Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Cryptographic API.
4 *
5 * Support for VIA PadLock hardware crypto engine.
6 *
7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 */
9
10#include <crypto/internal/hash.h>
11#include <crypto/padlock.h>
12#include <crypto/sha.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/scatterlist.h>
20#include <asm/cpu_device_id.h>
21#include <asm/fpu/api.h>
22
23struct padlock_sha_desc {
24 struct shash_desc fallback;
25};
26
27struct padlock_sha_ctx {
28 struct crypto_shash *fallback;
29};
30
31static int padlock_sha_init(struct shash_desc *desc)
32{
33 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
34 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
35
36 dctx->fallback.tfm = ctx->fallback;
37 return crypto_shash_init(&dctx->fallback);
38}
39
40static int padlock_sha_update(struct shash_desc *desc,
41 const u8 *data, unsigned int length)
42{
43 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
44
45 return crypto_shash_update(&dctx->fallback, data, length);
46}
47
48static int padlock_sha_export(struct shash_desc *desc, void *out)
49{
50 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
51
52 return crypto_shash_export(&dctx->fallback, out);
53}
54
55static int padlock_sha_import(struct shash_desc *desc, const void *in)
56{
57 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
59
60 dctx->fallback.tfm = ctx->fallback;
61 return crypto_shash_import(&dctx->fallback, in);
62}
63
64static inline void padlock_output_block(uint32_t *src,
65 uint32_t *dst, size_t count)
66{
67 while (count--)
68 *dst++ = swab32(*src++);
69}
70
71static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
72 unsigned int count, u8 *out)
73{
74 /* We can't store directly to *out as it may be unaligned. */
75 /* BTW Don't reduce the buffer size below 128 Bytes!
76 * PadLock microcode needs it that big. */
77 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
78 ((aligned(STACK_ALIGN)));
79 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
80 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
81 struct sha1_state state;
82 unsigned int space;
83 unsigned int leftover;
84 int err;
85
86 err = crypto_shash_export(&dctx->fallback, &state);
87 if (err)
88 goto out;
89
90 if (state.count + count > ULONG_MAX)
91 return crypto_shash_finup(&dctx->fallback, in, count, out);
92
93 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
94 space = SHA1_BLOCK_SIZE - leftover;
95 if (space) {
96 if (count > space) {
97 err = crypto_shash_update(&dctx->fallback, in, space) ?:
98 crypto_shash_export(&dctx->fallback, &state);
99 if (err)
100 goto out;
101 count -= space;
102 in += space;
103 } else {
104 memcpy(state.buffer + leftover, in, count);
105 in = state.buffer;
106 count += leftover;
107 state.count &= ~(SHA1_BLOCK_SIZE - 1);
108 }
109 }
110
111 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
112
113 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
114 : \
115 : "c"((unsigned long)state.count + count), \
116 "a"((unsigned long)state.count), \
117 "S"(in), "D"(result));
118
119 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
120
121out:
122 return err;
123}
124
125static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
126{
127 u8 buf[4];
128
129 return padlock_sha1_finup(desc, buf, 0, out);
130}
131
132static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
133 unsigned int count, u8 *out)
134{
135 /* We can't store directly to *out as it may be unaligned. */
136 /* BTW Don't reduce the buffer size below 128 Bytes!
137 * PadLock microcode needs it that big. */
138 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
139 ((aligned(STACK_ALIGN)));
140 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
141 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
142 struct sha256_state state;
143 unsigned int space;
144 unsigned int leftover;
145 int err;
146
147 err = crypto_shash_export(&dctx->fallback, &state);
148 if (err)
149 goto out;
150
151 if (state.count + count > ULONG_MAX)
152 return crypto_shash_finup(&dctx->fallback, in, count, out);
153
154 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
155 space = SHA256_BLOCK_SIZE - leftover;
156 if (space) {
157 if (count > space) {
158 err = crypto_shash_update(&dctx->fallback, in, space) ?:
159 crypto_shash_export(&dctx->fallback, &state);
160 if (err)
161 goto out;
162 count -= space;
163 in += space;
164 } else {
165 memcpy(state.buf + leftover, in, count);
166 in = state.buf;
167 count += leftover;
168 state.count &= ~(SHA1_BLOCK_SIZE - 1);
169 }
170 }
171
172 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
173
174 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
175 : \
176 : "c"((unsigned long)state.count + count), \
177 "a"((unsigned long)state.count), \
178 "S"(in), "D"(result));
179
180 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
181
182out:
183 return err;
184}
185
186static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
187{
188 u8 buf[4];
189
190 return padlock_sha256_finup(desc, buf, 0, out);
191}
192
193static int padlock_init_tfm(struct crypto_shash *hash)
194{
195 const char *fallback_driver_name = crypto_shash_alg_name(hash);
196 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
197 struct crypto_shash *fallback_tfm;
198
199 /* Allocate a fallback and abort if it failed. */
200 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
201 CRYPTO_ALG_NEED_FALLBACK);
202 if (IS_ERR(fallback_tfm)) {
203 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
204 fallback_driver_name);
205 return PTR_ERR(fallback_tfm);
206 }
207
208 ctx->fallback = fallback_tfm;
209 hash->descsize += crypto_shash_descsize(fallback_tfm);
210 return 0;
211}
212
213static void padlock_exit_tfm(struct crypto_shash *hash)
214{
215 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
216
217 crypto_free_shash(ctx->fallback);
218}
219
220static struct shash_alg sha1_alg = {
221 .digestsize = SHA1_DIGEST_SIZE,
222 .init = padlock_sha_init,
223 .update = padlock_sha_update,
224 .finup = padlock_sha1_finup,
225 .final = padlock_sha1_final,
226 .export = padlock_sha_export,
227 .import = padlock_sha_import,
228 .init_tfm = padlock_init_tfm,
229 .exit_tfm = padlock_exit_tfm,
230 .descsize = sizeof(struct padlock_sha_desc),
231 .statesize = sizeof(struct sha1_state),
232 .base = {
233 .cra_name = "sha1",
234 .cra_driver_name = "sha1-padlock",
235 .cra_priority = PADLOCK_CRA_PRIORITY,
236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
237 .cra_blocksize = SHA1_BLOCK_SIZE,
238 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
239 .cra_module = THIS_MODULE,
240 }
241};
242
243static struct shash_alg sha256_alg = {
244 .digestsize = SHA256_DIGEST_SIZE,
245 .init = padlock_sha_init,
246 .update = padlock_sha_update,
247 .finup = padlock_sha256_finup,
248 .final = padlock_sha256_final,
249 .export = padlock_sha_export,
250 .import = padlock_sha_import,
251 .init_tfm = padlock_init_tfm,
252 .exit_tfm = padlock_exit_tfm,
253 .descsize = sizeof(struct padlock_sha_desc),
254 .statesize = sizeof(struct sha256_state),
255 .base = {
256 .cra_name = "sha256",
257 .cra_driver_name = "sha256-padlock",
258 .cra_priority = PADLOCK_CRA_PRIORITY,
259 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
260 .cra_blocksize = SHA256_BLOCK_SIZE,
261 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
262 .cra_module = THIS_MODULE,
263 }
264};
265
266/* Add two shash_alg instance for hardware-implemented *
267* multiple-parts hash supported by VIA Nano Processor.*/
268static int padlock_sha1_init_nano(struct shash_desc *desc)
269{
270 struct sha1_state *sctx = shash_desc_ctx(desc);
271
272 *sctx = (struct sha1_state){
273 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
274 };
275
276 return 0;
277}
278
279static int padlock_sha1_update_nano(struct shash_desc *desc,
280 const u8 *data, unsigned int len)
281{
282 struct sha1_state *sctx = shash_desc_ctx(desc);
283 unsigned int partial, done;
284 const u8 *src;
285 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
286 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
287 ((aligned(STACK_ALIGN)));
288 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
289
290 partial = sctx->count & 0x3f;
291 sctx->count += len;
292 done = 0;
293 src = data;
294 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
295
296 if ((partial + len) >= SHA1_BLOCK_SIZE) {
297
298 /* Append the bytes in state's buffer to a block to handle */
299 if (partial) {
300 done = -partial;
301 memcpy(sctx->buffer + partial, data,
302 done + SHA1_BLOCK_SIZE);
303 src = sctx->buffer;
304 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
305 : "+S"(src), "+D"(dst) \
306 : "a"((long)-1), "c"((unsigned long)1));
307 done += SHA1_BLOCK_SIZE;
308 src = data + done;
309 }
310
311 /* Process the left bytes from the input data */
312 if (len - done >= SHA1_BLOCK_SIZE) {
313 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
314 : "+S"(src), "+D"(dst)
315 : "a"((long)-1),
316 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
317 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
318 src = data + done;
319 }
320 partial = 0;
321 }
322 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
323 memcpy(sctx->buffer + partial, src, len - done);
324
325 return 0;
326}
327
328static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
329{
330 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
331 unsigned int partial, padlen;
332 __be64 bits;
333 static const u8 padding[64] = { 0x80, };
334
335 bits = cpu_to_be64(state->count << 3);
336
337 /* Pad out to 56 mod 64 */
338 partial = state->count & 0x3f;
339 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
340 padlock_sha1_update_nano(desc, padding, padlen);
341
342 /* Append length field bytes */
343 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
344
345 /* Swap to output */
346 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
347
348 return 0;
349}
350
351static int padlock_sha256_init_nano(struct shash_desc *desc)
352{
353 struct sha256_state *sctx = shash_desc_ctx(desc);
354
355 *sctx = (struct sha256_state){
356 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
357 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
358 };
359
360 return 0;
361}
362
363static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
364 unsigned int len)
365{
366 struct sha256_state *sctx = shash_desc_ctx(desc);
367 unsigned int partial, done;
368 const u8 *src;
369 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
370 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
371 ((aligned(STACK_ALIGN)));
372 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
373
374 partial = sctx->count & 0x3f;
375 sctx->count += len;
376 done = 0;
377 src = data;
378 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
379
380 if ((partial + len) >= SHA256_BLOCK_SIZE) {
381
382 /* Append the bytes in state's buffer to a block to handle */
383 if (partial) {
384 done = -partial;
385 memcpy(sctx->buf + partial, data,
386 done + SHA256_BLOCK_SIZE);
387 src = sctx->buf;
388 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
389 : "+S"(src), "+D"(dst)
390 : "a"((long)-1), "c"((unsigned long)1));
391 done += SHA256_BLOCK_SIZE;
392 src = data + done;
393 }
394
395 /* Process the left bytes from input data*/
396 if (len - done >= SHA256_BLOCK_SIZE) {
397 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
398 : "+S"(src), "+D"(dst)
399 : "a"((long)-1),
400 "c"((unsigned long)((len - done) / 64)));
401 done += ((len - done) - (len - done) % 64);
402 src = data + done;
403 }
404 partial = 0;
405 }
406 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
407 memcpy(sctx->buf + partial, src, len - done);
408
409 return 0;
410}
411
412static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
413{
414 struct sha256_state *state =
415 (struct sha256_state *)shash_desc_ctx(desc);
416 unsigned int partial, padlen;
417 __be64 bits;
418 static const u8 padding[64] = { 0x80, };
419
420 bits = cpu_to_be64(state->count << 3);
421
422 /* Pad out to 56 mod 64 */
423 partial = state->count & 0x3f;
424 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
425 padlock_sha256_update_nano(desc, padding, padlen);
426
427 /* Append length field bytes */
428 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
429
430 /* Swap to output */
431 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
432
433 return 0;
434}
435
436static int padlock_sha_export_nano(struct shash_desc *desc,
437 void *out)
438{
439 int statesize = crypto_shash_statesize(desc->tfm);
440 void *sctx = shash_desc_ctx(desc);
441
442 memcpy(out, sctx, statesize);
443 return 0;
444}
445
446static int padlock_sha_import_nano(struct shash_desc *desc,
447 const void *in)
448{
449 int statesize = crypto_shash_statesize(desc->tfm);
450 void *sctx = shash_desc_ctx(desc);
451
452 memcpy(sctx, in, statesize);
453 return 0;
454}
455
456static struct shash_alg sha1_alg_nano = {
457 .digestsize = SHA1_DIGEST_SIZE,
458 .init = padlock_sha1_init_nano,
459 .update = padlock_sha1_update_nano,
460 .final = padlock_sha1_final_nano,
461 .export = padlock_sha_export_nano,
462 .import = padlock_sha_import_nano,
463 .descsize = sizeof(struct sha1_state),
464 .statesize = sizeof(struct sha1_state),
465 .base = {
466 .cra_name = "sha1",
467 .cra_driver_name = "sha1-padlock-nano",
468 .cra_priority = PADLOCK_CRA_PRIORITY,
469 .cra_blocksize = SHA1_BLOCK_SIZE,
470 .cra_module = THIS_MODULE,
471 }
472};
473
474static struct shash_alg sha256_alg_nano = {
475 .digestsize = SHA256_DIGEST_SIZE,
476 .init = padlock_sha256_init_nano,
477 .update = padlock_sha256_update_nano,
478 .final = padlock_sha256_final_nano,
479 .export = padlock_sha_export_nano,
480 .import = padlock_sha_import_nano,
481 .descsize = sizeof(struct sha256_state),
482 .statesize = sizeof(struct sha256_state),
483 .base = {
484 .cra_name = "sha256",
485 .cra_driver_name = "sha256-padlock-nano",
486 .cra_priority = PADLOCK_CRA_PRIORITY,
487 .cra_blocksize = SHA256_BLOCK_SIZE,
488 .cra_module = THIS_MODULE,
489 }
490};
491
492static const struct x86_cpu_id padlock_sha_ids[] = {
493 X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
494 {}
495};
496MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
497
498static int __init padlock_init(void)
499{
500 int rc = -ENODEV;
501 struct cpuinfo_x86 *c = &cpu_data(0);
502 struct shash_alg *sha1;
503 struct shash_alg *sha256;
504
505 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
506 return -ENODEV;
507
508 /* Register the newly added algorithm module if on *
509 * VIA Nano processor, or else just do as before */
510 if (c->x86_model < 0x0f) {
511 sha1 = &sha1_alg;
512 sha256 = &sha256_alg;
513 } else {
514 sha1 = &sha1_alg_nano;
515 sha256 = &sha256_alg_nano;
516 }
517
518 rc = crypto_register_shash(sha1);
519 if (rc)
520 goto out;
521
522 rc = crypto_register_shash(sha256);
523 if (rc)
524 goto out_unreg1;
525
526 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
527
528 return 0;
529
530out_unreg1:
531 crypto_unregister_shash(sha1);
532
533out:
534 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
535 return rc;
536}
537
538static void __exit padlock_fini(void)
539{
540 struct cpuinfo_x86 *c = &cpu_data(0);
541
542 if (c->x86_model >= 0x0f) {
543 crypto_unregister_shash(&sha1_alg_nano);
544 crypto_unregister_shash(&sha256_alg_nano);
545 } else {
546 crypto_unregister_shash(&sha1_alg);
547 crypto_unregister_shash(&sha256_alg);
548 }
549}
550
551module_init(padlock_init);
552module_exit(padlock_fini);
553
554MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
555MODULE_LICENSE("GPL");
556MODULE_AUTHOR("Michal Ludvig");
557
558MODULE_ALIAS_CRYPTO("sha1-all");
559MODULE_ALIAS_CRYPTO("sha256-all");
560MODULE_ALIAS_CRYPTO("sha1-padlock");
561MODULE_ALIAS_CRYPTO("sha256-padlock");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Cryptographic API.
4 *
5 * Support for VIA PadLock hardware crypto engine.
6 *
7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 */
9
10#include <crypto/internal/hash.h>
11#include <crypto/padlock.h>
12#include <crypto/sha1.h>
13#include <crypto/sha2.h>
14#include <linux/err.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/errno.h>
18#include <linux/interrupt.h>
19#include <linux/kernel.h>
20#include <linux/scatterlist.h>
21#include <asm/cpu_device_id.h>
22#include <asm/fpu/api.h>
23
24struct padlock_sha_desc {
25 struct shash_desc fallback;
26};
27
28struct padlock_sha_ctx {
29 struct crypto_shash *fallback;
30};
31
32static int padlock_sha_init(struct shash_desc *desc)
33{
34 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
35 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
36
37 dctx->fallback.tfm = ctx->fallback;
38 return crypto_shash_init(&dctx->fallback);
39}
40
41static int padlock_sha_update(struct shash_desc *desc,
42 const u8 *data, unsigned int length)
43{
44 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
45
46 return crypto_shash_update(&dctx->fallback, data, length);
47}
48
49static int padlock_sha_export(struct shash_desc *desc, void *out)
50{
51 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
52
53 return crypto_shash_export(&dctx->fallback, out);
54}
55
56static int padlock_sha_import(struct shash_desc *desc, const void *in)
57{
58 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
59 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
60
61 dctx->fallback.tfm = ctx->fallback;
62 return crypto_shash_import(&dctx->fallback, in);
63}
64
65static inline void padlock_output_block(uint32_t *src,
66 uint32_t *dst, size_t count)
67{
68 while (count--)
69 *dst++ = swab32(*src++);
70}
71
72static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
73 unsigned int count, u8 *out)
74{
75 /* We can't store directly to *out as it may be unaligned. */
76 /* BTW Don't reduce the buffer size below 128 Bytes!
77 * PadLock microcode needs it that big. */
78 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
79 ((aligned(STACK_ALIGN)));
80 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
81 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
82 struct sha1_state state;
83 unsigned int space;
84 unsigned int leftover;
85 int err;
86
87 err = crypto_shash_export(&dctx->fallback, &state);
88 if (err)
89 goto out;
90
91 if (state.count + count > ULONG_MAX)
92 return crypto_shash_finup(&dctx->fallback, in, count, out);
93
94 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
95 space = SHA1_BLOCK_SIZE - leftover;
96 if (space) {
97 if (count > space) {
98 err = crypto_shash_update(&dctx->fallback, in, space) ?:
99 crypto_shash_export(&dctx->fallback, &state);
100 if (err)
101 goto out;
102 count -= space;
103 in += space;
104 } else {
105 memcpy(state.buffer + leftover, in, count);
106 in = state.buffer;
107 count += leftover;
108 state.count &= ~(SHA1_BLOCK_SIZE - 1);
109 }
110 }
111
112 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
113
114 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
115 : \
116 : "c"((unsigned long)state.count + count), \
117 "a"((unsigned long)state.count), \
118 "S"(in), "D"(result));
119
120 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
121
122out:
123 return err;
124}
125
126static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
127{
128 u8 buf[4];
129
130 return padlock_sha1_finup(desc, buf, 0, out);
131}
132
133static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
134 unsigned int count, u8 *out)
135{
136 /* We can't store directly to *out as it may be unaligned. */
137 /* BTW Don't reduce the buffer size below 128 Bytes!
138 * PadLock microcode needs it that big. */
139 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
140 ((aligned(STACK_ALIGN)));
141 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
142 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
143 struct sha256_state state;
144 unsigned int space;
145 unsigned int leftover;
146 int err;
147
148 err = crypto_shash_export(&dctx->fallback, &state);
149 if (err)
150 goto out;
151
152 if (state.count + count > ULONG_MAX)
153 return crypto_shash_finup(&dctx->fallback, in, count, out);
154
155 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
156 space = SHA256_BLOCK_SIZE - leftover;
157 if (space) {
158 if (count > space) {
159 err = crypto_shash_update(&dctx->fallback, in, space) ?:
160 crypto_shash_export(&dctx->fallback, &state);
161 if (err)
162 goto out;
163 count -= space;
164 in += space;
165 } else {
166 memcpy(state.buf + leftover, in, count);
167 in = state.buf;
168 count += leftover;
169 state.count &= ~(SHA1_BLOCK_SIZE - 1);
170 }
171 }
172
173 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
174
175 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
176 : \
177 : "c"((unsigned long)state.count + count), \
178 "a"((unsigned long)state.count), \
179 "S"(in), "D"(result));
180
181 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
182
183out:
184 return err;
185}
186
187static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
188{
189 u8 buf[4];
190
191 return padlock_sha256_finup(desc, buf, 0, out);
192}
193
194static int padlock_init_tfm(struct crypto_shash *hash)
195{
196 const char *fallback_driver_name = crypto_shash_alg_name(hash);
197 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
198 struct crypto_shash *fallback_tfm;
199
200 /* Allocate a fallback and abort if it failed. */
201 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
202 CRYPTO_ALG_NEED_FALLBACK);
203 if (IS_ERR(fallback_tfm)) {
204 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
205 fallback_driver_name);
206 return PTR_ERR(fallback_tfm);
207 }
208
209 ctx->fallback = fallback_tfm;
210 hash->descsize += crypto_shash_descsize(fallback_tfm);
211 return 0;
212}
213
214static void padlock_exit_tfm(struct crypto_shash *hash)
215{
216 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
217
218 crypto_free_shash(ctx->fallback);
219}
220
221static struct shash_alg sha1_alg = {
222 .digestsize = SHA1_DIGEST_SIZE,
223 .init = padlock_sha_init,
224 .update = padlock_sha_update,
225 .finup = padlock_sha1_finup,
226 .final = padlock_sha1_final,
227 .export = padlock_sha_export,
228 .import = padlock_sha_import,
229 .init_tfm = padlock_init_tfm,
230 .exit_tfm = padlock_exit_tfm,
231 .descsize = sizeof(struct padlock_sha_desc),
232 .statesize = sizeof(struct sha1_state),
233 .base = {
234 .cra_name = "sha1",
235 .cra_driver_name = "sha1-padlock",
236 .cra_priority = PADLOCK_CRA_PRIORITY,
237 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
238 .cra_blocksize = SHA1_BLOCK_SIZE,
239 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
240 .cra_module = THIS_MODULE,
241 }
242};
243
244static struct shash_alg sha256_alg = {
245 .digestsize = SHA256_DIGEST_SIZE,
246 .init = padlock_sha_init,
247 .update = padlock_sha_update,
248 .finup = padlock_sha256_finup,
249 .final = padlock_sha256_final,
250 .export = padlock_sha_export,
251 .import = padlock_sha_import,
252 .init_tfm = padlock_init_tfm,
253 .exit_tfm = padlock_exit_tfm,
254 .descsize = sizeof(struct padlock_sha_desc),
255 .statesize = sizeof(struct sha256_state),
256 .base = {
257 .cra_name = "sha256",
258 .cra_driver_name = "sha256-padlock",
259 .cra_priority = PADLOCK_CRA_PRIORITY,
260 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
261 .cra_blocksize = SHA256_BLOCK_SIZE,
262 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
263 .cra_module = THIS_MODULE,
264 }
265};
266
267/* Add two shash_alg instance for hardware-implemented *
268* multiple-parts hash supported by VIA Nano Processor.*/
269static int padlock_sha1_init_nano(struct shash_desc *desc)
270{
271 struct sha1_state *sctx = shash_desc_ctx(desc);
272
273 *sctx = (struct sha1_state){
274 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
275 };
276
277 return 0;
278}
279
280static int padlock_sha1_update_nano(struct shash_desc *desc,
281 const u8 *data, unsigned int len)
282{
283 struct sha1_state *sctx = shash_desc_ctx(desc);
284 unsigned int partial, done;
285 const u8 *src;
286 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
287 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
288 ((aligned(STACK_ALIGN)));
289 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
290
291 partial = sctx->count & 0x3f;
292 sctx->count += len;
293 done = 0;
294 src = data;
295 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
296
297 if ((partial + len) >= SHA1_BLOCK_SIZE) {
298
299 /* Append the bytes in state's buffer to a block to handle */
300 if (partial) {
301 done = -partial;
302 memcpy(sctx->buffer + partial, data,
303 done + SHA1_BLOCK_SIZE);
304 src = sctx->buffer;
305 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
306 : "+S"(src), "+D"(dst) \
307 : "a"((long)-1), "c"((unsigned long)1));
308 done += SHA1_BLOCK_SIZE;
309 src = data + done;
310 }
311
312 /* Process the left bytes from the input data */
313 if (len - done >= SHA1_BLOCK_SIZE) {
314 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
315 : "+S"(src), "+D"(dst)
316 : "a"((long)-1),
317 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
318 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
319 src = data + done;
320 }
321 partial = 0;
322 }
323 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
324 memcpy(sctx->buffer + partial, src, len - done);
325
326 return 0;
327}
328
329static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
330{
331 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
332 unsigned int partial, padlen;
333 __be64 bits;
334 static const u8 padding[64] = { 0x80, };
335
336 bits = cpu_to_be64(state->count << 3);
337
338 /* Pad out to 56 mod 64 */
339 partial = state->count & 0x3f;
340 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
341 padlock_sha1_update_nano(desc, padding, padlen);
342
343 /* Append length field bytes */
344 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
345
346 /* Swap to output */
347 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
348
349 return 0;
350}
351
352static int padlock_sha256_init_nano(struct shash_desc *desc)
353{
354 struct sha256_state *sctx = shash_desc_ctx(desc);
355
356 *sctx = (struct sha256_state){
357 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
358 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
359 };
360
361 return 0;
362}
363
364static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
365 unsigned int len)
366{
367 struct sha256_state *sctx = shash_desc_ctx(desc);
368 unsigned int partial, done;
369 const u8 *src;
370 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
371 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
372 ((aligned(STACK_ALIGN)));
373 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
374
375 partial = sctx->count & 0x3f;
376 sctx->count += len;
377 done = 0;
378 src = data;
379 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
380
381 if ((partial + len) >= SHA256_BLOCK_SIZE) {
382
383 /* Append the bytes in state's buffer to a block to handle */
384 if (partial) {
385 done = -partial;
386 memcpy(sctx->buf + partial, data,
387 done + SHA256_BLOCK_SIZE);
388 src = sctx->buf;
389 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
390 : "+S"(src), "+D"(dst)
391 : "a"((long)-1), "c"((unsigned long)1));
392 done += SHA256_BLOCK_SIZE;
393 src = data + done;
394 }
395
396 /* Process the left bytes from input data*/
397 if (len - done >= SHA256_BLOCK_SIZE) {
398 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
399 : "+S"(src), "+D"(dst)
400 : "a"((long)-1),
401 "c"((unsigned long)((len - done) / 64)));
402 done += ((len - done) - (len - done) % 64);
403 src = data + done;
404 }
405 partial = 0;
406 }
407 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
408 memcpy(sctx->buf + partial, src, len - done);
409
410 return 0;
411}
412
413static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
414{
415 struct sha256_state *state =
416 (struct sha256_state *)shash_desc_ctx(desc);
417 unsigned int partial, padlen;
418 __be64 bits;
419 static const u8 padding[64] = { 0x80, };
420
421 bits = cpu_to_be64(state->count << 3);
422
423 /* Pad out to 56 mod 64 */
424 partial = state->count & 0x3f;
425 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
426 padlock_sha256_update_nano(desc, padding, padlen);
427
428 /* Append length field bytes */
429 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
430
431 /* Swap to output */
432 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
433
434 return 0;
435}
436
437static int padlock_sha_export_nano(struct shash_desc *desc,
438 void *out)
439{
440 int statesize = crypto_shash_statesize(desc->tfm);
441 void *sctx = shash_desc_ctx(desc);
442
443 memcpy(out, sctx, statesize);
444 return 0;
445}
446
447static int padlock_sha_import_nano(struct shash_desc *desc,
448 const void *in)
449{
450 int statesize = crypto_shash_statesize(desc->tfm);
451 void *sctx = shash_desc_ctx(desc);
452
453 memcpy(sctx, in, statesize);
454 return 0;
455}
456
457static struct shash_alg sha1_alg_nano = {
458 .digestsize = SHA1_DIGEST_SIZE,
459 .init = padlock_sha1_init_nano,
460 .update = padlock_sha1_update_nano,
461 .final = padlock_sha1_final_nano,
462 .export = padlock_sha_export_nano,
463 .import = padlock_sha_import_nano,
464 .descsize = sizeof(struct sha1_state),
465 .statesize = sizeof(struct sha1_state),
466 .base = {
467 .cra_name = "sha1",
468 .cra_driver_name = "sha1-padlock-nano",
469 .cra_priority = PADLOCK_CRA_PRIORITY,
470 .cra_blocksize = SHA1_BLOCK_SIZE,
471 .cra_module = THIS_MODULE,
472 }
473};
474
475static struct shash_alg sha256_alg_nano = {
476 .digestsize = SHA256_DIGEST_SIZE,
477 .init = padlock_sha256_init_nano,
478 .update = padlock_sha256_update_nano,
479 .final = padlock_sha256_final_nano,
480 .export = padlock_sha_export_nano,
481 .import = padlock_sha_import_nano,
482 .descsize = sizeof(struct sha256_state),
483 .statesize = sizeof(struct sha256_state),
484 .base = {
485 .cra_name = "sha256",
486 .cra_driver_name = "sha256-padlock-nano",
487 .cra_priority = PADLOCK_CRA_PRIORITY,
488 .cra_blocksize = SHA256_BLOCK_SIZE,
489 .cra_module = THIS_MODULE,
490 }
491};
492
493static const struct x86_cpu_id padlock_sha_ids[] = {
494 X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
495 {}
496};
497MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
498
499static int __init padlock_init(void)
500{
501 int rc = -ENODEV;
502 struct cpuinfo_x86 *c = &cpu_data(0);
503 struct shash_alg *sha1;
504 struct shash_alg *sha256;
505
506 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
507 return -ENODEV;
508
509 /* Register the newly added algorithm module if on *
510 * VIA Nano processor, or else just do as before */
511 if (c->x86_model < 0x0f) {
512 sha1 = &sha1_alg;
513 sha256 = &sha256_alg;
514 } else {
515 sha1 = &sha1_alg_nano;
516 sha256 = &sha256_alg_nano;
517 }
518
519 rc = crypto_register_shash(sha1);
520 if (rc)
521 goto out;
522
523 rc = crypto_register_shash(sha256);
524 if (rc)
525 goto out_unreg1;
526
527 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
528
529 return 0;
530
531out_unreg1:
532 crypto_unregister_shash(sha1);
533
534out:
535 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
536 return rc;
537}
538
539static void __exit padlock_fini(void)
540{
541 struct cpuinfo_x86 *c = &cpu_data(0);
542
543 if (c->x86_model >= 0x0f) {
544 crypto_unregister_shash(&sha1_alg_nano);
545 crypto_unregister_shash(&sha256_alg_nano);
546 } else {
547 crypto_unregister_shash(&sha1_alg);
548 crypto_unregister_shash(&sha256_alg);
549 }
550}
551
552module_init(padlock_init);
553module_exit(padlock_fini);
554
555MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
556MODULE_LICENSE("GPL");
557MODULE_AUTHOR("Michal Ludvig");
558
559MODULE_ALIAS_CRYPTO("sha1-all");
560MODULE_ALIAS_CRYPTO("sha256-all");
561MODULE_ALIAS_CRYPTO("sha1-padlock");
562MODULE_ALIAS_CRYPTO("sha256-padlock");