Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains KASAN runtime code that manages shadow memory for
  4 * generic and software tag-based KASAN modes.
  5 *
  6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  8 *
  9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 10 *        Andrey Konovalov <andreyknvl@gmail.com>
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/kasan.h>
 15#include <linux/kernel.h>
 16#include <linux/kfence.h>
 17#include <linux/kmemleak.h>
 18#include <linux/memory.h>
 19#include <linux/mm.h>
 20#include <linux/string.h>
 21#include <linux/types.h>
 22#include <linux/vmalloc.h>
 23
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26
 27#include "kasan.h"
 28
 29bool __kasan_check_read(const volatile void *p, unsigned int size)
 30{
 31	return kasan_check_range((void *)p, size, false, _RET_IP_);
 32}
 33EXPORT_SYMBOL(__kasan_check_read);
 34
 35bool __kasan_check_write(const volatile void *p, unsigned int size)
 36{
 37	return kasan_check_range((void *)p, size, true, _RET_IP_);
 38}
 39EXPORT_SYMBOL(__kasan_check_write);
 40
 41#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
 42/*
 43 * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
 44 * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
 45 * for the sites they want to instrument.
 46 *
 47 * If we have a compiler that can instrument meminstrinsics, never override
 48 * these, so that non-instrumented files can safely consider them as builtins.
 49 */
 50#undef memset
 51void *memset(void *addr, int c, size_t len)
 52{
 53	if (!kasan_check_range(addr, len, true, _RET_IP_))
 54		return NULL;
 55
 56	return __memset(addr, c, len);
 57}
 58
 59#ifdef __HAVE_ARCH_MEMMOVE
 60#undef memmove
 61void *memmove(void *dest, const void *src, size_t len)
 62{
 63	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 64	    !kasan_check_range(dest, len, true, _RET_IP_))
 65		return NULL;
 66
 67	return __memmove(dest, src, len);
 68}
 69#endif
 70
 71#undef memcpy
 72void *memcpy(void *dest, const void *src, size_t len)
 73{
 74	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 75	    !kasan_check_range(dest, len, true, _RET_IP_))
 76		return NULL;
 77
 78	return __memcpy(dest, src, len);
 79}
 80#endif
 81
 82void *__asan_memset(void *addr, int c, ssize_t len)
 83{
 84	if (!kasan_check_range(addr, len, true, _RET_IP_))
 85		return NULL;
 86
 87	return __memset(addr, c, len);
 88}
 89EXPORT_SYMBOL(__asan_memset);
 90
 91#ifdef __HAVE_ARCH_MEMMOVE
 92void *__asan_memmove(void *dest, const void *src, ssize_t len)
 93{
 94	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 95	    !kasan_check_range(dest, len, true, _RET_IP_))
 96		return NULL;
 97
 98	return __memmove(dest, src, len);
 99}
100EXPORT_SYMBOL(__asan_memmove);
101#endif
102
103void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104{
105	if (!kasan_check_range(src, len, false, _RET_IP_) ||
106	    !kasan_check_range(dest, len, true, _RET_IP_))
107		return NULL;
108
109	return __memcpy(dest, src, len);
110}
111EXPORT_SYMBOL(__asan_memcpy);
112
113#ifdef CONFIG_KASAN_SW_TAGS
114void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115EXPORT_SYMBOL(__hwasan_memset);
116#ifdef __HAVE_ARCH_MEMMOVE
117void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118EXPORT_SYMBOL(__hwasan_memmove);
119#endif
120void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121EXPORT_SYMBOL(__hwasan_memcpy);
122#endif
123
124void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125{
126	void *shadow_start, *shadow_end;
127
128	if (!kasan_arch_is_ready())
129		return;
130
131	/*
132	 * Perform shadow offset calculation based on untagged address, as
133	 * some of the callers (e.g. kasan_poison_new_object) pass tagged
134	 * addresses to this function.
135	 */
136	addr = kasan_reset_tag(addr);
137
138	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139		return;
140	if (WARN_ON(size & KASAN_GRANULE_MASK))
141		return;
142
143	shadow_start = kasan_mem_to_shadow(addr);
144	shadow_end = kasan_mem_to_shadow(addr + size);
145
146	__memset(shadow_start, value, shadow_end - shadow_start);
147}
148EXPORT_SYMBOL_GPL(kasan_poison);
149
150#ifdef CONFIG_KASAN_GENERIC
151void kasan_poison_last_granule(const void *addr, size_t size)
152{
153	if (!kasan_arch_is_ready())
154		return;
155
156	if (size & KASAN_GRANULE_MASK) {
157		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158		*shadow = size & KASAN_GRANULE_MASK;
159	}
160}
161#endif
162
163void kasan_unpoison(const void *addr, size_t size, bool init)
164{
165	u8 tag = get_tag(addr);
166
167	/*
168	 * Perform shadow offset calculation based on untagged address, as
169	 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170	 * addresses to this function.
171	 */
172	addr = kasan_reset_tag(addr);
173
174	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175		return;
176
177	/* Unpoison all granules that cover the object. */
178	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179
180	/* Partially poison the last granule for the generic mode. */
181	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182		kasan_poison_last_granule(addr, size);
183}
184
185#ifdef CONFIG_MEMORY_HOTPLUG
186static bool shadow_mapped(unsigned long addr)
187{
188	pgd_t *pgd = pgd_offset_k(addr);
189	p4d_t *p4d;
190	pud_t *pud;
191	pmd_t *pmd;
192	pte_t *pte;
193
194	if (pgd_none(*pgd))
195		return false;
196	p4d = p4d_offset(pgd, addr);
197	if (p4d_none(*p4d))
198		return false;
199	pud = pud_offset(p4d, addr);
200	if (pud_none(*pud))
201		return false;
202
203	/*
204	 * We can't use pud_large() or pud_huge(), the first one is
205	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
206	 * pud_bad(), if pud is bad then it's bad because it's huge.
207	 */
208	if (pud_bad(*pud))
209		return true;
210	pmd = pmd_offset(pud, addr);
211	if (pmd_none(*pmd))
212		return false;
213
214	if (pmd_bad(*pmd))
215		return true;
216	pte = pte_offset_kernel(pmd, addr);
217	return !pte_none(ptep_get(pte));
218}
219
220static int __meminit kasan_mem_notifier(struct notifier_block *nb,
221			unsigned long action, void *data)
222{
223	struct memory_notify *mem_data = data;
224	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
225	unsigned long shadow_end, shadow_size;
226
227	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
228	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
229	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
230	shadow_size = nr_shadow_pages << PAGE_SHIFT;
231	shadow_end = shadow_start + shadow_size;
232
233	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
234		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
235		return NOTIFY_BAD;
236
237	switch (action) {
238	case MEM_GOING_ONLINE: {
239		void *ret;
240
241		/*
242		 * If shadow is mapped already than it must have been mapped
243		 * during the boot. This could happen if we onlining previously
244		 * offlined memory.
245		 */
246		if (shadow_mapped(shadow_start))
247			return NOTIFY_OK;
248
249		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
250					shadow_end, GFP_KERNEL,
251					PAGE_KERNEL, VM_NO_GUARD,
252					pfn_to_nid(mem_data->start_pfn),
253					__builtin_return_address(0));
254		if (!ret)
255			return NOTIFY_BAD;
256
257		kmemleak_ignore(ret);
258		return NOTIFY_OK;
259	}
260	case MEM_CANCEL_ONLINE:
261	case MEM_OFFLINE: {
262		struct vm_struct *vm;
263
264		/*
265		 * shadow_start was either mapped during boot by kasan_init()
266		 * or during memory online by __vmalloc_node_range().
267		 * In the latter case we can use vfree() to free shadow.
268		 * Non-NULL result of the find_vm_area() will tell us if
269		 * that was the second case.
270		 *
271		 * Currently it's not possible to free shadow mapped
272		 * during boot by kasan_init(). It's because the code
273		 * to do that hasn't been written yet. So we'll just
274		 * leak the memory.
275		 */
276		vm = find_vm_area((void *)shadow_start);
277		if (vm)
278			vfree((void *)shadow_start);
279	}
280	}
281
282	return NOTIFY_OK;
283}
284
285static int __init kasan_memhotplug_init(void)
286{
287	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
288
289	return 0;
290}
291
292core_initcall(kasan_memhotplug_init);
293#endif
294
295#ifdef CONFIG_KASAN_VMALLOC
296
297void __init __weak kasan_populate_early_vm_area_shadow(void *start,
298						       unsigned long size)
299{
300}
301
302static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
303				      void *unused)
304{
305	unsigned long page;
306	pte_t pte;
307
308	if (likely(!pte_none(ptep_get(ptep))))
309		return 0;
310
311	page = __get_free_page(GFP_KERNEL);
312	if (!page)
313		return -ENOMEM;
314
315	__memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
316	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
317
318	spin_lock(&init_mm.page_table_lock);
319	if (likely(pte_none(ptep_get(ptep)))) {
320		set_pte_at(&init_mm, addr, ptep, pte);
321		page = 0;
322	}
323	spin_unlock(&init_mm.page_table_lock);
324	if (page)
325		free_page(page);
326	return 0;
327}
328
329int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
330{
331	unsigned long shadow_start, shadow_end;
332	int ret;
333
334	if (!kasan_arch_is_ready())
335		return 0;
336
337	if (!is_vmalloc_or_module_addr((void *)addr))
338		return 0;
339
340	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
341	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
342
343	/*
344	 * User Mode Linux maps enough shadow memory for all of virtual memory
345	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
346	 *
347	 * The remaining CONFIG_UML checks in this file exist for the same
348	 * reason.
349	 */
350	if (IS_ENABLED(CONFIG_UML)) {
351		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
352		return 0;
353	}
354
355	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
356	shadow_end = PAGE_ALIGN(shadow_end);
357
358	ret = apply_to_page_range(&init_mm, shadow_start,
359				  shadow_end - shadow_start,
360				  kasan_populate_vmalloc_pte, NULL);
361	if (ret)
362		return ret;
363
364	flush_cache_vmap(shadow_start, shadow_end);
365
366	/*
367	 * We need to be careful about inter-cpu effects here. Consider:
368	 *
369	 *   CPU#0				  CPU#1
370	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
371	 *					p[99] = 1;
372	 *
373	 * With compiler instrumentation, that ends up looking like this:
374	 *
375	 *   CPU#0				  CPU#1
376	 * // vmalloc() allocates memory
377	 * // let a = area->addr
378	 * // we reach kasan_populate_vmalloc
379	 * // and call kasan_unpoison:
380	 * STORE shadow(a), unpoison_val
381	 * ...
382	 * STORE shadow(a+99), unpoison_val	x = LOAD p
383	 * // rest of vmalloc process		<data dependency>
384	 * STORE p, a				LOAD shadow(x+99)
385	 *
386	 * If there is no barrier between the end of unpoisoning the shadow
387	 * and the store of the result to p, the stores could be committed
388	 * in a different order by CPU#0, and CPU#1 could erroneously observe
389	 * poison in the shadow.
390	 *
391	 * We need some sort of barrier between the stores.
392	 *
393	 * In the vmalloc() case, this is provided by a smp_wmb() in
394	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
395	 * get_vm_area() and friends, the caller gets shadow allocated but
396	 * doesn't have any pages mapped into the virtual address space that
397	 * has been reserved. Mapping those pages in will involve taking and
398	 * releasing a page-table lock, which will provide the barrier.
399	 */
400
401	return 0;
402}
403
404static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
405					void *unused)
406{
407	unsigned long page;
408
409	page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
410
411	spin_lock(&init_mm.page_table_lock);
412
413	if (likely(!pte_none(ptep_get(ptep)))) {
414		pte_clear(&init_mm, addr, ptep);
415		free_page(page);
416	}
417	spin_unlock(&init_mm.page_table_lock);
418
419	return 0;
420}
421
422/*
423 * Release the backing for the vmalloc region [start, end), which
424 * lies within the free region [free_region_start, free_region_end).
425 *
426 * This can be run lazily, long after the region was freed. It runs
427 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
428 * infrastructure.
429 *
430 * How does this work?
431 * -------------------
432 *
433 * We have a region that is page aligned, labeled as A.
434 * That might not map onto the shadow in a way that is page-aligned:
435 *
436 *                    start                     end
437 *                    v                         v
438 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
439 *  -------- -------- --------          -------- --------
440 *      |        |       |                 |        |
441 *      |        |       |         /-------/        |
442 *      \-------\|/------/         |/---------------/
443 *              |||                ||
444 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
445 *                 (1)      (2)      (3)
446 *
447 * First we align the start upwards and the end downwards, so that the
448 * shadow of the region aligns with shadow page boundaries. In the
449 * example, this gives us the shadow page (2). This is the shadow entirely
450 * covered by this allocation.
451 *
452 * Then we have the tricky bits. We want to know if we can free the
453 * partially covered shadow pages - (1) and (3) in the example. For this,
454 * we are given the start and end of the free region that contains this
455 * allocation. Extending our previous example, we could have:
456 *
457 *  free_region_start                                    free_region_end
458 *  |                 start                     end      |
459 *  v                 v                         v        v
460 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
461 *  -------- -------- --------          -------- --------
462 *      |        |       |                 |        |
463 *      |        |       |         /-------/        |
464 *      \-------\|/------/         |/---------------/
465 *              |||                ||
466 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
467 *                 (1)      (2)      (3)
468 *
469 * Once again, we align the start of the free region up, and the end of
470 * the free region down so that the shadow is page aligned. So we can free
471 * page (1) - we know no allocation currently uses anything in that page,
472 * because all of it is in the vmalloc free region. But we cannot free
473 * page (3), because we can't be sure that the rest of it is unused.
474 *
475 * We only consider pages that contain part of the original region for
476 * freeing: we don't try to free other pages from the free region or we'd
477 * end up trying to free huge chunks of virtual address space.
478 *
479 * Concurrency
480 * -----------
481 *
482 * How do we know that we're not freeing a page that is simultaneously
483 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
484 *
485 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
486 * at the same time. While we run under free_vmap_area_lock, the population
487 * code does not.
488 *
489 * free_vmap_area_lock instead operates to ensure that the larger range
490 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
491 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
492 * no space identified as free will become used while we are running. This
493 * means that so long as we are careful with alignment and only free shadow
494 * pages entirely covered by the free region, we will not run in to any
495 * trouble - any simultaneous allocations will be for disjoint regions.
496 */
497void kasan_release_vmalloc(unsigned long start, unsigned long end,
498			   unsigned long free_region_start,
499			   unsigned long free_region_end)
500{
501	void *shadow_start, *shadow_end;
502	unsigned long region_start, region_end;
503	unsigned long size;
504
505	if (!kasan_arch_is_ready())
506		return;
507
508	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
509	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
510
511	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
512
513	if (start != region_start &&
514	    free_region_start < region_start)
515		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
516
517	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
518
519	if (end != region_end &&
520	    free_region_end > region_end)
521		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
522
523	shadow_start = kasan_mem_to_shadow((void *)region_start);
524	shadow_end = kasan_mem_to_shadow((void *)region_end);
525
526	if (shadow_end > shadow_start) {
527		size = shadow_end - shadow_start;
528		if (IS_ENABLED(CONFIG_UML)) {
529			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
530			return;
531		}
532		apply_to_existing_page_range(&init_mm,
533					     (unsigned long)shadow_start,
534					     size, kasan_depopulate_vmalloc_pte,
535					     NULL);
536		flush_tlb_kernel_range((unsigned long)shadow_start,
537				       (unsigned long)shadow_end);
538	}
539}
540
541void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
542			       kasan_vmalloc_flags_t flags)
543{
544	/*
545	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
546	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
547	 * Software KASAN modes can't optimize zeroing memory by combining it
548	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
549	 */
550
551	if (!kasan_arch_is_ready())
552		return (void *)start;
553
554	if (!is_vmalloc_or_module_addr(start))
555		return (void *)start;
556
557	/*
558	 * Don't tag executable memory with the tag-based mode.
559	 * The kernel doesn't tolerate having the PC register tagged.
560	 */
561	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
562	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
563		return (void *)start;
564
565	start = set_tag(start, kasan_random_tag());
566	kasan_unpoison(start, size, false);
567	return (void *)start;
568}
569
570/*
571 * Poison the shadow for a vmalloc region. Called as part of the
572 * freeing process at the time the region is freed.
573 */
574void __kasan_poison_vmalloc(const void *start, unsigned long size)
575{
576	if (!kasan_arch_is_ready())
577		return;
578
579	if (!is_vmalloc_or_module_addr(start))
580		return;
581
582	size = round_up(size, KASAN_GRANULE_SIZE);
583	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
584}
585
586#else /* CONFIG_KASAN_VMALLOC */
587
588int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
589{
590	void *ret;
591	size_t scaled_size;
592	size_t shadow_size;
593	unsigned long shadow_start;
594
595	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
596	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
597				KASAN_SHADOW_SCALE_SHIFT;
598	shadow_size = round_up(scaled_size, PAGE_SIZE);
599
600	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
601		return -EINVAL;
602
603	if (IS_ENABLED(CONFIG_UML)) {
604		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
605		return 0;
606	}
607
608	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
609			shadow_start + shadow_size,
610			GFP_KERNEL,
611			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
612			__builtin_return_address(0));
613
614	if (ret) {
615		struct vm_struct *vm = find_vm_area(addr);
616		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
617		vm->flags |= VM_KASAN;
618		kmemleak_ignore(ret);
619
620		if (vm->flags & VM_DEFER_KMEMLEAK)
621			kmemleak_vmalloc(vm, size, gfp_mask);
622
623		return 0;
624	}
625
626	return -ENOMEM;
627}
628
629void kasan_free_module_shadow(const struct vm_struct *vm)
630{
631	if (IS_ENABLED(CONFIG_UML))
632		return;
633
634	if (vm->flags & VM_KASAN)
635		vfree(kasan_mem_to_shadow(vm->addr));
636}
637
638#endif