Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 56	}
 57
 58	return err;
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 62			  struct mm_walk *walk)
 63{
 64	pmd_t *pmd;
 65	unsigned long next;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int err = 0;
 68	int depth = real_depth(3);
 69
 70	pmd = pmd_offset(pud, addr);
 71	do {
 72again:
 73		next = pmd_addr_end(addr, end);
 74		if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
 75			if (ops->pte_hole)
 76				err = ops->pte_hole(addr, next, depth, walk);
 77			if (err)
 78				break;
 79			continue;
 80		}
 81
 82		walk->action = ACTION_SUBTREE;
 83
 84		/*
 85		 * This implies that each ->pmd_entry() handler
 86		 * needs to know about pmd_trans_huge() pmds
 87		 */
 88		if (ops->pmd_entry)
 89			err = ops->pmd_entry(pmd, addr, next, walk);
 90		if (err)
 91			break;
 92
 93		if (walk->action == ACTION_AGAIN)
 94			goto again;
 95
 96		/*
 97		 * Check this here so we only break down trans_huge
 98		 * pages when we _need_ to
 99		 */
100		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
101		    walk->action == ACTION_CONTINUE ||
102		    !(ops->pte_entry))
103			continue;
104
105		if (walk->vma) {
106			split_huge_pmd(walk->vma, pmd, addr);
107			if (pmd_trans_unstable(pmd))
108				goto again;
109		}
110
111		err = walk_pte_range(pmd, addr, next, walk);
 
 
 
112		if (err)
113			break;
114	} while (pmd++, addr = next, addr != end);
115
116	return err;
117}
118
119static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
120			  struct mm_walk *walk)
121{
122	pud_t *pud;
123	unsigned long next;
124	const struct mm_walk_ops *ops = walk->ops;
125	int err = 0;
126	int depth = real_depth(2);
127
128	pud = pud_offset(p4d, addr);
129	do {
130 again:
131		next = pud_addr_end(addr, end);
132		if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
133			if (ops->pte_hole)
134				err = ops->pte_hole(addr, next, depth, walk);
135			if (err)
136				break;
137			continue;
138		}
139
140		walk->action = ACTION_SUBTREE;
141
142		if (ops->pud_entry)
143			err = ops->pud_entry(pud, addr, next, walk);
144		if (err)
145			break;
146
147		if (walk->action == ACTION_AGAIN)
148			goto again;
149
150		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
151		    walk->action == ACTION_CONTINUE ||
152		    !(ops->pmd_entry || ops->pte_entry))
153			continue;
154
155		if (walk->vma)
156			split_huge_pud(walk->vma, pud, addr);
157		if (pud_none(*pud))
158			goto again;
159
160		err = walk_pmd_range(pud, addr, next, walk);
 
 
 
161		if (err)
162			break;
163	} while (pud++, addr = next, addr != end);
164
165	return err;
166}
167
168static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
169			  struct mm_walk *walk)
170{
171	p4d_t *p4d;
172	unsigned long next;
173	const struct mm_walk_ops *ops = walk->ops;
174	int err = 0;
175	int depth = real_depth(1);
176
177	p4d = p4d_offset(pgd, addr);
178	do {
179		next = p4d_addr_end(addr, end);
180		if (p4d_none_or_clear_bad(p4d)) {
181			if (ops->pte_hole)
182				err = ops->pte_hole(addr, next, depth, walk);
183			if (err)
184				break;
185			continue;
186		}
187		if (ops->p4d_entry) {
188			err = ops->p4d_entry(p4d, addr, next, walk);
189			if (err)
190				break;
191		}
192		if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
 
 
193			err = walk_pud_range(p4d, addr, next, walk);
194		if (err)
195			break;
196	} while (p4d++, addr = next, addr != end);
197
198	return err;
199}
200
201static int walk_pgd_range(unsigned long addr, unsigned long end,
202			  struct mm_walk *walk)
203{
204	pgd_t *pgd;
205	unsigned long next;
206	const struct mm_walk_ops *ops = walk->ops;
207	int err = 0;
208
209	if (walk->pgd)
210		pgd = walk->pgd + pgd_index(addr);
211	else
212		pgd = pgd_offset(walk->mm, addr);
213	do {
214		next = pgd_addr_end(addr, end);
215		if (pgd_none_or_clear_bad(pgd)) {
216			if (ops->pte_hole)
217				err = ops->pte_hole(addr, next, 0, walk);
218			if (err)
219				break;
220			continue;
221		}
222		if (ops->pgd_entry) {
223			err = ops->pgd_entry(pgd, addr, next, walk);
224			if (err)
225				break;
226		}
227		if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
228		    ops->pte_entry)
 
229			err = walk_p4d_range(pgd, addr, next, walk);
230		if (err)
231			break;
232	} while (pgd++, addr = next, addr != end);
233
234	return err;
235}
236
237#ifdef CONFIG_HUGETLB_PAGE
238static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
239				       unsigned long end)
240{
241	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
242	return boundary < end ? boundary : end;
243}
244
245static int walk_hugetlb_range(unsigned long addr, unsigned long end,
246			      struct mm_walk *walk)
247{
248	struct vm_area_struct *vma = walk->vma;
249	struct hstate *h = hstate_vma(vma);
250	unsigned long next;
251	unsigned long hmask = huge_page_mask(h);
252	unsigned long sz = huge_page_size(h);
253	pte_t *pte;
254	const struct mm_walk_ops *ops = walk->ops;
255	int err = 0;
256
257	do {
258		next = hugetlb_entry_end(h, addr, end);
259		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
260
261		if (pte)
262			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
263		else if (ops->pte_hole)
264			err = ops->pte_hole(addr, next, -1, walk);
265
266		if (err)
267			break;
268	} while (addr = next, addr != end);
269
270	return err;
271}
272
273#else /* CONFIG_HUGETLB_PAGE */
274static int walk_hugetlb_range(unsigned long addr, unsigned long end,
275			      struct mm_walk *walk)
276{
277	return 0;
278}
279
280#endif /* CONFIG_HUGETLB_PAGE */
281
282/*
283 * Decide whether we really walk over the current vma on [@start, @end)
284 * or skip it via the returned value. Return 0 if we do walk over the
285 * current vma, and return 1 if we skip the vma. Negative values means
286 * error, where we abort the current walk.
287 */
288static int walk_page_test(unsigned long start, unsigned long end,
289			struct mm_walk *walk)
290{
291	struct vm_area_struct *vma = walk->vma;
292	const struct mm_walk_ops *ops = walk->ops;
293
294	if (ops->test_walk)
295		return ops->test_walk(start, end, walk);
296
297	/*
298	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
299	 * range, so we don't walk over it as we do for normal vmas. However,
300	 * Some callers are interested in handling hole range and they don't
301	 * want to just ignore any single address range. Such users certainly
302	 * define their ->pte_hole() callbacks, so let's delegate them to handle
303	 * vma(VM_PFNMAP).
304	 */
305	if (vma->vm_flags & VM_PFNMAP) {
306		int err = 1;
307		if (ops->pte_hole)
308			err = ops->pte_hole(start, end, -1, walk);
309		return err ? err : 1;
310	}
311	return 0;
312}
313
314static int __walk_page_range(unsigned long start, unsigned long end,
315			struct mm_walk *walk)
316{
317	int err = 0;
318	struct vm_area_struct *vma = walk->vma;
319	const struct mm_walk_ops *ops = walk->ops;
320
321	if (vma && ops->pre_vma) {
322		err = ops->pre_vma(start, end, walk);
323		if (err)
324			return err;
325	}
326
327	if (vma && is_vm_hugetlb_page(vma)) {
328		if (ops->hugetlb_entry)
329			err = walk_hugetlb_range(start, end, walk);
330	} else
331		err = walk_pgd_range(start, end, walk);
332
333	if (vma && ops->post_vma)
334		ops->post_vma(walk);
335
336	return err;
337}
338
339/**
340 * walk_page_range - walk page table with caller specific callbacks
341 * @mm:		mm_struct representing the target process of page table walk
342 * @start:	start address of the virtual address range
343 * @end:	end address of the virtual address range
344 * @ops:	operation to call during the walk
345 * @private:	private data for callbacks' usage
346 *
347 * Recursively walk the page table tree of the process represented by @mm
348 * within the virtual address range [@start, @end). During walking, we can do
349 * some caller-specific works for each entry, by setting up pmd_entry(),
350 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
351 * callbacks, the associated entries/pages are just ignored.
352 * The return values of these callbacks are commonly defined like below:
353 *
354 *  - 0  : succeeded to handle the current entry, and if you don't reach the
355 *         end address yet, continue to walk.
356 *  - >0 : succeeded to handle the current entry, and return to the caller
357 *         with caller specific value.
358 *  - <0 : failed to handle the current entry, and return to the caller
359 *         with error code.
360 *
361 * Before starting to walk page table, some callers want to check whether
362 * they really want to walk over the current vma, typically by checking
363 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
364 * purpose.
365 *
366 * If operations need to be staged before and committed after a vma is walked,
367 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
368 * since it is intended to handle commit-type operations, can't return any
369 * errors.
370 *
371 * struct mm_walk keeps current values of some common data like vma and pmd,
372 * which are useful for the access from callbacks. If you want to pass some
373 * caller-specific data to callbacks, @private should be helpful.
374 *
375 * Locking:
376 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
377 *   because these function traverse vma list and/or access to vma's data.
378 */
379int walk_page_range(struct mm_struct *mm, unsigned long start,
380		unsigned long end, const struct mm_walk_ops *ops,
381		void *private)
382{
383	int err = 0;
384	unsigned long next;
385	struct vm_area_struct *vma;
386	struct mm_walk walk = {
387		.ops		= ops,
388		.mm		= mm,
389		.private	= private,
390	};
391
392	if (start >= end)
393		return -EINVAL;
394
395	if (!walk.mm)
396		return -EINVAL;
397
398	mmap_assert_locked(walk.mm);
399
400	vma = find_vma(walk.mm, start);
401	do {
402		if (!vma) { /* after the last vma */
403			walk.vma = NULL;
404			next = end;
 
 
405		} else if (start < vma->vm_start) { /* outside vma */
406			walk.vma = NULL;
407			next = min(end, vma->vm_start);
 
 
408		} else { /* inside vma */
409			walk.vma = vma;
410			next = min(end, vma->vm_end);
411			vma = vma->vm_next;
412
413			err = walk_page_test(start, next, &walk);
414			if (err > 0) {
415				/*
416				 * positive return values are purely for
417				 * controlling the pagewalk, so should never
418				 * be passed to the callers.
419				 */
420				err = 0;
421				continue;
422			}
423			if (err < 0)
424				break;
425		}
426		if (walk.vma || walk.ops->pte_hole)
427			err = __walk_page_range(start, next, &walk);
 
428		if (err)
429			break;
430	} while (start = next, start < end);
431	return err;
432}
433
434/*
 
 
 
 
 
 
 
 
435 * Similar to walk_page_range() but can walk any page tables even if they are
436 * not backed by VMAs. Because 'unusual' entries may be walked this function
437 * will also not lock the PTEs for the pte_entry() callback. This is useful for
438 * walking the kernel pages tables or page tables for firmware.
439 */
440int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
441			  unsigned long end, const struct mm_walk_ops *ops,
442			  pgd_t *pgd,
443			  void *private)
444{
445	struct mm_walk walk = {
446		.ops		= ops,
447		.mm		= mm,
448		.pgd		= pgd,
449		.private	= private,
450		.no_vma		= true
451	};
452
453	if (start >= end || !walk.mm)
454		return -EINVAL;
455
456	mmap_assert_locked(walk.mm);
 
 
 
457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458	return __walk_page_range(start, end, &walk);
459}
460
461int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
462		void *private)
463{
464	struct mm_walk walk = {
465		.ops		= ops,
466		.mm		= vma->vm_mm,
467		.vma		= vma,
468		.private	= private,
469	};
470	int err;
471
472	if (!walk.mm)
473		return -EINVAL;
474
475	mmap_assert_locked(walk.mm);
476
477	err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
478	if (err > 0)
479		return 0;
480	if (err < 0)
481		return err;
482	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
483}
484
485/**
486 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
487 * @mapping: Pointer to the struct address_space
488 * @first_index: First page offset in the address_space
489 * @nr: Number of incremental page offsets to cover
490 * @ops:	operation to call during the walk
491 * @private:	private data for callbacks' usage
492 *
493 * This function walks all memory areas mapped into a struct address_space.
494 * The walk is limited to only the given page-size index range, but if
495 * the index boundaries cross a huge page-table entry, that entry will be
496 * included.
497 *
498 * Also see walk_page_range() for additional information.
499 *
500 * Locking:
501 *   This function can't require that the struct mm_struct::mmap_lock is held,
502 *   since @mapping may be mapped by multiple processes. Instead
503 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
504 *   callbacks, and it's up tho the caller to ensure that the
505 *   struct mm_struct::mmap_lock is not needed.
506 *
507 *   Also this means that a caller can't rely on the struct
508 *   vm_area_struct::vm_flags to be constant across a call,
509 *   except for immutable flags. Callers requiring this shouldn't use
510 *   this function.
511 *
512 * Return: 0 on success, negative error code on failure, positive number on
513 * caller defined premature termination.
514 */
515int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
516		      pgoff_t nr, const struct mm_walk_ops *ops,
517		      void *private)
518{
519	struct mm_walk walk = {
520		.ops		= ops,
521		.private	= private,
522	};
523	struct vm_area_struct *vma;
524	pgoff_t vba, vea, cba, cea;
525	unsigned long start_addr, end_addr;
526	int err = 0;
527
528	lockdep_assert_held(&mapping->i_mmap_rwsem);
529	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
530				  first_index + nr - 1) {
531		/* Clip to the vma */
532		vba = vma->vm_pgoff;
533		vea = vba + vma_pages(vma);
534		cba = first_index;
535		cba = max(cba, vba);
536		cea = first_index + nr;
537		cea = min(cea, vea);
538
539		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
540		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
541		if (start_addr >= end_addr)
542			continue;
543
544		walk.vma = vma;
545		walk.mm = vma->vm_mm;
546
547		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
548		if (err > 0) {
549			err = 0;
550			break;
551		} else if (err < 0)
552			break;
553
554		err = __walk_page_range(start_addr, end_addr, &walk);
555		if (err)
556			break;
557	}
558
559	return err;
560}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 56	}
 57
 58	return err;
 59}
 60
 61#ifdef CONFIG_ARCH_HAS_HUGEPD
 62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 63			     unsigned long end, struct mm_walk *walk, int pdshift)
 64{
 65	int err = 0;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int shift = hugepd_shift(*phpd);
 68	int page_size = 1 << shift;
 69
 70	if (!ops->pte_entry)
 71		return 0;
 72
 73	if (addr & (page_size - 1))
 74		return 0;
 75
 76	for (;;) {
 77		pte_t *pte;
 78
 79		spin_lock(&walk->mm->page_table_lock);
 80		pte = hugepte_offset(*phpd, addr, pdshift);
 81		err = ops->pte_entry(pte, addr, addr + page_size, walk);
 82		spin_unlock(&walk->mm->page_table_lock);
 83
 84		if (err)
 85			break;
 86		if (addr >= end - page_size)
 87			break;
 88		addr += page_size;
 89	}
 90	return err;
 91}
 92#else
 93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
 94			     unsigned long end, struct mm_walk *walk, int pdshift)
 95{
 96	return 0;
 97}
 98#endif
 99
100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101			  struct mm_walk *walk)
102{
103	pmd_t *pmd;
104	unsigned long next;
105	const struct mm_walk_ops *ops = walk->ops;
106	int err = 0;
107	int depth = real_depth(3);
108
109	pmd = pmd_offset(pud, addr);
110	do {
111again:
112		next = pmd_addr_end(addr, end);
113		if (pmd_none(*pmd)) {
114			if (ops->pte_hole)
115				err = ops->pte_hole(addr, next, depth, walk);
116			if (err)
117				break;
118			continue;
119		}
120
121		walk->action = ACTION_SUBTREE;
122
123		/*
124		 * This implies that each ->pmd_entry() handler
125		 * needs to know about pmd_trans_huge() pmds
126		 */
127		if (ops->pmd_entry)
128			err = ops->pmd_entry(pmd, addr, next, walk);
129		if (err)
130			break;
131
132		if (walk->action == ACTION_AGAIN)
133			goto again;
134
135		/*
136		 * Check this here so we only break down trans_huge
137		 * pages when we _need_ to
138		 */
139		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140		    walk->action == ACTION_CONTINUE ||
141		    !(ops->pte_entry))
142			continue;
143
144		if (walk->vma) {
145			split_huge_pmd(walk->vma, pmd, addr);
146			if (pmd_trans_unstable(pmd))
147				goto again;
148		}
149
150		if (is_hugepd(__hugepd(pmd_val(*pmd))))
151			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152		else
153			err = walk_pte_range(pmd, addr, next, walk);
154		if (err)
155			break;
156	} while (pmd++, addr = next, addr != end);
157
158	return err;
159}
160
161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162			  struct mm_walk *walk)
163{
164	pud_t *pud;
165	unsigned long next;
166	const struct mm_walk_ops *ops = walk->ops;
167	int err = 0;
168	int depth = real_depth(2);
169
170	pud = pud_offset(p4d, addr);
171	do {
172 again:
173		next = pud_addr_end(addr, end);
174		if (pud_none(*pud)) {
175			if (ops->pte_hole)
176				err = ops->pte_hole(addr, next, depth, walk);
177			if (err)
178				break;
179			continue;
180		}
181
182		walk->action = ACTION_SUBTREE;
183
184		if (ops->pud_entry)
185			err = ops->pud_entry(pud, addr, next, walk);
186		if (err)
187			break;
188
189		if (walk->action == ACTION_AGAIN)
190			goto again;
191
192		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193		    walk->action == ACTION_CONTINUE ||
194		    !(ops->pmd_entry || ops->pte_entry))
195			continue;
196
197		if (walk->vma)
198			split_huge_pud(walk->vma, pud, addr);
199		if (pud_none(*pud))
200			goto again;
201
202		if (is_hugepd(__hugepd(pud_val(*pud))))
203			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204		else
205			err = walk_pmd_range(pud, addr, next, walk);
206		if (err)
207			break;
208	} while (pud++, addr = next, addr != end);
209
210	return err;
211}
212
213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214			  struct mm_walk *walk)
215{
216	p4d_t *p4d;
217	unsigned long next;
218	const struct mm_walk_ops *ops = walk->ops;
219	int err = 0;
220	int depth = real_depth(1);
221
222	p4d = p4d_offset(pgd, addr);
223	do {
224		next = p4d_addr_end(addr, end);
225		if (p4d_none_or_clear_bad(p4d)) {
226			if (ops->pte_hole)
227				err = ops->pte_hole(addr, next, depth, walk);
228			if (err)
229				break;
230			continue;
231		}
232		if (ops->p4d_entry) {
233			err = ops->p4d_entry(p4d, addr, next, walk);
234			if (err)
235				break;
236		}
237		if (is_hugepd(__hugepd(p4d_val(*p4d))))
238			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240			err = walk_pud_range(p4d, addr, next, walk);
241		if (err)
242			break;
243	} while (p4d++, addr = next, addr != end);
244
245	return err;
246}
247
248static int walk_pgd_range(unsigned long addr, unsigned long end,
249			  struct mm_walk *walk)
250{
251	pgd_t *pgd;
252	unsigned long next;
253	const struct mm_walk_ops *ops = walk->ops;
254	int err = 0;
255
256	if (walk->pgd)
257		pgd = walk->pgd + pgd_index(addr);
258	else
259		pgd = pgd_offset(walk->mm, addr);
260	do {
261		next = pgd_addr_end(addr, end);
262		if (pgd_none_or_clear_bad(pgd)) {
263			if (ops->pte_hole)
264				err = ops->pte_hole(addr, next, 0, walk);
265			if (err)
266				break;
267			continue;
268		}
269		if (ops->pgd_entry) {
270			err = ops->pgd_entry(pgd, addr, next, walk);
271			if (err)
272				break;
273		}
274		if (is_hugepd(__hugepd(pgd_val(*pgd))))
275			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277			err = walk_p4d_range(pgd, addr, next, walk);
278		if (err)
279			break;
280	} while (pgd++, addr = next, addr != end);
281
282	return err;
283}
284
285#ifdef CONFIG_HUGETLB_PAGE
286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287				       unsigned long end)
288{
289	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290	return boundary < end ? boundary : end;
291}
292
293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
294			      struct mm_walk *walk)
295{
296	struct vm_area_struct *vma = walk->vma;
297	struct hstate *h = hstate_vma(vma);
298	unsigned long next;
299	unsigned long hmask = huge_page_mask(h);
300	unsigned long sz = huge_page_size(h);
301	pte_t *pte;
302	const struct mm_walk_ops *ops = walk->ops;
303	int err = 0;
304
305	do {
306		next = hugetlb_entry_end(h, addr, end);
307		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309		if (pte)
310			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311		else if (ops->pte_hole)
312			err = ops->pte_hole(addr, next, -1, walk);
313
314		if (err)
315			break;
316	} while (addr = next, addr != end);
317
318	return err;
319}
320
321#else /* CONFIG_HUGETLB_PAGE */
322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
323			      struct mm_walk *walk)
324{
325	return 0;
326}
327
328#endif /* CONFIG_HUGETLB_PAGE */
329
330/*
331 * Decide whether we really walk over the current vma on [@start, @end)
332 * or skip it via the returned value. Return 0 if we do walk over the
333 * current vma, and return 1 if we skip the vma. Negative values means
334 * error, where we abort the current walk.
335 */
336static int walk_page_test(unsigned long start, unsigned long end,
337			struct mm_walk *walk)
338{
339	struct vm_area_struct *vma = walk->vma;
340	const struct mm_walk_ops *ops = walk->ops;
341
342	if (ops->test_walk)
343		return ops->test_walk(start, end, walk);
344
345	/*
346	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347	 * range, so we don't walk over it as we do for normal vmas. However,
348	 * Some callers are interested in handling hole range and they don't
349	 * want to just ignore any single address range. Such users certainly
350	 * define their ->pte_hole() callbacks, so let's delegate them to handle
351	 * vma(VM_PFNMAP).
352	 */
353	if (vma->vm_flags & VM_PFNMAP) {
354		int err = 1;
355		if (ops->pte_hole)
356			err = ops->pte_hole(start, end, -1, walk);
357		return err ? err : 1;
358	}
359	return 0;
360}
361
362static int __walk_page_range(unsigned long start, unsigned long end,
363			struct mm_walk *walk)
364{
365	int err = 0;
366	struct vm_area_struct *vma = walk->vma;
367	const struct mm_walk_ops *ops = walk->ops;
368
369	if (ops->pre_vma) {
370		err = ops->pre_vma(start, end, walk);
371		if (err)
372			return err;
373	}
374
375	if (is_vm_hugetlb_page(vma)) {
376		if (ops->hugetlb_entry)
377			err = walk_hugetlb_range(start, end, walk);
378	} else
379		err = walk_pgd_range(start, end, walk);
380
381	if (ops->post_vma)
382		ops->post_vma(walk);
383
384	return err;
385}
386
387/**
388 * walk_page_range - walk page table with caller specific callbacks
389 * @mm:		mm_struct representing the target process of page table walk
390 * @start:	start address of the virtual address range
391 * @end:	end address of the virtual address range
392 * @ops:	operation to call during the walk
393 * @private:	private data for callbacks' usage
394 *
395 * Recursively walk the page table tree of the process represented by @mm
396 * within the virtual address range [@start, @end). During walking, we can do
397 * some caller-specific works for each entry, by setting up pmd_entry(),
398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399 * callbacks, the associated entries/pages are just ignored.
400 * The return values of these callbacks are commonly defined like below:
401 *
402 *  - 0  : succeeded to handle the current entry, and if you don't reach the
403 *         end address yet, continue to walk.
404 *  - >0 : succeeded to handle the current entry, and return to the caller
405 *         with caller specific value.
406 *  - <0 : failed to handle the current entry, and return to the caller
407 *         with error code.
408 *
409 * Before starting to walk page table, some callers want to check whether
410 * they really want to walk over the current vma, typically by checking
411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412 * purpose.
413 *
414 * If operations need to be staged before and committed after a vma is walked,
415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416 * since it is intended to handle commit-type operations, can't return any
417 * errors.
418 *
419 * struct mm_walk keeps current values of some common data like vma and pmd,
420 * which are useful for the access from callbacks. If you want to pass some
421 * caller-specific data to callbacks, @private should be helpful.
422 *
423 * Locking:
424 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425 *   because these function traverse vma list and/or access to vma's data.
426 */
427int walk_page_range(struct mm_struct *mm, unsigned long start,
428		unsigned long end, const struct mm_walk_ops *ops,
429		void *private)
430{
431	int err = 0;
432	unsigned long next;
433	struct vm_area_struct *vma;
434	struct mm_walk walk = {
435		.ops		= ops,
436		.mm		= mm,
437		.private	= private,
438	};
439
440	if (start >= end)
441		return -EINVAL;
442
443	if (!walk.mm)
444		return -EINVAL;
445
446	mmap_assert_locked(walk.mm);
447
448	vma = find_vma(walk.mm, start);
449	do {
450		if (!vma) { /* after the last vma */
451			walk.vma = NULL;
452			next = end;
453			if (ops->pte_hole)
454				err = ops->pte_hole(start, next, -1, &walk);
455		} else if (start < vma->vm_start) { /* outside vma */
456			walk.vma = NULL;
457			next = min(end, vma->vm_start);
458			if (ops->pte_hole)
459				err = ops->pte_hole(start, next, -1, &walk);
460		} else { /* inside vma */
461			walk.vma = vma;
462			next = min(end, vma->vm_end);
463			vma = find_vma(mm, vma->vm_end);
464
465			err = walk_page_test(start, next, &walk);
466			if (err > 0) {
467				/*
468				 * positive return values are purely for
469				 * controlling the pagewalk, so should never
470				 * be passed to the callers.
471				 */
472				err = 0;
473				continue;
474			}
475			if (err < 0)
476				break;
 
 
477			err = __walk_page_range(start, next, &walk);
478		}
479		if (err)
480			break;
481	} while (start = next, start < end);
482	return err;
483}
484
485/**
486 * walk_page_range_novma - walk a range of pagetables not backed by a vma
487 * @mm:		mm_struct representing the target process of page table walk
488 * @start:	start address of the virtual address range
489 * @end:	end address of the virtual address range
490 * @ops:	operation to call during the walk
491 * @pgd:	pgd to walk if different from mm->pgd
492 * @private:	private data for callbacks' usage
493 *
494 * Similar to walk_page_range() but can walk any page tables even if they are
495 * not backed by VMAs. Because 'unusual' entries may be walked this function
496 * will also not lock the PTEs for the pte_entry() callback. This is useful for
497 * walking the kernel pages tables or page tables for firmware.
498 */
499int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500			  unsigned long end, const struct mm_walk_ops *ops,
501			  pgd_t *pgd,
502			  void *private)
503{
504	struct mm_walk walk = {
505		.ops		= ops,
506		.mm		= mm,
507		.pgd		= pgd,
508		.private	= private,
509		.no_vma		= true
510	};
511
512	if (start >= end || !walk.mm)
513		return -EINVAL;
514
515	mmap_assert_write_locked(walk.mm);
516
517	return walk_pgd_range(start, end, &walk);
518}
519
520int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
521			unsigned long end, const struct mm_walk_ops *ops,
522			void *private)
523{
524	struct mm_walk walk = {
525		.ops		= ops,
526		.mm		= vma->vm_mm,
527		.vma		= vma,
528		.private	= private,
529	};
530
531	if (start >= end || !walk.mm)
532		return -EINVAL;
533	if (start < vma->vm_start || end > vma->vm_end)
534		return -EINVAL;
535
536	mmap_assert_locked(walk.mm);
537	return __walk_page_range(start, end, &walk);
538}
539
540int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
541		void *private)
542{
543	struct mm_walk walk = {
544		.ops		= ops,
545		.mm		= vma->vm_mm,
546		.vma		= vma,
547		.private	= private,
548	};
 
549
550	if (!walk.mm)
551		return -EINVAL;
552
553	mmap_assert_locked(walk.mm);
 
 
 
 
 
 
554	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
555}
556
557/**
558 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
559 * @mapping: Pointer to the struct address_space
560 * @first_index: First page offset in the address_space
561 * @nr: Number of incremental page offsets to cover
562 * @ops:	operation to call during the walk
563 * @private:	private data for callbacks' usage
564 *
565 * This function walks all memory areas mapped into a struct address_space.
566 * The walk is limited to only the given page-size index range, but if
567 * the index boundaries cross a huge page-table entry, that entry will be
568 * included.
569 *
570 * Also see walk_page_range() for additional information.
571 *
572 * Locking:
573 *   This function can't require that the struct mm_struct::mmap_lock is held,
574 *   since @mapping may be mapped by multiple processes. Instead
575 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
576 *   callbacks, and it's up tho the caller to ensure that the
577 *   struct mm_struct::mmap_lock is not needed.
578 *
579 *   Also this means that a caller can't rely on the struct
580 *   vm_area_struct::vm_flags to be constant across a call,
581 *   except for immutable flags. Callers requiring this shouldn't use
582 *   this function.
583 *
584 * Return: 0 on success, negative error code on failure, positive number on
585 * caller defined premature termination.
586 */
587int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
588		      pgoff_t nr, const struct mm_walk_ops *ops,
589		      void *private)
590{
591	struct mm_walk walk = {
592		.ops		= ops,
593		.private	= private,
594	};
595	struct vm_area_struct *vma;
596	pgoff_t vba, vea, cba, cea;
597	unsigned long start_addr, end_addr;
598	int err = 0;
599
600	lockdep_assert_held(&mapping->i_mmap_rwsem);
601	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
602				  first_index + nr - 1) {
603		/* Clip to the vma */
604		vba = vma->vm_pgoff;
605		vea = vba + vma_pages(vma);
606		cba = first_index;
607		cba = max(cba, vba);
608		cea = first_index + nr;
609		cea = min(cea, vea);
610
611		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
612		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
613		if (start_addr >= end_addr)
614			continue;
615
616		walk.vma = vma;
617		walk.mm = vma->vm_mm;
618
619		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
620		if (err > 0) {
621			err = 0;
622			break;
623		} else if (err < 0)
624			break;
625
626		err = __walk_page_range(start_addr, end_addr, &walk);
627		if (err)
628			break;
629	}
630
631	return err;
632}