Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
  8 */
  9
 10#include <linux/err.h>
 11#include <linux/delay.h>
 12#include <crypto/engine.h>
 13#include <uapi/linux/sched/types.h>
 14#include "internal.h"
 15
 16#define CRYPTO_ENGINE_MAX_QLEN 10
 17
 18/**
 19 * crypto_finalize_request - finalize one request if the request is done
 20 * @engine: the hardware engine
 21 * @req: the request need to be finalized
 22 * @err: error number
 23 */
 24static void crypto_finalize_request(struct crypto_engine *engine,
 25				    struct crypto_async_request *req, int err)
 26{
 27	unsigned long flags;
 28	bool finalize_req = false;
 29	int ret;
 30	struct crypto_engine_ctx *enginectx;
 31
 32	/*
 33	 * If hardware cannot enqueue more requests
 34	 * and retry mechanism is not supported
 35	 * make sure we are completing the current request
 36	 */
 37	if (!engine->retry_support) {
 38		spin_lock_irqsave(&engine->queue_lock, flags);
 39		if (engine->cur_req == req) {
 40			finalize_req = true;
 41			engine->cur_req = NULL;
 42		}
 43		spin_unlock_irqrestore(&engine->queue_lock, flags);
 44	}
 45
 46	if (finalize_req || engine->retry_support) {
 47		enginectx = crypto_tfm_ctx(req->tfm);
 48		if (enginectx->op.prepare_request &&
 49		    enginectx->op.unprepare_request) {
 50			ret = enginectx->op.unprepare_request(engine, req);
 51			if (ret)
 52				dev_err(engine->dev, "failed to unprepare request\n");
 53		}
 54	}
 55	req->complete(req, err);
 56
 57	kthread_queue_work(engine->kworker, &engine->pump_requests);
 58}
 59
 60/**
 61 * crypto_pump_requests - dequeue one request from engine queue to process
 62 * @engine: the hardware engine
 63 * @in_kthread: true if we are in the context of the request pump thread
 64 *
 65 * This function checks if there is any request in the engine queue that
 66 * needs processing and if so call out to the driver to initialize hardware
 67 * and handle each request.
 68 */
 69static void crypto_pump_requests(struct crypto_engine *engine,
 70				 bool in_kthread)
 71{
 72	struct crypto_async_request *async_req, *backlog;
 73	unsigned long flags;
 74	bool was_busy = false;
 75	int ret;
 76	struct crypto_engine_ctx *enginectx;
 77
 78	spin_lock_irqsave(&engine->queue_lock, flags);
 79
 80	/* Make sure we are not already running a request */
 81	if (!engine->retry_support && engine->cur_req)
 82		goto out;
 83
 84	/* If another context is idling then defer */
 85	if (engine->idling) {
 86		kthread_queue_work(engine->kworker, &engine->pump_requests);
 87		goto out;
 88	}
 89
 90	/* Check if the engine queue is idle */
 91	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 92		if (!engine->busy)
 93			goto out;
 94
 95		/* Only do teardown in the thread */
 96		if (!in_kthread) {
 97			kthread_queue_work(engine->kworker,
 98					   &engine->pump_requests);
 99			goto out;
100		}
101
102		engine->busy = false;
103		engine->idling = true;
104		spin_unlock_irqrestore(&engine->queue_lock, flags);
105
106		if (engine->unprepare_crypt_hardware &&
107		    engine->unprepare_crypt_hardware(engine))
108			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
109
110		spin_lock_irqsave(&engine->queue_lock, flags);
111		engine->idling = false;
112		goto out;
113	}
114
115start_request:
116	/* Get the fist request from the engine queue to handle */
117	backlog = crypto_get_backlog(&engine->queue);
118	async_req = crypto_dequeue_request(&engine->queue);
119	if (!async_req)
120		goto out;
121
122	/*
123	 * If hardware doesn't support the retry mechanism,
124	 * keep track of the request we are processing now.
125	 * We'll need it on completion (crypto_finalize_request).
126	 */
127	if (!engine->retry_support)
128		engine->cur_req = async_req;
129
130	if (backlog)
131		backlog->complete(backlog, -EINPROGRESS);
132
133	if (engine->busy)
134		was_busy = true;
135	else
136		engine->busy = true;
137
138	spin_unlock_irqrestore(&engine->queue_lock, flags);
139
140	/* Until here we get the request need to be encrypted successfully */
141	if (!was_busy && engine->prepare_crypt_hardware) {
142		ret = engine->prepare_crypt_hardware(engine);
143		if (ret) {
144			dev_err(engine->dev, "failed to prepare crypt hardware\n");
145			goto req_err_2;
146		}
147	}
148
149	enginectx = crypto_tfm_ctx(async_req->tfm);
150
151	if (enginectx->op.prepare_request) {
152		ret = enginectx->op.prepare_request(engine, async_req);
153		if (ret) {
154			dev_err(engine->dev, "failed to prepare request: %d\n",
155				ret);
156			goto req_err_2;
157		}
158	}
159	if (!enginectx->op.do_one_request) {
160		dev_err(engine->dev, "failed to do request\n");
161		ret = -EINVAL;
162		goto req_err_1;
163	}
164
165	ret = enginectx->op.do_one_request(engine, async_req);
166
167	/* Request unsuccessfully executed by hardware */
168	if (ret < 0) {
169		/*
170		 * If hardware queue is full (-ENOSPC), requeue request
171		 * regardless of backlog flag.
172		 * Otherwise, unprepare and complete the request.
173		 */
174		if (!engine->retry_support ||
175		    (ret != -ENOSPC)) {
176			dev_err(engine->dev,
177				"Failed to do one request from queue: %d\n",
178				ret);
179			goto req_err_1;
180		}
181		/*
182		 * If retry mechanism is supported,
183		 * unprepare current request and
184		 * enqueue it back into crypto-engine queue.
185		 */
186		if (enginectx->op.unprepare_request) {
187			ret = enginectx->op.unprepare_request(engine,
188							      async_req);
189			if (ret)
190				dev_err(engine->dev,
191					"failed to unprepare request\n");
192		}
193		spin_lock_irqsave(&engine->queue_lock, flags);
194		/*
195		 * If hardware was unable to execute request, enqueue it
196		 * back in front of crypto-engine queue, to keep the order
197		 * of requests.
198		 */
199		crypto_enqueue_request_head(&engine->queue, async_req);
200
201		kthread_queue_work(engine->kworker, &engine->pump_requests);
202		goto out;
203	}
204
205	goto retry;
206
207req_err_1:
208	if (enginectx->op.unprepare_request) {
209		ret = enginectx->op.unprepare_request(engine, async_req);
210		if (ret)
211			dev_err(engine->dev, "failed to unprepare request\n");
212	}
213
214req_err_2:
215	async_req->complete(async_req, ret);
216
217retry:
218	/* If retry mechanism is supported, send new requests to engine */
219	if (engine->retry_support) {
220		spin_lock_irqsave(&engine->queue_lock, flags);
221		goto start_request;
222	}
223	return;
224
225out:
226	spin_unlock_irqrestore(&engine->queue_lock, flags);
227
228	/*
229	 * Batch requests is possible only if
230	 * hardware can enqueue multiple requests
231	 */
232	if (engine->do_batch_requests) {
233		ret = engine->do_batch_requests(engine);
234		if (ret)
235			dev_err(engine->dev, "failed to do batch requests: %d\n",
236				ret);
237	}
238
239	return;
240}
241
242static void crypto_pump_work(struct kthread_work *work)
243{
244	struct crypto_engine *engine =
245		container_of(work, struct crypto_engine, pump_requests);
246
247	crypto_pump_requests(engine, true);
248}
249
250/**
251 * crypto_transfer_request - transfer the new request into the engine queue
252 * @engine: the hardware engine
253 * @req: the request need to be listed into the engine queue
254 */
255static int crypto_transfer_request(struct crypto_engine *engine,
256				   struct crypto_async_request *req,
257				   bool need_pump)
258{
259	unsigned long flags;
260	int ret;
261
262	spin_lock_irqsave(&engine->queue_lock, flags);
263
264	if (!engine->running) {
265		spin_unlock_irqrestore(&engine->queue_lock, flags);
266		return -ESHUTDOWN;
267	}
268
269	ret = crypto_enqueue_request(&engine->queue, req);
270
271	if (!engine->busy && need_pump)
272		kthread_queue_work(engine->kworker, &engine->pump_requests);
273
274	spin_unlock_irqrestore(&engine->queue_lock, flags);
275	return ret;
276}
277
278/**
279 * crypto_transfer_request_to_engine - transfer one request to list
280 * into the engine queue
281 * @engine: the hardware engine
282 * @req: the request need to be listed into the engine queue
283 */
284static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
285					     struct crypto_async_request *req)
286{
287	return crypto_transfer_request(engine, req, true);
288}
289
290/**
291 * crypto_transfer_aead_request_to_engine - transfer one aead_request
292 * to list into the engine queue
293 * @engine: the hardware engine
294 * @req: the request need to be listed into the engine queue
295 */
296int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
297					   struct aead_request *req)
298{
299	return crypto_transfer_request_to_engine(engine, &req->base);
300}
301EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
302
303/**
304 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
305 * to list into the engine queue
306 * @engine: the hardware engine
307 * @req: the request need to be listed into the engine queue
308 */
309int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
310					       struct akcipher_request *req)
311{
312	return crypto_transfer_request_to_engine(engine, &req->base);
313}
314EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
315
316/**
317 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
318 * to list into the engine queue
319 * @engine: the hardware engine
320 * @req: the request need to be listed into the engine queue
321 */
322int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
323					   struct ahash_request *req)
324{
325	return crypto_transfer_request_to_engine(engine, &req->base);
326}
327EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
328
329/**
330 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
331 * to list into the engine queue
332 * @engine: the hardware engine
333 * @req: the request need to be listed into the engine queue
334 */
335int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
336					       struct skcipher_request *req)
337{
338	return crypto_transfer_request_to_engine(engine, &req->base);
339}
340EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
341
342/**
343 * crypto_finalize_aead_request - finalize one aead_request if
344 * the request is done
345 * @engine: the hardware engine
346 * @req: the request need to be finalized
347 * @err: error number
348 */
349void crypto_finalize_aead_request(struct crypto_engine *engine,
350				  struct aead_request *req, int err)
351{
352	return crypto_finalize_request(engine, &req->base, err);
353}
354EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
355
356/**
357 * crypto_finalize_akcipher_request - finalize one akcipher_request if
358 * the request is done
359 * @engine: the hardware engine
360 * @req: the request need to be finalized
361 * @err: error number
362 */
363void crypto_finalize_akcipher_request(struct crypto_engine *engine,
364				      struct akcipher_request *req, int err)
365{
366	return crypto_finalize_request(engine, &req->base, err);
367}
368EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
369
370/**
371 * crypto_finalize_hash_request - finalize one ahash_request if
372 * the request is done
373 * @engine: the hardware engine
374 * @req: the request need to be finalized
375 * @err: error number
376 */
377void crypto_finalize_hash_request(struct crypto_engine *engine,
378				  struct ahash_request *req, int err)
379{
380	return crypto_finalize_request(engine, &req->base, err);
381}
382EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
383
384/**
385 * crypto_finalize_skcipher_request - finalize one skcipher_request if
386 * the request is done
387 * @engine: the hardware engine
388 * @req: the request need to be finalized
389 * @err: error number
390 */
391void crypto_finalize_skcipher_request(struct crypto_engine *engine,
392				      struct skcipher_request *req, int err)
393{
394	return crypto_finalize_request(engine, &req->base, err);
395}
396EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
397
398/**
399 * crypto_engine_start - start the hardware engine
400 * @engine: the hardware engine need to be started
401 *
402 * Return 0 on success, else on fail.
403 */
404int crypto_engine_start(struct crypto_engine *engine)
405{
406	unsigned long flags;
407
408	spin_lock_irqsave(&engine->queue_lock, flags);
409
410	if (engine->running || engine->busy) {
411		spin_unlock_irqrestore(&engine->queue_lock, flags);
412		return -EBUSY;
413	}
414
415	engine->running = true;
416	spin_unlock_irqrestore(&engine->queue_lock, flags);
417
418	kthread_queue_work(engine->kworker, &engine->pump_requests);
419
420	return 0;
421}
422EXPORT_SYMBOL_GPL(crypto_engine_start);
423
424/**
425 * crypto_engine_stop - stop the hardware engine
426 * @engine: the hardware engine need to be stopped
427 *
428 * Return 0 on success, else on fail.
429 */
430int crypto_engine_stop(struct crypto_engine *engine)
431{
432	unsigned long flags;
433	unsigned int limit = 500;
434	int ret = 0;
435
436	spin_lock_irqsave(&engine->queue_lock, flags);
437
438	/*
439	 * If the engine queue is not empty or the engine is on busy state,
440	 * we need to wait for a while to pump the requests of engine queue.
441	 */
442	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
443		spin_unlock_irqrestore(&engine->queue_lock, flags);
444		msleep(20);
445		spin_lock_irqsave(&engine->queue_lock, flags);
446	}
447
448	if (crypto_queue_len(&engine->queue) || engine->busy)
449		ret = -EBUSY;
450	else
451		engine->running = false;
452
453	spin_unlock_irqrestore(&engine->queue_lock, flags);
454
455	if (ret)
456		dev_warn(engine->dev, "could not stop engine\n");
457
458	return ret;
459}
460EXPORT_SYMBOL_GPL(crypto_engine_stop);
461
462/**
463 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
464 * and initialize it by setting the maximum number of entries in the software
465 * crypto-engine queue.
466 * @dev: the device attached with one hardware engine
467 * @retry_support: whether hardware has support for retry mechanism
468 * @cbk_do_batch: pointer to a callback function to be invoked when executing a
469 *                a batch of requests.
470 *                This has the form:
471 *                callback(struct crypto_engine *engine)
472 *                where:
473 *                @engine: the crypto engine structure.
474 * @rt: whether this queue is set to run as a realtime task
475 * @qlen: maximum size of the crypto-engine queue
476 *
477 * This must be called from context that can sleep.
478 * Return: the crypto engine structure on success, else NULL.
479 */
480struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
481						       bool retry_support,
482						       int (*cbk_do_batch)(struct crypto_engine *engine),
483						       bool rt, int qlen)
484{
485	struct crypto_engine *engine;
486
487	if (!dev)
488		return NULL;
489
490	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
491	if (!engine)
492		return NULL;
493
494	engine->dev = dev;
495	engine->rt = rt;
496	engine->running = false;
497	engine->busy = false;
498	engine->idling = false;
499	engine->retry_support = retry_support;
500	engine->priv_data = dev;
501	/*
502	 * Batch requests is possible only if
503	 * hardware has support for retry mechanism.
504	 */
505	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
506
507	snprintf(engine->name, sizeof(engine->name),
508		 "%s-engine", dev_name(dev));
509
510	crypto_init_queue(&engine->queue, qlen);
511	spin_lock_init(&engine->queue_lock);
512
513	engine->kworker = kthread_create_worker(0, "%s", engine->name);
514	if (IS_ERR(engine->kworker)) {
515		dev_err(dev, "failed to create crypto request pump task\n");
516		return NULL;
517	}
518	kthread_init_work(&engine->pump_requests, crypto_pump_work);
519
520	if (engine->rt) {
521		dev_info(dev, "will run requests pump with realtime priority\n");
522		sched_set_fifo(engine->kworker->task);
523	}
524
525	return engine;
526}
527EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
528
529/**
530 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
531 * initialize it.
532 * @dev: the device attached with one hardware engine
533 * @rt: whether this queue is set to run as a realtime task
534 *
535 * This must be called from context that can sleep.
536 * Return: the crypto engine structure on success, else NULL.
537 */
538struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
539{
540	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
541						CRYPTO_ENGINE_MAX_QLEN);
542}
543EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
544
545/**
546 * crypto_engine_exit - free the resources of hardware engine when exit
547 * @engine: the hardware engine need to be freed
548 *
549 * Return 0 for success.
550 */
551int crypto_engine_exit(struct crypto_engine *engine)
552{
553	int ret;
554
555	ret = crypto_engine_stop(engine);
556	if (ret)
557		return ret;
558
559	kthread_destroy_worker(engine->kworker);
560
561	return 0;
562}
563EXPORT_SYMBOL_GPL(crypto_engine_exit);
564
565MODULE_LICENSE("GPL");
566MODULE_DESCRIPTION("Crypto hardware engine framework");