struct displayid_block *block;
5255 int num_modes = 0;
5256 int ext_index = 0;
5257
5258 for (;;) {
5259 displayid = drm_find_displayid_extension(edid, &length, &idx,
5260 &ext_index);
5261 if (!displayid)
5262 break;
5263
5264 idx += sizeof(struct displayid_hdr);
5265 for_each_displayid_db(displayid, block, idx, length) {
5266 switch (block->tag) {
5267 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5268 num_modes += add_displayid_detailed_1_modes(connector, block);
5269 break;
5270 }
5271 }
5272 }
5273
5274 return num_modes;
5275}
5276
5277/**
5278 * drm_add_edid_modes - add modes from EDID data, if available
5279 * @connector: connector we're probing
5280 * @edid: EDID data
5281 *
5282 * Add the specified modes to the connector's mode list. Also fills out the
5283 * &drm_display_info structure and ELD in @connector with any information which
5284 * can be derived from the edid.
5285 *
5286 * Return: The number of modes added or 0 if we couldn't find any.
5287 */
5288int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
5289{
5290 int num_modes = 0;
5291 u32 quirks;
5292
5293 if (edid == NULL) {
5294 clear_eld(connector);
5295 return 0;
5296 }
5297 if (!drm_edid_is_valid(edid)) {
5298 clear_eld(connector);
5299 drm_warn(connector->dev, "%s: EDID invalid.\n",
5300 connector->name);
5301 return 0;
5302 }
5303
5304 drm_edid_to_eld(connector, edid);
5305
5306 /*
5307 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5308 * To avoid multiple parsing of same block, lets parse that map
5309 * from sink info, before parsing CEA modes.
5310 */
5311 quirks = drm_add_display_info(connector, edid);
5312
5313 /*
5314 * EDID spec says modes should be preferred in this order:
5315 * - preferred detailed mode
5316 * - other detailed modes from base block
5317 * - detailed modes from extension blocks
5318 * - CVT 3-byte code modes
5319 * - standard timing codes
5320 * - established timing codes
5321 * - modes inferred from GTF or CVT range information
5322 *
5323 * We get this pretty much right.
5324 *
5325 * XXX order for additional mode types in extension blocks?
5326 */
5327 num_modes += add_detailed_modes(connector, edid, quirks);
5328 num_modes += add_cvt_modes(connector, edid);
5329 num_modes += add_standard_modes(connector, edid);
5330 num_modes += add_established_modes(connector, edid);
5331 num_modes += add_cea_modes(connector, edid);
5332 num_modes += add_alternate_cea_modes(connector, edid);
5333 num_modes += add_displayid_detailed_modes(connector, edid);
5334 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5335 num_modes += add_inferred_modes(connector, edid);
5336
5337 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5338 edid_fixup_preferred(connector, quirks);
5339
5340 if (quirks & EDID_QUIRK_FORCE_6BPC)
5341 connector->display_info.bpc = 6;
5342
5343 if (quirks & EDID_QUIRK_FORCE_8BPC)
5344 connector->display_info.bpc = 8;
5345
5346 if (quirks & EDID_QUIRK_FORCE_10BPC)
5347 connector->display_info.bpc = 10;
5348
5349 if (quirks & EDID_QUIRK_FORCE_12BPC)
5350 connector->display_info.bpc = 12;
5351
5352 return num_modes;
5353}
5354EXPORT_SYMBOL(drm_add_edid_modes);
5355
5356/**
5357 * drm_add_modes_noedid - add modes for the connectors without EDID
5358 * @connector: connector we're probing
5359 * @hdisplay: the horizontal display limit
5360 * @vdisplay: the vertical display limit
5361 *
5362 * Add the specified modes to the connector's mode list. Only when the
5363 * hdisplay/vdisplay is not beyond the given limit, it will be added.
5364 *
5365 * Return: The number of modes added or 0 if we couldn't find any.
5366 */
5367int drm_add_modes_noedid(struct drm_connector *connector,
5368 int hdisplay, int vdisplay)
5369{
5370 int i, count, num_modes = 0;
5371 struct drm_display_mode *mode;
5372 struct drm_device *dev = connector->dev;
5373
5374 count = ARRAY_SIZE(drm_dmt_modes);
5375 if (hdisplay < 0)
5376 hdisplay = 0;
5377 if (vdisplay < 0)
5378 vdisplay = 0;
5379
5380 for (i = 0; i < count; i++) {
5381 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
5382
5383 if (hdisplay && vdisplay) {
5384 /*
5385 * Only when two are valid, they will be used to check
5386 * whether the mode should be added to the mode list of
5387 * the connector.
5388 */
5389 if (ptr->hdisplay > hdisplay ||
5390 ptr->vdisplay > vdisplay)
5391 continue;
5392 }
5393 if (drm_mode_vrefresh(ptr) > 61)
5394 continue;
5395 mode = drm_mode_duplicate(dev, ptr);
5396 if (mode) {
5397 drm_mode_probed_add(connector, mode);
5398 num_modes++;
5399 }
5400 }
5401 return num_modes;
5402}
5403EXPORT_SYMBOL(drm_add_modes_noedid);
5404
5405/**
5406 * drm_set_preferred_mode - Sets the preferred mode of a connector
5407 * @connector: connector whose mode list should be processed
5408 * @hpref: horizontal resolution of preferred mode
5409 * @vpref: vertical resolution of preferred mode
5410 *
5411 * Marks a mode as preferred if it matches the resolution specified by @hpref
5412 * and @vpref.
5413 */
5414void drm_set_preferred_mode(struct drm_connector *connector,
5415 int hpref, int vpref)
5416{
5417 struct drm_display_mode *mode;
5418
5419 list_for_each_entry(mode, &connector->probed_modes, head) {
5420 if (mode->hdisplay == hpref &&
5421 mode->vdisplay == vpref)
5422 mode->type |= DRM_MODE_TYPE_PREFERRED;
5423 }
5424}
5425EXPORT_SYMBOL(drm_set_preferred_mode);
5426
5427static bool is_hdmi2_sink(const struct drm_connector *connector)
5428{
5429 /*
5430 * FIXME: sil-sii8620 doesn't have a connector around when
5431 * we need one, so we have to be prepared for a NULL connector.
5432 */
5433 if (!connector)
5434 return true;
5435
5436 return connector->display_info.hdmi.scdc.supported ||
5437 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB420;
5438}
5439
5440static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
5441{
5442 return sink_eotf & BIT(output_eotf);
5443}
5444
5445/**
5446 * drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
5447 * HDR metadata from userspace
5448 * @frame: HDMI DRM infoframe
5449 * @conn_state: Connector state containing HDR metadata
5450 *
5451 * Return: 0 on success or a negative error code on failure.
5452 */
5453int
5454drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
5455 const struct drm_connector_state *conn_state)
5456{
5457 struct drm_connector *connector;
5458 struct hdr_output_metadata *hdr_metadata;
5459 int err;
5460
5461 if (!frame || !conn_state)
5462 return -EINVAL;
5463
5464 connector = conn_state->connector;
5465
5466 if (!conn_state->hdr_output_metadata)
5467 return -EINVAL;
5468
5469 hdr_metadata = conn_state->hdr_output_metadata->data;
5470
5471 if (!hdr_metadata || !connector)
5472 return -EINVAL;
5473
5474 /* Sink EOTF is Bit map while infoframe is absolute values */
5475 if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
5476 connector->hdr_sink_metadata.hdmi_type1.eotf)) {
5477 DRM_DEBUG_KMS("EOTF Not Supported\n");
5478 return -EINVAL;
5479 }
5480
5481 err = hdmi_drm_infoframe_init(frame);
5482 if (err < 0)
5483 return err;
5484
5485 frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
5486 frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
5487
5488 BUILD_BUG_ON(sizeof(frame->display_primaries) !=
5489 sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
5490 BUILD_BUG_ON(sizeof(frame->white_point) !=
5491 sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
5492
5493 memcpy(&frame->display_primaries,
5494 &hdr_metadata->hdmi_metadata_type1.display_primaries,
5495 sizeof(frame->display_primaries));
5496
5497 memcpy(&frame->white_point,
5498 &hdr_metadata->hdmi_metadata_type1.white_point,
5499 sizeof(frame->white_point));
5500
5501 frame->max_display_mastering_luminance =
5502 hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
5503 frame->min_display_mastering_luminance =
5504 hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
5505 frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
5506 frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
5507
5508 return 0;
5509}
5510EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
5511
5512static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
5513 const struct drm_display_mode *mode)
5514{
5515 bool has_hdmi_infoframe = connector ?
5516 connector->display_info.has_hdmi_infoframe : false;
5517
5518 if (!has_hdmi_infoframe)
5519 return 0;
5520
5521 /* No HDMI VIC when signalling 3D video format */
5522 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
5523 return 0;
5524
5525 return drm_match_hdmi_mode(mode);
5526}
5527
5528static u8 drm_mode_cea_vic(const struct drm_connector *connector,
5529 const struct drm_display_mode *mode)
5530{
5531 u8 vic;
5532
5533 /*
5534 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5535 * we should send its VIC in vendor infoframes, else send the
5536 * VIC in AVI infoframes. Lets check if this mode is present in
5537 * HDMI 1.4b 4K modes
5538 */
5539 if (drm_mode_hdmi_vic(connector, mode))
5540 return 0;
5541
5542 vic = drm_match_cea_mode(mode);
5543
5544 /*
5545 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5546 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5547 * have to make sure we dont break HDMI 1.4 sinks.
5548 */
5549 if (!is_hdmi2_sink(connector) && vic > 64)
5550 return 0;
5551
5552 return vic;
5553}
5554
5555/**
5556 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
5557 * data from a DRM display mode
5558 * @frame: HDMI AVI infoframe
5559 * @connector: the connector
5560 * @mode: DRM display mode
5561 *
5562 * Return: 0 on success or a negative error code on failure.
5563 */
5564int
5565drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5566 const struct drm_connector *connector,
5567 const struct drm_display_mode *mode)
5568{
5569 enum hdmi_picture_aspect picture_aspect;
5570 u8 vic, hdmi_vic;
5571
5572 if (!frame || !mode)
5573 return -EINVAL;
5574
5575 hdmi_avi_infoframe_init(frame);
5576
5577 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5578 frame->pixel_repeat = 1;
5579
5580 vic = drm_mode_cea_vic(connector, mode);
5581 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
5582
5583 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5584
5585 /*
5586 * As some drivers don't support atomic, we can't use connector state.
5587 * So just initialize the frame with default values, just the same way
5588 * as it's done with other properties here.
5589 */
5590 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
5591 frame->itc = 0;
5592
5593 /*
5594 * Populate picture aspect ratio from either
5595 * user input (if specified) or from the CEA/HDMI mode lists.
5596 */
5597 picture_aspect = mode->picture_aspect_ratio;
5598 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
5599 if (vic)
5600 picture_aspect = drm_get_cea_aspect_ratio(vic);
5601 else if (hdmi_vic)
5602 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
5603 }
5604
5605 /*
5606 * The infoframe can't convey anything but none, 4:3
5607 * and 16:9, so if the user has asked for anything else
5608 * we can only satisfy it by specifying the right VIC.
5609 */
5610 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
5611 if (vic) {
5612 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
5613 return -EINVAL;
5614 } else if (hdmi_vic) {
5615 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
5616 return -EINVAL;
5617 } else {
5618 return -EINVAL;
5619 }
5620
5621 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5622 }
5623
5624 frame->video_code = vic;
5625 frame->picture_aspect = picture_aspect;
5626 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5627 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5628
5629 return 0;
5630}
5631EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
5632
5633/* HDMI Colorspace Spec Definitions */
5634#define FULL_COLORIMETRY_MASK 0x1FF
5635#define NORMAL_COLORIMETRY_MASK 0x3
5636#define EXTENDED_COLORIMETRY_MASK 0x7
5637#define EXTENDED_ACE_COLORIMETRY_MASK 0xF
5638
5639#define C(x) ((x) << 0)
5640#define EC(x) ((x) << 2)
5641#define ACE(x) ((x) << 5)
5642
5643#define HDMI_COLORIMETRY_NO_DATA 0x0
5644#define HDMI_COLORIMETRY_SMPTE_170M_YCC (C(1) | EC(0) | ACE(0))
5645#define HDMI_COLORIMETRY_BT709_YCC (C(2) | EC(0) | ACE(0))
5646#define HDMI_COLORIMETRY_XVYCC_601 (C(3) | EC(0) | ACE(0))
5647#define HDMI_COLORIMETRY_XVYCC_709 (C(3) | EC(1) | ACE(0))
5648#define HDMI_COLORIMETRY_SYCC_601 (C(3) | EC(2) | ACE(0))
5649#define HDMI_COLORIMETRY_OPYCC_601 (C(3) | EC(3) | ACE(0))
5650#define HDMI_COLORIMETRY_OPRGB (C(3) | EC(4) | ACE(0))
5651#define HDMI_COLORIMETRY_BT2020_CYCC (C(3) | EC(5) | ACE(0))
5652#define HDMI_COLORIMETRY_BT2020_RGB (C(3) | EC(6) | ACE(0))
5653#define HDMI_COLORIMETRY_BT2020_YCC (C(3) | EC(6) | ACE(0))
5654#define HDMI_COLORIMETRY_DCI_P3_RGB_D65 (C(3) | EC(7) | ACE(0))
5655#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER (C(3) | EC(7) | ACE(1))
5656
5657static const u32 hdmi_colorimetry_val[] = {
5658 [DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
5659 [DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
5660 [DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
5661 [DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
5662 [DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
5663 [DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
5664 [DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
5665 [DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
5666 [DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
5667 [DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
5668 [DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
5669};
5670
5671#undef C
5672#undef EC
5673#undef ACE
5674
5675/**
5676 * drm_hdmi_avi_infoframe_colorspace() - fill the HDMI AVI infoframe
5677 * colorspace information
5678 * @frame: HDMI AVI infoframe
5679 * @conn_state: connector state
5680 */
5681void
5682drm_hdmi_avi_infoframe_colorspace(struct hdmi_avi_infoframe *frame,
5683 const struct drm_connector_state *conn_state)
5684{
5685 u32 colorimetry_val;
5686 u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
5687
5688 if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
5689 colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
5690 else
5691 colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
5692
5693 frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
5694 /*
5695 * ToDo: Extend it for ACE formats as well. Modify the infoframe
5696 * structure and extend it in drivers/video/hdmi
5697 */
5698 frame->extended_colorimetry = (colorimetry_val >> 2) &
5699 EXTENDED_COLORIMETRY_MASK;
5700}
5701EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorspace);
5702
5703/**
5704 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5705 * quantization range information
5706 * @frame: HDMI AVI infoframe
5707 * @connector: the connector
5708 * @mode: DRM display mode
5709 * @rgb_quant_range: RGB quantization range (Q)
5710 */
5711void
5712drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5713 const struct drm_connector *connector,
5714 const struct drm_display_mode *mode,
5715 enum hdmi_quantization_range rgb_quant_range)
5716{
5717 const struct drm_display_info *info = &connector->display_info;
5718
5719 /*
5720 * CEA-861:
5721 * "A Source shall not send a non-zero Q value that does not correspond
5722 * to the default RGB Quantization Range for the transmitted Picture
5723 * unless the Sink indicates support for the Q bit in a Video
5724 * Capabilities Data Block."
5725 *
5726 * HDMI 2.0 recommends sending non-zero Q when it does match the
5727 * default RGB quantization range for the mode, even when QS=0.
5728 */
5729 if (info->rgb_quant_range_selectable ||
5730 rgb_quant_range == drm_default_rgb_quant_range(mode))
5731 frame->quantization_range = rgb_quant_range;
5732 else
5733 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5734
5735 /*
5736 * CEA-861-F:
5737 * "When transmitting any RGB colorimetry, the Source should set the
5738 * YQ-field to match the RGB Quantization Range being transmitted
5739 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5740 * set YQ=1) and the Sink shall ignore the YQ-field."
5741 *
5742 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
5743 * by non-zero YQ when receiving RGB. There doesn't seem to be any
5744 * good way to tell which version of CEA-861 the sink supports, so
5745 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
5746 * on on CEA-861-F.
5747 */
5748 if (!is_hdmi2_sink(connector) ||
5749 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5750 frame->ycc_quantization_range =
5751 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5752 else
5753 frame->ycc_quantization_range =
5754 HDMI_YCC_QUANTIZATION_RANGE_FULL;
5755}
5756EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
5757
5758/**
5759 * drm_hdmi_avi_infoframe_bars() - fill the HDMI AVI infoframe
5760 * bar information
5761 * @frame: HDMI AVI infoframe
5762 * @conn_state: connector state
5763 */
5764void
5765drm_hdmi_avi_infoframe_bars(struct hdmi_avi_infoframe *frame,
5766 const struct drm_connector_state *conn_state)
5767{
5768 frame->right_bar = conn_state->tv.margins.right;
5769 frame->left_bar = conn_state->tv.margins.left;
5770 frame->top_bar = conn_state->tv.margins.top;
5771 frame->bottom_bar = conn_state->tv.margins.bottom;
5772}
5773EXPORT_SYMBOL(drm_hdmi_avi_infoframe_bars);
5774
5775static enum hdmi_3d_structure
5776s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5777{
5778 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5779
5780 switch (layout) {
5781 case DRM_MODE_FLAG_3D_FRAME_PACKING:
5782 return HDMI_3D_STRUCTURE_FRAME_PACKING;
5783 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5784 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5785 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5786 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5787 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5788 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5789 case DRM_MODE_FLAG_3D_L_DEPTH:
5790 return HDMI_3D_STRUCTURE_L_DEPTH;
5791 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5792 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5793 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5794 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5795 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5796 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5797 default:
5798 return HDMI_3D_STRUCTURE_INVALID;
5799 }
5800}
5801
5802/**
5803 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
5804 * data from a DRM display mode
5805 * @frame: HDMI vendor infoframe
5806 * @connector: the connector
5807 * @mode: DRM display mode
5808 *
5809 * Note that there's is a need to send HDMI vendor infoframes only when using a
5810 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
5811 * function will return -EINVAL, error that can be safely ignored.
5812 *
5813 * Return: 0 on success or a negative error code on failure.
5814 */
5815int
5816drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5817 const struct drm_connector *connector,
5818 const struct drm_display_mode *mode)
5819{
5820 /*
5821 * FIXME: sil-sii8620 doesn't have a connector around when
5822 * we need one, so we have to be prepared for a NULL connector.
5823 */
5824 bool has_hdmi_infoframe = connector ?
5825 connector->display_info.has_hdmi_infoframe : false;
5826 int err;
5827
5828 if (!frame || !mode)
5829 return -EINVAL;
5830
5831 if (!has_hdmi_infoframe)
5832 return -EINVAL;
5833
5834 err = hdmi_vendor_infoframe_init(frame);
5835 if (err < 0)
5836 return err;
5837
5838 /*
5839 * Even if it's not absolutely necessary to send the infoframe
5840 * (ie.vic==0 and s3d_struct==0) we will still send it if we
5841 * know that the sink can handle it. This is based on a
5842 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
5843 * have trouble realizing that they shuld switch from 3D to 2D
5844 * mode if the source simply stops sending the infoframe when
5845 * it wants to switch from 3D to 2D.
5846 */
5847 frame->vic = drm_mode_hdmi_vic(connector, mode);
5848 frame->s3d_struct = s3d_structure_from_display_mode(mode);
5849
5850 return 0;
5851}
5852EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
5853
5854static void drm_parse_tiled_block(struct drm_connector *connector,
5855 const struct displayid_block *block)
5856{
5857 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
5858 u16 w, h;
5859 u8 tile_v_loc, tile_h_loc;
5860 u8 num_v_tile, num_h_tile;
5861 struct drm_tile_group *tg;
5862
5863 w = tile->tile_size[0] | tile->tile_size[1] << 8;
5864 h = tile->tile_size[2] | tile->tile_size[3] << 8;
5865
5866 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
5867 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
5868 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
5869 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
5870
5871 connector->has_tile = true;
5872 if (tile->tile_cap & 0x80)
5873 connector->tile_is_single_monitor = true;
5874
5875 connector->num_h_tile = num_h_tile + 1;
5876 connector->num_v_tile = num_v_tile + 1;
5877 connector->tile_h_loc = tile_h_loc;
5878 connector->tile_v_loc = tile_v_loc;
5879 connector->tile_h_size = w + 1;
5880 connector->tile_v_size = h + 1;
5881
5882 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
5883 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
5884 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
5885 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
5886 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
5887
5888 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
5889 if (!tg)
5890 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
5891 if (!tg)
5892 return;
5893
5894 if (connector->tile_group != tg) {
5895 /* if we haven't got a pointer,
5896 take the reference, drop ref to old tile group */
5897 if (connector->tile_group)
5898 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5899 connector->tile_group = tg;
5900 } else {
5901 /* if same tile group, then release the ref we just took. */
5902 drm_mode_put_tile_group(connector->dev, tg);
5903 }
5904}
5905
5906static void drm_displayid_parse_tiled(struct drm_connector *connector,
5907 const u8 *displayid, int length, int idx)
5908{
5909 const struct displayid_block *block;
5910
5911 idx += sizeof(struct displayid_hdr);
5912 for_each_displayid_db(displayid, block, idx, length) {
5913 DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n",
5914 block->tag, block->rev, block->num_bytes);
5915
5916 switch (block->tag) {
5917 case DATA_BLOCK_TILED_DISPLAY:
5918 drm_parse_tiled_block(connector, block);
5919 break;
5920 default:
5921 DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag);
5922 break;
5923 }
5924 }
5925}
5926
5927void drm_update_tile_info(struct drm_connector *connector,
5928 const struct edid *edid)
5929{
5930 const void *displayid = NULL;
5931 int ext_index = 0;
5932 int length, idx;
5933
5934 connector->has_tile = false;
5935 for (;;) {
5936 displayid = drm_find_displayid_extension(edid, &length, &idx,
5937 &ext_index);
5938 if (!displayid)
5939 break;
5940
5941 drm_displayid_parse_tiled(connector, displayid, length, idx);
5942 }
5943
5944 if (!connector->has_tile && connector->tile_group) {
5945 drm_mode_put_tile_group(connector->dev, connector->tile_group);
5946 connector->tile_group = NULL;
5947 }
5948}
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/bitfield.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/slab.h>
38#include <linux/vga_switcheroo.h>
39
40#include <drm/drm_displayid.h>
41#include <drm/drm_drv.h>
42#include <drm/drm_edid.h>
43#include <drm/drm_encoder.h>
44#include <drm/drm_print.h>
45
46#include "drm_crtc_internal.h"
47
48static int oui(u8 first, u8 second, u8 third)
49{
50 return (first << 16) | (second << 8) | third;
51}
52
53#define EDID_EST_TIMINGS 16
54#define EDID_STD_TIMINGS 8
55#define EDID_DETAILED_TIMINGS 4
56
57/*
58 * EDID blocks out in the wild have a variety of bugs, try to collect
59 * them here (note that userspace may work around broken monitors first,
60 * but fixes should make their way here so that the kernel "just works"
61 * on as many displays as possible).
62 */
63
64/* First detailed mode wrong, use largest 60Hz mode */
65#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
66/* Reported 135MHz pixel clock is too high, needs adjustment */
67#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
68/* Prefer the largest mode at 75 Hz */
69#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
70/* Detail timing is in cm not mm */
71#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
72/* Detailed timing descriptors have bogus size values, so just take the
73 * maximum size and use that.
74 */
75#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
76/* use +hsync +vsync for detailed mode */
77#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
78/* Force reduced-blanking timings for detailed modes */
79#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
80/* Force 8bpc */
81#define EDID_QUIRK_FORCE_8BPC (1 << 8)
82/* Force 12bpc */
83#define EDID_QUIRK_FORCE_12BPC (1 << 9)
84/* Force 6bpc */
85#define EDID_QUIRK_FORCE_6BPC (1 << 10)
86/* Force 10bpc */
87#define EDID_QUIRK_FORCE_10BPC (1 << 11)
88/* Non desktop display (i.e. HMD) */
89#define EDID_QUIRK_NON_DESKTOP (1 << 12)
90/* Cap the DSC target bitrate to 15bpp */
91#define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
92
93#define MICROSOFT_IEEE_OUI 0xca125c
94
95struct detailed_mode_closure {
96 struct drm_connector *connector;
97 const struct drm_edid *drm_edid;
98 bool preferred;
99 u32 quirks;
100 int modes;
101};
102
103#define LEVEL_DMT 0
104#define LEVEL_GTF 1
105#define LEVEL_GTF2 2
106#define LEVEL_CVT 3
107
108#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
109{ \
110 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
111 product_id), \
112 .quirks = _quirks \
113}
114
115static const struct edid_quirk {
116 u32 panel_id;
117 u32 quirks;
118} edid_quirk_list[] = {
119 /* Acer AL1706 */
120 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
121 /* Acer F51 */
122 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
123
124 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
125 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
126
127 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
128 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
129
130 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
131 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
132
133 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
134 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
135
136 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
137 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
138
139 /* Belinea 10 15 55 */
140 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
141 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
142
143 /* Envision Peripherals, Inc. EN-7100e */
144 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
145 /* Envision EN2028 */
146 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
147
148 /* Funai Electronics PM36B */
149 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
150 EDID_QUIRK_DETAILED_IN_CM),
151
152 /* LG 27GP950 */
153 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
154
155 /* LG 27GN950 */
156 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
157
158 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
159 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
160
161 /* LG Philips LCD LP154W01-A5 */
162 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
163 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
164
165 /* Samsung SyncMaster 205BW. Note: irony */
166 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
167 /* Samsung SyncMaster 22[5-6]BW */
168 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
169 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
170
171 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
172 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
173
174 /* ViewSonic VA2026w */
175 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
176
177 /* Medion MD 30217 PG */
178 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
179
180 /* Lenovo G50 */
181 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
182
183 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
184 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
185
186 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
187 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
188
189 /* Valve Index Headset */
190 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
191 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
192 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
193 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
194 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
195 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
207
208 /* HTC Vive and Vive Pro VR Headsets */
209 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
211
212 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
213 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
214 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
216 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
217
218 /* Windows Mixed Reality Headsets */
219 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
222 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
223 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
224 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
225
226 /* Sony PlayStation VR Headset */
227 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
228
229 /* Sensics VR Headsets */
230 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
231
232 /* OSVR HDK and HDK2 VR Headsets */
233 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
234};
235
236/*
237 * Autogenerated from the DMT spec.
238 * This table is copied from xfree86/modes/xf86EdidModes.c.
239 */
240static const struct drm_display_mode drm_dmt_modes[] = {
241 /* 0x01 - 640x350@85Hz */
242 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
243 736, 832, 0, 350, 382, 385, 445, 0,
244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 /* 0x02 - 640x400@85Hz */
246 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
247 736, 832, 0, 400, 401, 404, 445, 0,
248 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 /* 0x03 - 720x400@85Hz */
250 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
251 828, 936, 0, 400, 401, 404, 446, 0,
252 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 /* 0x04 - 640x480@60Hz */
254 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
255 752, 800, 0, 480, 490, 492, 525, 0,
256 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
257 /* 0x05 - 640x480@72Hz */
258 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
259 704, 832, 0, 480, 489, 492, 520, 0,
260 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 /* 0x06 - 640x480@75Hz */
262 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
263 720, 840, 0, 480, 481, 484, 500, 0,
264 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 /* 0x07 - 640x480@85Hz */
266 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
267 752, 832, 0, 480, 481, 484, 509, 0,
268 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
269 /* 0x08 - 800x600@56Hz */
270 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
271 896, 1024, 0, 600, 601, 603, 625, 0,
272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 /* 0x09 - 800x600@60Hz */
274 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
275 968, 1056, 0, 600, 601, 605, 628, 0,
276 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 /* 0x0a - 800x600@72Hz */
278 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
279 976, 1040, 0, 600, 637, 643, 666, 0,
280 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 /* 0x0b - 800x600@75Hz */
282 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
283 896, 1056, 0, 600, 601, 604, 625, 0,
284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 /* 0x0c - 800x600@85Hz */
286 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
287 896, 1048, 0, 600, 601, 604, 631, 0,
288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 /* 0x0d - 800x600@120Hz RB */
290 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
291 880, 960, 0, 600, 603, 607, 636, 0,
292 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 /* 0x0e - 848x480@60Hz */
294 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
295 976, 1088, 0, 480, 486, 494, 517, 0,
296 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 /* 0x0f - 1024x768@43Hz, interlace */
298 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
299 1208, 1264, 0, 768, 768, 776, 817, 0,
300 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
301 DRM_MODE_FLAG_INTERLACE) },
302 /* 0x10 - 1024x768@60Hz */
303 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
304 1184, 1344, 0, 768, 771, 777, 806, 0,
305 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x11 - 1024x768@70Hz */
307 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
308 1184, 1328, 0, 768, 771, 777, 806, 0,
309 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
310 /* 0x12 - 1024x768@75Hz */
311 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
312 1136, 1312, 0, 768, 769, 772, 800, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x13 - 1024x768@85Hz */
315 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
316 1168, 1376, 0, 768, 769, 772, 808, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x14 - 1024x768@120Hz RB */
319 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
320 1104, 1184, 0, 768, 771, 775, 813, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 /* 0x15 - 1152x864@75Hz */
323 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
324 1344, 1600, 0, 864, 865, 868, 900, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x55 - 1280x720@60Hz */
327 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
328 1430, 1650, 0, 720, 725, 730, 750, 0,
329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x16 - 1280x768@60Hz RB */
331 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
332 1360, 1440, 0, 768, 771, 778, 790, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x17 - 1280x768@60Hz */
335 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
336 1472, 1664, 0, 768, 771, 778, 798, 0,
337 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x18 - 1280x768@75Hz */
339 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
340 1488, 1696, 0, 768, 771, 778, 805, 0,
341 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 /* 0x19 - 1280x768@85Hz */
343 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
344 1496, 1712, 0, 768, 771, 778, 809, 0,
345 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x1a - 1280x768@120Hz RB */
347 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
348 1360, 1440, 0, 768, 771, 778, 813, 0,
349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 /* 0x1b - 1280x800@60Hz RB */
351 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
352 1360, 1440, 0, 800, 803, 809, 823, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 /* 0x1c - 1280x800@60Hz */
355 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
356 1480, 1680, 0, 800, 803, 809, 831, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x1d - 1280x800@75Hz */
359 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
360 1488, 1696, 0, 800, 803, 809, 838, 0,
361 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x1e - 1280x800@85Hz */
363 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
364 1496, 1712, 0, 800, 803, 809, 843, 0,
365 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x1f - 1280x800@120Hz RB */
367 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
368 1360, 1440, 0, 800, 803, 809, 847, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 /* 0x20 - 1280x960@60Hz */
371 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
372 1488, 1800, 0, 960, 961, 964, 1000, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x21 - 1280x960@85Hz */
375 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
376 1504, 1728, 0, 960, 961, 964, 1011, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x22 - 1280x960@120Hz RB */
379 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
380 1360, 1440, 0, 960, 963, 967, 1017, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 /* 0x23 - 1280x1024@60Hz */
383 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
384 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x24 - 1280x1024@75Hz */
387 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
388 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 /* 0x25 - 1280x1024@85Hz */
391 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
392 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x26 - 1280x1024@120Hz RB */
395 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
396 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
397 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
398 /* 0x27 - 1360x768@60Hz */
399 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
400 1536, 1792, 0, 768, 771, 777, 795, 0,
401 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x28 - 1360x768@120Hz RB */
403 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
404 1440, 1520, 0, 768, 771, 776, 813, 0,
405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 /* 0x51 - 1366x768@60Hz */
407 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
408 1579, 1792, 0, 768, 771, 774, 798, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x56 - 1366x768@60Hz */
411 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
412 1436, 1500, 0, 768, 769, 772, 800, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x29 - 1400x1050@60Hz RB */
415 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
416 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 /* 0x2a - 1400x1050@60Hz */
419 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
420 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
421 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 /* 0x2b - 1400x1050@75Hz */
423 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
424 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x2c - 1400x1050@85Hz */
427 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
428 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x2d - 1400x1050@120Hz RB */
431 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
432 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x2e - 1440x900@60Hz RB */
435 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
436 1520, 1600, 0, 900, 903, 909, 926, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x2f - 1440x900@60Hz */
439 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
440 1672, 1904, 0, 900, 903, 909, 934, 0,
441 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x30 - 1440x900@75Hz */
443 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
444 1688, 1936, 0, 900, 903, 909, 942, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x31 - 1440x900@85Hz */
447 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
448 1696, 1952, 0, 900, 903, 909, 948, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x32 - 1440x900@120Hz RB */
451 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
452 1520, 1600, 0, 900, 903, 909, 953, 0,
453 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 /* 0x53 - 1600x900@60Hz */
455 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
456 1704, 1800, 0, 900, 901, 904, 1000, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x33 - 1600x1200@60Hz */
459 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
460 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x34 - 1600x1200@65Hz */
463 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
464 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 /* 0x35 - 1600x1200@70Hz */
467 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
468 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 /* 0x36 - 1600x1200@75Hz */
471 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
472 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
473 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x37 - 1600x1200@85Hz */
475 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
476 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 /* 0x38 - 1600x1200@120Hz RB */
479 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
480 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 /* 0x39 - 1680x1050@60Hz RB */
483 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
484 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x3a - 1680x1050@60Hz */
487 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
488 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x3b - 1680x1050@75Hz */
491 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
492 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x3c - 1680x1050@85Hz */
495 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
496 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
497 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 /* 0x3d - 1680x1050@120Hz RB */
499 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
500 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 /* 0x3e - 1792x1344@60Hz */
503 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
504 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
505 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 /* 0x3f - 1792x1344@75Hz */
507 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
508 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
509 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 /* 0x40 - 1792x1344@120Hz RB */
511 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
512 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
513 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 /* 0x41 - 1856x1392@60Hz */
515 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
516 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 /* 0x42 - 1856x1392@75Hz */
519 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
520 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
521 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 /* 0x43 - 1856x1392@120Hz RB */
523 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
524 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 /* 0x52 - 1920x1080@60Hz */
527 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
528 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
529 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 /* 0x44 - 1920x1200@60Hz RB */
531 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
532 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
533 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 /* 0x45 - 1920x1200@60Hz */
535 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
536 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 /* 0x46 - 1920x1200@75Hz */
539 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
540 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
541 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 /* 0x47 - 1920x1200@85Hz */
543 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
544 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
545 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 /* 0x48 - 1920x1200@120Hz RB */
547 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
548 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
550 /* 0x49 - 1920x1440@60Hz */
551 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
552 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
553 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
554 /* 0x4a - 1920x1440@75Hz */
555 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
556 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
557 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 /* 0x4b - 1920x1440@120Hz RB */
559 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
560 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
562 /* 0x54 - 2048x1152@60Hz */
563 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
564 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 /* 0x4c - 2560x1600@60Hz RB */
567 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
568 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
569 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
570 /* 0x4d - 2560x1600@60Hz */
571 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
572 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
573 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
574 /* 0x4e - 2560x1600@75Hz */
575 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
576 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
577 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
578 /* 0x4f - 2560x1600@85Hz */
579 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
580 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
581 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
582 /* 0x50 - 2560x1600@120Hz RB */
583 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
584 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
585 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
586 /* 0x57 - 4096x2160@60Hz RB */
587 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
588 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
589 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
590 /* 0x58 - 4096x2160@59.94Hz RB */
591 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
592 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
593 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
594};
595
596/*
597 * These more or less come from the DMT spec. The 720x400 modes are
598 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
599 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
600 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
601 * mode.
602 *
603 * The DMT modes have been fact-checked; the rest are mild guesses.
604 */
605static const struct drm_display_mode edid_est_modes[] = {
606 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
607 968, 1056, 0, 600, 601, 605, 628, 0,
608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
609 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
610 896, 1024, 0, 600, 601, 603, 625, 0,
611 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
612 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
613 720, 840, 0, 480, 481, 484, 500, 0,
614 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
615 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
616 704, 832, 0, 480, 489, 492, 520, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
619 768, 864, 0, 480, 483, 486, 525, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
622 752, 800, 0, 480, 490, 492, 525, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
624 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
625 846, 900, 0, 400, 421, 423, 449, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
627 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
628 846, 900, 0, 400, 412, 414, 449, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
630 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
631 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
632 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
633 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
634 1136, 1312, 0, 768, 769, 772, 800, 0,
635 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
636 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
637 1184, 1328, 0, 768, 771, 777, 806, 0,
638 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
640 1184, 1344, 0, 768, 771, 777, 806, 0,
641 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
642 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
643 1208, 1264, 0, 768, 768, 776, 817, 0,
644 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
645 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
646 928, 1152, 0, 624, 625, 628, 667, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
648 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
649 896, 1056, 0, 600, 601, 604, 625, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
651 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
652 976, 1040, 0, 600, 637, 643, 666, 0,
653 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
654 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
655 1344, 1600, 0, 864, 865, 868, 900, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
657};
658
659struct minimode {
660 short w;
661 short h;
662 short r;
663 short rb;
664};
665
666static const struct minimode est3_modes[] = {
667 /* byte 6 */
668 { 640, 350, 85, 0 },
669 { 640, 400, 85, 0 },
670 { 720, 400, 85, 0 },
671 { 640, 480, 85, 0 },
672 { 848, 480, 60, 0 },
673 { 800, 600, 85, 0 },
674 { 1024, 768, 85, 0 },
675 { 1152, 864, 75, 0 },
676 /* byte 7 */
677 { 1280, 768, 60, 1 },
678 { 1280, 768, 60, 0 },
679 { 1280, 768, 75, 0 },
680 { 1280, 768, 85, 0 },
681 { 1280, 960, 60, 0 },
682 { 1280, 960, 85, 0 },
683 { 1280, 1024, 60, 0 },
684 { 1280, 1024, 85, 0 },
685 /* byte 8 */
686 { 1360, 768, 60, 0 },
687 { 1440, 900, 60, 1 },
688 { 1440, 900, 60, 0 },
689 { 1440, 900, 75, 0 },
690 { 1440, 900, 85, 0 },
691 { 1400, 1050, 60, 1 },
692 { 1400, 1050, 60, 0 },
693 { 1400, 1050, 75, 0 },
694 /* byte 9 */
695 { 1400, 1050, 85, 0 },
696 { 1680, 1050, 60, 1 },
697 { 1680, 1050, 60, 0 },
698 { 1680, 1050, 75, 0 },
699 { 1680, 1050, 85, 0 },
700 { 1600, 1200, 60, 0 },
701 { 1600, 1200, 65, 0 },
702 { 1600, 1200, 70, 0 },
703 /* byte 10 */
704 { 1600, 1200, 75, 0 },
705 { 1600, 1200, 85, 0 },
706 { 1792, 1344, 60, 0 },
707 { 1792, 1344, 75, 0 },
708 { 1856, 1392, 60, 0 },
709 { 1856, 1392, 75, 0 },
710 { 1920, 1200, 60, 1 },
711 { 1920, 1200, 60, 0 },
712 /* byte 11 */
713 { 1920, 1200, 75, 0 },
714 { 1920, 1200, 85, 0 },
715 { 1920, 1440, 60, 0 },
716 { 1920, 1440, 75, 0 },
717};
718
719static const struct minimode extra_modes[] = {
720 { 1024, 576, 60, 0 },
721 { 1366, 768, 60, 0 },
722 { 1600, 900, 60, 0 },
723 { 1680, 945, 60, 0 },
724 { 1920, 1080, 60, 0 },
725 { 2048, 1152, 60, 0 },
726 { 2048, 1536, 60, 0 },
727};
728
729/*
730 * From CEA/CTA-861 spec.
731 *
732 * Do not access directly, instead always use cea_mode_for_vic().
733 */
734static const struct drm_display_mode edid_cea_modes_1[] = {
735 /* 1 - 640x480@60Hz 4:3 */
736 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
737 752, 800, 0, 480, 490, 492, 525, 0,
738 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
739 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
740 /* 2 - 720x480@60Hz 4:3 */
741 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
742 798, 858, 0, 480, 489, 495, 525, 0,
743 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
744 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
745 /* 3 - 720x480@60Hz 16:9 */
746 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
747 798, 858, 0, 480, 489, 495, 525, 0,
748 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
749 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 /* 4 - 1280x720@60Hz 16:9 */
751 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
752 1430, 1650, 0, 720, 725, 730, 750, 0,
753 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
754 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
755 /* 5 - 1920x1080i@60Hz 16:9 */
756 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
757 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
758 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
759 DRM_MODE_FLAG_INTERLACE),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 6 - 720(1440)x480i@60Hz 4:3 */
762 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
763 801, 858, 0, 480, 488, 494, 525, 0,
764 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
765 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 /* 7 - 720(1440)x480i@60Hz 16:9 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 /* 8 - 720(1440)x240@60Hz 4:3 */
774 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 240, 244, 247, 262, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
779 /* 9 - 720(1440)x240@60Hz 16:9 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
785 /* 10 - 2880x480i@60Hz 4:3 */
786 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
787 3204, 3432, 0, 480, 488, 494, 525, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_INTERLACE),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791 /* 11 - 2880x480i@60Hz 16:9 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
797 /* 12 - 2880x240@60Hz 4:3 */
798 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 240, 244, 247, 262, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
801 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
802 /* 13 - 2880x240@60Hz 16:9 */
803 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
804 3204, 3432, 0, 240, 244, 247, 262, 0,
805 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
806 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
807 /* 14 - 1440x480@60Hz 4:3 */
808 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
809 1596, 1716, 0, 480, 489, 495, 525, 0,
810 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
811 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
812 /* 15 - 1440x480@60Hz 16:9 */
813 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
814 1596, 1716, 0, 480, 489, 495, 525, 0,
815 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
816 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
817 /* 16 - 1920x1080@60Hz 16:9 */
818 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
819 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
820 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
821 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 /* 17 - 720x576@50Hz 4:3 */
823 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
824 796, 864, 0, 576, 581, 586, 625, 0,
825 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
826 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
827 /* 18 - 720x576@50Hz 16:9 */
828 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
829 796, 864, 0, 576, 581, 586, 625, 0,
830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
831 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 /* 19 - 1280x720@50Hz 16:9 */
833 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
834 1760, 1980, 0, 720, 725, 730, 750, 0,
835 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
836 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
837 /* 20 - 1920x1080i@50Hz 16:9 */
838 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
839 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
840 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
841 DRM_MODE_FLAG_INTERLACE),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 21 - 720(1440)x576i@50Hz 4:3 */
844 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
845 795, 864, 0, 576, 580, 586, 625, 0,
846 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 /* 22 - 720(1440)x576i@50Hz 16:9 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 /* 23 - 720(1440)x288@50Hz 4:3 */
856 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 288, 290, 293, 312, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
861 /* 24 - 720(1440)x288@50Hz 16:9 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
867 /* 25 - 2880x576i@50Hz 4:3 */
868 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
869 3180, 3456, 0, 576, 580, 586, 625, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_INTERLACE),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
873 /* 26 - 2880x576i@50Hz 16:9 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 /* 27 - 2880x288@50Hz 4:3 */
880 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 288, 290, 293, 312, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
884 /* 28 - 2880x288@50Hz 16:9 */
885 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
886 3180, 3456, 0, 288, 290, 293, 312, 0,
887 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
889 /* 29 - 1440x576@50Hz 4:3 */
890 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
891 1592, 1728, 0, 576, 581, 586, 625, 0,
892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
894 /* 30 - 1440x576@50Hz 16:9 */
895 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
896 1592, 1728, 0, 576, 581, 586, 625, 0,
897 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
899 /* 31 - 1920x1080@50Hz 16:9 */
900 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
901 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
902 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 /* 32 - 1920x1080@24Hz 16:9 */
905 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
906 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 /* 33 - 1920x1080@25Hz 16:9 */
910 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
911 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
912 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
914 /* 34 - 1920x1080@30Hz 16:9 */
915 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
916 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
917 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 /* 35 - 2880x480@60Hz 4:3 */
920 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
921 3192, 3432, 0, 480, 489, 495, 525, 0,
922 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
923 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
924 /* 36 - 2880x480@60Hz 16:9 */
925 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
926 3192, 3432, 0, 480, 489, 495, 525, 0,
927 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
928 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 37 - 2880x576@50Hz 4:3 */
930 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
931 3184, 3456, 0, 576, 581, 586, 625, 0,
932 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
933 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 /* 38 - 2880x576@50Hz 16:9 */
935 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
936 3184, 3456, 0, 576, 581, 586, 625, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
938 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 39 - 1920x1080i@50Hz 16:9 */
940 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
941 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
943 DRM_MODE_FLAG_INTERLACE),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 40 - 1920x1080i@100Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
947 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 41 - 1280x720@100Hz 16:9 */
952 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
953 1760, 1980, 0, 720, 725, 730, 750, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 /* 42 - 720x576@100Hz 4:3 */
957 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 796, 864, 0, 576, 581, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
960 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 /* 43 - 720x576@100Hz 16:9 */
962 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
963 796, 864, 0, 576, 581, 586, 625, 0,
964 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
965 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 /* 44 - 720(1440)x576i@100Hz 4:3 */
967 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
968 795, 864, 0, 576, 580, 586, 625, 0,
969 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
970 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 /* 45 - 720(1440)x576i@100Hz 16:9 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
978 /* 46 - 1920x1080i@120Hz 16:9 */
979 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
980 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
981 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
982 DRM_MODE_FLAG_INTERLACE),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 47 - 1280x720@120Hz 16:9 */
985 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
986 1430, 1650, 0, 720, 725, 730, 750, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
988 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 /* 48 - 720x480@120Hz 4:3 */
990 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
991 798, 858, 0, 480, 489, 495, 525, 0,
992 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
993 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
994 /* 49 - 720x480@120Hz 16:9 */
995 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
996 798, 858, 0, 480, 489, 495, 525, 0,
997 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
998 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 /* 50 - 720(1440)x480i@120Hz 4:3 */
1000 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001 801, 858, 0, 480, 488, 494, 525, 0,
1002 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005 /* 51 - 720(1440)x480i@120Hz 16:9 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011 /* 52 - 720x576@200Hz 4:3 */
1012 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013 796, 864, 0, 576, 581, 586, 625, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016 /* 53 - 720x576@200Hz 16:9 */
1017 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018 796, 864, 0, 576, 581, 586, 625, 0,
1019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021 /* 54 - 720(1440)x576i@200Hz 4:3 */
1022 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023 795, 864, 0, 576, 580, 586, 625, 0,
1024 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027 /* 55 - 720(1440)x576i@200Hz 16:9 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033 /* 56 - 720x480@240Hz 4:3 */
1034 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035 798, 858, 0, 480, 489, 495, 525, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038 /* 57 - 720x480@240Hz 16:9 */
1039 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040 798, 858, 0, 480, 489, 495, 525, 0,
1041 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043 /* 58 - 720(1440)x480i@240Hz 4:3 */
1044 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045 801, 858, 0, 480, 488, 494, 525, 0,
1046 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049 /* 59 - 720(1440)x480i@240Hz 16:9 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055 /* 60 - 1280x720@24Hz 16:9 */
1056 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057 3080, 3300, 0, 720, 725, 730, 750, 0,
1058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060 /* 61 - 1280x720@25Hz 16:9 */
1061 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062 3740, 3960, 0, 720, 725, 730, 750, 0,
1063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065 /* 62 - 1280x720@30Hz 16:9 */
1066 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067 3080, 3300, 0, 720, 725, 730, 750, 0,
1068 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070 /* 63 - 1920x1080@120Hz 16:9 */
1071 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075 /* 64 - 1920x1080@100Hz 16:9 */
1076 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080 /* 65 - 1280x720@24Hz 64:27 */
1081 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082 3080, 3300, 0, 720, 725, 730, 750, 0,
1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 /* 66 - 1280x720@25Hz 64:27 */
1086 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087 3740, 3960, 0, 720, 725, 730, 750, 0,
1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 /* 67 - 1280x720@30Hz 64:27 */
1091 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092 3080, 3300, 0, 720, 725, 730, 750, 0,
1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 /* 68 - 1280x720@50Hz 64:27 */
1096 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097 1760, 1980, 0, 720, 725, 730, 750, 0,
1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 /* 69 - 1280x720@60Hz 64:27 */
1101 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102 1430, 1650, 0, 720, 725, 730, 750, 0,
1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 /* 70 - 1280x720@100Hz 64:27 */
1106 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107 1760, 1980, 0, 720, 725, 730, 750, 0,
1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 /* 71 - 1280x720@120Hz 64:27 */
1111 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112 1430, 1650, 0, 720, 725, 730, 750, 0,
1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 /* 72 - 1920x1080@24Hz 64:27 */
1116 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 /* 73 - 1920x1080@25Hz 64:27 */
1121 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 /* 74 - 1920x1080@30Hz 64:27 */
1126 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 /* 75 - 1920x1080@50Hz 64:27 */
1131 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 /* 76 - 1920x1080@60Hz 64:27 */
1136 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 /* 77 - 1920x1080@100Hz 64:27 */
1141 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 /* 78 - 1920x1080@120Hz 64:27 */
1146 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 /* 79 - 1680x720@24Hz 64:27 */
1151 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152 3080, 3300, 0, 720, 725, 730, 750, 0,
1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 /* 80 - 1680x720@25Hz 64:27 */
1156 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157 2948, 3168, 0, 720, 725, 730, 750, 0,
1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 /* 81 - 1680x720@30Hz 64:27 */
1161 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162 2420, 2640, 0, 720, 725, 730, 750, 0,
1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 /* 82 - 1680x720@50Hz 64:27 */
1166 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167 1980, 2200, 0, 720, 725, 730, 750, 0,
1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 /* 83 - 1680x720@60Hz 64:27 */
1171 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172 1980, 2200, 0, 720, 725, 730, 750, 0,
1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 /* 84 - 1680x720@100Hz 64:27 */
1176 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177 1780, 2000, 0, 720, 725, 730, 825, 0,
1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 /* 85 - 1680x720@120Hz 64:27 */
1181 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182 1780, 2000, 0, 720, 725, 730, 825, 0,
1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 /* 86 - 2560x1080@24Hz 64:27 */
1186 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190 /* 87 - 2560x1080@25Hz 64:27 */
1191 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195 /* 88 - 2560x1080@30Hz 64:27 */
1196 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200 /* 89 - 2560x1080@50Hz 64:27 */
1201 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205 /* 90 - 2560x1080@60Hz 64:27 */
1206 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210 /* 91 - 2560x1080@100Hz 64:27 */
1211 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215 /* 92 - 2560x1080@120Hz 64:27 */
1216 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220 /* 93 - 3840x2160@24Hz 16:9 */
1221 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225 /* 94 - 3840x2160@25Hz 16:9 */
1226 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230 /* 95 - 3840x2160@30Hz 16:9 */
1231 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235 /* 96 - 3840x2160@50Hz 16:9 */
1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240 /* 97 - 3840x2160@60Hz 16:9 */
1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245 /* 98 - 4096x2160@24Hz 256:135 */
1246 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250 /* 99 - 4096x2160@25Hz 256:135 */
1251 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255 /* 100 - 4096x2160@30Hz 256:135 */
1256 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260 /* 101 - 4096x2160@50Hz 256:135 */
1261 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265 /* 102 - 4096x2160@60Hz 256:135 */
1266 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270 /* 103 - 3840x2160@24Hz 64:27 */
1271 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275 /* 104 - 3840x2160@25Hz 64:27 */
1276 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280 /* 105 - 3840x2160@30Hz 64:27 */
1281 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285 /* 106 - 3840x2160@50Hz 64:27 */
1286 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290 /* 107 - 3840x2160@60Hz 64:27 */
1291 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295 /* 108 - 1280x720@48Hz 16:9 */
1296 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297 2280, 2500, 0, 720, 725, 730, 750, 0,
1298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300 /* 109 - 1280x720@48Hz 64:27 */
1301 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302 2280, 2500, 0, 720, 725, 730, 750, 0,
1303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305 /* 110 - 1680x720@48Hz 64:27 */
1306 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307 2530, 2750, 0, 720, 725, 730, 750, 0,
1308 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310 /* 111 - 1920x1080@48Hz 16:9 */
1311 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315 /* 112 - 1920x1080@48Hz 64:27 */
1316 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320 /* 113 - 2560x1080@48Hz 64:27 */
1321 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325 /* 114 - 3840x2160@48Hz 16:9 */
1326 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330 /* 115 - 4096x2160@48Hz 256:135 */
1331 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335 /* 116 - 3840x2160@48Hz 64:27 */
1336 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340 /* 117 - 3840x2160@100Hz 16:9 */
1341 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345 /* 118 - 3840x2160@120Hz 16:9 */
1346 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350 /* 119 - 3840x2160@100Hz 64:27 */
1351 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355 /* 120 - 3840x2160@120Hz 64:27 */
1356 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360 /* 121 - 5120x2160@24Hz 64:27 */
1361 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365 /* 122 - 5120x2160@25Hz 64:27 */
1366 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370 /* 123 - 5120x2160@30Hz 64:27 */
1371 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375 /* 124 - 5120x2160@48Hz 64:27 */
1376 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380 /* 125 - 5120x2160@50Hz 64:27 */
1381 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385 /* 126 - 5120x2160@60Hz 64:27 */
1386 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390 /* 127 - 5120x2160@100Hz 64:27 */
1391 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395};
1396
1397/*
1398 * From CEA/CTA-861 spec.
1399 *
1400 * Do not access directly, instead always use cea_mode_for_vic().
1401 */
1402static const struct drm_display_mode edid_cea_modes_193[] = {
1403 /* 193 - 5120x2160@120Hz 64:27 */
1404 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408 /* 194 - 7680x4320@24Hz 16:9 */
1409 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413 /* 195 - 7680x4320@25Hz 16:9 */
1414 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418 /* 196 - 7680x4320@30Hz 16:9 */
1419 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423 /* 197 - 7680x4320@48Hz 16:9 */
1424 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428 /* 198 - 7680x4320@50Hz 16:9 */
1429 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433 /* 199 - 7680x4320@60Hz 16:9 */
1434 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438 /* 200 - 7680x4320@100Hz 16:9 */
1439 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443 /* 201 - 7680x4320@120Hz 16:9 */
1444 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448 /* 202 - 7680x4320@24Hz 64:27 */
1449 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453 /* 203 - 7680x4320@25Hz 64:27 */
1454 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458 /* 204 - 7680x4320@30Hz 64:27 */
1459 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463 /* 205 - 7680x4320@48Hz 64:27 */
1464 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468 /* 206 - 7680x4320@50Hz 64:27 */
1469 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473 /* 207 - 7680x4320@60Hz 64:27 */
1474 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478 /* 208 - 7680x4320@100Hz 64:27 */
1479 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483 /* 209 - 7680x4320@120Hz 64:27 */
1484 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488 /* 210 - 10240x4320@24Hz 64:27 */
1489 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493 /* 211 - 10240x4320@25Hz 64:27 */
1494 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498 /* 212 - 10240x4320@30Hz 64:27 */
1499 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503 /* 213 - 10240x4320@48Hz 64:27 */
1504 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508 /* 214 - 10240x4320@50Hz 64:27 */
1509 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513 /* 215 - 10240x4320@60Hz 64:27 */
1514 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518 /* 216 - 10240x4320@100Hz 64:27 */
1519 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523 /* 217 - 10240x4320@120Hz 64:27 */
1524 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528 /* 218 - 4096x2160@100Hz 256:135 */
1529 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533 /* 219 - 4096x2160@120Hz 256:135 */
1534 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1538};
1539
1540/*
1541 * HDMI 1.4 4k modes. Index using the VIC.
1542 */
1543static const struct drm_display_mode edid_4k_modes[] = {
1544 /* 0 - dummy, VICs start at 1 */
1545 { },
1546 /* 1 - 3840x2160@30Hz */
1547 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548 3840, 4016, 4104, 4400, 0,
1549 2160, 2168, 2178, 2250, 0,
1550 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552 /* 2 - 3840x2160@25Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4896, 4984, 5280, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 3 - 3840x2160@24Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 5116, 5204, 5500, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 4 - 4096x2160@24Hz (SMPTE) */
1565 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 4096, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1570};
1571
1572/*** DDC fetch and block validation ***/
1573
1574/*
1575 * The opaque EDID type, internal to drm_edid.c.
1576 */
1577struct drm_edid {
1578 /* Size allocated for edid */
1579 size_t size;
1580 const struct edid *edid;
1581};
1582
1583static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584
1585static int edid_hfeeodb_block_count(const struct edid *edid)
1586{
1587 int eeodb = edid_hfeeodb_extension_block_count(edid);
1588
1589 return eeodb ? eeodb + 1 : 0;
1590}
1591
1592static int edid_extension_block_count(const struct edid *edid)
1593{
1594 return edid->extensions;
1595}
1596
1597static int edid_block_count(const struct edid *edid)
1598{
1599 return edid_extension_block_count(edid) + 1;
1600}
1601
1602static int edid_size_by_blocks(int num_blocks)
1603{
1604 return num_blocks * EDID_LENGTH;
1605}
1606
1607static int edid_size(const struct edid *edid)
1608{
1609 return edid_size_by_blocks(edid_block_count(edid));
1610}
1611
1612static const void *edid_block_data(const struct edid *edid, int index)
1613{
1614 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615
1616 return edid + index;
1617}
1618
1619static const void *edid_extension_block_data(const struct edid *edid, int index)
1620{
1621 return edid_block_data(edid, index + 1);
1622}
1623
1624/* EDID block count indicated in EDID, may exceed allocated size */
1625static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1626{
1627 int num_blocks;
1628
1629 /* Starting point */
1630 num_blocks = edid_block_count(drm_edid->edid);
1631
1632 /* HF-EEODB override */
1633 if (drm_edid->size >= edid_size_by_blocks(2)) {
1634 int eeodb;
1635
1636 /*
1637 * Note: HF-EEODB may specify a smaller extension count than the
1638 * regular one. Unlike in buffer allocation, here we can use it.
1639 */
1640 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1641 if (eeodb)
1642 num_blocks = eeodb;
1643 }
1644
1645 return num_blocks;
1646}
1647
1648/* EDID block count, limited by allocated size */
1649static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650{
1651 /* Limit by allocated size */
1652 return min(__drm_edid_block_count(drm_edid),
1653 (int)drm_edid->size / EDID_LENGTH);
1654}
1655
1656/* EDID extension block count, limited by allocated size */
1657static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658{
1659 return drm_edid_block_count(drm_edid) - 1;
1660}
1661
1662static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663{
1664 return edid_block_data(drm_edid->edid, index);
1665}
1666
1667static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1668 int index)
1669{
1670 return edid_extension_block_data(drm_edid->edid, index);
1671}
1672
1673/*
1674 * Initializer helper for legacy interfaces, where we have no choice but to
1675 * trust edid size. Not for general purpose use.
1676 */
1677static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678 const struct edid *edid)
1679{
1680 if (!edid)
1681 return NULL;
1682
1683 memset(drm_edid, 0, sizeof(*drm_edid));
1684
1685 drm_edid->edid = edid;
1686 drm_edid->size = edid_size(edid);
1687
1688 return drm_edid;
1689}
1690
1691/*
1692 * EDID base and extension block iterator.
1693 *
1694 * struct drm_edid_iter iter;
1695 * const u8 *block;
1696 *
1697 * drm_edid_iter_begin(drm_edid, &iter);
1698 * drm_edid_iter_for_each(block, &iter) {
1699 * // do stuff with block
1700 * }
1701 * drm_edid_iter_end(&iter);
1702 */
1703struct drm_edid_iter {
1704 const struct drm_edid *drm_edid;
1705
1706 /* Current block index. */
1707 int index;
1708};
1709
1710static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711 struct drm_edid_iter *iter)
1712{
1713 memset(iter, 0, sizeof(*iter));
1714
1715 iter->drm_edid = drm_edid;
1716}
1717
1718static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719{
1720 const void *block = NULL;
1721
1722 if (!iter->drm_edid)
1723 return NULL;
1724
1725 if (iter->index < drm_edid_block_count(iter->drm_edid))
1726 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1727
1728 return block;
1729}
1730
1731#define drm_edid_iter_for_each(__block, __iter) \
1732 while (((__block) = __drm_edid_iter_next(__iter)))
1733
1734static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735{
1736 memset(iter, 0, sizeof(*iter));
1737}
1738
1739static const u8 edid_header[] = {
1740 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1741};
1742
1743static void edid_header_fix(void *edid)
1744{
1745 memcpy(edid, edid_header, sizeof(edid_header));
1746}
1747
1748/**
1749 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750 * @_edid: pointer to raw base EDID block
1751 *
1752 * Sanity check the header of the base EDID block.
1753 *
1754 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755 */
1756int drm_edid_header_is_valid(const void *_edid)
1757{
1758 const struct edid *edid = _edid;
1759 int i, score = 0;
1760
1761 for (i = 0; i < sizeof(edid_header); i++) {
1762 if (edid->header[i] == edid_header[i])
1763 score++;
1764 }
1765
1766 return score;
1767}
1768EXPORT_SYMBOL(drm_edid_header_is_valid);
1769
1770static int edid_fixup __read_mostly = 6;
1771module_param_named(edid_fixup, edid_fixup, int, 0400);
1772MODULE_PARM_DESC(edid_fixup,
1773 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774
1775static int edid_block_compute_checksum(const void *_block)
1776{
1777 const u8 *block = _block;
1778 int i;
1779 u8 csum = 0, crc = 0;
1780
1781 for (i = 0; i < EDID_LENGTH - 1; i++)
1782 csum += block[i];
1783
1784 crc = 0x100 - csum;
1785
1786 return crc;
1787}
1788
1789static int edid_block_get_checksum(const void *_block)
1790{
1791 const struct edid *block = _block;
1792
1793 return block->checksum;
1794}
1795
1796static int edid_block_tag(const void *_block)
1797{
1798 const u8 *block = _block;
1799
1800 return block[0];
1801}
1802
1803static bool edid_block_is_zero(const void *edid)
1804{
1805 return !memchr_inv(edid, 0, EDID_LENGTH);
1806}
1807
1808/**
1809 * drm_edid_are_equal - compare two edid blobs.
1810 * @edid1: pointer to first blob
1811 * @edid2: pointer to second blob
1812 * This helper can be used during probing to determine if
1813 * edid had changed.
1814 */
1815bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816{
1817 int edid1_len, edid2_len;
1818 bool edid1_present = edid1 != NULL;
1819 bool edid2_present = edid2 != NULL;
1820
1821 if (edid1_present != edid2_present)
1822 return false;
1823
1824 if (edid1) {
1825 edid1_len = edid_size(edid1);
1826 edid2_len = edid_size(edid2);
1827
1828 if (edid1_len != edid2_len)
1829 return false;
1830
1831 if (memcmp(edid1, edid2, edid1_len))
1832 return false;
1833 }
1834
1835 return true;
1836}
1837EXPORT_SYMBOL(drm_edid_are_equal);
1838
1839enum edid_block_status {
1840 EDID_BLOCK_OK = 0,
1841 EDID_BLOCK_READ_FAIL,
1842 EDID_BLOCK_NULL,
1843 EDID_BLOCK_ZERO,
1844 EDID_BLOCK_HEADER_CORRUPT,
1845 EDID_BLOCK_HEADER_REPAIR,
1846 EDID_BLOCK_HEADER_FIXED,
1847 EDID_BLOCK_CHECKSUM,
1848 EDID_BLOCK_VERSION,
1849};
1850
1851static enum edid_block_status edid_block_check(const void *_block,
1852 bool is_base_block)
1853{
1854 const struct edid *block = _block;
1855
1856 if (!block)
1857 return EDID_BLOCK_NULL;
1858
1859 if (is_base_block) {
1860 int score = drm_edid_header_is_valid(block);
1861
1862 if (score < clamp(edid_fixup, 0, 8)) {
1863 if (edid_block_is_zero(block))
1864 return EDID_BLOCK_ZERO;
1865 else
1866 return EDID_BLOCK_HEADER_CORRUPT;
1867 }
1868
1869 if (score < 8)
1870 return EDID_BLOCK_HEADER_REPAIR;
1871 }
1872
1873 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874 if (edid_block_is_zero(block))
1875 return EDID_BLOCK_ZERO;
1876 else
1877 return EDID_BLOCK_CHECKSUM;
1878 }
1879
1880 if (is_base_block) {
1881 if (block->version != 1)
1882 return EDID_BLOCK_VERSION;
1883 }
1884
1885 return EDID_BLOCK_OK;
1886}
1887
1888static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889{
1890 return status == EDID_BLOCK_OK ||
1891 status == EDID_BLOCK_HEADER_FIXED ||
1892 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1893}
1894
1895static bool edid_block_valid(const void *block, bool base)
1896{
1897 return edid_block_status_valid(edid_block_check(block, base),
1898 edid_block_tag(block));
1899}
1900
1901static void edid_block_status_print(enum edid_block_status status,
1902 const struct edid *block,
1903 int block_num)
1904{
1905 switch (status) {
1906 case EDID_BLOCK_OK:
1907 break;
1908 case EDID_BLOCK_READ_FAIL:
1909 pr_debug("EDID block %d read failed\n", block_num);
1910 break;
1911 case EDID_BLOCK_NULL:
1912 pr_debug("EDID block %d pointer is NULL\n", block_num);
1913 break;
1914 case EDID_BLOCK_ZERO:
1915 pr_notice("EDID block %d is all zeroes\n", block_num);
1916 break;
1917 case EDID_BLOCK_HEADER_CORRUPT:
1918 pr_notice("EDID has corrupt header\n");
1919 break;
1920 case EDID_BLOCK_HEADER_REPAIR:
1921 pr_debug("EDID corrupt header needs repair\n");
1922 break;
1923 case EDID_BLOCK_HEADER_FIXED:
1924 pr_debug("EDID corrupt header fixed\n");
1925 break;
1926 case EDID_BLOCK_CHECKSUM:
1927 if (edid_block_status_valid(status, edid_block_tag(block))) {
1928 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929 block_num, edid_block_tag(block),
1930 edid_block_compute_checksum(block));
1931 } else {
1932 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933 block_num, edid_block_tag(block),
1934 edid_block_compute_checksum(block));
1935 }
1936 break;
1937 case EDID_BLOCK_VERSION:
1938 pr_notice("EDID has major version %d, instead of 1\n",
1939 block->version);
1940 break;
1941 default:
1942 WARN(1, "EDID block %d unknown edid block status code %d\n",
1943 block_num, status);
1944 break;
1945 }
1946}
1947
1948static void edid_block_dump(const char *level, const void *block, int block_num)
1949{
1950 enum edid_block_status status;
1951 char prefix[20];
1952
1953 status = edid_block_check(block, block_num == 0);
1954 if (status == EDID_BLOCK_ZERO)
1955 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957 sprintf(prefix, "\t[%02x] BAD ", block_num);
1958 else
1959 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960
1961 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962 block, EDID_LENGTH, false);
1963}
1964
1965/**
1966 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967 * @_block: pointer to raw EDID block
1968 * @block_num: type of block to validate (0 for base, extension otherwise)
1969 * @print_bad_edid: if true, dump bad EDID blocks to the console
1970 * @edid_corrupt: if true, the header or checksum is invalid
1971 *
1972 * Validate a base or extension EDID block and optionally dump bad blocks to
1973 * the console.
1974 *
1975 * Return: True if the block is valid, false otherwise.
1976 */
1977bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1978 bool *edid_corrupt)
1979{
1980 struct edid *block = (struct edid *)_block;
1981 enum edid_block_status status;
1982 bool is_base_block = block_num == 0;
1983 bool valid;
1984
1985 if (WARN_ON(!block))
1986 return false;
1987
1988 status = edid_block_check(block, is_base_block);
1989 if (status == EDID_BLOCK_HEADER_REPAIR) {
1990 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991 edid_header_fix(block);
1992
1993 /* Retry with fixed header, update status if that worked. */
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_OK)
1996 status = EDID_BLOCK_HEADER_FIXED;
1997 }
1998
1999 if (edid_corrupt) {
2000 /*
2001 * Unknown major version isn't corrupt but we can't use it. Only
2002 * the base block can reset edid_corrupt to false.
2003 */
2004 if (is_base_block &&
2005 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006 *edid_corrupt = false;
2007 else if (status != EDID_BLOCK_OK)
2008 *edid_corrupt = true;
2009 }
2010
2011 edid_block_status_print(status, block, block_num);
2012
2013 /* Determine whether we can use this block with this status. */
2014 valid = edid_block_status_valid(status, edid_block_tag(block));
2015
2016 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017 pr_notice("Raw EDID:\n");
2018 edid_block_dump(KERN_NOTICE, block, block_num);
2019 }
2020
2021 return valid;
2022}
2023EXPORT_SYMBOL(drm_edid_block_valid);
2024
2025/**
2026 * drm_edid_is_valid - sanity check EDID data
2027 * @edid: EDID data
2028 *
2029 * Sanity-check an entire EDID record (including extensions)
2030 *
2031 * Return: True if the EDID data is valid, false otherwise.
2032 */
2033bool drm_edid_is_valid(struct edid *edid)
2034{
2035 int i;
2036
2037 if (!edid)
2038 return false;
2039
2040 for (i = 0; i < edid_block_count(edid); i++) {
2041 void *block = (void *)edid_block_data(edid, i);
2042
2043 if (!drm_edid_block_valid(block, i, true, NULL))
2044 return false;
2045 }
2046
2047 return true;
2048}
2049EXPORT_SYMBOL(drm_edid_is_valid);
2050
2051/**
2052 * drm_edid_valid - sanity check EDID data
2053 * @drm_edid: EDID data
2054 *
2055 * Sanity check an EDID. Cross check block count against allocated size and
2056 * checksum the blocks.
2057 *
2058 * Return: True if the EDID data is valid, false otherwise.
2059 */
2060bool drm_edid_valid(const struct drm_edid *drm_edid)
2061{
2062 int i;
2063
2064 if (!drm_edid)
2065 return false;
2066
2067 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2068 return false;
2069
2070 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071 const void *block = drm_edid_block_data(drm_edid, i);
2072
2073 if (!edid_block_valid(block, i == 0))
2074 return false;
2075 }
2076
2077 return true;
2078}
2079EXPORT_SYMBOL(drm_edid_valid);
2080
2081static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2082 size_t *alloc_size)
2083{
2084 struct edid *new;
2085 int i, valid_blocks = 0;
2086
2087 /*
2088 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089 * back to regular extension count here. We don't want to start
2090 * modifying the HF-EEODB extension too.
2091 */
2092 for (i = 0; i < edid_block_count(edid); i++) {
2093 const void *src_block = edid_block_data(edid, i);
2094
2095 if (edid_block_valid(src_block, i == 0)) {
2096 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097
2098 memmove(dst_block, src_block, EDID_LENGTH);
2099 valid_blocks++;
2100 }
2101 }
2102
2103 /* We already trusted the base block to be valid here... */
2104 if (WARN_ON(!valid_blocks)) {
2105 kfree(edid);
2106 return NULL;
2107 }
2108
2109 edid->extensions = valid_blocks - 1;
2110 edid->checksum = edid_block_compute_checksum(edid);
2111
2112 *alloc_size = edid_size_by_blocks(valid_blocks);
2113
2114 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2115 if (!new)
2116 kfree(edid);
2117
2118 return new;
2119}
2120
2121#define DDC_SEGMENT_ADDR 0x30
2122/**
2123 * drm_do_probe_ddc_edid() - get EDID information via I2C
2124 * @data: I2C device adapter
2125 * @buf: EDID data buffer to be filled
2126 * @block: 128 byte EDID block to start fetching from
2127 * @len: EDID data buffer length to fetch
2128 *
2129 * Try to fetch EDID information by calling I2C driver functions.
2130 *
2131 * Return: 0 on success or -1 on failure.
2132 */
2133static int
2134drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135{
2136 struct i2c_adapter *adapter = data;
2137 unsigned char start = block * EDID_LENGTH;
2138 unsigned char segment = block >> 1;
2139 unsigned char xfers = segment ? 3 : 2;
2140 int ret, retries = 5;
2141
2142 /*
2143 * The core I2C driver will automatically retry the transfer if the
2144 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145 * are susceptible to errors under a heavily loaded machine and
2146 * generate spurious NAKs and timeouts. Retrying the transfer
2147 * of the individual block a few times seems to overcome this.
2148 */
2149 do {
2150 struct i2c_msg msgs[] = {
2151 {
2152 .addr = DDC_SEGMENT_ADDR,
2153 .flags = 0,
2154 .len = 1,
2155 .buf = &segment,
2156 }, {
2157 .addr = DDC_ADDR,
2158 .flags = 0,
2159 .len = 1,
2160 .buf = &start,
2161 }, {
2162 .addr = DDC_ADDR,
2163 .flags = I2C_M_RD,
2164 .len = len,
2165 .buf = buf,
2166 }
2167 };
2168
2169 /*
2170 * Avoid sending the segment addr to not upset non-compliant
2171 * DDC monitors.
2172 */
2173 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174
2175 if (ret == -ENXIO) {
2176 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2177 adapter->name);
2178 break;
2179 }
2180 } while (ret != xfers && --retries);
2181
2182 return ret == xfers ? 0 : -1;
2183}
2184
2185static void connector_bad_edid(struct drm_connector *connector,
2186 const struct edid *edid, int num_blocks)
2187{
2188 int i;
2189 u8 last_block;
2190
2191 /*
2192 * 0x7e in the EDID is the number of extension blocks. The EDID
2193 * is 1 (base block) + num_ext_blocks big. That means we can think
2194 * of 0x7e in the EDID of the _index_ of the last block in the
2195 * combined chunk of memory.
2196 */
2197 last_block = edid->extensions;
2198
2199 /* Calculate real checksum for the last edid extension block data */
2200 if (last_block < num_blocks)
2201 connector->real_edid_checksum =
2202 edid_block_compute_checksum(edid + last_block);
2203
2204 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2205 return;
2206
2207 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208 connector->base.id, connector->name);
2209 for (i = 0; i < num_blocks; i++)
2210 edid_block_dump(KERN_DEBUG, edid + i, i);
2211}
2212
2213/* Get override or firmware EDID */
2214static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215{
2216 const struct drm_edid *override = NULL;
2217
2218 mutex_lock(&connector->edid_override_mutex);
2219
2220 if (connector->edid_override)
2221 override = drm_edid_dup(connector->edid_override);
2222
2223 mutex_unlock(&connector->edid_override_mutex);
2224
2225 if (!override)
2226 override = drm_edid_load_firmware(connector);
2227
2228 return IS_ERR(override) ? NULL : override;
2229}
2230
2231/* For debugfs edid_override implementation */
2232int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233{
2234 const struct drm_edid *drm_edid;
2235
2236 mutex_lock(&connector->edid_override_mutex);
2237
2238 drm_edid = connector->edid_override;
2239 if (drm_edid)
2240 seq_write(m, drm_edid->edid, drm_edid->size);
2241
2242 mutex_unlock(&connector->edid_override_mutex);
2243
2244 return 0;
2245}
2246
2247/* For debugfs edid_override implementation */
2248int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2249 size_t size)
2250{
2251 const struct drm_edid *drm_edid;
2252
2253 drm_edid = drm_edid_alloc(edid, size);
2254 if (!drm_edid_valid(drm_edid)) {
2255 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256 connector->base.id, connector->name);
2257 drm_edid_free(drm_edid);
2258 return -EINVAL;
2259 }
2260
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262 connector->base.id, connector->name);
2263
2264 mutex_lock(&connector->edid_override_mutex);
2265
2266 drm_edid_free(connector->edid_override);
2267 connector->edid_override = drm_edid;
2268
2269 mutex_unlock(&connector->edid_override_mutex);
2270
2271 return 0;
2272}
2273
2274/* For debugfs edid_override implementation */
2275int drm_edid_override_reset(struct drm_connector *connector)
2276{
2277 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278 connector->base.id, connector->name);
2279
2280 mutex_lock(&connector->edid_override_mutex);
2281
2282 drm_edid_free(connector->edid_override);
2283 connector->edid_override = NULL;
2284
2285 mutex_unlock(&connector->edid_override_mutex);
2286
2287 return 0;
2288}
2289
2290/**
2291 * drm_edid_override_connector_update - add modes from override/firmware EDID
2292 * @connector: connector we're probing
2293 *
2294 * Add modes from the override/firmware EDID, if available. Only to be used from
2295 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296 * failed during drm_get_edid() and caused the override/firmware EDID to be
2297 * skipped.
2298 *
2299 * Return: The number of modes added or 0 if we couldn't find any.
2300 */
2301int drm_edid_override_connector_update(struct drm_connector *connector)
2302{
2303 const struct drm_edid *override;
2304 int num_modes = 0;
2305
2306 override = drm_edid_override_get(connector);
2307 if (override) {
2308 num_modes = drm_edid_connector_update(connector, override);
2309
2310 drm_edid_free(override);
2311
2312 drm_dbg_kms(connector->dev,
2313 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314 connector->base.id, connector->name, num_modes);
2315 }
2316
2317 return num_modes;
2318}
2319EXPORT_SYMBOL(drm_edid_override_connector_update);
2320
2321typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322
2323static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324 read_block_fn read_block,
2325 void *context)
2326{
2327 enum edid_block_status status;
2328 bool is_base_block = block_num == 0;
2329 int try;
2330
2331 for (try = 0; try < 4; try++) {
2332 if (read_block(context, block, block_num, EDID_LENGTH))
2333 return EDID_BLOCK_READ_FAIL;
2334
2335 status = edid_block_check(block, is_base_block);
2336 if (status == EDID_BLOCK_HEADER_REPAIR) {
2337 edid_header_fix(block);
2338
2339 /* Retry with fixed header, update status if that worked. */
2340 status = edid_block_check(block, is_base_block);
2341 if (status == EDID_BLOCK_OK)
2342 status = EDID_BLOCK_HEADER_FIXED;
2343 }
2344
2345 if (edid_block_status_valid(status, edid_block_tag(block)))
2346 break;
2347
2348 /* Fail early for unrepairable base block all zeros. */
2349 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2350 break;
2351 }
2352
2353 return status;
2354}
2355
2356static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357 read_block_fn read_block, void *context,
2358 size_t *size)
2359{
2360 enum edid_block_status status;
2361 int i, num_blocks, invalid_blocks = 0;
2362 const struct drm_edid *override;
2363 struct edid *edid, *new;
2364 size_t alloc_size = EDID_LENGTH;
2365
2366 override = drm_edid_override_get(connector);
2367 if (override) {
2368 alloc_size = override->size;
2369 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370 drm_edid_free(override);
2371 if (!edid)
2372 return NULL;
2373 goto ok;
2374 }
2375
2376 edid = kmalloc(alloc_size, GFP_KERNEL);
2377 if (!edid)
2378 return NULL;
2379
2380 status = edid_block_read(edid, 0, read_block, context);
2381
2382 edid_block_status_print(status, edid, 0);
2383
2384 if (status == EDID_BLOCK_READ_FAIL)
2385 goto fail;
2386
2387 /* FIXME: Clarify what a corrupt EDID actually means. */
2388 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389 connector->edid_corrupt = false;
2390 else
2391 connector->edid_corrupt = true;
2392
2393 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394 if (status == EDID_BLOCK_ZERO)
2395 connector->null_edid_counter++;
2396
2397 connector_bad_edid(connector, edid, 1);
2398 goto fail;
2399 }
2400
2401 if (!edid_extension_block_count(edid))
2402 goto ok;
2403
2404 alloc_size = edid_size(edid);
2405 new = krealloc(edid, alloc_size, GFP_KERNEL);
2406 if (!new)
2407 goto fail;
2408 edid = new;
2409
2410 num_blocks = edid_block_count(edid);
2411 for (i = 1; i < num_blocks; i++) {
2412 void *block = (void *)edid_block_data(edid, i);
2413
2414 status = edid_block_read(block, i, read_block, context);
2415
2416 edid_block_status_print(status, block, i);
2417
2418 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419 if (status == EDID_BLOCK_READ_FAIL)
2420 goto fail;
2421 invalid_blocks++;
2422 } else if (i == 1) {
2423 /*
2424 * If the first EDID extension is a CTA extension, and
2425 * the first Data Block is HF-EEODB, override the
2426 * extension block count.
2427 *
2428 * Note: HF-EEODB could specify a smaller extension
2429 * count too, but we can't risk allocating a smaller
2430 * amount.
2431 */
2432 int eeodb = edid_hfeeodb_block_count(edid);
2433
2434 if (eeodb > num_blocks) {
2435 num_blocks = eeodb;
2436 alloc_size = edid_size_by_blocks(num_blocks);
2437 new = krealloc(edid, alloc_size, GFP_KERNEL);
2438 if (!new)
2439 goto fail;
2440 edid = new;
2441 }
2442 }
2443 }
2444
2445 if (invalid_blocks) {
2446 connector_bad_edid(connector, edid, num_blocks);
2447
2448 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2449 }
2450
2451ok:
2452 if (size)
2453 *size = alloc_size;
2454
2455 return edid;
2456
2457fail:
2458 kfree(edid);
2459 return NULL;
2460}
2461
2462/**
2463 * drm_do_get_edid - get EDID data using a custom EDID block read function
2464 * @connector: connector we're probing
2465 * @read_block: EDID block read function
2466 * @context: private data passed to the block read function
2467 *
2468 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469 * exposes a different interface to read EDID blocks this function can be used
2470 * to get EDID data using a custom block read function.
2471 *
2472 * As in the general case the DDC bus is accessible by the kernel at the I2C
2473 * level, drivers must make all reasonable efforts to expose it as an I2C
2474 * adapter and use drm_get_edid() instead of abusing this function.
2475 *
2476 * The EDID may be overridden using debugfs override_edid or firmware EDID
2477 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478 * order. Having either of them bypasses actual EDID reads.
2479 *
2480 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481 */
2482struct edid *drm_do_get_edid(struct drm_connector *connector,
2483 read_block_fn read_block,
2484 void *context)
2485{
2486 return _drm_do_get_edid(connector, read_block, context, NULL);
2487}
2488EXPORT_SYMBOL_GPL(drm_do_get_edid);
2489
2490/**
2491 * drm_edid_raw - Get a pointer to the raw EDID data.
2492 * @drm_edid: drm_edid container
2493 *
2494 * Get a pointer to the raw EDID data.
2495 *
2496 * This is for transition only. Avoid using this like the plague.
2497 *
2498 * Return: Pointer to raw EDID data.
2499 */
2500const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501{
2502 if (!drm_edid || !drm_edid->size)
2503 return NULL;
2504
2505 /*
2506 * Do not return pointers where relying on EDID extension count would
2507 * lead to buffer overflow.
2508 */
2509 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2510 return NULL;
2511
2512 return drm_edid->edid;
2513}
2514EXPORT_SYMBOL(drm_edid_raw);
2515
2516/* Allocate struct drm_edid container *without* duplicating the edid data */
2517static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518{
2519 struct drm_edid *drm_edid;
2520
2521 if (!edid || !size || size < EDID_LENGTH)
2522 return NULL;
2523
2524 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525 if (drm_edid) {
2526 drm_edid->edid = edid;
2527 drm_edid->size = size;
2528 }
2529
2530 return drm_edid;
2531}
2532
2533/**
2534 * drm_edid_alloc - Allocate a new drm_edid container
2535 * @edid: Pointer to raw EDID data
2536 * @size: Size of memory allocated for EDID
2537 *
2538 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539 * the actual size that has been allocated for the data. There is no validation
2540 * of the raw EDID data against the size, but at least the EDID base block must
2541 * fit in the buffer.
2542 *
2543 * The returned pointer must be freed using drm_edid_free().
2544 *
2545 * Return: drm_edid container, or NULL on errors
2546 */
2547const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548{
2549 const struct drm_edid *drm_edid;
2550
2551 if (!edid || !size || size < EDID_LENGTH)
2552 return NULL;
2553
2554 edid = kmemdup(edid, size, GFP_KERNEL);
2555 if (!edid)
2556 return NULL;
2557
2558 drm_edid = _drm_edid_alloc(edid, size);
2559 if (!drm_edid)
2560 kfree(edid);
2561
2562 return drm_edid;
2563}
2564EXPORT_SYMBOL(drm_edid_alloc);
2565
2566/**
2567 * drm_edid_dup - Duplicate a drm_edid container
2568 * @drm_edid: EDID to duplicate
2569 *
2570 * The returned pointer must be freed using drm_edid_free().
2571 *
2572 * Returns: drm_edid container copy, or NULL on errors
2573 */
2574const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2575{
2576 if (!drm_edid)
2577 return NULL;
2578
2579 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580}
2581EXPORT_SYMBOL(drm_edid_dup);
2582
2583/**
2584 * drm_edid_free - Free the drm_edid container
2585 * @drm_edid: EDID to free
2586 */
2587void drm_edid_free(const struct drm_edid *drm_edid)
2588{
2589 if (!drm_edid)
2590 return;
2591
2592 kfree(drm_edid->edid);
2593 kfree(drm_edid);
2594}
2595EXPORT_SYMBOL(drm_edid_free);
2596
2597/**
2598 * drm_probe_ddc() - probe DDC presence
2599 * @adapter: I2C adapter to probe
2600 *
2601 * Return: True on success, false on failure.
2602 */
2603bool
2604drm_probe_ddc(struct i2c_adapter *adapter)
2605{
2606 unsigned char out;
2607
2608 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609}
2610EXPORT_SYMBOL(drm_probe_ddc);
2611
2612/**
2613 * drm_get_edid - get EDID data, if available
2614 * @connector: connector we're probing
2615 * @adapter: I2C adapter to use for DDC
2616 *
2617 * Poke the given I2C channel to grab EDID data if possible. If found,
2618 * attach it to the connector.
2619 *
2620 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621 */
2622struct edid *drm_get_edid(struct drm_connector *connector,
2623 struct i2c_adapter *adapter)
2624{
2625 struct edid *edid;
2626
2627 if (connector->force == DRM_FORCE_OFF)
2628 return NULL;
2629
2630 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2631 return NULL;
2632
2633 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634 drm_connector_update_edid_property(connector, edid);
2635 return edid;
2636}
2637EXPORT_SYMBOL(drm_get_edid);
2638
2639/**
2640 * drm_edid_read_custom - Read EDID data using given EDID block read function
2641 * @connector: Connector to use
2642 * @read_block: EDID block read function
2643 * @context: Private data passed to the block read function
2644 *
2645 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646 * exposes a different interface to read EDID blocks this function can be used
2647 * to get EDID data using a custom block read function.
2648 *
2649 * As in the general case the DDC bus is accessible by the kernel at the I2C
2650 * level, drivers must make all reasonable efforts to expose it as an I2C
2651 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2652 * this function.
2653 *
2654 * The EDID may be overridden using debugfs override_edid or firmware EDID
2655 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656 * order. Having either of them bypasses actual EDID reads.
2657 *
2658 * The returned pointer must be freed using drm_edid_free().
2659 *
2660 * Return: Pointer to EDID, or NULL if probe/read failed.
2661 */
2662const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663 read_block_fn read_block,
2664 void *context)
2665{
2666 const struct drm_edid *drm_edid;
2667 struct edid *edid;
2668 size_t size = 0;
2669
2670 edid = _drm_do_get_edid(connector, read_block, context, &size);
2671 if (!edid)
2672 return NULL;
2673
2674 /* Sanity check for now */
2675 drm_WARN_ON(connector->dev, !size);
2676
2677 drm_edid = _drm_edid_alloc(edid, size);
2678 if (!drm_edid)
2679 kfree(edid);
2680
2681 return drm_edid;
2682}
2683EXPORT_SYMBOL(drm_edid_read_custom);
2684
2685/**
2686 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687 * @connector: Connector to use
2688 * @adapter: I2C adapter to use for DDC
2689 *
2690 * Read EDID using the given I2C adapter.
2691 *
2692 * The EDID may be overridden using debugfs override_edid or firmware EDID
2693 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694 * order. Having either of them bypasses actual EDID reads.
2695 *
2696 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697 * using drm_edid_read() instead of this function.
2698 *
2699 * The returned pointer must be freed using drm_edid_free().
2700 *
2701 * Return: Pointer to EDID, or NULL if probe/read failed.
2702 */
2703const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704 struct i2c_adapter *adapter)
2705{
2706 const struct drm_edid *drm_edid;
2707
2708 if (connector->force == DRM_FORCE_OFF)
2709 return NULL;
2710
2711 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2712 return NULL;
2713
2714 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715
2716 /* Note: Do *not* call connector updates here. */
2717
2718 return drm_edid;
2719}
2720EXPORT_SYMBOL(drm_edid_read_ddc);
2721
2722/**
2723 * drm_edid_read - Read EDID data using connector's I2C adapter
2724 * @connector: Connector to use
2725 *
2726 * Read EDID using the connector's I2C adapter.
2727 *
2728 * The EDID may be overridden using debugfs override_edid or firmware EDID
2729 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730 * order. Having either of them bypasses actual EDID reads.
2731 *
2732 * The returned pointer must be freed using drm_edid_free().
2733 *
2734 * Return: Pointer to EDID, or NULL if probe/read failed.
2735 */
2736const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737{
2738 if (drm_WARN_ON(connector->dev, !connector->ddc))
2739 return NULL;
2740
2741 return drm_edid_read_ddc(connector, connector->ddc);
2742}
2743EXPORT_SYMBOL(drm_edid_read);
2744
2745static u32 edid_extract_panel_id(const struct edid *edid)
2746{
2747 /*
2748 * We represent the ID as a 32-bit number so it can easily be compared
2749 * with "==".
2750 *
2751 * NOTE that we deal with endianness differently for the top half
2752 * of this ID than for the bottom half. The bottom half (the product
2753 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755 * gets stored as big endian because that makes
2756 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757 * to write (it's easier to extract the ASCII). It doesn't really
2758 * matter, though, as long as the number here is unique.
2759 */
2760 return (u32)edid->mfg_id[0] << 24 |
2761 (u32)edid->mfg_id[1] << 16 |
2762 (u32)EDID_PRODUCT_ID(edid);
2763}
2764
2765/**
2766 * drm_edid_get_panel_id - Get a panel's ID through DDC
2767 * @adapter: I2C adapter to use for DDC
2768 *
2769 * This function reads the first block of the EDID of a panel and (assuming
2770 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772 * supposed to be different for each different modem of panel.
2773 *
2774 * This function is intended to be used during early probing on devices where
2775 * more than one panel might be present. Because of its intended use it must
2776 * assume that the EDID of the panel is correct, at least as far as the ID
2777 * is concerned (in other words, we don't process any overrides here).
2778 *
2779 * NOTE: it's expected that this function and drm_do_get_edid() will both
2780 * be read the EDID, but there is no caching between them. Since we're only
2781 * reading the first block, hopefully this extra overhead won't be too big.
2782 *
2783 * Return: A 32-bit ID that should be different for each make/model of panel.
2784 * See the functions drm_edid_encode_panel_id() and
2785 * drm_edid_decode_panel_id() for some details on the structure of this
2786 * ID.
2787 */
2788
2789u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790{
2791 enum edid_block_status status;
2792 void *base_block;
2793 u32 panel_id = 0;
2794
2795 /*
2796 * There are no manufacturer IDs of 0, so if there is a problem reading
2797 * the EDID then we'll just return 0.
2798 */
2799
2800 base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2801 if (!base_block)
2802 return 0;
2803
2804 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805
2806 edid_block_status_print(status, base_block, 0);
2807
2808 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809 panel_id = edid_extract_panel_id(base_block);
2810 else
2811 edid_block_dump(KERN_NOTICE, base_block, 0);
2812
2813 kfree(base_block);
2814
2815 return panel_id;
2816}
2817EXPORT_SYMBOL(drm_edid_get_panel_id);
2818
2819/**
2820 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821 * @connector: connector we're probing
2822 * @adapter: I2C adapter to use for DDC
2823 *
2824 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826 * switch DDC to the GPU which is retrieving EDID.
2827 *
2828 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829 */
2830struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831 struct i2c_adapter *adapter)
2832{
2833 struct drm_device *dev = connector->dev;
2834 struct pci_dev *pdev = to_pci_dev(dev->dev);
2835 struct edid *edid;
2836
2837 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2838 return NULL;
2839
2840 vga_switcheroo_lock_ddc(pdev);
2841 edid = drm_get_edid(connector, adapter);
2842 vga_switcheroo_unlock_ddc(pdev);
2843
2844 return edid;
2845}
2846EXPORT_SYMBOL(drm_get_edid_switcheroo);
2847
2848/**
2849 * drm_edid_duplicate - duplicate an EDID and the extensions
2850 * @edid: EDID to duplicate
2851 *
2852 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2853 */
2854struct edid *drm_edid_duplicate(const struct edid *edid)
2855{
2856 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2857}
2858EXPORT_SYMBOL(drm_edid_duplicate);
2859
2860/*** EDID parsing ***/
2861
2862/**
2863 * edid_get_quirks - return quirk flags for a given EDID
2864 * @drm_edid: EDID to process
2865 *
2866 * This tells subsequent routines what fixes they need to apply.
2867 */
2868static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2869{
2870 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2871 const struct edid_quirk *quirk;
2872 int i;
2873
2874 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2875 quirk = &edid_quirk_list[i];
2876 if (quirk->panel_id == panel_id)
2877 return quirk->quirks;
2878 }
2879
2880 return 0;
2881}
2882
2883#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2884#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2885
2886/*
2887 * Walk the mode list for connector, clearing the preferred status on existing
2888 * modes and setting it anew for the right mode ala quirks.
2889 */
2890static void edid_fixup_preferred(struct drm_connector *connector,
2891 u32 quirks)
2892{
2893 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2894 int target_refresh = 0;
2895 int cur_vrefresh, preferred_vrefresh;
2896
2897 if (list_empty(&connector->probed_modes))
2898 return;
2899
2900 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2901 target_refresh = 60;
2902 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2903 target_refresh = 75;
2904
2905 preferred_mode = list_first_entry(&connector->probed_modes,
2906 struct drm_display_mode, head);
2907
2908 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2909 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2910
2911 if (cur_mode == preferred_mode)
2912 continue;
2913
2914 /* Largest mode is preferred */
2915 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2916 preferred_mode = cur_mode;
2917
2918 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2919 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2920 /* At a given size, try to get closest to target refresh */
2921 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2922 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2923 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2924 preferred_mode = cur_mode;
2925 }
2926 }
2927
2928 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2929}
2930
2931static bool
2932mode_is_rb(const struct drm_display_mode *mode)
2933{
2934 return (mode->htotal - mode->hdisplay == 160) &&
2935 (mode->hsync_end - mode->hdisplay == 80) &&
2936 (mode->hsync_end - mode->hsync_start == 32) &&
2937 (mode->vsync_start - mode->vdisplay == 3);
2938}
2939
2940/*
2941 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2942 * @dev: Device to duplicate against
2943 * @hsize: Mode width
2944 * @vsize: Mode height
2945 * @fresh: Mode refresh rate
2946 * @rb: Mode reduced-blanking-ness
2947 *
2948 * Walk the DMT mode list looking for a match for the given parameters.
2949 *
2950 * Return: A newly allocated copy of the mode, or NULL if not found.
2951 */
2952struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2953 int hsize, int vsize, int fresh,
2954 bool rb)
2955{
2956 int i;
2957
2958 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2959 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2960
2961 if (hsize != ptr->hdisplay)
2962 continue;
2963 if (vsize != ptr->vdisplay)
2964 continue;
2965 if (fresh != drm_mode_vrefresh(ptr))
2966 continue;
2967 if (rb != mode_is_rb(ptr))
2968 continue;
2969
2970 return drm_mode_duplicate(dev, ptr);
2971 }
2972
2973 return NULL;
2974}
2975EXPORT_SYMBOL(drm_mode_find_dmt);
2976
2977static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2978{
2979 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2980 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2981 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2982
2983 return descriptor->pixel_clock == 0 &&
2984 descriptor->data.other_data.pad1 == 0 &&
2985 descriptor->data.other_data.type == type;
2986}
2987
2988static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2989{
2990 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2991
2992 return descriptor->pixel_clock != 0;
2993}
2994
2995typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2996
2997static void
2998cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2999{
3000 int i, n;
3001 u8 d = ext[0x02];
3002 const u8 *det_base = ext + d;
3003
3004 if (d < 4 || d > 127)
3005 return;
3006
3007 n = (127 - d) / 18;
3008 for (i = 0; i < n; i++)
3009 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3010}
3011
3012static void
3013vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3014{
3015 unsigned int i, n = min((int)ext[0x02], 6);
3016 const u8 *det_base = ext + 5;
3017
3018 if (ext[0x01] != 1)
3019 return; /* unknown version */
3020
3021 for (i = 0; i < n; i++)
3022 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3023}
3024
3025static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3026 detailed_cb *cb, void *closure)
3027{
3028 struct drm_edid_iter edid_iter;
3029 const u8 *ext;
3030 int i;
3031
3032 if (!drm_edid)
3033 return;
3034
3035 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3036 cb(&drm_edid->edid->detailed_timings[i], closure);
3037
3038 drm_edid_iter_begin(drm_edid, &edid_iter);
3039 drm_edid_iter_for_each(ext, &edid_iter) {
3040 switch (*ext) {
3041 case CEA_EXT:
3042 cea_for_each_detailed_block(ext, cb, closure);
3043 break;
3044 case VTB_EXT:
3045 vtb_for_each_detailed_block(ext, cb, closure);
3046 break;
3047 default:
3048 break;
3049 }
3050 }
3051 drm_edid_iter_end(&edid_iter);
3052}
3053
3054static void
3055is_rb(const struct detailed_timing *descriptor, void *data)
3056{
3057 bool *res = data;
3058
3059 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3060 return;
3061
3062 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3063 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3064
3065 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3066 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3067 *res = true;
3068}
3069
3070/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3071static bool
3072drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3073{
3074 if (drm_edid->edid->revision >= 4) {
3075 bool ret = false;
3076
3077 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3078 return ret;
3079 }
3080
3081 return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3082}
3083
3084static void
3085find_gtf2(const struct detailed_timing *descriptor, void *data)
3086{
3087 const struct detailed_timing **res = data;
3088
3089 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3090 return;
3091
3092 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3093
3094 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3095 *res = descriptor;
3096}
3097
3098/* Secondary GTF curve kicks in above some break frequency */
3099static int
3100drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3101{
3102 const struct detailed_timing *descriptor = NULL;
3103
3104 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3105
3106 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3107
3108 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3109}
3110
3111static int
3112drm_gtf2_2c(const struct drm_edid *drm_edid)
3113{
3114 const struct detailed_timing *descriptor = NULL;
3115
3116 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3117
3118 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3119
3120 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3121}
3122
3123static int
3124drm_gtf2_m(const struct drm_edid *drm_edid)
3125{
3126 const struct detailed_timing *descriptor = NULL;
3127
3128 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3129
3130 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3131
3132 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3133}
3134
3135static int
3136drm_gtf2_k(const struct drm_edid *drm_edid)
3137{
3138 const struct detailed_timing *descriptor = NULL;
3139
3140 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141
3142 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3143
3144 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3145}
3146
3147static int
3148drm_gtf2_2j(const struct drm_edid *drm_edid)
3149{
3150 const struct detailed_timing *descriptor = NULL;
3151
3152 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153
3154 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3155
3156 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3157}
3158
3159static void
3160get_timing_level(const struct detailed_timing *descriptor, void *data)
3161{
3162 int *res = data;
3163
3164 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3165 return;
3166
3167 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3168
3169 switch (descriptor->data.other_data.data.range.flags) {
3170 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3171 *res = LEVEL_GTF;
3172 break;
3173 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3174 *res = LEVEL_GTF2;
3175 break;
3176 case DRM_EDID_CVT_SUPPORT_FLAG:
3177 *res = LEVEL_CVT;
3178 break;
3179 default:
3180 break;
3181 }
3182}
3183
3184/* Get standard timing level (CVT/GTF/DMT). */
3185static int standard_timing_level(const struct drm_edid *drm_edid)
3186{
3187 const struct edid *edid = drm_edid->edid;
3188
3189 if (edid->revision >= 4) {
3190 /*
3191 * If the range descriptor doesn't
3192 * indicate otherwise default to CVT
3193 */
3194 int ret = LEVEL_CVT;
3195
3196 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3197
3198 return ret;
3199 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3200 return LEVEL_GTF2;
3201 } else if (edid->revision >= 2) {
3202 return LEVEL_GTF;
3203 } else {
3204 return LEVEL_DMT;
3205 }
3206}
3207
3208/*
3209 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3210 * monitors fill with ascii space (0x20) instead.
3211 */
3212static int
3213bad_std_timing(u8 a, u8 b)
3214{
3215 return (a == 0x00 && b == 0x00) ||
3216 (a == 0x01 && b == 0x01) ||
3217 (a == 0x20 && b == 0x20);
3218}
3219
3220static int drm_mode_hsync(const struct drm_display_mode *mode)
3221{
3222 if (mode->htotal <= 0)
3223 return 0;
3224
3225 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3226}
3227
3228static struct drm_display_mode *
3229drm_gtf2_mode(struct drm_device *dev,
3230 const struct drm_edid *drm_edid,
3231 int hsize, int vsize, int vrefresh_rate)
3232{
3233 struct drm_display_mode *mode;
3234
3235 /*
3236 * This is potentially wrong if there's ever a monitor with
3237 * more than one ranges section, each claiming a different
3238 * secondary GTF curve. Please don't do that.
3239 */
3240 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3241 if (!mode)
3242 return NULL;
3243
3244 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3245 drm_mode_destroy(dev, mode);
3246 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3247 vrefresh_rate, 0, 0,
3248 drm_gtf2_m(drm_edid),
3249 drm_gtf2_2c(drm_edid),
3250 drm_gtf2_k(drm_edid),
3251 drm_gtf2_2j(drm_edid));
3252 }
3253
3254 return mode;
3255}
3256
3257/*
3258 * Take the standard timing params (in this case width, aspect, and refresh)
3259 * and convert them into a real mode using CVT/GTF/DMT.
3260 */
3261static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3262 const struct drm_edid *drm_edid,
3263 const struct std_timing *t)
3264{
3265 struct drm_device *dev = connector->dev;
3266 struct drm_display_mode *m, *mode = NULL;
3267 int hsize, vsize;
3268 int vrefresh_rate;
3269 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3270 >> EDID_TIMING_ASPECT_SHIFT;
3271 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3272 >> EDID_TIMING_VFREQ_SHIFT;
3273 int timing_level = standard_timing_level(drm_edid);
3274
3275 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3276 return NULL;
3277
3278 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3279 hsize = t->hsize * 8 + 248;
3280 /* vrefresh_rate = vfreq + 60 */
3281 vrefresh_rate = vfreq + 60;
3282 /* the vdisplay is calculated based on the aspect ratio */
3283 if (aspect_ratio == 0) {
3284 if (drm_edid->edid->revision < 3)
3285 vsize = hsize;
3286 else
3287 vsize = (hsize * 10) / 16;
3288 } else if (aspect_ratio == 1)
3289 vsize = (hsize * 3) / 4;
3290 else if (aspect_ratio == 2)
3291 vsize = (hsize * 4) / 5;
3292 else
3293 vsize = (hsize * 9) / 16;
3294
3295 /* HDTV hack, part 1 */
3296 if (vrefresh_rate == 60 &&
3297 ((hsize == 1360 && vsize == 765) ||
3298 (hsize == 1368 && vsize == 769))) {
3299 hsize = 1366;
3300 vsize = 768;
3301 }
3302
3303 /*
3304 * If this connector already has a mode for this size and refresh
3305 * rate (because it came from detailed or CVT info), use that
3306 * instead. This way we don't have to guess at interlace or
3307 * reduced blanking.
3308 */
3309 list_for_each_entry(m, &connector->probed_modes, head)
3310 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3311 drm_mode_vrefresh(m) == vrefresh_rate)
3312 return NULL;
3313
3314 /* HDTV hack, part 2 */
3315 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3316 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3317 false);
3318 if (!mode)
3319 return NULL;
3320 mode->hdisplay = 1366;
3321 mode->hsync_start = mode->hsync_start - 1;
3322 mode->hsync_end = mode->hsync_end - 1;
3323 return mode;
3324 }
3325
3326 /* check whether it can be found in default mode table */
3327 if (drm_monitor_supports_rb(drm_edid)) {
3328 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3329 true);
3330 if (mode)
3331 return mode;
3332 }
3333 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3334 if (mode)
3335 return mode;
3336
3337 /* okay, generate it */
3338 switch (timing_level) {
3339 case LEVEL_DMT:
3340 break;
3341 case LEVEL_GTF:
3342 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3343 break;
3344 case LEVEL_GTF2:
3345 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3346 break;
3347 case LEVEL_CVT:
3348 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3349 false);
3350 break;
3351 }
3352 return mode;
3353}
3354
3355/*
3356 * EDID is delightfully ambiguous about how interlaced modes are to be
3357 * encoded. Our internal representation is of frame height, but some
3358 * HDTV detailed timings are encoded as field height.
3359 *
3360 * The format list here is from CEA, in frame size. Technically we
3361 * should be checking refresh rate too. Whatever.
3362 */
3363static void
3364drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3365 const struct detailed_pixel_timing *pt)
3366{
3367 int i;
3368 static const struct {
3369 int w, h;
3370 } cea_interlaced[] = {
3371 { 1920, 1080 },
3372 { 720, 480 },
3373 { 1440, 480 },
3374 { 2880, 480 },
3375 { 720, 576 },
3376 { 1440, 576 },
3377 { 2880, 576 },
3378 };
3379
3380 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3381 return;
3382
3383 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3384 if ((mode->hdisplay == cea_interlaced[i].w) &&
3385 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3386 mode->vdisplay *= 2;
3387 mode->vsync_start *= 2;
3388 mode->vsync_end *= 2;
3389 mode->vtotal *= 2;
3390 mode->vtotal |= 1;
3391 }
3392 }
3393
3394 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3395}
3396
3397/*
3398 * Create a new mode from an EDID detailed timing section. An EDID detailed
3399 * timing block contains enough info for us to create and return a new struct
3400 * drm_display_mode.
3401 */
3402static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3403 const struct drm_edid *drm_edid,
3404 const struct detailed_timing *timing,
3405 u32 quirks)
3406{
3407 struct drm_device *dev = connector->dev;
3408 struct drm_display_mode *mode;
3409 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3410 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3411 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3412 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3413 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3414 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3415 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3416 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3417 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3418
3419 /* ignore tiny modes */
3420 if (hactive < 64 || vactive < 64)
3421 return NULL;
3422
3423 if (pt->misc & DRM_EDID_PT_STEREO) {
3424 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3425 connector->base.id, connector->name);
3426 return NULL;
3427 }
3428 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3429 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3430 connector->base.id, connector->name);
3431 }
3432
3433 /* it is incorrect if hsync/vsync width is zero */
3434 if (!hsync_pulse_width || !vsync_pulse_width) {
3435 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3436 connector->base.id, connector->name);
3437 return NULL;
3438 }
3439
3440 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3441 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3442 if (!mode)
3443 return NULL;
3444
3445 goto set_size;
3446 }
3447
3448 mode = drm_mode_create(dev);
3449 if (!mode)
3450 return NULL;
3451
3452 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3453 mode->clock = 1088 * 10;
3454 else
3455 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3456
3457 mode->hdisplay = hactive;
3458 mode->hsync_start = mode->hdisplay + hsync_offset;
3459 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3460 mode->htotal = mode->hdisplay + hblank;
3461
3462 mode->vdisplay = vactive;
3463 mode->vsync_start = mode->vdisplay + vsync_offset;
3464 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3465 mode->vtotal = mode->vdisplay + vblank;
3466
3467 /* Some EDIDs have bogus h/vtotal values */
3468 if (mode->hsync_end > mode->htotal)
3469 mode->htotal = mode->hsync_end + 1;
3470 if (mode->vsync_end > mode->vtotal)
3471 mode->vtotal = mode->vsync_end + 1;
3472
3473 drm_mode_do_interlace_quirk(mode, pt);
3474
3475 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3476 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3477 } else {
3478 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3479 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3480 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3481 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3482 }
3483
3484set_size:
3485 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3486 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3487
3488 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3489 mode->width_mm *= 10;
3490 mode->height_mm *= 10;
3491 }
3492
3493 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3494 mode->width_mm = drm_edid->edid->width_cm * 10;
3495 mode->height_mm = drm_edid->edid->height_cm * 10;
3496 }
3497
3498 mode->type = DRM_MODE_TYPE_DRIVER;
3499 drm_mode_set_name(mode);
3500
3501 return mode;
3502}
3503
3504static bool
3505mode_in_hsync_range(const struct drm_display_mode *mode,
3506 const struct edid *edid, const u8 *t)
3507{
3508 int hsync, hmin, hmax;
3509
3510 hmin = t[7];
3511 if (edid->revision >= 4)
3512 hmin += ((t[4] & 0x04) ? 255 : 0);
3513 hmax = t[8];
3514 if (edid->revision >= 4)
3515 hmax += ((t[4] & 0x08) ? 255 : 0);
3516 hsync = drm_mode_hsync(mode);
3517
3518 return (hsync <= hmax && hsync >= hmin);
3519}
3520
3521static bool
3522mode_in_vsync_range(const struct drm_display_mode *mode,
3523 const struct edid *edid, const u8 *t)
3524{
3525 int vsync, vmin, vmax;
3526
3527 vmin = t[5];
3528 if (edid->revision >= 4)
3529 vmin += ((t[4] & 0x01) ? 255 : 0);
3530 vmax = t[6];
3531 if (edid->revision >= 4)
3532 vmax += ((t[4] & 0x02) ? 255 : 0);
3533 vsync = drm_mode_vrefresh(mode);
3534
3535 return (vsync <= vmax && vsync >= vmin);
3536}
3537
3538static u32
3539range_pixel_clock(const struct edid *edid, const u8 *t)
3540{
3541 /* unspecified */
3542 if (t[9] == 0 || t[9] == 255)
3543 return 0;
3544
3545 /* 1.4 with CVT support gives us real precision, yay */
3546 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3547 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3548
3549 /* 1.3 is pathetic, so fuzz up a bit */
3550 return t[9] * 10000 + 5001;
3551}
3552
3553static bool mode_in_range(const struct drm_display_mode *mode,
3554 const struct drm_edid *drm_edid,
3555 const struct detailed_timing *timing)
3556{
3557 const struct edid *edid = drm_edid->edid;
3558 u32 max_clock;
3559 const u8 *t = (const u8 *)timing;
3560
3561 if (!mode_in_hsync_range(mode, edid, t))
3562 return false;
3563
3564 if (!mode_in_vsync_range(mode, edid, t))
3565 return false;
3566
3567 if ((max_clock = range_pixel_clock(edid, t)))
3568 if (mode->clock > max_clock)
3569 return false;
3570
3571 /* 1.4 max horizontal check */
3572 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3573 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3574 return false;
3575
3576 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3577 return false;
3578
3579 return true;
3580}
3581
3582static bool valid_inferred_mode(const struct drm_connector *connector,
3583 const struct drm_display_mode *mode)
3584{
3585 const struct drm_display_mode *m;
3586 bool ok = false;
3587
3588 list_for_each_entry(m, &connector->probed_modes, head) {
3589 if (mode->hdisplay == m->hdisplay &&
3590 mode->vdisplay == m->vdisplay &&
3591 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3592 return false; /* duplicated */
3593 if (mode->hdisplay <= m->hdisplay &&
3594 mode->vdisplay <= m->vdisplay)
3595 ok = true;
3596 }
3597 return ok;
3598}
3599
3600static int drm_dmt_modes_for_range(struct drm_connector *connector,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3603{
3604 int i, modes = 0;
3605 struct drm_display_mode *newmode;
3606 struct drm_device *dev = connector->dev;
3607
3608 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3609 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3610 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3611 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3612 if (newmode) {
3613 drm_mode_probed_add(connector, newmode);
3614 modes++;
3615 }
3616 }
3617 }
3618
3619 return modes;
3620}
3621
3622/* fix up 1366x768 mode from 1368x768;
3623 * GFT/CVT can't express 1366 width which isn't dividable by 8
3624 */
3625void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3626{
3627 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3628 mode->hdisplay = 1366;
3629 mode->hsync_start--;
3630 mode->hsync_end--;
3631 drm_mode_set_name(mode);
3632 }
3633}
3634
3635static int drm_gtf_modes_for_range(struct drm_connector *connector,
3636 const struct drm_edid *drm_edid,
3637 const struct detailed_timing *timing)
3638{
3639 int i, modes = 0;
3640 struct drm_display_mode *newmode;
3641 struct drm_device *dev = connector->dev;
3642
3643 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3644 const struct minimode *m = &extra_modes[i];
3645
3646 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3647 if (!newmode)
3648 return modes;
3649
3650 drm_mode_fixup_1366x768(newmode);
3651 if (!mode_in_range(newmode, drm_edid, timing) ||
3652 !valid_inferred_mode(connector, newmode)) {
3653 drm_mode_destroy(dev, newmode);
3654 continue;
3655 }
3656
3657 drm_mode_probed_add(connector, newmode);
3658 modes++;
3659 }
3660
3661 return modes;
3662}
3663
3664static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3665 const struct drm_edid *drm_edid,
3666 const struct detailed_timing *timing)
3667{
3668 int i, modes = 0;
3669 struct drm_display_mode *newmode;
3670 struct drm_device *dev = connector->dev;
3671
3672 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3673 const struct minimode *m = &extra_modes[i];
3674
3675 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3676 if (!newmode)
3677 return modes;
3678
3679 drm_mode_fixup_1366x768(newmode);
3680 if (!mode_in_range(newmode, drm_edid, timing) ||
3681 !valid_inferred_mode(connector, newmode)) {
3682 drm_mode_destroy(dev, newmode);
3683 continue;
3684 }
3685
3686 drm_mode_probed_add(connector, newmode);
3687 modes++;
3688 }
3689
3690 return modes;
3691}
3692
3693static int drm_cvt_modes_for_range(struct drm_connector *connector,
3694 const struct drm_edid *drm_edid,
3695 const struct detailed_timing *timing)
3696{
3697 int i, modes = 0;
3698 struct drm_display_mode *newmode;
3699 struct drm_device *dev = connector->dev;
3700 bool rb = drm_monitor_supports_rb(drm_edid);
3701
3702 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3703 const struct minimode *m = &extra_modes[i];
3704
3705 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3706 if (!newmode)
3707 return modes;
3708
3709 drm_mode_fixup_1366x768(newmode);
3710 if (!mode_in_range(newmode, drm_edid, timing) ||
3711 !valid_inferred_mode(connector, newmode)) {
3712 drm_mode_destroy(dev, newmode);
3713 continue;
3714 }
3715
3716 drm_mode_probed_add(connector, newmode);
3717 modes++;
3718 }
3719
3720 return modes;
3721}
3722
3723static void
3724do_inferred_modes(const struct detailed_timing *timing, void *c)
3725{
3726 struct detailed_mode_closure *closure = c;
3727 const struct detailed_non_pixel *data = &timing->data.other_data;
3728 const struct detailed_data_monitor_range *range = &data->data.range;
3729
3730 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3731 return;
3732
3733 closure->modes += drm_dmt_modes_for_range(closure->connector,
3734 closure->drm_edid,
3735 timing);
3736
3737 if (closure->drm_edid->edid->revision < 2)
3738 return; /* GTF not defined yet */
3739
3740 switch (range->flags) {
3741 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3742 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3743 closure->drm_edid,
3744 timing);
3745 break;
3746 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3747 closure->modes += drm_gtf_modes_for_range(closure->connector,
3748 closure->drm_edid,
3749 timing);
3750 break;
3751 case DRM_EDID_CVT_SUPPORT_FLAG:
3752 if (closure->drm_edid->edid->revision < 4)
3753 break;
3754
3755 closure->modes += drm_cvt_modes_for_range(closure->connector,
3756 closure->drm_edid,
3757 timing);
3758 break;
3759 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3760 default:
3761 break;
3762 }
3763}
3764
3765static int add_inferred_modes(struct drm_connector *connector,
3766 const struct drm_edid *drm_edid)
3767{
3768 struct detailed_mode_closure closure = {
3769 .connector = connector,
3770 .drm_edid = drm_edid,
3771 };
3772
3773 if (drm_edid->edid->revision >= 1)
3774 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3775
3776 return closure.modes;
3777}
3778
3779static int
3780drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3781{
3782 int i, j, m, modes = 0;
3783 struct drm_display_mode *mode;
3784 const u8 *est = ((const u8 *)timing) + 6;
3785
3786 for (i = 0; i < 6; i++) {
3787 for (j = 7; j >= 0; j--) {
3788 m = (i * 8) + (7 - j);
3789 if (m >= ARRAY_SIZE(est3_modes))
3790 break;
3791 if (est[i] & (1 << j)) {
3792 mode = drm_mode_find_dmt(connector->dev,
3793 est3_modes[m].w,
3794 est3_modes[m].h,
3795 est3_modes[m].r,
3796 est3_modes[m].rb);
3797 if (mode) {
3798 drm_mode_probed_add(connector, mode);
3799 modes++;
3800 }
3801 }
3802 }
3803 }
3804
3805 return modes;
3806}
3807
3808static void
3809do_established_modes(const struct detailed_timing *timing, void *c)
3810{
3811 struct detailed_mode_closure *closure = c;
3812
3813 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3814 return;
3815
3816 closure->modes += drm_est3_modes(closure->connector, timing);
3817}
3818
3819/*
3820 * Get established modes from EDID and add them. Each EDID block contains a
3821 * bitmap of the supported "established modes" list (defined above). Tease them
3822 * out and add them to the global modes list.
3823 */
3824static int add_established_modes(struct drm_connector *connector,
3825 const struct drm_edid *drm_edid)
3826{
3827 struct drm_device *dev = connector->dev;
3828 const struct edid *edid = drm_edid->edid;
3829 unsigned long est_bits = edid->established_timings.t1 |
3830 (edid->established_timings.t2 << 8) |
3831 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3832 int i, modes = 0;
3833 struct detailed_mode_closure closure = {
3834 .connector = connector,
3835 .drm_edid = drm_edid,
3836 };
3837
3838 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3839 if (est_bits & (1<<i)) {
3840 struct drm_display_mode *newmode;
3841
3842 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3843 if (newmode) {
3844 drm_mode_probed_add(connector, newmode);
3845 modes++;
3846 }
3847 }
3848 }
3849
3850 if (edid->revision >= 1)
3851 drm_for_each_detailed_block(drm_edid, do_established_modes,
3852 &closure);
3853
3854 return modes + closure.modes;
3855}
3856
3857static void
3858do_standard_modes(const struct detailed_timing *timing, void *c)
3859{
3860 struct detailed_mode_closure *closure = c;
3861 const struct detailed_non_pixel *data = &timing->data.other_data;
3862 struct drm_connector *connector = closure->connector;
3863 int i;
3864
3865 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3866 return;
3867
3868 for (i = 0; i < 6; i++) {
3869 const struct std_timing *std = &data->data.timings[i];
3870 struct drm_display_mode *newmode;
3871
3872 newmode = drm_mode_std(connector, closure->drm_edid, std);
3873 if (newmode) {
3874 drm_mode_probed_add(connector, newmode);
3875 closure->modes++;
3876 }
3877 }
3878}
3879
3880/*
3881 * Get standard modes from EDID and add them. Standard modes can be calculated
3882 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3883 * add them to the list.
3884 */
3885static int add_standard_modes(struct drm_connector *connector,
3886 const struct drm_edid *drm_edid)
3887{
3888 int i, modes = 0;
3889 struct detailed_mode_closure closure = {
3890 .connector = connector,
3891 .drm_edid = drm_edid,
3892 };
3893
3894 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3895 struct drm_display_mode *newmode;
3896
3897 newmode = drm_mode_std(connector, drm_edid,
3898 &drm_edid->edid->standard_timings[i]);
3899 if (newmode) {
3900 drm_mode_probed_add(connector, newmode);
3901 modes++;
3902 }
3903 }
3904
3905 if (drm_edid->edid->revision >= 1)
3906 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3907 &closure);
3908
3909 /* XXX should also look for standard codes in VTB blocks */
3910
3911 return modes + closure.modes;
3912}
3913
3914static int drm_cvt_modes(struct drm_connector *connector,
3915 const struct detailed_timing *timing)
3916{
3917 int i, j, modes = 0;
3918 struct drm_display_mode *newmode;
3919 struct drm_device *dev = connector->dev;
3920 const struct cvt_timing *cvt;
3921 const int rates[] = { 60, 85, 75, 60, 50 };
3922 const u8 empty[3] = { 0, 0, 0 };
3923
3924 for (i = 0; i < 4; i++) {
3925 int width, height;
3926
3927 cvt = &(timing->data.other_data.data.cvt[i]);
3928
3929 if (!memcmp(cvt->code, empty, 3))
3930 continue;
3931
3932 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3933 switch (cvt->code[1] & 0x0c) {
3934 /* default - because compiler doesn't see that we've enumerated all cases */
3935 default:
3936 case 0x00:
3937 width = height * 4 / 3;
3938 break;
3939 case 0x04:
3940 width = height * 16 / 9;
3941 break;
3942 case 0x08:
3943 width = height * 16 / 10;
3944 break;
3945 case 0x0c:
3946 width = height * 15 / 9;
3947 break;
3948 }
3949
3950 for (j = 1; j < 5; j++) {
3951 if (cvt->code[2] & (1 << j)) {
3952 newmode = drm_cvt_mode(dev, width, height,
3953 rates[j], j == 0,
3954 false, false);
3955 if (newmode) {
3956 drm_mode_probed_add(connector, newmode);
3957 modes++;
3958 }
3959 }
3960 }
3961 }
3962
3963 return modes;
3964}
3965
3966static void
3967do_cvt_mode(const struct detailed_timing *timing, void *c)
3968{
3969 struct detailed_mode_closure *closure = c;
3970
3971 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3972 return;
3973
3974 closure->modes += drm_cvt_modes(closure->connector, timing);
3975}
3976
3977static int
3978add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3979{
3980 struct detailed_mode_closure closure = {
3981 .connector = connector,
3982 .drm_edid = drm_edid,
3983 };
3984
3985 if (drm_edid->edid->revision >= 3)
3986 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3987
3988 /* XXX should also look for CVT codes in VTB blocks */
3989
3990 return closure.modes;
3991}
3992
3993static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
3994 struct drm_display_mode *mode);
3995
3996static void
3997do_detailed_mode(const struct detailed_timing *timing, void *c)
3998{
3999 struct detailed_mode_closure *closure = c;
4000 struct drm_display_mode *newmode;
4001
4002 if (!is_detailed_timing_descriptor(timing))
4003 return;
4004
4005 newmode = drm_mode_detailed(closure->connector,
4006 closure->drm_edid, timing,
4007 closure->quirks);
4008 if (!newmode)
4009 return;
4010
4011 if (closure->preferred)
4012 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4013
4014 /*
4015 * Detailed modes are limited to 10kHz pixel clock resolution,
4016 * so fix up anything that looks like CEA/HDMI mode, but the clock
4017 * is just slightly off.
4018 */
4019 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4020
4021 drm_mode_probed_add(closure->connector, newmode);
4022 closure->modes++;
4023 closure->preferred = false;
4024}
4025
4026/*
4027 * add_detailed_modes - Add modes from detailed timings
4028 * @connector: attached connector
4029 * @drm_edid: EDID block to scan
4030 * @quirks: quirks to apply
4031 */
4032static int add_detailed_modes(struct drm_connector *connector,
4033 const struct drm_edid *drm_edid, u32 quirks)
4034{
4035 struct detailed_mode_closure closure = {
4036 .connector = connector,
4037 .drm_edid = drm_edid,
4038 .quirks = quirks,
4039 };
4040
4041 if (drm_edid->edid->revision >= 4)
4042 closure.preferred = true; /* first detailed timing is always preferred */
4043 else
4044 closure.preferred =
4045 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4046
4047 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4048
4049 return closure.modes;
4050}
4051
4052/* CTA-861-H Table 60 - CTA Tag Codes */
4053#define CTA_DB_AUDIO 1
4054#define CTA_DB_VIDEO 2
4055#define CTA_DB_VENDOR 3
4056#define CTA_DB_SPEAKER 4
4057#define CTA_DB_EXTENDED_TAG 7
4058
4059/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4060#define CTA_EXT_DB_VIDEO_CAP 0
4061#define CTA_EXT_DB_VENDOR 1
4062#define CTA_EXT_DB_HDR_STATIC_METADATA 6
4063#define CTA_EXT_DB_420_VIDEO_DATA 14
4064#define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4065#define CTA_EXT_DB_HF_EEODB 0x78
4066#define CTA_EXT_DB_HF_SCDB 0x79
4067
4068#define EDID_BASIC_AUDIO (1 << 6)
4069#define EDID_CEA_YCRCB444 (1 << 5)
4070#define EDID_CEA_YCRCB422 (1 << 4)
4071#define EDID_CEA_VCDB_QS (1 << 6)
4072
4073/*
4074 * Search EDID for CEA extension block.
4075 *
4076 * FIXME: Prefer not returning pointers to raw EDID data.
4077 */
4078const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4079 int ext_id, int *ext_index)
4080{
4081 const u8 *edid_ext = NULL;
4082 int i;
4083
4084 /* No EDID or EDID extensions */
4085 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4086 return NULL;
4087
4088 /* Find CEA extension */
4089 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4090 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4091 if (edid_block_tag(edid_ext) == ext_id)
4092 break;
4093 }
4094
4095 if (i >= drm_edid_extension_block_count(drm_edid))
4096 return NULL;
4097
4098 *ext_index = i + 1;
4099
4100 return edid_ext;
4101}
4102
4103/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4104static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4105{
4106 const struct displayid_block *block;
4107 struct displayid_iter iter;
4108 int ext_index = 0;
4109 bool found = false;
4110
4111 /* Look for a top level CEA extension block */
4112 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4113 return true;
4114
4115 /* CEA blocks can also be found embedded in a DisplayID block */
4116 displayid_iter_edid_begin(drm_edid, &iter);
4117 displayid_iter_for_each(block, &iter) {
4118 if (block->tag == DATA_BLOCK_CTA) {
4119 found = true;
4120 break;
4121 }
4122 }
4123 displayid_iter_end(&iter);
4124
4125 return found;
4126}
4127
4128static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4129{
4130 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4131 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4132
4133 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4134 return &edid_cea_modes_1[vic - 1];
4135 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4136 return &edid_cea_modes_193[vic - 193];
4137 return NULL;
4138}
4139
4140static u8 cea_num_vics(void)
4141{
4142 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4143}
4144
4145static u8 cea_next_vic(u8 vic)
4146{
4147 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4148 vic = 193;
4149 return vic;
4150}
4151
4152/*
4153 * Calculate the alternate clock for the CEA mode
4154 * (60Hz vs. 59.94Hz etc.)
4155 */
4156static unsigned int
4157cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4158{
4159 unsigned int clock = cea_mode->clock;
4160
4161 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4162 return clock;
4163
4164 /*
4165 * edid_cea_modes contains the 59.94Hz
4166 * variant for 240 and 480 line modes,
4167 * and the 60Hz variant otherwise.
4168 */
4169 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4170 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4171 else
4172 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4173
4174 return clock;
4175}
4176
4177static bool
4178cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4179{
4180 /*
4181 * For certain VICs the spec allows the vertical
4182 * front porch to vary by one or two lines.
4183 *
4184 * cea_modes[] stores the variant with the shortest
4185 * vertical front porch. We can adjust the mode to
4186 * get the other variants by simply increasing the
4187 * vertical front porch length.
4188 */
4189 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4190 cea_mode_for_vic(9)->vtotal != 262 ||
4191 cea_mode_for_vic(12)->vtotal != 262 ||
4192 cea_mode_for_vic(13)->vtotal != 262 ||
4193 cea_mode_for_vic(23)->vtotal != 312 ||
4194 cea_mode_for_vic(24)->vtotal != 312 ||
4195 cea_mode_for_vic(27)->vtotal != 312 ||
4196 cea_mode_for_vic(28)->vtotal != 312);
4197
4198 if (((vic == 8 || vic == 9 ||
4199 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4200 ((vic == 23 || vic == 24 ||
4201 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4202 mode->vsync_start++;
4203 mode->vsync_end++;
4204 mode->vtotal++;
4205
4206 return true;
4207 }
4208
4209 return false;
4210}
4211
4212static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4213 unsigned int clock_tolerance)
4214{
4215 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4216 u8 vic;
4217
4218 if (!to_match->clock)
4219 return 0;
4220
4221 if (to_match->picture_aspect_ratio)
4222 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4223
4224 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4225 struct drm_display_mode cea_mode;
4226 unsigned int clock1, clock2;
4227
4228 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4229
4230 /* Check both 60Hz and 59.94Hz */
4231 clock1 = cea_mode.clock;
4232 clock2 = cea_mode_alternate_clock(&cea_mode);
4233
4234 if (abs(to_match->clock - clock1) > clock_tolerance &&
4235 abs(to_match->clock - clock2) > clock_tolerance)
4236 continue;
4237
4238 do {
4239 if (drm_mode_match(to_match, &cea_mode, match_flags))
4240 return vic;
4241 } while (cea_mode_alternate_timings(vic, &cea_mode));
4242 }
4243
4244 return 0;
4245}
4246
4247/**
4248 * drm_match_cea_mode - look for a CEA mode matching given mode
4249 * @to_match: display mode
4250 *
4251 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4252 * mode.
4253 */
4254u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4255{
4256 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257 u8 vic;
4258
4259 if (!to_match->clock)
4260 return 0;
4261
4262 if (to_match->picture_aspect_ratio)
4263 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264
4265 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 struct drm_display_mode cea_mode;
4267 unsigned int clock1, clock2;
4268
4269 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270
4271 /* Check both 60Hz and 59.94Hz */
4272 clock1 = cea_mode.clock;
4273 clock2 = cea_mode_alternate_clock(&cea_mode);
4274
4275 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4276 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4277 continue;
4278
4279 do {
4280 if (drm_mode_match(to_match, &cea_mode, match_flags))
4281 return vic;
4282 } while (cea_mode_alternate_timings(vic, &cea_mode));
4283 }
4284
4285 return 0;
4286}
4287EXPORT_SYMBOL(drm_match_cea_mode);
4288
4289static bool drm_valid_cea_vic(u8 vic)
4290{
4291 return cea_mode_for_vic(vic) != NULL;
4292}
4293
4294static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4295{
4296 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4297
4298 if (mode)
4299 return mode->picture_aspect_ratio;
4300
4301 return HDMI_PICTURE_ASPECT_NONE;
4302}
4303
4304static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4305{
4306 return edid_4k_modes[video_code].picture_aspect_ratio;
4307}
4308
4309/*
4310 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4311 * specific block).
4312 */
4313static unsigned int
4314hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4315{
4316 return cea_mode_alternate_clock(hdmi_mode);
4317}
4318
4319static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4320 unsigned int clock_tolerance)
4321{
4322 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4323 u8 vic;
4324
4325 if (!to_match->clock)
4326 return 0;
4327
4328 if (to_match->picture_aspect_ratio)
4329 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4330
4331 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4332 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4333 unsigned int clock1, clock2;
4334
4335 /* Make sure to also match alternate clocks */
4336 clock1 = hdmi_mode->clock;
4337 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4338
4339 if (abs(to_match->clock - clock1) > clock_tolerance &&
4340 abs(to_match->clock - clock2) > clock_tolerance)
4341 continue;
4342
4343 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4344 return vic;
4345 }
4346
4347 return 0;
4348}
4349
4350/*
4351 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4352 * @to_match: display mode
4353 *
4354 * An HDMI mode is one defined in the HDMI vendor specific block.
4355 *
4356 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4357 */
4358static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4359{
4360 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4361 u8 vic;
4362
4363 if (!to_match->clock)
4364 return 0;
4365
4366 if (to_match->picture_aspect_ratio)
4367 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4368
4369 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371 unsigned int clock1, clock2;
4372
4373 /* Make sure to also match alternate clocks */
4374 clock1 = hdmi_mode->clock;
4375 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4376
4377 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4378 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4379 drm_mode_match(to_match, hdmi_mode, match_flags))
4380 return vic;
4381 }
4382 return 0;
4383}
4384
4385static bool drm_valid_hdmi_vic(u8 vic)
4386{
4387 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4388}
4389
4390static int add_alternate_cea_modes(struct drm_connector *connector,
4391 const struct drm_edid *drm_edid)
4392{
4393 struct drm_device *dev = connector->dev;
4394 struct drm_display_mode *mode, *tmp;
4395 LIST_HEAD(list);
4396 int modes = 0;
4397
4398 /* Don't add CTA modes if the CTA extension block is missing */
4399 if (!drm_edid_has_cta_extension(drm_edid))
4400 return 0;
4401
4402 /*
4403 * Go through all probed modes and create a new mode
4404 * with the alternate clock for certain CEA modes.
4405 */
4406 list_for_each_entry(mode, &connector->probed_modes, head) {
4407 const struct drm_display_mode *cea_mode = NULL;
4408 struct drm_display_mode *newmode;
4409 u8 vic = drm_match_cea_mode(mode);
4410 unsigned int clock1, clock2;
4411
4412 if (drm_valid_cea_vic(vic)) {
4413 cea_mode = cea_mode_for_vic(vic);
4414 clock2 = cea_mode_alternate_clock(cea_mode);
4415 } else {
4416 vic = drm_match_hdmi_mode(mode);
4417 if (drm_valid_hdmi_vic(vic)) {
4418 cea_mode = &edid_4k_modes[vic];
4419 clock2 = hdmi_mode_alternate_clock(cea_mode);
4420 }
4421 }
4422
4423 if (!cea_mode)
4424 continue;
4425
4426 clock1 = cea_mode->clock;
4427
4428 if (clock1 == clock2)
4429 continue;
4430
4431 if (mode->clock != clock1 && mode->clock != clock2)
4432 continue;
4433
4434 newmode = drm_mode_duplicate(dev, cea_mode);
4435 if (!newmode)
4436 continue;
4437
4438 /* Carry over the stereo flags */
4439 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4440
4441 /*
4442 * The current mode could be either variant. Make
4443 * sure to pick the "other" clock for the new mode.
4444 */
4445 if (mode->clock != clock1)
4446 newmode->clock = clock1;
4447 else
4448 newmode->clock = clock2;
4449
4450 list_add_tail(&newmode->head, &list);
4451 }
4452
4453 list_for_each_entry_safe(mode, tmp, &list, head) {
4454 list_del(&mode->head);
4455 drm_mode_probed_add(connector, mode);
4456 modes++;
4457 }
4458
4459 return modes;
4460}
4461
4462static u8 svd_to_vic(u8 svd)
4463{
4464 /* 0-6 bit vic, 7th bit native mode indicator */
4465 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4466 return svd & 127;
4467
4468 return svd;
4469}
4470
4471static struct drm_display_mode *
4472drm_display_mode_from_vic_index(struct drm_connector *connector,
4473 const u8 *video_db, u8 video_len,
4474 u8 video_index)
4475{
4476 struct drm_device *dev = connector->dev;
4477 struct drm_display_mode *newmode;
4478 u8 vic;
4479
4480 if (video_db == NULL || video_index >= video_len)
4481 return NULL;
4482
4483 /* CEA modes are numbered 1..127 */
4484 vic = svd_to_vic(video_db[video_index]);
4485 if (!drm_valid_cea_vic(vic))
4486 return NULL;
4487
4488 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4489 if (!newmode)
4490 return NULL;
4491
4492 return newmode;
4493}
4494
4495/*
4496 * do_y420vdb_modes - Parse YCBCR 420 only modes
4497 * @connector: connector corresponding to the HDMI sink
4498 * @svds: start of the data block of CEA YCBCR 420 VDB
4499 * @len: length of the CEA YCBCR 420 VDB
4500 *
4501 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4502 * which contains modes which can be supported in YCBCR 420
4503 * output format only.
4504 */
4505static int do_y420vdb_modes(struct drm_connector *connector,
4506 const u8 *svds, u8 svds_len)
4507{
4508 int modes = 0, i;
4509 struct drm_device *dev = connector->dev;
4510 struct drm_display_info *info = &connector->display_info;
4511 struct drm_hdmi_info *hdmi = &info->hdmi;
4512
4513 for (i = 0; i < svds_len; i++) {
4514 u8 vic = svd_to_vic(svds[i]);
4515 struct drm_display_mode *newmode;
4516
4517 if (!drm_valid_cea_vic(vic))
4518 continue;
4519
4520 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4521 if (!newmode)
4522 break;
4523 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4524 drm_mode_probed_add(connector, newmode);
4525 modes++;
4526 }
4527
4528 if (modes > 0)
4529 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4530 return modes;
4531}
4532
4533/*
4534 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4535 * @connector: connector corresponding to the HDMI sink
4536 * @vic: CEA vic for the video mode to be added in the map
4537 *
4538 * Makes an entry for a videomode in the YCBCR 420 bitmap
4539 */
4540static void
4541drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4542{
4543 u8 vic = svd_to_vic(svd);
4544 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4545
4546 if (!drm_valid_cea_vic(vic))
4547 return;
4548
4549 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4550}
4551
4552/**
4553 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4554 * @dev: DRM device
4555 * @video_code: CEA VIC of the mode
4556 *
4557 * Creates a new mode matching the specified CEA VIC.
4558 *
4559 * Returns: A new drm_display_mode on success or NULL on failure
4560 */
4561struct drm_display_mode *
4562drm_display_mode_from_cea_vic(struct drm_device *dev,
4563 u8 video_code)
4564{
4565 const struct drm_display_mode *cea_mode;
4566 struct drm_display_mode *newmode;
4567
4568 cea_mode = cea_mode_for_vic(video_code);
4569 if (!cea_mode)
4570 return NULL;
4571
4572 newmode = drm_mode_duplicate(dev, cea_mode);
4573 if (!newmode)
4574 return NULL;
4575
4576 return newmode;
4577}
4578EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4579
4580static int
4581do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4582{
4583 int i, modes = 0;
4584 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4585
4586 for (i = 0; i < len; i++) {
4587 struct drm_display_mode *mode;
4588
4589 mode = drm_display_mode_from_vic_index(connector, db, len, i);
4590 if (mode) {
4591 /*
4592 * YCBCR420 capability block contains a bitmap which
4593 * gives the index of CEA modes from CEA VDB, which
4594 * can support YCBCR 420 sampling output also (apart
4595 * from RGB/YCBCR444 etc).
4596 * For example, if the bit 0 in bitmap is set,
4597 * first mode in VDB can support YCBCR420 output too.
4598 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4599 */
4600 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4601 drm_add_cmdb_modes(connector, db[i]);
4602
4603 drm_mode_probed_add(connector, mode);
4604 modes++;
4605 }
4606 }
4607
4608 return modes;
4609}
4610
4611struct stereo_mandatory_mode {
4612 int width, height, vrefresh;
4613 unsigned int flags;
4614};
4615
4616static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619 { 1920, 1080, 50,
4620 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621 { 1920, 1080, 60,
4622 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627};
4628
4629static bool
4630stereo_match_mandatory(const struct drm_display_mode *mode,
4631 const struct stereo_mandatory_mode *stereo_mode)
4632{
4633 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634
4635 return mode->hdisplay == stereo_mode->width &&
4636 mode->vdisplay == stereo_mode->height &&
4637 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639}
4640
4641static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642{
4643 struct drm_device *dev = connector->dev;
4644 const struct drm_display_mode *mode;
4645 struct list_head stereo_modes;
4646 int modes = 0, i;
4647
4648 INIT_LIST_HEAD(&stereo_modes);
4649
4650 list_for_each_entry(mode, &connector->probed_modes, head) {
4651 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 const struct stereo_mandatory_mode *mandatory;
4653 struct drm_display_mode *new_mode;
4654
4655 if (!stereo_match_mandatory(mode,
4656 &stereo_mandatory_modes[i]))
4657 continue;
4658
4659 mandatory = &stereo_mandatory_modes[i];
4660 new_mode = drm_mode_duplicate(dev, mode);
4661 if (!new_mode)
4662 continue;
4663
4664 new_mode->flags |= mandatory->flags;
4665 list_add_tail(&new_mode->head, &stereo_modes);
4666 modes++;
4667 }
4668 }
4669
4670 list_splice_tail(&stereo_modes, &connector->probed_modes);
4671
4672 return modes;
4673}
4674
4675static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676{
4677 struct drm_device *dev = connector->dev;
4678 struct drm_display_mode *newmode;
4679
4680 if (!drm_valid_hdmi_vic(vic)) {
4681 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 connector->base.id, connector->name, vic);
4683 return 0;
4684 }
4685
4686 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 if (!newmode)
4688 return 0;
4689
4690 drm_mode_probed_add(connector, newmode);
4691
4692 return 1;
4693}
4694
4695static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 const u8 *video_db, u8 video_len, u8 video_index)
4697{
4698 struct drm_display_mode *newmode;
4699 int modes = 0;
4700
4701 if (structure & (1 << 0)) {
4702 newmode = drm_display_mode_from_vic_index(connector, video_db,
4703 video_len,
4704 video_index);
4705 if (newmode) {
4706 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707 drm_mode_probed_add(connector, newmode);
4708 modes++;
4709 }
4710 }
4711 if (structure & (1 << 6)) {
4712 newmode = drm_display_mode_from_vic_index(connector, video_db,
4713 video_len,
4714 video_index);
4715 if (newmode) {
4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 drm_mode_probed_add(connector, newmode);
4718 modes++;
4719 }
4720 }
4721 if (structure & (1 << 8)) {
4722 newmode = drm_display_mode_from_vic_index(connector, video_db,
4723 video_len,
4724 video_index);
4725 if (newmode) {
4726 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4727 drm_mode_probed_add(connector, newmode);
4728 modes++;
4729 }
4730 }
4731
4732 return modes;
4733}
4734
4735/*
4736 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4737 * @connector: connector corresponding to the HDMI sink
4738 * @db: start of the CEA vendor specific block
4739 * @len: length of the CEA block payload, ie. one can access up to db[len]
4740 *
4741 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4742 * also adds the stereo 3d modes when applicable.
4743 */
4744static int
4745do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4746 const u8 *video_db, u8 video_len)
4747{
4748 struct drm_display_info *info = &connector->display_info;
4749 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750 u8 vic_len, hdmi_3d_len = 0;
4751 u16 mask;
4752 u16 structure_all;
4753
4754 if (len < 8)
4755 goto out;
4756
4757 /* no HDMI_Video_Present */
4758 if (!(db[8] & (1 << 5)))
4759 goto out;
4760
4761 /* Latency_Fields_Present */
4762 if (db[8] & (1 << 7))
4763 offset += 2;
4764
4765 /* I_Latency_Fields_Present */
4766 if (db[8] & (1 << 6))
4767 offset += 2;
4768
4769 /* the declared length is not long enough for the 2 first bytes
4770 * of additional video format capabilities */
4771 if (len < (8 + offset + 2))
4772 goto out;
4773
4774 /* 3D_Present */
4775 offset++;
4776 if (db[8 + offset] & (1 << 7)) {
4777 modes += add_hdmi_mandatory_stereo_modes(connector);
4778
4779 /* 3D_Multi_present */
4780 multi_present = (db[8 + offset] & 0x60) >> 5;
4781 }
4782
4783 offset++;
4784 vic_len = db[8 + offset] >> 5;
4785 hdmi_3d_len = db[8 + offset] & 0x1f;
4786
4787 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4788 u8 vic;
4789
4790 vic = db[9 + offset + i];
4791 modes += add_hdmi_mode(connector, vic);
4792 }
4793 offset += 1 + vic_len;
4794
4795 if (multi_present == 1)
4796 multi_len = 2;
4797 else if (multi_present == 2)
4798 multi_len = 4;
4799 else
4800 multi_len = 0;
4801
4802 if (len < (8 + offset + hdmi_3d_len - 1))
4803 goto out;
4804
4805 if (hdmi_3d_len < multi_len)
4806 goto out;
4807
4808 if (multi_present == 1 || multi_present == 2) {
4809 /* 3D_Structure_ALL */
4810 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4811
4812 /* check if 3D_MASK is present */
4813 if (multi_present == 2)
4814 mask = (db[10 + offset] << 8) | db[11 + offset];
4815 else
4816 mask = 0xffff;
4817
4818 for (i = 0; i < 16; i++) {
4819 if (mask & (1 << i))
4820 modes += add_3d_struct_modes(connector,
4821 structure_all,
4822 video_db,
4823 video_len, i);
4824 }
4825 }
4826
4827 offset += multi_len;
4828
4829 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4830 int vic_index;
4831 struct drm_display_mode *newmode = NULL;
4832 unsigned int newflag = 0;
4833 bool detail_present;
4834
4835 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4836
4837 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4838 break;
4839
4840 /* 2D_VIC_order_X */
4841 vic_index = db[8 + offset + i] >> 4;
4842
4843 /* 3D_Structure_X */
4844 switch (db[8 + offset + i] & 0x0f) {
4845 case 0:
4846 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4847 break;
4848 case 6:
4849 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4850 break;
4851 case 8:
4852 /* 3D_Detail_X */
4853 if ((db[9 + offset + i] >> 4) == 1)
4854 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4855 break;
4856 }
4857
4858 if (newflag != 0) {
4859 newmode = drm_display_mode_from_vic_index(connector,
4860 video_db,
4861 video_len,
4862 vic_index);
4863
4864 if (newmode) {
4865 newmode->flags |= newflag;
4866 drm_mode_probed_add(connector, newmode);
4867 modes++;
4868 }
4869 }
4870
4871 if (detail_present)
4872 i++;
4873 }
4874
4875out:
4876 if (modes > 0)
4877 info->has_hdmi_infoframe = true;
4878 return modes;
4879}
4880
4881static int
4882cea_revision(const u8 *cea)
4883{
4884 /*
4885 * FIXME is this correct for the DispID variant?
4886 * The DispID spec doesn't really specify whether
4887 * this is the revision of the CEA extension or
4888 * the DispID CEA data block. And the only value
4889 * given as an example is 0.
4890 */
4891 return cea[1];
4892}
4893
4894/*
4895 * CTA Data Block iterator.
4896 *
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898 * CTA Data Blocks.
4899 *
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4902 *
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 * // do stuff with db
4906 * }
4907 * cea_db_iter_end(&iter);
4908 */
4909struct cea_db_iter {
4910 struct drm_edid_iter edid_iter;
4911 struct displayid_iter displayid_iter;
4912
4913 /* Current Data Block Collection. */
4914 const u8 *collection;
4915
4916 /* Current Data Block index in current collection. */
4917 int index;
4918
4919 /* End index in current collection. */
4920 int end;
4921};
4922
4923/* CTA-861-H section 7.4 CTA Data BLock Collection */
4924struct cea_db {
4925 u8 tag_length;
4926 u8 data[];
4927} __packed;
4928
4929static int cea_db_tag(const struct cea_db *db)
4930{
4931 return db->tag_length >> 5;
4932}
4933
4934static int cea_db_payload_len(const void *_db)
4935{
4936 /* FIXME: Transition to passing struct cea_db * everywhere. */
4937 const struct cea_db *db = _db;
4938
4939 return db->tag_length & 0x1f;
4940}
4941
4942static const void *cea_db_data(const struct cea_db *db)
4943{
4944 return db->data;
4945}
4946
4947static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948{
4949 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 cea_db_payload_len(db) >= 1 &&
4951 db->data[0] == tag;
4952}
4953
4954static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955{
4956 const u8 *data = cea_db_data(db);
4957
4958 return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 cea_db_payload_len(db) >= 3 &&
4960 oui(data[2], data[1], data[0]) == vendor_oui;
4961}
4962
4963static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 struct cea_db_iter *iter)
4965{
4966 memset(iter, 0, sizeof(*iter));
4967
4968 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970}
4971
4972static const struct cea_db *
4973__cea_db_iter_current_block(const struct cea_db_iter *iter)
4974{
4975 const struct cea_db *db;
4976
4977 if (!iter->collection)
4978 return NULL;
4979
4980 db = (const struct cea_db *)&iter->collection[iter->index];
4981
4982 if (iter->index + sizeof(*db) <= iter->end &&
4983 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984 return db;
4985
4986 return NULL;
4987}
4988
4989/*
4990 * References:
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992 */
4993static int cea_db_collection_size(const u8 *cta)
4994{
4995 u8 d = cta[2];
4996
4997 if (d < 4 || d > 127)
4998 return 0;
4999
5000 return d - 4;
5001}
5002
5003/*
5004 * References:
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007 */
5008static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009{
5010 const u8 *ext;
5011
5012 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013 int size;
5014
5015 /* Only support CTA Extension revision 3+ */
5016 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017 continue;
5018
5019 size = cea_db_collection_size(ext);
5020 if (!size)
5021 continue;
5022
5023 iter->index = 4;
5024 iter->end = iter->index + size;
5025
5026 return ext;
5027 }
5028
5029 return NULL;
5030}
5031
5032/*
5033 * References:
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036 *
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5039 */
5040static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041{
5042 const struct displayid_block *block;
5043
5044 displayid_iter_for_each(block, &iter->displayid_iter) {
5045 if (block->tag != DATA_BLOCK_CTA)
5046 continue;
5047
5048 /*
5049 * The displayid iterator has already verified the block bounds
5050 * in displayid_iter_block().
5051 */
5052 iter->index = sizeof(*block);
5053 iter->end = iter->index + block->num_bytes;
5054
5055 return block;
5056 }
5057
5058 return NULL;
5059}
5060
5061static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062{
5063 const struct cea_db *db;
5064
5065 if (iter->collection) {
5066 /* Current collection should always be valid. */
5067 db = __cea_db_iter_current_block(iter);
5068 if (WARN_ON(!db)) {
5069 iter->collection = NULL;
5070 return NULL;
5071 }
5072
5073 /* Next block in CTA Data Block Collection */
5074 iter->index += sizeof(*db) + cea_db_payload_len(db);
5075
5076 db = __cea_db_iter_current_block(iter);
5077 if (db)
5078 return db;
5079 }
5080
5081 for (;;) {
5082 /*
5083 * Find the next CTA Data Block Collection. First iterate all
5084 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085 *
5086 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 * Extension, it's recommended that DisplayID extensions are
5088 * exposed after all of the CTA Extensions.
5089 */
5090 iter->collection = __cea_db_iter_edid_next(iter);
5091 if (!iter->collection)
5092 iter->collection = __cea_db_iter_displayid_next(iter);
5093
5094 if (!iter->collection)
5095 return NULL;
5096
5097 db = __cea_db_iter_current_block(iter);
5098 if (db)
5099 return db;
5100 }
5101}
5102
5103#define cea_db_iter_for_each(__db, __iter) \
5104 while (((__db) = __cea_db_iter_next(__iter)))
5105
5106static void cea_db_iter_end(struct cea_db_iter *iter)
5107{
5108 displayid_iter_end(&iter->displayid_iter);
5109 drm_edid_iter_end(&iter->edid_iter);
5110
5111 memset(iter, 0, sizeof(*iter));
5112}
5113
5114static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115{
5116 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 cea_db_payload_len(db) >= 5;
5118}
5119
5120static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121{
5122 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 cea_db_payload_len(db) >= 7;
5124}
5125
5126static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127{
5128 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 cea_db_payload_len(db) >= 2;
5130}
5131
5132static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133{
5134 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 cea_db_payload_len(db) == 21;
5136}
5137
5138static bool cea_db_is_vcdb(const struct cea_db *db)
5139{
5140 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 cea_db_payload_len(db) == 2;
5142}
5143
5144static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145{
5146 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 cea_db_payload_len(db) >= 7;
5148}
5149
5150static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151{
5152 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153}
5154
5155static bool cea_db_is_y420vdb(const struct cea_db *db)
5156{
5157 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158}
5159
5160static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161{
5162 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 cea_db_payload_len(db) >= 3;
5164}
5165
5166/*
5167 * Get the HF-EEODB override extension block count from EDID.
5168 *
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5171 *
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5175 *
5176 * References:
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178 */
5179static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180{
5181 const u8 *cta;
5182
5183 /* No extensions according to base block, no HF-EEODB. */
5184 if (!edid_extension_block_count(edid))
5185 return 0;
5186
5187 /* HF-EEODB is always in the first EDID extension block only */
5188 cta = edid_extension_block_data(edid, 0);
5189 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190 return 0;
5191
5192 /* Need to have the data block collection, and at least 3 bytes. */
5193 if (cea_db_collection_size(cta) < 3)
5194 return 0;
5195
5196 /*
5197 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 * through 6 of Block 1 of the E-EDID.
5200 */
5201 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202 return 0;
5203
5204 return cta[4 + 2];
5205}
5206
5207static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
5208 const u8 *db)
5209{
5210 struct drm_display_info *info = &connector->display_info;
5211 struct drm_hdmi_info *hdmi = &info->hdmi;
5212 u8 map_len = cea_db_payload_len(db) - 1;
5213 u8 count;
5214 u64 map = 0;
5215
5216 if (map_len == 0) {
5217 /* All CEA modes support ycbcr420 sampling also.*/
5218 hdmi->y420_cmdb_map = U64_MAX;
5219 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5220 return;
5221 }
5222
5223 /*
5224 * This map indicates which of the existing CEA block modes
5225 * from VDB can support YCBCR420 output too. So if bit=0 is
5226 * set, first mode from VDB can support YCBCR420 output too.
5227 * We will parse and keep this map, before parsing VDB itself
5228 * to avoid going through the same block again and again.
5229 *
5230 * Spec is not clear about max possible size of this block.
5231 * Clamping max bitmap block size at 8 bytes. Every byte can
5232 * address 8 CEA modes, in this way this map can address
5233 * 8*8 = first 64 SVDs.
5234 */
5235 if (WARN_ON_ONCE(map_len > 8))
5236 map_len = 8;
5237
5238 for (count = 0; count < map_len; count++)
5239 map |= (u64)db[2 + count] << (8 * count);
5240
5241 if (map)
5242 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5243
5244 hdmi->y420_cmdb_map = map;
5245}
5246
5247static int add_cea_modes(struct drm_connector *connector,
5248 const struct drm_edid *drm_edid)
5249{
5250 const struct cea_db *db;
5251 struct cea_db_iter iter;
5252 int modes = 0;
5253
5254 cea_db_iter_edid_begin(drm_edid, &iter);
5255 cea_db_iter_for_each(db, &iter) {
5256 const u8 *hdmi = NULL, *video = NULL;
5257 u8 hdmi_len = 0, video_len = 0;
5258
5259 if (cea_db_tag(db) == CTA_DB_VIDEO) {
5260 video = cea_db_data(db);
5261 video_len = cea_db_payload_len(db);
5262 modes += do_cea_modes(connector, video, video_len);
5263 } else if (cea_db_is_hdmi_vsdb(db)) {
5264 /* FIXME: Switch to use cea_db_data() */
5265 hdmi = (const u8 *)db;
5266 hdmi_len = cea_db_payload_len(db);
5267 } else if (cea_db_is_y420vdb(db)) {
5268 const u8 *vdb420 = cea_db_data(db) + 1;
5269
5270 /* Add 4:2:0(only) modes present in EDID */
5271 modes += do_y420vdb_modes(connector, vdb420,
5272 cea_db_payload_len(db) - 1);
5273 }
5274
5275 /*
5276 * We parse the HDMI VSDB after having added the cea modes as we
5277 * will be patching their flags when the sink supports stereo
5278 * 3D.
5279 */
5280 if (hdmi)
5281 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
5282 video, video_len);
5283 }
5284 cea_db_iter_end(&iter);
5285
5286 return modes;
5287}
5288
5289static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5290 struct drm_display_mode *mode)
5291{
5292 const struct drm_display_mode *cea_mode;
5293 int clock1, clock2, clock;
5294 u8 vic;
5295 const char *type;
5296
5297 /*
5298 * allow 5kHz clock difference either way to account for
5299 * the 10kHz clock resolution limit of detailed timings.
5300 */
5301 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5302 if (drm_valid_cea_vic(vic)) {
5303 type = "CEA";
5304 cea_mode = cea_mode_for_vic(vic);
5305 clock1 = cea_mode->clock;
5306 clock2 = cea_mode_alternate_clock(cea_mode);
5307 } else {
5308 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5309 if (drm_valid_hdmi_vic(vic)) {
5310 type = "HDMI";
5311 cea_mode = &edid_4k_modes[vic];
5312 clock1 = cea_mode->clock;
5313 clock2 = hdmi_mode_alternate_clock(cea_mode);
5314 } else {
5315 return;
5316 }
5317 }
5318
5319 /* pick whichever is closest */
5320 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5321 clock = clock1;
5322 else
5323 clock = clock2;
5324
5325 if (mode->clock == clock)
5326 return;
5327
5328 drm_dbg_kms(connector->dev,
5329 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5330 connector->base.id, connector->name,
5331 type, vic, mode->clock, clock);
5332 mode->clock = clock;
5333}
5334
5335static void drm_calculate_luminance_range(struct drm_connector *connector)
5336{
5337 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5338 struct drm_luminance_range_info *luminance_range =
5339 &connector->display_info.luminance_range;
5340 static const u8 pre_computed_values[] = {
5341 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5342 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5343 };
5344 u32 max_avg, min_cll, max, min, q, r;
5345
5346 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5347 return;
5348
5349 max_avg = hdr_metadata->max_fall;
5350 min_cll = hdr_metadata->min_cll;
5351
5352 /*
5353 * From the specification (CTA-861-G), for calculating the maximum
5354 * luminance we need to use:
5355 * Luminance = 50*2**(CV/32)
5356 * Where CV is a one-byte value.
5357 * For calculating this expression we may need float point precision;
5358 * to avoid this complexity level, we take advantage that CV is divided
5359 * by a constant. From the Euclids division algorithm, we know that CV
5360 * can be written as: CV = 32*q + r. Next, we replace CV in the
5361 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5362 * need to pre-compute the value of r/32. For pre-computing the values
5363 * We just used the following Ruby line:
5364 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5365 * The results of the above expressions can be verified at
5366 * pre_computed_values.
5367 */
5368 q = max_avg >> 5;
5369 r = max_avg % 32;
5370 max = (1 << q) * pre_computed_values[r];
5371
5372 /* min luminance: maxLum * (CV/255)^2 / 100 */
5373 q = DIV_ROUND_CLOSEST(min_cll, 255);
5374 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5375
5376 luminance_range->min_luminance = min;
5377 luminance_range->max_luminance = max;
5378}
5379
5380static uint8_t eotf_supported(const u8 *edid_ext)
5381{
5382 return edid_ext[2] &
5383 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5384 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5385 BIT(HDMI_EOTF_SMPTE_ST2084) |
5386 BIT(HDMI_EOTF_BT_2100_HLG));
5387}
5388
5389static uint8_t hdr_metadata_type(const u8 *edid_ext)
5390{
5391 return edid_ext[3] &
5392 BIT(HDMI_STATIC_METADATA_TYPE1);
5393}
5394
5395static void
5396drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5397{
5398 u16 len;
5399
5400 len = cea_db_payload_len(db);
5401
5402 connector->hdr_sink_metadata.hdmi_type1.eotf =
5403 eotf_supported(db);
5404 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5405 hdr_metadata_type(db);
5406
5407 if (len >= 4)
5408 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5409 if (len >= 5)
5410 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5411 if (len >= 6) {
5412 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5413
5414 /* Calculate only when all values are available */
5415 drm_calculate_luminance_range(connector);
5416 }
5417}
5418
5419static void
5420drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5421{
5422 u8 len = cea_db_payload_len(db);
5423
5424 if (len >= 6 && (db[6] & (1 << 7)))
5425 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5426 if (len >= 8) {
5427 connector->latency_present[0] = db[8] >> 7;
5428 connector->latency_present[1] = (db[8] >> 6) & 1;
5429 }
5430 if (len >= 9)
5431 connector->video_latency[0] = db[9];
5432 if (len >= 10)
5433 connector->audio_latency[0] = db[10];
5434 if (len >= 11)
5435 connector->video_latency[1] = db[11];
5436 if (len >= 12)
5437 connector->audio_latency[1] = db[12];
5438
5439 drm_dbg_kms(connector->dev,
5440 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5441 connector->base.id, connector->name,
5442 connector->latency_present[0], connector->latency_present[1],
5443 connector->video_latency[0], connector->video_latency[1],
5444 connector->audio_latency[0], connector->audio_latency[1]);
5445}
5446
5447static void
5448monitor_name(const struct detailed_timing *timing, void *data)
5449{
5450 const char **res = data;
5451
5452 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5453 return;
5454
5455 *res = timing->data.other_data.data.str.str;
5456}
5457
5458static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5459{
5460 const char *edid_name = NULL;
5461 int mnl;
5462
5463 if (!drm_edid || !name)
5464 return 0;
5465
5466 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5467 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5468 if (edid_name[mnl] == 0x0a)
5469 break;
5470
5471 name[mnl] = edid_name[mnl];
5472 }
5473
5474 return mnl;
5475}
5476
5477/**
5478 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5479 * @edid: monitor EDID information
5480 * @name: pointer to a character array to hold the name of the monitor
5481 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5482 *
5483 */
5484void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5485{
5486 int name_length = 0;
5487
5488 if (bufsize <= 0)
5489 return;
5490
5491 if (edid) {
5492 char buf[13];
5493 struct drm_edid drm_edid = {
5494 .edid = edid,
5495 .size = edid_size(edid),
5496 };
5497
5498 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5499 memcpy(name, buf, name_length);
5500 }
5501
5502 name[name_length] = '\0';
5503}
5504EXPORT_SYMBOL(drm_edid_get_monitor_name);
5505
5506static void clear_eld(struct drm_connector *connector)
5507{
5508 memset(connector->eld, 0, sizeof(connector->eld));
5509
5510 connector->latency_present[0] = false;
5511 connector->latency_present[1] = false;
5512 connector->video_latency[0] = 0;
5513 connector->audio_latency[0] = 0;
5514 connector->video_latency[1] = 0;
5515 connector->audio_latency[1] = 0;
5516}
5517
5518/*
5519 * drm_edid_to_eld - build ELD from EDID
5520 * @connector: connector corresponding to the HDMI/DP sink
5521 * @drm_edid: EDID to parse
5522 *
5523 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5524 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5525 */
5526static void drm_edid_to_eld(struct drm_connector *connector,
5527 const struct drm_edid *drm_edid)
5528{
5529 const struct drm_display_info *info = &connector->display_info;
5530 const struct cea_db *db;
5531 struct cea_db_iter iter;
5532 uint8_t *eld = connector->eld;
5533 int total_sad_count = 0;
5534 int mnl;
5535
5536 clear_eld(connector);
5537
5538 if (!drm_edid)
5539 return;
5540
5541 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5542 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5543 connector->base.id, connector->name,
5544 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5545
5546 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5547 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5548
5549 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5550
5551 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5552 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5553 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5554 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5555
5556 cea_db_iter_edid_begin(drm_edid, &iter);
5557 cea_db_iter_for_each(db, &iter) {
5558 const u8 *data = cea_db_data(db);
5559 int len = cea_db_payload_len(db);
5560 int sad_count;
5561
5562 switch (cea_db_tag(db)) {
5563 case CTA_DB_AUDIO:
5564 /* Audio Data Block, contains SADs */
5565 sad_count = min(len / 3, 15 - total_sad_count);
5566 if (sad_count >= 1)
5567 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5568 data, sad_count * 3);
5569 total_sad_count += sad_count;
5570 break;
5571 case CTA_DB_SPEAKER:
5572 /* Speaker Allocation Data Block */
5573 if (len >= 1)
5574 eld[DRM_ELD_SPEAKER] = data[0];
5575 break;
5576 case CTA_DB_VENDOR:
5577 /* HDMI Vendor-Specific Data Block */
5578 if (cea_db_is_hdmi_vsdb(db))
5579 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5580 break;
5581 default:
5582 break;
5583 }
5584 }
5585 cea_db_iter_end(&iter);
5586
5587 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5588
5589 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5590 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5591 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5592 else
5593 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5594
5595 eld[DRM_ELD_BASELINE_ELD_LEN] =
5596 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5597
5598 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5599 connector->base.id, connector->name,
5600 drm_eld_size(eld), total_sad_count);
5601}
5602
5603static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5604 struct cea_sad **sads)
5605{
5606 const struct cea_db *db;
5607 struct cea_db_iter iter;
5608 int count = 0;
5609
5610 cea_db_iter_edid_begin(drm_edid, &iter);
5611 cea_db_iter_for_each(db, &iter) {
5612 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5613 int j;
5614
5615 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5616 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5617 if (!*sads)
5618 return -ENOMEM;
5619 for (j = 0; j < count; j++) {
5620 const u8 *sad = &db->data[j * 3];
5621
5622 (*sads)[j].format = (sad[0] & 0x78) >> 3;
5623 (*sads)[j].channels = sad[0] & 0x7;
5624 (*sads)[j].freq = sad[1] & 0x7F;
5625 (*sads)[j].byte2 = sad[2];
5626 }
5627 break;
5628 }
5629 }
5630 cea_db_iter_end(&iter);
5631
5632 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5633
5634 return count;
5635}
5636
5637/**
5638 * drm_edid_to_sad - extracts SADs from EDID
5639 * @edid: EDID to parse
5640 * @sads: pointer that will be set to the extracted SADs
5641 *
5642 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5643 *
5644 * Note: The returned pointer needs to be freed using kfree().
5645 *
5646 * Return: The number of found SADs or negative number on error.
5647 */
5648int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5649{
5650 struct drm_edid drm_edid;
5651
5652 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5653}
5654EXPORT_SYMBOL(drm_edid_to_sad);
5655
5656static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5657 u8 **sadb)
5658{
5659 const struct cea_db *db;
5660 struct cea_db_iter iter;
5661 int count = 0;
5662
5663 cea_db_iter_edid_begin(drm_edid, &iter);
5664 cea_db_iter_for_each(db, &iter) {
5665 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5666 cea_db_payload_len(db) == 3) {
5667 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5668 GFP_KERNEL);
5669 if (!*sadb)
5670 return -ENOMEM;
5671 count = cea_db_payload_len(db);
5672 break;
5673 }
5674 }
5675 cea_db_iter_end(&iter);
5676
5677 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5678
5679 return count;
5680}
5681
5682/**
5683 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5684 * @edid: EDID to parse
5685 * @sadb: pointer to the speaker block
5686 *
5687 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5688 *
5689 * Note: The returned pointer needs to be freed using kfree().
5690 *
5691 * Return: The number of found Speaker Allocation Blocks or negative number on
5692 * error.
5693 */
5694int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5695{
5696 struct drm_edid drm_edid;
5697
5698 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5699 sadb);
5700}
5701EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5702
5703/**
5704 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5705 * @connector: connector associated with the HDMI/DP sink
5706 * @mode: the display mode
5707 *
5708 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5709 * the sink doesn't support audio or video.
5710 */
5711int drm_av_sync_delay(struct drm_connector *connector,
5712 const struct drm_display_mode *mode)
5713{
5714 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5715 int a, v;
5716
5717 if (!connector->latency_present[0])
5718 return 0;
5719 if (!connector->latency_present[1])
5720 i = 0;
5721
5722 a = connector->audio_latency[i];
5723 v = connector->video_latency[i];
5724
5725 /*
5726 * HDMI/DP sink doesn't support audio or video?
5727 */
5728 if (a == 255 || v == 255)
5729 return 0;
5730
5731 /*
5732 * Convert raw EDID values to millisecond.
5733 * Treat unknown latency as 0ms.
5734 */
5735 if (a)
5736 a = min(2 * (a - 1), 500);
5737 if (v)
5738 v = min(2 * (v - 1), 500);
5739
5740 return max(v - a, 0);
5741}
5742EXPORT_SYMBOL(drm_av_sync_delay);
5743
5744static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5745{
5746 const struct cea_db *db;
5747 struct cea_db_iter iter;
5748 bool hdmi = false;
5749
5750 /*
5751 * Because HDMI identifier is in Vendor Specific Block,
5752 * search it from all data blocks of CEA extension.
5753 */
5754 cea_db_iter_edid_begin(drm_edid, &iter);
5755 cea_db_iter_for_each(db, &iter) {
5756 if (cea_db_is_hdmi_vsdb(db)) {
5757 hdmi = true;
5758 break;
5759 }
5760 }
5761 cea_db_iter_end(&iter);
5762
5763 return hdmi;
5764}
5765
5766/**
5767 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5768 * @edid: monitor EDID information
5769 *
5770 * Parse the CEA extension according to CEA-861-B.
5771 *
5772 * Drivers that have added the modes parsed from EDID to drm_display_info
5773 * should use &drm_display_info.is_hdmi instead of calling this function.
5774 *
5775 * Return: True if the monitor is HDMI, false if not or unknown.
5776 */
5777bool drm_detect_hdmi_monitor(const struct edid *edid)
5778{
5779 struct drm_edid drm_edid;
5780
5781 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5782}
5783EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5784
5785static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5786{
5787 struct drm_edid_iter edid_iter;
5788 const struct cea_db *db;
5789 struct cea_db_iter iter;
5790 const u8 *edid_ext;
5791 bool has_audio = false;
5792
5793 drm_edid_iter_begin(drm_edid, &edid_iter);
5794 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5795 if (edid_ext[0] == CEA_EXT) {
5796 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5797 if (has_audio)
5798 break;
5799 }
5800 }
5801 drm_edid_iter_end(&edid_iter);
5802
5803 if (has_audio) {
5804 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5805 goto end;
5806 }
5807
5808 cea_db_iter_edid_begin(drm_edid, &iter);
5809 cea_db_iter_for_each(db, &iter) {
5810 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5811 const u8 *data = cea_db_data(db);
5812 int i;
5813
5814 for (i = 0; i < cea_db_payload_len(db); i += 3)
5815 DRM_DEBUG_KMS("CEA audio format %d\n",
5816 (data[i] >> 3) & 0xf);
5817 has_audio = true;
5818 break;
5819 }
5820 }
5821 cea_db_iter_end(&iter);
5822
5823end:
5824 return has_audio;
5825}
5826
5827/**
5828 * drm_detect_monitor_audio - check monitor audio capability
5829 * @edid: EDID block to scan
5830 *
5831 * Monitor should have CEA extension block.
5832 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5833 * audio' only. If there is any audio extension block and supported
5834 * audio format, assume at least 'basic audio' support, even if 'basic
5835 * audio' is not defined in EDID.
5836 *
5837 * Return: True if the monitor supports audio, false otherwise.
5838 */
5839bool drm_detect_monitor_audio(const struct edid *edid)
5840{
5841 struct drm_edid drm_edid;
5842
5843 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5844}
5845EXPORT_SYMBOL(drm_detect_monitor_audio);
5846
5847
5848/**
5849 * drm_default_rgb_quant_range - default RGB quantization range
5850 * @mode: display mode
5851 *
5852 * Determine the default RGB quantization range for the mode,
5853 * as specified in CEA-861.
5854 *
5855 * Return: The default RGB quantization range for the mode
5856 */
5857enum hdmi_quantization_range
5858drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5859{
5860 /* All CEA modes other than VIC 1 use limited quantization range. */
5861 return drm_match_cea_mode(mode) > 1 ?
5862 HDMI_QUANTIZATION_RANGE_LIMITED :
5863 HDMI_QUANTIZATION_RANGE_FULL;
5864}
5865EXPORT_SYMBOL(drm_default_rgb_quant_range);
5866
5867static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5868{
5869 struct drm_display_info *info = &connector->display_info;
5870
5871 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5872 connector->base.id, connector->name, db[2]);
5873
5874 if (db[2] & EDID_CEA_VCDB_QS)
5875 info->rgb_quant_range_selectable = true;
5876}
5877
5878static
5879void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5880{
5881 switch (max_frl_rate) {
5882 case 1:
5883 *max_lanes = 3;
5884 *max_rate_per_lane = 3;
5885 break;
5886 case 2:
5887 *max_lanes = 3;
5888 *max_rate_per_lane = 6;
5889 break;
5890 case 3:
5891 *max_lanes = 4;
5892 *max_rate_per_lane = 6;
5893 break;
5894 case 4:
5895 *max_lanes = 4;
5896 *max_rate_per_lane = 8;
5897 break;
5898 case 5:
5899 *max_lanes = 4;
5900 *max_rate_per_lane = 10;
5901 break;
5902 case 6:
5903 *max_lanes = 4;
5904 *max_rate_per_lane = 12;
5905 break;
5906 case 0:
5907 default:
5908 *max_lanes = 0;
5909 *max_rate_per_lane = 0;
5910 }
5911}
5912
5913static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5914 const u8 *db)
5915{
5916 u8 dc_mask;
5917 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5918
5919 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5920 hdmi->y420_dc_modes = dc_mask;
5921}
5922
5923static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5924 const u8 *hf_scds)
5925{
5926 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5927
5928 if (!hdmi_dsc->v_1p2)
5929 return;
5930
5931 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5932 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5933
5934 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5935 hdmi_dsc->bpc_supported = 16;
5936 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5937 hdmi_dsc->bpc_supported = 12;
5938 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5939 hdmi_dsc->bpc_supported = 10;
5940 else
5941 /* Supports min 8 BPC if DSC 1.2 is supported*/
5942 hdmi_dsc->bpc_supported = 8;
5943
5944 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
5945 u8 dsc_max_slices;
5946 u8 dsc_max_frl_rate;
5947
5948 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5949 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5950 &hdmi_dsc->max_frl_rate_per_lane);
5951
5952 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5953
5954 switch (dsc_max_slices) {
5955 case 1:
5956 hdmi_dsc->max_slices = 1;
5957 hdmi_dsc->clk_per_slice = 340;
5958 break;
5959 case 2:
5960 hdmi_dsc->max_slices = 2;
5961 hdmi_dsc->clk_per_slice = 340;
5962 break;
5963 case 3:
5964 hdmi_dsc->max_slices = 4;
5965 hdmi_dsc->clk_per_slice = 340;
5966 break;
5967 case 4:
5968 hdmi_dsc->max_slices = 8;
5969 hdmi_dsc->clk_per_slice = 340;
5970 break;
5971 case 5:
5972 hdmi_dsc->max_slices = 8;
5973 hdmi_dsc->clk_per_slice = 400;
5974 break;
5975 case 6:
5976 hdmi_dsc->max_slices = 12;
5977 hdmi_dsc->clk_per_slice = 400;
5978 break;
5979 case 7:
5980 hdmi_dsc->max_slices = 16;
5981 hdmi_dsc->clk_per_slice = 400;
5982 break;
5983 case 0:
5984 default:
5985 hdmi_dsc->max_slices = 0;
5986 hdmi_dsc->clk_per_slice = 0;
5987 }
5988 }
5989
5990 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
5991 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5992}
5993
5994/* Sink Capability Data Structure */
5995static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5996 const u8 *hf_scds)
5997{
5998 struct drm_display_info *display = &connector->display_info;
5999 struct drm_hdmi_info *hdmi = &display->hdmi;
6000 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6001 int max_tmds_clock = 0;
6002 u8 max_frl_rate = 0;
6003 bool dsc_support = false;
6004
6005 display->has_hdmi_infoframe = true;
6006
6007 if (hf_scds[6] & 0x80) {
6008 hdmi->scdc.supported = true;
6009 if (hf_scds[6] & 0x40)
6010 hdmi->scdc.read_request = true;
6011 }
6012
6013 /*
6014 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6015 * And as per the spec, three factors confirm this:
6016 * * Availability of a HF-VSDB block in EDID (check)
6017 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6018 * * SCDC support available (let's check)
6019 * Lets check it out.
6020 */
6021
6022 if (hf_scds[5]) {
6023 struct drm_scdc *scdc = &hdmi->scdc;
6024
6025 /* max clock is 5000 KHz times block value */
6026 max_tmds_clock = hf_scds[5] * 5000;
6027
6028 if (max_tmds_clock > 340000) {
6029 display->max_tmds_clock = max_tmds_clock;
6030 }
6031
6032 if (scdc->supported) {
6033 scdc->scrambling.supported = true;
6034
6035 /* Few sinks support scrambling for clocks < 340M */
6036 if ((hf_scds[6] & 0x8))
6037 scdc->scrambling.low_rates = true;
6038 }
6039 }
6040
6041 if (hf_scds[7]) {
6042 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6043 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6044 &hdmi->max_frl_rate_per_lane);
6045 }
6046
6047 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6048
6049 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6050 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6051 dsc_support = true;
6052 }
6053
6054 drm_dbg_kms(connector->dev,
6055 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6056 connector->base.id, connector->name,
6057 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6058}
6059
6060static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6061 const u8 *hdmi)
6062{
6063 struct drm_display_info *info = &connector->display_info;
6064 unsigned int dc_bpc = 0;
6065
6066 /* HDMI supports at least 8 bpc */
6067 info->bpc = 8;
6068
6069 if (cea_db_payload_len(hdmi) < 6)
6070 return;
6071
6072 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6073 dc_bpc = 10;
6074 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6075 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6076 connector->base.id, connector->name);
6077 }
6078
6079 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6080 dc_bpc = 12;
6081 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6082 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6083 connector->base.id, connector->name);
6084 }
6085
6086 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6087 dc_bpc = 16;
6088 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6089 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6090 connector->base.id, connector->name);
6091 }
6092
6093 if (dc_bpc == 0) {
6094 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6095 connector->base.id, connector->name);
6096 return;
6097 }
6098
6099 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6100 connector->base.id, connector->name, dc_bpc);
6101 info->bpc = dc_bpc;
6102
6103 /* YCRCB444 is optional according to spec. */
6104 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6105 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6106 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6107 connector->base.id, connector->name);
6108 }
6109
6110 /*
6111 * Spec says that if any deep color mode is supported at all,
6112 * then deep color 36 bit must be supported.
6113 */
6114 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6115 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6116 connector->base.id, connector->name);
6117 }
6118}
6119
6120static void
6121drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6122{
6123 struct drm_display_info *info = &connector->display_info;
6124 u8 len = cea_db_payload_len(db);
6125
6126 info->is_hdmi = true;
6127
6128 if (len >= 6)
6129 info->dvi_dual = db[6] & 1;
6130 if (len >= 7)
6131 info->max_tmds_clock = db[7] * 5000;
6132
6133 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6134 connector->base.id, connector->name,
6135 info->dvi_dual, info->max_tmds_clock);
6136
6137 drm_parse_hdmi_deep_color_info(connector, db);
6138}
6139
6140/*
6141 * See EDID extension for head-mounted and specialized monitors, specified at:
6142 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6143 */
6144static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6145 const u8 *db)
6146{
6147 struct drm_display_info *info = &connector->display_info;
6148 u8 version = db[4];
6149 bool desktop_usage = db[5] & BIT(6);
6150
6151 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6152 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6153 info->non_desktop = true;
6154
6155 drm_dbg_kms(connector->dev,
6156 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6157 connector->base.id, connector->name, version, db[5]);
6158}
6159
6160static void drm_parse_cea_ext(struct drm_connector *connector,
6161 const struct drm_edid *drm_edid)
6162{
6163 struct drm_display_info *info = &connector->display_info;
6164 struct drm_edid_iter edid_iter;
6165 const struct cea_db *db;
6166 struct cea_db_iter iter;
6167 const u8 *edid_ext;
6168
6169 drm_edid_iter_begin(drm_edid, &edid_iter);
6170 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6171 if (edid_ext[0] != CEA_EXT)
6172 continue;
6173
6174 if (!info->cea_rev)
6175 info->cea_rev = edid_ext[1];
6176
6177 if (info->cea_rev != edid_ext[1])
6178 drm_dbg_kms(connector->dev,
6179 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6180 connector->base.id, connector->name,
6181 info->cea_rev, edid_ext[1]);
6182
6183 /* The existence of a CTA extension should imply RGB support */
6184 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6185 if (edid_ext[3] & EDID_CEA_YCRCB444)
6186 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6187 if (edid_ext[3] & EDID_CEA_YCRCB422)
6188 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6189 }
6190 drm_edid_iter_end(&edid_iter);
6191
6192 cea_db_iter_edid_begin(drm_edid, &iter);
6193 cea_db_iter_for_each(db, &iter) {
6194 /* FIXME: convert parsers to use struct cea_db */
6195 const u8 *data = (const u8 *)db;
6196
6197 if (cea_db_is_hdmi_vsdb(db))
6198 drm_parse_hdmi_vsdb_video(connector, data);
6199 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6200 cea_db_is_hdmi_forum_scdb(db))
6201 drm_parse_hdmi_forum_scds(connector, data);
6202 else if (cea_db_is_microsoft_vsdb(db))
6203 drm_parse_microsoft_vsdb(connector, data);
6204 else if (cea_db_is_y420cmdb(db))
6205 drm_parse_y420cmdb_bitmap(connector, data);
6206 else if (cea_db_is_vcdb(db))
6207 drm_parse_vcdb(connector, data);
6208 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6209 drm_parse_hdr_metadata_block(connector, data);
6210 }
6211 cea_db_iter_end(&iter);
6212}
6213
6214static
6215void get_monitor_range(const struct detailed_timing *timing, void *c)
6216{
6217 struct detailed_mode_closure *closure = c;
6218 struct drm_display_info *info = &closure->connector->display_info;
6219 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6220 const struct detailed_non_pixel *data = &timing->data.other_data;
6221 const struct detailed_data_monitor_range *range = &data->data.range;
6222 const struct edid *edid = closure->drm_edid->edid;
6223
6224 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6225 return;
6226
6227 /*
6228 * These limits are used to determine the VRR refresh
6229 * rate range. Only the "range limits only" variant
6230 * of the range descriptor seems to guarantee that
6231 * any and all timings are accepted by the sink, as
6232 * opposed to just timings conforming to the indicated
6233 * formula (GTF/GTF2/CVT). Thus other variants of the
6234 * range descriptor are not accepted here.
6235 */
6236 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6237 return;
6238
6239 monitor_range->min_vfreq = range->min_vfreq;
6240 monitor_range->max_vfreq = range->max_vfreq;
6241
6242 if (edid->revision >= 4) {
6243 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6244 monitor_range->min_vfreq += 255;
6245 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6246 monitor_range->max_vfreq += 255;
6247 }
6248}
6249
6250static void drm_get_monitor_range(struct drm_connector *connector,
6251 const struct drm_edid *drm_edid)
6252{
6253 const struct drm_display_info *info = &connector->display_info;
6254 struct detailed_mode_closure closure = {
6255 .connector = connector,
6256 .drm_edid = drm_edid,
6257 };
6258
6259 if (drm_edid->edid->revision < 4)
6260 return;
6261
6262 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6263 return;
6264
6265 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6266
6267 drm_dbg_kms(connector->dev,
6268 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6269 connector->base.id, connector->name,
6270 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6271}
6272
6273static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6274 const struct displayid_block *block)
6275{
6276 struct displayid_vesa_vendor_specific_block *vesa =
6277 (struct displayid_vesa_vendor_specific_block *)block;
6278 struct drm_display_info *info = &connector->display_info;
6279
6280 if (block->num_bytes < 3) {
6281 drm_dbg_kms(connector->dev,
6282 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6283 connector->base.id, connector->name, block->num_bytes);
6284 return;
6285 }
6286
6287 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6288 return;
6289
6290 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6291 drm_dbg_kms(connector->dev,
6292 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6293 connector->base.id, connector->name);
6294 return;
6295 }
6296
6297 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6298 default:
6299 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6300 connector->base.id, connector->name);
6301 fallthrough;
6302 case 0:
6303 info->mso_stream_count = 0;
6304 break;
6305 case 1:
6306 info->mso_stream_count = 2; /* 2 or 4 links */
6307 break;
6308 case 2:
6309 info->mso_stream_count = 4; /* 4 links */
6310 break;
6311 }
6312
6313 if (!info->mso_stream_count) {
6314 info->mso_pixel_overlap = 0;
6315 return;
6316 }
6317
6318 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6319 if (info->mso_pixel_overlap > 8) {
6320 drm_dbg_kms(connector->dev,
6321 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6322 connector->base.id, connector->name,
6323 info->mso_pixel_overlap);
6324 info->mso_pixel_overlap = 8;
6325 }
6326
6327 drm_dbg_kms(connector->dev,
6328 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6329 connector->base.id, connector->name,
6330 info->mso_stream_count, info->mso_pixel_overlap);
6331}
6332
6333static void drm_update_mso(struct drm_connector *connector,
6334 const struct drm_edid *drm_edid)
6335{
6336 const struct displayid_block *block;
6337 struct displayid_iter iter;
6338
6339 displayid_iter_edid_begin(drm_edid, &iter);
6340 displayid_iter_for_each(block, &iter) {
6341 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6342 drm_parse_vesa_mso_data(connector, block);
6343 }
6344 displayid_iter_end(&iter);
6345}
6346
6347/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6348 * all of the values which would have been set from EDID
6349 */
6350static void drm_reset_display_info(struct drm_connector *connector)
6351{
6352 struct drm_display_info *info = &connector->display_info;
6353
6354 info->width_mm = 0;
6355 info->height_mm = 0;
6356
6357 info->bpc = 0;
6358 info->color_formats = 0;
6359 info->cea_rev = 0;
6360 info->max_tmds_clock = 0;
6361 info->dvi_dual = false;
6362 info->is_hdmi = false;
6363 info->has_hdmi_infoframe = false;
6364 info->rgb_quant_range_selectable = false;
6365 memset(&info->hdmi, 0, sizeof(info->hdmi));
6366
6367 info->edid_hdmi_rgb444_dc_modes = 0;
6368 info->edid_hdmi_ycbcr444_dc_modes = 0;
6369
6370 info->non_desktop = 0;
6371 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6372 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6373
6374 info->mso_stream_count = 0;
6375 info->mso_pixel_overlap = 0;
6376 info->max_dsc_bpp = 0;
6377}
6378
6379static u32 update_display_info(struct drm_connector *connector,
6380 const struct drm_edid *drm_edid)
6381{
6382 struct drm_display_info *info = &connector->display_info;
6383 const struct edid *edid = drm_edid->edid;
6384
6385 u32 quirks = edid_get_quirks(drm_edid);
6386
6387 drm_reset_display_info(connector);
6388
6389 info->width_mm = edid->width_cm * 10;
6390 info->height_mm = edid->height_cm * 10;
6391
6392 drm_get_monitor_range(connector, drm_edid);
6393
6394 if (edid->revision < 3)
6395 goto out;
6396
6397 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6398 goto out;
6399
6400 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6401 drm_parse_cea_ext(connector, drm_edid);
6402
6403 /*
6404 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6405 *
6406 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6407 * tells us to assume 8 bpc color depth if the EDID doesn't have
6408 * extensions which tell otherwise.
6409 */
6410 if (info->bpc == 0 && edid->revision == 3 &&
6411 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6412 info->bpc = 8;
6413 drm_dbg_kms(connector->dev,
6414 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6415 connector->base.id, connector->name, info->bpc);
6416 }
6417
6418 /* Only defined for 1.4 with digital displays */
6419 if (edid->revision < 4)
6420 goto out;
6421
6422 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6423 case DRM_EDID_DIGITAL_DEPTH_6:
6424 info->bpc = 6;
6425 break;
6426 case DRM_EDID_DIGITAL_DEPTH_8:
6427 info->bpc = 8;
6428 break;
6429 case DRM_EDID_DIGITAL_DEPTH_10:
6430 info->bpc = 10;
6431 break;
6432 case DRM_EDID_DIGITAL_DEPTH_12:
6433 info->bpc = 12;
6434 break;
6435 case DRM_EDID_DIGITAL_DEPTH_14:
6436 info->bpc = 14;
6437 break;
6438 case DRM_EDID_DIGITAL_DEPTH_16:
6439 info->bpc = 16;
6440 break;
6441 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6442 default:
6443 info->bpc = 0;
6444 break;
6445 }
6446
6447 drm_dbg_kms(connector->dev,
6448 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6449 connector->base.id, connector->name, info->bpc);
6450
6451 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6452 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6453 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6454 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6455
6456 drm_update_mso(connector, drm_edid);
6457
6458out:
6459 if (quirks & EDID_QUIRK_NON_DESKTOP) {
6460 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6461 connector->base.id, connector->name,
6462 info->non_desktop ? " (redundant quirk)" : "");
6463 info->non_desktop = true;
6464 }
6465
6466 if (quirks & EDID_QUIRK_CAP_DSC_15BPP)
6467 info->max_dsc_bpp = 15;
6468
6469 return quirks;
6470}
6471
6472static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6473 struct displayid_detailed_timings_1 *timings,
6474 bool type_7)
6475{
6476 struct drm_display_mode *mode;
6477 unsigned pixel_clock = (timings->pixel_clock[0] |
6478 (timings->pixel_clock[1] << 8) |
6479 (timings->pixel_clock[2] << 16)) + 1;
6480 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6481 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6482 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6483 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6484 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6485 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6486 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6487 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6488 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6489 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6490
6491 mode = drm_mode_create(dev);
6492 if (!mode)
6493 return NULL;
6494
6495 /* resolution is kHz for type VII, and 10 kHz for type I */
6496 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6497 mode->hdisplay = hactive;
6498 mode->hsync_start = mode->hdisplay + hsync;
6499 mode->hsync_end = mode->hsync_start + hsync_width;
6500 mode->htotal = mode->hdisplay + hblank;
6501
6502 mode->vdisplay = vactive;
6503 mode->vsync_start = mode->vdisplay + vsync;
6504 mode->vsync_end = mode->vsync_start + vsync_width;
6505 mode->vtotal = mode->vdisplay + vblank;
6506
6507 mode->flags = 0;
6508 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6509 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6510 mode->type = DRM_MODE_TYPE_DRIVER;
6511
6512 if (timings->flags & 0x80)
6513 mode->type |= DRM_MODE_TYPE_PREFERRED;
6514 drm_mode_set_name(mode);
6515
6516 return mode;
6517}
6518
6519static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6520 const struct displayid_block *block)
6521{
6522 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6523 int i;
6524 int num_timings;
6525 struct drm_display_mode *newmode;
6526 int num_modes = 0;
6527 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6528 /* blocks must be multiple of 20 bytes length */
6529 if (block->num_bytes % 20)
6530 return 0;
6531
6532 num_timings = block->num_bytes / 20;
6533 for (i = 0; i < num_timings; i++) {
6534 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6535
6536 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6537 if (!newmode)
6538 continue;
6539
6540 drm_mode_probed_add(connector, newmode);
6541 num_modes++;
6542 }
6543 return num_modes;
6544}
6545
6546static int add_displayid_detailed_modes(struct drm_connector *connector,
6547 const struct drm_edid *drm_edid)
6548{
6549 const struct displayid_block *block;
6550 struct displayid_iter iter;
6551 int num_modes = 0;
6552
6553 displayid_iter_edid_begin(drm_edid, &iter);
6554 displayid_iter_for_each(block, &iter) {
6555 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6556 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6557 num_modes += add_displayid_detailed_1_modes(connector, block);
6558 }
6559 displayid_iter_end(&iter);
6560
6561 return num_modes;
6562}
6563
6564static int _drm_edid_connector_update(struct drm_connector *connector,
6565 const struct drm_edid *drm_edid)
6566{
6567 int num_modes = 0;
6568 u32 quirks;
6569
6570 if (!drm_edid) {
6571 drm_reset_display_info(connector);
6572 clear_eld(connector);
6573 return 0;
6574 }
6575
6576 /*
6577 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6578 * To avoid multiple parsing of same block, lets parse that map
6579 * from sink info, before parsing CEA modes.
6580 */
6581 quirks = update_display_info(connector, drm_edid);
6582
6583 /* Depends on info->cea_rev set by update_display_info() above */
6584 drm_edid_to_eld(connector, drm_edid);
6585
6586 /*
6587 * EDID spec says modes should be preferred in this order:
6588 * - preferred detailed mode
6589 * - other detailed modes from base block
6590 * - detailed modes from extension blocks
6591 * - CVT 3-byte code modes
6592 * - standard timing codes
6593 * - established timing codes
6594 * - modes inferred from GTF or CVT range information
6595 *
6596 * We get this pretty much right.
6597 *
6598 * XXX order for additional mode types in extension blocks?
6599 */
6600 num_modes += add_detailed_modes(connector, drm_edid, quirks);
6601 num_modes += add_cvt_modes(connector, drm_edid);
6602 num_modes += add_standard_modes(connector, drm_edid);
6603 num_modes += add_established_modes(connector, drm_edid);
6604 num_modes += add_cea_modes(connector, drm_edid);
6605 num_modes += add_alternate_cea_modes(connector, drm_edid);
6606 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6607 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6608 num_modes += add_inferred_modes(connector, drm_edid);
6609
6610 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6611 edid_fixup_preferred(connector, quirks);
6612
6613 if (quirks & EDID_QUIRK_FORCE_6BPC)
6614 connector->display_info.bpc = 6;
6615
6616 if (quirks & EDID_QUIRK_FORCE_8BPC)
6617 connector->display_info.bpc = 8;
6618
6619 if (quirks & EDID_QUIRK_FORCE_10BPC)
6620 connector->display_info.bpc = 10;
6621
6622 if (quirks & EDID_QUIRK_FORCE_12BPC)
6623 connector->display_info.bpc = 12;
6624
6625 return num_modes;
6626}
6627
6628static void _drm_update_tile_info(struct drm_connector *connector,
6629 const struct drm_edid *drm_edid);
6630
6631static int _drm_edid_connector_property_update(struct drm_connector *connector,
6632 const struct drm_edid *drm_edid)
6633{
6634 struct drm_device *dev = connector->dev;
6635 int ret;
6636
6637 if (connector->edid_blob_ptr) {
6638 const struct edid *old_edid = connector->edid_blob_ptr->data;
6639
6640 if (old_edid) {
6641 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6642 connector->epoch_counter++;
6643 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6644 connector->base.id, connector->name,
6645 connector->epoch_counter);
6646 }
6647 }
6648 }
6649
6650 ret = drm_property_replace_global_blob(dev,
6651 &connector->edid_blob_ptr,
6652 drm_edid ? drm_edid->size : 0,
6653 drm_edid ? drm_edid->edid : NULL,
6654 &connector->base,
6655 dev->mode_config.edid_property);
6656 if (ret) {
6657 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6658 connector->base.id, connector->name, ret);
6659 goto out;
6660 }
6661
6662 ret = drm_object_property_set_value(&connector->base,
6663 dev->mode_config.non_desktop_property,
6664 connector->display_info.non_desktop);
6665 if (ret) {
6666 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6667 connector->base.id, connector->name, ret);
6668 goto out;
6669 }
6670
6671 ret = drm_connector_set_tile_property(connector);
6672 if (ret) {
6673 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6674 connector->base.id, connector->name, ret);
6675 goto out;
6676 }
6677
6678out:
6679 return ret;
6680}
6681
6682/**
6683 * drm_edid_connector_update - Update connector information from EDID
6684 * @connector: Connector
6685 * @drm_edid: EDID
6686 *
6687 * Update the connector mode list, display info, ELD, HDR metadata, relevant
6688 * properties, etc. from the passed in EDID.
6689 *
6690 * If EDID is NULL, reset the information.
6691 *
6692 * Return: The number of modes added or 0 if we couldn't find any.
6693 */
6694int drm_edid_connector_update(struct drm_connector *connector,
6695 const struct drm_edid *drm_edid)
6696{
6697 int count;
6698
6699 count = _drm_edid_connector_update(connector, drm_edid);
6700
6701 _drm_update_tile_info(connector, drm_edid);
6702
6703 /* Note: Ignore errors for now. */
6704 _drm_edid_connector_property_update(connector, drm_edid);
6705
6706 return count;
6707}
6708EXPORT_SYMBOL(drm_edid_connector_update);
6709
6710static int _drm_connector_update_edid_property(struct drm_connector *connector,
6711 const struct drm_edid *drm_edid)
6712{
6713 /*
6714 * Set the display info, using edid if available, otherwise resetting
6715 * the values to defaults. This duplicates the work done in
6716 * drm_add_edid_modes, but that function is not consistently called
6717 * before this one in all drivers and the computation is cheap enough
6718 * that it seems better to duplicate it rather than attempt to ensure
6719 * some arbitrary ordering of calls.
6720 */
6721 if (drm_edid)
6722 update_display_info(connector, drm_edid);
6723 else
6724 drm_reset_display_info(connector);
6725
6726 _drm_update_tile_info(connector, drm_edid);
6727
6728 return _drm_edid_connector_property_update(connector, drm_edid);
6729}
6730
6731/**
6732 * drm_connector_update_edid_property - update the edid property of a connector
6733 * @connector: drm connector
6734 * @edid: new value of the edid property
6735 *
6736 * This function creates a new blob modeset object and assigns its id to the
6737 * connector's edid property.
6738 * Since we also parse tile information from EDID's displayID block, we also
6739 * set the connector's tile property here. See drm_connector_set_tile_property()
6740 * for more details.
6741 *
6742 * This function is deprecated. Use drm_edid_connector_update() instead.
6743 *
6744 * Returns:
6745 * Zero on success, negative errno on failure.
6746 */
6747int drm_connector_update_edid_property(struct drm_connector *connector,
6748 const struct edid *edid)
6749{
6750 struct drm_edid drm_edid;
6751
6752 return _drm_connector_update_edid_property(connector,
6753 drm_edid_legacy_init(&drm_edid, edid));
6754}
6755EXPORT_SYMBOL(drm_connector_update_edid_property);
6756
6757/**
6758 * drm_add_edid_modes - add modes from EDID data, if available
6759 * @connector: connector we're probing
6760 * @edid: EDID data
6761 *
6762 * Add the specified modes to the connector's mode list. Also fills out the
6763 * &drm_display_info structure and ELD in @connector with any information which
6764 * can be derived from the edid.
6765 *
6766 * This function is deprecated. Use drm_edid_connector_update() instead.
6767 *
6768 * Return: The number of modes added or 0 if we couldn't find any.
6769 */
6770int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6771{
6772 struct drm_edid drm_edid;
6773
6774 if (edid && !drm_edid_is_valid(edid)) {
6775 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6776 connector->base.id, connector->name);
6777 edid = NULL;
6778 }
6779
6780 return _drm_edid_connector_update(connector,
6781 drm_edid_legacy_init(&drm_edid, edid));
6782}
6783EXPORT_SYMBOL(drm_add_edid_modes);
6784
6785/**
6786 * drm_add_modes_noedid - add modes for the connectors without EDID
6787 * @connector: connector we're probing
6788 * @hdisplay: the horizontal display limit
6789 * @vdisplay: the vertical display limit
6790 *
6791 * Add the specified modes to the connector's mode list. Only when the
6792 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6793 *
6794 * Return: The number of modes added or 0 if we couldn't find any.
6795 */
6796int drm_add_modes_noedid(struct drm_connector *connector,
6797 int hdisplay, int vdisplay)
6798{
6799 int i, count, num_modes = 0;
6800 struct drm_display_mode *mode;
6801 struct drm_device *dev = connector->dev;
6802
6803 count = ARRAY_SIZE(drm_dmt_modes);
6804 if (hdisplay < 0)
6805 hdisplay = 0;
6806 if (vdisplay < 0)
6807 vdisplay = 0;
6808
6809 for (i = 0; i < count; i++) {
6810 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6811
6812 if (hdisplay && vdisplay) {
6813 /*
6814 * Only when two are valid, they will be used to check
6815 * whether the mode should be added to the mode list of
6816 * the connector.
6817 */
6818 if (ptr->hdisplay > hdisplay ||
6819 ptr->vdisplay > vdisplay)
6820 continue;
6821 }
6822 if (drm_mode_vrefresh(ptr) > 61)
6823 continue;
6824 mode = drm_mode_duplicate(dev, ptr);
6825 if (mode) {
6826 drm_mode_probed_add(connector, mode);
6827 num_modes++;
6828 }
6829 }
6830 return num_modes;
6831}
6832EXPORT_SYMBOL(drm_add_modes_noedid);
6833
6834/**
6835 * drm_set_preferred_mode - Sets the preferred mode of a connector
6836 * @connector: connector whose mode list should be processed
6837 * @hpref: horizontal resolution of preferred mode
6838 * @vpref: vertical resolution of preferred mode
6839 *
6840 * Marks a mode as preferred if it matches the resolution specified by @hpref
6841 * and @vpref.
6842 */
6843void drm_set_preferred_mode(struct drm_connector *connector,
6844 int hpref, int vpref)
6845{
6846 struct drm_display_mode *mode;
6847
6848 list_for_each_entry(mode, &connector->probed_modes, head) {
6849 if (mode->hdisplay == hpref &&
6850 mode->vdisplay == vpref)
6851 mode->type |= DRM_MODE_TYPE_PREFERRED;
6852 }
6853}
6854EXPORT_SYMBOL(drm_set_preferred_mode);
6855
6856static bool is_hdmi2_sink(const struct drm_connector *connector)
6857{
6858 /*
6859 * FIXME: sil-sii8620 doesn't have a connector around when
6860 * we need one, so we have to be prepared for a NULL connector.
6861 */
6862 if (!connector)
6863 return true;
6864
6865 return connector->display_info.hdmi.scdc.supported ||
6866 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6867}
6868
6869static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6870 const struct drm_display_mode *mode)
6871{
6872 bool has_hdmi_infoframe = connector ?
6873 connector->display_info.has_hdmi_infoframe : false;
6874
6875 if (!has_hdmi_infoframe)
6876 return 0;
6877
6878 /* No HDMI VIC when signalling 3D video format */
6879 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6880 return 0;
6881
6882 return drm_match_hdmi_mode(mode);
6883}
6884
6885static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6886 const struct drm_display_mode *mode)
6887{
6888 u8 vic;
6889
6890 /*
6891 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6892 * we should send its VIC in vendor infoframes, else send the
6893 * VIC in AVI infoframes. Lets check if this mode is present in
6894 * HDMI 1.4b 4K modes
6895 */
6896 if (drm_mode_hdmi_vic(connector, mode))
6897 return 0;
6898
6899 vic = drm_match_cea_mode(mode);
6900
6901 /*
6902 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6903 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6904 * have to make sure we dont break HDMI 1.4 sinks.
6905 */
6906 if (!is_hdmi2_sink(connector) && vic > 64)
6907 return 0;
6908
6909 return vic;
6910}
6911
6912/**
6913 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6914 * data from a DRM display mode
6915 * @frame: HDMI AVI infoframe
6916 * @connector: the connector
6917 * @mode: DRM display mode
6918 *
6919 * Return: 0 on success or a negative error code on failure.
6920 */
6921int
6922drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6923 const struct drm_connector *connector,
6924 const struct drm_display_mode *mode)
6925{
6926 enum hdmi_picture_aspect picture_aspect;
6927 u8 vic, hdmi_vic;
6928
6929 if (!frame || !mode)
6930 return -EINVAL;
6931
6932 hdmi_avi_infoframe_init(frame);
6933
6934 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6935 frame->pixel_repeat = 1;
6936
6937 vic = drm_mode_cea_vic(connector, mode);
6938 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6939
6940 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6941
6942 /*
6943 * As some drivers don't support atomic, we can't use connector state.
6944 * So just initialize the frame with default values, just the same way
6945 * as it's done with other properties here.
6946 */
6947 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6948 frame->itc = 0;
6949
6950 /*
6951 * Populate picture aspect ratio from either
6952 * user input (if specified) or from the CEA/HDMI mode lists.
6953 */
6954 picture_aspect = mode->picture_aspect_ratio;
6955 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6956 if (vic)
6957 picture_aspect = drm_get_cea_aspect_ratio(vic);
6958 else if (hdmi_vic)
6959 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6960 }
6961
6962 /*
6963 * The infoframe can't convey anything but none, 4:3
6964 * and 16:9, so if the user has asked for anything else
6965 * we can only satisfy it by specifying the right VIC.
6966 */
6967 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6968 if (vic) {
6969 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6970 return -EINVAL;
6971 } else if (hdmi_vic) {
6972 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6973 return -EINVAL;
6974 } else {
6975 return -EINVAL;
6976 }
6977
6978 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6979 }
6980
6981 frame->video_code = vic;
6982 frame->picture_aspect = picture_aspect;
6983 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6984 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6985
6986 return 0;
6987}
6988EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6989
6990/**
6991 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6992 * quantization range information
6993 * @frame: HDMI AVI infoframe
6994 * @connector: the connector
6995 * @mode: DRM display mode
6996 * @rgb_quant_range: RGB quantization range (Q)
6997 */
6998void
6999drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7000 const struct drm_connector *connector,
7001 const struct drm_display_mode *mode,
7002 enum hdmi_quantization_range rgb_quant_range)
7003{
7004 const struct drm_display_info *info = &connector->display_info;
7005
7006 /*
7007 * CEA-861:
7008 * "A Source shall not send a non-zero Q value that does not correspond
7009 * to the default RGB Quantization Range for the transmitted Picture
7010 * unless the Sink indicates support for the Q bit in a Video
7011 * Capabilities Data Block."
7012 *
7013 * HDMI 2.0 recommends sending non-zero Q when it does match the
7014 * default RGB quantization range for the mode, even when QS=0.
7015 */
7016 if (info->rgb_quant_range_selectable ||
7017 rgb_quant_range == drm_default_rgb_quant_range(mode))
7018 frame->quantization_range = rgb_quant_range;
7019 else
7020 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7021
7022 /*
7023 * CEA-861-F:
7024 * "When transmitting any RGB colorimetry, the Source should set the
7025 * YQ-field to match the RGB Quantization Range being transmitted
7026 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7027 * set YQ=1) and the Sink shall ignore the YQ-field."
7028 *
7029 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7030 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7031 * good way to tell which version of CEA-861 the sink supports, so
7032 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7033 * on CEA-861-F.
7034 */
7035 if (!is_hdmi2_sink(connector) ||
7036 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7037 frame->ycc_quantization_range =
7038 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7039 else
7040 frame->ycc_quantization_range =
7041 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7042}
7043EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7044
7045static enum hdmi_3d_structure
7046s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7047{
7048 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7049
7050 switch (layout) {
7051 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7052 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7053 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7054 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7055 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7056 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7057 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7058 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7059 case DRM_MODE_FLAG_3D_L_DEPTH:
7060 return HDMI_3D_STRUCTURE_L_DEPTH;
7061 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7062 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7063 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7064 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7065 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7066 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7067 default:
7068 return HDMI_3D_STRUCTURE_INVALID;
7069 }
7070}
7071
7072/**
7073 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7074 * data from a DRM display mode
7075 * @frame: HDMI vendor infoframe
7076 * @connector: the connector
7077 * @mode: DRM display mode
7078 *
7079 * Note that there's is a need to send HDMI vendor infoframes only when using a
7080 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7081 * function will return -EINVAL, error that can be safely ignored.
7082 *
7083 * Return: 0 on success or a negative error code on failure.
7084 */
7085int
7086drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7087 const struct drm_connector *connector,
7088 const struct drm_display_mode *mode)
7089{
7090 /*
7091 * FIXME: sil-sii8620 doesn't have a connector around when
7092 * we need one, so we have to be prepared for a NULL connector.
7093 */
7094 bool has_hdmi_infoframe = connector ?
7095 connector->display_info.has_hdmi_infoframe : false;
7096 int err;
7097
7098 if (!frame || !mode)
7099 return -EINVAL;
7100
7101 if (!has_hdmi_infoframe)
7102 return -EINVAL;
7103
7104 err = hdmi_vendor_infoframe_init(frame);
7105 if (err < 0)
7106 return err;
7107
7108 /*
7109 * Even if it's not absolutely necessary to send the infoframe
7110 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7111 * know that the sink can handle it. This is based on a
7112 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7113 * have trouble realizing that they should switch from 3D to 2D
7114 * mode if the source simply stops sending the infoframe when
7115 * it wants to switch from 3D to 2D.
7116 */
7117 frame->vic = drm_mode_hdmi_vic(connector, mode);
7118 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7119
7120 return 0;
7121}
7122EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7123
7124static void drm_parse_tiled_block(struct drm_connector *connector,
7125 const struct displayid_block *block)
7126{
7127 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7128 u16 w, h;
7129 u8 tile_v_loc, tile_h_loc;
7130 u8 num_v_tile, num_h_tile;
7131 struct drm_tile_group *tg;
7132
7133 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7134 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7135
7136 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7137 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7138 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7139 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7140
7141 connector->has_tile = true;
7142 if (tile->tile_cap & 0x80)
7143 connector->tile_is_single_monitor = true;
7144
7145 connector->num_h_tile = num_h_tile + 1;
7146 connector->num_v_tile = num_v_tile + 1;
7147 connector->tile_h_loc = tile_h_loc;
7148 connector->tile_v_loc = tile_v_loc;
7149 connector->tile_h_size = w + 1;
7150 connector->tile_v_size = h + 1;
7151
7152 drm_dbg_kms(connector->dev,
7153 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7154 connector->base.id, connector->name,
7155 tile->tile_cap,
7156 connector->tile_h_size, connector->tile_v_size,
7157 connector->num_h_tile, connector->num_v_tile,
7158 connector->tile_h_loc, connector->tile_v_loc,
7159 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7160
7161 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7162 if (!tg)
7163 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7164 if (!tg)
7165 return;
7166
7167 if (connector->tile_group != tg) {
7168 /* if we haven't got a pointer,
7169 take the reference, drop ref to old tile group */
7170 if (connector->tile_group)
7171 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7172 connector->tile_group = tg;
7173 } else {
7174 /* if same tile group, then release the ref we just took. */
7175 drm_mode_put_tile_group(connector->dev, tg);
7176 }
7177}
7178
7179static void _drm_update_tile_info(struct drm_connector *connector,
7180 const struct drm_edid *drm_edid)
7181{
7182 const struct displayid_block *block;
7183 struct displayid_iter iter;
7184
7185 connector->has_tile = false;
7186
7187 displayid_iter_edid_begin(drm_edid, &iter);
7188 displayid_iter_for_each(block, &iter) {
7189 if (block->tag == DATA_BLOCK_TILED_DISPLAY)
7190 drm_parse_tiled_block(connector, block);
7191 }
7192 displayid_iter_end(&iter);
7193
7194 if (!connector->has_tile && connector->tile_group) {
7195 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7196 connector->tile_group = NULL;
7197 }
7198}