Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
  8 */
  9
 
 
 
 
 
 
 10#include <linux/err.h>
 11#include <linux/delay.h>
 12#include <crypto/engine.h>
 
 
 13#include <uapi/linux/sched/types.h>
 14#include "internal.h"
 15
 16#define CRYPTO_ENGINE_MAX_QLEN 10
 17
 
 
 
 
 
 
 
 
 18/**
 19 * crypto_finalize_request - finalize one request if the request is done
 20 * @engine: the hardware engine
 21 * @req: the request need to be finalized
 22 * @err: error number
 23 */
 24static void crypto_finalize_request(struct crypto_engine *engine,
 25				    struct crypto_async_request *req, int err)
 26{
 27	unsigned long flags;
 28	bool finalize_req = false;
 29	int ret;
 30	struct crypto_engine_ctx *enginectx;
 31
 32	/*
 33	 * If hardware cannot enqueue more requests
 34	 * and retry mechanism is not supported
 35	 * make sure we are completing the current request
 36	 */
 37	if (!engine->retry_support) {
 38		spin_lock_irqsave(&engine->queue_lock, flags);
 39		if (engine->cur_req == req) {
 40			finalize_req = true;
 41			engine->cur_req = NULL;
 42		}
 43		spin_unlock_irqrestore(&engine->queue_lock, flags);
 44	}
 45
 46	if (finalize_req || engine->retry_support) {
 47		enginectx = crypto_tfm_ctx(req->tfm);
 48		if (enginectx->op.prepare_request &&
 49		    enginectx->op.unprepare_request) {
 50			ret = enginectx->op.unprepare_request(engine, req);
 51			if (ret)
 52				dev_err(engine->dev, "failed to unprepare request\n");
 53		}
 54	}
 55	req->complete(req, err);
 56
 57	kthread_queue_work(engine->kworker, &engine->pump_requests);
 58}
 59
 60/**
 61 * crypto_pump_requests - dequeue one request from engine queue to process
 62 * @engine: the hardware engine
 63 * @in_kthread: true if we are in the context of the request pump thread
 64 *
 65 * This function checks if there is any request in the engine queue that
 66 * needs processing and if so call out to the driver to initialize hardware
 67 * and handle each request.
 68 */
 69static void crypto_pump_requests(struct crypto_engine *engine,
 70				 bool in_kthread)
 71{
 72	struct crypto_async_request *async_req, *backlog;
 
 
 73	unsigned long flags;
 74	bool was_busy = false;
 75	int ret;
 76	struct crypto_engine_ctx *enginectx;
 77
 78	spin_lock_irqsave(&engine->queue_lock, flags);
 79
 80	/* Make sure we are not already running a request */
 81	if (!engine->retry_support && engine->cur_req)
 82		goto out;
 83
 84	/* If another context is idling then defer */
 85	if (engine->idling) {
 86		kthread_queue_work(engine->kworker, &engine->pump_requests);
 87		goto out;
 88	}
 89
 90	/* Check if the engine queue is idle */
 91	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 92		if (!engine->busy)
 93			goto out;
 94
 95		/* Only do teardown in the thread */
 96		if (!in_kthread) {
 97			kthread_queue_work(engine->kworker,
 98					   &engine->pump_requests);
 99			goto out;
100		}
101
102		engine->busy = false;
103		engine->idling = true;
104		spin_unlock_irqrestore(&engine->queue_lock, flags);
105
106		if (engine->unprepare_crypt_hardware &&
107		    engine->unprepare_crypt_hardware(engine))
108			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
109
110		spin_lock_irqsave(&engine->queue_lock, flags);
111		engine->idling = false;
112		goto out;
113	}
114
115start_request:
116	/* Get the fist request from the engine queue to handle */
117	backlog = crypto_get_backlog(&engine->queue);
118	async_req = crypto_dequeue_request(&engine->queue);
119	if (!async_req)
120		goto out;
121
122	/*
123	 * If hardware doesn't support the retry mechanism,
124	 * keep track of the request we are processing now.
125	 * We'll need it on completion (crypto_finalize_request).
126	 */
127	if (!engine->retry_support)
128		engine->cur_req = async_req;
129
130	if (backlog)
131		backlog->complete(backlog, -EINPROGRESS);
132
133	if (engine->busy)
134		was_busy = true;
135	else
136		engine->busy = true;
137
138	spin_unlock_irqrestore(&engine->queue_lock, flags);
139
140	/* Until here we get the request need to be encrypted successfully */
141	if (!was_busy && engine->prepare_crypt_hardware) {
142		ret = engine->prepare_crypt_hardware(engine);
143		if (ret) {
144			dev_err(engine->dev, "failed to prepare crypt hardware\n");
145			goto req_err_2;
146		}
147	}
148
149	enginectx = crypto_tfm_ctx(async_req->tfm);
150
151	if (enginectx->op.prepare_request) {
152		ret = enginectx->op.prepare_request(engine, async_req);
153		if (ret) {
154			dev_err(engine->dev, "failed to prepare request: %d\n",
155				ret);
156			goto req_err_2;
157		}
158	}
159	if (!enginectx->op.do_one_request) {
160		dev_err(engine->dev, "failed to do request\n");
161		ret = -EINVAL;
162		goto req_err_1;
163	}
164
165	ret = enginectx->op.do_one_request(engine, async_req);
166
167	/* Request unsuccessfully executed by hardware */
168	if (ret < 0) {
169		/*
170		 * If hardware queue is full (-ENOSPC), requeue request
171		 * regardless of backlog flag.
172		 * Otherwise, unprepare and complete the request.
173		 */
174		if (!engine->retry_support ||
175		    (ret != -ENOSPC)) {
176			dev_err(engine->dev,
177				"Failed to do one request from queue: %d\n",
178				ret);
179			goto req_err_1;
180		}
181		/*
182		 * If retry mechanism is supported,
183		 * unprepare current request and
184		 * enqueue it back into crypto-engine queue.
185		 */
186		if (enginectx->op.unprepare_request) {
187			ret = enginectx->op.unprepare_request(engine,
188							      async_req);
189			if (ret)
190				dev_err(engine->dev,
191					"failed to unprepare request\n");
192		}
193		spin_lock_irqsave(&engine->queue_lock, flags);
194		/*
195		 * If hardware was unable to execute request, enqueue it
196		 * back in front of crypto-engine queue, to keep the order
197		 * of requests.
198		 */
199		crypto_enqueue_request_head(&engine->queue, async_req);
200
201		kthread_queue_work(engine->kworker, &engine->pump_requests);
202		goto out;
203	}
204
205	goto retry;
206
207req_err_1:
208	if (enginectx->op.unprepare_request) {
209		ret = enginectx->op.unprepare_request(engine, async_req);
210		if (ret)
211			dev_err(engine->dev, "failed to unprepare request\n");
212	}
213
214req_err_2:
215	async_req->complete(async_req, ret);
216
217retry:
 
 
 
218	/* If retry mechanism is supported, send new requests to engine */
219	if (engine->retry_support) {
220		spin_lock_irqsave(&engine->queue_lock, flags);
221		goto start_request;
222	}
223	return;
224
225out:
226	spin_unlock_irqrestore(&engine->queue_lock, flags);
227
228	/*
229	 * Batch requests is possible only if
230	 * hardware can enqueue multiple requests
231	 */
232	if (engine->do_batch_requests) {
233		ret = engine->do_batch_requests(engine);
234		if (ret)
235			dev_err(engine->dev, "failed to do batch requests: %d\n",
236				ret);
237	}
238
239	return;
240}
241
242static void crypto_pump_work(struct kthread_work *work)
243{
244	struct crypto_engine *engine =
245		container_of(work, struct crypto_engine, pump_requests);
246
247	crypto_pump_requests(engine, true);
248}
249
250/**
251 * crypto_transfer_request - transfer the new request into the engine queue
252 * @engine: the hardware engine
253 * @req: the request need to be listed into the engine queue
 
254 */
255static int crypto_transfer_request(struct crypto_engine *engine,
256				   struct crypto_async_request *req,
257				   bool need_pump)
258{
259	unsigned long flags;
260	int ret;
261
262	spin_lock_irqsave(&engine->queue_lock, flags);
263
264	if (!engine->running) {
265		spin_unlock_irqrestore(&engine->queue_lock, flags);
266		return -ESHUTDOWN;
267	}
268
269	ret = crypto_enqueue_request(&engine->queue, req);
270
271	if (!engine->busy && need_pump)
272		kthread_queue_work(engine->kworker, &engine->pump_requests);
273
274	spin_unlock_irqrestore(&engine->queue_lock, flags);
275	return ret;
276}
277
278/**
279 * crypto_transfer_request_to_engine - transfer one request to list
280 * into the engine queue
281 * @engine: the hardware engine
282 * @req: the request need to be listed into the engine queue
283 */
284static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
285					     struct crypto_async_request *req)
286{
287	return crypto_transfer_request(engine, req, true);
288}
289
290/**
291 * crypto_transfer_aead_request_to_engine - transfer one aead_request
292 * to list into the engine queue
293 * @engine: the hardware engine
294 * @req: the request need to be listed into the engine queue
295 */
296int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
297					   struct aead_request *req)
298{
299	return crypto_transfer_request_to_engine(engine, &req->base);
300}
301EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
302
303/**
304 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
305 * to list into the engine queue
306 * @engine: the hardware engine
307 * @req: the request need to be listed into the engine queue
308 */
309int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
310					       struct akcipher_request *req)
311{
312	return crypto_transfer_request_to_engine(engine, &req->base);
313}
314EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
315
316/**
317 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
318 * to list into the engine queue
319 * @engine: the hardware engine
320 * @req: the request need to be listed into the engine queue
321 */
322int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
323					   struct ahash_request *req)
324{
325	return crypto_transfer_request_to_engine(engine, &req->base);
326}
327EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
328
329/**
 
 
 
 
 
 
 
 
 
 
 
 
 
330 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
331 * to list into the engine queue
332 * @engine: the hardware engine
333 * @req: the request need to be listed into the engine queue
334 */
335int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
336					       struct skcipher_request *req)
337{
338	return crypto_transfer_request_to_engine(engine, &req->base);
339}
340EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
341
342/**
343 * crypto_finalize_aead_request - finalize one aead_request if
344 * the request is done
345 * @engine: the hardware engine
346 * @req: the request need to be finalized
347 * @err: error number
348 */
349void crypto_finalize_aead_request(struct crypto_engine *engine,
350				  struct aead_request *req, int err)
351{
352	return crypto_finalize_request(engine, &req->base, err);
353}
354EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
355
356/**
357 * crypto_finalize_akcipher_request - finalize one akcipher_request if
358 * the request is done
359 * @engine: the hardware engine
360 * @req: the request need to be finalized
361 * @err: error number
362 */
363void crypto_finalize_akcipher_request(struct crypto_engine *engine,
364				      struct akcipher_request *req, int err)
365{
366	return crypto_finalize_request(engine, &req->base, err);
367}
368EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
369
370/**
371 * crypto_finalize_hash_request - finalize one ahash_request if
372 * the request is done
373 * @engine: the hardware engine
374 * @req: the request need to be finalized
375 * @err: error number
376 */
377void crypto_finalize_hash_request(struct crypto_engine *engine,
378				  struct ahash_request *req, int err)
379{
380	return crypto_finalize_request(engine, &req->base, err);
381}
382EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
383
384/**
 
 
 
 
 
 
 
 
 
 
 
 
 
385 * crypto_finalize_skcipher_request - finalize one skcipher_request if
386 * the request is done
387 * @engine: the hardware engine
388 * @req: the request need to be finalized
389 * @err: error number
390 */
391void crypto_finalize_skcipher_request(struct crypto_engine *engine,
392				      struct skcipher_request *req, int err)
393{
394	return crypto_finalize_request(engine, &req->base, err);
395}
396EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
397
398/**
399 * crypto_engine_start - start the hardware engine
400 * @engine: the hardware engine need to be started
401 *
402 * Return 0 on success, else on fail.
403 */
404int crypto_engine_start(struct crypto_engine *engine)
405{
406	unsigned long flags;
407
408	spin_lock_irqsave(&engine->queue_lock, flags);
409
410	if (engine->running || engine->busy) {
411		spin_unlock_irqrestore(&engine->queue_lock, flags);
412		return -EBUSY;
413	}
414
415	engine->running = true;
416	spin_unlock_irqrestore(&engine->queue_lock, flags);
417
418	kthread_queue_work(engine->kworker, &engine->pump_requests);
419
420	return 0;
421}
422EXPORT_SYMBOL_GPL(crypto_engine_start);
423
424/**
425 * crypto_engine_stop - stop the hardware engine
426 * @engine: the hardware engine need to be stopped
427 *
428 * Return 0 on success, else on fail.
429 */
430int crypto_engine_stop(struct crypto_engine *engine)
431{
432	unsigned long flags;
433	unsigned int limit = 500;
434	int ret = 0;
435
436	spin_lock_irqsave(&engine->queue_lock, flags);
437
438	/*
439	 * If the engine queue is not empty or the engine is on busy state,
440	 * we need to wait for a while to pump the requests of engine queue.
441	 */
442	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
443		spin_unlock_irqrestore(&engine->queue_lock, flags);
444		msleep(20);
445		spin_lock_irqsave(&engine->queue_lock, flags);
446	}
447
448	if (crypto_queue_len(&engine->queue) || engine->busy)
449		ret = -EBUSY;
450	else
451		engine->running = false;
452
453	spin_unlock_irqrestore(&engine->queue_lock, flags);
454
455	if (ret)
456		dev_warn(engine->dev, "could not stop engine\n");
457
458	return ret;
459}
460EXPORT_SYMBOL_GPL(crypto_engine_stop);
461
462/**
463 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
464 * and initialize it by setting the maximum number of entries in the software
465 * crypto-engine queue.
466 * @dev: the device attached with one hardware engine
467 * @retry_support: whether hardware has support for retry mechanism
468 * @cbk_do_batch: pointer to a callback function to be invoked when executing a
469 *                a batch of requests.
470 *                This has the form:
471 *                callback(struct crypto_engine *engine)
472 *                where:
473 *                @engine: the crypto engine structure.
474 * @rt: whether this queue is set to run as a realtime task
475 * @qlen: maximum size of the crypto-engine queue
476 *
477 * This must be called from context that can sleep.
478 * Return: the crypto engine structure on success, else NULL.
479 */
480struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
481						       bool retry_support,
482						       int (*cbk_do_batch)(struct crypto_engine *engine),
483						       bool rt, int qlen)
484{
485	struct crypto_engine *engine;
486
487	if (!dev)
488		return NULL;
489
490	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
491	if (!engine)
492		return NULL;
493
494	engine->dev = dev;
495	engine->rt = rt;
496	engine->running = false;
497	engine->busy = false;
498	engine->idling = false;
499	engine->retry_support = retry_support;
500	engine->priv_data = dev;
501	/*
502	 * Batch requests is possible only if
503	 * hardware has support for retry mechanism.
504	 */
505	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
506
507	snprintf(engine->name, sizeof(engine->name),
508		 "%s-engine", dev_name(dev));
509
510	crypto_init_queue(&engine->queue, qlen);
511	spin_lock_init(&engine->queue_lock);
512
513	engine->kworker = kthread_create_worker(0, "%s", engine->name);
514	if (IS_ERR(engine->kworker)) {
515		dev_err(dev, "failed to create crypto request pump task\n");
516		return NULL;
517	}
518	kthread_init_work(&engine->pump_requests, crypto_pump_work);
519
520	if (engine->rt) {
521		dev_info(dev, "will run requests pump with realtime priority\n");
522		sched_set_fifo(engine->kworker->task);
523	}
524
525	return engine;
526}
527EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
528
529/**
530 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
531 * initialize it.
532 * @dev: the device attached with one hardware engine
533 * @rt: whether this queue is set to run as a realtime task
534 *
535 * This must be called from context that can sleep.
536 * Return: the crypto engine structure on success, else NULL.
537 */
538struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
539{
540	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
541						CRYPTO_ENGINE_MAX_QLEN);
542}
543EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
544
545/**
546 * crypto_engine_exit - free the resources of hardware engine when exit
547 * @engine: the hardware engine need to be freed
548 *
549 * Return 0 for success.
550 */
551int crypto_engine_exit(struct crypto_engine *engine)
552{
553	int ret;
554
555	ret = crypto_engine_stop(engine);
556	if (ret)
557		return ret;
558
559	kthread_destroy_worker(engine->kworker);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560
561	return 0;
 
 
 
 
 
562}
563EXPORT_SYMBOL_GPL(crypto_engine_exit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564
565MODULE_LICENSE("GPL");
566MODULE_DESCRIPTION("Crypto hardware engine framework");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
  8 */
  9
 10#include <crypto/internal/aead.h>
 11#include <crypto/internal/akcipher.h>
 12#include <crypto/internal/engine.h>
 13#include <crypto/internal/hash.h>
 14#include <crypto/internal/kpp.h>
 15#include <crypto/internal/skcipher.h>
 16#include <linux/err.h>
 17#include <linux/delay.h>
 18#include <linux/device.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <uapi/linux/sched/types.h>
 22#include "internal.h"
 23
 24#define CRYPTO_ENGINE_MAX_QLEN 10
 25
 26/* Temporary algorithm flag used to indicate an updated driver. */
 27#define CRYPTO_ALG_ENGINE 0x200
 28
 29struct crypto_engine_alg {
 30	struct crypto_alg base;
 31	struct crypto_engine_op op;
 32};
 33
 34/**
 35 * crypto_finalize_request - finalize one request if the request is done
 36 * @engine: the hardware engine
 37 * @req: the request need to be finalized
 38 * @err: error number
 39 */
 40static void crypto_finalize_request(struct crypto_engine *engine,
 41				    struct crypto_async_request *req, int err)
 42{
 43	unsigned long flags;
 
 
 
 44
 45	/*
 46	 * If hardware cannot enqueue more requests
 47	 * and retry mechanism is not supported
 48	 * make sure we are completing the current request
 49	 */
 50	if (!engine->retry_support) {
 51		spin_lock_irqsave(&engine->queue_lock, flags);
 52		if (engine->cur_req == req) {
 
 53			engine->cur_req = NULL;
 54		}
 55		spin_unlock_irqrestore(&engine->queue_lock, flags);
 56	}
 57
 58	lockdep_assert_in_softirq();
 59	crypto_request_complete(req, err);
 
 
 
 
 
 
 
 
 60
 61	kthread_queue_work(engine->kworker, &engine->pump_requests);
 62}
 63
 64/**
 65 * crypto_pump_requests - dequeue one request from engine queue to process
 66 * @engine: the hardware engine
 67 * @in_kthread: true if we are in the context of the request pump thread
 68 *
 69 * This function checks if there is any request in the engine queue that
 70 * needs processing and if so call out to the driver to initialize hardware
 71 * and handle each request.
 72 */
 73static void crypto_pump_requests(struct crypto_engine *engine,
 74				 bool in_kthread)
 75{
 76	struct crypto_async_request *async_req, *backlog;
 77	struct crypto_engine_alg *alg;
 78	struct crypto_engine_op *op;
 79	unsigned long flags;
 80	bool was_busy = false;
 81	int ret;
 
 82
 83	spin_lock_irqsave(&engine->queue_lock, flags);
 84
 85	/* Make sure we are not already running a request */
 86	if (!engine->retry_support && engine->cur_req)
 87		goto out;
 88
 89	/* If another context is idling then defer */
 90	if (engine->idling) {
 91		kthread_queue_work(engine->kworker, &engine->pump_requests);
 92		goto out;
 93	}
 94
 95	/* Check if the engine queue is idle */
 96	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 97		if (!engine->busy)
 98			goto out;
 99
100		/* Only do teardown in the thread */
101		if (!in_kthread) {
102			kthread_queue_work(engine->kworker,
103					   &engine->pump_requests);
104			goto out;
105		}
106
107		engine->busy = false;
108		engine->idling = true;
109		spin_unlock_irqrestore(&engine->queue_lock, flags);
110
111		if (engine->unprepare_crypt_hardware &&
112		    engine->unprepare_crypt_hardware(engine))
113			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
114
115		spin_lock_irqsave(&engine->queue_lock, flags);
116		engine->idling = false;
117		goto out;
118	}
119
120start_request:
121	/* Get the fist request from the engine queue to handle */
122	backlog = crypto_get_backlog(&engine->queue);
123	async_req = crypto_dequeue_request(&engine->queue);
124	if (!async_req)
125		goto out;
126
127	/*
128	 * If hardware doesn't support the retry mechanism,
129	 * keep track of the request we are processing now.
130	 * We'll need it on completion (crypto_finalize_request).
131	 */
132	if (!engine->retry_support)
133		engine->cur_req = async_req;
134
 
 
 
135	if (engine->busy)
136		was_busy = true;
137	else
138		engine->busy = true;
139
140	spin_unlock_irqrestore(&engine->queue_lock, flags);
141
142	/* Until here we get the request need to be encrypted successfully */
143	if (!was_busy && engine->prepare_crypt_hardware) {
144		ret = engine->prepare_crypt_hardware(engine);
145		if (ret) {
146			dev_err(engine->dev, "failed to prepare crypt hardware\n");
147			goto req_err_1;
148		}
149	}
150
151	if (async_req->tfm->__crt_alg->cra_flags & CRYPTO_ALG_ENGINE) {
152		alg = container_of(async_req->tfm->__crt_alg,
153				   struct crypto_engine_alg, base);
154		op = &alg->op;
155	} else {
 
 
 
 
 
 
156		dev_err(engine->dev, "failed to do request\n");
157		ret = -EINVAL;
158		goto req_err_1;
159	}
160
161	ret = op->do_one_request(engine, async_req);
162
163	/* Request unsuccessfully executed by hardware */
164	if (ret < 0) {
165		/*
166		 * If hardware queue is full (-ENOSPC), requeue request
167		 * regardless of backlog flag.
168		 * Otherwise, unprepare and complete the request.
169		 */
170		if (!engine->retry_support ||
171		    (ret != -ENOSPC)) {
172			dev_err(engine->dev,
173				"Failed to do one request from queue: %d\n",
174				ret);
175			goto req_err_1;
176		}
 
 
 
 
 
 
 
 
 
 
 
 
177		spin_lock_irqsave(&engine->queue_lock, flags);
178		/*
179		 * If hardware was unable to execute request, enqueue it
180		 * back in front of crypto-engine queue, to keep the order
181		 * of requests.
182		 */
183		crypto_enqueue_request_head(&engine->queue, async_req);
184
185		kthread_queue_work(engine->kworker, &engine->pump_requests);
186		goto out;
187	}
188
189	goto retry;
190
191req_err_1:
192	crypto_request_complete(async_req, ret);
 
 
 
 
 
 
 
193
194retry:
195	if (backlog)
196		crypto_request_complete(backlog, -EINPROGRESS);
197
198	/* If retry mechanism is supported, send new requests to engine */
199	if (engine->retry_support) {
200		spin_lock_irqsave(&engine->queue_lock, flags);
201		goto start_request;
202	}
203	return;
204
205out:
206	spin_unlock_irqrestore(&engine->queue_lock, flags);
207
208	/*
209	 * Batch requests is possible only if
210	 * hardware can enqueue multiple requests
211	 */
212	if (engine->do_batch_requests) {
213		ret = engine->do_batch_requests(engine);
214		if (ret)
215			dev_err(engine->dev, "failed to do batch requests: %d\n",
216				ret);
217	}
218
219	return;
220}
221
222static void crypto_pump_work(struct kthread_work *work)
223{
224	struct crypto_engine *engine =
225		container_of(work, struct crypto_engine, pump_requests);
226
227	crypto_pump_requests(engine, true);
228}
229
230/**
231 * crypto_transfer_request - transfer the new request into the engine queue
232 * @engine: the hardware engine
233 * @req: the request need to be listed into the engine queue
234 * @need_pump: indicates whether queue the pump of request to kthread_work
235 */
236static int crypto_transfer_request(struct crypto_engine *engine,
237				   struct crypto_async_request *req,
238				   bool need_pump)
239{
240	unsigned long flags;
241	int ret;
242
243	spin_lock_irqsave(&engine->queue_lock, flags);
244
245	if (!engine->running) {
246		spin_unlock_irqrestore(&engine->queue_lock, flags);
247		return -ESHUTDOWN;
248	}
249
250	ret = crypto_enqueue_request(&engine->queue, req);
251
252	if (!engine->busy && need_pump)
253		kthread_queue_work(engine->kworker, &engine->pump_requests);
254
255	spin_unlock_irqrestore(&engine->queue_lock, flags);
256	return ret;
257}
258
259/**
260 * crypto_transfer_request_to_engine - transfer one request to list
261 * into the engine queue
262 * @engine: the hardware engine
263 * @req: the request need to be listed into the engine queue
264 */
265static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
266					     struct crypto_async_request *req)
267{
268	return crypto_transfer_request(engine, req, true);
269}
270
271/**
272 * crypto_transfer_aead_request_to_engine - transfer one aead_request
273 * to list into the engine queue
274 * @engine: the hardware engine
275 * @req: the request need to be listed into the engine queue
276 */
277int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
278					   struct aead_request *req)
279{
280	return crypto_transfer_request_to_engine(engine, &req->base);
281}
282EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
283
284/**
285 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
286 * to list into the engine queue
287 * @engine: the hardware engine
288 * @req: the request need to be listed into the engine queue
289 */
290int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
291					       struct akcipher_request *req)
292{
293	return crypto_transfer_request_to_engine(engine, &req->base);
294}
295EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
296
297/**
298 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
299 * to list into the engine queue
300 * @engine: the hardware engine
301 * @req: the request need to be listed into the engine queue
302 */
303int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
304					   struct ahash_request *req)
305{
306	return crypto_transfer_request_to_engine(engine, &req->base);
307}
308EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
309
310/**
311 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
312 * into the engine queue
313 * @engine: the hardware engine
314 * @req: the request need to be listed into the engine queue
315 */
316int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
317					  struct kpp_request *req)
318{
319	return crypto_transfer_request_to_engine(engine, &req->base);
320}
321EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
322
323/**
324 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
325 * to list into the engine queue
326 * @engine: the hardware engine
327 * @req: the request need to be listed into the engine queue
328 */
329int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
330					       struct skcipher_request *req)
331{
332	return crypto_transfer_request_to_engine(engine, &req->base);
333}
334EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
335
336/**
337 * crypto_finalize_aead_request - finalize one aead_request if
338 * the request is done
339 * @engine: the hardware engine
340 * @req: the request need to be finalized
341 * @err: error number
342 */
343void crypto_finalize_aead_request(struct crypto_engine *engine,
344				  struct aead_request *req, int err)
345{
346	return crypto_finalize_request(engine, &req->base, err);
347}
348EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
349
350/**
351 * crypto_finalize_akcipher_request - finalize one akcipher_request if
352 * the request is done
353 * @engine: the hardware engine
354 * @req: the request need to be finalized
355 * @err: error number
356 */
357void crypto_finalize_akcipher_request(struct crypto_engine *engine,
358				      struct akcipher_request *req, int err)
359{
360	return crypto_finalize_request(engine, &req->base, err);
361}
362EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
363
364/**
365 * crypto_finalize_hash_request - finalize one ahash_request if
366 * the request is done
367 * @engine: the hardware engine
368 * @req: the request need to be finalized
369 * @err: error number
370 */
371void crypto_finalize_hash_request(struct crypto_engine *engine,
372				  struct ahash_request *req, int err)
373{
374	return crypto_finalize_request(engine, &req->base, err);
375}
376EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
377
378/**
379 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
380 * @engine: the hardware engine
381 * @req: the request need to be finalized
382 * @err: error number
383 */
384void crypto_finalize_kpp_request(struct crypto_engine *engine,
385				 struct kpp_request *req, int err)
386{
387	return crypto_finalize_request(engine, &req->base, err);
388}
389EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
390
391/**
392 * crypto_finalize_skcipher_request - finalize one skcipher_request if
393 * the request is done
394 * @engine: the hardware engine
395 * @req: the request need to be finalized
396 * @err: error number
397 */
398void crypto_finalize_skcipher_request(struct crypto_engine *engine,
399				      struct skcipher_request *req, int err)
400{
401	return crypto_finalize_request(engine, &req->base, err);
402}
403EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
404
405/**
406 * crypto_engine_start - start the hardware engine
407 * @engine: the hardware engine need to be started
408 *
409 * Return 0 on success, else on fail.
410 */
411int crypto_engine_start(struct crypto_engine *engine)
412{
413	unsigned long flags;
414
415	spin_lock_irqsave(&engine->queue_lock, flags);
416
417	if (engine->running || engine->busy) {
418		spin_unlock_irqrestore(&engine->queue_lock, flags);
419		return -EBUSY;
420	}
421
422	engine->running = true;
423	spin_unlock_irqrestore(&engine->queue_lock, flags);
424
425	kthread_queue_work(engine->kworker, &engine->pump_requests);
426
427	return 0;
428}
429EXPORT_SYMBOL_GPL(crypto_engine_start);
430
431/**
432 * crypto_engine_stop - stop the hardware engine
433 * @engine: the hardware engine need to be stopped
434 *
435 * Return 0 on success, else on fail.
436 */
437int crypto_engine_stop(struct crypto_engine *engine)
438{
439	unsigned long flags;
440	unsigned int limit = 500;
441	int ret = 0;
442
443	spin_lock_irqsave(&engine->queue_lock, flags);
444
445	/*
446	 * If the engine queue is not empty or the engine is on busy state,
447	 * we need to wait for a while to pump the requests of engine queue.
448	 */
449	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
450		spin_unlock_irqrestore(&engine->queue_lock, flags);
451		msleep(20);
452		spin_lock_irqsave(&engine->queue_lock, flags);
453	}
454
455	if (crypto_queue_len(&engine->queue) || engine->busy)
456		ret = -EBUSY;
457	else
458		engine->running = false;
459
460	spin_unlock_irqrestore(&engine->queue_lock, flags);
461
462	if (ret)
463		dev_warn(engine->dev, "could not stop engine\n");
464
465	return ret;
466}
467EXPORT_SYMBOL_GPL(crypto_engine_stop);
468
469/**
470 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
471 * and initialize it by setting the maximum number of entries in the software
472 * crypto-engine queue.
473 * @dev: the device attached with one hardware engine
474 * @retry_support: whether hardware has support for retry mechanism
475 * @cbk_do_batch: pointer to a callback function to be invoked when executing
476 *                a batch of requests.
477 *                This has the form:
478 *                callback(struct crypto_engine *engine)
479 *                where:
480 *                engine: the crypto engine structure.
481 * @rt: whether this queue is set to run as a realtime task
482 * @qlen: maximum size of the crypto-engine queue
483 *
484 * This must be called from context that can sleep.
485 * Return: the crypto engine structure on success, else NULL.
486 */
487struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
488						       bool retry_support,
489						       int (*cbk_do_batch)(struct crypto_engine *engine),
490						       bool rt, int qlen)
491{
492	struct crypto_engine *engine;
493
494	if (!dev)
495		return NULL;
496
497	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
498	if (!engine)
499		return NULL;
500
501	engine->dev = dev;
502	engine->rt = rt;
503	engine->running = false;
504	engine->busy = false;
505	engine->idling = false;
506	engine->retry_support = retry_support;
507	engine->priv_data = dev;
508	/*
509	 * Batch requests is possible only if
510	 * hardware has support for retry mechanism.
511	 */
512	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
513
514	snprintf(engine->name, sizeof(engine->name),
515		 "%s-engine", dev_name(dev));
516
517	crypto_init_queue(&engine->queue, qlen);
518	spin_lock_init(&engine->queue_lock);
519
520	engine->kworker = kthread_create_worker(0, "%s", engine->name);
521	if (IS_ERR(engine->kworker)) {
522		dev_err(dev, "failed to create crypto request pump task\n");
523		return NULL;
524	}
525	kthread_init_work(&engine->pump_requests, crypto_pump_work);
526
527	if (engine->rt) {
528		dev_info(dev, "will run requests pump with realtime priority\n");
529		sched_set_fifo(engine->kworker->task);
530	}
531
532	return engine;
533}
534EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
535
536/**
537 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
538 * initialize it.
539 * @dev: the device attached with one hardware engine
540 * @rt: whether this queue is set to run as a realtime task
541 *
542 * This must be called from context that can sleep.
543 * Return: the crypto engine structure on success, else NULL.
544 */
545struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
546{
547	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
548						CRYPTO_ENGINE_MAX_QLEN);
549}
550EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
551
552/**
553 * crypto_engine_exit - free the resources of hardware engine when exit
554 * @engine: the hardware engine need to be freed
 
 
555 */
556void crypto_engine_exit(struct crypto_engine *engine)
557{
558	int ret;
559
560	ret = crypto_engine_stop(engine);
561	if (ret)
562		return;
563
564	kthread_destroy_worker(engine->kworker);
565}
566EXPORT_SYMBOL_GPL(crypto_engine_exit);
567
568int crypto_engine_register_aead(struct aead_engine_alg *alg)
569{
570	if (!alg->op.do_one_request)
571		return -EINVAL;
572
573	alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
574
575	return crypto_register_aead(&alg->base);
576}
577EXPORT_SYMBOL_GPL(crypto_engine_register_aead);
578
579void crypto_engine_unregister_aead(struct aead_engine_alg *alg)
580{
581	crypto_unregister_aead(&alg->base);
582}
583EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead);
584
585int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count)
586{
587	int i, ret;
588
589	for (i = 0; i < count; i++) {
590		ret = crypto_engine_register_aead(&algs[i]);
591		if (ret)
592			goto err;
593	}
594
595	return 0;
596
597err:
598	crypto_engine_unregister_aeads(algs, i);
599
600	return ret;
601}
602EXPORT_SYMBOL_GPL(crypto_engine_register_aeads);
603
604void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count)
605{
606	int i;
607
608	for (i = count - 1; i >= 0; --i)
609		crypto_engine_unregister_aead(&algs[i]);
610}
611EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads);
612
613int crypto_engine_register_ahash(struct ahash_engine_alg *alg)
614{
615	if (!alg->op.do_one_request)
616		return -EINVAL;
617
618	alg->base.halg.base.cra_flags |= CRYPTO_ALG_ENGINE;
619
620	return crypto_register_ahash(&alg->base);
621}
622EXPORT_SYMBOL_GPL(crypto_engine_register_ahash);
623
624void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg)
625{
626	crypto_unregister_ahash(&alg->base);
627}
628EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash);
629
630int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count)
631{
632	int i, ret;
633
634	for (i = 0; i < count; i++) {
635		ret = crypto_engine_register_ahash(&algs[i]);
636		if (ret)
637			goto err;
638	}
639
640	return 0;
641
642err:
643	crypto_engine_unregister_ahashes(algs, i);
644
645	return ret;
646}
647EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes);
648
649void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs,
650				      int count)
651{
652	int i;
653
654	for (i = count - 1; i >= 0; --i)
655		crypto_engine_unregister_ahash(&algs[i]);
656}
657EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes);
658
659int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg)
660{
661	if (!alg->op.do_one_request)
662		return -EINVAL;
663
664	alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
665
666	return crypto_register_akcipher(&alg->base);
667}
668EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher);
669
670void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg)
671{
672	crypto_unregister_akcipher(&alg->base);
673}
674EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher);
675
676int crypto_engine_register_kpp(struct kpp_engine_alg *alg)
677{
678	if (!alg->op.do_one_request)
679		return -EINVAL;
680
681	alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
682
683	return crypto_register_kpp(&alg->base);
684}
685EXPORT_SYMBOL_GPL(crypto_engine_register_kpp);
686
687void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg)
688{
689	crypto_unregister_kpp(&alg->base);
690}
691EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp);
692
693int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg)
694{
695	if (!alg->op.do_one_request)
696		return -EINVAL;
697
698	alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
699
700	return crypto_register_skcipher(&alg->base);
701}
702EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher);
703
704void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg)
705{
706	return crypto_unregister_skcipher(&alg->base);
707}
708EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher);
709
710int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs,
711				     int count)
712{
713	int i, ret;
714
715	for (i = 0; i < count; i++) {
716		ret = crypto_engine_register_skcipher(&algs[i]);
717		if (ret)
718			goto err;
719	}
720
721	return 0;
722
723err:
724	crypto_engine_unregister_skciphers(algs, i);
725
726	return ret;
727}
728EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers);
729
730void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs,
731					int count)
732{
733	int i;
734
735	for (i = count - 1; i >= 0; --i)
736		crypto_engine_unregister_skcipher(&algs[i]);
737}
738EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers);
739
740MODULE_LICENSE("GPL");
741MODULE_DESCRIPTION("Crypto hardware engine framework");