Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Cryptographic API.
4 *
5 * Support for VIA PadLock hardware crypto engine.
6 *
7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 */
9
10#include <crypto/internal/hash.h>
11#include <crypto/padlock.h>
12#include <crypto/sha.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/scatterlist.h>
20#include <asm/cpu_device_id.h>
21#include <asm/fpu/api.h>
22
23struct padlock_sha_desc {
24 struct shash_desc fallback;
25};
26
27struct padlock_sha_ctx {
28 struct crypto_shash *fallback;
29};
30
31static int padlock_sha_init(struct shash_desc *desc)
32{
33 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
34 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
35
36 dctx->fallback.tfm = ctx->fallback;
37 return crypto_shash_init(&dctx->fallback);
38}
39
40static int padlock_sha_update(struct shash_desc *desc,
41 const u8 *data, unsigned int length)
42{
43 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
44
45 return crypto_shash_update(&dctx->fallback, data, length);
46}
47
48static int padlock_sha_export(struct shash_desc *desc, void *out)
49{
50 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
51
52 return crypto_shash_export(&dctx->fallback, out);
53}
54
55static int padlock_sha_import(struct shash_desc *desc, const void *in)
56{
57 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
59
60 dctx->fallback.tfm = ctx->fallback;
61 return crypto_shash_import(&dctx->fallback, in);
62}
63
64static inline void padlock_output_block(uint32_t *src,
65 uint32_t *dst, size_t count)
66{
67 while (count--)
68 *dst++ = swab32(*src++);
69}
70
71static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
72 unsigned int count, u8 *out)
73{
74 /* We can't store directly to *out as it may be unaligned. */
75 /* BTW Don't reduce the buffer size below 128 Bytes!
76 * PadLock microcode needs it that big. */
77 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
78 ((aligned(STACK_ALIGN)));
79 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
80 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
81 struct sha1_state state;
82 unsigned int space;
83 unsigned int leftover;
84 int err;
85
86 err = crypto_shash_export(&dctx->fallback, &state);
87 if (err)
88 goto out;
89
90 if (state.count + count > ULONG_MAX)
91 return crypto_shash_finup(&dctx->fallback, in, count, out);
92
93 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
94 space = SHA1_BLOCK_SIZE - leftover;
95 if (space) {
96 if (count > space) {
97 err = crypto_shash_update(&dctx->fallback, in, space) ?:
98 crypto_shash_export(&dctx->fallback, &state);
99 if (err)
100 goto out;
101 count -= space;
102 in += space;
103 } else {
104 memcpy(state.buffer + leftover, in, count);
105 in = state.buffer;
106 count += leftover;
107 state.count &= ~(SHA1_BLOCK_SIZE - 1);
108 }
109 }
110
111 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
112
113 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
114 : \
115 : "c"((unsigned long)state.count + count), \
116 "a"((unsigned long)state.count), \
117 "S"(in), "D"(result));
118
119 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
120
121out:
122 return err;
123}
124
125static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
126{
127 u8 buf[4];
128
129 return padlock_sha1_finup(desc, buf, 0, out);
130}
131
132static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
133 unsigned int count, u8 *out)
134{
135 /* We can't store directly to *out as it may be unaligned. */
136 /* BTW Don't reduce the buffer size below 128 Bytes!
137 * PadLock microcode needs it that big. */
138 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
139 ((aligned(STACK_ALIGN)));
140 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
141 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
142 struct sha256_state state;
143 unsigned int space;
144 unsigned int leftover;
145 int err;
146
147 err = crypto_shash_export(&dctx->fallback, &state);
148 if (err)
149 goto out;
150
151 if (state.count + count > ULONG_MAX)
152 return crypto_shash_finup(&dctx->fallback, in, count, out);
153
154 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
155 space = SHA256_BLOCK_SIZE - leftover;
156 if (space) {
157 if (count > space) {
158 err = crypto_shash_update(&dctx->fallback, in, space) ?:
159 crypto_shash_export(&dctx->fallback, &state);
160 if (err)
161 goto out;
162 count -= space;
163 in += space;
164 } else {
165 memcpy(state.buf + leftover, in, count);
166 in = state.buf;
167 count += leftover;
168 state.count &= ~(SHA1_BLOCK_SIZE - 1);
169 }
170 }
171
172 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
173
174 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
175 : \
176 : "c"((unsigned long)state.count + count), \
177 "a"((unsigned long)state.count), \
178 "S"(in), "D"(result));
179
180 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
181
182out:
183 return err;
184}
185
186static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
187{
188 u8 buf[4];
189
190 return padlock_sha256_finup(desc, buf, 0, out);
191}
192
193static int padlock_init_tfm(struct crypto_shash *hash)
194{
195 const char *fallback_driver_name = crypto_shash_alg_name(hash);
196 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
197 struct crypto_shash *fallback_tfm;
198
199 /* Allocate a fallback and abort if it failed. */
200 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
201 CRYPTO_ALG_NEED_FALLBACK);
202 if (IS_ERR(fallback_tfm)) {
203 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
204 fallback_driver_name);
205 return PTR_ERR(fallback_tfm);
206 }
207
208 ctx->fallback = fallback_tfm;
209 hash->descsize += crypto_shash_descsize(fallback_tfm);
210 return 0;
211}
212
213static void padlock_exit_tfm(struct crypto_shash *hash)
214{
215 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
216
217 crypto_free_shash(ctx->fallback);
218}
219
220static struct shash_alg sha1_alg = {
221 .digestsize = SHA1_DIGEST_SIZE,
222 .init = padlock_sha_init,
223 .update = padlock_sha_update,
224 .finup = padlock_sha1_finup,
225 .final = padlock_sha1_final,
226 .export = padlock_sha_export,
227 .import = padlock_sha_import,
228 .init_tfm = padlock_init_tfm,
229 .exit_tfm = padlock_exit_tfm,
230 .descsize = sizeof(struct padlock_sha_desc),
231 .statesize = sizeof(struct sha1_state),
232 .base = {
233 .cra_name = "sha1",
234 .cra_driver_name = "sha1-padlock",
235 .cra_priority = PADLOCK_CRA_PRIORITY,
236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
237 .cra_blocksize = SHA1_BLOCK_SIZE,
238 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
239 .cra_module = THIS_MODULE,
240 }
241};
242
243static struct shash_alg sha256_alg = {
244 .digestsize = SHA256_DIGEST_SIZE,
245 .init = padlock_sha_init,
246 .update = padlock_sha_update,
247 .finup = padlock_sha256_finup,
248 .final = padlock_sha256_final,
249 .export = padlock_sha_export,
250 .import = padlock_sha_import,
251 .init_tfm = padlock_init_tfm,
252 .exit_tfm = padlock_exit_tfm,
253 .descsize = sizeof(struct padlock_sha_desc),
254 .statesize = sizeof(struct sha256_state),
255 .base = {
256 .cra_name = "sha256",
257 .cra_driver_name = "sha256-padlock",
258 .cra_priority = PADLOCK_CRA_PRIORITY,
259 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
260 .cra_blocksize = SHA256_BLOCK_SIZE,
261 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
262 .cra_module = THIS_MODULE,
263 }
264};
265
266/* Add two shash_alg instance for hardware-implemented *
267* multiple-parts hash supported by VIA Nano Processor.*/
268static int padlock_sha1_init_nano(struct shash_desc *desc)
269{
270 struct sha1_state *sctx = shash_desc_ctx(desc);
271
272 *sctx = (struct sha1_state){
273 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
274 };
275
276 return 0;
277}
278
279static int padlock_sha1_update_nano(struct shash_desc *desc,
280 const u8 *data, unsigned int len)
281{
282 struct sha1_state *sctx = shash_desc_ctx(desc);
283 unsigned int partial, done;
284 const u8 *src;
285 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
286 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
287 ((aligned(STACK_ALIGN)));
288 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
289
290 partial = sctx->count & 0x3f;
291 sctx->count += len;
292 done = 0;
293 src = data;
294 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
295
296 if ((partial + len) >= SHA1_BLOCK_SIZE) {
297
298 /* Append the bytes in state's buffer to a block to handle */
299 if (partial) {
300 done = -partial;
301 memcpy(sctx->buffer + partial, data,
302 done + SHA1_BLOCK_SIZE);
303 src = sctx->buffer;
304 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
305 : "+S"(src), "+D"(dst) \
306 : "a"((long)-1), "c"((unsigned long)1));
307 done += SHA1_BLOCK_SIZE;
308 src = data + done;
309 }
310
311 /* Process the left bytes from the input data */
312 if (len - done >= SHA1_BLOCK_SIZE) {
313 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
314 : "+S"(src), "+D"(dst)
315 : "a"((long)-1),
316 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
317 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
318 src = data + done;
319 }
320 partial = 0;
321 }
322 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
323 memcpy(sctx->buffer + partial, src, len - done);
324
325 return 0;
326}
327
328static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
329{
330 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
331 unsigned int partial, padlen;
332 __be64 bits;
333 static const u8 padding[64] = { 0x80, };
334
335 bits = cpu_to_be64(state->count << 3);
336
337 /* Pad out to 56 mod 64 */
338 partial = state->count & 0x3f;
339 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
340 padlock_sha1_update_nano(desc, padding, padlen);
341
342 /* Append length field bytes */
343 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
344
345 /* Swap to output */
346 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
347
348 return 0;
349}
350
351static int padlock_sha256_init_nano(struct shash_desc *desc)
352{
353 struct sha256_state *sctx = shash_desc_ctx(desc);
354
355 *sctx = (struct sha256_state){
356 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
357 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
358 };
359
360 return 0;
361}
362
363static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
364 unsigned int len)
365{
366 struct sha256_state *sctx = shash_desc_ctx(desc);
367 unsigned int partial, done;
368 const u8 *src;
369 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
370 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
371 ((aligned(STACK_ALIGN)));
372 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
373
374 partial = sctx->count & 0x3f;
375 sctx->count += len;
376 done = 0;
377 src = data;
378 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
379
380 if ((partial + len) >= SHA256_BLOCK_SIZE) {
381
382 /* Append the bytes in state's buffer to a block to handle */
383 if (partial) {
384 done = -partial;
385 memcpy(sctx->buf + partial, data,
386 done + SHA256_BLOCK_SIZE);
387 src = sctx->buf;
388 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
389 : "+S"(src), "+D"(dst)
390 : "a"((long)-1), "c"((unsigned long)1));
391 done += SHA256_BLOCK_SIZE;
392 src = data + done;
393 }
394
395 /* Process the left bytes from input data*/
396 if (len - done >= SHA256_BLOCK_SIZE) {
397 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
398 : "+S"(src), "+D"(dst)
399 : "a"((long)-1),
400 "c"((unsigned long)((len - done) / 64)));
401 done += ((len - done) - (len - done) % 64);
402 src = data + done;
403 }
404 partial = 0;
405 }
406 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
407 memcpy(sctx->buf + partial, src, len - done);
408
409 return 0;
410}
411
412static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
413{
414 struct sha256_state *state =
415 (struct sha256_state *)shash_desc_ctx(desc);
416 unsigned int partial, padlen;
417 __be64 bits;
418 static const u8 padding[64] = { 0x80, };
419
420 bits = cpu_to_be64(state->count << 3);
421
422 /* Pad out to 56 mod 64 */
423 partial = state->count & 0x3f;
424 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
425 padlock_sha256_update_nano(desc, padding, padlen);
426
427 /* Append length field bytes */
428 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
429
430 /* Swap to output */
431 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
432
433 return 0;
434}
435
436static int padlock_sha_export_nano(struct shash_desc *desc,
437 void *out)
438{
439 int statesize = crypto_shash_statesize(desc->tfm);
440 void *sctx = shash_desc_ctx(desc);
441
442 memcpy(out, sctx, statesize);
443 return 0;
444}
445
446static int padlock_sha_import_nano(struct shash_desc *desc,
447 const void *in)
448{
449 int statesize = crypto_shash_statesize(desc->tfm);
450 void *sctx = shash_desc_ctx(desc);
451
452 memcpy(sctx, in, statesize);
453 return 0;
454}
455
456static struct shash_alg sha1_alg_nano = {
457 .digestsize = SHA1_DIGEST_SIZE,
458 .init = padlock_sha1_init_nano,
459 .update = padlock_sha1_update_nano,
460 .final = padlock_sha1_final_nano,
461 .export = padlock_sha_export_nano,
462 .import = padlock_sha_import_nano,
463 .descsize = sizeof(struct sha1_state),
464 .statesize = sizeof(struct sha1_state),
465 .base = {
466 .cra_name = "sha1",
467 .cra_driver_name = "sha1-padlock-nano",
468 .cra_priority = PADLOCK_CRA_PRIORITY,
469 .cra_blocksize = SHA1_BLOCK_SIZE,
470 .cra_module = THIS_MODULE,
471 }
472};
473
474static struct shash_alg sha256_alg_nano = {
475 .digestsize = SHA256_DIGEST_SIZE,
476 .init = padlock_sha256_init_nano,
477 .update = padlock_sha256_update_nano,
478 .final = padlock_sha256_final_nano,
479 .export = padlock_sha_export_nano,
480 .import = padlock_sha_import_nano,
481 .descsize = sizeof(struct sha256_state),
482 .statesize = sizeof(struct sha256_state),
483 .base = {
484 .cra_name = "sha256",
485 .cra_driver_name = "sha256-padlock-nano",
486 .cra_priority = PADLOCK_CRA_PRIORITY,
487 .cra_blocksize = SHA256_BLOCK_SIZE,
488 .cra_module = THIS_MODULE,
489 }
490};
491
492static const struct x86_cpu_id padlock_sha_ids[] = {
493 X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
494 {}
495};
496MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
497
498static int __init padlock_init(void)
499{
500 int rc = -ENODEV;
501 struct cpuinfo_x86 *c = &cpu_data(0);
502 struct shash_alg *sha1;
503 struct shash_alg *sha256;
504
505 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
506 return -ENODEV;
507
508 /* Register the newly added algorithm module if on *
509 * VIA Nano processor, or else just do as before */
510 if (c->x86_model < 0x0f) {
511 sha1 = &sha1_alg;
512 sha256 = &sha256_alg;
513 } else {
514 sha1 = &sha1_alg_nano;
515 sha256 = &sha256_alg_nano;
516 }
517
518 rc = crypto_register_shash(sha1);
519 if (rc)
520 goto out;
521
522 rc = crypto_register_shash(sha256);
523 if (rc)
524 goto out_unreg1;
525
526 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
527
528 return 0;
529
530out_unreg1:
531 crypto_unregister_shash(sha1);
532
533out:
534 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
535 return rc;
536}
537
538static void __exit padlock_fini(void)
539{
540 struct cpuinfo_x86 *c = &cpu_data(0);
541
542 if (c->x86_model >= 0x0f) {
543 crypto_unregister_shash(&sha1_alg_nano);
544 crypto_unregister_shash(&sha256_alg_nano);
545 } else {
546 crypto_unregister_shash(&sha1_alg);
547 crypto_unregister_shash(&sha256_alg);
548 }
549}
550
551module_init(padlock_init);
552module_exit(padlock_fini);
553
554MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
555MODULE_LICENSE("GPL");
556MODULE_AUTHOR("Michal Ludvig");
557
558MODULE_ALIAS_CRYPTO("sha1-all");
559MODULE_ALIAS_CRYPTO("sha256-all");
560MODULE_ALIAS_CRYPTO("sha1-padlock");
561MODULE_ALIAS_CRYPTO("sha256-padlock");
1/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 */
14
15#include <crypto/internal/hash.h>
16#include <crypto/padlock.h>
17#include <crypto/sha.h>
18#include <linux/err.h>
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/errno.h>
22#include <linux/interrupt.h>
23#include <linux/kernel.h>
24#include <linux/scatterlist.h>
25#include <asm/i387.h>
26
27struct padlock_sha_desc {
28 struct shash_desc fallback;
29};
30
31struct padlock_sha_ctx {
32 struct crypto_shash *fallback;
33};
34
35static int padlock_sha_init(struct shash_desc *desc)
36{
37 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
38 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
39
40 dctx->fallback.tfm = ctx->fallback;
41 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
42 return crypto_shash_init(&dctx->fallback);
43}
44
45static int padlock_sha_update(struct shash_desc *desc,
46 const u8 *data, unsigned int length)
47{
48 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
49
50 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
51 return crypto_shash_update(&dctx->fallback, data, length);
52}
53
54static int padlock_sha_export(struct shash_desc *desc, void *out)
55{
56 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
57
58 return crypto_shash_export(&dctx->fallback, out);
59}
60
61static int padlock_sha_import(struct shash_desc *desc, const void *in)
62{
63 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
64 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
65
66 dctx->fallback.tfm = ctx->fallback;
67 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
68 return crypto_shash_import(&dctx->fallback, in);
69}
70
71static inline void padlock_output_block(uint32_t *src,
72 uint32_t *dst, size_t count)
73{
74 while (count--)
75 *dst++ = swab32(*src++);
76}
77
78static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
79 unsigned int count, u8 *out)
80{
81 /* We can't store directly to *out as it may be unaligned. */
82 /* BTW Don't reduce the buffer size below 128 Bytes!
83 * PadLock microcode needs it that big. */
84 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
85 ((aligned(STACK_ALIGN)));
86 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
87 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
88 struct sha1_state state;
89 unsigned int space;
90 unsigned int leftover;
91 int ts_state;
92 int err;
93
94 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
95 err = crypto_shash_export(&dctx->fallback, &state);
96 if (err)
97 goto out;
98
99 if (state.count + count > ULONG_MAX)
100 return crypto_shash_finup(&dctx->fallback, in, count, out);
101
102 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
103 space = SHA1_BLOCK_SIZE - leftover;
104 if (space) {
105 if (count > space) {
106 err = crypto_shash_update(&dctx->fallback, in, space) ?:
107 crypto_shash_export(&dctx->fallback, &state);
108 if (err)
109 goto out;
110 count -= space;
111 in += space;
112 } else {
113 memcpy(state.buffer + leftover, in, count);
114 in = state.buffer;
115 count += leftover;
116 state.count &= ~(SHA1_BLOCK_SIZE - 1);
117 }
118 }
119
120 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
121
122 /* prevent taking the spurious DNA fault with padlock. */
123 ts_state = irq_ts_save();
124 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
125 : \
126 : "c"((unsigned long)state.count + count), \
127 "a"((unsigned long)state.count), \
128 "S"(in), "D"(result));
129 irq_ts_restore(ts_state);
130
131 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
132
133out:
134 return err;
135}
136
137static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
138{
139 u8 buf[4];
140
141 return padlock_sha1_finup(desc, buf, 0, out);
142}
143
144static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
145 unsigned int count, u8 *out)
146{
147 /* We can't store directly to *out as it may be unaligned. */
148 /* BTW Don't reduce the buffer size below 128 Bytes!
149 * PadLock microcode needs it that big. */
150 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
151 ((aligned(STACK_ALIGN)));
152 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
153 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
154 struct sha256_state state;
155 unsigned int space;
156 unsigned int leftover;
157 int ts_state;
158 int err;
159
160 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
161 err = crypto_shash_export(&dctx->fallback, &state);
162 if (err)
163 goto out;
164
165 if (state.count + count > ULONG_MAX)
166 return crypto_shash_finup(&dctx->fallback, in, count, out);
167
168 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
169 space = SHA256_BLOCK_SIZE - leftover;
170 if (space) {
171 if (count > space) {
172 err = crypto_shash_update(&dctx->fallback, in, space) ?:
173 crypto_shash_export(&dctx->fallback, &state);
174 if (err)
175 goto out;
176 count -= space;
177 in += space;
178 } else {
179 memcpy(state.buf + leftover, in, count);
180 in = state.buf;
181 count += leftover;
182 state.count &= ~(SHA1_BLOCK_SIZE - 1);
183 }
184 }
185
186 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
187
188 /* prevent taking the spurious DNA fault with padlock. */
189 ts_state = irq_ts_save();
190 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
191 : \
192 : "c"((unsigned long)state.count + count), \
193 "a"((unsigned long)state.count), \
194 "S"(in), "D"(result));
195 irq_ts_restore(ts_state);
196
197 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
198
199out:
200 return err;
201}
202
203static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
204{
205 u8 buf[4];
206
207 return padlock_sha256_finup(desc, buf, 0, out);
208}
209
210static int padlock_cra_init(struct crypto_tfm *tfm)
211{
212 struct crypto_shash *hash = __crypto_shash_cast(tfm);
213 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
214 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
215 struct crypto_shash *fallback_tfm;
216 int err = -ENOMEM;
217
218 /* Allocate a fallback and abort if it failed. */
219 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
220 CRYPTO_ALG_NEED_FALLBACK);
221 if (IS_ERR(fallback_tfm)) {
222 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
223 fallback_driver_name);
224 err = PTR_ERR(fallback_tfm);
225 goto out;
226 }
227
228 ctx->fallback = fallback_tfm;
229 hash->descsize += crypto_shash_descsize(fallback_tfm);
230 return 0;
231
232out:
233 return err;
234}
235
236static void padlock_cra_exit(struct crypto_tfm *tfm)
237{
238 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
239
240 crypto_free_shash(ctx->fallback);
241}
242
243static struct shash_alg sha1_alg = {
244 .digestsize = SHA1_DIGEST_SIZE,
245 .init = padlock_sha_init,
246 .update = padlock_sha_update,
247 .finup = padlock_sha1_finup,
248 .final = padlock_sha1_final,
249 .export = padlock_sha_export,
250 .import = padlock_sha_import,
251 .descsize = sizeof(struct padlock_sha_desc),
252 .statesize = sizeof(struct sha1_state),
253 .base = {
254 .cra_name = "sha1",
255 .cra_driver_name = "sha1-padlock",
256 .cra_priority = PADLOCK_CRA_PRIORITY,
257 .cra_flags = CRYPTO_ALG_TYPE_SHASH |
258 CRYPTO_ALG_NEED_FALLBACK,
259 .cra_blocksize = SHA1_BLOCK_SIZE,
260 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
261 .cra_module = THIS_MODULE,
262 .cra_init = padlock_cra_init,
263 .cra_exit = padlock_cra_exit,
264 }
265};
266
267static struct shash_alg sha256_alg = {
268 .digestsize = SHA256_DIGEST_SIZE,
269 .init = padlock_sha_init,
270 .update = padlock_sha_update,
271 .finup = padlock_sha256_finup,
272 .final = padlock_sha256_final,
273 .export = padlock_sha_export,
274 .import = padlock_sha_import,
275 .descsize = sizeof(struct padlock_sha_desc),
276 .statesize = sizeof(struct sha256_state),
277 .base = {
278 .cra_name = "sha256",
279 .cra_driver_name = "sha256-padlock",
280 .cra_priority = PADLOCK_CRA_PRIORITY,
281 .cra_flags = CRYPTO_ALG_TYPE_SHASH |
282 CRYPTO_ALG_NEED_FALLBACK,
283 .cra_blocksize = SHA256_BLOCK_SIZE,
284 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
285 .cra_module = THIS_MODULE,
286 .cra_init = padlock_cra_init,
287 .cra_exit = padlock_cra_exit,
288 }
289};
290
291/* Add two shash_alg instance for hardware-implemented *
292* multiple-parts hash supported by VIA Nano Processor.*/
293static int padlock_sha1_init_nano(struct shash_desc *desc)
294{
295 struct sha1_state *sctx = shash_desc_ctx(desc);
296
297 *sctx = (struct sha1_state){
298 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
299 };
300
301 return 0;
302}
303
304static int padlock_sha1_update_nano(struct shash_desc *desc,
305 const u8 *data, unsigned int len)
306{
307 struct sha1_state *sctx = shash_desc_ctx(desc);
308 unsigned int partial, done;
309 const u8 *src;
310 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
311 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
312 ((aligned(STACK_ALIGN)));
313 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
314 int ts_state;
315
316 partial = sctx->count & 0x3f;
317 sctx->count += len;
318 done = 0;
319 src = data;
320 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
321
322 if ((partial + len) >= SHA1_BLOCK_SIZE) {
323
324 /* Append the bytes in state's buffer to a block to handle */
325 if (partial) {
326 done = -partial;
327 memcpy(sctx->buffer + partial, data,
328 done + SHA1_BLOCK_SIZE);
329 src = sctx->buffer;
330 ts_state = irq_ts_save();
331 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
332 : "+S"(src), "+D"(dst) \
333 : "a"((long)-1), "c"((unsigned long)1));
334 irq_ts_restore(ts_state);
335 done += SHA1_BLOCK_SIZE;
336 src = data + done;
337 }
338
339 /* Process the left bytes from the input data */
340 if (len - done >= SHA1_BLOCK_SIZE) {
341 ts_state = irq_ts_save();
342 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
343 : "+S"(src), "+D"(dst)
344 : "a"((long)-1),
345 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
346 irq_ts_restore(ts_state);
347 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
348 src = data + done;
349 }
350 partial = 0;
351 }
352 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
353 memcpy(sctx->buffer + partial, src, len - done);
354
355 return 0;
356}
357
358static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
359{
360 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
361 unsigned int partial, padlen;
362 __be64 bits;
363 static const u8 padding[64] = { 0x80, };
364
365 bits = cpu_to_be64(state->count << 3);
366
367 /* Pad out to 56 mod 64 */
368 partial = state->count & 0x3f;
369 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
370 padlock_sha1_update_nano(desc, padding, padlen);
371
372 /* Append length field bytes */
373 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
374
375 /* Swap to output */
376 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
377
378 return 0;
379}
380
381static int padlock_sha256_init_nano(struct shash_desc *desc)
382{
383 struct sha256_state *sctx = shash_desc_ctx(desc);
384
385 *sctx = (struct sha256_state){
386 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
387 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
388 };
389
390 return 0;
391}
392
393static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
394 unsigned int len)
395{
396 struct sha256_state *sctx = shash_desc_ctx(desc);
397 unsigned int partial, done;
398 const u8 *src;
399 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
400 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
401 ((aligned(STACK_ALIGN)));
402 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
403 int ts_state;
404
405 partial = sctx->count & 0x3f;
406 sctx->count += len;
407 done = 0;
408 src = data;
409 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
410
411 if ((partial + len) >= SHA256_BLOCK_SIZE) {
412
413 /* Append the bytes in state's buffer to a block to handle */
414 if (partial) {
415 done = -partial;
416 memcpy(sctx->buf + partial, data,
417 done + SHA256_BLOCK_SIZE);
418 src = sctx->buf;
419 ts_state = irq_ts_save();
420 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
421 : "+S"(src), "+D"(dst)
422 : "a"((long)-1), "c"((unsigned long)1));
423 irq_ts_restore(ts_state);
424 done += SHA256_BLOCK_SIZE;
425 src = data + done;
426 }
427
428 /* Process the left bytes from input data*/
429 if (len - done >= SHA256_BLOCK_SIZE) {
430 ts_state = irq_ts_save();
431 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
432 : "+S"(src), "+D"(dst)
433 : "a"((long)-1),
434 "c"((unsigned long)((len - done) / 64)));
435 irq_ts_restore(ts_state);
436 done += ((len - done) - (len - done) % 64);
437 src = data + done;
438 }
439 partial = 0;
440 }
441 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
442 memcpy(sctx->buf + partial, src, len - done);
443
444 return 0;
445}
446
447static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
448{
449 struct sha256_state *state =
450 (struct sha256_state *)shash_desc_ctx(desc);
451 unsigned int partial, padlen;
452 __be64 bits;
453 static const u8 padding[64] = { 0x80, };
454
455 bits = cpu_to_be64(state->count << 3);
456
457 /* Pad out to 56 mod 64 */
458 partial = state->count & 0x3f;
459 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
460 padlock_sha256_update_nano(desc, padding, padlen);
461
462 /* Append length field bytes */
463 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
464
465 /* Swap to output */
466 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
467
468 return 0;
469}
470
471static int padlock_sha_export_nano(struct shash_desc *desc,
472 void *out)
473{
474 int statesize = crypto_shash_statesize(desc->tfm);
475 void *sctx = shash_desc_ctx(desc);
476
477 memcpy(out, sctx, statesize);
478 return 0;
479}
480
481static int padlock_sha_import_nano(struct shash_desc *desc,
482 const void *in)
483{
484 int statesize = crypto_shash_statesize(desc->tfm);
485 void *sctx = shash_desc_ctx(desc);
486
487 memcpy(sctx, in, statesize);
488 return 0;
489}
490
491static struct shash_alg sha1_alg_nano = {
492 .digestsize = SHA1_DIGEST_SIZE,
493 .init = padlock_sha1_init_nano,
494 .update = padlock_sha1_update_nano,
495 .final = padlock_sha1_final_nano,
496 .export = padlock_sha_export_nano,
497 .import = padlock_sha_import_nano,
498 .descsize = sizeof(struct sha1_state),
499 .statesize = sizeof(struct sha1_state),
500 .base = {
501 .cra_name = "sha1",
502 .cra_driver_name = "sha1-padlock-nano",
503 .cra_priority = PADLOCK_CRA_PRIORITY,
504 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
505 .cra_blocksize = SHA1_BLOCK_SIZE,
506 .cra_module = THIS_MODULE,
507 }
508};
509
510static struct shash_alg sha256_alg_nano = {
511 .digestsize = SHA256_DIGEST_SIZE,
512 .init = padlock_sha256_init_nano,
513 .update = padlock_sha256_update_nano,
514 .final = padlock_sha256_final_nano,
515 .export = padlock_sha_export_nano,
516 .import = padlock_sha_import_nano,
517 .descsize = sizeof(struct sha256_state),
518 .statesize = sizeof(struct sha256_state),
519 .base = {
520 .cra_name = "sha256",
521 .cra_driver_name = "sha256-padlock-nano",
522 .cra_priority = PADLOCK_CRA_PRIORITY,
523 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
524 .cra_blocksize = SHA256_BLOCK_SIZE,
525 .cra_module = THIS_MODULE,
526 }
527};
528
529static int __init padlock_init(void)
530{
531 int rc = -ENODEV;
532 struct cpuinfo_x86 *c = &cpu_data(0);
533 struct shash_alg *sha1;
534 struct shash_alg *sha256;
535
536 if (!cpu_has_phe) {
537 printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n");
538 return -ENODEV;
539 }
540
541 if (!cpu_has_phe_enabled) {
542 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
543 return -ENODEV;
544 }
545
546 /* Register the newly added algorithm module if on *
547 * VIA Nano processor, or else just do as before */
548 if (c->x86_model < 0x0f) {
549 sha1 = &sha1_alg;
550 sha256 = &sha256_alg;
551 } else {
552 sha1 = &sha1_alg_nano;
553 sha256 = &sha256_alg_nano;
554 }
555
556 rc = crypto_register_shash(sha1);
557 if (rc)
558 goto out;
559
560 rc = crypto_register_shash(sha256);
561 if (rc)
562 goto out_unreg1;
563
564 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
565
566 return 0;
567
568out_unreg1:
569 crypto_unregister_shash(sha1);
570
571out:
572 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
573 return rc;
574}
575
576static void __exit padlock_fini(void)
577{
578 struct cpuinfo_x86 *c = &cpu_data(0);
579
580 if (c->x86_model >= 0x0f) {
581 crypto_unregister_shash(&sha1_alg_nano);
582 crypto_unregister_shash(&sha256_alg_nano);
583 } else {
584 crypto_unregister_shash(&sha1_alg);
585 crypto_unregister_shash(&sha256_alg);
586 }
587}
588
589module_init(padlock_init);
590module_exit(padlock_fini);
591
592MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
593MODULE_LICENSE("GPL");
594MODULE_AUTHOR("Michal Ludvig");
595
596MODULE_ALIAS("sha1-all");
597MODULE_ALIAS("sha256-all");
598MODULE_ALIAS("sha1-padlock");
599MODULE_ALIAS("sha256-padlock");