Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
   4 *
   5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/reset.h>
  26#include <linux/slab.h>
  27#include <linux/wait.h>
  28
  29#include "dmaengine.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/tegra_apb_dma.h>
  33
  34#define TEGRA_APBDMA_GENERAL			0x0
  35#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
  36
  37#define TEGRA_APBDMA_CONTROL			0x010
  38#define TEGRA_APBDMA_IRQ_MASK			0x01c
  39#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
  40
  41/* CSR register */
  42#define TEGRA_APBDMA_CHAN_CSR			0x00
  43#define TEGRA_APBDMA_CSR_ENB			BIT(31)
  44#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
  45#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
  46#define TEGRA_APBDMA_CSR_DIR			BIT(28)
  47#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
  48#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
  49#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
  50#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
  51#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
  52
  53/* STATUS register */
  54#define TEGRA_APBDMA_CHAN_STATUS		0x004
  55#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
  56#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
  57#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
  58#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
  59#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
  60#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
  61
  62#define TEGRA_APBDMA_CHAN_CSRE			0x00C
  63#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
  64
  65/* AHB memory address */
  66#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
  67
  68/* AHB sequence register */
  69#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
  70#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
  71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
  72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
  73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
  74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
  75#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
  76#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
  77#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
  78#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
  79#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
  80#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
  81#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
  82#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
  83
  84/* APB address */
  85#define TEGRA_APBDMA_CHAN_APBPTR		0x018
  86
  87/* APB sequence register */
  88#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
  89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
  90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
  91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
  92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
  93#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
  94#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
  95#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
  96
  97/* Tegra148 specific registers */
  98#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
  99
 100#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
 101
 102/*
 103 * If any burst is in flight and DMA paused then this is the time to complete
 104 * on-flight burst and update DMA status register.
 105 */
 106#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
 107
 108/* Channel base address offset from APBDMA base address */
 109#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
 110
 111#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
 112
 113struct tegra_dma;
 114
 115/*
 116 * tegra_dma_chip_data Tegra chip specific DMA data
 117 * @nr_channels: Number of channels available in the controller.
 118 * @channel_reg_size: Channel register size/stride.
 119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 120 * @support_channel_pause: Support channel wise pause of dma.
 121 * @support_separate_wcount_reg: Support separate word count register.
 122 */
 123struct tegra_dma_chip_data {
 124	unsigned int nr_channels;
 125	unsigned int channel_reg_size;
 126	unsigned int max_dma_count;
 127	bool support_channel_pause;
 128	bool support_separate_wcount_reg;
 129};
 130
 131/* DMA channel registers */
 132struct tegra_dma_channel_regs {
 133	u32 csr;
 134	u32 ahb_ptr;
 135	u32 apb_ptr;
 136	u32 ahb_seq;
 137	u32 apb_seq;
 138	u32 wcount;
 139};
 140
 141/*
 142 * tegra_dma_sg_req: DMA request details to configure hardware. This
 143 * contains the details for one transfer to configure DMA hw.
 144 * The client's request for data transfer can be broken into multiple
 145 * sub-transfer as per requester details and hw support.
 146 * This sub transfer get added in the list of transfer and point to Tegra
 147 * DMA descriptor which manages the transfer details.
 148 */
 149struct tegra_dma_sg_req {
 150	struct tegra_dma_channel_regs	ch_regs;
 151	unsigned int			req_len;
 152	bool				configured;
 153	bool				last_sg;
 154	struct list_head		node;
 155	struct tegra_dma_desc		*dma_desc;
 156	unsigned int			words_xferred;
 157};
 158
 159/*
 160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
 161 * This descriptor keep track of transfer status, callbacks and request
 162 * counts etc.
 163 */
 164struct tegra_dma_desc {
 165	struct dma_async_tx_descriptor	txd;
 166	unsigned int			bytes_requested;
 167	unsigned int			bytes_transferred;
 168	enum dma_status			dma_status;
 169	struct list_head		node;
 170	struct list_head		tx_list;
 171	struct list_head		cb_node;
 172	unsigned int			cb_count;
 173};
 174
 175struct tegra_dma_channel;
 176
 177typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
 178				bool to_terminate);
 179
 180/* tegra_dma_channel: Channel specific information */
 181struct tegra_dma_channel {
 182	struct dma_chan		dma_chan;
 183	char			name[12];
 184	bool			config_init;
 185	unsigned int		id;
 186	void __iomem		*chan_addr;
 187	spinlock_t		lock;
 188	bool			busy;
 189	struct tegra_dma	*tdma;
 190	bool			cyclic;
 191
 192	/* Different lists for managing the requests */
 193	struct list_head	free_sg_req;
 194	struct list_head	pending_sg_req;
 195	struct list_head	free_dma_desc;
 196	struct list_head	cb_desc;
 197
 198	/* ISR handler and tasklet for bottom half of isr handling */
 199	dma_isr_handler		isr_handler;
 200	struct tasklet_struct	tasklet;
 201
 202	/* Channel-slave specific configuration */
 203	unsigned int slave_id;
 204	struct dma_slave_config dma_sconfig;
 205	struct tegra_dma_channel_regs channel_reg;
 206
 207	struct wait_queue_head wq;
 208};
 209
 210/* tegra_dma: Tegra DMA specific information */
 211struct tegra_dma {
 212	struct dma_device		dma_dev;
 213	struct device			*dev;
 214	struct clk			*dma_clk;
 215	struct reset_control		*rst;
 216	spinlock_t			global_lock;
 217	void __iomem			*base_addr;
 218	const struct tegra_dma_chip_data *chip_data;
 219
 220	/*
 221	 * Counter for managing global pausing of the DMA controller.
 222	 * Only applicable for devices that don't support individual
 223	 * channel pausing.
 224	 */
 225	u32				global_pause_count;
 226
 227	/* Last member of the structure */
 228	struct tegra_dma_channel channels[];
 229};
 230
 231static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
 232{
 233	writel(val, tdma->base_addr + reg);
 234}
 235
 236static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
 237{
 238	return readl(tdma->base_addr + reg);
 239}
 240
 241static inline void tdc_write(struct tegra_dma_channel *tdc,
 242			     u32 reg, u32 val)
 243{
 244	writel(val, tdc->chan_addr + reg);
 245}
 246
 247static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 248{
 249	return readl(tdc->chan_addr + reg);
 250}
 251
 252static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 253{
 254	return container_of(dc, struct tegra_dma_channel, dma_chan);
 255}
 256
 257static inline struct tegra_dma_desc *
 258txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
 259{
 260	return container_of(td, struct tegra_dma_desc, txd);
 261}
 262
 263static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 264{
 265	return &tdc->dma_chan.dev->device;
 266}
 267
 268static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
 269
 270/* Get DMA desc from free list, if not there then allocate it.  */
 271static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
 272{
 273	struct tegra_dma_desc *dma_desc;
 274	unsigned long flags;
 275
 276	spin_lock_irqsave(&tdc->lock, flags);
 277
 278	/* Do not allocate if desc are waiting for ack */
 279	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 280		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
 281			list_del(&dma_desc->node);
 282			spin_unlock_irqrestore(&tdc->lock, flags);
 283			dma_desc->txd.flags = 0;
 284			return dma_desc;
 285		}
 286	}
 287
 288	spin_unlock_irqrestore(&tdc->lock, flags);
 289
 290	/* Allocate DMA desc */
 291	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
 292	if (!dma_desc)
 293		return NULL;
 294
 295	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
 296	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
 297	dma_desc->txd.flags = 0;
 298
 299	return dma_desc;
 300}
 301
 302static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
 303			       struct tegra_dma_desc *dma_desc)
 304{
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&tdc->lock, flags);
 308	if (!list_empty(&dma_desc->tx_list))
 309		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
 310	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 311	spin_unlock_irqrestore(&tdc->lock, flags);
 312}
 313
 314static struct tegra_dma_sg_req *
 315tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
 316{
 317	struct tegra_dma_sg_req *sg_req;
 318	unsigned long flags;
 319
 320	spin_lock_irqsave(&tdc->lock, flags);
 321	if (!list_empty(&tdc->free_sg_req)) {
 322		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
 323					  node);
 324		list_del(&sg_req->node);
 325		spin_unlock_irqrestore(&tdc->lock, flags);
 326		return sg_req;
 327	}
 328	spin_unlock_irqrestore(&tdc->lock, flags);
 329
 330	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
 331
 332	return sg_req;
 333}
 334
 335static int tegra_dma_slave_config(struct dma_chan *dc,
 336				  struct dma_slave_config *sconfig)
 337{
 338	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 339
 340	if (!list_empty(&tdc->pending_sg_req)) {
 341		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
 342		return -EBUSY;
 343	}
 344
 345	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 346	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
 347	    sconfig->device_fc) {
 348		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
 349			return -EINVAL;
 350		tdc->slave_id = sconfig->slave_id;
 351	}
 352	tdc->config_init = true;
 353
 354	return 0;
 355}
 356
 357static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
 358				   bool wait_for_burst_complete)
 359{
 360	struct tegra_dma *tdma = tdc->tdma;
 361
 362	spin_lock(&tdma->global_lock);
 363
 364	if (tdc->tdma->global_pause_count == 0) {
 365		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
 366		if (wait_for_burst_complete)
 367			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 368	}
 369
 370	tdc->tdma->global_pause_count++;
 371
 372	spin_unlock(&tdma->global_lock);
 373}
 374
 375static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
 376{
 377	struct tegra_dma *tdma = tdc->tdma;
 378
 379	spin_lock(&tdma->global_lock);
 380
 381	if (WARN_ON(tdc->tdma->global_pause_count == 0))
 382		goto out;
 383
 384	if (--tdc->tdma->global_pause_count == 0)
 385		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
 386			   TEGRA_APBDMA_GENERAL_ENABLE);
 387
 388out:
 389	spin_unlock(&tdma->global_lock);
 390}
 391
 392static void tegra_dma_pause(struct tegra_dma_channel *tdc,
 393			    bool wait_for_burst_complete)
 394{
 395	struct tegra_dma *tdma = tdc->tdma;
 396
 397	if (tdma->chip_data->support_channel_pause) {
 398		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
 399			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
 400		if (wait_for_burst_complete)
 401			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 402	} else {
 403		tegra_dma_global_pause(tdc, wait_for_burst_complete);
 404	}
 405}
 406
 407static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 408{
 409	struct tegra_dma *tdma = tdc->tdma;
 410
 411	if (tdma->chip_data->support_channel_pause)
 412		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
 413	else
 414		tegra_dma_global_resume(tdc);
 415}
 416
 417static void tegra_dma_stop(struct tegra_dma_channel *tdc)
 418{
 419	u32 csr, status;
 420
 421	/* Disable interrupts */
 422	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
 423	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
 424	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 425
 426	/* Disable DMA */
 427	csr &= ~TEGRA_APBDMA_CSR_ENB;
 428	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 429
 430	/* Clear interrupt status if it is there */
 431	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 432	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 433		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 434		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 435	}
 436	tdc->busy = false;
 437}
 438
 439static void tegra_dma_start(struct tegra_dma_channel *tdc,
 440			    struct tegra_dma_sg_req *sg_req)
 441{
 442	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
 443
 444	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
 445	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
 446	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
 447	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
 448	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
 449	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 450		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
 451
 452	/* Start DMA */
 453	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 454		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
 455}
 456
 457static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
 458					 struct tegra_dma_sg_req *nsg_req)
 459{
 460	unsigned long status;
 461
 462	/*
 463	 * The DMA controller reloads the new configuration for next transfer
 464	 * after last burst of current transfer completes.
 465	 * If there is no IEC status then this makes sure that last burst
 466	 * has not be completed. There may be case that last burst is on
 467	 * flight and so it can complete but because DMA is paused, it
 468	 * will not generates interrupt as well as not reload the new
 469	 * configuration.
 470	 * If there is already IEC status then interrupt handler need to
 471	 * load new configuration.
 472	 */
 473	tegra_dma_pause(tdc, false);
 474	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 475
 476	/*
 477	 * If interrupt is pending then do nothing as the ISR will handle
 478	 * the programing for new request.
 479	 */
 480	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 481		dev_err(tdc2dev(tdc),
 482			"Skipping new configuration as interrupt is pending\n");
 483		tegra_dma_resume(tdc);
 484		return;
 485	}
 486
 487	/* Safe to program new configuration */
 488	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
 489	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
 490	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 491		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
 492			  nsg_req->ch_regs.wcount);
 493	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 494		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
 495	nsg_req->configured = true;
 496	nsg_req->words_xferred = 0;
 497
 498	tegra_dma_resume(tdc);
 499}
 500
 501static void tdc_start_head_req(struct tegra_dma_channel *tdc)
 502{
 503	struct tegra_dma_sg_req *sg_req;
 504
 505	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
 506	tegra_dma_start(tdc, sg_req);
 507	sg_req->configured = true;
 508	sg_req->words_xferred = 0;
 509	tdc->busy = true;
 510}
 511
 512static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
 513{
 514	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
 515
 516	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 517	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
 518		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
 519					   node);
 520		tegra_dma_configure_for_next(tdc, hnsgreq);
 521	}
 522}
 523
 524static inline unsigned int
 525get_current_xferred_count(struct tegra_dma_channel *tdc,
 526			  struct tegra_dma_sg_req *sg_req,
 527			  unsigned long status)
 528{
 529	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
 530}
 531
 532static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
 533{
 534	struct tegra_dma_desc *dma_desc;
 535	struct tegra_dma_sg_req *sgreq;
 536
 537	while (!list_empty(&tdc->pending_sg_req)) {
 538		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 539					 node);
 540		list_move_tail(&sgreq->node, &tdc->free_sg_req);
 541		if (sgreq->last_sg) {
 542			dma_desc = sgreq->dma_desc;
 543			dma_desc->dma_status = DMA_ERROR;
 544			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 545
 546			/* Add in cb list if it is not there. */
 547			if (!dma_desc->cb_count)
 548				list_add_tail(&dma_desc->cb_node,
 549					      &tdc->cb_desc);
 550			dma_desc->cb_count++;
 551		}
 552	}
 553	tdc->isr_handler = NULL;
 554}
 555
 556static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
 557					   bool to_terminate)
 558{
 559	struct tegra_dma_sg_req *hsgreq;
 560
 561	/*
 562	 * Check that head req on list should be in flight.
 563	 * If it is not in flight then abort transfer as
 564	 * looping of transfer can not continue.
 565	 */
 566	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 567	if (!hsgreq->configured) {
 568		tegra_dma_stop(tdc);
 569		pm_runtime_put(tdc->tdma->dev);
 570		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
 571		tegra_dma_abort_all(tdc);
 572		return false;
 573	}
 574
 575	/* Configure next request */
 576	if (!to_terminate)
 577		tdc_configure_next_head_desc(tdc);
 578
 579	return true;
 580}
 581
 582static void handle_once_dma_done(struct tegra_dma_channel *tdc,
 583				 bool to_terminate)
 584{
 585	struct tegra_dma_desc *dma_desc;
 586	struct tegra_dma_sg_req *sgreq;
 587
 588	tdc->busy = false;
 589	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 590	dma_desc = sgreq->dma_desc;
 591	dma_desc->bytes_transferred += sgreq->req_len;
 592
 593	list_del(&sgreq->node);
 594	if (sgreq->last_sg) {
 595		dma_desc->dma_status = DMA_COMPLETE;
 596		dma_cookie_complete(&dma_desc->txd);
 597		if (!dma_desc->cb_count)
 598			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 599		dma_desc->cb_count++;
 600		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 601	}
 602	list_add_tail(&sgreq->node, &tdc->free_sg_req);
 603
 604	/* Do not start DMA if it is going to be terminate */
 605	if (to_terminate)
 606		return;
 607
 608	if (list_empty(&tdc->pending_sg_req)) {
 609		pm_runtime_put(tdc->tdma->dev);
 610		return;
 611	}
 612
 613	tdc_start_head_req(tdc);
 614}
 615
 616static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
 617					    bool to_terminate)
 618{
 619	struct tegra_dma_desc *dma_desc;
 620	struct tegra_dma_sg_req *sgreq;
 621	bool st;
 622
 623	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 624	dma_desc = sgreq->dma_desc;
 625	/* if we dma for long enough the transfer count will wrap */
 626	dma_desc->bytes_transferred =
 627		(dma_desc->bytes_transferred + sgreq->req_len) %
 628		dma_desc->bytes_requested;
 629
 630	/* Callback need to be call */
 631	if (!dma_desc->cb_count)
 632		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 633	dma_desc->cb_count++;
 634
 635	sgreq->words_xferred = 0;
 636
 637	/* If not last req then put at end of pending list */
 638	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
 639		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
 640		sgreq->configured = false;
 641		st = handle_continuous_head_request(tdc, to_terminate);
 642		if (!st)
 643			dma_desc->dma_status = DMA_ERROR;
 644	}
 645}
 646
 647static void tegra_dma_tasklet(unsigned long data)
 648{
 649	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
 650	struct dmaengine_desc_callback cb;
 651	struct tegra_dma_desc *dma_desc;
 652	unsigned int cb_count;
 653	unsigned long flags;
 654
 655	spin_lock_irqsave(&tdc->lock, flags);
 656	while (!list_empty(&tdc->cb_desc)) {
 657		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 658					    cb_node);
 659		list_del(&dma_desc->cb_node);
 660		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
 661		cb_count = dma_desc->cb_count;
 662		dma_desc->cb_count = 0;
 663		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
 664					    cb.callback);
 665		spin_unlock_irqrestore(&tdc->lock, flags);
 666		while (cb_count--)
 667			dmaengine_desc_callback_invoke(&cb, NULL);
 668		spin_lock_irqsave(&tdc->lock, flags);
 669	}
 670	spin_unlock_irqrestore(&tdc->lock, flags);
 671}
 672
 673static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 674{
 675	struct tegra_dma_channel *tdc = dev_id;
 676	u32 status;
 677
 678	spin_lock(&tdc->lock);
 679
 680	trace_tegra_dma_isr(&tdc->dma_chan, irq);
 681	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 682	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 683		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 684		tdc->isr_handler(tdc, false);
 685		tasklet_schedule(&tdc->tasklet);
 686		wake_up_all(&tdc->wq);
 687		spin_unlock(&tdc->lock);
 688		return IRQ_HANDLED;
 689	}
 690
 691	spin_unlock(&tdc->lock);
 692	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
 693		 status);
 694
 695	return IRQ_NONE;
 696}
 697
 698static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 699{
 700	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
 701	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
 702	unsigned long flags;
 703	dma_cookie_t cookie;
 704
 705	spin_lock_irqsave(&tdc->lock, flags);
 706	dma_desc->dma_status = DMA_IN_PROGRESS;
 707	cookie = dma_cookie_assign(&dma_desc->txd);
 708	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
 709	spin_unlock_irqrestore(&tdc->lock, flags);
 710
 711	return cookie;
 712}
 713
 714static void tegra_dma_issue_pending(struct dma_chan *dc)
 715{
 716	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 717	unsigned long flags;
 718	int err;
 719
 720	spin_lock_irqsave(&tdc->lock, flags);
 721	if (list_empty(&tdc->pending_sg_req)) {
 722		dev_err(tdc2dev(tdc), "No DMA request\n");
 723		goto end;
 724	}
 725	if (!tdc->busy) {
 726		err = pm_runtime_get_sync(tdc->tdma->dev);
 727		if (err < 0) {
 728			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
 729			goto end;
 730		}
 731
 732		tdc_start_head_req(tdc);
 733
 734		/* Continuous single mode: Configure next req */
 735		if (tdc->cyclic) {
 736			/*
 737			 * Wait for 1 burst time for configure DMA for
 738			 * next transfer.
 739			 */
 740			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 741			tdc_configure_next_head_desc(tdc);
 742		}
 743	}
 744end:
 745	spin_unlock_irqrestore(&tdc->lock, flags);
 746}
 747
 748static int tegra_dma_terminate_all(struct dma_chan *dc)
 749{
 750	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 751	struct tegra_dma_desc *dma_desc;
 752	struct tegra_dma_sg_req *sgreq;
 753	unsigned long flags;
 754	u32 status, wcount;
 755	bool was_busy;
 756
 757	spin_lock_irqsave(&tdc->lock, flags);
 758
 759	if (!tdc->busy)
 760		goto skip_dma_stop;
 761
 762	/* Pause DMA before checking the queue status */
 763	tegra_dma_pause(tdc, true);
 764
 765	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 766	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 767		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
 768		tdc->isr_handler(tdc, true);
 769		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 770	}
 771	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 772		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 773	else
 774		wcount = status;
 775
 776	was_busy = tdc->busy;
 777	tegra_dma_stop(tdc);
 778
 779	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
 780		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 781					 node);
 782		sgreq->dma_desc->bytes_transferred +=
 783				get_current_xferred_count(tdc, sgreq, wcount);
 784	}
 785	tegra_dma_resume(tdc);
 786
 787	pm_runtime_put(tdc->tdma->dev);
 788	wake_up_all(&tdc->wq);
 789
 790skip_dma_stop:
 791	tegra_dma_abort_all(tdc);
 792
 793	while (!list_empty(&tdc->cb_desc)) {
 794		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 795					    cb_node);
 796		list_del(&dma_desc->cb_node);
 797		dma_desc->cb_count = 0;
 798	}
 799	spin_unlock_irqrestore(&tdc->lock, flags);
 800
 801	return 0;
 802}
 803
 804static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
 805{
 806	unsigned long flags;
 807	u32 status;
 808
 809	spin_lock_irqsave(&tdc->lock, flags);
 810	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 811	spin_unlock_irqrestore(&tdc->lock, flags);
 812
 813	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
 814}
 815
 816static void tegra_dma_synchronize(struct dma_chan *dc)
 817{
 818	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 819	int err;
 820
 821	err = pm_runtime_get_sync(tdc->tdma->dev);
 822	if (err < 0) {
 823		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
 824		return;
 825	}
 826
 827	/*
 828	 * CPU, which handles interrupt, could be busy in
 829	 * uninterruptible state, in this case sibling CPU
 830	 * should wait until interrupt is handled.
 831	 */
 832	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
 833
 834	tasklet_kill(&tdc->tasklet);
 835
 836	pm_runtime_put(tdc->tdma->dev);
 837}
 838
 839static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
 840					       struct tegra_dma_sg_req *sg_req)
 841{
 842	u32 status, wcount = 0;
 843
 844	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
 845		return 0;
 846
 847	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 848		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 849
 850	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 851
 852	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
 853		wcount = status;
 854
 855	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
 856		return sg_req->req_len;
 857
 858	wcount = get_current_xferred_count(tdc, sg_req, wcount);
 859
 860	if (!wcount) {
 861		/*
 862		 * If wcount wasn't ever polled for this SG before, then
 863		 * simply assume that transfer hasn't started yet.
 864		 *
 865		 * Otherwise it's the end of the transfer.
 866		 *
 867		 * The alternative would be to poll the status register
 868		 * until EOC bit is set or wcount goes UP. That's so
 869		 * because EOC bit is getting set only after the last
 870		 * burst's completion and counter is less than the actual
 871		 * transfer size by 4 bytes. The counter value wraps around
 872		 * in a cyclic mode before EOC is set(!), so we can't easily
 873		 * distinguish start of transfer from its end.
 874		 */
 875		if (sg_req->words_xferred)
 876			wcount = sg_req->req_len - 4;
 877
 878	} else if (wcount < sg_req->words_xferred) {
 879		/*
 880		 * This case will never happen for a non-cyclic transfer.
 881		 *
 882		 * For a cyclic transfer, although it is possible for the
 883		 * next transfer to have already started (resetting the word
 884		 * count), this case should still not happen because we should
 885		 * have detected that the EOC bit is set and hence the transfer
 886		 * was completed.
 887		 */
 888		WARN_ON_ONCE(1);
 889
 890		wcount = sg_req->req_len - 4;
 891	} else {
 892		sg_req->words_xferred = wcount;
 893	}
 894
 895	return wcount;
 896}
 897
 898static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 899					   dma_cookie_t cookie,
 900					   struct dma_tx_state *txstate)
 901{
 902	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 903	struct tegra_dma_desc *dma_desc;
 904	struct tegra_dma_sg_req *sg_req;
 905	enum dma_status ret;
 906	unsigned long flags;
 907	unsigned int residual;
 908	unsigned int bytes = 0;
 909
 910	ret = dma_cookie_status(dc, cookie, txstate);
 911	if (ret == DMA_COMPLETE)
 912		return ret;
 913
 914	spin_lock_irqsave(&tdc->lock, flags);
 915
 916	/* Check on wait_ack desc status */
 917	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 918		if (dma_desc->txd.cookie == cookie) {
 919			ret = dma_desc->dma_status;
 920			goto found;
 921		}
 922	}
 923
 924	/* Check in pending list */
 925	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
 926		dma_desc = sg_req->dma_desc;
 927		if (dma_desc->txd.cookie == cookie) {
 928			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
 929			ret = dma_desc->dma_status;
 930			goto found;
 931		}
 932	}
 933
 934	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
 935	dma_desc = NULL;
 936
 937found:
 938	if (dma_desc && txstate) {
 939		residual = dma_desc->bytes_requested -
 940			   ((dma_desc->bytes_transferred + bytes) %
 941			    dma_desc->bytes_requested);
 942		dma_set_residue(txstate, residual);
 943	}
 944
 945	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
 946	spin_unlock_irqrestore(&tdc->lock, flags);
 947
 948	return ret;
 949}
 950
 951static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
 952					 enum dma_slave_buswidth slave_bw)
 953{
 954	switch (slave_bw) {
 955	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 956		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
 957	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 958		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
 959	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 960		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 961	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 962		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
 963	default:
 964		dev_warn(tdc2dev(tdc),
 965			 "slave bw is not supported, using 32bits\n");
 966		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 967	}
 968}
 969
 970static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 971					  u32 burst_size,
 972					  enum dma_slave_buswidth slave_bw,
 973					  u32 len)
 974{
 975	unsigned int burst_byte, burst_ahb_width;
 976
 977	/*
 978	 * burst_size from client is in terms of the bus_width.
 979	 * convert them into AHB memory width which is 4 byte.
 980	 */
 981	burst_byte = burst_size * slave_bw;
 982	burst_ahb_width = burst_byte / 4;
 983
 984	/* If burst size is 0 then calculate the burst size based on length */
 985	if (!burst_ahb_width) {
 986		if (len & 0xF)
 987			return TEGRA_APBDMA_AHBSEQ_BURST_1;
 988		else if ((len >> 4) & 0x1)
 989			return TEGRA_APBDMA_AHBSEQ_BURST_4;
 990		else
 991			return TEGRA_APBDMA_AHBSEQ_BURST_8;
 992	}
 993	if (burst_ahb_width < 4)
 994		return TEGRA_APBDMA_AHBSEQ_BURST_1;
 995	else if (burst_ahb_width < 8)
 996		return TEGRA_APBDMA_AHBSEQ_BURST_4;
 997	else
 998		return TEGRA_APBDMA_AHBSEQ_BURST_8;
 999}
1000
1001static int get_transfer_param(struct tegra_dma_channel *tdc,
1002			      enum dma_transfer_direction direction,
1003			      u32 *apb_addr,
1004			      u32 *apb_seq,
1005			      u32 *csr,
1006			      unsigned int *burst_size,
1007			      enum dma_slave_buswidth *slave_bw)
1008{
1009	switch (direction) {
1010	case DMA_MEM_TO_DEV:
1011		*apb_addr = tdc->dma_sconfig.dst_addr;
1012		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1013		*burst_size = tdc->dma_sconfig.dst_maxburst;
1014		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1015		*csr = TEGRA_APBDMA_CSR_DIR;
1016		return 0;
1017
1018	case DMA_DEV_TO_MEM:
1019		*apb_addr = tdc->dma_sconfig.src_addr;
1020		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1021		*burst_size = tdc->dma_sconfig.src_maxburst;
1022		*slave_bw = tdc->dma_sconfig.src_addr_width;
1023		*csr = 0;
1024		return 0;
1025
1026	default:
1027		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1028		break;
1029	}
1030
1031	return -EINVAL;
1032}
1033
1034static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1035				  struct tegra_dma_channel_regs *ch_regs,
1036				  u32 len)
1037{
1038	u32 len_field = (len - 4) & 0xFFFC;
1039
1040	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1041		ch_regs->wcount = len_field;
1042	else
1043		ch_regs->csr |= len_field;
1044}
1045
1046static struct dma_async_tx_descriptor *
1047tegra_dma_prep_slave_sg(struct dma_chan *dc,
1048			struct scatterlist *sgl,
1049			unsigned int sg_len,
1050			enum dma_transfer_direction direction,
1051			unsigned long flags,
1052			void *context)
1053{
1054	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1055	struct tegra_dma_sg_req *sg_req = NULL;
1056	u32 csr, ahb_seq, apb_ptr, apb_seq;
1057	enum dma_slave_buswidth slave_bw;
1058	struct tegra_dma_desc *dma_desc;
1059	struct list_head req_list;
1060	struct scatterlist *sg;
1061	unsigned int burst_size;
1062	unsigned int i;
1063
1064	if (!tdc->config_init) {
1065		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1066		return NULL;
1067	}
1068	if (sg_len < 1) {
1069		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1070		return NULL;
1071	}
1072
1073	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1074			       &burst_size, &slave_bw) < 0)
1075		return NULL;
1076
1077	INIT_LIST_HEAD(&req_list);
1078
1079	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1080	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1081					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1082	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1083
1084	csr |= TEGRA_APBDMA_CSR_ONCE;
1085
1086	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1087		csr |= TEGRA_APBDMA_CSR_FLOW;
1088		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089	}
1090
1091	if (flags & DMA_PREP_INTERRUPT) {
1092		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1093	} else {
1094		WARN_ON_ONCE(1);
1095		return NULL;
1096	}
1097
1098	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1099
1100	dma_desc = tegra_dma_desc_get(tdc);
1101	if (!dma_desc) {
1102		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1103		return NULL;
1104	}
1105	INIT_LIST_HEAD(&dma_desc->tx_list);
1106	INIT_LIST_HEAD(&dma_desc->cb_node);
1107	dma_desc->cb_count = 0;
1108	dma_desc->bytes_requested = 0;
1109	dma_desc->bytes_transferred = 0;
1110	dma_desc->dma_status = DMA_IN_PROGRESS;
1111
1112	/* Make transfer requests */
1113	for_each_sg(sgl, sg, sg_len, i) {
1114		u32 len, mem;
1115
1116		mem = sg_dma_address(sg);
1117		len = sg_dma_len(sg);
1118
1119		if ((len & 3) || (mem & 3) ||
1120		    len > tdc->tdma->chip_data->max_dma_count) {
1121			dev_err(tdc2dev(tdc),
1122				"DMA length/memory address is not supported\n");
1123			tegra_dma_desc_put(tdc, dma_desc);
1124			return NULL;
1125		}
1126
1127		sg_req = tegra_dma_sg_req_get(tdc);
1128		if (!sg_req) {
1129			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1130			tegra_dma_desc_put(tdc, dma_desc);
1131			return NULL;
1132		}
1133
1134		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1135		dma_desc->bytes_requested += len;
1136
1137		sg_req->ch_regs.apb_ptr = apb_ptr;
1138		sg_req->ch_regs.ahb_ptr = mem;
1139		sg_req->ch_regs.csr = csr;
1140		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1141		sg_req->ch_regs.apb_seq = apb_seq;
1142		sg_req->ch_regs.ahb_seq = ahb_seq;
1143		sg_req->configured = false;
1144		sg_req->last_sg = false;
1145		sg_req->dma_desc = dma_desc;
1146		sg_req->req_len = len;
1147
1148		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1149	}
1150	sg_req->last_sg = true;
1151	if (flags & DMA_CTRL_ACK)
1152		dma_desc->txd.flags = DMA_CTRL_ACK;
1153
1154	/*
1155	 * Make sure that mode should not be conflicting with currently
1156	 * configured mode.
1157	 */
1158	if (!tdc->isr_handler) {
1159		tdc->isr_handler = handle_once_dma_done;
1160		tdc->cyclic = false;
1161	} else {
1162		if (tdc->cyclic) {
1163			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1164			tegra_dma_desc_put(tdc, dma_desc);
1165			return NULL;
1166		}
1167	}
1168
1169	return &dma_desc->txd;
1170}
1171
1172static struct dma_async_tx_descriptor *
1173tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1174			  size_t buf_len,
1175			  size_t period_len,
1176			  enum dma_transfer_direction direction,
1177			  unsigned long flags)
1178{
1179	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1180	struct tegra_dma_sg_req *sg_req = NULL;
1181	u32 csr, ahb_seq, apb_ptr, apb_seq;
1182	enum dma_slave_buswidth slave_bw;
1183	struct tegra_dma_desc *dma_desc;
1184	dma_addr_t mem = buf_addr;
1185	unsigned int burst_size;
1186	size_t len, remain_len;
1187
1188	if (!buf_len || !period_len) {
1189		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1190		return NULL;
1191	}
1192
1193	if (!tdc->config_init) {
1194		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1195		return NULL;
1196	}
1197
1198	/*
1199	 * We allow to take more number of requests till DMA is
1200	 * not started. The driver will loop over all requests.
1201	 * Once DMA is started then new requests can be queued only after
1202	 * terminating the DMA.
1203	 */
1204	if (tdc->busy) {
1205		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1206		return NULL;
1207	}
1208
1209	/*
1210	 * We only support cycle transfer when buf_len is multiple of
1211	 * period_len.
1212	 */
1213	if (buf_len % period_len) {
1214		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1215		return NULL;
1216	}
1217
1218	len = period_len;
1219	if ((len & 3) || (buf_addr & 3) ||
1220	    len > tdc->tdma->chip_data->max_dma_count) {
1221		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1222		return NULL;
1223	}
1224
1225	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1226			       &burst_size, &slave_bw) < 0)
1227		return NULL;
1228
1229	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1230	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1231					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1232	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1233
1234	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1235		csr |= TEGRA_APBDMA_CSR_FLOW;
1236		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1237	}
1238
1239	if (flags & DMA_PREP_INTERRUPT) {
1240		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1241	} else {
1242		WARN_ON_ONCE(1);
1243		return NULL;
1244	}
1245
1246	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1247
1248	dma_desc = tegra_dma_desc_get(tdc);
1249	if (!dma_desc) {
1250		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1251		return NULL;
1252	}
1253
1254	INIT_LIST_HEAD(&dma_desc->tx_list);
1255	INIT_LIST_HEAD(&dma_desc->cb_node);
1256	dma_desc->cb_count = 0;
1257
1258	dma_desc->bytes_transferred = 0;
1259	dma_desc->bytes_requested = buf_len;
1260	remain_len = buf_len;
1261
1262	/* Split transfer equal to period size */
1263	while (remain_len) {
1264		sg_req = tegra_dma_sg_req_get(tdc);
1265		if (!sg_req) {
1266			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1267			tegra_dma_desc_put(tdc, dma_desc);
1268			return NULL;
1269		}
1270
1271		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1272		sg_req->ch_regs.apb_ptr = apb_ptr;
1273		sg_req->ch_regs.ahb_ptr = mem;
1274		sg_req->ch_regs.csr = csr;
1275		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1276		sg_req->ch_regs.apb_seq = apb_seq;
1277		sg_req->ch_regs.ahb_seq = ahb_seq;
1278		sg_req->configured = false;
1279		sg_req->last_sg = false;
1280		sg_req->dma_desc = dma_desc;
1281		sg_req->req_len = len;
1282
1283		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1284		remain_len -= len;
1285		mem += len;
1286	}
1287	sg_req->last_sg = true;
1288	if (flags & DMA_CTRL_ACK)
1289		dma_desc->txd.flags = DMA_CTRL_ACK;
1290
1291	/*
1292	 * Make sure that mode should not be conflicting with currently
1293	 * configured mode.
1294	 */
1295	if (!tdc->isr_handler) {
1296		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1297		tdc->cyclic = true;
1298	} else {
1299		if (!tdc->cyclic) {
1300			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1301			tegra_dma_desc_put(tdc, dma_desc);
1302			return NULL;
1303		}
1304	}
1305
1306	return &dma_desc->txd;
1307}
1308
1309static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1310{
1311	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1312
1313	dma_cookie_init(&tdc->dma_chan);
1314
1315	return 0;
1316}
1317
1318static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1319{
1320	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1321	struct tegra_dma_desc *dma_desc;
1322	struct tegra_dma_sg_req *sg_req;
1323	struct list_head dma_desc_list;
1324	struct list_head sg_req_list;
1325
1326	INIT_LIST_HEAD(&dma_desc_list);
1327	INIT_LIST_HEAD(&sg_req_list);
1328
1329	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1330
1331	tegra_dma_terminate_all(dc);
1332	tasklet_kill(&tdc->tasklet);
1333
1334	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1335	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1336	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1337	INIT_LIST_HEAD(&tdc->cb_desc);
1338	tdc->config_init = false;
1339	tdc->isr_handler = NULL;
1340
1341	while (!list_empty(&dma_desc_list)) {
1342		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1343					    node);
1344		list_del(&dma_desc->node);
1345		kfree(dma_desc);
1346	}
1347
1348	while (!list_empty(&sg_req_list)) {
1349		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1350		list_del(&sg_req->node);
1351		kfree(sg_req);
1352	}
1353
1354	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1355}
1356
1357static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1358					   struct of_dma *ofdma)
1359{
1360	struct tegra_dma *tdma = ofdma->of_dma_data;
1361	struct tegra_dma_channel *tdc;
1362	struct dma_chan *chan;
1363
1364	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1365		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1366		return NULL;
1367	}
1368
1369	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1370	if (!chan)
1371		return NULL;
1372
1373	tdc = to_tegra_dma_chan(chan);
1374	tdc->slave_id = dma_spec->args[0];
1375
1376	return chan;
1377}
1378
1379/* Tegra20 specific DMA controller information */
1380static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1381	.nr_channels		= 16,
1382	.channel_reg_size	= 0x20,
1383	.max_dma_count		= 1024UL * 64,
1384	.support_channel_pause	= false,
1385	.support_separate_wcount_reg = false,
1386};
1387
1388/* Tegra30 specific DMA controller information */
1389static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1390	.nr_channels		= 32,
1391	.channel_reg_size	= 0x20,
1392	.max_dma_count		= 1024UL * 64,
1393	.support_channel_pause	= false,
1394	.support_separate_wcount_reg = false,
1395};
1396
1397/* Tegra114 specific DMA controller information */
1398static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1399	.nr_channels		= 32,
1400	.channel_reg_size	= 0x20,
1401	.max_dma_count		= 1024UL * 64,
1402	.support_channel_pause	= true,
1403	.support_separate_wcount_reg = false,
1404};
1405
1406/* Tegra148 specific DMA controller information */
1407static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1408	.nr_channels		= 32,
1409	.channel_reg_size	= 0x40,
1410	.max_dma_count		= 1024UL * 64,
1411	.support_channel_pause	= true,
1412	.support_separate_wcount_reg = true,
1413};
1414
1415static int tegra_dma_init_hw(struct tegra_dma *tdma)
1416{
1417	int err;
1418
1419	err = reset_control_assert(tdma->rst);
1420	if (err) {
1421		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1422		return err;
1423	}
1424
1425	err = clk_enable(tdma->dma_clk);
1426	if (err) {
1427		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1428		return err;
1429	}
1430
1431	/* reset DMA controller */
1432	udelay(2);
1433	reset_control_deassert(tdma->rst);
1434
1435	/* enable global DMA registers */
1436	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1439
1440	clk_disable(tdma->dma_clk);
1441
1442	return 0;
1443}
1444
1445static int tegra_dma_probe(struct platform_device *pdev)
1446{
1447	const struct tegra_dma_chip_data *cdata;
1448	struct tegra_dma *tdma;
1449	unsigned int i;
1450	size_t size;
1451	int ret;
1452
1453	cdata = of_device_get_match_data(&pdev->dev);
1454	size = struct_size(tdma, channels, cdata->nr_channels);
1455
1456	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1457	if (!tdma)
1458		return -ENOMEM;
1459
1460	tdma->dev = &pdev->dev;
1461	tdma->chip_data = cdata;
1462	platform_set_drvdata(pdev, tdma);
1463
1464	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1465	if (IS_ERR(tdma->base_addr))
1466		return PTR_ERR(tdma->base_addr);
1467
1468	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1469	if (IS_ERR(tdma->dma_clk)) {
1470		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1471		return PTR_ERR(tdma->dma_clk);
1472	}
1473
1474	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1475	if (IS_ERR(tdma->rst)) {
1476		dev_err(&pdev->dev, "Error: Missing reset\n");
1477		return PTR_ERR(tdma->rst);
1478	}
1479
1480	spin_lock_init(&tdma->global_lock);
1481
1482	ret = clk_prepare(tdma->dma_clk);
1483	if (ret)
1484		return ret;
1485
1486	ret = tegra_dma_init_hw(tdma);
1487	if (ret)
1488		goto err_clk_unprepare;
1489
1490	pm_runtime_irq_safe(&pdev->dev);
1491	pm_runtime_enable(&pdev->dev);
1492
1493	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1494	for (i = 0; i < cdata->nr_channels; i++) {
1495		struct tegra_dma_channel *tdc = &tdma->channels[i];
1496		int irq;
1497
1498		tdc->chan_addr = tdma->base_addr +
1499				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1500				 (i * cdata->channel_reg_size);
1501
1502		irq = platform_get_irq(pdev, i);
1503		if (irq < 0) {
1504			ret = irq;
1505			goto err_pm_disable;
1506		}
1507
1508		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1509		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1510				       tdc->name, tdc);
1511		if (ret) {
1512			dev_err(&pdev->dev,
1513				"request_irq failed with err %d channel %d\n",
1514				ret, i);
1515			goto err_pm_disable;
1516		}
1517
1518		tdc->dma_chan.device = &tdma->dma_dev;
1519		dma_cookie_init(&tdc->dma_chan);
1520		list_add_tail(&tdc->dma_chan.device_node,
1521			      &tdma->dma_dev.channels);
1522		tdc->tdma = tdma;
1523		tdc->id = i;
1524		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1525
1526		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1527			     (unsigned long)tdc);
1528		spin_lock_init(&tdc->lock);
1529		init_waitqueue_head(&tdc->wq);
1530
1531		INIT_LIST_HEAD(&tdc->pending_sg_req);
1532		INIT_LIST_HEAD(&tdc->free_sg_req);
1533		INIT_LIST_HEAD(&tdc->free_dma_desc);
1534		INIT_LIST_HEAD(&tdc->cb_desc);
1535	}
1536
1537	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1538	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1539	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1540
1541	tdma->global_pause_count = 0;
1542	tdma->dma_dev.dev = &pdev->dev;
1543	tdma->dma_dev.device_alloc_chan_resources =
1544					tegra_dma_alloc_chan_resources;
1545	tdma->dma_dev.device_free_chan_resources =
1546					tegra_dma_free_chan_resources;
1547	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1548	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1549	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1550		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1551		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1552		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1553	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1554		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1555		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1556		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1557	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1558	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1559	tdma->dma_dev.device_config = tegra_dma_slave_config;
1560	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1561	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1562	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1563	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1564
1565	ret = dma_async_device_register(&tdma->dma_dev);
1566	if (ret < 0) {
1567		dev_err(&pdev->dev,
1568			"Tegra20 APB DMA driver registration failed %d\n", ret);
1569		goto err_pm_disable;
1570	}
1571
1572	ret = of_dma_controller_register(pdev->dev.of_node,
1573					 tegra_dma_of_xlate, tdma);
1574	if (ret < 0) {
1575		dev_err(&pdev->dev,
1576			"Tegra20 APB DMA OF registration failed %d\n", ret);
1577		goto err_unregister_dma_dev;
1578	}
1579
1580	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1581		 cdata->nr_channels);
1582
1583	return 0;
1584
1585err_unregister_dma_dev:
1586	dma_async_device_unregister(&tdma->dma_dev);
1587
1588err_pm_disable:
1589	pm_runtime_disable(&pdev->dev);
1590
1591err_clk_unprepare:
1592	clk_unprepare(tdma->dma_clk);
1593
1594	return ret;
1595}
1596
1597static int tegra_dma_remove(struct platform_device *pdev)
1598{
1599	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1600
1601	of_dma_controller_free(pdev->dev.of_node);
1602	dma_async_device_unregister(&tdma->dma_dev);
1603	pm_runtime_disable(&pdev->dev);
1604	clk_unprepare(tdma->dma_clk);
1605
1606	return 0;
1607}
1608
1609static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1610{
1611	struct tegra_dma *tdma = dev_get_drvdata(dev);
1612
1613	clk_disable(tdma->dma_clk);
1614
1615	return 0;
1616}
1617
1618static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1619{
1620	struct tegra_dma *tdma = dev_get_drvdata(dev);
1621
1622	return clk_enable(tdma->dma_clk);
1623}
1624
1625static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1626{
1627	struct tegra_dma *tdma = dev_get_drvdata(dev);
1628	unsigned long flags;
1629	unsigned int i;
1630	bool busy;
1631
1632	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1633		struct tegra_dma_channel *tdc = &tdma->channels[i];
1634
1635		tasklet_kill(&tdc->tasklet);
1636
1637		spin_lock_irqsave(&tdc->lock, flags);
1638		busy = tdc->busy;
1639		spin_unlock_irqrestore(&tdc->lock, flags);
1640
1641		if (busy) {
1642			dev_err(tdma->dev, "channel %u busy\n", i);
1643			return -EBUSY;
1644		}
1645	}
1646
1647	return pm_runtime_force_suspend(dev);
1648}
1649
1650static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1651{
1652	struct tegra_dma *tdma = dev_get_drvdata(dev);
1653	int err;
1654
1655	err = tegra_dma_init_hw(tdma);
1656	if (err)
1657		return err;
1658
1659	return pm_runtime_force_resume(dev);
1660}
1661
1662static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1663	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1664			   NULL)
1665	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1666};
1667
1668static const struct of_device_id tegra_dma_of_match[] = {
1669	{
1670		.compatible = "nvidia,tegra148-apbdma",
1671		.data = &tegra148_dma_chip_data,
1672	}, {
1673		.compatible = "nvidia,tegra114-apbdma",
1674		.data = &tegra114_dma_chip_data,
1675	}, {
1676		.compatible = "nvidia,tegra30-apbdma",
1677		.data = &tegra30_dma_chip_data,
1678	}, {
1679		.compatible = "nvidia,tegra20-apbdma",
1680		.data = &tegra20_dma_chip_data,
1681	}, {
1682	},
1683};
1684MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1685
1686static struct platform_driver tegra_dmac_driver = {
1687	.driver = {
1688		.name	= "tegra-apbdma",
1689		.pm	= &tegra_dma_dev_pm_ops,
1690		.of_match_table = tegra_dma_of_match,
1691	},
1692	.probe		= tegra_dma_probe,
1693	.remove		= tegra_dma_remove,
1694};
1695
1696module_platform_driver(tegra_dmac_driver);
1697
1698MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1699MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1700MODULE_LICENSE("GPL v2");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
   4 *
   5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
 
  20#include <linux/of_dma.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/reset.h>
  25#include <linux/slab.h>
  26#include <linux/wait.h>
  27
  28#include "dmaengine.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/tegra_apb_dma.h>
  32
  33#define TEGRA_APBDMA_GENERAL			0x0
  34#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
  35
  36#define TEGRA_APBDMA_CONTROL			0x010
  37#define TEGRA_APBDMA_IRQ_MASK			0x01c
  38#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
  39
  40/* CSR register */
  41#define TEGRA_APBDMA_CHAN_CSR			0x00
  42#define TEGRA_APBDMA_CSR_ENB			BIT(31)
  43#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
  44#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
  45#define TEGRA_APBDMA_CSR_DIR			BIT(28)
  46#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
  47#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
  48#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
  49#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
  50#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
  51
  52/* STATUS register */
  53#define TEGRA_APBDMA_CHAN_STATUS		0x004
  54#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
  55#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
  56#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
  57#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
  58#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
  59#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
  60
  61#define TEGRA_APBDMA_CHAN_CSRE			0x00C
  62#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
  63
  64/* AHB memory address */
  65#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
  66
  67/* AHB sequence register */
  68#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
  69#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
  70#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
  71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
  72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
  73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
  74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
  75#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
  76#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
  77#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
  78#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
  79#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
  80#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
  81#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
  82
  83/* APB address */
  84#define TEGRA_APBDMA_CHAN_APBPTR		0x018
  85
  86/* APB sequence register */
  87#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
  88#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
  89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
  90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
  91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
  92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
  93#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
  94#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
  95
  96/* Tegra148 specific registers */
  97#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
  98
  99#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
 100
 101/*
 102 * If any burst is in flight and DMA paused then this is the time to complete
 103 * on-flight burst and update DMA status register.
 104 */
 105#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
 106
 107/* Channel base address offset from APBDMA base address */
 108#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
 109
 110#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
 111
 112struct tegra_dma;
 113
 114/*
 115 * tegra_dma_chip_data Tegra chip specific DMA data
 116 * @nr_channels: Number of channels available in the controller.
 117 * @channel_reg_size: Channel register size/stride.
 118 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 119 * @support_channel_pause: Support channel wise pause of dma.
 120 * @support_separate_wcount_reg: Support separate word count register.
 121 */
 122struct tegra_dma_chip_data {
 123	unsigned int nr_channels;
 124	unsigned int channel_reg_size;
 125	unsigned int max_dma_count;
 126	bool support_channel_pause;
 127	bool support_separate_wcount_reg;
 128};
 129
 130/* DMA channel registers */
 131struct tegra_dma_channel_regs {
 132	u32 csr;
 133	u32 ahb_ptr;
 134	u32 apb_ptr;
 135	u32 ahb_seq;
 136	u32 apb_seq;
 137	u32 wcount;
 138};
 139
 140/*
 141 * tegra_dma_sg_req: DMA request details to configure hardware. This
 142 * contains the details for one transfer to configure DMA hw.
 143 * The client's request for data transfer can be broken into multiple
 144 * sub-transfer as per requester details and hw support.
 145 * This sub transfer get added in the list of transfer and point to Tegra
 146 * DMA descriptor which manages the transfer details.
 147 */
 148struct tegra_dma_sg_req {
 149	struct tegra_dma_channel_regs	ch_regs;
 150	unsigned int			req_len;
 151	bool				configured;
 152	bool				last_sg;
 153	struct list_head		node;
 154	struct tegra_dma_desc		*dma_desc;
 155	unsigned int			words_xferred;
 156};
 157
 158/*
 159 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
 160 * This descriptor keep track of transfer status, callbacks and request
 161 * counts etc.
 162 */
 163struct tegra_dma_desc {
 164	struct dma_async_tx_descriptor	txd;
 165	unsigned int			bytes_requested;
 166	unsigned int			bytes_transferred;
 167	enum dma_status			dma_status;
 168	struct list_head		node;
 169	struct list_head		tx_list;
 170	struct list_head		cb_node;
 171	unsigned int			cb_count;
 172};
 173
 174struct tegra_dma_channel;
 175
 176typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
 177				bool to_terminate);
 178
 179/* tegra_dma_channel: Channel specific information */
 180struct tegra_dma_channel {
 181	struct dma_chan		dma_chan;
 182	char			name[12];
 183	bool			config_init;
 184	unsigned int		id;
 185	void __iomem		*chan_addr;
 186	spinlock_t		lock;
 187	bool			busy;
 188	struct tegra_dma	*tdma;
 189	bool			cyclic;
 190
 191	/* Different lists for managing the requests */
 192	struct list_head	free_sg_req;
 193	struct list_head	pending_sg_req;
 194	struct list_head	free_dma_desc;
 195	struct list_head	cb_desc;
 196
 197	/* ISR handler and tasklet for bottom half of isr handling */
 198	dma_isr_handler		isr_handler;
 199	struct tasklet_struct	tasklet;
 200
 201	/* Channel-slave specific configuration */
 202	unsigned int slave_id;
 203	struct dma_slave_config dma_sconfig;
 204	struct tegra_dma_channel_regs channel_reg;
 205
 206	struct wait_queue_head wq;
 207};
 208
 209/* tegra_dma: Tegra DMA specific information */
 210struct tegra_dma {
 211	struct dma_device		dma_dev;
 212	struct device			*dev;
 213	struct clk			*dma_clk;
 214	struct reset_control		*rst;
 215	spinlock_t			global_lock;
 216	void __iomem			*base_addr;
 217	const struct tegra_dma_chip_data *chip_data;
 218
 219	/*
 220	 * Counter for managing global pausing of the DMA controller.
 221	 * Only applicable for devices that don't support individual
 222	 * channel pausing.
 223	 */
 224	u32				global_pause_count;
 225
 226	/* Last member of the structure */
 227	struct tegra_dma_channel channels[];
 228};
 229
 230static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
 231{
 232	writel(val, tdma->base_addr + reg);
 233}
 234
 
 
 
 
 
 235static inline void tdc_write(struct tegra_dma_channel *tdc,
 236			     u32 reg, u32 val)
 237{
 238	writel(val, tdc->chan_addr + reg);
 239}
 240
 241static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 242{
 243	return readl(tdc->chan_addr + reg);
 244}
 245
 246static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 247{
 248	return container_of(dc, struct tegra_dma_channel, dma_chan);
 249}
 250
 251static inline struct tegra_dma_desc *
 252txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
 253{
 254	return container_of(td, struct tegra_dma_desc, txd);
 255}
 256
 257static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 258{
 259	return &tdc->dma_chan.dev->device;
 260}
 261
 262static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
 263
 264/* Get DMA desc from free list, if not there then allocate it.  */
 265static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
 266{
 267	struct tegra_dma_desc *dma_desc;
 268	unsigned long flags;
 269
 270	spin_lock_irqsave(&tdc->lock, flags);
 271
 272	/* Do not allocate if desc are waiting for ack */
 273	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 274		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
 275			list_del(&dma_desc->node);
 276			spin_unlock_irqrestore(&tdc->lock, flags);
 277			dma_desc->txd.flags = 0;
 278			return dma_desc;
 279		}
 280	}
 281
 282	spin_unlock_irqrestore(&tdc->lock, flags);
 283
 284	/* Allocate DMA desc */
 285	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
 286	if (!dma_desc)
 287		return NULL;
 288
 289	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
 290	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
 291	dma_desc->txd.flags = 0;
 292
 293	return dma_desc;
 294}
 295
 296static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
 297			       struct tegra_dma_desc *dma_desc)
 298{
 299	unsigned long flags;
 300
 301	spin_lock_irqsave(&tdc->lock, flags);
 302	if (!list_empty(&dma_desc->tx_list))
 303		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
 304	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 305	spin_unlock_irqrestore(&tdc->lock, flags);
 306}
 307
 308static struct tegra_dma_sg_req *
 309tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
 310{
 311	struct tegra_dma_sg_req *sg_req;
 312	unsigned long flags;
 313
 314	spin_lock_irqsave(&tdc->lock, flags);
 315	if (!list_empty(&tdc->free_sg_req)) {
 316		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
 317					  node);
 318		list_del(&sg_req->node);
 319		spin_unlock_irqrestore(&tdc->lock, flags);
 320		return sg_req;
 321	}
 322	spin_unlock_irqrestore(&tdc->lock, flags);
 323
 324	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
 325
 326	return sg_req;
 327}
 328
 329static int tegra_dma_slave_config(struct dma_chan *dc,
 330				  struct dma_slave_config *sconfig)
 331{
 332	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 333
 334	if (!list_empty(&tdc->pending_sg_req)) {
 335		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
 336		return -EBUSY;
 337	}
 338
 339	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 
 
 
 
 
 
 340	tdc->config_init = true;
 341
 342	return 0;
 343}
 344
 345static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
 346				   bool wait_for_burst_complete)
 347{
 348	struct tegra_dma *tdma = tdc->tdma;
 349
 350	spin_lock(&tdma->global_lock);
 351
 352	if (tdc->tdma->global_pause_count == 0) {
 353		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
 354		if (wait_for_burst_complete)
 355			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 356	}
 357
 358	tdc->tdma->global_pause_count++;
 359
 360	spin_unlock(&tdma->global_lock);
 361}
 362
 363static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
 364{
 365	struct tegra_dma *tdma = tdc->tdma;
 366
 367	spin_lock(&tdma->global_lock);
 368
 369	if (WARN_ON(tdc->tdma->global_pause_count == 0))
 370		goto out;
 371
 372	if (--tdc->tdma->global_pause_count == 0)
 373		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
 374			   TEGRA_APBDMA_GENERAL_ENABLE);
 375
 376out:
 377	spin_unlock(&tdma->global_lock);
 378}
 379
 380static void tegra_dma_pause(struct tegra_dma_channel *tdc,
 381			    bool wait_for_burst_complete)
 382{
 383	struct tegra_dma *tdma = tdc->tdma;
 384
 385	if (tdma->chip_data->support_channel_pause) {
 386		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
 387			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
 388		if (wait_for_burst_complete)
 389			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 390	} else {
 391		tegra_dma_global_pause(tdc, wait_for_burst_complete);
 392	}
 393}
 394
 395static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 396{
 397	struct tegra_dma *tdma = tdc->tdma;
 398
 399	if (tdma->chip_data->support_channel_pause)
 400		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
 401	else
 402		tegra_dma_global_resume(tdc);
 403}
 404
 405static void tegra_dma_stop(struct tegra_dma_channel *tdc)
 406{
 407	u32 csr, status;
 408
 409	/* Disable interrupts */
 410	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
 411	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
 412	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 413
 414	/* Disable DMA */
 415	csr &= ~TEGRA_APBDMA_CSR_ENB;
 416	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 417
 418	/* Clear interrupt status if it is there */
 419	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 420	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 421		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 422		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 423	}
 424	tdc->busy = false;
 425}
 426
 427static void tegra_dma_start(struct tegra_dma_channel *tdc,
 428			    struct tegra_dma_sg_req *sg_req)
 429{
 430	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
 431
 432	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
 433	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
 434	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
 435	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
 436	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
 437	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 438		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
 439
 440	/* Start DMA */
 441	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 442		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
 443}
 444
 445static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
 446					 struct tegra_dma_sg_req *nsg_req)
 447{
 448	unsigned long status;
 449
 450	/*
 451	 * The DMA controller reloads the new configuration for next transfer
 452	 * after last burst of current transfer completes.
 453	 * If there is no IEC status then this makes sure that last burst
 454	 * has not be completed. There may be case that last burst is on
 455	 * flight and so it can complete but because DMA is paused, it
 456	 * will not generates interrupt as well as not reload the new
 457	 * configuration.
 458	 * If there is already IEC status then interrupt handler need to
 459	 * load new configuration.
 460	 */
 461	tegra_dma_pause(tdc, false);
 462	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 463
 464	/*
 465	 * If interrupt is pending then do nothing as the ISR will handle
 466	 * the programing for new request.
 467	 */
 468	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 469		dev_err(tdc2dev(tdc),
 470			"Skipping new configuration as interrupt is pending\n");
 471		tegra_dma_resume(tdc);
 472		return;
 473	}
 474
 475	/* Safe to program new configuration */
 476	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
 477	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
 478	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 479		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
 480			  nsg_req->ch_regs.wcount);
 481	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 482		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
 483	nsg_req->configured = true;
 484	nsg_req->words_xferred = 0;
 485
 486	tegra_dma_resume(tdc);
 487}
 488
 489static void tdc_start_head_req(struct tegra_dma_channel *tdc)
 490{
 491	struct tegra_dma_sg_req *sg_req;
 492
 493	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
 494	tegra_dma_start(tdc, sg_req);
 495	sg_req->configured = true;
 496	sg_req->words_xferred = 0;
 497	tdc->busy = true;
 498}
 499
 500static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
 501{
 502	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
 503
 504	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 505	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
 506		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
 507					   node);
 508		tegra_dma_configure_for_next(tdc, hnsgreq);
 509	}
 510}
 511
 512static inline unsigned int
 513get_current_xferred_count(struct tegra_dma_channel *tdc,
 514			  struct tegra_dma_sg_req *sg_req,
 515			  unsigned long status)
 516{
 517	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
 518}
 519
 520static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
 521{
 522	struct tegra_dma_desc *dma_desc;
 523	struct tegra_dma_sg_req *sgreq;
 524
 525	while (!list_empty(&tdc->pending_sg_req)) {
 526		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 527					 node);
 528		list_move_tail(&sgreq->node, &tdc->free_sg_req);
 529		if (sgreq->last_sg) {
 530			dma_desc = sgreq->dma_desc;
 531			dma_desc->dma_status = DMA_ERROR;
 532			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 533
 534			/* Add in cb list if it is not there. */
 535			if (!dma_desc->cb_count)
 536				list_add_tail(&dma_desc->cb_node,
 537					      &tdc->cb_desc);
 538			dma_desc->cb_count++;
 539		}
 540	}
 541	tdc->isr_handler = NULL;
 542}
 543
 544static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
 545					   bool to_terminate)
 546{
 547	struct tegra_dma_sg_req *hsgreq;
 548
 549	/*
 550	 * Check that head req on list should be in flight.
 551	 * If it is not in flight then abort transfer as
 552	 * looping of transfer can not continue.
 553	 */
 554	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 555	if (!hsgreq->configured) {
 556		tegra_dma_stop(tdc);
 557		pm_runtime_put(tdc->tdma->dev);
 558		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
 559		tegra_dma_abort_all(tdc);
 560		return false;
 561	}
 562
 563	/* Configure next request */
 564	if (!to_terminate)
 565		tdc_configure_next_head_desc(tdc);
 566
 567	return true;
 568}
 569
 570static void handle_once_dma_done(struct tegra_dma_channel *tdc,
 571				 bool to_terminate)
 572{
 573	struct tegra_dma_desc *dma_desc;
 574	struct tegra_dma_sg_req *sgreq;
 575
 576	tdc->busy = false;
 577	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 578	dma_desc = sgreq->dma_desc;
 579	dma_desc->bytes_transferred += sgreq->req_len;
 580
 581	list_del(&sgreq->node);
 582	if (sgreq->last_sg) {
 583		dma_desc->dma_status = DMA_COMPLETE;
 584		dma_cookie_complete(&dma_desc->txd);
 585		if (!dma_desc->cb_count)
 586			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 587		dma_desc->cb_count++;
 588		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 589	}
 590	list_add_tail(&sgreq->node, &tdc->free_sg_req);
 591
 592	/* Do not start DMA if it is going to be terminate */
 593	if (to_terminate)
 594		return;
 595
 596	if (list_empty(&tdc->pending_sg_req)) {
 597		pm_runtime_put(tdc->tdma->dev);
 598		return;
 599	}
 600
 601	tdc_start_head_req(tdc);
 602}
 603
 604static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
 605					    bool to_terminate)
 606{
 607	struct tegra_dma_desc *dma_desc;
 608	struct tegra_dma_sg_req *sgreq;
 609	bool st;
 610
 611	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 612	dma_desc = sgreq->dma_desc;
 613	/* if we dma for long enough the transfer count will wrap */
 614	dma_desc->bytes_transferred =
 615		(dma_desc->bytes_transferred + sgreq->req_len) %
 616		dma_desc->bytes_requested;
 617
 618	/* Callback need to be call */
 619	if (!dma_desc->cb_count)
 620		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 621	dma_desc->cb_count++;
 622
 623	sgreq->words_xferred = 0;
 624
 625	/* If not last req then put at end of pending list */
 626	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
 627		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
 628		sgreq->configured = false;
 629		st = handle_continuous_head_request(tdc, to_terminate);
 630		if (!st)
 631			dma_desc->dma_status = DMA_ERROR;
 632	}
 633}
 634
 635static void tegra_dma_tasklet(struct tasklet_struct *t)
 636{
 637	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
 638	struct dmaengine_desc_callback cb;
 639	struct tegra_dma_desc *dma_desc;
 640	unsigned int cb_count;
 641	unsigned long flags;
 642
 643	spin_lock_irqsave(&tdc->lock, flags);
 644	while (!list_empty(&tdc->cb_desc)) {
 645		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 646					    cb_node);
 647		list_del(&dma_desc->cb_node);
 648		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
 649		cb_count = dma_desc->cb_count;
 650		dma_desc->cb_count = 0;
 651		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
 652					    cb.callback);
 653		spin_unlock_irqrestore(&tdc->lock, flags);
 654		while (cb_count--)
 655			dmaengine_desc_callback_invoke(&cb, NULL);
 656		spin_lock_irqsave(&tdc->lock, flags);
 657	}
 658	spin_unlock_irqrestore(&tdc->lock, flags);
 659}
 660
 661static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 662{
 663	struct tegra_dma_channel *tdc = dev_id;
 664	u32 status;
 665
 666	spin_lock(&tdc->lock);
 667
 668	trace_tegra_dma_isr(&tdc->dma_chan, irq);
 669	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 670	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 671		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 672		tdc->isr_handler(tdc, false);
 673		tasklet_schedule(&tdc->tasklet);
 674		wake_up_all(&tdc->wq);
 675		spin_unlock(&tdc->lock);
 676		return IRQ_HANDLED;
 677	}
 678
 679	spin_unlock(&tdc->lock);
 680	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
 681		 status);
 682
 683	return IRQ_NONE;
 684}
 685
 686static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 687{
 688	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
 689	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
 690	unsigned long flags;
 691	dma_cookie_t cookie;
 692
 693	spin_lock_irqsave(&tdc->lock, flags);
 694	dma_desc->dma_status = DMA_IN_PROGRESS;
 695	cookie = dma_cookie_assign(&dma_desc->txd);
 696	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
 697	spin_unlock_irqrestore(&tdc->lock, flags);
 698
 699	return cookie;
 700}
 701
 702static void tegra_dma_issue_pending(struct dma_chan *dc)
 703{
 704	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 705	unsigned long flags;
 706	int err;
 707
 708	spin_lock_irqsave(&tdc->lock, flags);
 709	if (list_empty(&tdc->pending_sg_req)) {
 710		dev_err(tdc2dev(tdc), "No DMA request\n");
 711		goto end;
 712	}
 713	if (!tdc->busy) {
 714		err = pm_runtime_resume_and_get(tdc->tdma->dev);
 715		if (err < 0) {
 716			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
 717			goto end;
 718		}
 719
 720		tdc_start_head_req(tdc);
 721
 722		/* Continuous single mode: Configure next req */
 723		if (tdc->cyclic) {
 724			/*
 725			 * Wait for 1 burst time for configure DMA for
 726			 * next transfer.
 727			 */
 728			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 729			tdc_configure_next_head_desc(tdc);
 730		}
 731	}
 732end:
 733	spin_unlock_irqrestore(&tdc->lock, flags);
 734}
 735
 736static int tegra_dma_terminate_all(struct dma_chan *dc)
 737{
 738	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 739	struct tegra_dma_desc *dma_desc;
 740	struct tegra_dma_sg_req *sgreq;
 741	unsigned long flags;
 742	u32 status, wcount;
 743	bool was_busy;
 744
 745	spin_lock_irqsave(&tdc->lock, flags);
 746
 747	if (!tdc->busy)
 748		goto skip_dma_stop;
 749
 750	/* Pause DMA before checking the queue status */
 751	tegra_dma_pause(tdc, true);
 752
 753	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 754	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 755		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
 756		tdc->isr_handler(tdc, true);
 757		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 758	}
 759	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 760		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 761	else
 762		wcount = status;
 763
 764	was_busy = tdc->busy;
 765	tegra_dma_stop(tdc);
 766
 767	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
 768		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 769					 node);
 770		sgreq->dma_desc->bytes_transferred +=
 771				get_current_xferred_count(tdc, sgreq, wcount);
 772	}
 773	tegra_dma_resume(tdc);
 774
 775	pm_runtime_put(tdc->tdma->dev);
 776	wake_up_all(&tdc->wq);
 777
 778skip_dma_stop:
 779	tegra_dma_abort_all(tdc);
 780
 781	while (!list_empty(&tdc->cb_desc)) {
 782		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 783					    cb_node);
 784		list_del(&dma_desc->cb_node);
 785		dma_desc->cb_count = 0;
 786	}
 787	spin_unlock_irqrestore(&tdc->lock, flags);
 788
 789	return 0;
 790}
 791
 792static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
 793{
 794	unsigned long flags;
 795	u32 status;
 796
 797	spin_lock_irqsave(&tdc->lock, flags);
 798	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 799	spin_unlock_irqrestore(&tdc->lock, flags);
 800
 801	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
 802}
 803
 804static void tegra_dma_synchronize(struct dma_chan *dc)
 805{
 806	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 807	int err;
 808
 809	err = pm_runtime_resume_and_get(tdc->tdma->dev);
 810	if (err < 0) {
 811		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
 812		return;
 813	}
 814
 815	/*
 816	 * CPU, which handles interrupt, could be busy in
 817	 * uninterruptible state, in this case sibling CPU
 818	 * should wait until interrupt is handled.
 819	 */
 820	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
 821
 822	tasklet_kill(&tdc->tasklet);
 823
 824	pm_runtime_put(tdc->tdma->dev);
 825}
 826
 827static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
 828					       struct tegra_dma_sg_req *sg_req)
 829{
 830	u32 status, wcount = 0;
 831
 832	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
 833		return 0;
 834
 835	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 836		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 837
 838	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 839
 840	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
 841		wcount = status;
 842
 843	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
 844		return sg_req->req_len;
 845
 846	wcount = get_current_xferred_count(tdc, sg_req, wcount);
 847
 848	if (!wcount) {
 849		/*
 850		 * If wcount wasn't ever polled for this SG before, then
 851		 * simply assume that transfer hasn't started yet.
 852		 *
 853		 * Otherwise it's the end of the transfer.
 854		 *
 855		 * The alternative would be to poll the status register
 856		 * until EOC bit is set or wcount goes UP. That's so
 857		 * because EOC bit is getting set only after the last
 858		 * burst's completion and counter is less than the actual
 859		 * transfer size by 4 bytes. The counter value wraps around
 860		 * in a cyclic mode before EOC is set(!), so we can't easily
 861		 * distinguish start of transfer from its end.
 862		 */
 863		if (sg_req->words_xferred)
 864			wcount = sg_req->req_len - 4;
 865
 866	} else if (wcount < sg_req->words_xferred) {
 867		/*
 868		 * This case will never happen for a non-cyclic transfer.
 869		 *
 870		 * For a cyclic transfer, although it is possible for the
 871		 * next transfer to have already started (resetting the word
 872		 * count), this case should still not happen because we should
 873		 * have detected that the EOC bit is set and hence the transfer
 874		 * was completed.
 875		 */
 876		WARN_ON_ONCE(1);
 877
 878		wcount = sg_req->req_len - 4;
 879	} else {
 880		sg_req->words_xferred = wcount;
 881	}
 882
 883	return wcount;
 884}
 885
 886static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 887					   dma_cookie_t cookie,
 888					   struct dma_tx_state *txstate)
 889{
 890	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 891	struct tegra_dma_desc *dma_desc;
 892	struct tegra_dma_sg_req *sg_req;
 893	enum dma_status ret;
 894	unsigned long flags;
 895	unsigned int residual;
 896	unsigned int bytes = 0;
 897
 898	ret = dma_cookie_status(dc, cookie, txstate);
 899	if (ret == DMA_COMPLETE)
 900		return ret;
 901
 902	spin_lock_irqsave(&tdc->lock, flags);
 903
 904	/* Check on wait_ack desc status */
 905	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 906		if (dma_desc->txd.cookie == cookie) {
 907			ret = dma_desc->dma_status;
 908			goto found;
 909		}
 910	}
 911
 912	/* Check in pending list */
 913	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
 914		dma_desc = sg_req->dma_desc;
 915		if (dma_desc->txd.cookie == cookie) {
 916			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
 917			ret = dma_desc->dma_status;
 918			goto found;
 919		}
 920	}
 921
 922	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
 923	dma_desc = NULL;
 924
 925found:
 926	if (dma_desc && txstate) {
 927		residual = dma_desc->bytes_requested -
 928			   ((dma_desc->bytes_transferred + bytes) %
 929			    dma_desc->bytes_requested);
 930		dma_set_residue(txstate, residual);
 931	}
 932
 933	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
 934	spin_unlock_irqrestore(&tdc->lock, flags);
 935
 936	return ret;
 937}
 938
 939static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
 940					 enum dma_slave_buswidth slave_bw)
 941{
 942	switch (slave_bw) {
 943	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 944		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
 945	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 946		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
 947	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 948		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 949	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 950		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
 951	default:
 952		dev_warn(tdc2dev(tdc),
 953			 "slave bw is not supported, using 32bits\n");
 954		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 955	}
 956}
 957
 958static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 959					  u32 burst_size,
 960					  enum dma_slave_buswidth slave_bw,
 961					  u32 len)
 962{
 963	unsigned int burst_byte, burst_ahb_width;
 964
 965	/*
 966	 * burst_size from client is in terms of the bus_width.
 967	 * convert them into AHB memory width which is 4 byte.
 968	 */
 969	burst_byte = burst_size * slave_bw;
 970	burst_ahb_width = burst_byte / 4;
 971
 972	/* If burst size is 0 then calculate the burst size based on length */
 973	if (!burst_ahb_width) {
 974		if (len & 0xF)
 975			return TEGRA_APBDMA_AHBSEQ_BURST_1;
 976		else if ((len >> 4) & 0x1)
 977			return TEGRA_APBDMA_AHBSEQ_BURST_4;
 978		else
 979			return TEGRA_APBDMA_AHBSEQ_BURST_8;
 980	}
 981	if (burst_ahb_width < 4)
 982		return TEGRA_APBDMA_AHBSEQ_BURST_1;
 983	else if (burst_ahb_width < 8)
 984		return TEGRA_APBDMA_AHBSEQ_BURST_4;
 985	else
 986		return TEGRA_APBDMA_AHBSEQ_BURST_8;
 987}
 988
 989static int get_transfer_param(struct tegra_dma_channel *tdc,
 990			      enum dma_transfer_direction direction,
 991			      u32 *apb_addr,
 992			      u32 *apb_seq,
 993			      u32 *csr,
 994			      unsigned int *burst_size,
 995			      enum dma_slave_buswidth *slave_bw)
 996{
 997	switch (direction) {
 998	case DMA_MEM_TO_DEV:
 999		*apb_addr = tdc->dma_sconfig.dst_addr;
1000		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1001		*burst_size = tdc->dma_sconfig.dst_maxburst;
1002		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1003		*csr = TEGRA_APBDMA_CSR_DIR;
1004		return 0;
1005
1006	case DMA_DEV_TO_MEM:
1007		*apb_addr = tdc->dma_sconfig.src_addr;
1008		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1009		*burst_size = tdc->dma_sconfig.src_maxburst;
1010		*slave_bw = tdc->dma_sconfig.src_addr_width;
1011		*csr = 0;
1012		return 0;
1013
1014	default:
1015		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1016		break;
1017	}
1018
1019	return -EINVAL;
1020}
1021
1022static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1023				  struct tegra_dma_channel_regs *ch_regs,
1024				  u32 len)
1025{
1026	u32 len_field = (len - 4) & 0xFFFC;
1027
1028	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1029		ch_regs->wcount = len_field;
1030	else
1031		ch_regs->csr |= len_field;
1032}
1033
1034static struct dma_async_tx_descriptor *
1035tegra_dma_prep_slave_sg(struct dma_chan *dc,
1036			struct scatterlist *sgl,
1037			unsigned int sg_len,
1038			enum dma_transfer_direction direction,
1039			unsigned long flags,
1040			void *context)
1041{
1042	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043	struct tegra_dma_sg_req *sg_req = NULL;
1044	u32 csr, ahb_seq, apb_ptr, apb_seq;
1045	enum dma_slave_buswidth slave_bw;
1046	struct tegra_dma_desc *dma_desc;
1047	struct list_head req_list;
1048	struct scatterlist *sg;
1049	unsigned int burst_size;
1050	unsigned int i;
1051
1052	if (!tdc->config_init) {
1053		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1054		return NULL;
1055	}
1056	if (sg_len < 1) {
1057		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1058		return NULL;
1059	}
1060
1061	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1062			       &burst_size, &slave_bw) < 0)
1063		return NULL;
1064
1065	INIT_LIST_HEAD(&req_list);
1066
1067	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1068	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1069					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1070	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1071
1072	csr |= TEGRA_APBDMA_CSR_ONCE;
1073
1074	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1075		csr |= TEGRA_APBDMA_CSR_FLOW;
1076		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1077	}
1078
1079	if (flags & DMA_PREP_INTERRUPT) {
1080		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1081	} else {
1082		WARN_ON_ONCE(1);
1083		return NULL;
1084	}
1085
1086	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1087
1088	dma_desc = tegra_dma_desc_get(tdc);
1089	if (!dma_desc) {
1090		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1091		return NULL;
1092	}
1093	INIT_LIST_HEAD(&dma_desc->tx_list);
1094	INIT_LIST_HEAD(&dma_desc->cb_node);
1095	dma_desc->cb_count = 0;
1096	dma_desc->bytes_requested = 0;
1097	dma_desc->bytes_transferred = 0;
1098	dma_desc->dma_status = DMA_IN_PROGRESS;
1099
1100	/* Make transfer requests */
1101	for_each_sg(sgl, sg, sg_len, i) {
1102		u32 len, mem;
1103
1104		mem = sg_dma_address(sg);
1105		len = sg_dma_len(sg);
1106
1107		if ((len & 3) || (mem & 3) ||
1108		    len > tdc->tdma->chip_data->max_dma_count) {
1109			dev_err(tdc2dev(tdc),
1110				"DMA length/memory address is not supported\n");
1111			tegra_dma_desc_put(tdc, dma_desc);
1112			return NULL;
1113		}
1114
1115		sg_req = tegra_dma_sg_req_get(tdc);
1116		if (!sg_req) {
1117			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1118			tegra_dma_desc_put(tdc, dma_desc);
1119			return NULL;
1120		}
1121
1122		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1123		dma_desc->bytes_requested += len;
1124
1125		sg_req->ch_regs.apb_ptr = apb_ptr;
1126		sg_req->ch_regs.ahb_ptr = mem;
1127		sg_req->ch_regs.csr = csr;
1128		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1129		sg_req->ch_regs.apb_seq = apb_seq;
1130		sg_req->ch_regs.ahb_seq = ahb_seq;
1131		sg_req->configured = false;
1132		sg_req->last_sg = false;
1133		sg_req->dma_desc = dma_desc;
1134		sg_req->req_len = len;
1135
1136		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1137	}
1138	sg_req->last_sg = true;
1139	if (flags & DMA_CTRL_ACK)
1140		dma_desc->txd.flags = DMA_CTRL_ACK;
1141
1142	/*
1143	 * Make sure that mode should not be conflicting with currently
1144	 * configured mode.
1145	 */
1146	if (!tdc->isr_handler) {
1147		tdc->isr_handler = handle_once_dma_done;
1148		tdc->cyclic = false;
1149	} else {
1150		if (tdc->cyclic) {
1151			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1152			tegra_dma_desc_put(tdc, dma_desc);
1153			return NULL;
1154		}
1155	}
1156
1157	return &dma_desc->txd;
1158}
1159
1160static struct dma_async_tx_descriptor *
1161tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1162			  size_t buf_len,
1163			  size_t period_len,
1164			  enum dma_transfer_direction direction,
1165			  unsigned long flags)
1166{
1167	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1168	struct tegra_dma_sg_req *sg_req = NULL;
1169	u32 csr, ahb_seq, apb_ptr, apb_seq;
1170	enum dma_slave_buswidth slave_bw;
1171	struct tegra_dma_desc *dma_desc;
1172	dma_addr_t mem = buf_addr;
1173	unsigned int burst_size;
1174	size_t len, remain_len;
1175
1176	if (!buf_len || !period_len) {
1177		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1178		return NULL;
1179	}
1180
1181	if (!tdc->config_init) {
1182		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1183		return NULL;
1184	}
1185
1186	/*
1187	 * We allow to take more number of requests till DMA is
1188	 * not started. The driver will loop over all requests.
1189	 * Once DMA is started then new requests can be queued only after
1190	 * terminating the DMA.
1191	 */
1192	if (tdc->busy) {
1193		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1194		return NULL;
1195	}
1196
1197	/*
1198	 * We only support cycle transfer when buf_len is multiple of
1199	 * period_len.
1200	 */
1201	if (buf_len % period_len) {
1202		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1203		return NULL;
1204	}
1205
1206	len = period_len;
1207	if ((len & 3) || (buf_addr & 3) ||
1208	    len > tdc->tdma->chip_data->max_dma_count) {
1209		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1210		return NULL;
1211	}
1212
1213	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1214			       &burst_size, &slave_bw) < 0)
1215		return NULL;
1216
1217	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1218	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1219					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1220	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1221
1222	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1223		csr |= TEGRA_APBDMA_CSR_FLOW;
1224		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1225	}
1226
1227	if (flags & DMA_PREP_INTERRUPT) {
1228		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1229	} else {
1230		WARN_ON_ONCE(1);
1231		return NULL;
1232	}
1233
1234	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1235
1236	dma_desc = tegra_dma_desc_get(tdc);
1237	if (!dma_desc) {
1238		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1239		return NULL;
1240	}
1241
1242	INIT_LIST_HEAD(&dma_desc->tx_list);
1243	INIT_LIST_HEAD(&dma_desc->cb_node);
1244	dma_desc->cb_count = 0;
1245
1246	dma_desc->bytes_transferred = 0;
1247	dma_desc->bytes_requested = buf_len;
1248	remain_len = buf_len;
1249
1250	/* Split transfer equal to period size */
1251	while (remain_len) {
1252		sg_req = tegra_dma_sg_req_get(tdc);
1253		if (!sg_req) {
1254			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1255			tegra_dma_desc_put(tdc, dma_desc);
1256			return NULL;
1257		}
1258
1259		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1260		sg_req->ch_regs.apb_ptr = apb_ptr;
1261		sg_req->ch_regs.ahb_ptr = mem;
1262		sg_req->ch_regs.csr = csr;
1263		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1264		sg_req->ch_regs.apb_seq = apb_seq;
1265		sg_req->ch_regs.ahb_seq = ahb_seq;
1266		sg_req->configured = false;
1267		sg_req->last_sg = false;
1268		sg_req->dma_desc = dma_desc;
1269		sg_req->req_len = len;
1270
1271		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1272		remain_len -= len;
1273		mem += len;
1274	}
1275	sg_req->last_sg = true;
1276	if (flags & DMA_CTRL_ACK)
1277		dma_desc->txd.flags = DMA_CTRL_ACK;
1278
1279	/*
1280	 * Make sure that mode should not be conflicting with currently
1281	 * configured mode.
1282	 */
1283	if (!tdc->isr_handler) {
1284		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1285		tdc->cyclic = true;
1286	} else {
1287		if (!tdc->cyclic) {
1288			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1289			tegra_dma_desc_put(tdc, dma_desc);
1290			return NULL;
1291		}
1292	}
1293
1294	return &dma_desc->txd;
1295}
1296
1297static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1298{
1299	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1300
1301	dma_cookie_init(&tdc->dma_chan);
1302
1303	return 0;
1304}
1305
1306static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1307{
1308	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1309	struct tegra_dma_desc *dma_desc;
1310	struct tegra_dma_sg_req *sg_req;
1311	struct list_head dma_desc_list;
1312	struct list_head sg_req_list;
1313
1314	INIT_LIST_HEAD(&dma_desc_list);
1315	INIT_LIST_HEAD(&sg_req_list);
1316
1317	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1318
1319	tegra_dma_terminate_all(dc);
1320	tasklet_kill(&tdc->tasklet);
1321
1322	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1323	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1324	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1325	INIT_LIST_HEAD(&tdc->cb_desc);
1326	tdc->config_init = false;
1327	tdc->isr_handler = NULL;
1328
1329	while (!list_empty(&dma_desc_list)) {
1330		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1331					    node);
1332		list_del(&dma_desc->node);
1333		kfree(dma_desc);
1334	}
1335
1336	while (!list_empty(&sg_req_list)) {
1337		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1338		list_del(&sg_req->node);
1339		kfree(sg_req);
1340	}
1341
1342	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1343}
1344
1345static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1346					   struct of_dma *ofdma)
1347{
1348	struct tegra_dma *tdma = ofdma->of_dma_data;
1349	struct tegra_dma_channel *tdc;
1350	struct dma_chan *chan;
1351
1352	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1353		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1354		return NULL;
1355	}
1356
1357	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1358	if (!chan)
1359		return NULL;
1360
1361	tdc = to_tegra_dma_chan(chan);
1362	tdc->slave_id = dma_spec->args[0];
1363
1364	return chan;
1365}
1366
1367/* Tegra20 specific DMA controller information */
1368static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1369	.nr_channels		= 16,
1370	.channel_reg_size	= 0x20,
1371	.max_dma_count		= 1024UL * 64,
1372	.support_channel_pause	= false,
1373	.support_separate_wcount_reg = false,
1374};
1375
1376/* Tegra30 specific DMA controller information */
1377static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1378	.nr_channels		= 32,
1379	.channel_reg_size	= 0x20,
1380	.max_dma_count		= 1024UL * 64,
1381	.support_channel_pause	= false,
1382	.support_separate_wcount_reg = false,
1383};
1384
1385/* Tegra114 specific DMA controller information */
1386static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1387	.nr_channels		= 32,
1388	.channel_reg_size	= 0x20,
1389	.max_dma_count		= 1024UL * 64,
1390	.support_channel_pause	= true,
1391	.support_separate_wcount_reg = false,
1392};
1393
1394/* Tegra148 specific DMA controller information */
1395static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1396	.nr_channels		= 32,
1397	.channel_reg_size	= 0x40,
1398	.max_dma_count		= 1024UL * 64,
1399	.support_channel_pause	= true,
1400	.support_separate_wcount_reg = true,
1401};
1402
1403static int tegra_dma_init_hw(struct tegra_dma *tdma)
1404{
1405	int err;
1406
1407	err = reset_control_assert(tdma->rst);
1408	if (err) {
1409		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1410		return err;
1411	}
1412
1413	err = clk_enable(tdma->dma_clk);
1414	if (err) {
1415		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1416		return err;
1417	}
1418
1419	/* reset DMA controller */
1420	udelay(2);
1421	reset_control_deassert(tdma->rst);
1422
1423	/* enable global DMA registers */
1424	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1425	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1426	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1427
1428	clk_disable(tdma->dma_clk);
1429
1430	return 0;
1431}
1432
1433static int tegra_dma_probe(struct platform_device *pdev)
1434{
1435	const struct tegra_dma_chip_data *cdata;
1436	struct tegra_dma *tdma;
1437	unsigned int i;
1438	size_t size;
1439	int ret;
1440
1441	cdata = of_device_get_match_data(&pdev->dev);
1442	size = struct_size(tdma, channels, cdata->nr_channels);
1443
1444	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1445	if (!tdma)
1446		return -ENOMEM;
1447
1448	tdma->dev = &pdev->dev;
1449	tdma->chip_data = cdata;
1450	platform_set_drvdata(pdev, tdma);
1451
1452	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1453	if (IS_ERR(tdma->base_addr))
1454		return PTR_ERR(tdma->base_addr);
1455
1456	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1457	if (IS_ERR(tdma->dma_clk)) {
1458		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1459		return PTR_ERR(tdma->dma_clk);
1460	}
1461
1462	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1463	if (IS_ERR(tdma->rst)) {
1464		dev_err(&pdev->dev, "Error: Missing reset\n");
1465		return PTR_ERR(tdma->rst);
1466	}
1467
1468	spin_lock_init(&tdma->global_lock);
1469
1470	ret = clk_prepare(tdma->dma_clk);
1471	if (ret)
1472		return ret;
1473
1474	ret = tegra_dma_init_hw(tdma);
1475	if (ret)
1476		goto err_clk_unprepare;
1477
1478	pm_runtime_irq_safe(&pdev->dev);
1479	pm_runtime_enable(&pdev->dev);
1480
1481	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1482	for (i = 0; i < cdata->nr_channels; i++) {
1483		struct tegra_dma_channel *tdc = &tdma->channels[i];
1484		int irq;
1485
1486		tdc->chan_addr = tdma->base_addr +
1487				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1488				 (i * cdata->channel_reg_size);
1489
1490		irq = platform_get_irq(pdev, i);
1491		if (irq < 0) {
1492			ret = irq;
1493			goto err_pm_disable;
1494		}
1495
1496		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1497		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1498				       tdc->name, tdc);
1499		if (ret) {
1500			dev_err(&pdev->dev,
1501				"request_irq failed with err %d channel %d\n",
1502				ret, i);
1503			goto err_pm_disable;
1504		}
1505
1506		tdc->dma_chan.device = &tdma->dma_dev;
1507		dma_cookie_init(&tdc->dma_chan);
1508		list_add_tail(&tdc->dma_chan.device_node,
1509			      &tdma->dma_dev.channels);
1510		tdc->tdma = tdma;
1511		tdc->id = i;
1512		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1513
1514		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
 
1515		spin_lock_init(&tdc->lock);
1516		init_waitqueue_head(&tdc->wq);
1517
1518		INIT_LIST_HEAD(&tdc->pending_sg_req);
1519		INIT_LIST_HEAD(&tdc->free_sg_req);
1520		INIT_LIST_HEAD(&tdc->free_dma_desc);
1521		INIT_LIST_HEAD(&tdc->cb_desc);
1522	}
1523
1524	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1525	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1526	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1527
1528	tdma->global_pause_count = 0;
1529	tdma->dma_dev.dev = &pdev->dev;
1530	tdma->dma_dev.device_alloc_chan_resources =
1531					tegra_dma_alloc_chan_resources;
1532	tdma->dma_dev.device_free_chan_resources =
1533					tegra_dma_free_chan_resources;
1534	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1535	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1536	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1537		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1538		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1539		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1540	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1541		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1542		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1543		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1544	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1545	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1546	tdma->dma_dev.device_config = tegra_dma_slave_config;
1547	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1548	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1549	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1550	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1551
1552	ret = dma_async_device_register(&tdma->dma_dev);
1553	if (ret < 0) {
1554		dev_err(&pdev->dev,
1555			"Tegra20 APB DMA driver registration failed %d\n", ret);
1556		goto err_pm_disable;
1557	}
1558
1559	ret = of_dma_controller_register(pdev->dev.of_node,
1560					 tegra_dma_of_xlate, tdma);
1561	if (ret < 0) {
1562		dev_err(&pdev->dev,
1563			"Tegra20 APB DMA OF registration failed %d\n", ret);
1564		goto err_unregister_dma_dev;
1565	}
1566
1567	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1568		 cdata->nr_channels);
1569
1570	return 0;
1571
1572err_unregister_dma_dev:
1573	dma_async_device_unregister(&tdma->dma_dev);
1574
1575err_pm_disable:
1576	pm_runtime_disable(&pdev->dev);
1577
1578err_clk_unprepare:
1579	clk_unprepare(tdma->dma_clk);
1580
1581	return ret;
1582}
1583
1584static void tegra_dma_remove(struct platform_device *pdev)
1585{
1586	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1587
1588	of_dma_controller_free(pdev->dev.of_node);
1589	dma_async_device_unregister(&tdma->dma_dev);
1590	pm_runtime_disable(&pdev->dev);
1591	clk_unprepare(tdma->dma_clk);
 
 
1592}
1593
1594static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1595{
1596	struct tegra_dma *tdma = dev_get_drvdata(dev);
1597
1598	clk_disable(tdma->dma_clk);
1599
1600	return 0;
1601}
1602
1603static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1604{
1605	struct tegra_dma *tdma = dev_get_drvdata(dev);
1606
1607	return clk_enable(tdma->dma_clk);
1608}
1609
1610static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1611{
1612	struct tegra_dma *tdma = dev_get_drvdata(dev);
1613	unsigned long flags;
1614	unsigned int i;
1615	bool busy;
1616
1617	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1618		struct tegra_dma_channel *tdc = &tdma->channels[i];
1619
1620		tasklet_kill(&tdc->tasklet);
1621
1622		spin_lock_irqsave(&tdc->lock, flags);
1623		busy = tdc->busy;
1624		spin_unlock_irqrestore(&tdc->lock, flags);
1625
1626		if (busy) {
1627			dev_err(tdma->dev, "channel %u busy\n", i);
1628			return -EBUSY;
1629		}
1630	}
1631
1632	return pm_runtime_force_suspend(dev);
1633}
1634
1635static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1636{
1637	struct tegra_dma *tdma = dev_get_drvdata(dev);
1638	int err;
1639
1640	err = tegra_dma_init_hw(tdma);
1641	if (err)
1642		return err;
1643
1644	return pm_runtime_force_resume(dev);
1645}
1646
1647static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1648	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1649			   NULL)
1650	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1651};
1652
1653static const struct of_device_id tegra_dma_of_match[] = {
1654	{
1655		.compatible = "nvidia,tegra148-apbdma",
1656		.data = &tegra148_dma_chip_data,
1657	}, {
1658		.compatible = "nvidia,tegra114-apbdma",
1659		.data = &tegra114_dma_chip_data,
1660	}, {
1661		.compatible = "nvidia,tegra30-apbdma",
1662		.data = &tegra30_dma_chip_data,
1663	}, {
1664		.compatible = "nvidia,tegra20-apbdma",
1665		.data = &tegra20_dma_chip_data,
1666	}, {
1667	},
1668};
1669MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1670
1671static struct platform_driver tegra_dmac_driver = {
1672	.driver = {
1673		.name	= "tegra-apbdma",
1674		.pm	= &tegra_dma_dev_pm_ops,
1675		.of_match_table = tegra_dma_of_match,
1676	},
1677	.probe		= tegra_dma_probe,
1678	.remove_new	= tegra_dma_remove,
1679};
1680
1681module_platform_driver(tegra_dmac_driver);
1682
1683MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1684MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1685MODULE_LICENSE("GPL v2");