Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/pagewalk.h>
  3#include <linux/highmem.h>
  4#include <linux/sched.h>
  5#include <linux/hugetlb.h>
  6
  7/*
  8 * We want to know the real level where a entry is located ignoring any
  9 * folding of levels which may be happening. For example if p4d is folded then
 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
 11 */
 12static int real_depth(int depth)
 13{
 14	if (depth == 3 && PTRS_PER_PMD == 1)
 15		depth = 2;
 16	if (depth == 2 && PTRS_PER_PUD == 1)
 17		depth = 1;
 18	if (depth == 1 && PTRS_PER_P4D == 1)
 19		depth = 0;
 20	return depth;
 21}
 22
 23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
 24				unsigned long end, struct mm_walk *walk)
 25{
 26	const struct mm_walk_ops *ops = walk->ops;
 27	int err = 0;
 28
 
 29	for (;;) {
 30		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 31		if (err)
 32		       break;
 33		if (addr >= end - PAGE_SIZE)
 34			break;
 35		addr += PAGE_SIZE;
 
 
 36		pte++;
 37	}
 38	return err;
 39}
 40
 41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 42			  struct mm_walk *walk)
 43{
 44	pte_t *pte;
 45	int err = 0;
 46	spinlock_t *ptl;
 47
 48	if (walk->no_vma) {
 49		pte = pte_offset_map(pmd, addr);
 50		err = walk_pte_range_inner(pte, addr, end, walk);
 51		pte_unmap(pte);
 52	} else {
 53		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 54		err = walk_pte_range_inner(pte, addr, end, walk);
 55		pte_unmap_unlock(pte, ptl);
 56	}
 57
 
 58	return err;
 59}
 60
 61static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 62			  struct mm_walk *walk)
 63{
 64	pmd_t *pmd;
 65	unsigned long next;
 66	const struct mm_walk_ops *ops = walk->ops;
 67	int err = 0;
 68	int depth = real_depth(3);
 69
 70	pmd = pmd_offset(pud, addr);
 71	do {
 72again:
 73		next = pmd_addr_end(addr, end);
 74		if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
 75			if (ops->pte_hole)
 76				err = ops->pte_hole(addr, next, depth, walk);
 77			if (err)
 78				break;
 79			continue;
 80		}
 81
 82		walk->action = ACTION_SUBTREE;
 83
 84		/*
 85		 * This implies that each ->pmd_entry() handler
 86		 * needs to know about pmd_trans_huge() pmds
 87		 */
 88		if (ops->pmd_entry)
 89			err = ops->pmd_entry(pmd, addr, next, walk);
 90		if (err)
 91			break;
 92
 93		if (walk->action == ACTION_AGAIN)
 94			goto again;
 95
 96		/*
 97		 * Check this here so we only break down trans_huge
 98		 * pages when we _need_ to
 99		 */
100		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
101		    walk->action == ACTION_CONTINUE ||
102		    !(ops->pte_entry))
103			continue;
104
105		if (walk->vma) {
106			split_huge_pmd(walk->vma, pmd, addr);
107			if (pmd_trans_unstable(pmd))
108				goto again;
109		}
110
111		err = walk_pte_range(pmd, addr, next, walk);
112		if (err)
113			break;
114	} while (pmd++, addr = next, addr != end);
115
116	return err;
117}
118
119static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
120			  struct mm_walk *walk)
121{
122	pud_t *pud;
123	unsigned long next;
124	const struct mm_walk_ops *ops = walk->ops;
125	int err = 0;
126	int depth = real_depth(2);
127
128	pud = pud_offset(p4d, addr);
129	do {
130 again:
131		next = pud_addr_end(addr, end);
132		if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
133			if (ops->pte_hole)
134				err = ops->pte_hole(addr, next, depth, walk);
135			if (err)
136				break;
137			continue;
138		}
139
140		walk->action = ACTION_SUBTREE;
141
142		if (ops->pud_entry)
143			err = ops->pud_entry(pud, addr, next, walk);
144		if (err)
145			break;
146
147		if (walk->action == ACTION_AGAIN)
148			goto again;
149
150		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
151		    walk->action == ACTION_CONTINUE ||
152		    !(ops->pmd_entry || ops->pte_entry))
153			continue;
154
155		if (walk->vma)
156			split_huge_pud(walk->vma, pud, addr);
157		if (pud_none(*pud))
158			goto again;
159
160		err = walk_pmd_range(pud, addr, next, walk);
161		if (err)
162			break;
163	} while (pud++, addr = next, addr != end);
164
165	return err;
166}
167
168static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
169			  struct mm_walk *walk)
170{
171	p4d_t *p4d;
172	unsigned long next;
173	const struct mm_walk_ops *ops = walk->ops;
174	int err = 0;
175	int depth = real_depth(1);
176
177	p4d = p4d_offset(pgd, addr);
178	do {
179		next = p4d_addr_end(addr, end);
180		if (p4d_none_or_clear_bad(p4d)) {
181			if (ops->pte_hole)
182				err = ops->pte_hole(addr, next, depth, walk);
183			if (err)
184				break;
185			continue;
186		}
187		if (ops->p4d_entry) {
188			err = ops->p4d_entry(p4d, addr, next, walk);
189			if (err)
190				break;
191		}
192		if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
193			err = walk_pud_range(p4d, addr, next, walk);
194		if (err)
195			break;
196	} while (p4d++, addr = next, addr != end);
197
198	return err;
199}
200
201static int walk_pgd_range(unsigned long addr, unsigned long end,
202			  struct mm_walk *walk)
203{
204	pgd_t *pgd;
205	unsigned long next;
206	const struct mm_walk_ops *ops = walk->ops;
207	int err = 0;
208
209	if (walk->pgd)
210		pgd = walk->pgd + pgd_index(addr);
211	else
212		pgd = pgd_offset(walk->mm, addr);
213	do {
214		next = pgd_addr_end(addr, end);
215		if (pgd_none_or_clear_bad(pgd)) {
216			if (ops->pte_hole)
217				err = ops->pte_hole(addr, next, 0, walk);
218			if (err)
219				break;
220			continue;
221		}
222		if (ops->pgd_entry) {
223			err = ops->pgd_entry(pgd, addr, next, walk);
224			if (err)
225				break;
226		}
227		if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
228		    ops->pte_entry)
229			err = walk_p4d_range(pgd, addr, next, walk);
230		if (err)
231			break;
232	} while (pgd++, addr = next, addr != end);
233
234	return err;
235}
236
237#ifdef CONFIG_HUGETLB_PAGE
238static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
239				       unsigned long end)
240{
241	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
242	return boundary < end ? boundary : end;
243}
244
245static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 
246			      struct mm_walk *walk)
247{
248	struct vm_area_struct *vma = walk->vma;
249	struct hstate *h = hstate_vma(vma);
250	unsigned long next;
251	unsigned long hmask = huge_page_mask(h);
252	unsigned long sz = huge_page_size(h);
253	pte_t *pte;
254	const struct mm_walk_ops *ops = walk->ops;
255	int err = 0;
256
257	do {
258		next = hugetlb_entry_end(h, addr, end);
259		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
260
261		if (pte)
262			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
263		else if (ops->pte_hole)
264			err = ops->pte_hole(addr, next, -1, walk);
265
266		if (err)
267			break;
268	} while (addr = next, addr != end);
269
270	return err;
271}
272
273#else /* CONFIG_HUGETLB_PAGE */
274static int walk_hugetlb_range(unsigned long addr, unsigned long end,
 
275			      struct mm_walk *walk)
276{
277	return 0;
278}
279
280#endif /* CONFIG_HUGETLB_PAGE */
281
282/*
283 * Decide whether we really walk over the current vma on [@start, @end)
284 * or skip it via the returned value. Return 0 if we do walk over the
285 * current vma, and return 1 if we skip the vma. Negative values means
286 * error, where we abort the current walk.
287 */
288static int walk_page_test(unsigned long start, unsigned long end,
289			struct mm_walk *walk)
290{
291	struct vm_area_struct *vma = walk->vma;
292	const struct mm_walk_ops *ops = walk->ops;
293
294	if (ops->test_walk)
295		return ops->test_walk(start, end, walk);
296
297	/*
298	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
299	 * range, so we don't walk over it as we do for normal vmas. However,
300	 * Some callers are interested in handling hole range and they don't
301	 * want to just ignore any single address range. Such users certainly
302	 * define their ->pte_hole() callbacks, so let's delegate them to handle
303	 * vma(VM_PFNMAP).
304	 */
305	if (vma->vm_flags & VM_PFNMAP) {
306		int err = 1;
307		if (ops->pte_hole)
308			err = ops->pte_hole(start, end, -1, walk);
309		return err ? err : 1;
310	}
311	return 0;
312}
313
314static int __walk_page_range(unsigned long start, unsigned long end,
315			struct mm_walk *walk)
316{
317	int err = 0;
318	struct vm_area_struct *vma = walk->vma;
319	const struct mm_walk_ops *ops = walk->ops;
320
321	if (vma && ops->pre_vma) {
322		err = ops->pre_vma(start, end, walk);
323		if (err)
324			return err;
325	}
326
327	if (vma && is_vm_hugetlb_page(vma)) {
328		if (ops->hugetlb_entry)
329			err = walk_hugetlb_range(start, end, walk);
330	} else
331		err = walk_pgd_range(start, end, walk);
332
333	if (vma && ops->post_vma)
334		ops->post_vma(walk);
335
336	return err;
337}
338
339/**
340 * walk_page_range - walk page table with caller specific callbacks
341 * @mm:		mm_struct representing the target process of page table walk
342 * @start:	start address of the virtual address range
343 * @end:	end address of the virtual address range
344 * @ops:	operation to call during the walk
345 * @private:	private data for callbacks' usage
346 *
347 * Recursively walk the page table tree of the process represented by @mm
348 * within the virtual address range [@start, @end). During walking, we can do
349 * some caller-specific works for each entry, by setting up pmd_entry(),
350 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
351 * callbacks, the associated entries/pages are just ignored.
352 * The return values of these callbacks are commonly defined like below:
353 *
354 *  - 0  : succeeded to handle the current entry, and if you don't reach the
355 *         end address yet, continue to walk.
356 *  - >0 : succeeded to handle the current entry, and return to the caller
357 *         with caller specific value.
358 *  - <0 : failed to handle the current entry, and return to the caller
359 *         with error code.
360 *
361 * Before starting to walk page table, some callers want to check whether
362 * they really want to walk over the current vma, typically by checking
363 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
364 * purpose.
365 *
366 * If operations need to be staged before and committed after a vma is walked,
367 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
368 * since it is intended to handle commit-type operations, can't return any
369 * errors.
370 *
371 * struct mm_walk keeps current values of some common data like vma and pmd,
372 * which are useful for the access from callbacks. If you want to pass some
373 * caller-specific data to callbacks, @private should be helpful.
374 *
375 * Locking:
376 *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
377 *   because these function traverse vma list and/or access to vma's data.
378 */
379int walk_page_range(struct mm_struct *mm, unsigned long start,
380		unsigned long end, const struct mm_walk_ops *ops,
381		void *private)
382{
383	int err = 0;
384	unsigned long next;
385	struct vm_area_struct *vma;
386	struct mm_walk walk = {
387		.ops		= ops,
388		.mm		= mm,
389		.private	= private,
390	};
391
392	if (start >= end)
393		return -EINVAL;
394
395	if (!walk.mm)
396		return -EINVAL;
397
398	mmap_assert_locked(walk.mm);
399
400	vma = find_vma(walk.mm, start);
401	do {
402		if (!vma) { /* after the last vma */
403			walk.vma = NULL;
404			next = end;
405		} else if (start < vma->vm_start) { /* outside vma */
406			walk.vma = NULL;
407			next = min(end, vma->vm_start);
408		} else { /* inside vma */
409			walk.vma = vma;
410			next = min(end, vma->vm_end);
411			vma = vma->vm_next;
412
413			err = walk_page_test(start, next, &walk);
414			if (err > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415				/*
416				 * positive return values are purely for
417				 * controlling the pagewalk, so should never
418				 * be passed to the callers.
419				 */
420				err = 0;
 
 
 
421				continue;
422			}
423			if (err < 0)
424				break;
425		}
426		if (walk.vma || walk.ops->pte_hole)
427			err = __walk_page_range(start, next, &walk);
428		if (err)
429			break;
430	} while (start = next, start < end);
431	return err;
432}
433
434/*
435 * Similar to walk_page_range() but can walk any page tables even if they are
436 * not backed by VMAs. Because 'unusual' entries may be walked this function
437 * will also not lock the PTEs for the pte_entry() callback. This is useful for
438 * walking the kernel pages tables or page tables for firmware.
439 */
440int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
441			  unsigned long end, const struct mm_walk_ops *ops,
442			  pgd_t *pgd,
443			  void *private)
444{
445	struct mm_walk walk = {
446		.ops		= ops,
447		.mm		= mm,
448		.pgd		= pgd,
449		.private	= private,
450		.no_vma		= true
451	};
452
453	if (start >= end || !walk.mm)
454		return -EINVAL;
455
456	mmap_assert_locked(walk.mm);
457
458	return __walk_page_range(start, end, &walk);
459}
460
461int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
462		void *private)
463{
464	struct mm_walk walk = {
465		.ops		= ops,
466		.mm		= vma->vm_mm,
467		.vma		= vma,
468		.private	= private,
469	};
470	int err;
471
472	if (!walk.mm)
473		return -EINVAL;
474
475	mmap_assert_locked(walk.mm);
476
477	err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
478	if (err > 0)
479		return 0;
480	if (err < 0)
481		return err;
482	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
483}
484
485/**
486 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
487 * @mapping: Pointer to the struct address_space
488 * @first_index: First page offset in the address_space
489 * @nr: Number of incremental page offsets to cover
490 * @ops:	operation to call during the walk
491 * @private:	private data for callbacks' usage
492 *
493 * This function walks all memory areas mapped into a struct address_space.
494 * The walk is limited to only the given page-size index range, but if
495 * the index boundaries cross a huge page-table entry, that entry will be
496 * included.
497 *
498 * Also see walk_page_range() for additional information.
499 *
500 * Locking:
501 *   This function can't require that the struct mm_struct::mmap_lock is held,
502 *   since @mapping may be mapped by multiple processes. Instead
503 *   @mapping->i_mmap_rwsem must be held. This might have implications in the
504 *   callbacks, and it's up tho the caller to ensure that the
505 *   struct mm_struct::mmap_lock is not needed.
506 *
507 *   Also this means that a caller can't rely on the struct
508 *   vm_area_struct::vm_flags to be constant across a call,
509 *   except for immutable flags. Callers requiring this shouldn't use
510 *   this function.
511 *
512 * Return: 0 on success, negative error code on failure, positive number on
513 * caller defined premature termination.
514 */
515int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
516		      pgoff_t nr, const struct mm_walk_ops *ops,
517		      void *private)
518{
519	struct mm_walk walk = {
520		.ops		= ops,
521		.private	= private,
522	};
523	struct vm_area_struct *vma;
524	pgoff_t vba, vea, cba, cea;
525	unsigned long start_addr, end_addr;
526	int err = 0;
527
528	lockdep_assert_held(&mapping->i_mmap_rwsem);
529	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
530				  first_index + nr - 1) {
531		/* Clip to the vma */
532		vba = vma->vm_pgoff;
533		vea = vba + vma_pages(vma);
534		cba = first_index;
535		cba = max(cba, vba);
536		cea = first_index + nr;
537		cea = min(cea, vea);
538
539		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
540		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
541		if (start_addr >= end_addr)
542			continue;
543
544		walk.vma = vma;
545		walk.mm = vma->vm_mm;
546
547		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
548		if (err > 0) {
549			err = 0;
550			break;
551		} else if (err < 0)
552			break;
553
554		err = __walk_page_range(start_addr, end_addr, &walk);
555		if (err)
556			break;
557	}
 
558
559	return err;
560}
v3.15
  1#include <linux/mm.h>
 
  2#include <linux/highmem.h>
  3#include <linux/sched.h>
  4#include <linux/hugetlb.h>
  5
  6static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  7			  struct mm_walk *walk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8{
  9	pte_t *pte;
 10	int err = 0;
 11
 12	pte = pte_offset_map(pmd, addr);
 13	for (;;) {
 14		err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
 15		if (err)
 16		       break;
 
 
 17		addr += PAGE_SIZE;
 18		if (addr == end)
 19			break;
 20		pte++;
 21	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23	pte_unmap(pte);
 24	return err;
 25}
 26
 27static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 28			  struct mm_walk *walk)
 29{
 30	pmd_t *pmd;
 31	unsigned long next;
 
 32	int err = 0;
 
 33
 34	pmd = pmd_offset(pud, addr);
 35	do {
 36again:
 37		next = pmd_addr_end(addr, end);
 38		if (pmd_none(*pmd)) {
 39			if (walk->pte_hole)
 40				err = walk->pte_hole(addr, next, walk);
 41			if (err)
 42				break;
 43			continue;
 44		}
 
 
 
 45		/*
 46		 * This implies that each ->pmd_entry() handler
 47		 * needs to know about pmd_trans_huge() pmds
 48		 */
 49		if (walk->pmd_entry)
 50			err = walk->pmd_entry(pmd, addr, next, walk);
 51		if (err)
 52			break;
 53
 
 
 
 54		/*
 55		 * Check this here so we only break down trans_huge
 56		 * pages when we _need_ to
 57		 */
 58		if (!walk->pte_entry)
 
 
 59			continue;
 60
 61		split_huge_page_pmd_mm(walk->mm, addr, pmd);
 62		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 63			goto again;
 
 
 
 64		err = walk_pte_range(pmd, addr, next, walk);
 65		if (err)
 66			break;
 67	} while (pmd++, addr = next, addr != end);
 68
 69	return err;
 70}
 71
 72static int walk_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 73			  struct mm_walk *walk)
 74{
 75	pud_t *pud;
 76	unsigned long next;
 
 77	int err = 0;
 
 78
 79	pud = pud_offset(pgd, addr);
 80	do {
 
 81		next = pud_addr_end(addr, end);
 82		if (pud_none_or_clear_bad(pud)) {
 83			if (walk->pte_hole)
 84				err = walk->pte_hole(addr, next, walk);
 85			if (err)
 86				break;
 87			continue;
 88		}
 89		if (walk->pud_entry)
 90			err = walk->pud_entry(pud, addr, next, walk);
 91		if (!err && (walk->pmd_entry || walk->pte_entry))
 92			err = walk_pmd_range(pud, addr, next, walk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93		if (err)
 94			break;
 95	} while (pud++, addr = next, addr != end);
 96
 97	return err;
 98}
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100#ifdef CONFIG_HUGETLB_PAGE
101static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
102				       unsigned long end)
103{
104	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
105	return boundary < end ? boundary : end;
106}
107
108static int walk_hugetlb_range(struct vm_area_struct *vma,
109			      unsigned long addr, unsigned long end,
110			      struct mm_walk *walk)
111{
 
112	struct hstate *h = hstate_vma(vma);
113	unsigned long next;
114	unsigned long hmask = huge_page_mask(h);
 
115	pte_t *pte;
 
116	int err = 0;
117
118	do {
119		next = hugetlb_entry_end(h, addr, end);
120		pte = huge_pte_offset(walk->mm, addr & hmask);
121		if (pte && walk->hugetlb_entry)
122			err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
 
 
 
 
123		if (err)
124			return err;
125	} while (addr = next, addr != end);
126
127	return 0;
128}
129
130#else /* CONFIG_HUGETLB_PAGE */
131static int walk_hugetlb_range(struct vm_area_struct *vma,
132			      unsigned long addr, unsigned long end,
133			      struct mm_walk *walk)
134{
135	return 0;
136}
137
138#endif /* CONFIG_HUGETLB_PAGE */
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
 
 
 
 
141
142/**
143 * walk_page_range - walk a memory map's page tables with a callback
144 * @addr: starting address
145 * @end: ending address
146 * @walk: set of callbacks to invoke for each level of the tree
147 *
148 * Recursively walk the page table for the memory area in a VMA,
149 * calling supplied callbacks. Callbacks are called in-order (first
150 * PGD, first PUD, first PMD, first PTE, second PTE... second PMD,
151 * etc.). If lower-level callbacks are omitted, walking depth is reduced.
152 *
153 * Each callback receives an entry pointer and the start and end of the
154 * associated range, and a copy of the original mm_walk for access to
155 * the ->private or ->mm fields.
156 *
157 * Usually no locks are taken, but splitting transparent huge page may
158 * take page table lock. And the bottom level iterator will map PTE
159 * directories from highmem if necessary.
 
 
 
160 *
161 * If any callback returns a non-zero value, the walk is aborted and
162 * the return value is propagated back to the caller. Otherwise 0 is returned.
 
 
163 *
164 * walk->mm->mmap_sem must be held for at least read if walk->hugetlb_entry
165 * is !NULL.
 
 
 
 
 
 
 
 
 
 
166 */
167int walk_page_range(unsigned long addr, unsigned long end,
168		    struct mm_walk *walk)
 
169{
170	pgd_t *pgd;
171	unsigned long next;
172	int err = 0;
 
 
 
 
 
173
174	if (addr >= end)
175		return err;
176
177	if (!walk->mm)
178		return -EINVAL;
179
180	VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
181
182	pgd = pgd_offset(walk->mm, addr);
183	do {
184		struct vm_area_struct *vma = NULL;
 
 
 
 
 
 
 
 
 
185
186		next = pgd_addr_end(addr, end);
187
188		/*
189		 * This function was not intended to be vma based.
190		 * But there are vma special cases to be handled:
191		 * - hugetlb vma's
192		 * - VM_PFNMAP vma's
193		 */
194		vma = find_vma(walk->mm, addr);
195		if (vma) {
196			/*
197			 * There are no page structures backing a VM_PFNMAP
198			 * range, so do not allow split_huge_page_pmd().
199			 */
200			if ((vma->vm_start <= addr) &&
201			    (vma->vm_flags & VM_PFNMAP)) {
202				next = vma->vm_end;
203				pgd = pgd_offset(walk->mm, next);
204				continue;
205			}
206			/*
207			 * Handle hugetlb vma individually because pagetable
208			 * walk for the hugetlb page is dependent on the
209			 * architecture and we can't handled it in the same
210			 * manner as non-huge pages.
211			 */
212			if (walk->hugetlb_entry && (vma->vm_start <= addr) &&
213			    is_vm_hugetlb_page(vma)) {
214				if (vma->vm_end < next)
215					next = vma->vm_end;
216				/*
217				 * Hugepage is very tightly coupled with vma,
218				 * so walk through hugetlb entries within a
219				 * given vma.
220				 */
221				err = walk_hugetlb_range(vma, addr, next, walk);
222				if (err)
223					break;
224				pgd = pgd_offset(walk->mm, next);
225				continue;
226			}
 
 
227		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
229		if (pgd_none_or_clear_bad(pgd)) {
230			if (walk->pte_hole)
231				err = walk->pte_hole(addr, next, walk);
232			if (err)
233				break;
234			pgd++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235			continue;
236		}
237		if (walk->pgd_entry)
238			err = walk->pgd_entry(pgd, addr, next, walk);
239		if (!err &&
240		    (walk->pud_entry || walk->pmd_entry || walk->pte_entry))
241			err = walk_pud_range(pgd, addr, next, walk);
 
 
 
 
 
 
242		if (err)
243			break;
244		pgd++;
245	} while (addr = next, addr < end);
246
247	return err;
248}