Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
   4 *
   5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/of_dma.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/reset.h>
  26#include <linux/slab.h>
  27#include <linux/wait.h>
  28
  29#include "dmaengine.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/tegra_apb_dma.h>
  33
  34#define TEGRA_APBDMA_GENERAL			0x0
  35#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
  36
  37#define TEGRA_APBDMA_CONTROL			0x010
  38#define TEGRA_APBDMA_IRQ_MASK			0x01c
  39#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
  40
  41/* CSR register */
  42#define TEGRA_APBDMA_CHAN_CSR			0x00
  43#define TEGRA_APBDMA_CSR_ENB			BIT(31)
  44#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
  45#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
  46#define TEGRA_APBDMA_CSR_DIR			BIT(28)
  47#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
  48#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
  49#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
  50#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
  51#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
  52
  53/* STATUS register */
  54#define TEGRA_APBDMA_CHAN_STATUS		0x004
  55#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
  56#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
  57#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
  58#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
  59#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
  60#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
  61
  62#define TEGRA_APBDMA_CHAN_CSRE			0x00C
  63#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
  64
  65/* AHB memory address */
  66#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
  67
  68/* AHB sequence register */
  69#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
  70#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
  71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
  72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
  73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
  74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
  75#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
  76#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
  77#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
  78#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
  79#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
  80#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
  81#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
  82#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
  83
  84/* APB address */
  85#define TEGRA_APBDMA_CHAN_APBPTR		0x018
  86
  87/* APB sequence register */
  88#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
  89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
  90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
  91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
  92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
  93#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
  94#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
  95#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
  96
  97/* Tegra148 specific registers */
  98#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
  99
 100#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
 101
 102/*
 103 * If any burst is in flight and DMA paused then this is the time to complete
 104 * on-flight burst and update DMA status register.
 105 */
 106#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
 107
 108/* Channel base address offset from APBDMA base address */
 109#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
 110
 111#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
 112
 113struct tegra_dma;
 114
 115/*
 116 * tegra_dma_chip_data Tegra chip specific DMA data
 117 * @nr_channels: Number of channels available in the controller.
 118 * @channel_reg_size: Channel register size/stride.
 119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 120 * @support_channel_pause: Support channel wise pause of dma.
 121 * @support_separate_wcount_reg: Support separate word count register.
 122 */
 123struct tegra_dma_chip_data {
 124	unsigned int nr_channels;
 125	unsigned int channel_reg_size;
 126	unsigned int max_dma_count;
 127	bool support_channel_pause;
 128	bool support_separate_wcount_reg;
 129};
 130
 131/* DMA channel registers */
 132struct tegra_dma_channel_regs {
 133	u32 csr;
 134	u32 ahb_ptr;
 135	u32 apb_ptr;
 136	u32 ahb_seq;
 137	u32 apb_seq;
 138	u32 wcount;
 139};
 140
 141/*
 142 * tegra_dma_sg_req: DMA request details to configure hardware. This
 143 * contains the details for one transfer to configure DMA hw.
 144 * The client's request for data transfer can be broken into multiple
 145 * sub-transfer as per requester details and hw support.
 146 * This sub transfer get added in the list of transfer and point to Tegra
 147 * DMA descriptor which manages the transfer details.
 148 */
 149struct tegra_dma_sg_req {
 150	struct tegra_dma_channel_regs	ch_regs;
 151	unsigned int			req_len;
 152	bool				configured;
 153	bool				last_sg;
 154	struct list_head		node;
 155	struct tegra_dma_desc		*dma_desc;
 156	unsigned int			words_xferred;
 157};
 158
 159/*
 160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
 161 * This descriptor keep track of transfer status, callbacks and request
 162 * counts etc.
 163 */
 164struct tegra_dma_desc {
 165	struct dma_async_tx_descriptor	txd;
 166	unsigned int			bytes_requested;
 167	unsigned int			bytes_transferred;
 168	enum dma_status			dma_status;
 169	struct list_head		node;
 170	struct list_head		tx_list;
 171	struct list_head		cb_node;
 172	unsigned int			cb_count;
 173};
 174
 175struct tegra_dma_channel;
 176
 177typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
 178				bool to_terminate);
 179
 180/* tegra_dma_channel: Channel specific information */
 181struct tegra_dma_channel {
 182	struct dma_chan		dma_chan;
 183	char			name[12];
 184	bool			config_init;
 185	unsigned int		id;
 
 186	void __iomem		*chan_addr;
 187	spinlock_t		lock;
 188	bool			busy;
 189	struct tegra_dma	*tdma;
 190	bool			cyclic;
 191
 192	/* Different lists for managing the requests */
 193	struct list_head	free_sg_req;
 194	struct list_head	pending_sg_req;
 195	struct list_head	free_dma_desc;
 196	struct list_head	cb_desc;
 197
 198	/* ISR handler and tasklet for bottom half of isr handling */
 199	dma_isr_handler		isr_handler;
 200	struct tasklet_struct	tasklet;
 201
 202	/* Channel-slave specific configuration */
 203	unsigned int slave_id;
 204	struct dma_slave_config dma_sconfig;
 205	struct tegra_dma_channel_regs channel_reg;
 206
 207	struct wait_queue_head wq;
 208};
 209
 210/* tegra_dma: Tegra DMA specific information */
 211struct tegra_dma {
 212	struct dma_device		dma_dev;
 213	struct device			*dev;
 214	struct clk			*dma_clk;
 215	struct reset_control		*rst;
 216	spinlock_t			global_lock;
 217	void __iomem			*base_addr;
 218	const struct tegra_dma_chip_data *chip_data;
 219
 220	/*
 221	 * Counter for managing global pausing of the DMA controller.
 222	 * Only applicable for devices that don't support individual
 223	 * channel pausing.
 224	 */
 225	u32				global_pause_count;
 226
 
 
 
 227	/* Last member of the structure */
 228	struct tegra_dma_channel channels[];
 229};
 230
 231static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
 232{
 233	writel(val, tdma->base_addr + reg);
 234}
 235
 236static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
 237{
 238	return readl(tdma->base_addr + reg);
 239}
 240
 241static inline void tdc_write(struct tegra_dma_channel *tdc,
 242			     u32 reg, u32 val)
 243{
 244	writel(val, tdc->chan_addr + reg);
 245}
 246
 247static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 248{
 249	return readl(tdc->chan_addr + reg);
 250}
 251
 252static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 253{
 254	return container_of(dc, struct tegra_dma_channel, dma_chan);
 255}
 256
 257static inline struct tegra_dma_desc *
 258txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
 259{
 260	return container_of(td, struct tegra_dma_desc, txd);
 261}
 262
 263static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 264{
 265	return &tdc->dma_chan.dev->device;
 266}
 267
 268static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
 
 
 269
 270/* Get DMA desc from free list, if not there then allocate it.  */
 271static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
 
 272{
 273	struct tegra_dma_desc *dma_desc;
 274	unsigned long flags;
 275
 276	spin_lock_irqsave(&tdc->lock, flags);
 277
 278	/* Do not allocate if desc are waiting for ack */
 279	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 280		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
 281			list_del(&dma_desc->node);
 282			spin_unlock_irqrestore(&tdc->lock, flags);
 283			dma_desc->txd.flags = 0;
 284			return dma_desc;
 285		}
 286	}
 287
 288	spin_unlock_irqrestore(&tdc->lock, flags);
 289
 290	/* Allocate DMA desc */
 291	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
 292	if (!dma_desc)
 
 293		return NULL;
 
 294
 295	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
 296	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
 297	dma_desc->txd.flags = 0;
 298
 299	return dma_desc;
 300}
 301
 302static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
 303			       struct tegra_dma_desc *dma_desc)
 304{
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&tdc->lock, flags);
 308	if (!list_empty(&dma_desc->tx_list))
 309		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
 310	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 311	spin_unlock_irqrestore(&tdc->lock, flags);
 312}
 313
 314static struct tegra_dma_sg_req *
 315tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
 316{
 317	struct tegra_dma_sg_req *sg_req;
 318	unsigned long flags;
 319
 320	spin_lock_irqsave(&tdc->lock, flags);
 321	if (!list_empty(&tdc->free_sg_req)) {
 322		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
 323					  node);
 324		list_del(&sg_req->node);
 325		spin_unlock_irqrestore(&tdc->lock, flags);
 326		return sg_req;
 327	}
 328	spin_unlock_irqrestore(&tdc->lock, flags);
 329
 330	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
 331
 
 332	return sg_req;
 333}
 334
 335static int tegra_dma_slave_config(struct dma_chan *dc,
 336				  struct dma_slave_config *sconfig)
 337{
 338	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 339
 340	if (!list_empty(&tdc->pending_sg_req)) {
 341		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
 342		return -EBUSY;
 343	}
 344
 345	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 346	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
 347	    sconfig->device_fc) {
 348		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
 349			return -EINVAL;
 350		tdc->slave_id = sconfig->slave_id;
 351	}
 352	tdc->config_init = true;
 353
 354	return 0;
 355}
 356
 357static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
 358				   bool wait_for_burst_complete)
 359{
 360	struct tegra_dma *tdma = tdc->tdma;
 361
 362	spin_lock(&tdma->global_lock);
 363
 364	if (tdc->tdma->global_pause_count == 0) {
 365		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
 366		if (wait_for_burst_complete)
 367			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 368	}
 369
 370	tdc->tdma->global_pause_count++;
 371
 372	spin_unlock(&tdma->global_lock);
 373}
 374
 375static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
 376{
 377	struct tegra_dma *tdma = tdc->tdma;
 378
 379	spin_lock(&tdma->global_lock);
 380
 381	if (WARN_ON(tdc->tdma->global_pause_count == 0))
 382		goto out;
 383
 384	if (--tdc->tdma->global_pause_count == 0)
 385		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
 386			   TEGRA_APBDMA_GENERAL_ENABLE);
 387
 388out:
 389	spin_unlock(&tdma->global_lock);
 390}
 391
 392static void tegra_dma_pause(struct tegra_dma_channel *tdc,
 393			    bool wait_for_burst_complete)
 394{
 395	struct tegra_dma *tdma = tdc->tdma;
 396
 397	if (tdma->chip_data->support_channel_pause) {
 398		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
 399			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
 400		if (wait_for_burst_complete)
 401			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 402	} else {
 403		tegra_dma_global_pause(tdc, wait_for_burst_complete);
 404	}
 405}
 406
 407static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 408{
 409	struct tegra_dma *tdma = tdc->tdma;
 410
 411	if (tdma->chip_data->support_channel_pause)
 412		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
 413	else
 414		tegra_dma_global_resume(tdc);
 
 415}
 416
 417static void tegra_dma_stop(struct tegra_dma_channel *tdc)
 418{
 419	u32 csr, status;
 
 420
 421	/* Disable interrupts */
 422	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
 423	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
 424	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 425
 426	/* Disable DMA */
 427	csr &= ~TEGRA_APBDMA_CSR_ENB;
 428	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 429
 430	/* Clear interrupt status if it is there */
 431	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 432	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 433		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 434		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 435	}
 436	tdc->busy = false;
 437}
 438
 439static void tegra_dma_start(struct tegra_dma_channel *tdc,
 440			    struct tegra_dma_sg_req *sg_req)
 441{
 442	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
 443
 444	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
 445	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
 446	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
 447	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
 448	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
 449	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 450		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
 451
 452	/* Start DMA */
 453	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 454		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
 455}
 456
 457static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
 458					 struct tegra_dma_sg_req *nsg_req)
 459{
 460	unsigned long status;
 461
 462	/*
 463	 * The DMA controller reloads the new configuration for next transfer
 464	 * after last burst of current transfer completes.
 465	 * If there is no IEC status then this makes sure that last burst
 466	 * has not be completed. There may be case that last burst is on
 467	 * flight and so it can complete but because DMA is paused, it
 468	 * will not generates interrupt as well as not reload the new
 469	 * configuration.
 470	 * If there is already IEC status then interrupt handler need to
 471	 * load new configuration.
 472	 */
 473	tegra_dma_pause(tdc, false);
 474	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 475
 476	/*
 477	 * If interrupt is pending then do nothing as the ISR will handle
 478	 * the programing for new request.
 479	 */
 480	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 481		dev_err(tdc2dev(tdc),
 482			"Skipping new configuration as interrupt is pending\n");
 483		tegra_dma_resume(tdc);
 484		return;
 485	}
 486
 487	/* Safe to program new configuration */
 488	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
 489	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
 490	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 491		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
 492			  nsg_req->ch_regs.wcount);
 493	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 494		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
 495	nsg_req->configured = true;
 496	nsg_req->words_xferred = 0;
 497
 498	tegra_dma_resume(tdc);
 499}
 500
 501static void tdc_start_head_req(struct tegra_dma_channel *tdc)
 502{
 503	struct tegra_dma_sg_req *sg_req;
 504
 505	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
 
 
 
 
 506	tegra_dma_start(tdc, sg_req);
 507	sg_req->configured = true;
 508	sg_req->words_xferred = 0;
 509	tdc->busy = true;
 510}
 511
 512static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
 513{
 514	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
 
 
 
 
 515
 516	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 517	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
 518		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
 519					   node);
 520		tegra_dma_configure_for_next(tdc, hnsgreq);
 521	}
 522}
 523
 524static inline unsigned int
 525get_current_xferred_count(struct tegra_dma_channel *tdc,
 526			  struct tegra_dma_sg_req *sg_req,
 527			  unsigned long status)
 528{
 529	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
 530}
 531
 532static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
 533{
 534	struct tegra_dma_desc *dma_desc;
 535	struct tegra_dma_sg_req *sgreq;
 
 536
 537	while (!list_empty(&tdc->pending_sg_req)) {
 538		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 539					 node);
 540		list_move_tail(&sgreq->node, &tdc->free_sg_req);
 541		if (sgreq->last_sg) {
 542			dma_desc = sgreq->dma_desc;
 543			dma_desc->dma_status = DMA_ERROR;
 544			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 545
 546			/* Add in cb list if it is not there. */
 547			if (!dma_desc->cb_count)
 548				list_add_tail(&dma_desc->cb_node,
 549					      &tdc->cb_desc);
 550			dma_desc->cb_count++;
 551		}
 552	}
 553	tdc->isr_handler = NULL;
 554}
 555
 556static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
 557					   bool to_terminate)
 558{
 559	struct tegra_dma_sg_req *hsgreq;
 
 
 
 
 
 
 560
 561	/*
 562	 * Check that head req on list should be in flight.
 563	 * If it is not in flight then abort transfer as
 564	 * looping of transfer can not continue.
 565	 */
 566	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 567	if (!hsgreq->configured) {
 568		tegra_dma_stop(tdc);
 569		pm_runtime_put(tdc->tdma->dev);
 570		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
 571		tegra_dma_abort_all(tdc);
 572		return false;
 573	}
 574
 575	/* Configure next request */
 576	if (!to_terminate)
 577		tdc_configure_next_head_desc(tdc);
 578
 579	return true;
 580}
 581
 582static void handle_once_dma_done(struct tegra_dma_channel *tdc,
 583				 bool to_terminate)
 584{
 585	struct tegra_dma_desc *dma_desc;
 586	struct tegra_dma_sg_req *sgreq;
 
 587
 588	tdc->busy = false;
 589	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 590	dma_desc = sgreq->dma_desc;
 591	dma_desc->bytes_transferred += sgreq->req_len;
 592
 593	list_del(&sgreq->node);
 594	if (sgreq->last_sg) {
 595		dma_desc->dma_status = DMA_COMPLETE;
 596		dma_cookie_complete(&dma_desc->txd);
 597		if (!dma_desc->cb_count)
 598			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 599		dma_desc->cb_count++;
 600		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 601	}
 602	list_add_tail(&sgreq->node, &tdc->free_sg_req);
 603
 604	/* Do not start DMA if it is going to be terminate */
 605	if (to_terminate)
 606		return;
 607
 608	if (list_empty(&tdc->pending_sg_req)) {
 609		pm_runtime_put(tdc->tdma->dev);
 610		return;
 611	}
 612
 613	tdc_start_head_req(tdc);
 614}
 615
 616static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
 617					    bool to_terminate)
 618{
 619	struct tegra_dma_desc *dma_desc;
 620	struct tegra_dma_sg_req *sgreq;
 
 621	bool st;
 622
 623	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 624	dma_desc = sgreq->dma_desc;
 625	/* if we dma for long enough the transfer count will wrap */
 626	dma_desc->bytes_transferred =
 627		(dma_desc->bytes_transferred + sgreq->req_len) %
 628		dma_desc->bytes_requested;
 629
 630	/* Callback need to be call */
 631	if (!dma_desc->cb_count)
 632		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 633	dma_desc->cb_count++;
 634
 635	sgreq->words_xferred = 0;
 636
 637	/* If not last req then put at end of pending list */
 638	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
 639		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
 640		sgreq->configured = false;
 641		st = handle_continuous_head_request(tdc, to_terminate);
 642		if (!st)
 643			dma_desc->dma_status = DMA_ERROR;
 644	}
 645}
 646
 647static void tegra_dma_tasklet(unsigned long data)
 648{
 649	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
 650	struct dmaengine_desc_callback cb;
 
 651	struct tegra_dma_desc *dma_desc;
 652	unsigned int cb_count;
 653	unsigned long flags;
 
 654
 655	spin_lock_irqsave(&tdc->lock, flags);
 656	while (!list_empty(&tdc->cb_desc)) {
 657		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 658					    cb_node);
 659		list_del(&dma_desc->cb_node);
 660		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
 
 661		cb_count = dma_desc->cb_count;
 662		dma_desc->cb_count = 0;
 663		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
 664					    cb.callback);
 665		spin_unlock_irqrestore(&tdc->lock, flags);
 666		while (cb_count--)
 667			dmaengine_desc_callback_invoke(&cb, NULL);
 668		spin_lock_irqsave(&tdc->lock, flags);
 669	}
 670	spin_unlock_irqrestore(&tdc->lock, flags);
 671}
 672
 673static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 674{
 675	struct tegra_dma_channel *tdc = dev_id;
 676	u32 status;
 
 677
 678	spin_lock(&tdc->lock);
 679
 680	trace_tegra_dma_isr(&tdc->dma_chan, irq);
 681	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 682	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 683		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 684		tdc->isr_handler(tdc, false);
 685		tasklet_schedule(&tdc->tasklet);
 686		wake_up_all(&tdc->wq);
 687		spin_unlock(&tdc->lock);
 688		return IRQ_HANDLED;
 689	}
 690
 691	spin_unlock(&tdc->lock);
 692	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
 693		 status);
 694
 695	return IRQ_NONE;
 696}
 697
 698static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 699{
 700	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
 701	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
 702	unsigned long flags;
 703	dma_cookie_t cookie;
 704
 705	spin_lock_irqsave(&tdc->lock, flags);
 706	dma_desc->dma_status = DMA_IN_PROGRESS;
 707	cookie = dma_cookie_assign(&dma_desc->txd);
 708	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
 709	spin_unlock_irqrestore(&tdc->lock, flags);
 710
 711	return cookie;
 712}
 713
 714static void tegra_dma_issue_pending(struct dma_chan *dc)
 715{
 716	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 717	unsigned long flags;
 718	int err;
 719
 720	spin_lock_irqsave(&tdc->lock, flags);
 721	if (list_empty(&tdc->pending_sg_req)) {
 722		dev_err(tdc2dev(tdc), "No DMA request\n");
 723		goto end;
 724	}
 725	if (!tdc->busy) {
 726		err = pm_runtime_get_sync(tdc->tdma->dev);
 727		if (err < 0) {
 728			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
 729			goto end;
 730		}
 731
 732		tdc_start_head_req(tdc);
 733
 734		/* Continuous single mode: Configure next req */
 735		if (tdc->cyclic) {
 736			/*
 737			 * Wait for 1 burst time for configure DMA for
 738			 * next transfer.
 739			 */
 740			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 741			tdc_configure_next_head_desc(tdc);
 742		}
 743	}
 744end:
 745	spin_unlock_irqrestore(&tdc->lock, flags);
 746}
 747
 748static int tegra_dma_terminate_all(struct dma_chan *dc)
 749{
 750	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 751	struct tegra_dma_desc *dma_desc;
 752	struct tegra_dma_sg_req *sgreq;
 
 753	unsigned long flags;
 754	u32 status, wcount;
 
 755	bool was_busy;
 756
 757	spin_lock_irqsave(&tdc->lock, flags);
 
 
 
 
 758
 759	if (!tdc->busy)
 760		goto skip_dma_stop;
 761
 762	/* Pause DMA before checking the queue status */
 763	tegra_dma_pause(tdc, true);
 764
 765	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 766	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 767		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
 768		tdc->isr_handler(tdc, true);
 769		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 770	}
 771	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 772		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 773	else
 774		wcount = status;
 775
 776	was_busy = tdc->busy;
 777	tegra_dma_stop(tdc);
 778
 779	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
 780		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
 781					 node);
 782		sgreq->dma_desc->bytes_transferred +=
 783				get_current_xferred_count(tdc, sgreq, wcount);
 784	}
 785	tegra_dma_resume(tdc);
 786
 787	pm_runtime_put(tdc->tdma->dev);
 788	wake_up_all(&tdc->wq);
 789
 790skip_dma_stop:
 791	tegra_dma_abort_all(tdc);
 792
 793	while (!list_empty(&tdc->cb_desc)) {
 794		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
 795					    cb_node);
 796		list_del(&dma_desc->cb_node);
 797		dma_desc->cb_count = 0;
 798	}
 799	spin_unlock_irqrestore(&tdc->lock, flags);
 800
 801	return 0;
 802}
 803
 804static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
 805{
 806	unsigned long flags;
 807	u32 status;
 808
 809	spin_lock_irqsave(&tdc->lock, flags);
 810	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 811	spin_unlock_irqrestore(&tdc->lock, flags);
 812
 813	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
 814}
 815
 816static void tegra_dma_synchronize(struct dma_chan *dc)
 817{
 818	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 819	int err;
 820
 821	err = pm_runtime_get_sync(tdc->tdma->dev);
 822	if (err < 0) {
 823		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
 824		return;
 825	}
 826
 827	/*
 828	 * CPU, which handles interrupt, could be busy in
 829	 * uninterruptible state, in this case sibling CPU
 830	 * should wait until interrupt is handled.
 831	 */
 832	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
 833
 834	tasklet_kill(&tdc->tasklet);
 835
 836	pm_runtime_put(tdc->tdma->dev);
 837}
 838
 839static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
 840					       struct tegra_dma_sg_req *sg_req)
 841{
 842	u32 status, wcount = 0;
 843
 844	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
 845		return 0;
 846
 847	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 848		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 849
 850	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 851
 852	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
 853		wcount = status;
 854
 855	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
 856		return sg_req->req_len;
 857
 858	wcount = get_current_xferred_count(tdc, sg_req, wcount);
 859
 860	if (!wcount) {
 861		/*
 862		 * If wcount wasn't ever polled for this SG before, then
 863		 * simply assume that transfer hasn't started yet.
 864		 *
 865		 * Otherwise it's the end of the transfer.
 866		 *
 867		 * The alternative would be to poll the status register
 868		 * until EOC bit is set or wcount goes UP. That's so
 869		 * because EOC bit is getting set only after the last
 870		 * burst's completion and counter is less than the actual
 871		 * transfer size by 4 bytes. The counter value wraps around
 872		 * in a cyclic mode before EOC is set(!), so we can't easily
 873		 * distinguish start of transfer from its end.
 874		 */
 875		if (sg_req->words_xferred)
 876			wcount = sg_req->req_len - 4;
 877
 878	} else if (wcount < sg_req->words_xferred) {
 879		/*
 880		 * This case will never happen for a non-cyclic transfer.
 881		 *
 882		 * For a cyclic transfer, although it is possible for the
 883		 * next transfer to have already started (resetting the word
 884		 * count), this case should still not happen because we should
 885		 * have detected that the EOC bit is set and hence the transfer
 886		 * was completed.
 887		 */
 888		WARN_ON_ONCE(1);
 889
 890		wcount = sg_req->req_len - 4;
 891	} else {
 892		sg_req->words_xferred = wcount;
 893	}
 894
 895	return wcount;
 896}
 897
 898static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 899					   dma_cookie_t cookie,
 900					   struct dma_tx_state *txstate)
 901{
 902	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 903	struct tegra_dma_desc *dma_desc;
 904	struct tegra_dma_sg_req *sg_req;
 905	enum dma_status ret;
 906	unsigned long flags;
 907	unsigned int residual;
 908	unsigned int bytes = 0;
 909
 910	ret = dma_cookie_status(dc, cookie, txstate);
 911	if (ret == DMA_COMPLETE)
 912		return ret;
 913
 914	spin_lock_irqsave(&tdc->lock, flags);
 915
 916	/* Check on wait_ack desc status */
 917	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 918		if (dma_desc->txd.cookie == cookie) {
 
 
 
 
 919			ret = dma_desc->dma_status;
 920			goto found;
 
 921		}
 922	}
 923
 924	/* Check in pending list */
 925	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
 926		dma_desc = sg_req->dma_desc;
 927		if (dma_desc->txd.cookie == cookie) {
 928			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
 
 
 
 929			ret = dma_desc->dma_status;
 930			goto found;
 
 931		}
 932	}
 933
 934	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
 935	dma_desc = NULL;
 936
 937found:
 938	if (dma_desc && txstate) {
 939		residual = dma_desc->bytes_requested -
 940			   ((dma_desc->bytes_transferred + bytes) %
 941			    dma_desc->bytes_requested);
 942		dma_set_residue(txstate, residual);
 943	}
 944
 945	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
 946	spin_unlock_irqrestore(&tdc->lock, flags);
 947
 948	return ret;
 949}
 950
 951static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
 952					 enum dma_slave_buswidth slave_bw)
 953{
 954	switch (slave_bw) {
 955	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 956		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
 957	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 958		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
 959	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 960		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 961	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 962		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
 963	default:
 964		dev_warn(tdc2dev(tdc),
 965			 "slave bw is not supported, using 32bits\n");
 966		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 967	}
 968}
 969
 970static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
 971					  u32 burst_size,
 972					  enum dma_slave_buswidth slave_bw,
 973					  u32 len)
 974{
 975	unsigned int burst_byte, burst_ahb_width;
 
 976
 977	/*
 978	 * burst_size from client is in terms of the bus_width.
 979	 * convert them into AHB memory width which is 4 byte.
 980	 */
 981	burst_byte = burst_size * slave_bw;
 982	burst_ahb_width = burst_byte / 4;
 983
 984	/* If burst size is 0 then calculate the burst size based on length */
 985	if (!burst_ahb_width) {
 986		if (len & 0xF)
 987			return TEGRA_APBDMA_AHBSEQ_BURST_1;
 988		else if ((len >> 4) & 0x1)
 989			return TEGRA_APBDMA_AHBSEQ_BURST_4;
 990		else
 991			return TEGRA_APBDMA_AHBSEQ_BURST_8;
 992	}
 993	if (burst_ahb_width < 4)
 994		return TEGRA_APBDMA_AHBSEQ_BURST_1;
 995	else if (burst_ahb_width < 8)
 996		return TEGRA_APBDMA_AHBSEQ_BURST_4;
 997	else
 998		return TEGRA_APBDMA_AHBSEQ_BURST_8;
 999}
1000
1001static int get_transfer_param(struct tegra_dma_channel *tdc,
1002			      enum dma_transfer_direction direction,
1003			      u32 *apb_addr,
1004			      u32 *apb_seq,
1005			      u32 *csr,
1006			      unsigned int *burst_size,
1007			      enum dma_slave_buswidth *slave_bw)
1008{
 
1009	switch (direction) {
1010	case DMA_MEM_TO_DEV:
1011		*apb_addr = tdc->dma_sconfig.dst_addr;
1012		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1013		*burst_size = tdc->dma_sconfig.dst_maxburst;
1014		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1015		*csr = TEGRA_APBDMA_CSR_DIR;
1016		return 0;
1017
1018	case DMA_DEV_TO_MEM:
1019		*apb_addr = tdc->dma_sconfig.src_addr;
1020		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1021		*burst_size = tdc->dma_sconfig.src_maxburst;
1022		*slave_bw = tdc->dma_sconfig.src_addr_width;
1023		*csr = 0;
1024		return 0;
1025
1026	default:
1027		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1028		break;
1029	}
1030
1031	return -EINVAL;
1032}
1033
1034static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1035				  struct tegra_dma_channel_regs *ch_regs,
1036				  u32 len)
1037{
1038	u32 len_field = (len - 4) & 0xFFFC;
1039
1040	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1041		ch_regs->wcount = len_field;
1042	else
1043		ch_regs->csr |= len_field;
1044}
1045
1046static struct dma_async_tx_descriptor *
1047tegra_dma_prep_slave_sg(struct dma_chan *dc,
1048			struct scatterlist *sgl,
1049			unsigned int sg_len,
1050			enum dma_transfer_direction direction,
1051			unsigned long flags,
1052			void *context)
1053{
1054	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1055	struct tegra_dma_sg_req *sg_req = NULL;
1056	u32 csr, ahb_seq, apb_ptr, apb_seq;
1057	enum dma_slave_buswidth slave_bw;
1058	struct tegra_dma_desc *dma_desc;
 
 
 
1059	struct list_head req_list;
1060	struct scatterlist *sg;
1061	unsigned int burst_size;
1062	unsigned int i;
1063
1064	if (!tdc->config_init) {
1065		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1066		return NULL;
1067	}
1068	if (sg_len < 1) {
1069		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1070		return NULL;
1071	}
1072
1073	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1074			       &burst_size, &slave_bw) < 0)
1075		return NULL;
1076
1077	INIT_LIST_HEAD(&req_list);
1078
1079	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1080	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1081					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1082	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1083
1084	csr |= TEGRA_APBDMA_CSR_ONCE;
1085
1086	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1087		csr |= TEGRA_APBDMA_CSR_FLOW;
1088		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089	}
1090
1091	if (flags & DMA_PREP_INTERRUPT) {
1092		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1093	} else {
1094		WARN_ON_ONCE(1);
1095		return NULL;
1096	}
1097
1098	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1099
1100	dma_desc = tegra_dma_desc_get(tdc);
1101	if (!dma_desc) {
1102		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1103		return NULL;
1104	}
1105	INIT_LIST_HEAD(&dma_desc->tx_list);
1106	INIT_LIST_HEAD(&dma_desc->cb_node);
1107	dma_desc->cb_count = 0;
1108	dma_desc->bytes_requested = 0;
1109	dma_desc->bytes_transferred = 0;
1110	dma_desc->dma_status = DMA_IN_PROGRESS;
1111
1112	/* Make transfer requests */
1113	for_each_sg(sgl, sg, sg_len, i) {
1114		u32 len, mem;
1115
1116		mem = sg_dma_address(sg);
1117		len = sg_dma_len(sg);
1118
1119		if ((len & 3) || (mem & 3) ||
1120		    len > tdc->tdma->chip_data->max_dma_count) {
1121			dev_err(tdc2dev(tdc),
1122				"DMA length/memory address is not supported\n");
1123			tegra_dma_desc_put(tdc, dma_desc);
1124			return NULL;
1125		}
1126
1127		sg_req = tegra_dma_sg_req_get(tdc);
1128		if (!sg_req) {
1129			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1130			tegra_dma_desc_put(tdc, dma_desc);
1131			return NULL;
1132		}
1133
1134		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1135		dma_desc->bytes_requested += len;
1136
1137		sg_req->ch_regs.apb_ptr = apb_ptr;
1138		sg_req->ch_regs.ahb_ptr = mem;
1139		sg_req->ch_regs.csr = csr;
1140		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1141		sg_req->ch_regs.apb_seq = apb_seq;
1142		sg_req->ch_regs.ahb_seq = ahb_seq;
1143		sg_req->configured = false;
1144		sg_req->last_sg = false;
1145		sg_req->dma_desc = dma_desc;
1146		sg_req->req_len = len;
1147
1148		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1149	}
1150	sg_req->last_sg = true;
1151	if (flags & DMA_CTRL_ACK)
1152		dma_desc->txd.flags = DMA_CTRL_ACK;
1153
1154	/*
1155	 * Make sure that mode should not be conflicting with currently
1156	 * configured mode.
1157	 */
1158	if (!tdc->isr_handler) {
1159		tdc->isr_handler = handle_once_dma_done;
1160		tdc->cyclic = false;
1161	} else {
1162		if (tdc->cyclic) {
1163			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1164			tegra_dma_desc_put(tdc, dma_desc);
1165			return NULL;
1166		}
1167	}
1168
1169	return &dma_desc->txd;
1170}
1171
1172static struct dma_async_tx_descriptor *
1173tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1174			  size_t buf_len,
1175			  size_t period_len,
1176			  enum dma_transfer_direction direction,
1177			  unsigned long flags)
1178{
1179	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1180	struct tegra_dma_sg_req *sg_req = NULL;
1181	u32 csr, ahb_seq, apb_ptr, apb_seq;
1182	enum dma_slave_buswidth slave_bw;
1183	struct tegra_dma_desc *dma_desc;
 
1184	dma_addr_t mem = buf_addr;
1185	unsigned int burst_size;
1186	size_t len, remain_len;
1187
1188	if (!buf_len || !period_len) {
1189		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1190		return NULL;
1191	}
1192
1193	if (!tdc->config_init) {
1194		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1195		return NULL;
1196	}
1197
1198	/*
1199	 * We allow to take more number of requests till DMA is
1200	 * not started. The driver will loop over all requests.
1201	 * Once DMA is started then new requests can be queued only after
1202	 * terminating the DMA.
1203	 */
1204	if (tdc->busy) {
1205		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1206		return NULL;
1207	}
1208
1209	/*
1210	 * We only support cycle transfer when buf_len is multiple of
1211	 * period_len.
1212	 */
1213	if (buf_len % period_len) {
1214		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1215		return NULL;
1216	}
1217
1218	len = period_len;
1219	if ((len & 3) || (buf_addr & 3) ||
1220	    len > tdc->tdma->chip_data->max_dma_count) {
1221		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1222		return NULL;
1223	}
1224
1225	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1226			       &burst_size, &slave_bw) < 0)
1227		return NULL;
1228
1229	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1230	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1231					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1232	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1233
1234	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1235		csr |= TEGRA_APBDMA_CSR_FLOW;
1236		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1237	}
1238
1239	if (flags & DMA_PREP_INTERRUPT) {
1240		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1241	} else {
1242		WARN_ON_ONCE(1);
1243		return NULL;
1244	}
1245
1246	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1247
1248	dma_desc = tegra_dma_desc_get(tdc);
1249	if (!dma_desc) {
1250		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1251		return NULL;
1252	}
1253
1254	INIT_LIST_HEAD(&dma_desc->tx_list);
1255	INIT_LIST_HEAD(&dma_desc->cb_node);
1256	dma_desc->cb_count = 0;
1257
1258	dma_desc->bytes_transferred = 0;
1259	dma_desc->bytes_requested = buf_len;
1260	remain_len = buf_len;
1261
1262	/* Split transfer equal to period size */
1263	while (remain_len) {
1264		sg_req = tegra_dma_sg_req_get(tdc);
1265		if (!sg_req) {
1266			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1267			tegra_dma_desc_put(tdc, dma_desc);
1268			return NULL;
1269		}
1270
1271		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1272		sg_req->ch_regs.apb_ptr = apb_ptr;
1273		sg_req->ch_regs.ahb_ptr = mem;
1274		sg_req->ch_regs.csr = csr;
1275		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1276		sg_req->ch_regs.apb_seq = apb_seq;
1277		sg_req->ch_regs.ahb_seq = ahb_seq;
1278		sg_req->configured = false;
1279		sg_req->last_sg = false;
1280		sg_req->dma_desc = dma_desc;
1281		sg_req->req_len = len;
1282
1283		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1284		remain_len -= len;
1285		mem += len;
1286	}
1287	sg_req->last_sg = true;
1288	if (flags & DMA_CTRL_ACK)
1289		dma_desc->txd.flags = DMA_CTRL_ACK;
1290
1291	/*
1292	 * Make sure that mode should not be conflicting with currently
1293	 * configured mode.
1294	 */
1295	if (!tdc->isr_handler) {
1296		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1297		tdc->cyclic = true;
1298	} else {
1299		if (!tdc->cyclic) {
1300			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1301			tegra_dma_desc_put(tdc, dma_desc);
1302			return NULL;
1303		}
1304	}
1305
1306	return &dma_desc->txd;
1307}
1308
1309static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1310{
1311	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 
 
1312
1313	dma_cookie_init(&tdc->dma_chan);
 
 
 
 
 
1314
1315	return 0;
1316}
1317
1318static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1319{
1320	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 
 
1321	struct tegra_dma_desc *dma_desc;
1322	struct tegra_dma_sg_req *sg_req;
1323	struct list_head dma_desc_list;
1324	struct list_head sg_req_list;
 
1325
1326	INIT_LIST_HEAD(&dma_desc_list);
1327	INIT_LIST_HEAD(&sg_req_list);
1328
1329	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1330
1331	tegra_dma_terminate_all(dc);
1332	tasklet_kill(&tdc->tasklet);
1333
 
1334	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1335	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1336	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1337	INIT_LIST_HEAD(&tdc->cb_desc);
1338	tdc->config_init = false;
1339	tdc->isr_handler = NULL;
 
1340
1341	while (!list_empty(&dma_desc_list)) {
1342		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1343					    node);
1344		list_del(&dma_desc->node);
1345		kfree(dma_desc);
1346	}
1347
1348	while (!list_empty(&sg_req_list)) {
1349		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1350		list_del(&sg_req->node);
1351		kfree(sg_req);
1352	}
 
1353
1354	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1355}
1356
1357static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1358					   struct of_dma *ofdma)
1359{
1360	struct tegra_dma *tdma = ofdma->of_dma_data;
1361	struct tegra_dma_channel *tdc;
1362	struct dma_chan *chan;
1363
1364	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1365		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1366		return NULL;
1367	}
1368
1369	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1370	if (!chan)
1371		return NULL;
1372
1373	tdc = to_tegra_dma_chan(chan);
1374	tdc->slave_id = dma_spec->args[0];
1375
1376	return chan;
1377}
1378
1379/* Tegra20 specific DMA controller information */
1380static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1381	.nr_channels		= 16,
1382	.channel_reg_size	= 0x20,
1383	.max_dma_count		= 1024UL * 64,
1384	.support_channel_pause	= false,
1385	.support_separate_wcount_reg = false,
1386};
1387
1388/* Tegra30 specific DMA controller information */
1389static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1390	.nr_channels		= 32,
1391	.channel_reg_size	= 0x20,
1392	.max_dma_count		= 1024UL * 64,
1393	.support_channel_pause	= false,
1394	.support_separate_wcount_reg = false,
1395};
1396
1397/* Tegra114 specific DMA controller information */
1398static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1399	.nr_channels		= 32,
1400	.channel_reg_size	= 0x20,
1401	.max_dma_count		= 1024UL * 64,
1402	.support_channel_pause	= true,
1403	.support_separate_wcount_reg = false,
1404};
1405
1406/* Tegra148 specific DMA controller information */
1407static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1408	.nr_channels		= 32,
1409	.channel_reg_size	= 0x40,
1410	.max_dma_count		= 1024UL * 64,
1411	.support_channel_pause	= true,
1412	.support_separate_wcount_reg = true,
1413};
1414
1415static int tegra_dma_init_hw(struct tegra_dma *tdma)
1416{
1417	int err;
1418
1419	err = reset_control_assert(tdma->rst);
1420	if (err) {
1421		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1422		return err;
1423	}
1424
1425	err = clk_enable(tdma->dma_clk);
1426	if (err) {
1427		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1428		return err;
1429	}
1430
1431	/* reset DMA controller */
1432	udelay(2);
1433	reset_control_deassert(tdma->rst);
1434
1435	/* enable global DMA registers */
1436	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1439
1440	clk_disable(tdma->dma_clk);
1441
1442	return 0;
1443}
1444
1445static int tegra_dma_probe(struct platform_device *pdev)
1446{
1447	const struct tegra_dma_chip_data *cdata;
1448	struct tegra_dma *tdma;
1449	unsigned int i;
1450	size_t size;
1451	int ret;
 
 
1452
1453	cdata = of_device_get_match_data(&pdev->dev);
1454	size = struct_size(tdma, channels, cdata->nr_channels);
 
 
 
1455
1456	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1457	if (!tdma)
 
 
1458		return -ENOMEM;
 
1459
1460	tdma->dev = &pdev->dev;
1461	tdma->chip_data = cdata;
1462	platform_set_drvdata(pdev, tdma);
1463
1464	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
 
1465	if (IS_ERR(tdma->base_addr))
1466		return PTR_ERR(tdma->base_addr);
1467
1468	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1469	if (IS_ERR(tdma->dma_clk)) {
1470		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1471		return PTR_ERR(tdma->dma_clk);
1472	}
1473
1474	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1475	if (IS_ERR(tdma->rst)) {
1476		dev_err(&pdev->dev, "Error: Missing reset\n");
1477		return PTR_ERR(tdma->rst);
1478	}
1479
1480	spin_lock_init(&tdma->global_lock);
1481
1482	ret = clk_prepare(tdma->dma_clk);
1483	if (ret)
 
 
 
 
 
 
1484		return ret;
 
1485
1486	ret = tegra_dma_init_hw(tdma);
1487	if (ret)
1488		goto err_clk_unprepare;
 
1489
1490	pm_runtime_irq_safe(&pdev->dev);
1491	pm_runtime_enable(&pdev->dev);
 
 
 
 
1492
1493	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1494	for (i = 0; i < cdata->nr_channels; i++) {
1495		struct tegra_dma_channel *tdc = &tdma->channels[i];
1496		int irq;
1497
1498		tdc->chan_addr = tdma->base_addr +
1499				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1500				 (i * cdata->channel_reg_size);
1501
1502		irq = platform_get_irq(pdev, i);
1503		if (irq < 0) {
1504			ret = irq;
1505			goto err_pm_disable;
 
1506		}
1507
1508		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1509		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1510				       tdc->name, tdc);
1511		if (ret) {
1512			dev_err(&pdev->dev,
1513				"request_irq failed with err %d channel %d\n",
1514				ret, i);
1515			goto err_pm_disable;
1516		}
1517
1518		tdc->dma_chan.device = &tdma->dma_dev;
1519		dma_cookie_init(&tdc->dma_chan);
1520		list_add_tail(&tdc->dma_chan.device_node,
1521			      &tdma->dma_dev.channels);
1522		tdc->tdma = tdma;
1523		tdc->id = i;
1524		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1525
1526		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1527			     (unsigned long)tdc);
1528		spin_lock_init(&tdc->lock);
1529		init_waitqueue_head(&tdc->wq);
1530
1531		INIT_LIST_HEAD(&tdc->pending_sg_req);
1532		INIT_LIST_HEAD(&tdc->free_sg_req);
1533		INIT_LIST_HEAD(&tdc->free_dma_desc);
1534		INIT_LIST_HEAD(&tdc->cb_desc);
1535	}
1536
1537	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1538	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1539	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1540
1541	tdma->global_pause_count = 0;
1542	tdma->dma_dev.dev = &pdev->dev;
1543	tdma->dma_dev.device_alloc_chan_resources =
1544					tegra_dma_alloc_chan_resources;
1545	tdma->dma_dev.device_free_chan_resources =
1546					tegra_dma_free_chan_resources;
1547	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1548	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1549	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1550		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1551		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1552		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1553	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1554		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1555		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1556		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1557	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1558	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
 
 
 
 
 
1559	tdma->dma_dev.device_config = tegra_dma_slave_config;
1560	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1561	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1562	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1563	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1564
1565	ret = dma_async_device_register(&tdma->dma_dev);
1566	if (ret < 0) {
1567		dev_err(&pdev->dev,
1568			"Tegra20 APB DMA driver registration failed %d\n", ret);
1569		goto err_pm_disable;
1570	}
1571
1572	ret = of_dma_controller_register(pdev->dev.of_node,
1573					 tegra_dma_of_xlate, tdma);
1574	if (ret < 0) {
1575		dev_err(&pdev->dev,
1576			"Tegra20 APB DMA OF registration failed %d\n", ret);
1577		goto err_unregister_dma_dev;
1578	}
1579
1580	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1581		 cdata->nr_channels);
1582
1583	return 0;
1584
1585err_unregister_dma_dev:
1586	dma_async_device_unregister(&tdma->dma_dev);
 
 
 
1587
1588err_pm_disable:
1589	pm_runtime_disable(&pdev->dev);
1590
1591err_clk_unprepare:
1592	clk_unprepare(tdma->dma_clk);
1593
 
 
 
1594	return ret;
1595}
1596
1597static int tegra_dma_remove(struct platform_device *pdev)
1598{
1599	struct tegra_dma *tdma = platform_get_drvdata(pdev);
 
 
1600
1601	of_dma_controller_free(pdev->dev.of_node);
1602	dma_async_device_unregister(&tdma->dma_dev);
 
 
 
 
 
 
 
1603	pm_runtime_disable(&pdev->dev);
1604	clk_unprepare(tdma->dma_clk);
 
1605
1606	return 0;
1607}
1608
1609static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1610{
1611	struct tegra_dma *tdma = dev_get_drvdata(dev);
1612
1613	clk_disable(tdma->dma_clk);
1614
1615	return 0;
1616}
1617
1618static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1619{
1620	struct tegra_dma *tdma = dev_get_drvdata(dev);
 
1621
1622	return clk_enable(tdma->dma_clk);
 
 
 
 
 
1623}
1624
1625static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
 
1626{
1627	struct tegra_dma *tdma = dev_get_drvdata(dev);
1628	unsigned long flags;
1629	unsigned int i;
1630	bool busy;
 
 
 
 
1631
 
1632	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1633		struct tegra_dma_channel *tdc = &tdma->channels[i];
 
1634
1635		tasklet_kill(&tdc->tasklet);
1636
1637		spin_lock_irqsave(&tdc->lock, flags);
1638		busy = tdc->busy;
1639		spin_unlock_irqrestore(&tdc->lock, flags);
1640
1641		if (busy) {
1642			dev_err(tdma->dev, "channel %u busy\n", i);
1643			return -EBUSY;
1644		}
 
 
1645	}
1646
1647	return pm_runtime_force_suspend(dev);
 
 
1648}
1649
1650static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1651{
1652	struct tegra_dma *tdma = dev_get_drvdata(dev);
1653	int err;
 
1654
1655	err = tegra_dma_init_hw(tdma);
1656	if (err)
1657		return err;
 
 
 
 
 
1658
1659	return pm_runtime_force_resume(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
 
1661
1662static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1663	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1664			   NULL)
1665	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1666};
1667
1668static const struct of_device_id tegra_dma_of_match[] = {
1669	{
1670		.compatible = "nvidia,tegra148-apbdma",
1671		.data = &tegra148_dma_chip_data,
1672	}, {
1673		.compatible = "nvidia,tegra114-apbdma",
1674		.data = &tegra114_dma_chip_data,
1675	}, {
1676		.compatible = "nvidia,tegra30-apbdma",
1677		.data = &tegra30_dma_chip_data,
1678	}, {
1679		.compatible = "nvidia,tegra20-apbdma",
1680		.data = &tegra20_dma_chip_data,
1681	}, {
1682	},
1683};
1684MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1685
1686static struct platform_driver tegra_dmac_driver = {
1687	.driver = {
1688		.name	= "tegra-apbdma",
1689		.pm	= &tegra_dma_dev_pm_ops,
1690		.of_match_table = tegra_dma_of_match,
1691	},
1692	.probe		= tegra_dma_probe,
1693	.remove		= tegra_dma_remove,
1694};
1695
1696module_platform_driver(tegra_dmac_driver);
1697
 
1698MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1699MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1700MODULE_LICENSE("GPL v2");
v4.6
 
   1/*
   2 * DMA driver for Nvidia's Tegra20 APB DMA controller.
   3 *
   4 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/bitops.h>
  20#include <linux/clk.h>
  21#include <linux/delay.h>
  22#include <linux/dmaengine.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/mm.h>
  29#include <linux/module.h>
  30#include <linux/of.h>
  31#include <linux/of_device.h>
  32#include <linux/of_dma.h>
  33#include <linux/platform_device.h>
  34#include <linux/pm.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/reset.h>
  37#include <linux/slab.h>
 
  38
  39#include "dmaengine.h"
  40
 
 
 
  41#define TEGRA_APBDMA_GENERAL			0x0
  42#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
  43
  44#define TEGRA_APBDMA_CONTROL			0x010
  45#define TEGRA_APBDMA_IRQ_MASK			0x01c
  46#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
  47
  48/* CSR register */
  49#define TEGRA_APBDMA_CHAN_CSR			0x00
  50#define TEGRA_APBDMA_CSR_ENB			BIT(31)
  51#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
  52#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
  53#define TEGRA_APBDMA_CSR_DIR			BIT(28)
  54#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
  55#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
  56#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
 
  57#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
  58
  59/* STATUS register */
  60#define TEGRA_APBDMA_CHAN_STATUS		0x004
  61#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
  62#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
  63#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
  64#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
  65#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
  66#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
  67
  68#define TEGRA_APBDMA_CHAN_CSRE			0x00C
  69#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
  70
  71/* AHB memory address */
  72#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
  73
  74/* AHB sequence register */
  75#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
  76#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
  77#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
  78#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
  79#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
  80#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
  81#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
  82#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
  83#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
  84#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
  85#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
  86#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
  87#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
  88#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
  89
  90/* APB address */
  91#define TEGRA_APBDMA_CHAN_APBPTR		0x018
  92
  93/* APB sequence register */
  94#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
  95#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
  96#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
  97#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
  98#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
  99#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
 100#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
 101#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
 102
 103/* Tegra148 specific registers */
 104#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
 105
 106#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
 107
 108/*
 109 * If any burst is in flight and DMA paused then this is the time to complete
 110 * on-flight burst and update DMA status register.
 111 */
 112#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
 113
 114/* Channel base address offset from APBDMA base address */
 115#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
 116
 
 
 117struct tegra_dma;
 118
 119/*
 120 * tegra_dma_chip_data Tegra chip specific DMA data
 121 * @nr_channels: Number of channels available in the controller.
 122 * @channel_reg_size: Channel register size/stride.
 123 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
 124 * @support_channel_pause: Support channel wise pause of dma.
 125 * @support_separate_wcount_reg: Support separate word count register.
 126 */
 127struct tegra_dma_chip_data {
 128	int nr_channels;
 129	int channel_reg_size;
 130	int max_dma_count;
 131	bool support_channel_pause;
 132	bool support_separate_wcount_reg;
 133};
 134
 135/* DMA channel registers */
 136struct tegra_dma_channel_regs {
 137	unsigned long	csr;
 138	unsigned long	ahb_ptr;
 139	unsigned long	apb_ptr;
 140	unsigned long	ahb_seq;
 141	unsigned long	apb_seq;
 142	unsigned long	wcount;
 143};
 144
 145/*
 146 * tegra_dma_sg_req: Dma request details to configure hardware. This
 147 * contains the details for one transfer to configure DMA hw.
 148 * The client's request for data transfer can be broken into multiple
 149 * sub-transfer as per requester details and hw support.
 150 * This sub transfer get added in the list of transfer and point to Tegra
 151 * DMA descriptor which manages the transfer details.
 152 */
 153struct tegra_dma_sg_req {
 154	struct tegra_dma_channel_regs	ch_regs;
 155	int				req_len;
 156	bool				configured;
 157	bool				last_sg;
 158	struct list_head		node;
 159	struct tegra_dma_desc		*dma_desc;
 
 160};
 161
 162/*
 163 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
 164 * This descriptor keep track of transfer status, callbacks and request
 165 * counts etc.
 166 */
 167struct tegra_dma_desc {
 168	struct dma_async_tx_descriptor	txd;
 169	int				bytes_requested;
 170	int				bytes_transferred;
 171	enum dma_status			dma_status;
 172	struct list_head		node;
 173	struct list_head		tx_list;
 174	struct list_head		cb_node;
 175	int				cb_count;
 176};
 177
 178struct tegra_dma_channel;
 179
 180typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
 181				bool to_terminate);
 182
 183/* tegra_dma_channel: Channel specific information */
 184struct tegra_dma_channel {
 185	struct dma_chan		dma_chan;
 186	char			name[30];
 187	bool			config_init;
 188	int			id;
 189	int			irq;
 190	void __iomem		*chan_addr;
 191	spinlock_t		lock;
 192	bool			busy;
 193	struct tegra_dma	*tdma;
 194	bool			cyclic;
 195
 196	/* Different lists for managing the requests */
 197	struct list_head	free_sg_req;
 198	struct list_head	pending_sg_req;
 199	struct list_head	free_dma_desc;
 200	struct list_head	cb_desc;
 201
 202	/* ISR handler and tasklet for bottom half of isr handling */
 203	dma_isr_handler		isr_handler;
 204	struct tasklet_struct	tasklet;
 205
 206	/* Channel-slave specific configuration */
 207	unsigned int slave_id;
 208	struct dma_slave_config dma_sconfig;
 209	struct tegra_dma_channel_regs	channel_reg;
 
 
 210};
 211
 212/* tegra_dma: Tegra DMA specific information */
 213struct tegra_dma {
 214	struct dma_device		dma_dev;
 215	struct device			*dev;
 216	struct clk			*dma_clk;
 217	struct reset_control		*rst;
 218	spinlock_t			global_lock;
 219	void __iomem			*base_addr;
 220	const struct tegra_dma_chip_data *chip_data;
 221
 222	/*
 223	 * Counter for managing global pausing of the DMA controller.
 224	 * Only applicable for devices that don't support individual
 225	 * channel pausing.
 226	 */
 227	u32				global_pause_count;
 228
 229	/* Some register need to be cache before suspend */
 230	u32				reg_gen;
 231
 232	/* Last member of the structure */
 233	struct tegra_dma_channel channels[0];
 234};
 235
 236static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
 237{
 238	writel(val, tdma->base_addr + reg);
 239}
 240
 241static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
 242{
 243	return readl(tdma->base_addr + reg);
 244}
 245
 246static inline void tdc_write(struct tegra_dma_channel *tdc,
 247		u32 reg, u32 val)
 248{
 249	writel(val, tdc->chan_addr + reg);
 250}
 251
 252static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
 253{
 254	return readl(tdc->chan_addr + reg);
 255}
 256
 257static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
 258{
 259	return container_of(dc, struct tegra_dma_channel, dma_chan);
 260}
 261
 262static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
 263		struct dma_async_tx_descriptor *td)
 264{
 265	return container_of(td, struct tegra_dma_desc, txd);
 266}
 267
 268static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
 269{
 270	return &tdc->dma_chan.dev->device;
 271}
 272
 273static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
 274static int tegra_dma_runtime_suspend(struct device *dev);
 275static int tegra_dma_runtime_resume(struct device *dev);
 276
 277/* Get DMA desc from free list, if not there then allocate it.  */
 278static struct tegra_dma_desc *tegra_dma_desc_get(
 279		struct tegra_dma_channel *tdc)
 280{
 281	struct tegra_dma_desc *dma_desc;
 282	unsigned long flags;
 283
 284	spin_lock_irqsave(&tdc->lock, flags);
 285
 286	/* Do not allocate if desc are waiting for ack */
 287	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 288		if (async_tx_test_ack(&dma_desc->txd)) {
 289			list_del(&dma_desc->node);
 290			spin_unlock_irqrestore(&tdc->lock, flags);
 291			dma_desc->txd.flags = 0;
 292			return dma_desc;
 293		}
 294	}
 295
 296	spin_unlock_irqrestore(&tdc->lock, flags);
 297
 298	/* Allocate DMA desc */
 299	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
 300	if (!dma_desc) {
 301		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
 302		return NULL;
 303	}
 304
 305	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
 306	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
 307	dma_desc->txd.flags = 0;
 
 308	return dma_desc;
 309}
 310
 311static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
 312		struct tegra_dma_desc *dma_desc)
 313{
 314	unsigned long flags;
 315
 316	spin_lock_irqsave(&tdc->lock, flags);
 317	if (!list_empty(&dma_desc->tx_list))
 318		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
 319	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 320	spin_unlock_irqrestore(&tdc->lock, flags);
 321}
 322
 323static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
 324		struct tegra_dma_channel *tdc)
 325{
 326	struct tegra_dma_sg_req *sg_req = NULL;
 327	unsigned long flags;
 328
 329	spin_lock_irqsave(&tdc->lock, flags);
 330	if (!list_empty(&tdc->free_sg_req)) {
 331		sg_req = list_first_entry(&tdc->free_sg_req,
 332					typeof(*sg_req), node);
 333		list_del(&sg_req->node);
 334		spin_unlock_irqrestore(&tdc->lock, flags);
 335		return sg_req;
 336	}
 337	spin_unlock_irqrestore(&tdc->lock, flags);
 338
 339	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
 340	if (!sg_req)
 341		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
 342	return sg_req;
 343}
 344
 345static int tegra_dma_slave_config(struct dma_chan *dc,
 346		struct dma_slave_config *sconfig)
 347{
 348	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 349
 350	if (!list_empty(&tdc->pending_sg_req)) {
 351		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
 352		return -EBUSY;
 353	}
 354
 355	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
 356	if (!tdc->slave_id)
 
 
 
 357		tdc->slave_id = sconfig->slave_id;
 
 358	tdc->config_init = true;
 
 359	return 0;
 360}
 361
 362static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
 363	bool wait_for_burst_complete)
 364{
 365	struct tegra_dma *tdma = tdc->tdma;
 366
 367	spin_lock(&tdma->global_lock);
 368
 369	if (tdc->tdma->global_pause_count == 0) {
 370		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
 371		if (wait_for_burst_complete)
 372			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 373	}
 374
 375	tdc->tdma->global_pause_count++;
 376
 377	spin_unlock(&tdma->global_lock);
 378}
 379
 380static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
 381{
 382	struct tegra_dma *tdma = tdc->tdma;
 383
 384	spin_lock(&tdma->global_lock);
 385
 386	if (WARN_ON(tdc->tdma->global_pause_count == 0))
 387		goto out;
 388
 389	if (--tdc->tdma->global_pause_count == 0)
 390		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
 391			   TEGRA_APBDMA_GENERAL_ENABLE);
 392
 393out:
 394	spin_unlock(&tdma->global_lock);
 395}
 396
 397static void tegra_dma_pause(struct tegra_dma_channel *tdc,
 398	bool wait_for_burst_complete)
 399{
 400	struct tegra_dma *tdma = tdc->tdma;
 401
 402	if (tdma->chip_data->support_channel_pause) {
 403		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
 404				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
 405		if (wait_for_burst_complete)
 406			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 407	} else {
 408		tegra_dma_global_pause(tdc, wait_for_burst_complete);
 409	}
 410}
 411
 412static void tegra_dma_resume(struct tegra_dma_channel *tdc)
 413{
 414	struct tegra_dma *tdma = tdc->tdma;
 415
 416	if (tdma->chip_data->support_channel_pause) {
 417		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
 418	} else {
 419		tegra_dma_global_resume(tdc);
 420	}
 421}
 422
 423static void tegra_dma_stop(struct tegra_dma_channel *tdc)
 424{
 425	u32 csr;
 426	u32 status;
 427
 428	/* Disable interrupts */
 429	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
 430	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
 431	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 432
 433	/* Disable DMA */
 434	csr &= ~TEGRA_APBDMA_CSR_ENB;
 435	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
 436
 437	/* Clear interrupt status if it is there */
 438	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 439	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 440		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
 441		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 442	}
 443	tdc->busy = false;
 444}
 445
 446static void tegra_dma_start(struct tegra_dma_channel *tdc,
 447		struct tegra_dma_sg_req *sg_req)
 448{
 449	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
 450
 451	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
 452	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
 453	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
 454	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
 455	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
 456	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 457		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
 458
 459	/* Start DMA */
 460	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 461				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
 462}
 463
 464static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
 465		struct tegra_dma_sg_req *nsg_req)
 466{
 467	unsigned long status;
 468
 469	/*
 470	 * The DMA controller reloads the new configuration for next transfer
 471	 * after last burst of current transfer completes.
 472	 * If there is no IEC status then this makes sure that last burst
 473	 * has not be completed. There may be case that last burst is on
 474	 * flight and so it can complete but because DMA is paused, it
 475	 * will not generates interrupt as well as not reload the new
 476	 * configuration.
 477	 * If there is already IEC status then interrupt handler need to
 478	 * load new configuration.
 479	 */
 480	tegra_dma_pause(tdc, false);
 481	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 482
 483	/*
 484	 * If interrupt is pending then do nothing as the ISR will handle
 485	 * the programing for new request.
 486	 */
 487	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 488		dev_err(tdc2dev(tdc),
 489			"Skipping new configuration as interrupt is pending\n");
 490		tegra_dma_resume(tdc);
 491		return;
 492	}
 493
 494	/* Safe to program new configuration */
 495	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
 496	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
 497	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 498		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
 499						nsg_req->ch_regs.wcount);
 500	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
 501				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
 502	nsg_req->configured = true;
 
 503
 504	tegra_dma_resume(tdc);
 505}
 506
 507static void tdc_start_head_req(struct tegra_dma_channel *tdc)
 508{
 509	struct tegra_dma_sg_req *sg_req;
 510
 511	if (list_empty(&tdc->pending_sg_req))
 512		return;
 513
 514	sg_req = list_first_entry(&tdc->pending_sg_req,
 515					typeof(*sg_req), node);
 516	tegra_dma_start(tdc, sg_req);
 517	sg_req->configured = true;
 
 518	tdc->busy = true;
 519}
 520
 521static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
 522{
 523	struct tegra_dma_sg_req *hsgreq;
 524	struct tegra_dma_sg_req *hnsgreq;
 525
 526	if (list_empty(&tdc->pending_sg_req))
 527		return;
 528
 529	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 530	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
 531		hnsgreq = list_first_entry(&hsgreq->node,
 532					typeof(*hnsgreq), node);
 533		tegra_dma_configure_for_next(tdc, hnsgreq);
 534	}
 535}
 536
 537static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
 538	struct tegra_dma_sg_req *sg_req, unsigned long status)
 
 
 539{
 540	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
 541}
 542
 543static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
 544{
 
 545	struct tegra_dma_sg_req *sgreq;
 546	struct tegra_dma_desc *dma_desc;
 547
 548	while (!list_empty(&tdc->pending_sg_req)) {
 549		sgreq = list_first_entry(&tdc->pending_sg_req,
 550						typeof(*sgreq), node);
 551		list_move_tail(&sgreq->node, &tdc->free_sg_req);
 552		if (sgreq->last_sg) {
 553			dma_desc = sgreq->dma_desc;
 554			dma_desc->dma_status = DMA_ERROR;
 555			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 556
 557			/* Add in cb list if it is not there. */
 558			if (!dma_desc->cb_count)
 559				list_add_tail(&dma_desc->cb_node,
 560							&tdc->cb_desc);
 561			dma_desc->cb_count++;
 562		}
 563	}
 564	tdc->isr_handler = NULL;
 565}
 566
 567static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
 568		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
 569{
 570	struct tegra_dma_sg_req *hsgreq = NULL;
 571
 572	if (list_empty(&tdc->pending_sg_req)) {
 573		dev_err(tdc2dev(tdc), "Dma is running without req\n");
 574		tegra_dma_stop(tdc);
 575		return false;
 576	}
 577
 578	/*
 579	 * Check that head req on list should be in flight.
 580	 * If it is not in flight then abort transfer as
 581	 * looping of transfer can not continue.
 582	 */
 583	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
 584	if (!hsgreq->configured) {
 585		tegra_dma_stop(tdc);
 586		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
 
 587		tegra_dma_abort_all(tdc);
 588		return false;
 589	}
 590
 591	/* Configure next request */
 592	if (!to_terminate)
 593		tdc_configure_next_head_desc(tdc);
 
 594	return true;
 595}
 596
 597static void handle_once_dma_done(struct tegra_dma_channel *tdc,
 598	bool to_terminate)
 599{
 
 600	struct tegra_dma_sg_req *sgreq;
 601	struct tegra_dma_desc *dma_desc;
 602
 603	tdc->busy = false;
 604	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 605	dma_desc = sgreq->dma_desc;
 606	dma_desc->bytes_transferred += sgreq->req_len;
 607
 608	list_del(&sgreq->node);
 609	if (sgreq->last_sg) {
 610		dma_desc->dma_status = DMA_COMPLETE;
 611		dma_cookie_complete(&dma_desc->txd);
 612		if (!dma_desc->cb_count)
 613			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 614		dma_desc->cb_count++;
 615		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
 616	}
 617	list_add_tail(&sgreq->node, &tdc->free_sg_req);
 618
 619	/* Do not start DMA if it is going to be terminate */
 620	if (to_terminate || list_empty(&tdc->pending_sg_req))
 
 
 
 
 621		return;
 
 622
 623	tdc_start_head_req(tdc);
 624}
 625
 626static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
 627		bool to_terminate)
 628{
 
 629	struct tegra_dma_sg_req *sgreq;
 630	struct tegra_dma_desc *dma_desc;
 631	bool st;
 632
 633	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
 634	dma_desc = sgreq->dma_desc;
 635	dma_desc->bytes_transferred += sgreq->req_len;
 
 
 
 636
 637	/* Callback need to be call */
 638	if (!dma_desc->cb_count)
 639		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
 640	dma_desc->cb_count++;
 641
 
 
 642	/* If not last req then put at end of pending list */
 643	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
 644		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
 645		sgreq->configured = false;
 646		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
 647		if (!st)
 648			dma_desc->dma_status = DMA_ERROR;
 649	}
 650}
 651
 652static void tegra_dma_tasklet(unsigned long data)
 653{
 654	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
 655	dma_async_tx_callback callback = NULL;
 656	void *callback_param = NULL;
 657	struct tegra_dma_desc *dma_desc;
 
 658	unsigned long flags;
 659	int cb_count;
 660
 661	spin_lock_irqsave(&tdc->lock, flags);
 662	while (!list_empty(&tdc->cb_desc)) {
 663		dma_desc  = list_first_entry(&tdc->cb_desc,
 664					typeof(*dma_desc), cb_node);
 665		list_del(&dma_desc->cb_node);
 666		callback = dma_desc->txd.callback;
 667		callback_param = dma_desc->txd.callback_param;
 668		cb_count = dma_desc->cb_count;
 669		dma_desc->cb_count = 0;
 
 
 670		spin_unlock_irqrestore(&tdc->lock, flags);
 671		while (cb_count-- && callback)
 672			callback(callback_param);
 673		spin_lock_irqsave(&tdc->lock, flags);
 674	}
 675	spin_unlock_irqrestore(&tdc->lock, flags);
 676}
 677
 678static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
 679{
 680	struct tegra_dma_channel *tdc = dev_id;
 681	unsigned long status;
 682	unsigned long flags;
 683
 684	spin_lock_irqsave(&tdc->lock, flags);
 685
 
 686	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 687	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 688		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
 689		tdc->isr_handler(tdc, false);
 690		tasklet_schedule(&tdc->tasklet);
 691		spin_unlock_irqrestore(&tdc->lock, flags);
 
 692		return IRQ_HANDLED;
 693	}
 694
 695	spin_unlock_irqrestore(&tdc->lock, flags);
 696	dev_info(tdc2dev(tdc),
 697		"Interrupt already served status 0x%08lx\n", status);
 
 698	return IRQ_NONE;
 699}
 700
 701static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 702{
 703	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
 704	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
 705	unsigned long flags;
 706	dma_cookie_t cookie;
 707
 708	spin_lock_irqsave(&tdc->lock, flags);
 709	dma_desc->dma_status = DMA_IN_PROGRESS;
 710	cookie = dma_cookie_assign(&dma_desc->txd);
 711	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
 712	spin_unlock_irqrestore(&tdc->lock, flags);
 
 713	return cookie;
 714}
 715
 716static void tegra_dma_issue_pending(struct dma_chan *dc)
 717{
 718	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 719	unsigned long flags;
 
 720
 721	spin_lock_irqsave(&tdc->lock, flags);
 722	if (list_empty(&tdc->pending_sg_req)) {
 723		dev_err(tdc2dev(tdc), "No DMA request\n");
 724		goto end;
 725	}
 726	if (!tdc->busy) {
 
 
 
 
 
 
 727		tdc_start_head_req(tdc);
 728
 729		/* Continuous single mode: Configure next req */
 730		if (tdc->cyclic) {
 731			/*
 732			 * Wait for 1 burst time for configure DMA for
 733			 * next transfer.
 734			 */
 735			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
 736			tdc_configure_next_head_desc(tdc);
 737		}
 738	}
 739end:
 740	spin_unlock_irqrestore(&tdc->lock, flags);
 741}
 742
 743static int tegra_dma_terminate_all(struct dma_chan *dc)
 744{
 745	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 
 746	struct tegra_dma_sg_req *sgreq;
 747	struct tegra_dma_desc *dma_desc;
 748	unsigned long flags;
 749	unsigned long status;
 750	unsigned long wcount;
 751	bool was_busy;
 752
 753	spin_lock_irqsave(&tdc->lock, flags);
 754	if (list_empty(&tdc->pending_sg_req)) {
 755		spin_unlock_irqrestore(&tdc->lock, flags);
 756		return 0;
 757	}
 758
 759	if (!tdc->busy)
 760		goto skip_dma_stop;
 761
 762	/* Pause DMA before checking the queue status */
 763	tegra_dma_pause(tdc, true);
 764
 765	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 766	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
 767		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
 768		tdc->isr_handler(tdc, true);
 769		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
 770	}
 771	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 772		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
 773	else
 774		wcount = status;
 775
 776	was_busy = tdc->busy;
 777	tegra_dma_stop(tdc);
 778
 779	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
 780		sgreq = list_first_entry(&tdc->pending_sg_req,
 781					typeof(*sgreq), node);
 782		sgreq->dma_desc->bytes_transferred +=
 783				get_current_xferred_count(tdc, sgreq, wcount);
 784	}
 785	tegra_dma_resume(tdc);
 786
 
 
 
 787skip_dma_stop:
 788	tegra_dma_abort_all(tdc);
 789
 790	while (!list_empty(&tdc->cb_desc)) {
 791		dma_desc  = list_first_entry(&tdc->cb_desc,
 792					typeof(*dma_desc), cb_node);
 793		list_del(&dma_desc->cb_node);
 794		dma_desc->cb_count = 0;
 795	}
 796	spin_unlock_irqrestore(&tdc->lock, flags);
 
 797	return 0;
 798}
 799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
 801	dma_cookie_t cookie, struct dma_tx_state *txstate)
 
 802{
 803	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 804	struct tegra_dma_desc *dma_desc;
 805	struct tegra_dma_sg_req *sg_req;
 806	enum dma_status ret;
 807	unsigned long flags;
 808	unsigned int residual;
 
 809
 810	ret = dma_cookie_status(dc, cookie, txstate);
 811	if (ret == DMA_COMPLETE)
 812		return ret;
 813
 814	spin_lock_irqsave(&tdc->lock, flags);
 815
 816	/* Check on wait_ack desc status */
 817	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
 818		if (dma_desc->txd.cookie == cookie) {
 819			residual =  dma_desc->bytes_requested -
 820					(dma_desc->bytes_transferred %
 821						dma_desc->bytes_requested);
 822			dma_set_residue(txstate, residual);
 823			ret = dma_desc->dma_status;
 824			spin_unlock_irqrestore(&tdc->lock, flags);
 825			return ret;
 826		}
 827	}
 828
 829	/* Check in pending list */
 830	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
 831		dma_desc = sg_req->dma_desc;
 832		if (dma_desc->txd.cookie == cookie) {
 833			residual =  dma_desc->bytes_requested -
 834					(dma_desc->bytes_transferred %
 835						dma_desc->bytes_requested);
 836			dma_set_residue(txstate, residual);
 837			ret = dma_desc->dma_status;
 838			spin_unlock_irqrestore(&tdc->lock, flags);
 839			return ret;
 840		}
 841	}
 842
 843	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
 
 
 
 
 
 
 
 
 
 
 
 844	spin_unlock_irqrestore(&tdc->lock, flags);
 
 845	return ret;
 846}
 847
 848static inline int get_bus_width(struct tegra_dma_channel *tdc,
 849		enum dma_slave_buswidth slave_bw)
 850{
 851	switch (slave_bw) {
 852	case DMA_SLAVE_BUSWIDTH_1_BYTE:
 853		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
 854	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 855		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
 856	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 857		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 858	case DMA_SLAVE_BUSWIDTH_8_BYTES:
 859		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
 860	default:
 861		dev_warn(tdc2dev(tdc),
 862			"slave bw is not supported, using 32bits\n");
 863		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
 864	}
 865}
 866
 867static inline int get_burst_size(struct tegra_dma_channel *tdc,
 868	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
 
 
 869{
 870	int burst_byte;
 871	int burst_ahb_width;
 872
 873	/*
 874	 * burst_size from client is in terms of the bus_width.
 875	 * convert them into AHB memory width which is 4 byte.
 876	 */
 877	burst_byte = burst_size * slave_bw;
 878	burst_ahb_width = burst_byte / 4;
 879
 880	/* If burst size is 0 then calculate the burst size based on length */
 881	if (!burst_ahb_width) {
 882		if (len & 0xF)
 883			return TEGRA_APBDMA_AHBSEQ_BURST_1;
 884		else if ((len >> 4) & 0x1)
 885			return TEGRA_APBDMA_AHBSEQ_BURST_4;
 886		else
 887			return TEGRA_APBDMA_AHBSEQ_BURST_8;
 888	}
 889	if (burst_ahb_width < 4)
 890		return TEGRA_APBDMA_AHBSEQ_BURST_1;
 891	else if (burst_ahb_width < 8)
 892		return TEGRA_APBDMA_AHBSEQ_BURST_4;
 893	else
 894		return TEGRA_APBDMA_AHBSEQ_BURST_8;
 895}
 896
 897static int get_transfer_param(struct tegra_dma_channel *tdc,
 898	enum dma_transfer_direction direction, unsigned long *apb_addr,
 899	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
 900	enum dma_slave_buswidth *slave_bw)
 
 
 
 901{
 902
 903	switch (direction) {
 904	case DMA_MEM_TO_DEV:
 905		*apb_addr = tdc->dma_sconfig.dst_addr;
 906		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
 907		*burst_size = tdc->dma_sconfig.dst_maxburst;
 908		*slave_bw = tdc->dma_sconfig.dst_addr_width;
 909		*csr = TEGRA_APBDMA_CSR_DIR;
 910		return 0;
 911
 912	case DMA_DEV_TO_MEM:
 913		*apb_addr = tdc->dma_sconfig.src_addr;
 914		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
 915		*burst_size = tdc->dma_sconfig.src_maxburst;
 916		*slave_bw = tdc->dma_sconfig.src_addr_width;
 917		*csr = 0;
 918		return 0;
 919
 920	default:
 921		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
 922		return -EINVAL;
 923	}
 
 924	return -EINVAL;
 925}
 926
 927static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
 928	struct tegra_dma_channel_regs *ch_regs, u32 len)
 
 929{
 930	u32 len_field = (len - 4) & 0xFFFC;
 931
 932	if (tdc->tdma->chip_data->support_separate_wcount_reg)
 933		ch_regs->wcount = len_field;
 934	else
 935		ch_regs->csr |= len_field;
 936}
 937
 938static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
 939	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
 940	enum dma_transfer_direction direction, unsigned long flags,
 941	void *context)
 
 
 
 942{
 943	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
 
 
 
 944	struct tegra_dma_desc *dma_desc;
 945	unsigned int	    i;
 946	struct scatterlist      *sg;
 947	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
 948	struct list_head req_list;
 949	struct tegra_dma_sg_req  *sg_req = NULL;
 950	u32 burst_size;
 951	enum dma_slave_buswidth slave_bw;
 952
 953	if (!tdc->config_init) {
 954		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
 955		return NULL;
 956	}
 957	if (sg_len < 1) {
 958		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
 959		return NULL;
 960	}
 961
 962	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
 963				&burst_size, &slave_bw) < 0)
 964		return NULL;
 965
 966	INIT_LIST_HEAD(&req_list);
 967
 968	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
 969	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
 970					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
 971	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
 972
 973	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
 974	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
 975	if (flags & DMA_PREP_INTERRUPT)
 
 
 
 
 
 976		csr |= TEGRA_APBDMA_CSR_IE_EOC;
 
 
 
 
 977
 978	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
 979
 980	dma_desc = tegra_dma_desc_get(tdc);
 981	if (!dma_desc) {
 982		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
 983		return NULL;
 984	}
 985	INIT_LIST_HEAD(&dma_desc->tx_list);
 986	INIT_LIST_HEAD(&dma_desc->cb_node);
 987	dma_desc->cb_count = 0;
 988	dma_desc->bytes_requested = 0;
 989	dma_desc->bytes_transferred = 0;
 990	dma_desc->dma_status = DMA_IN_PROGRESS;
 991
 992	/* Make transfer requests */
 993	for_each_sg(sgl, sg, sg_len, i) {
 994		u32 len, mem;
 995
 996		mem = sg_dma_address(sg);
 997		len = sg_dma_len(sg);
 998
 999		if ((len & 3) || (mem & 3) ||
1000				(len > tdc->tdma->chip_data->max_dma_count)) {
1001			dev_err(tdc2dev(tdc),
1002				"Dma length/memory address is not supported\n");
1003			tegra_dma_desc_put(tdc, dma_desc);
1004			return NULL;
1005		}
1006
1007		sg_req = tegra_dma_sg_req_get(tdc);
1008		if (!sg_req) {
1009			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1010			tegra_dma_desc_put(tdc, dma_desc);
1011			return NULL;
1012		}
1013
1014		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1015		dma_desc->bytes_requested += len;
1016
1017		sg_req->ch_regs.apb_ptr = apb_ptr;
1018		sg_req->ch_regs.ahb_ptr = mem;
1019		sg_req->ch_regs.csr = csr;
1020		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1021		sg_req->ch_regs.apb_seq = apb_seq;
1022		sg_req->ch_regs.ahb_seq = ahb_seq;
1023		sg_req->configured = false;
1024		sg_req->last_sg = false;
1025		sg_req->dma_desc = dma_desc;
1026		sg_req->req_len = len;
1027
1028		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1029	}
1030	sg_req->last_sg = true;
1031	if (flags & DMA_CTRL_ACK)
1032		dma_desc->txd.flags = DMA_CTRL_ACK;
1033
1034	/*
1035	 * Make sure that mode should not be conflicting with currently
1036	 * configured mode.
1037	 */
1038	if (!tdc->isr_handler) {
1039		tdc->isr_handler = handle_once_dma_done;
1040		tdc->cyclic = false;
1041	} else {
1042		if (tdc->cyclic) {
1043			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1044			tegra_dma_desc_put(tdc, dma_desc);
1045			return NULL;
1046		}
1047	}
1048
1049	return &dma_desc->txd;
1050}
1051
1052static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1053	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1054	size_t period_len, enum dma_transfer_direction direction,
1055	unsigned long flags)
 
 
1056{
1057	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1058	struct tegra_dma_desc *dma_desc = NULL;
1059	struct tegra_dma_sg_req  *sg_req = NULL;
1060	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1061	int len;
1062	size_t remain_len;
1063	dma_addr_t mem = buf_addr;
1064	u32 burst_size;
1065	enum dma_slave_buswidth slave_bw;
1066
1067	if (!buf_len || !period_len) {
1068		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1069		return NULL;
1070	}
1071
1072	if (!tdc->config_init) {
1073		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1074		return NULL;
1075	}
1076
1077	/*
1078	 * We allow to take more number of requests till DMA is
1079	 * not started. The driver will loop over all requests.
1080	 * Once DMA is started then new requests can be queued only after
1081	 * terminating the DMA.
1082	 */
1083	if (tdc->busy) {
1084		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1085		return NULL;
1086	}
1087
1088	/*
1089	 * We only support cycle transfer when buf_len is multiple of
1090	 * period_len.
1091	 */
1092	if (buf_len % period_len) {
1093		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1094		return NULL;
1095	}
1096
1097	len = period_len;
1098	if ((len & 3) || (buf_addr & 3) ||
1099			(len > tdc->tdma->chip_data->max_dma_count)) {
1100		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1101		return NULL;
1102	}
1103
1104	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1105				&burst_size, &slave_bw) < 0)
1106		return NULL;
1107
1108	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1109	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1110					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1111	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1112
1113	csr |= TEGRA_APBDMA_CSR_FLOW;
1114	if (flags & DMA_PREP_INTERRUPT)
 
 
 
 
1115		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1116	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
 
 
 
1117
1118	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1119
1120	dma_desc = tegra_dma_desc_get(tdc);
1121	if (!dma_desc) {
1122		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1123		return NULL;
1124	}
1125
1126	INIT_LIST_HEAD(&dma_desc->tx_list);
1127	INIT_LIST_HEAD(&dma_desc->cb_node);
1128	dma_desc->cb_count = 0;
1129
1130	dma_desc->bytes_transferred = 0;
1131	dma_desc->bytes_requested = buf_len;
1132	remain_len = buf_len;
1133
1134	/* Split transfer equal to period size */
1135	while (remain_len) {
1136		sg_req = tegra_dma_sg_req_get(tdc);
1137		if (!sg_req) {
1138			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1139			tegra_dma_desc_put(tdc, dma_desc);
1140			return NULL;
1141		}
1142
1143		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1144		sg_req->ch_regs.apb_ptr = apb_ptr;
1145		sg_req->ch_regs.ahb_ptr = mem;
1146		sg_req->ch_regs.csr = csr;
1147		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1148		sg_req->ch_regs.apb_seq = apb_seq;
1149		sg_req->ch_regs.ahb_seq = ahb_seq;
1150		sg_req->configured = false;
1151		sg_req->last_sg = false;
1152		sg_req->dma_desc = dma_desc;
1153		sg_req->req_len = len;
1154
1155		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1156		remain_len -= len;
1157		mem += len;
1158	}
1159	sg_req->last_sg = true;
1160	if (flags & DMA_CTRL_ACK)
1161		dma_desc->txd.flags = DMA_CTRL_ACK;
1162
1163	/*
1164	 * Make sure that mode should not be conflicting with currently
1165	 * configured mode.
1166	 */
1167	if (!tdc->isr_handler) {
1168		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1169		tdc->cyclic = true;
1170	} else {
1171		if (!tdc->cyclic) {
1172			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1173			tegra_dma_desc_put(tdc, dma_desc);
1174			return NULL;
1175		}
1176	}
1177
1178	return &dma_desc->txd;
1179}
1180
1181static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1182{
1183	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1184	struct tegra_dma *tdma = tdc->tdma;
1185	int ret;
1186
1187	dma_cookie_init(&tdc->dma_chan);
1188	tdc->config_init = false;
1189
1190	ret = pm_runtime_get_sync(tdma->dev);
1191	if (ret < 0)
1192		return ret;
1193
1194	return 0;
1195}
1196
1197static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1198{
1199	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1200	struct tegra_dma *tdma = tdc->tdma;
1201
1202	struct tegra_dma_desc *dma_desc;
1203	struct tegra_dma_sg_req *sg_req;
1204	struct list_head dma_desc_list;
1205	struct list_head sg_req_list;
1206	unsigned long flags;
1207
1208	INIT_LIST_HEAD(&dma_desc_list);
1209	INIT_LIST_HEAD(&sg_req_list);
1210
1211	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1212
1213	if (tdc->busy)
1214		tegra_dma_terminate_all(dc);
1215
1216	spin_lock_irqsave(&tdc->lock, flags);
1217	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1218	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1219	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1220	INIT_LIST_HEAD(&tdc->cb_desc);
1221	tdc->config_init = false;
1222	tdc->isr_handler = NULL;
1223	spin_unlock_irqrestore(&tdc->lock, flags);
1224
1225	while (!list_empty(&dma_desc_list)) {
1226		dma_desc = list_first_entry(&dma_desc_list,
1227					typeof(*dma_desc), node);
1228		list_del(&dma_desc->node);
1229		kfree(dma_desc);
1230	}
1231
1232	while (!list_empty(&sg_req_list)) {
1233		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1234		list_del(&sg_req->node);
1235		kfree(sg_req);
1236	}
1237	pm_runtime_put(tdma->dev);
1238
1239	tdc->slave_id = 0;
1240}
1241
1242static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1243					   struct of_dma *ofdma)
1244{
1245	struct tegra_dma *tdma = ofdma->of_dma_data;
 
1246	struct dma_chan *chan;
1247	struct tegra_dma_channel *tdc;
 
 
 
 
1248
1249	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1250	if (!chan)
1251		return NULL;
1252
1253	tdc = to_tegra_dma_chan(chan);
1254	tdc->slave_id = dma_spec->args[0];
1255
1256	return chan;
1257}
1258
1259/* Tegra20 specific DMA controller information */
1260static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1261	.nr_channels		= 16,
1262	.channel_reg_size	= 0x20,
1263	.max_dma_count		= 1024UL * 64,
1264	.support_channel_pause	= false,
1265	.support_separate_wcount_reg = false,
1266};
1267
1268/* Tegra30 specific DMA controller information */
1269static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1270	.nr_channels		= 32,
1271	.channel_reg_size	= 0x20,
1272	.max_dma_count		= 1024UL * 64,
1273	.support_channel_pause	= false,
1274	.support_separate_wcount_reg = false,
1275};
1276
1277/* Tegra114 specific DMA controller information */
1278static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1279	.nr_channels		= 32,
1280	.channel_reg_size	= 0x20,
1281	.max_dma_count		= 1024UL * 64,
1282	.support_channel_pause	= true,
1283	.support_separate_wcount_reg = false,
1284};
1285
1286/* Tegra148 specific DMA controller information */
1287static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1288	.nr_channels		= 32,
1289	.channel_reg_size	= 0x40,
1290	.max_dma_count		= 1024UL * 64,
1291	.support_channel_pause	= true,
1292	.support_separate_wcount_reg = true,
1293};
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295static int tegra_dma_probe(struct platform_device *pdev)
1296{
1297	struct resource	*res;
1298	struct tegra_dma *tdma;
 
 
1299	int ret;
1300	int i;
1301	const struct tegra_dma_chip_data *cdata;
1302
1303	cdata = of_device_get_match_data(&pdev->dev);
1304	if (!cdata) {
1305		dev_err(&pdev->dev, "Error: No device match data found\n");
1306		return -ENODEV;
1307	}
1308
1309	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1310			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1311	if (!tdma) {
1312		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1313		return -ENOMEM;
1314	}
1315
1316	tdma->dev = &pdev->dev;
1317	tdma->chip_data = cdata;
1318	platform_set_drvdata(pdev, tdma);
1319
1320	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1321	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1322	if (IS_ERR(tdma->base_addr))
1323		return PTR_ERR(tdma->base_addr);
1324
1325	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1326	if (IS_ERR(tdma->dma_clk)) {
1327		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1328		return PTR_ERR(tdma->dma_clk);
1329	}
1330
1331	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1332	if (IS_ERR(tdma->rst)) {
1333		dev_err(&pdev->dev, "Error: Missing reset\n");
1334		return PTR_ERR(tdma->rst);
1335	}
1336
1337	spin_lock_init(&tdma->global_lock);
1338
1339	pm_runtime_enable(&pdev->dev);
1340	if (!pm_runtime_enabled(&pdev->dev))
1341		ret = tegra_dma_runtime_resume(&pdev->dev);
1342	else
1343		ret = pm_runtime_get_sync(&pdev->dev);
1344
1345	if (ret < 0) {
1346		pm_runtime_disable(&pdev->dev);
1347		return ret;
1348	}
1349
1350	/* Reset DMA controller */
1351	reset_control_assert(tdma->rst);
1352	udelay(2);
1353	reset_control_deassert(tdma->rst);
1354
1355	/* Enable global DMA registers */
1356	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1357	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1358	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1359
1360	pm_runtime_put(&pdev->dev);
1361
1362	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1363	for (i = 0; i < cdata->nr_channels; i++) {
1364		struct tegra_dma_channel *tdc = &tdma->channels[i];
 
1365
1366		tdc->chan_addr = tdma->base_addr +
1367				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1368				 (i * cdata->channel_reg_size);
1369
1370		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1371		if (!res) {
1372			ret = -EINVAL;
1373			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1374			goto err_irq;
1375		}
1376		tdc->irq = res->start;
1377		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1378		ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
 
1379		if (ret) {
1380			dev_err(&pdev->dev,
1381				"request_irq failed with err %d channel %d\n",
1382				ret, i);
1383			goto err_irq;
1384		}
1385
1386		tdc->dma_chan.device = &tdma->dma_dev;
1387		dma_cookie_init(&tdc->dma_chan);
1388		list_add_tail(&tdc->dma_chan.device_node,
1389				&tdma->dma_dev.channels);
1390		tdc->tdma = tdma;
1391		tdc->id = i;
 
1392
1393		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1394				(unsigned long)tdc);
1395		spin_lock_init(&tdc->lock);
 
1396
1397		INIT_LIST_HEAD(&tdc->pending_sg_req);
1398		INIT_LIST_HEAD(&tdc->free_sg_req);
1399		INIT_LIST_HEAD(&tdc->free_dma_desc);
1400		INIT_LIST_HEAD(&tdc->cb_desc);
1401	}
1402
1403	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1404	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1405	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1406
1407	tdma->global_pause_count = 0;
1408	tdma->dma_dev.dev = &pdev->dev;
1409	tdma->dma_dev.device_alloc_chan_resources =
1410					tegra_dma_alloc_chan_resources;
1411	tdma->dma_dev.device_free_chan_resources =
1412					tegra_dma_free_chan_resources;
1413	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1414	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1415	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1416		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1417		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1418		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1419	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1420		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1421		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1422		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1423	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1424	/*
1425	 * XXX The hardware appears to support
1426	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1427	 * only used by this driver during tegra_dma_terminate_all()
1428	 */
1429	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1430	tdma->dma_dev.device_config = tegra_dma_slave_config;
1431	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
 
1432	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1433	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1434
1435	ret = dma_async_device_register(&tdma->dma_dev);
1436	if (ret < 0) {
1437		dev_err(&pdev->dev,
1438			"Tegra20 APB DMA driver registration failed %d\n", ret);
1439		goto err_irq;
1440	}
1441
1442	ret = of_dma_controller_register(pdev->dev.of_node,
1443					 tegra_dma_of_xlate, tdma);
1444	if (ret < 0) {
1445		dev_err(&pdev->dev,
1446			"Tegra20 APB DMA OF registration failed %d\n", ret);
1447		goto err_unregister_dma_dev;
1448	}
1449
1450	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1451			cdata->nr_channels);
 
1452	return 0;
1453
1454err_unregister_dma_dev:
1455	dma_async_device_unregister(&tdma->dma_dev);
1456err_irq:
1457	while (--i >= 0) {
1458		struct tegra_dma_channel *tdc = &tdma->channels[i];
1459
1460		free_irq(tdc->irq, tdc);
1461		tasklet_kill(&tdc->tasklet);
1462	}
 
 
1463
1464	pm_runtime_disable(&pdev->dev);
1465	if (!pm_runtime_status_suspended(&pdev->dev))
1466		tegra_dma_runtime_suspend(&pdev->dev);
1467	return ret;
1468}
1469
1470static int tegra_dma_remove(struct platform_device *pdev)
1471{
1472	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1473	int i;
1474	struct tegra_dma_channel *tdc;
1475
 
1476	dma_async_device_unregister(&tdma->dma_dev);
1477
1478	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1479		tdc = &tdma->channels[i];
1480		free_irq(tdc->irq, tdc);
1481		tasklet_kill(&tdc->tasklet);
1482	}
1483
1484	pm_runtime_disable(&pdev->dev);
1485	if (!pm_runtime_status_suspended(&pdev->dev))
1486		tegra_dma_runtime_suspend(&pdev->dev);
1487
1488	return 0;
1489}
1490
1491static int tegra_dma_runtime_suspend(struct device *dev)
1492{
1493	struct tegra_dma *tdma = dev_get_drvdata(dev);
1494
1495	clk_disable_unprepare(tdma->dma_clk);
 
1496	return 0;
1497}
1498
1499static int tegra_dma_runtime_resume(struct device *dev)
1500{
1501	struct tegra_dma *tdma = dev_get_drvdata(dev);
1502	int ret;
1503
1504	ret = clk_prepare_enable(tdma->dma_clk);
1505	if (ret < 0) {
1506		dev_err(dev, "clk_enable failed: %d\n", ret);
1507		return ret;
1508	}
1509	return 0;
1510}
1511
1512#ifdef CONFIG_PM_SLEEP
1513static int tegra_dma_pm_suspend(struct device *dev)
1514{
1515	struct tegra_dma *tdma = dev_get_drvdata(dev);
1516	int i;
1517	int ret;
1518
1519	/* Enable clock before accessing register */
1520	ret = pm_runtime_get_sync(dev);
1521	if (ret < 0)
1522		return ret;
1523
1524	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1525	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1526		struct tegra_dma_channel *tdc = &tdma->channels[i];
1527		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1528
1529		/* Only save the state of DMA channels that are in use */
1530		if (!tdc->config_init)
1531			continue;
1532
1533		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1534		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1535		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1536		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1537		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1538		if (tdma->chip_data->support_separate_wcount_reg)
1539			ch_reg->wcount = tdc_read(tdc,
1540						  TEGRA_APBDMA_CHAN_WCOUNT);
1541	}
1542
1543	/* Disable clock */
1544	pm_runtime_put(dev);
1545	return 0;
1546}
1547
1548static int tegra_dma_pm_resume(struct device *dev)
1549{
1550	struct tegra_dma *tdma = dev_get_drvdata(dev);
1551	int i;
1552	int ret;
1553
1554	/* Enable clock before accessing register */
1555	ret = pm_runtime_get_sync(dev);
1556	if (ret < 0)
1557		return ret;
1558
1559	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1560	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1561	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1562
1563	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1564		struct tegra_dma_channel *tdc = &tdma->channels[i];
1565		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1566
1567		/* Only restore the state of DMA channels that are in use */
1568		if (!tdc->config_init)
1569			continue;
1570
1571		if (tdma->chip_data->support_separate_wcount_reg)
1572			tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1573				  ch_reg->wcount);
1574		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1575		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1576		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1577		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1578		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1579			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1580	}
1581
1582	/* Disable clock */
1583	pm_runtime_put(dev);
1584	return 0;
1585}
1586#endif
1587
1588static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1589	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1590			   NULL)
1591	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1592};
1593
1594static const struct of_device_id tegra_dma_of_match[] = {
1595	{
1596		.compatible = "nvidia,tegra148-apbdma",
1597		.data = &tegra148_dma_chip_data,
1598	}, {
1599		.compatible = "nvidia,tegra114-apbdma",
1600		.data = &tegra114_dma_chip_data,
1601	}, {
1602		.compatible = "nvidia,tegra30-apbdma",
1603		.data = &tegra30_dma_chip_data,
1604	}, {
1605		.compatible = "nvidia,tegra20-apbdma",
1606		.data = &tegra20_dma_chip_data,
1607	}, {
1608	},
1609};
1610MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1611
1612static struct platform_driver tegra_dmac_driver = {
1613	.driver = {
1614		.name	= "tegra-apbdma",
1615		.pm	= &tegra_dma_dev_pm_ops,
1616		.of_match_table = tegra_dma_of_match,
1617	},
1618	.probe		= tegra_dma_probe,
1619	.remove		= tegra_dma_remove,
1620};
1621
1622module_platform_driver(tegra_dmac_driver);
1623
1624MODULE_ALIAS("platform:tegra20-apbdma");
1625MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1626MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1627MODULE_LICENSE("GPL v2");