Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 22#include <asm/code-patching.h>
 
 
 23#include <asm/cacheflush.h>
 24#include <asm/sstep.h>
 25#include <asm/sections.h>
 26#include <asm/inst.h>
 27#include <linux/uaccess.h>
 28
 29DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 30DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 31
 32struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 33
 34bool arch_within_kprobe_blacklist(unsigned long addr)
 35{
 36	return  (addr >= (unsigned long)__kprobes_text_start &&
 37		 addr < (unsigned long)__kprobes_text_end) ||
 38		(addr >= (unsigned long)_stext &&
 39		 addr < (unsigned long)__head_end);
 40}
 41
 42kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 43{
 44	kprobe_opcode_t *addr = NULL;
 45
 46#ifdef PPC64_ELF_ABI_v2
 47	/* PPC64 ABIv2 needs local entry point */
 48	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 49	if (addr && !offset) {
 50#ifdef CONFIG_KPROBES_ON_FTRACE
 51		unsigned long faddr;
 52		/*
 53		 * Per livepatch.h, ftrace location is always within the first
 54		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 55		 */
 56		faddr = ftrace_location_range((unsigned long)addr,
 57					      (unsigned long)addr + 16);
 58		if (faddr)
 59			addr = (kprobe_opcode_t *)faddr;
 60		else
 61#endif
 62			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 63	}
 64#elif defined(PPC64_ELF_ABI_v1)
 65	/*
 66	 * 64bit powerpc ABIv1 uses function descriptors:
 67	 * - Check for the dot variant of the symbol first.
 68	 * - If that fails, try looking up the symbol provided.
 69	 *
 70	 * This ensures we always get to the actual symbol and not
 71	 * the descriptor.
 72	 *
 73	 * Also handle <module:symbol> format.
 74	 */
 75	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 76	bool dot_appended = false;
 77	const char *c;
 78	ssize_t ret = 0;
 79	int len = 0;
 80
 81	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 82		c++;
 83		len = c - name;
 84		memcpy(dot_name, name, len);
 85	} else
 86		c = name;
 87
 88	if (*c != '\0' && *c != '.') {
 89		dot_name[len++] = '.';
 90		dot_appended = true;
 91	}
 92	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 93	if (ret > 0)
 94		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 95
 96	/* Fallback to the original non-dot symbol lookup */
 97	if (!addr && dot_appended)
 98		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 99#else
100	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#endif
102
103	return addr;
104}
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106int arch_prepare_kprobe(struct kprobe *p)
107{
108	int ret = 0;
109	struct kprobe *prev;
110	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->addr);
111	struct ppc_inst prefix = ppc_inst_read((struct ppc_inst *)(p->addr - 1));
112
113	if ((unsigned long)p->addr & 0x03) {
114		printk("Attempt to register kprobe at an unaligned address\n");
115		ret = -EINVAL;
116	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
117		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
118		ret = -EINVAL;
119	} else if (ppc_inst_prefixed(prefix)) {
 
120		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
121		ret = -EINVAL;
122	}
123	preempt_disable();
124	prev = get_kprobe(p->addr - 1);
125	preempt_enable_no_resched();
126	if (prev &&
127	    ppc_inst_prefixed(ppc_inst_read((struct ppc_inst *)prev->ainsn.insn))) {
 
 
 
 
128		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
129		ret = -EINVAL;
130	}
131
132	/* insn must be on a special executable page on ppc64.  This is
133	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
134	if (!ret) {
135		p->ainsn.insn = get_insn_slot();
136		if (!p->ainsn.insn)
137			ret = -ENOMEM;
138	}
139
140	if (!ret) {
141		patch_instruction((struct ppc_inst *)p->ainsn.insn, insn);
142		p->opcode = ppc_inst_val(insn);
143	}
144
145	p->ainsn.boostable = 0;
146	return ret;
147}
148NOKPROBE_SYMBOL(arch_prepare_kprobe);
149
150void arch_arm_kprobe(struct kprobe *p)
151{
152	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(BREAKPOINT_INSTRUCTION));
153}
154NOKPROBE_SYMBOL(arch_arm_kprobe);
155
156void arch_disarm_kprobe(struct kprobe *p)
157{
158	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(p->opcode));
159}
160NOKPROBE_SYMBOL(arch_disarm_kprobe);
161
162void arch_remove_kprobe(struct kprobe *p)
163{
164	if (p->ainsn.insn) {
165		free_insn_slot(p->ainsn.insn, 0);
166		p->ainsn.insn = NULL;
167	}
168}
169NOKPROBE_SYMBOL(arch_remove_kprobe);
170
171static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
172{
173	enable_single_step(regs);
174
175	/*
176	 * On powerpc we should single step on the original
177	 * instruction even if the probed insn is a trap
178	 * variant as values in regs could play a part in
179	 * if the trap is taken or not
180	 */
181	regs->nip = (unsigned long)p->ainsn.insn;
182}
183
184static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
185{
186	kcb->prev_kprobe.kp = kprobe_running();
187	kcb->prev_kprobe.status = kcb->kprobe_status;
188	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
189}
190
191static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
192{
193	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
194	kcb->kprobe_status = kcb->prev_kprobe.status;
195	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
196}
197
198static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
199				struct kprobe_ctlblk *kcb)
200{
201	__this_cpu_write(current_kprobe, p);
202	kcb->kprobe_saved_msr = regs->msr;
203}
204
205bool arch_kprobe_on_func_entry(unsigned long offset)
206{
207#ifdef PPC64_ELF_ABI_v2
208#ifdef CONFIG_KPROBES_ON_FTRACE
209	return offset <= 16;
210#else
211	return offset <= 8;
212#endif
213#else
214	return !offset;
215#endif
216}
217
218void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
219{
220	ri->ret_addr = (kprobe_opcode_t *)regs->link;
221
222	/* Replace the return addr with trampoline addr */
223	regs->link = (unsigned long)kretprobe_trampoline;
224}
225NOKPROBE_SYMBOL(arch_prepare_kretprobe);
226
227static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
228{
229	int ret;
230	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->ainsn.insn);
231
232	/* regs->nip is also adjusted if emulate_step returns 1 */
233	ret = emulate_step(regs, insn);
234	if (ret > 0) {
235		/*
236		 * Once this instruction has been boosted
237		 * successfully, set the boostable flag
238		 */
239		if (unlikely(p->ainsn.boostable == 0))
240			p->ainsn.boostable = 1;
241	} else if (ret < 0) {
242		/*
243		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
244		 * So, we should never get here... but, its still
245		 * good to catch them, just in case...
246		 */
247		printk("Can't step on instruction %s\n", ppc_inst_as_str(insn));
248		BUG();
249	} else {
250		/*
251		 * If we haven't previously emulated this instruction, then it
252		 * can't be boosted. Note it down so we don't try to do so again.
253		 *
254		 * If, however, we had emulated this instruction in the past,
255		 * then this is just an error with the current run (for
256		 * instance, exceptions due to a load/store). We return 0 so
257		 * that this is now single-stepped, but continue to try
258		 * emulating it in subsequent probe hits.
259		 */
260		if (unlikely(p->ainsn.boostable != 1))
261			p->ainsn.boostable = -1;
262	}
263
264	return ret;
265}
266NOKPROBE_SYMBOL(try_to_emulate);
267
268int kprobe_handler(struct pt_regs *regs)
269{
270	struct kprobe *p;
271	int ret = 0;
272	unsigned int *addr = (unsigned int *)regs->nip;
273	struct kprobe_ctlblk *kcb;
274
275	if (user_mode(regs))
276		return 0;
277
278	if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
 
279		return 0;
280
281	/*
282	 * We don't want to be preempted for the entire
283	 * duration of kprobe processing
284	 */
285	preempt_disable();
286	kcb = get_kprobe_ctlblk();
287
288	p = get_kprobe(addr);
289	if (!p) {
290		unsigned int instr;
291
292		if (get_kernel_nofault(instr, addr))
293			goto no_kprobe;
294
295		if (instr != BREAKPOINT_INSTRUCTION) {
296			/*
297			 * PowerPC has multiple variants of the "trap"
298			 * instruction. If the current instruction is a
299			 * trap variant, it could belong to someone else
300			 */
301			if (is_trap(instr))
302				goto no_kprobe;
303			/*
304			 * The breakpoint instruction was removed right
305			 * after we hit it.  Another cpu has removed
306			 * either a probepoint or a debugger breakpoint
307			 * at this address.  In either case, no further
308			 * handling of this interrupt is appropriate.
309			 */
310			ret = 1;
311		}
312		/* Not one of ours: let kernel handle it */
313		goto no_kprobe;
314	}
315
316	/* Check we're not actually recursing */
317	if (kprobe_running()) {
318		kprobe_opcode_t insn = *p->ainsn.insn;
319		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
320			/* Turn off 'trace' bits */
321			regs->msr &= ~MSR_SINGLESTEP;
322			regs->msr |= kcb->kprobe_saved_msr;
 
323			goto no_kprobe;
324		}
325
326		/*
327		 * We have reentered the kprobe_handler(), since another probe
328		 * was hit while within the handler. We here save the original
329		 * kprobes variables and just single step on the instruction of
330		 * the new probe without calling any user handlers.
331		 */
332		save_previous_kprobe(kcb);
333		set_current_kprobe(p, regs, kcb);
334		kprobes_inc_nmissed_count(p);
335		kcb->kprobe_status = KPROBE_REENTER;
336		if (p->ainsn.boostable >= 0) {
337			ret = try_to_emulate(p, regs);
338
339			if (ret > 0) {
340				restore_previous_kprobe(kcb);
341				preempt_enable_no_resched();
342				return 1;
343			}
344		}
345		prepare_singlestep(p, regs);
346		return 1;
347	}
348
349	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
350	set_current_kprobe(p, regs, kcb);
351	if (p->pre_handler && p->pre_handler(p, regs)) {
352		/* handler changed execution path, so skip ss setup */
353		reset_current_kprobe();
354		preempt_enable_no_resched();
355		return 1;
356	}
357
358	if (p->ainsn.boostable >= 0) {
359		ret = try_to_emulate(p, regs);
360
361		if (ret > 0) {
362			if (p->post_handler)
363				p->post_handler(p, regs, 0);
364
365			kcb->kprobe_status = KPROBE_HIT_SSDONE;
366			reset_current_kprobe();
367			preempt_enable_no_resched();
368			return 1;
369		}
370	}
371	prepare_singlestep(p, regs);
372	kcb->kprobe_status = KPROBE_HIT_SS;
373	return 1;
374
375no_kprobe:
376	preempt_enable_no_resched();
377	return ret;
378}
379NOKPROBE_SYMBOL(kprobe_handler);
380
381/*
382 * Function return probe trampoline:
383 * 	- init_kprobes() establishes a probepoint here
384 * 	- When the probed function returns, this probe
385 * 		causes the handlers to fire
386 */
387asm(".global kretprobe_trampoline\n"
388	".type kretprobe_trampoline, @function\n"
389	"kretprobe_trampoline:\n"
390	"nop\n"
391	"blr\n"
392	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
393
394/*
395 * Called when the probe at kretprobe trampoline is hit
396 */
397static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
398{
399	struct kretprobe_instance *ri = NULL;
400	struct hlist_head *head, empty_rp;
401	struct hlist_node *tmp;
402	unsigned long flags, orig_ret_address = 0;
403	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
404
405	INIT_HLIST_HEAD(&empty_rp);
406	kretprobe_hash_lock(current, &head, &flags);
407
408	/*
409	 * It is possible to have multiple instances associated with a given
410	 * task either because an multiple functions in the call path
411	 * have a return probe installed on them, and/or more than one return
412	 * return probe was registered for a target function.
413	 *
414	 * We can handle this because:
415	 *     - instances are always inserted at the head of the list
416	 *     - when multiple return probes are registered for the same
417	 *       function, the first instance's ret_addr will point to the
418	 *       real return address, and all the rest will point to
419	 *       kretprobe_trampoline
420	 */
421	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		if (ri->rp && ri->rp->handler)
427			ri->rp->handler(ri, regs);
428
429		orig_ret_address = (unsigned long)ri->ret_addr;
430		recycle_rp_inst(ri, &empty_rp);
431
432		if (orig_ret_address != trampoline_address)
433			/*
434			 * This is the real return address. Any other
435			 * instances associated with this task are for
436			 * other calls deeper on the call stack
437			 */
438			break;
439	}
440
441	kretprobe_assert(ri, orig_ret_address, trampoline_address);
442
443	/*
444	 * We get here through one of two paths:
445	 * 1. by taking a trap -> kprobe_handler() -> here
446	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
447	 *
448	 * When going back through (1), we need regs->nip to be setup properly
449	 * as it is used to determine the return address from the trap.
450	 * For (2), since nip is not honoured with optprobes, we instead setup
451	 * the link register properly so that the subsequent 'blr' in
452	 * kretprobe_trampoline jumps back to the right instruction.
453	 *
454	 * For nip, we should set the address to the previous instruction since
455	 * we end up emulating it in kprobe_handler(), which increments the nip
456	 * again.
457	 */
458	regs->nip = orig_ret_address - 4;
459	regs->link = orig_ret_address;
460
461	kretprobe_hash_unlock(current, &flags);
462
463	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
464		hlist_del(&ri->hlist);
465		kfree(ri);
466	}
467
468	return 0;
469}
470NOKPROBE_SYMBOL(trampoline_probe_handler);
471
472/*
473 * Called after single-stepping.  p->addr is the address of the
474 * instruction whose first byte has been replaced by the "breakpoint"
475 * instruction.  To avoid the SMP problems that can occur when we
476 * temporarily put back the original opcode to single-step, we
477 * single-stepped a copy of the instruction.  The address of this
478 * copy is p->ainsn.insn.
479 */
480int kprobe_post_handler(struct pt_regs *regs)
481{
482	int len;
483	struct kprobe *cur = kprobe_running();
484	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485
486	if (!cur || user_mode(regs))
487		return 0;
488
489	len = ppc_inst_len(ppc_inst_read((struct ppc_inst *)cur->ainsn.insn));
490	/* make sure we got here for instruction we have a kprobe on */
491	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
492		return 0;
493
494	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
495		kcb->kprobe_status = KPROBE_HIT_SSDONE;
496		cur->post_handler(cur, regs, 0);
497	}
498
499	/* Adjust nip to after the single-stepped instruction */
500	regs->nip = (unsigned long)cur->addr + len;
501	regs->msr |= kcb->kprobe_saved_msr;
502
503	/*Restore back the original saved kprobes variables and continue. */
504	if (kcb->kprobe_status == KPROBE_REENTER) {
505		restore_previous_kprobe(kcb);
506		goto out;
507	}
508	reset_current_kprobe();
509out:
510	preempt_enable_no_resched();
511
512	/*
513	 * if somebody else is singlestepping across a probe point, msr
514	 * will have DE/SE set, in which case, continue the remaining processing
515	 * of do_debug, as if this is not a probe hit.
516	 */
517	if (regs->msr & MSR_SINGLESTEP)
518		return 0;
519
520	return 1;
521}
522NOKPROBE_SYMBOL(kprobe_post_handler);
523
524int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
525{
526	struct kprobe *cur = kprobe_running();
527	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528	const struct exception_table_entry *entry;
529
530	switch(kcb->kprobe_status) {
531	case KPROBE_HIT_SS:
532	case KPROBE_REENTER:
533		/*
534		 * We are here because the instruction being single
535		 * stepped caused a page fault. We reset the current
536		 * kprobe and the nip points back to the probe address
537		 * and allow the page fault handler to continue as a
538		 * normal page fault.
539		 */
540		regs->nip = (unsigned long)cur->addr;
541		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
542		regs->msr |= kcb->kprobe_saved_msr;
 
 
543		if (kcb->kprobe_status == KPROBE_REENTER)
544			restore_previous_kprobe(kcb);
545		else
546			reset_current_kprobe();
547		preempt_enable_no_resched();
548		break;
549	case KPROBE_HIT_ACTIVE:
550	case KPROBE_HIT_SSDONE:
551		/*
552		 * We increment the nmissed count for accounting,
553		 * we can also use npre/npostfault count for accounting
554		 * these specific fault cases.
555		 */
556		kprobes_inc_nmissed_count(cur);
557
558		/*
559		 * We come here because instructions in the pre/post
560		 * handler caused the page_fault, this could happen
561		 * if handler tries to access user space by
562		 * copy_from_user(), get_user() etc. Let the
563		 * user-specified handler try to fix it first.
564		 */
565		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
566			return 1;
567
568		/*
569		 * In case the user-specified fault handler returned
570		 * zero, try to fix up.
571		 */
572		if ((entry = search_exception_tables(regs->nip)) != NULL) {
573			regs->nip = extable_fixup(entry);
574			return 1;
575		}
576
577		/*
578		 * fixup_exception() could not handle it,
579		 * Let do_page_fault() fix it.
580		 */
581		break;
582	default:
583		break;
584	}
585	return 0;
586}
587NOKPROBE_SYMBOL(kprobe_fault_handler);
588
589unsigned long arch_deref_entry_point(void *entry)
590{
591#ifdef PPC64_ELF_ABI_v1
592	if (!kernel_text_address((unsigned long)entry))
593		return ppc_global_function_entry(entry);
594	else
595#endif
596		return (unsigned long)entry;
597}
598NOKPROBE_SYMBOL(arch_deref_entry_point);
599
600static struct kprobe trampoline_p = {
601	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
602	.pre_handler = trampoline_probe_handler
603};
604
605int __init arch_init_kprobes(void)
606{
607	return register_kprobe(&trampoline_p);
608}
609
610int arch_trampoline_kprobe(struct kprobe *p)
611{
612	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
613		return 1;
614
615	return 0;
616}
617NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright (C) IBM Corporation, 2002, 2004
  6 *
  7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8 *		Probes initial implementation ( includes contributions from
  9 *		Rusty Russell).
 10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11 *		interface to access function arguments.
 12 * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
 13 *		for PPC64
 14 */
 15
 16#include <linux/kprobes.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/extable.h>
 20#include <linux/kdebug.h>
 21#include <linux/slab.h>
 22#include <linux/set_memory.h>
 23#include <linux/execmem.h>
 24#include <asm/text-patching.h>
 25#include <asm/cacheflush.h>
 26#include <asm/sstep.h>
 27#include <asm/sections.h>
 28#include <asm/inst.h>
 29#include <linux/uaccess.h>
 30
 31DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 32DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 33
 34struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 35
 36bool arch_within_kprobe_blacklist(unsigned long addr)
 37{
 38	return  (addr >= (unsigned long)__kprobes_text_start &&
 39		 addr < (unsigned long)__kprobes_text_end) ||
 40		(addr >= (unsigned long)_stext &&
 41		 addr < (unsigned long)__head_end);
 42}
 43
 44kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
 45{
 46	kprobe_opcode_t *addr = NULL;
 47
 48#ifdef CONFIG_PPC64_ELF_ABI_V2
 49	/* PPC64 ABIv2 needs local entry point */
 50	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
 51	if (addr && !offset) {
 52#ifdef CONFIG_KPROBES_ON_FTRACE
 53		unsigned long faddr;
 54		/*
 55		 * Per livepatch.h, ftrace location is always within the first
 56		 * 16 bytes of a function on powerpc with -mprofile-kernel.
 57		 */
 58		faddr = ftrace_location_range((unsigned long)addr,
 59					      (unsigned long)addr + 16);
 60		if (faddr)
 61			addr = (kprobe_opcode_t *)faddr;
 62		else
 63#endif
 64			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
 65	}
 66#elif defined(CONFIG_PPC64_ELF_ABI_V1)
 67	/*
 68	 * 64bit powerpc ABIv1 uses function descriptors:
 69	 * - Check for the dot variant of the symbol first.
 70	 * - If that fails, try looking up the symbol provided.
 71	 *
 72	 * This ensures we always get to the actual symbol and not
 73	 * the descriptor.
 74	 *
 75	 * Also handle <module:symbol> format.
 76	 */
 77	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
 78	bool dot_appended = false;
 79	const char *c;
 80	ssize_t ret = 0;
 81	int len = 0;
 82
 83	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
 84		c++;
 85		len = c - name;
 86		memcpy(dot_name, name, len);
 87	} else
 88		c = name;
 89
 90	if (*c != '\0' && *c != '.') {
 91		dot_name[len++] = '.';
 92		dot_appended = true;
 93	}
 94	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
 95	if (ret > 0)
 96		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
 97
 98	/* Fallback to the original non-dot symbol lookup */
 99	if (!addr && dot_appended)
100		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101#else
102	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103#endif
104
105	return addr;
106}
107
108static bool arch_kprobe_on_func_entry(unsigned long addr, unsigned long offset)
109{
110	unsigned long ip = ftrace_location(addr);
111
112	if (ip)
113		return offset <= (ip - addr);
114	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2) && !IS_ENABLED(CONFIG_PPC_KERNEL_PCREL))
115		return offset <= 8;
116	return !offset;
117}
118
119/* XXX try and fold the magic of kprobe_lookup_name() in this */
120kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
121					 bool *on_func_entry)
122{
123	*on_func_entry = arch_kprobe_on_func_entry(addr, offset);
124	return (kprobe_opcode_t *)(addr + offset);
125}
126
127int arch_prepare_kprobe(struct kprobe *p)
128{
129	int ret = 0;
130	struct kprobe *prev;
131	ppc_inst_t insn = ppc_inst_read(p->addr);
 
132
133	if ((unsigned long)p->addr & 0x03) {
134		printk("Attempt to register kprobe at an unaligned address\n");
135		ret = -EINVAL;
136	} else if (!can_single_step(ppc_inst_val(insn))) {
137		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
138		ret = -EINVAL;
139	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
140		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
141		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
142		ret = -EINVAL;
143	}
 
144	prev = get_kprobe(p->addr - 1);
145
146	/*
147	 * When prev is a ftrace-based kprobe, we don't have an insn, and it
148	 * doesn't probe for prefixed instruction.
149	 */
150	if (prev && !kprobe_ftrace(prev) &&
151	    ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
152		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
153		ret = -EINVAL;
154	}
155
156	/* insn must be on a special executable page on ppc64.  This is
157	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
158	if (!ret) {
159		p->ainsn.insn = get_insn_slot();
160		if (!p->ainsn.insn)
161			ret = -ENOMEM;
162	}
163
164	if (!ret) {
165		patch_instruction(p->ainsn.insn, insn);
166		p->opcode = ppc_inst_val(insn);
167	}
168
169	p->ainsn.boostable = 0;
170	return ret;
171}
172NOKPROBE_SYMBOL(arch_prepare_kprobe);
173
174void arch_arm_kprobe(struct kprobe *p)
175{
176	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
177}
178NOKPROBE_SYMBOL(arch_arm_kprobe);
179
180void arch_disarm_kprobe(struct kprobe *p)
181{
182	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
183}
184NOKPROBE_SYMBOL(arch_disarm_kprobe);
185
186void arch_remove_kprobe(struct kprobe *p)
187{
188	if (p->ainsn.insn) {
189		free_insn_slot(p->ainsn.insn, 0);
190		p->ainsn.insn = NULL;
191	}
192}
193NOKPROBE_SYMBOL(arch_remove_kprobe);
194
195static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
196{
197	enable_single_step(regs);
198
199	/*
200	 * On powerpc we should single step on the original
201	 * instruction even if the probed insn is a trap
202	 * variant as values in regs could play a part in
203	 * if the trap is taken or not
204	 */
205	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
206}
207
208static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
209{
210	kcb->prev_kprobe.kp = kprobe_running();
211	kcb->prev_kprobe.status = kcb->kprobe_status;
212	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
213}
214
215static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
216{
217	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
218	kcb->kprobe_status = kcb->prev_kprobe.status;
219	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
220}
221
222static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
223				struct kprobe_ctlblk *kcb)
224{
225	__this_cpu_write(current_kprobe, p);
226	kcb->kprobe_saved_msr = regs->msr;
227}
228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
230{
231	int ret;
232	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
233
234	/* regs->nip is also adjusted if emulate_step returns 1 */
235	ret = emulate_step(regs, insn);
236	if (ret > 0) {
237		/*
238		 * Once this instruction has been boosted
239		 * successfully, set the boostable flag
240		 */
241		if (unlikely(p->ainsn.boostable == 0))
242			p->ainsn.boostable = 1;
243	} else if (ret < 0) {
244		/*
245		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246		 * So, we should never get here... but, its still
247		 * good to catch them, just in case...
248		 */
249		printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
250		BUG();
251	} else {
252		/*
253		 * If we haven't previously emulated this instruction, then it
254		 * can't be boosted. Note it down so we don't try to do so again.
255		 *
256		 * If, however, we had emulated this instruction in the past,
257		 * then this is just an error with the current run (for
258		 * instance, exceptions due to a load/store). We return 0 so
259		 * that this is now single-stepped, but continue to try
260		 * emulating it in subsequent probe hits.
261		 */
262		if (unlikely(p->ainsn.boostable != 1))
263			p->ainsn.boostable = -1;
264	}
265
266	return ret;
267}
268NOKPROBE_SYMBOL(try_to_emulate);
269
270int kprobe_handler(struct pt_regs *regs)
271{
272	struct kprobe *p;
273	int ret = 0;
274	unsigned int *addr = (unsigned int *)regs->nip;
275	struct kprobe_ctlblk *kcb;
276
277	if (user_mode(regs))
278		return 0;
279
280	if (!IS_ENABLED(CONFIG_BOOKE) &&
281	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
282		return 0;
283
284	/*
285	 * We don't want to be preempted for the entire
286	 * duration of kprobe processing
287	 */
288	preempt_disable();
289	kcb = get_kprobe_ctlblk();
290
291	p = get_kprobe(addr);
292	if (!p) {
293		unsigned int instr;
294
295		if (get_kernel_nofault(instr, addr))
296			goto no_kprobe;
297
298		if (instr != BREAKPOINT_INSTRUCTION) {
299			/*
300			 * PowerPC has multiple variants of the "trap"
301			 * instruction. If the current instruction is a
302			 * trap variant, it could belong to someone else
303			 */
304			if (is_trap(instr))
305				goto no_kprobe;
306			/*
307			 * The breakpoint instruction was removed right
308			 * after we hit it.  Another cpu has removed
309			 * either a probepoint or a debugger breakpoint
310			 * at this address.  In either case, no further
311			 * handling of this interrupt is appropriate.
312			 */
313			ret = 1;
314		}
315		/* Not one of ours: let kernel handle it */
316		goto no_kprobe;
317	}
318
319	/* Check we're not actually recursing */
320	if (kprobe_running()) {
321		kprobe_opcode_t insn = *p->ainsn.insn;
322		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
323			/* Turn off 'trace' bits */
324			regs_set_return_msr(regs,
325				(regs->msr & ~MSR_SINGLESTEP) |
326				kcb->kprobe_saved_msr);
327			goto no_kprobe;
328		}
329
330		/*
331		 * We have reentered the kprobe_handler(), since another probe
332		 * was hit while within the handler. We here save the original
333		 * kprobes variables and just single step on the instruction of
334		 * the new probe without calling any user handlers.
335		 */
336		save_previous_kprobe(kcb);
337		set_current_kprobe(p, regs, kcb);
338		kprobes_inc_nmissed_count(p);
339		kcb->kprobe_status = KPROBE_REENTER;
340		if (p->ainsn.boostable >= 0) {
341			ret = try_to_emulate(p, regs);
342
343			if (ret > 0) {
344				restore_previous_kprobe(kcb);
345				preempt_enable();
346				return 1;
347			}
348		}
349		prepare_singlestep(p, regs);
350		return 1;
351	}
352
353	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
354	set_current_kprobe(p, regs, kcb);
355	if (p->pre_handler && p->pre_handler(p, regs)) {
356		/* handler changed execution path, so skip ss setup */
357		reset_current_kprobe();
358		preempt_enable();
359		return 1;
360	}
361
362	if (p->ainsn.boostable >= 0) {
363		ret = try_to_emulate(p, regs);
364
365		if (ret > 0) {
366			if (p->post_handler)
367				p->post_handler(p, regs, 0);
368
369			kcb->kprobe_status = KPROBE_HIT_SSDONE;
370			reset_current_kprobe();
371			preempt_enable();
372			return 1;
373		}
374	}
375	prepare_singlestep(p, regs);
376	kcb->kprobe_status = KPROBE_HIT_SS;
377	return 1;
378
379no_kprobe:
380	preempt_enable();
381	return ret;
382}
383NOKPROBE_SYMBOL(kprobe_handler);
384
385/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386 * Called after single-stepping.  p->addr is the address of the
387 * instruction whose first byte has been replaced by the "breakpoint"
388 * instruction.  To avoid the SMP problems that can occur when we
389 * temporarily put back the original opcode to single-step, we
390 * single-stepped a copy of the instruction.  The address of this
391 * copy is p->ainsn.insn.
392 */
393int kprobe_post_handler(struct pt_regs *regs)
394{
395	int len;
396	struct kprobe *cur = kprobe_running();
397	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
398
399	if (!cur || user_mode(regs))
400		return 0;
401
402	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
403	/* make sure we got here for instruction we have a kprobe on */
404	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
405		return 0;
406
407	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
408		kcb->kprobe_status = KPROBE_HIT_SSDONE;
409		cur->post_handler(cur, regs, 0);
410	}
411
412	/* Adjust nip to after the single-stepped instruction */
413	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
414	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
415
416	/*Restore back the original saved kprobes variables and continue. */
417	if (kcb->kprobe_status == KPROBE_REENTER) {
418		restore_previous_kprobe(kcb);
419		goto out;
420	}
421	reset_current_kprobe();
422out:
423	preempt_enable();
424
425	/*
426	 * if somebody else is singlestepping across a probe point, msr
427	 * will have DE/SE set, in which case, continue the remaining processing
428	 * of do_debug, as if this is not a probe hit.
429	 */
430	if (regs->msr & MSR_SINGLESTEP)
431		return 0;
432
433	return 1;
434}
435NOKPROBE_SYMBOL(kprobe_post_handler);
436
437int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
438{
439	struct kprobe *cur = kprobe_running();
440	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
441	const struct exception_table_entry *entry;
442
443	switch(kcb->kprobe_status) {
444	case KPROBE_HIT_SS:
445	case KPROBE_REENTER:
446		/*
447		 * We are here because the instruction being single
448		 * stepped caused a page fault. We reset the current
449		 * kprobe and the nip points back to the probe address
450		 * and allow the page fault handler to continue as a
451		 * normal page fault.
452		 */
453		regs_set_return_ip(regs, (unsigned long)cur->addr);
454		/* Turn off 'trace' bits */
455		regs_set_return_msr(regs,
456			(regs->msr & ~MSR_SINGLESTEP) |
457			kcb->kprobe_saved_msr);
458		if (kcb->kprobe_status == KPROBE_REENTER)
459			restore_previous_kprobe(kcb);
460		else
461			reset_current_kprobe();
462		preempt_enable();
463		break;
464	case KPROBE_HIT_ACTIVE:
465	case KPROBE_HIT_SSDONE:
466		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467		 * In case the user-specified fault handler returned
468		 * zero, try to fix up.
469		 */
470		if ((entry = search_exception_tables(regs->nip)) != NULL) {
471			regs_set_return_ip(regs, extable_fixup(entry));
472			return 1;
473		}
474
475		/*
476		 * fixup_exception() could not handle it,
477		 * Let do_page_fault() fix it.
478		 */
479		break;
480	default:
481		break;
482	}
483	return 0;
484}
485NOKPROBE_SYMBOL(kprobe_fault_handler);
486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487int arch_trampoline_kprobe(struct kprobe *p)
488{
489	if (p->addr == (kprobe_opcode_t *)&arch_rethook_trampoline)
490		return 1;
491
492	return 0;
493}
494NOKPROBE_SYMBOL(arch_trampoline_kprobe);