Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 
 
 22#include <asm/code-patching.h>
 23#include <asm/cacheflush.h>
 24#include <asm/sstep.h>
 25#include <asm/sections.h>
 26#include <asm/inst.h>
 27#include <linux/uaccess.h>
 28
 29DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 30DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 31
 32struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 33
 34bool arch_within_kprobe_blacklist(unsigned long addr)
 35{
 36	return  (addr >= (unsigned long)__kprobes_text_start &&
 37		 addr < (unsigned long)__kprobes_text_end) ||
 38		(addr >= (unsigned long)_stext &&
 39		 addr < (unsigned long)__head_end);
 40}
 41
 42kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 43{
 44	kprobe_opcode_t *addr = NULL;
 45
 46#ifdef PPC64_ELF_ABI_v2
 47	/* PPC64 ABIv2 needs local entry point */
 48	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 49	if (addr && !offset) {
 50#ifdef CONFIG_KPROBES_ON_FTRACE
 51		unsigned long faddr;
 52		/*
 53		 * Per livepatch.h, ftrace location is always within the first
 54		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 55		 */
 56		faddr = ftrace_location_range((unsigned long)addr,
 57					      (unsigned long)addr + 16);
 58		if (faddr)
 59			addr = (kprobe_opcode_t *)faddr;
 60		else
 61#endif
 62			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 63	}
 64#elif defined(PPC64_ELF_ABI_v1)
 65	/*
 66	 * 64bit powerpc ABIv1 uses function descriptors:
 67	 * - Check for the dot variant of the symbol first.
 68	 * - If that fails, try looking up the symbol provided.
 69	 *
 70	 * This ensures we always get to the actual symbol and not
 71	 * the descriptor.
 72	 *
 73	 * Also handle <module:symbol> format.
 74	 */
 75	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 76	bool dot_appended = false;
 77	const char *c;
 78	ssize_t ret = 0;
 79	int len = 0;
 80
 81	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 82		c++;
 83		len = c - name;
 84		memcpy(dot_name, name, len);
 85	} else
 86		c = name;
 87
 88	if (*c != '\0' && *c != '.') {
 89		dot_name[len++] = '.';
 90		dot_appended = true;
 91	}
 92	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 93	if (ret > 0)
 94		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 95
 96	/* Fallback to the original non-dot symbol lookup */
 97	if (!addr && dot_appended)
 98		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 99#else
100	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#endif
102
103	return addr;
104}
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106int arch_prepare_kprobe(struct kprobe *p)
107{
108	int ret = 0;
109	struct kprobe *prev;
110	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->addr);
111	struct ppc_inst prefix = ppc_inst_read((struct ppc_inst *)(p->addr - 1));
112
113	if ((unsigned long)p->addr & 0x03) {
114		printk("Attempt to register kprobe at an unaligned address\n");
115		ret = -EINVAL;
116	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
117		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
118		ret = -EINVAL;
119	} else if (ppc_inst_prefixed(prefix)) {
 
120		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
121		ret = -EINVAL;
122	}
123	preempt_disable();
124	prev = get_kprobe(p->addr - 1);
125	preempt_enable_no_resched();
126	if (prev &&
127	    ppc_inst_prefixed(ppc_inst_read((struct ppc_inst *)prev->ainsn.insn))) {
 
 
 
 
128		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
129		ret = -EINVAL;
130	}
131
132	/* insn must be on a special executable page on ppc64.  This is
133	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
134	if (!ret) {
135		p->ainsn.insn = get_insn_slot();
136		if (!p->ainsn.insn)
137			ret = -ENOMEM;
138	}
139
140	if (!ret) {
141		patch_instruction((struct ppc_inst *)p->ainsn.insn, insn);
142		p->opcode = ppc_inst_val(insn);
143	}
144
145	p->ainsn.boostable = 0;
146	return ret;
147}
148NOKPROBE_SYMBOL(arch_prepare_kprobe);
149
150void arch_arm_kprobe(struct kprobe *p)
151{
152	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(BREAKPOINT_INSTRUCTION));
153}
154NOKPROBE_SYMBOL(arch_arm_kprobe);
155
156void arch_disarm_kprobe(struct kprobe *p)
157{
158	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(p->opcode));
159}
160NOKPROBE_SYMBOL(arch_disarm_kprobe);
161
162void arch_remove_kprobe(struct kprobe *p)
163{
164	if (p->ainsn.insn) {
165		free_insn_slot(p->ainsn.insn, 0);
166		p->ainsn.insn = NULL;
167	}
168}
169NOKPROBE_SYMBOL(arch_remove_kprobe);
170
171static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
172{
173	enable_single_step(regs);
174
175	/*
176	 * On powerpc we should single step on the original
177	 * instruction even if the probed insn is a trap
178	 * variant as values in regs could play a part in
179	 * if the trap is taken or not
180	 */
181	regs->nip = (unsigned long)p->ainsn.insn;
182}
183
184static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
185{
186	kcb->prev_kprobe.kp = kprobe_running();
187	kcb->prev_kprobe.status = kcb->kprobe_status;
188	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
189}
190
191static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
192{
193	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
194	kcb->kprobe_status = kcb->prev_kprobe.status;
195	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
196}
197
198static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
199				struct kprobe_ctlblk *kcb)
200{
201	__this_cpu_write(current_kprobe, p);
202	kcb->kprobe_saved_msr = regs->msr;
203}
204
205bool arch_kprobe_on_func_entry(unsigned long offset)
206{
207#ifdef PPC64_ELF_ABI_v2
208#ifdef CONFIG_KPROBES_ON_FTRACE
209	return offset <= 16;
210#else
211	return offset <= 8;
212#endif
213#else
214	return !offset;
215#endif
216}
217
218void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
219{
220	ri->ret_addr = (kprobe_opcode_t *)regs->link;
 
221
222	/* Replace the return addr with trampoline addr */
223	regs->link = (unsigned long)kretprobe_trampoline;
224}
225NOKPROBE_SYMBOL(arch_prepare_kretprobe);
226
227static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
228{
229	int ret;
230	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->ainsn.insn);
231
232	/* regs->nip is also adjusted if emulate_step returns 1 */
233	ret = emulate_step(regs, insn);
234	if (ret > 0) {
235		/*
236		 * Once this instruction has been boosted
237		 * successfully, set the boostable flag
238		 */
239		if (unlikely(p->ainsn.boostable == 0))
240			p->ainsn.boostable = 1;
241	} else if (ret < 0) {
242		/*
243		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
244		 * So, we should never get here... but, its still
245		 * good to catch them, just in case...
246		 */
247		printk("Can't step on instruction %s\n", ppc_inst_as_str(insn));
248		BUG();
249	} else {
250		/*
251		 * If we haven't previously emulated this instruction, then it
252		 * can't be boosted. Note it down so we don't try to do so again.
253		 *
254		 * If, however, we had emulated this instruction in the past,
255		 * then this is just an error with the current run (for
256		 * instance, exceptions due to a load/store). We return 0 so
257		 * that this is now single-stepped, but continue to try
258		 * emulating it in subsequent probe hits.
259		 */
260		if (unlikely(p->ainsn.boostable != 1))
261			p->ainsn.boostable = -1;
262	}
263
264	return ret;
265}
266NOKPROBE_SYMBOL(try_to_emulate);
267
268int kprobe_handler(struct pt_regs *regs)
269{
270	struct kprobe *p;
271	int ret = 0;
272	unsigned int *addr = (unsigned int *)regs->nip;
273	struct kprobe_ctlblk *kcb;
274
275	if (user_mode(regs))
276		return 0;
277
278	if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
 
279		return 0;
280
281	/*
282	 * We don't want to be preempted for the entire
283	 * duration of kprobe processing
284	 */
285	preempt_disable();
286	kcb = get_kprobe_ctlblk();
287
288	p = get_kprobe(addr);
289	if (!p) {
290		unsigned int instr;
291
292		if (get_kernel_nofault(instr, addr))
293			goto no_kprobe;
294
295		if (instr != BREAKPOINT_INSTRUCTION) {
296			/*
297			 * PowerPC has multiple variants of the "trap"
298			 * instruction. If the current instruction is a
299			 * trap variant, it could belong to someone else
300			 */
301			if (is_trap(instr))
302				goto no_kprobe;
303			/*
304			 * The breakpoint instruction was removed right
305			 * after we hit it.  Another cpu has removed
306			 * either a probepoint or a debugger breakpoint
307			 * at this address.  In either case, no further
308			 * handling of this interrupt is appropriate.
309			 */
310			ret = 1;
311		}
312		/* Not one of ours: let kernel handle it */
313		goto no_kprobe;
314	}
315
316	/* Check we're not actually recursing */
317	if (kprobe_running()) {
318		kprobe_opcode_t insn = *p->ainsn.insn;
319		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
320			/* Turn off 'trace' bits */
321			regs->msr &= ~MSR_SINGLESTEP;
322			regs->msr |= kcb->kprobe_saved_msr;
 
323			goto no_kprobe;
324		}
325
326		/*
327		 * We have reentered the kprobe_handler(), since another probe
328		 * was hit while within the handler. We here save the original
329		 * kprobes variables and just single step on the instruction of
330		 * the new probe without calling any user handlers.
331		 */
332		save_previous_kprobe(kcb);
333		set_current_kprobe(p, regs, kcb);
334		kprobes_inc_nmissed_count(p);
335		kcb->kprobe_status = KPROBE_REENTER;
336		if (p->ainsn.boostable >= 0) {
337			ret = try_to_emulate(p, regs);
338
339			if (ret > 0) {
340				restore_previous_kprobe(kcb);
341				preempt_enable_no_resched();
342				return 1;
343			}
344		}
345		prepare_singlestep(p, regs);
346		return 1;
347	}
348
349	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
350	set_current_kprobe(p, regs, kcb);
351	if (p->pre_handler && p->pre_handler(p, regs)) {
352		/* handler changed execution path, so skip ss setup */
353		reset_current_kprobe();
354		preempt_enable_no_resched();
355		return 1;
356	}
357
358	if (p->ainsn.boostable >= 0) {
359		ret = try_to_emulate(p, regs);
360
361		if (ret > 0) {
362			if (p->post_handler)
363				p->post_handler(p, regs, 0);
364
365			kcb->kprobe_status = KPROBE_HIT_SSDONE;
366			reset_current_kprobe();
367			preempt_enable_no_resched();
368			return 1;
369		}
370	}
371	prepare_singlestep(p, regs);
372	kcb->kprobe_status = KPROBE_HIT_SS;
373	return 1;
374
375no_kprobe:
376	preempt_enable_no_resched();
377	return ret;
378}
379NOKPROBE_SYMBOL(kprobe_handler);
380
381/*
382 * Function return probe trampoline:
383 * 	- init_kprobes() establishes a probepoint here
384 * 	- When the probed function returns, this probe
385 * 		causes the handlers to fire
386 */
387asm(".global kretprobe_trampoline\n"
388	".type kretprobe_trampoline, @function\n"
389	"kretprobe_trampoline:\n"
390	"nop\n"
391	"blr\n"
392	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
393
394/*
395 * Called when the probe at kretprobe trampoline is hit
396 */
397static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
398{
399	struct kretprobe_instance *ri = NULL;
400	struct hlist_head *head, empty_rp;
401	struct hlist_node *tmp;
402	unsigned long flags, orig_ret_address = 0;
403	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
404
405	INIT_HLIST_HEAD(&empty_rp);
406	kretprobe_hash_lock(current, &head, &flags);
407
408	/*
409	 * It is possible to have multiple instances associated with a given
410	 * task either because an multiple functions in the call path
411	 * have a return probe installed on them, and/or more than one return
412	 * return probe was registered for a target function.
413	 *
414	 * We can handle this because:
415	 *     - instances are always inserted at the head of the list
416	 *     - when multiple return probes are registered for the same
417	 *       function, the first instance's ret_addr will point to the
418	 *       real return address, and all the rest will point to
419	 *       kretprobe_trampoline
420	 */
421	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		if (ri->rp && ri->rp->handler)
427			ri->rp->handler(ri, regs);
428
429		orig_ret_address = (unsigned long)ri->ret_addr;
430		recycle_rp_inst(ri, &empty_rp);
431
432		if (orig_ret_address != trampoline_address)
433			/*
434			 * This is the real return address. Any other
435			 * instances associated with this task are for
436			 * other calls deeper on the call stack
437			 */
438			break;
439	}
440
441	kretprobe_assert(ri, orig_ret_address, trampoline_address);
442
 
443	/*
444	 * We get here through one of two paths:
445	 * 1. by taking a trap -> kprobe_handler() -> here
446	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
447	 *
448	 * When going back through (1), we need regs->nip to be setup properly
449	 * as it is used to determine the return address from the trap.
450	 * For (2), since nip is not honoured with optprobes, we instead setup
451	 * the link register properly so that the subsequent 'blr' in
452	 * kretprobe_trampoline jumps back to the right instruction.
453	 *
454	 * For nip, we should set the address to the previous instruction since
455	 * we end up emulating it in kprobe_handler(), which increments the nip
456	 * again.
457	 */
458	regs->nip = orig_ret_address - 4;
459	regs->link = orig_ret_address;
460
461	kretprobe_hash_unlock(current, &flags);
462
463	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
464		hlist_del(&ri->hlist);
465		kfree(ri);
466	}
467
468	return 0;
469}
470NOKPROBE_SYMBOL(trampoline_probe_handler);
471
472/*
473 * Called after single-stepping.  p->addr is the address of the
474 * instruction whose first byte has been replaced by the "breakpoint"
475 * instruction.  To avoid the SMP problems that can occur when we
476 * temporarily put back the original opcode to single-step, we
477 * single-stepped a copy of the instruction.  The address of this
478 * copy is p->ainsn.insn.
479 */
480int kprobe_post_handler(struct pt_regs *regs)
481{
482	int len;
483	struct kprobe *cur = kprobe_running();
484	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485
486	if (!cur || user_mode(regs))
487		return 0;
488
489	len = ppc_inst_len(ppc_inst_read((struct ppc_inst *)cur->ainsn.insn));
490	/* make sure we got here for instruction we have a kprobe on */
491	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
492		return 0;
493
494	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
495		kcb->kprobe_status = KPROBE_HIT_SSDONE;
496		cur->post_handler(cur, regs, 0);
497	}
498
499	/* Adjust nip to after the single-stepped instruction */
500	regs->nip = (unsigned long)cur->addr + len;
501	regs->msr |= kcb->kprobe_saved_msr;
502
503	/*Restore back the original saved kprobes variables and continue. */
504	if (kcb->kprobe_status == KPROBE_REENTER) {
505		restore_previous_kprobe(kcb);
506		goto out;
507	}
508	reset_current_kprobe();
509out:
510	preempt_enable_no_resched();
511
512	/*
513	 * if somebody else is singlestepping across a probe point, msr
514	 * will have DE/SE set, in which case, continue the remaining processing
515	 * of do_debug, as if this is not a probe hit.
516	 */
517	if (regs->msr & MSR_SINGLESTEP)
518		return 0;
519
520	return 1;
521}
522NOKPROBE_SYMBOL(kprobe_post_handler);
523
524int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
525{
526	struct kprobe *cur = kprobe_running();
527	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528	const struct exception_table_entry *entry;
529
530	switch(kcb->kprobe_status) {
531	case KPROBE_HIT_SS:
532	case KPROBE_REENTER:
533		/*
534		 * We are here because the instruction being single
535		 * stepped caused a page fault. We reset the current
536		 * kprobe and the nip points back to the probe address
537		 * and allow the page fault handler to continue as a
538		 * normal page fault.
539		 */
540		regs->nip = (unsigned long)cur->addr;
541		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
542		regs->msr |= kcb->kprobe_saved_msr;
 
 
543		if (kcb->kprobe_status == KPROBE_REENTER)
544			restore_previous_kprobe(kcb);
545		else
546			reset_current_kprobe();
547		preempt_enable_no_resched();
548		break;
549	case KPROBE_HIT_ACTIVE:
550	case KPROBE_HIT_SSDONE:
551		/*
552		 * We increment the nmissed count for accounting,
553		 * we can also use npre/npostfault count for accounting
554		 * these specific fault cases.
555		 */
556		kprobes_inc_nmissed_count(cur);
557
558		/*
559		 * We come here because instructions in the pre/post
560		 * handler caused the page_fault, this could happen
561		 * if handler tries to access user space by
562		 * copy_from_user(), get_user() etc. Let the
563		 * user-specified handler try to fix it first.
564		 */
565		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
566			return 1;
567
568		/*
569		 * In case the user-specified fault handler returned
570		 * zero, try to fix up.
571		 */
572		if ((entry = search_exception_tables(regs->nip)) != NULL) {
573			regs->nip = extable_fixup(entry);
574			return 1;
575		}
576
577		/*
578		 * fixup_exception() could not handle it,
579		 * Let do_page_fault() fix it.
580		 */
581		break;
582	default:
583		break;
584	}
585	return 0;
586}
587NOKPROBE_SYMBOL(kprobe_fault_handler);
588
589unsigned long arch_deref_entry_point(void *entry)
590{
591#ifdef PPC64_ELF_ABI_v1
592	if (!kernel_text_address((unsigned long)entry))
593		return ppc_global_function_entry(entry);
594	else
595#endif
596		return (unsigned long)entry;
597}
598NOKPROBE_SYMBOL(arch_deref_entry_point);
599
600static struct kprobe trampoline_p = {
601	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
602	.pre_handler = trampoline_probe_handler
603};
604
605int __init arch_init_kprobes(void)
606{
607	return register_kprobe(&trampoline_p);
608}
609
610int arch_trampoline_kprobe(struct kprobe *p)
611{
612	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
613		return 1;
614
615	return 0;
616}
617NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 22#include <linux/moduleloader.h>
 23#include <linux/set_memory.h>
 24#include <asm/code-patching.h>
 25#include <asm/cacheflush.h>
 26#include <asm/sstep.h>
 27#include <asm/sections.h>
 28#include <asm/inst.h>
 29#include <linux/uaccess.h>
 30
 31DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 32DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 33
 34struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 35
 36bool arch_within_kprobe_blacklist(unsigned long addr)
 37{
 38	return  (addr >= (unsigned long)__kprobes_text_start &&
 39		 addr < (unsigned long)__kprobes_text_end) ||
 40		(addr >= (unsigned long)_stext &&
 41		 addr < (unsigned long)__head_end);
 42}
 43
 44kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 45{
 46	kprobe_opcode_t *addr = NULL;
 47
 48#ifdef CONFIG_PPC64_ELF_ABI_V2
 49	/* PPC64 ABIv2 needs local entry point */
 50	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 51	if (addr && !offset) {
 52#ifdef CONFIG_KPROBES_ON_FTRACE
 53		unsigned long faddr;
 54		/*
 55		 * Per livepatch.h, ftrace location is always within the first
 56		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 57		 */
 58		faddr = ftrace_location_range((unsigned long)addr,
 59					      (unsigned long)addr + 16);
 60		if (faddr)
 61			addr = (kprobe_opcode_t *)faddr;
 62		else
 63#endif
 64			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 65	}
 66#elif defined(CONFIG_PPC64_ELF_ABI_V1)
 67	/*
 68	 * 64bit powerpc ABIv1 uses function descriptors:
 69	 * - Check for the dot variant of the symbol first.
 70	 * - If that fails, try looking up the symbol provided.
 71	 *
 72	 * This ensures we always get to the actual symbol and not
 73	 * the descriptor.
 74	 *
 75	 * Also handle <module:symbol> format.
 76	 */
 77	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 78	bool dot_appended = false;
 79	const char *c;
 80	ssize_t ret = 0;
 81	int len = 0;
 82
 83	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 84		c++;
 85		len = c - name;
 86		memcpy(dot_name, name, len);
 87	} else
 88		c = name;
 89
 90	if (*c != '\0' && *c != '.') {
 91		dot_name[len++] = '.';
 92		dot_appended = true;
 93	}
 94	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 95	if (ret > 0)
 96		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 97
 98	/* Fallback to the original non-dot symbol lookup */
 99	if (!addr && dot_appended)
100		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#else
102	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103#endif
104
105	return addr;
106}
107
108static bool arch_kprobe_on_func_entry(unsigned long offset)
109{
110#ifdef CONFIG_PPC64_ELF_ABI_V2
111#ifdef CONFIG_KPROBES_ON_FTRACE
112	return offset <= 16;
113#else
114	return offset <= 8;
115#endif
116#else
117	return !offset;
118#endif
119}
120
121/* XXX try and fold the magic of kprobe_lookup_name() in this */
122kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
123					 bool *on_func_entry)
124{
125	*on_func_entry = arch_kprobe_on_func_entry(offset);
126	return (kprobe_opcode_t *)(addr + offset);
127}
128
129void *alloc_insn_page(void)
130{
131	void *page;
132
133	page = module_alloc(PAGE_SIZE);
134	if (!page)
135		return NULL;
136
137	if (strict_module_rwx_enabled())
138		set_memory_rox((unsigned long)page, 1);
139
140	return page;
141}
142
143int arch_prepare_kprobe(struct kprobe *p)
144{
145	int ret = 0;
146	struct kprobe *prev;
147	ppc_inst_t insn = ppc_inst_read(p->addr);
 
148
149	if ((unsigned long)p->addr & 0x03) {
150		printk("Attempt to register kprobe at an unaligned address\n");
151		ret = -EINVAL;
152	} else if (!can_single_step(ppc_inst_val(insn))) {
153		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
154		ret = -EINVAL;
155	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
156		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
157		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
158		ret = -EINVAL;
159	}
 
160	prev = get_kprobe(p->addr - 1);
161
162	/*
163	 * When prev is a ftrace-based kprobe, we don't have an insn, and it
164	 * doesn't probe for prefixed instruction.
165	 */
166	if (prev && !kprobe_ftrace(prev) &&
167	    ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
168		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
169		ret = -EINVAL;
170	}
171
172	/* insn must be on a special executable page on ppc64.  This is
173	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
174	if (!ret) {
175		p->ainsn.insn = get_insn_slot();
176		if (!p->ainsn.insn)
177			ret = -ENOMEM;
178	}
179
180	if (!ret) {
181		patch_instruction(p->ainsn.insn, insn);
182		p->opcode = ppc_inst_val(insn);
183	}
184
185	p->ainsn.boostable = 0;
186	return ret;
187}
188NOKPROBE_SYMBOL(arch_prepare_kprobe);
189
190void arch_arm_kprobe(struct kprobe *p)
191{
192	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
193}
194NOKPROBE_SYMBOL(arch_arm_kprobe);
195
196void arch_disarm_kprobe(struct kprobe *p)
197{
198	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
199}
200NOKPROBE_SYMBOL(arch_disarm_kprobe);
201
202void arch_remove_kprobe(struct kprobe *p)
203{
204	if (p->ainsn.insn) {
205		free_insn_slot(p->ainsn.insn, 0);
206		p->ainsn.insn = NULL;
207	}
208}
209NOKPROBE_SYMBOL(arch_remove_kprobe);
210
211static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
212{
213	enable_single_step(regs);
214
215	/*
216	 * On powerpc we should single step on the original
217	 * instruction even if the probed insn is a trap
218	 * variant as values in regs could play a part in
219	 * if the trap is taken or not
220	 */
221	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
222}
223
224static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
225{
226	kcb->prev_kprobe.kp = kprobe_running();
227	kcb->prev_kprobe.status = kcb->kprobe_status;
228	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
229}
230
231static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
232{
233	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
234	kcb->kprobe_status = kcb->prev_kprobe.status;
235	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
236}
237
238static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
239				struct kprobe_ctlblk *kcb)
240{
241	__this_cpu_write(current_kprobe, p);
242	kcb->kprobe_saved_msr = regs->msr;
243}
244
 
 
 
 
 
 
 
 
 
 
 
 
 
245void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
246{
247	ri->ret_addr = (kprobe_opcode_t *)regs->link;
248	ri->fp = NULL;
249
250	/* Replace the return addr with trampoline addr */
251	regs->link = (unsigned long)__kretprobe_trampoline;
252}
253NOKPROBE_SYMBOL(arch_prepare_kretprobe);
254
255static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
256{
257	int ret;
258	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
259
260	/* regs->nip is also adjusted if emulate_step returns 1 */
261	ret = emulate_step(regs, insn);
262	if (ret > 0) {
263		/*
264		 * Once this instruction has been boosted
265		 * successfully, set the boostable flag
266		 */
267		if (unlikely(p->ainsn.boostable == 0))
268			p->ainsn.boostable = 1;
269	} else if (ret < 0) {
270		/*
271		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
272		 * So, we should never get here... but, its still
273		 * good to catch them, just in case...
274		 */
275		printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
276		BUG();
277	} else {
278		/*
279		 * If we haven't previously emulated this instruction, then it
280		 * can't be boosted. Note it down so we don't try to do so again.
281		 *
282		 * If, however, we had emulated this instruction in the past,
283		 * then this is just an error with the current run (for
284		 * instance, exceptions due to a load/store). We return 0 so
285		 * that this is now single-stepped, but continue to try
286		 * emulating it in subsequent probe hits.
287		 */
288		if (unlikely(p->ainsn.boostable != 1))
289			p->ainsn.boostable = -1;
290	}
291
292	return ret;
293}
294NOKPROBE_SYMBOL(try_to_emulate);
295
296int kprobe_handler(struct pt_regs *regs)
297{
298	struct kprobe *p;
299	int ret = 0;
300	unsigned int *addr = (unsigned int *)regs->nip;
301	struct kprobe_ctlblk *kcb;
302
303	if (user_mode(regs))
304		return 0;
305
306	if (!IS_ENABLED(CONFIG_BOOKE) &&
307	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
308		return 0;
309
310	/*
311	 * We don't want to be preempted for the entire
312	 * duration of kprobe processing
313	 */
314	preempt_disable();
315	kcb = get_kprobe_ctlblk();
316
317	p = get_kprobe(addr);
318	if (!p) {
319		unsigned int instr;
320
321		if (get_kernel_nofault(instr, addr))
322			goto no_kprobe;
323
324		if (instr != BREAKPOINT_INSTRUCTION) {
325			/*
326			 * PowerPC has multiple variants of the "trap"
327			 * instruction. If the current instruction is a
328			 * trap variant, it could belong to someone else
329			 */
330			if (is_trap(instr))
331				goto no_kprobe;
332			/*
333			 * The breakpoint instruction was removed right
334			 * after we hit it.  Another cpu has removed
335			 * either a probepoint or a debugger breakpoint
336			 * at this address.  In either case, no further
337			 * handling of this interrupt is appropriate.
338			 */
339			ret = 1;
340		}
341		/* Not one of ours: let kernel handle it */
342		goto no_kprobe;
343	}
344
345	/* Check we're not actually recursing */
346	if (kprobe_running()) {
347		kprobe_opcode_t insn = *p->ainsn.insn;
348		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
349			/* Turn off 'trace' bits */
350			regs_set_return_msr(regs,
351				(regs->msr & ~MSR_SINGLESTEP) |
352				kcb->kprobe_saved_msr);
353			goto no_kprobe;
354		}
355
356		/*
357		 * We have reentered the kprobe_handler(), since another probe
358		 * was hit while within the handler. We here save the original
359		 * kprobes variables and just single step on the instruction of
360		 * the new probe without calling any user handlers.
361		 */
362		save_previous_kprobe(kcb);
363		set_current_kprobe(p, regs, kcb);
364		kprobes_inc_nmissed_count(p);
365		kcb->kprobe_status = KPROBE_REENTER;
366		if (p->ainsn.boostable >= 0) {
367			ret = try_to_emulate(p, regs);
368
369			if (ret > 0) {
370				restore_previous_kprobe(kcb);
371				preempt_enable();
372				return 1;
373			}
374		}
375		prepare_singlestep(p, regs);
376		return 1;
377	}
378
379	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
380	set_current_kprobe(p, regs, kcb);
381	if (p->pre_handler && p->pre_handler(p, regs)) {
382		/* handler changed execution path, so skip ss setup */
383		reset_current_kprobe();
384		preempt_enable();
385		return 1;
386	}
387
388	if (p->ainsn.boostable >= 0) {
389		ret = try_to_emulate(p, regs);
390
391		if (ret > 0) {
392			if (p->post_handler)
393				p->post_handler(p, regs, 0);
394
395			kcb->kprobe_status = KPROBE_HIT_SSDONE;
396			reset_current_kprobe();
397			preempt_enable();
398			return 1;
399		}
400	}
401	prepare_singlestep(p, regs);
402	kcb->kprobe_status = KPROBE_HIT_SS;
403	return 1;
404
405no_kprobe:
406	preempt_enable();
407	return ret;
408}
409NOKPROBE_SYMBOL(kprobe_handler);
410
411/*
412 * Function return probe trampoline:
413 * 	- init_kprobes() establishes a probepoint here
414 * 	- When the probed function returns, this probe
415 * 		causes the handlers to fire
416 */
417asm(".global __kretprobe_trampoline\n"
418	".type __kretprobe_trampoline, @function\n"
419	"__kretprobe_trampoline:\n"
420	"nop\n"
421	"blr\n"
422	".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
423
424/*
425 * Called when the probe at kretprobe trampoline is hit
426 */
427static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
428{
429	unsigned long orig_ret_address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
431	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
432	/*
433	 * We get here through one of two paths:
434	 * 1. by taking a trap -> kprobe_handler() -> here
435	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
436	 *
437	 * When going back through (1), we need regs->nip to be setup properly
438	 * as it is used to determine the return address from the trap.
439	 * For (2), since nip is not honoured with optprobes, we instead setup
440	 * the link register properly so that the subsequent 'blr' in
441	 * __kretprobe_trampoline jumps back to the right instruction.
442	 *
443	 * For nip, we should set the address to the previous instruction since
444	 * we end up emulating it in kprobe_handler(), which increments the nip
445	 * again.
446	 */
447	regs_set_return_ip(regs, orig_ret_address - 4);
448	regs->link = orig_ret_address;
449
 
 
 
 
 
 
 
450	return 0;
451}
452NOKPROBE_SYMBOL(trampoline_probe_handler);
453
454/*
455 * Called after single-stepping.  p->addr is the address of the
456 * instruction whose first byte has been replaced by the "breakpoint"
457 * instruction.  To avoid the SMP problems that can occur when we
458 * temporarily put back the original opcode to single-step, we
459 * single-stepped a copy of the instruction.  The address of this
460 * copy is p->ainsn.insn.
461 */
462int kprobe_post_handler(struct pt_regs *regs)
463{
464	int len;
465	struct kprobe *cur = kprobe_running();
466	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
467
468	if (!cur || user_mode(regs))
469		return 0;
470
471	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
472	/* make sure we got here for instruction we have a kprobe on */
473	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
474		return 0;
475
476	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
477		kcb->kprobe_status = KPROBE_HIT_SSDONE;
478		cur->post_handler(cur, regs, 0);
479	}
480
481	/* Adjust nip to after the single-stepped instruction */
482	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
483	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
484
485	/*Restore back the original saved kprobes variables and continue. */
486	if (kcb->kprobe_status == KPROBE_REENTER) {
487		restore_previous_kprobe(kcb);
488		goto out;
489	}
490	reset_current_kprobe();
491out:
492	preempt_enable();
493
494	/*
495	 * if somebody else is singlestepping across a probe point, msr
496	 * will have DE/SE set, in which case, continue the remaining processing
497	 * of do_debug, as if this is not a probe hit.
498	 */
499	if (regs->msr & MSR_SINGLESTEP)
500		return 0;
501
502	return 1;
503}
504NOKPROBE_SYMBOL(kprobe_post_handler);
505
506int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
507{
508	struct kprobe *cur = kprobe_running();
509	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
510	const struct exception_table_entry *entry;
511
512	switch(kcb->kprobe_status) {
513	case KPROBE_HIT_SS:
514	case KPROBE_REENTER:
515		/*
516		 * We are here because the instruction being single
517		 * stepped caused a page fault. We reset the current
518		 * kprobe and the nip points back to the probe address
519		 * and allow the page fault handler to continue as a
520		 * normal page fault.
521		 */
522		regs_set_return_ip(regs, (unsigned long)cur->addr);
523		/* Turn off 'trace' bits */
524		regs_set_return_msr(regs,
525			(regs->msr & ~MSR_SINGLESTEP) |
526			kcb->kprobe_saved_msr);
527		if (kcb->kprobe_status == KPROBE_REENTER)
528			restore_previous_kprobe(kcb);
529		else
530			reset_current_kprobe();
531		preempt_enable();
532		break;
533	case KPROBE_HIT_ACTIVE:
534	case KPROBE_HIT_SSDONE:
535		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536		 * In case the user-specified fault handler returned
537		 * zero, try to fix up.
538		 */
539		if ((entry = search_exception_tables(regs->nip)) != NULL) {
540			regs_set_return_ip(regs, extable_fixup(entry));
541			return 1;
542		}
543
544		/*
545		 * fixup_exception() could not handle it,
546		 * Let do_page_fault() fix it.
547		 */
548		break;
549	default:
550		break;
551	}
552	return 0;
553}
554NOKPROBE_SYMBOL(kprobe_fault_handler);
555
 
 
 
 
 
 
 
 
 
 
 
556static struct kprobe trampoline_p = {
557	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
558	.pre_handler = trampoline_probe_handler
559};
560
561int __init arch_init_kprobes(void)
562{
563	return register_kprobe(&trampoline_p);
564}
565
566int arch_trampoline_kprobe(struct kprobe *p)
567{
568	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
569		return 1;
570
571	return 0;
572}
573NOKPROBE_SYMBOL(arch_trampoline_kprobe);