Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains KASAN runtime code that manages shadow memory for
  4 * generic and software tag-based KASAN modes.
  5 *
  6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  8 *
  9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 10 *        Andrey Konovalov <andreyknvl@gmail.com>
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/kasan.h>
 15#include <linux/kernel.h>
 16#include <linux/kfence.h>
 17#include <linux/kmemleak.h>
 18#include <linux/memory.h>
 19#include <linux/mm.h>
 20#include <linux/string.h>
 21#include <linux/types.h>
 22#include <linux/vmalloc.h>
 23
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26
 27#include "kasan.h"
 28
 29bool __kasan_check_read(const volatile void *p, unsigned int size)
 30{
 31	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
 32}
 33EXPORT_SYMBOL(__kasan_check_read);
 34
 35bool __kasan_check_write(const volatile void *p, unsigned int size)
 36{
 37	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
 38}
 39EXPORT_SYMBOL(__kasan_check_write);
 40
 41#undef memset
 42void *memset(void *addr, int c, size_t len)
 43{
 44	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
 45		return NULL;
 46
 47	return __memset(addr, c, len);
 48}
 49
 50#ifdef __HAVE_ARCH_MEMMOVE
 51#undef memmove
 52void *memmove(void *dest, const void *src, size_t len)
 53{
 54	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
 55	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
 56		return NULL;
 57
 58	return __memmove(dest, src, len);
 59}
 60#endif
 61
 62#undef memcpy
 63void *memcpy(void *dest, const void *src, size_t len)
 64{
 65	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
 66	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
 67		return NULL;
 68
 69	return __memcpy(dest, src, len);
 70}
 71
 72void kasan_poison(const void *addr, size_t size, u8 value, bool init)
 73{
 74	void *shadow_start, *shadow_end;
 75
 76	if (!kasan_arch_is_ready())
 77		return;
 78
 79	/*
 80	 * Perform shadow offset calculation based on untagged address, as
 81	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
 82	 * addresses to this function.
 83	 */
 84	addr = kasan_reset_tag(addr);
 85
 86	/* Skip KFENCE memory if called explicitly outside of sl*b. */
 87	if (is_kfence_address(addr))
 88		return;
 89
 90	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
 91		return;
 92	if (WARN_ON(size & KASAN_GRANULE_MASK))
 93		return;
 94
 95	shadow_start = kasan_mem_to_shadow(addr);
 96	shadow_end = kasan_mem_to_shadow(addr + size);
 97
 98	__memset(shadow_start, value, shadow_end - shadow_start);
 99}
100EXPORT_SYMBOL(kasan_poison);
101
102#ifdef CONFIG_KASAN_GENERIC
103void kasan_poison_last_granule(const void *addr, size_t size)
104{
105	if (!kasan_arch_is_ready())
106		return;
107
108	if (size & KASAN_GRANULE_MASK) {
109		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110		*shadow = size & KASAN_GRANULE_MASK;
111	}
112}
113#endif
114
115void kasan_unpoison(const void *addr, size_t size, bool init)
116{
117	u8 tag = get_tag(addr);
118
119	/*
120	 * Perform shadow offset calculation based on untagged address, as
121	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122	 * addresses to this function.
123	 */
124	addr = kasan_reset_tag(addr);
125
126	/*
127	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128	 * that calls to ksize(), where size is not a multiple of machine-word
129	 * size, would otherwise poison the invalid portion of the word.
130	 */
131	if (is_kfence_address(addr))
132		return;
133
134	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135		return;
136
137	/* Unpoison all granules that cover the object. */
138	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139
140	/* Partially poison the last granule for the generic mode. */
141	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142		kasan_poison_last_granule(addr, size);
143}
144
145#ifdef CONFIG_MEMORY_HOTPLUG
146static bool shadow_mapped(unsigned long addr)
147{
148	pgd_t *pgd = pgd_offset_k(addr);
149	p4d_t *p4d;
150	pud_t *pud;
151	pmd_t *pmd;
152	pte_t *pte;
153
154	if (pgd_none(*pgd))
155		return false;
156	p4d = p4d_offset(pgd, addr);
157	if (p4d_none(*p4d))
158		return false;
159	pud = pud_offset(p4d, addr);
160	if (pud_none(*pud))
161		return false;
162
163	/*
164	 * We can't use pud_large() or pud_huge(), the first one is
165	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166	 * pud_bad(), if pud is bad then it's bad because it's huge.
167	 */
168	if (pud_bad(*pud))
169		return true;
170	pmd = pmd_offset(pud, addr);
171	if (pmd_none(*pmd))
172		return false;
173
174	if (pmd_bad(*pmd))
175		return true;
176	pte = pte_offset_kernel(pmd, addr);
177	return !pte_none(*pte);
178}
179
180static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181			unsigned long action, void *data)
182{
183	struct memory_notify *mem_data = data;
184	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185	unsigned long shadow_end, shadow_size;
186
187	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190	shadow_size = nr_shadow_pages << PAGE_SHIFT;
191	shadow_end = shadow_start + shadow_size;
192
193	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195		return NOTIFY_BAD;
196
197	switch (action) {
198	case MEM_GOING_ONLINE: {
199		void *ret;
200
201		/*
202		 * If shadow is mapped already than it must have been mapped
203		 * during the boot. This could happen if we onlining previously
204		 * offlined memory.
205		 */
206		if (shadow_mapped(shadow_start))
207			return NOTIFY_OK;
208
209		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210					shadow_end, GFP_KERNEL,
211					PAGE_KERNEL, VM_NO_GUARD,
212					pfn_to_nid(mem_data->start_pfn),
213					__builtin_return_address(0));
214		if (!ret)
215			return NOTIFY_BAD;
216
217		kmemleak_ignore(ret);
218		return NOTIFY_OK;
219	}
220	case MEM_CANCEL_ONLINE:
221	case MEM_OFFLINE: {
222		struct vm_struct *vm;
223
224		/*
225		 * shadow_start was either mapped during boot by kasan_init()
226		 * or during memory online by __vmalloc_node_range().
227		 * In the latter case we can use vfree() to free shadow.
228		 * Non-NULL result of the find_vm_area() will tell us if
229		 * that was the second case.
230		 *
231		 * Currently it's not possible to free shadow mapped
232		 * during boot by kasan_init(). It's because the code
233		 * to do that hasn't been written yet. So we'll just
234		 * leak the memory.
235		 */
236		vm = find_vm_area((void *)shadow_start);
237		if (vm)
238			vfree((void *)shadow_start);
239	}
240	}
241
242	return NOTIFY_OK;
243}
244
245static int __init kasan_memhotplug_init(void)
246{
247	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
248
249	return 0;
250}
251
252core_initcall(kasan_memhotplug_init);
253#endif
254
255#ifdef CONFIG_KASAN_VMALLOC
256
257void __init __weak kasan_populate_early_vm_area_shadow(void *start,
258						       unsigned long size)
259{
260}
261
262static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
263				      void *unused)
264{
265	unsigned long page;
266	pte_t pte;
267
268	if (likely(!pte_none(*ptep)))
269		return 0;
270
271	page = __get_free_page(GFP_KERNEL);
272	if (!page)
273		return -ENOMEM;
274
275	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
276	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
277
278	spin_lock(&init_mm.page_table_lock);
279	if (likely(pte_none(*ptep))) {
280		set_pte_at(&init_mm, addr, ptep, pte);
281		page = 0;
282	}
283	spin_unlock(&init_mm.page_table_lock);
284	if (page)
285		free_page(page);
286	return 0;
287}
288
289int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
290{
291	unsigned long shadow_start, shadow_end;
292	int ret;
293
294	if (!kasan_arch_is_ready())
295		return 0;
296
297	if (!is_vmalloc_or_module_addr((void *)addr))
298		return 0;
299
300	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
301	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
302
303	/*
304	 * User Mode Linux maps enough shadow memory for all of virtual memory
305	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
306	 *
307	 * The remaining CONFIG_UML checks in this file exist for the same
308	 * reason.
309	 */
310	if (IS_ENABLED(CONFIG_UML)) {
311		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
312		return 0;
313	}
314
315	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
316	shadow_end = PAGE_ALIGN(shadow_end);
317
318	ret = apply_to_page_range(&init_mm, shadow_start,
319				  shadow_end - shadow_start,
320				  kasan_populate_vmalloc_pte, NULL);
321	if (ret)
322		return ret;
323
324	flush_cache_vmap(shadow_start, shadow_end);
325
326	/*
327	 * We need to be careful about inter-cpu effects here. Consider:
328	 *
329	 *   CPU#0				  CPU#1
330	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
331	 *					p[99] = 1;
332	 *
333	 * With compiler instrumentation, that ends up looking like this:
334	 *
335	 *   CPU#0				  CPU#1
336	 * // vmalloc() allocates memory
337	 * // let a = area->addr
338	 * // we reach kasan_populate_vmalloc
339	 * // and call kasan_unpoison:
340	 * STORE shadow(a), unpoison_val
341	 * ...
342	 * STORE shadow(a+99), unpoison_val	x = LOAD p
343	 * // rest of vmalloc process		<data dependency>
344	 * STORE p, a				LOAD shadow(x+99)
345	 *
346	 * If there is no barrier between the end of unpoisoning the shadow
347	 * and the store of the result to p, the stores could be committed
348	 * in a different order by CPU#0, and CPU#1 could erroneously observe
349	 * poison in the shadow.
350	 *
351	 * We need some sort of barrier between the stores.
352	 *
353	 * In the vmalloc() case, this is provided by a smp_wmb() in
354	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
355	 * get_vm_area() and friends, the caller gets shadow allocated but
356	 * doesn't have any pages mapped into the virtual address space that
357	 * has been reserved. Mapping those pages in will involve taking and
358	 * releasing a page-table lock, which will provide the barrier.
359	 */
360
361	return 0;
362}
363
364static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
365					void *unused)
366{
367	unsigned long page;
368
369	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
370
371	spin_lock(&init_mm.page_table_lock);
372
373	if (likely(!pte_none(*ptep))) {
374		pte_clear(&init_mm, addr, ptep);
375		free_page(page);
376	}
377	spin_unlock(&init_mm.page_table_lock);
378
379	return 0;
380}
381
382/*
383 * Release the backing for the vmalloc region [start, end), which
384 * lies within the free region [free_region_start, free_region_end).
385 *
386 * This can be run lazily, long after the region was freed. It runs
387 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
388 * infrastructure.
389 *
390 * How does this work?
391 * -------------------
392 *
393 * We have a region that is page aligned, labeled as A.
394 * That might not map onto the shadow in a way that is page-aligned:
395 *
396 *                    start                     end
397 *                    v                         v
398 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
399 *  -------- -------- --------          -------- --------
400 *      |        |       |                 |        |
401 *      |        |       |         /-------/        |
402 *      \-------\|/------/         |/---------------/
403 *              |||                ||
404 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
405 *                 (1)      (2)      (3)
406 *
407 * First we align the start upwards and the end downwards, so that the
408 * shadow of the region aligns with shadow page boundaries. In the
409 * example, this gives us the shadow page (2). This is the shadow entirely
410 * covered by this allocation.
411 *
412 * Then we have the tricky bits. We want to know if we can free the
413 * partially covered shadow pages - (1) and (3) in the example. For this,
414 * we are given the start and end of the free region that contains this
415 * allocation. Extending our previous example, we could have:
416 *
417 *  free_region_start                                    free_region_end
418 *  |                 start                     end      |
419 *  v                 v                         v        v
420 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
421 *  -------- -------- --------          -------- --------
422 *      |        |       |                 |        |
423 *      |        |       |         /-------/        |
424 *      \-------\|/------/         |/---------------/
425 *              |||                ||
426 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
427 *                 (1)      (2)      (3)
428 *
429 * Once again, we align the start of the free region up, and the end of
430 * the free region down so that the shadow is page aligned. So we can free
431 * page (1) - we know no allocation currently uses anything in that page,
432 * because all of it is in the vmalloc free region. But we cannot free
433 * page (3), because we can't be sure that the rest of it is unused.
434 *
435 * We only consider pages that contain part of the original region for
436 * freeing: we don't try to free other pages from the free region or we'd
437 * end up trying to free huge chunks of virtual address space.
438 *
439 * Concurrency
440 * -----------
441 *
442 * How do we know that we're not freeing a page that is simultaneously
443 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
444 *
445 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
446 * at the same time. While we run under free_vmap_area_lock, the population
447 * code does not.
448 *
449 * free_vmap_area_lock instead operates to ensure that the larger range
450 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
451 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
452 * no space identified as free will become used while we are running. This
453 * means that so long as we are careful with alignment and only free shadow
454 * pages entirely covered by the free region, we will not run in to any
455 * trouble - any simultaneous allocations will be for disjoint regions.
456 */
457void kasan_release_vmalloc(unsigned long start, unsigned long end,
458			   unsigned long free_region_start,
459			   unsigned long free_region_end)
460{
461	void *shadow_start, *shadow_end;
462	unsigned long region_start, region_end;
463	unsigned long size;
464
465	if (!kasan_arch_is_ready())
466		return;
467
468	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
469	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
470
471	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
472
473	if (start != region_start &&
474	    free_region_start < region_start)
475		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
476
477	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
478
479	if (end != region_end &&
480	    free_region_end > region_end)
481		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
482
483	shadow_start = kasan_mem_to_shadow((void *)region_start);
484	shadow_end = kasan_mem_to_shadow((void *)region_end);
485
486	if (shadow_end > shadow_start) {
487		size = shadow_end - shadow_start;
488		if (IS_ENABLED(CONFIG_UML)) {
489			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
490			return;
491		}
492		apply_to_existing_page_range(&init_mm,
493					     (unsigned long)shadow_start,
494					     size, kasan_depopulate_vmalloc_pte,
495					     NULL);
496		flush_tlb_kernel_range((unsigned long)shadow_start,
497				       (unsigned long)shadow_end);
498	}
499}
500
501void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
502			       kasan_vmalloc_flags_t flags)
503{
504	/*
505	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
506	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
507	 * Software KASAN modes can't optimize zeroing memory by combining it
508	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
509	 */
510
511	if (!kasan_arch_is_ready())
512		return (void *)start;
513
514	if (!is_vmalloc_or_module_addr(start))
515		return (void *)start;
516
517	/*
518	 * Don't tag executable memory with the tag-based mode.
519	 * The kernel doesn't tolerate having the PC register tagged.
520	 */
521	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
522	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
523		return (void *)start;
524
525	start = set_tag(start, kasan_random_tag());
526	kasan_unpoison(start, size, false);
527	return (void *)start;
528}
529
530/*
531 * Poison the shadow for a vmalloc region. Called as part of the
532 * freeing process at the time the region is freed.
533 */
534void __kasan_poison_vmalloc(const void *start, unsigned long size)
535{
536	if (!kasan_arch_is_ready())
537		return;
538
539	if (!is_vmalloc_or_module_addr(start))
540		return;
541
542	size = round_up(size, KASAN_GRANULE_SIZE);
543	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
544}
545
546#else /* CONFIG_KASAN_VMALLOC */
547
548int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
549{
550	void *ret;
551	size_t scaled_size;
552	size_t shadow_size;
553	unsigned long shadow_start;
554
555	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
556	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
557				KASAN_SHADOW_SCALE_SHIFT;
558	shadow_size = round_up(scaled_size, PAGE_SIZE);
559
560	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
561		return -EINVAL;
562
563	if (IS_ENABLED(CONFIG_UML)) {
564		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
565		return 0;
566	}
567
568	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
569			shadow_start + shadow_size,
570			GFP_KERNEL,
571			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
572			__builtin_return_address(0));
573
574	if (ret) {
575		struct vm_struct *vm = find_vm_area(addr);
576		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
577		vm->flags |= VM_KASAN;
578		kmemleak_ignore(ret);
579
580		if (vm->flags & VM_DEFER_KMEMLEAK)
581			kmemleak_vmalloc(vm, size, gfp_mask);
582
583		return 0;
584	}
585
586	return -ENOMEM;
587}
588
589void kasan_free_module_shadow(const struct vm_struct *vm)
590{
591	if (IS_ENABLED(CONFIG_UML))
592		return;
593
594	if (vm->flags & VM_KASAN)
595		vfree(kasan_mem_to_shadow(vm->addr));
596}
597
598#endif