Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 11#include <linux/rculist.h>
 12#include <linux/slab.h>
 13#include <linux/thermal.h>
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/thermal_power_allocator.h>
 17
 18#include "thermal_core.h"
 19
 20#define INVALID_TRIP -1
 21
 22#define FRAC_BITS 10
 23#define int_to_frac(x) ((x) << FRAC_BITS)
 24#define frac_to_int(x) ((x) >> FRAC_BITS)
 25
 26/**
 27 * mul_frac() - multiply two fixed-point numbers
 28 * @x:	first multiplicand
 29 * @y:	second multiplicand
 30 *
 31 * Return: the result of multiplying two fixed-point numbers.  The
 32 * result is also a fixed-point number.
 33 */
 34static inline s64 mul_frac(s64 x, s64 y)
 35{
 36	return (x * y) >> FRAC_BITS;
 37}
 38
 39/**
 40 * div_frac() - divide two fixed-point numbers
 41 * @x:	the dividend
 42 * @y:	the divisor
 43 *
 44 * Return: the result of dividing two fixed-point numbers.  The
 45 * result is also a fixed-point number.
 46 */
 47static inline s64 div_frac(s64 x, s64 y)
 48{
 49	return div_s64(x << FRAC_BITS, y);
 50}
 51
 52/**
 53 * struct power_allocator_params - parameters for the power allocator governor
 54 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 55 *			it needs to be freed on unbind
 56 * @err_integral:	accumulated error in the PID controller.
 57 * @prev_err:	error in the previous iteration of the PID controller.
 58 *		Used to calculate the derivative term.
 59 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 60 *			governor switches on when this trip point is crossed.
 61 *			If the thermal zone only has one passive trip point,
 62 *			@trip_switch_on should be INVALID_TRIP.
 63 * @trip_max_desired_temperature:	last passive trip point of the thermal
 64 *					zone.  The temperature we are
 65 *					controlling for.
 
 
 66 */
 67struct power_allocator_params {
 68	bool allocated_tzp;
 69	s64 err_integral;
 70	s32 prev_err;
 71	int trip_switch_on;
 72	int trip_max_desired_temperature;
 
 73};
 74
 75/**
 76 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 77 * @tz: thermal zone we are operating in
 78 *
 79 * For thermal zones that don't provide a sustainable_power in their
 80 * thermal_zone_params, estimate one.  Calculate it using the minimum
 81 * power of all the cooling devices as that gives a valid value that
 82 * can give some degree of functionality.  For optimal performance of
 83 * this governor, provide a sustainable_power in the thermal zone's
 84 * thermal_zone_params.
 85 */
 86static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 87{
 88	u32 sustainable_power = 0;
 89	struct thermal_instance *instance;
 90	struct power_allocator_params *params = tz->governor_data;
 91
 92	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 93		struct thermal_cooling_device *cdev = instance->cdev;
 94		u32 min_power;
 95
 96		if (instance->trip != params->trip_max_desired_temperature)
 97			continue;
 98
 99		if (power_actor_get_min_power(cdev, tz, &min_power))
 
 
 
100			continue;
101
102		sustainable_power += min_power;
103	}
104
105	return sustainable_power;
106}
107
108/**
109 * estimate_pid_constants() - Estimate the constants for the PID controller
110 * @tz:		thermal zone for which to estimate the constants
111 * @sustainable_power:	sustainable power for the thermal zone
112 * @trip_switch_on:	trip point number for the switch on temperature
113 * @control_temp:	target temperature for the power allocator governor
114 * @force:	whether to force the update of the constants
115 *
116 * This function is used to update the estimation of the PID
117 * controller constants in struct thermal_zone_parameters.
118 * Sustainable power is provided in case it was estimated.  The
119 * estimated sustainable_power should not be stored in the
120 * thermal_zone_parameters so it has to be passed explicitly to this
121 * function.
122 *
123 * If @force is not set, the values in the thermal zone's parameters
124 * are preserved if they are not zero.  If @force is set, the values
125 * in thermal zone's parameters are overwritten.
126 */
127static void estimate_pid_constants(struct thermal_zone_device *tz,
128				   u32 sustainable_power, int trip_switch_on,
129				   int control_temp, bool force)
130{
131	int ret;
132	int switch_on_temp;
133	u32 temperature_threshold;
 
134
135	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
136	if (ret)
137		switch_on_temp = 0;
138
139	temperature_threshold = control_temp - switch_on_temp;
140	/*
141	 * estimate_pid_constants() tries to find appropriate default
142	 * values for thermal zones that don't provide them. If a
143	 * system integrator has configured a thermal zone with two
144	 * passive trip points at the same temperature, that person
145	 * hasn't put any effort to set up the thermal zone properly
146	 * so just give up.
147	 */
148	if (!temperature_threshold)
149		return;
150
151	if (!tz->tzp->k_po || force)
152		tz->tzp->k_po = int_to_frac(sustainable_power) /
153			temperature_threshold;
154
155	if (!tz->tzp->k_pu || force)
156		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
157			temperature_threshold;
 
158
159	if (!tz->tzp->k_i || force)
160		tz->tzp->k_i = int_to_frac(10) / 1000;
161	/*
162	 * The default for k_d and integral_cutoff is 0, so we can
163	 * leave them as they are.
164	 */
165}
166
167/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168 * pid_controller() - PID controller
169 * @tz:	thermal zone we are operating in
170 * @control_temp:	the target temperature in millicelsius
171 * @max_allocatable_power:	maximum allocatable power for this thermal zone
172 *
173 * This PID controller increases the available power budget so that the
174 * temperature of the thermal zone gets as close as possible to
175 * @control_temp and limits the power if it exceeds it.  k_po is the
176 * proportional term when we are overshooting, k_pu is the
177 * proportional term when we are undershooting.  integral_cutoff is a
178 * threshold below which we stop accumulating the error.  The
179 * accumulated error is only valid if the requested power will make
180 * the system warmer.  If the system is mostly idle, there's no point
181 * in accumulating positive error.
182 *
183 * Return: The power budget for the next period.
184 */
185static u32 pid_controller(struct thermal_zone_device *tz,
186			  int control_temp,
187			  u32 max_allocatable_power)
188{
189	s64 p, i, d, power_range;
190	s32 err, max_power_frac;
191	u32 sustainable_power;
192	struct power_allocator_params *params = tz->governor_data;
193
194	max_power_frac = int_to_frac(max_allocatable_power);
195
196	if (tz->tzp->sustainable_power) {
197		sustainable_power = tz->tzp->sustainable_power;
198	} else {
199		sustainable_power = estimate_sustainable_power(tz);
200		estimate_pid_constants(tz, sustainable_power,
201				       params->trip_switch_on, control_temp,
202				       true);
203	}
204
205	err = control_temp - tz->temperature;
206	err = int_to_frac(err);
207
208	/* Calculate the proportional term */
209	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
210
211	/*
212	 * Calculate the integral term
213	 *
214	 * if the error is less than cut off allow integration (but
215	 * the integral is limited to max power)
216	 */
217	i = mul_frac(tz->tzp->k_i, params->err_integral);
218
219	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
220		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
221
222		if (abs(i_next) < max_power_frac) {
223			i = i_next;
224			params->err_integral += err;
225		}
226	}
227
228	/*
229	 * Calculate the derivative term
230	 *
231	 * We do err - prev_err, so with a positive k_d, a decreasing
232	 * error (i.e. driving closer to the line) results in less
233	 * power being applied, slowing down the controller)
234	 */
235	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
236	d = div_frac(d, tz->passive_delay);
237	params->prev_err = err;
238
239	power_range = p + i + d;
240
241	/* feed-forward the known sustainable dissipatable power */
242	power_range = sustainable_power + frac_to_int(power_range);
243
244	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
245
246	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
247					  frac_to_int(params->err_integral),
248					  frac_to_int(p), frac_to_int(i),
249					  frac_to_int(d), power_range);
250
251	return power_range;
252}
253
254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255 * divvy_up_power() - divvy the allocated power between the actors
256 * @req_power:	each actor's requested power
257 * @max_power:	each actor's maximum available power
258 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
259 * @total_req_power: sum of @req_power
260 * @power_range:	total allocated power
261 * @granted_power:	output array: each actor's granted power
262 * @extra_actor_power:	an appropriately sized array to be used in the
263 *			function as temporary storage of the extra power given
264 *			to the actors
265 *
266 * This function divides the total allocated power (@power_range)
267 * fairly between the actors.  It first tries to give each actor a
268 * share of the @power_range according to how much power it requested
269 * compared to the rest of the actors.  For example, if only one actor
270 * requests power, then it receives all the @power_range.  If
271 * three actors each requests 1mW, each receives a third of the
272 * @power_range.
273 *
274 * If any actor received more than their maximum power, then that
275 * surplus is re-divvied among the actors based on how far they are
276 * from their respective maximums.
277 *
278 * Granted power for each actor is written to @granted_power, which
279 * should've been allocated by the calling function.
280 */
281static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
282			   u32 total_req_power, u32 power_range,
283			   u32 *granted_power, u32 *extra_actor_power)
284{
285	u32 extra_power, capped_extra_power;
286	int i;
287
288	/*
289	 * Prevent division by 0 if none of the actors request power.
290	 */
291	if (!total_req_power)
292		total_req_power = 1;
293
294	capped_extra_power = 0;
295	extra_power = 0;
296	for (i = 0; i < num_actors; i++) {
297		u64 req_range = (u64)req_power[i] * power_range;
298
299		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
300							 total_req_power);
301
302		if (granted_power[i] > max_power[i]) {
303			extra_power += granted_power[i] - max_power[i];
304			granted_power[i] = max_power[i];
305		}
306
307		extra_actor_power[i] = max_power[i] - granted_power[i];
308		capped_extra_power += extra_actor_power[i];
309	}
310
311	if (!extra_power)
312		return;
313
314	/*
315	 * Re-divvy the reclaimed extra among actors based on
316	 * how far they are from the max
317	 */
318	extra_power = min(extra_power, capped_extra_power);
319	if (capped_extra_power > 0)
320		for (i = 0; i < num_actors; i++)
321			granted_power[i] += (extra_actor_power[i] *
322					extra_power) / capped_extra_power;
 
 
323}
324
325static int allocate_power(struct thermal_zone_device *tz,
326			  int control_temp)
327{
328	struct thermal_instance *instance;
329	struct power_allocator_params *params = tz->governor_data;
330	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
331	u32 *weighted_req_power;
332	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
333	u32 total_granted_power, power_range;
334	int i, num_actors, total_weight, ret = 0;
335	int trip_max_desired_temperature = params->trip_max_desired_temperature;
336
337	mutex_lock(&tz->lock);
338
339	num_actors = 0;
340	total_weight = 0;
341	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
342		if ((instance->trip == trip_max_desired_temperature) &&
343		    cdev_is_power_actor(instance->cdev)) {
344			num_actors++;
345			total_weight += instance->weight;
346		}
347	}
348
349	if (!num_actors) {
350		ret = -ENODEV;
351		goto unlock;
352	}
353
354	/*
355	 * We need to allocate five arrays of the same size:
356	 * req_power, max_power, granted_power, extra_actor_power and
357	 * weighted_req_power.  They are going to be needed until this
358	 * function returns.  Allocate them all in one go to simplify
359	 * the allocation and deallocation logic.
360	 */
361	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
362	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
363	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
364	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
365	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
366	if (!req_power) {
367		ret = -ENOMEM;
368		goto unlock;
369	}
370
371	max_power = &req_power[num_actors];
372	granted_power = &req_power[2 * num_actors];
373	extra_actor_power = &req_power[3 * num_actors];
374	weighted_req_power = &req_power[4 * num_actors];
375
376	i = 0;
377	total_weighted_req_power = 0;
378	total_req_power = 0;
379	max_allocatable_power = 0;
380
381	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
382		int weight;
383		struct thermal_cooling_device *cdev = instance->cdev;
384
385		if (instance->trip != trip_max_desired_temperature)
386			continue;
387
388		if (!cdev_is_power_actor(cdev))
389			continue;
390
391		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
392			continue;
393
394		if (!total_weight)
395			weight = 1 << FRAC_BITS;
396		else
397			weight = instance->weight;
398
399		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
400
401		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
 
402			continue;
403
404		total_req_power += req_power[i];
405		max_allocatable_power += max_power[i];
406		total_weighted_req_power += weighted_req_power[i];
407
408		i++;
409	}
410
411	power_range = pid_controller(tz, control_temp, max_allocatable_power);
412
413	divvy_up_power(weighted_req_power, max_power, num_actors,
414		       total_weighted_req_power, power_range, granted_power,
415		       extra_actor_power);
416
417	total_granted_power = 0;
418	i = 0;
419	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
420		if (instance->trip != trip_max_desired_temperature)
421			continue;
422
423		if (!cdev_is_power_actor(instance->cdev))
424			continue;
425
426		power_actor_set_power(instance->cdev, instance,
427				      granted_power[i]);
428		total_granted_power += granted_power[i];
429
430		i++;
431	}
432
433	trace_thermal_power_allocator(tz, req_power, total_req_power,
434				      granted_power, total_granted_power,
435				      num_actors, power_range,
436				      max_allocatable_power, tz->temperature,
437				      control_temp - tz->temperature);
438
439	kfree(req_power);
440unlock:
441	mutex_unlock(&tz->lock);
442
443	return ret;
444}
445
446/**
447 * get_governor_trips() - get the number of the two trip points that are key for this governor
448 * @tz:	thermal zone to operate on
449 * @params:	pointer to private data for this governor
450 *
451 * The power allocator governor works optimally with two trips points:
452 * a "switch on" trip point and a "maximum desired temperature".  These
453 * are defined as the first and last passive trip points.
454 *
455 * If there is only one trip point, then that's considered to be the
456 * "maximum desired temperature" trip point and the governor is always
457 * on.  If there are no passive or active trip points, then the
458 * governor won't do anything.  In fact, its throttle function
459 * won't be called at all.
460 */
461static void get_governor_trips(struct thermal_zone_device *tz,
462			       struct power_allocator_params *params)
463{
464	int i, last_active, last_passive;
465	bool found_first_passive;
466
467	found_first_passive = false;
468	last_active = INVALID_TRIP;
469	last_passive = INVALID_TRIP;
470
471	for (i = 0; i < tz->trips; i++) {
472		enum thermal_trip_type type;
473		int ret;
474
475		ret = tz->ops->get_trip_type(tz, i, &type);
476		if (ret) {
477			dev_warn(&tz->device,
478				 "Failed to get trip point %d type: %d\n", i,
479				 ret);
480			continue;
481		}
482
483		if (type == THERMAL_TRIP_PASSIVE) {
484			if (!found_first_passive) {
485				params->trip_switch_on = i;
486				found_first_passive = true;
487			} else  {
488				last_passive = i;
489			}
490		} else if (type == THERMAL_TRIP_ACTIVE) {
491			last_active = i;
492		} else {
493			break;
494		}
495	}
496
497	if (last_passive != INVALID_TRIP) {
498		params->trip_max_desired_temperature = last_passive;
499	} else if (found_first_passive) {
500		params->trip_max_desired_temperature = params->trip_switch_on;
501		params->trip_switch_on = INVALID_TRIP;
502	} else {
503		params->trip_switch_on = INVALID_TRIP;
504		params->trip_max_desired_temperature = last_active;
505	}
506}
507
508static void reset_pid_controller(struct power_allocator_params *params)
509{
510	params->err_integral = 0;
511	params->prev_err = 0;
512}
513
514static void allow_maximum_power(struct thermal_zone_device *tz)
515{
516	struct thermal_instance *instance;
517	struct power_allocator_params *params = tz->governor_data;
 
518
519	mutex_lock(&tz->lock);
520	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 
 
521		if ((instance->trip != params->trip_max_desired_temperature) ||
522		    (!cdev_is_power_actor(instance->cdev)))
523			continue;
524
525		instance->target = 0;
526		mutex_lock(&instance->cdev->lock);
527		instance->cdev->updated = false;
 
 
 
 
 
 
 
 
 
528		mutex_unlock(&instance->cdev->lock);
529		thermal_cdev_update(instance->cdev);
530	}
531	mutex_unlock(&tz->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532}
533
534/**
535 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
536 * @tz:	thermal zone to bind it to
537 *
538 * Initialize the PID controller parameters and bind it to the thermal
539 * zone.
540 *
541 * Return: 0 on success, or -ENOMEM if we ran out of memory.
 
542 */
543static int power_allocator_bind(struct thermal_zone_device *tz)
544{
545	int ret;
546	struct power_allocator_params *params;
547	int control_temp;
548
 
 
 
 
549	params = kzalloc(sizeof(*params), GFP_KERNEL);
550	if (!params)
551		return -ENOMEM;
552
553	if (!tz->tzp) {
554		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
555		if (!tz->tzp) {
556			ret = -ENOMEM;
557			goto free_params;
558		}
559
560		params->allocated_tzp = true;
561	}
562
563	if (!tz->tzp->sustainable_power)
564		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
565
566	get_governor_trips(tz, params);
567
568	if (tz->trips > 0) {
569		ret = tz->ops->get_trip_temp(tz,
570					params->trip_max_desired_temperature,
571					&control_temp);
572		if (!ret)
573			estimate_pid_constants(tz, tz->tzp->sustainable_power,
574					       params->trip_switch_on,
575					       control_temp, false);
576	}
577
578	reset_pid_controller(params);
579
580	tz->governor_data = params;
581
582	return 0;
583
584free_params:
585	kfree(params);
586
587	return ret;
588}
589
590static void power_allocator_unbind(struct thermal_zone_device *tz)
591{
592	struct power_allocator_params *params = tz->governor_data;
593
594	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
595
596	if (params->allocated_tzp) {
597		kfree(tz->tzp);
598		tz->tzp = NULL;
599	}
600
601	kfree(tz->governor_data);
602	tz->governor_data = NULL;
603}
604
605static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
606{
607	int ret;
608	int switch_on_temp, control_temp;
609	struct power_allocator_params *params = tz->governor_data;
 
 
 
610
611	/*
612	 * We get called for every trip point but we only need to do
613	 * our calculations once
614	 */
615	if (trip != params->trip_max_desired_temperature)
616		return 0;
617
618	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
619				     &switch_on_temp);
620	if (!ret && (tz->temperature < switch_on_temp)) {
 
621		tz->passive = 0;
622		reset_pid_controller(params);
623		allow_maximum_power(tz);
624		return 0;
625	}
626
627	tz->passive = 1;
628
629	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
630				&control_temp);
631	if (ret) {
632		dev_warn(&tz->device,
633			 "Failed to get the maximum desired temperature: %d\n",
634			 ret);
635		return ret;
636	}
637
638	return allocate_power(tz, control_temp);
639}
640
641static struct thermal_governor thermal_gov_power_allocator = {
642	.name		= "power_allocator",
643	.bind_to_tz	= power_allocator_bind,
644	.unbind_from_tz	= power_allocator_unbind,
645	.throttle	= power_allocator_throttle,
646};
647THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 
 11#include <linux/slab.h>
 12#include <linux/thermal.h>
 13
 14#define CREATE_TRACE_POINTS
 15#include <trace/events/thermal_power_allocator.h>
 16
 17#include "thermal_core.h"
 18
 19#define INVALID_TRIP -1
 20
 21#define FRAC_BITS 10
 22#define int_to_frac(x) ((x) << FRAC_BITS)
 23#define frac_to_int(x) ((x) >> FRAC_BITS)
 24
 25/**
 26 * mul_frac() - multiply two fixed-point numbers
 27 * @x:	first multiplicand
 28 * @y:	second multiplicand
 29 *
 30 * Return: the result of multiplying two fixed-point numbers.  The
 31 * result is also a fixed-point number.
 32 */
 33static inline s64 mul_frac(s64 x, s64 y)
 34{
 35	return (x * y) >> FRAC_BITS;
 36}
 37
 38/**
 39 * div_frac() - divide two fixed-point numbers
 40 * @x:	the dividend
 41 * @y:	the divisor
 42 *
 43 * Return: the result of dividing two fixed-point numbers.  The
 44 * result is also a fixed-point number.
 45 */
 46static inline s64 div_frac(s64 x, s64 y)
 47{
 48	return div_s64(x << FRAC_BITS, y);
 49}
 50
 51/**
 52 * struct power_allocator_params - parameters for the power allocator governor
 53 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 54 *			it needs to be freed on unbind
 55 * @err_integral:	accumulated error in the PID controller.
 56 * @prev_err:	error in the previous iteration of the PID controller.
 57 *		Used to calculate the derivative term.
 58 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 59 *			governor switches on when this trip point is crossed.
 60 *			If the thermal zone only has one passive trip point,
 61 *			@trip_switch_on should be INVALID_TRIP.
 62 * @trip_max_desired_temperature:	last passive trip point of the thermal
 63 *					zone.  The temperature we are
 64 *					controlling for.
 65 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 66 *			dissipate
 67 */
 68struct power_allocator_params {
 69	bool allocated_tzp;
 70	s64 err_integral;
 71	s32 prev_err;
 72	int trip_switch_on;
 73	int trip_max_desired_temperature;
 74	u32 sustainable_power;
 75};
 76
 77/**
 78 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 79 * @tz: thermal zone we are operating in
 80 *
 81 * For thermal zones that don't provide a sustainable_power in their
 82 * thermal_zone_params, estimate one.  Calculate it using the minimum
 83 * power of all the cooling devices as that gives a valid value that
 84 * can give some degree of functionality.  For optimal performance of
 85 * this governor, provide a sustainable_power in the thermal zone's
 86 * thermal_zone_params.
 87 */
 88static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 89{
 90	u32 sustainable_power = 0;
 91	struct thermal_instance *instance;
 92	struct power_allocator_params *params = tz->governor_data;
 93
 94	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 95		struct thermal_cooling_device *cdev = instance->cdev;
 96		u32 min_power;
 97
 98		if (instance->trip != params->trip_max_desired_temperature)
 99			continue;
100
101		if (!cdev_is_power_actor(cdev))
102			continue;
103
104		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
105			continue;
106
107		sustainable_power += min_power;
108	}
109
110	return sustainable_power;
111}
112
113/**
114 * estimate_pid_constants() - Estimate the constants for the PID controller
115 * @tz:		thermal zone for which to estimate the constants
116 * @sustainable_power:	sustainable power for the thermal zone
117 * @trip_switch_on:	trip point number for the switch on temperature
118 * @control_temp:	target temperature for the power allocator governor
 
119 *
120 * This function is used to update the estimation of the PID
121 * controller constants in struct thermal_zone_parameters.
 
 
 
 
 
 
 
 
122 */
123static void estimate_pid_constants(struct thermal_zone_device *tz,
124				   u32 sustainable_power, int trip_switch_on,
125				   int control_temp)
126{
127	int ret;
128	int switch_on_temp;
129	u32 temperature_threshold;
130	s32 k_i;
131
132	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
133	if (ret)
134		switch_on_temp = 0;
135
136	temperature_threshold = control_temp - switch_on_temp;
137	/*
138	 * estimate_pid_constants() tries to find appropriate default
139	 * values for thermal zones that don't provide them. If a
140	 * system integrator has configured a thermal zone with two
141	 * passive trip points at the same temperature, that person
142	 * hasn't put any effort to set up the thermal zone properly
143	 * so just give up.
144	 */
145	if (!temperature_threshold)
146		return;
147
148	tz->tzp->k_po = int_to_frac(sustainable_power) /
149		temperature_threshold;
150
151	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
152		temperature_threshold;
153
154	k_i = tz->tzp->k_pu / 10;
155	tz->tzp->k_i = k_i > 0 ? k_i : 1;
156
 
 
157	/*
158	 * The default for k_d and integral_cutoff is 0, so we can
159	 * leave them as they are.
160	 */
161}
162
163/**
164 * get_sustainable_power() - Get the right sustainable power
165 * @tz:		thermal zone for which to estimate the constants
166 * @params:	parameters for the power allocator governor
167 * @control_temp:	target temperature for the power allocator governor
168 *
169 * This function is used for getting the proper sustainable power value based
170 * on variables which might be updated by the user sysfs interface. If that
171 * happen the new value is going to be estimated and updated. It is also used
172 * after thermal zone binding, where the initial values where set to 0.
173 */
174static u32 get_sustainable_power(struct thermal_zone_device *tz,
175				 struct power_allocator_params *params,
176				 int control_temp)
177{
178	u32 sustainable_power;
179
180	if (!tz->tzp->sustainable_power)
181		sustainable_power = estimate_sustainable_power(tz);
182	else
183		sustainable_power = tz->tzp->sustainable_power;
184
185	/* Check if it's init value 0 or there was update via sysfs */
186	if (sustainable_power != params->sustainable_power) {
187		estimate_pid_constants(tz, sustainable_power,
188				       params->trip_switch_on, control_temp);
189
190		/* Do the estimation only once and make available in sysfs */
191		tz->tzp->sustainable_power = sustainable_power;
192		params->sustainable_power = sustainable_power;
193	}
194
195	return sustainable_power;
196}
197
198/**
199 * pid_controller() - PID controller
200 * @tz:	thermal zone we are operating in
201 * @control_temp:	the target temperature in millicelsius
202 * @max_allocatable_power:	maximum allocatable power for this thermal zone
203 *
204 * This PID controller increases the available power budget so that the
205 * temperature of the thermal zone gets as close as possible to
206 * @control_temp and limits the power if it exceeds it.  k_po is the
207 * proportional term when we are overshooting, k_pu is the
208 * proportional term when we are undershooting.  integral_cutoff is a
209 * threshold below which we stop accumulating the error.  The
210 * accumulated error is only valid if the requested power will make
211 * the system warmer.  If the system is mostly idle, there's no point
212 * in accumulating positive error.
213 *
214 * Return: The power budget for the next period.
215 */
216static u32 pid_controller(struct thermal_zone_device *tz,
217			  int control_temp,
218			  u32 max_allocatable_power)
219{
220	s64 p, i, d, power_range;
221	s32 err, max_power_frac;
222	u32 sustainable_power;
223	struct power_allocator_params *params = tz->governor_data;
224
225	max_power_frac = int_to_frac(max_allocatable_power);
226
227	sustainable_power = get_sustainable_power(tz, params, control_temp);
 
 
 
 
 
 
 
228
229	err = control_temp - tz->temperature;
230	err = int_to_frac(err);
231
232	/* Calculate the proportional term */
233	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
234
235	/*
236	 * Calculate the integral term
237	 *
238	 * if the error is less than cut off allow integration (but
239	 * the integral is limited to max power)
240	 */
241	i = mul_frac(tz->tzp->k_i, params->err_integral);
242
243	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
244		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
245
246		if (abs(i_next) < max_power_frac) {
247			i = i_next;
248			params->err_integral += err;
249		}
250	}
251
252	/*
253	 * Calculate the derivative term
254	 *
255	 * We do err - prev_err, so with a positive k_d, a decreasing
256	 * error (i.e. driving closer to the line) results in less
257	 * power being applied, slowing down the controller)
258	 */
259	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
260	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
261	params->prev_err = err;
262
263	power_range = p + i + d;
264
265	/* feed-forward the known sustainable dissipatable power */
266	power_range = sustainable_power + frac_to_int(power_range);
267
268	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
269
270	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
271					  frac_to_int(params->err_integral),
272					  frac_to_int(p), frac_to_int(i),
273					  frac_to_int(d), power_range);
274
275	return power_range;
276}
277
278/**
279 * power_actor_set_power() - limit the maximum power a cooling device consumes
280 * @cdev:	pointer to &thermal_cooling_device
281 * @instance:	thermal instance to update
282 * @power:	the power in milliwatts
283 *
284 * Set the cooling device to consume at most @power milliwatts. The limit is
285 * expected to be a cap at the maximum power consumption.
286 *
287 * Return: 0 on success, -EINVAL if the cooling device does not
288 * implement the power actor API or -E* for other failures.
289 */
290static int
291power_actor_set_power(struct thermal_cooling_device *cdev,
292		      struct thermal_instance *instance, u32 power)
293{
294	unsigned long state;
295	int ret;
296
297	ret = cdev->ops->power2state(cdev, power, &state);
298	if (ret)
299		return ret;
300
301	instance->target = clamp_val(state, instance->lower, instance->upper);
302	mutex_lock(&cdev->lock);
303	__thermal_cdev_update(cdev);
304	mutex_unlock(&cdev->lock);
305
306	return 0;
307}
308
309/**
310 * divvy_up_power() - divvy the allocated power between the actors
311 * @req_power:	each actor's requested power
312 * @max_power:	each actor's maximum available power
313 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
314 * @total_req_power: sum of @req_power
315 * @power_range:	total allocated power
316 * @granted_power:	output array: each actor's granted power
317 * @extra_actor_power:	an appropriately sized array to be used in the
318 *			function as temporary storage of the extra power given
319 *			to the actors
320 *
321 * This function divides the total allocated power (@power_range)
322 * fairly between the actors.  It first tries to give each actor a
323 * share of the @power_range according to how much power it requested
324 * compared to the rest of the actors.  For example, if only one actor
325 * requests power, then it receives all the @power_range.  If
326 * three actors each requests 1mW, each receives a third of the
327 * @power_range.
328 *
329 * If any actor received more than their maximum power, then that
330 * surplus is re-divvied among the actors based on how far they are
331 * from their respective maximums.
332 *
333 * Granted power for each actor is written to @granted_power, which
334 * should've been allocated by the calling function.
335 */
336static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
337			   u32 total_req_power, u32 power_range,
338			   u32 *granted_power, u32 *extra_actor_power)
339{
340	u32 extra_power, capped_extra_power;
341	int i;
342
343	/*
344	 * Prevent division by 0 if none of the actors request power.
345	 */
346	if (!total_req_power)
347		total_req_power = 1;
348
349	capped_extra_power = 0;
350	extra_power = 0;
351	for (i = 0; i < num_actors; i++) {
352		u64 req_range = (u64)req_power[i] * power_range;
353
354		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
355							 total_req_power);
356
357		if (granted_power[i] > max_power[i]) {
358			extra_power += granted_power[i] - max_power[i];
359			granted_power[i] = max_power[i];
360		}
361
362		extra_actor_power[i] = max_power[i] - granted_power[i];
363		capped_extra_power += extra_actor_power[i];
364	}
365
366	if (!extra_power)
367		return;
368
369	/*
370	 * Re-divvy the reclaimed extra among actors based on
371	 * how far they are from the max
372	 */
373	extra_power = min(extra_power, capped_extra_power);
374	if (capped_extra_power > 0)
375		for (i = 0; i < num_actors; i++) {
376			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
377			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
378							 capped_extra_power);
379		}
380}
381
382static int allocate_power(struct thermal_zone_device *tz,
383			  int control_temp)
384{
385	struct thermal_instance *instance;
386	struct power_allocator_params *params = tz->governor_data;
387	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
388	u32 *weighted_req_power;
389	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
390	u32 total_granted_power, power_range;
391	int i, num_actors, total_weight, ret = 0;
392	int trip_max_desired_temperature = params->trip_max_desired_temperature;
393
 
 
394	num_actors = 0;
395	total_weight = 0;
396	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
397		if ((instance->trip == trip_max_desired_temperature) &&
398		    cdev_is_power_actor(instance->cdev)) {
399			num_actors++;
400			total_weight += instance->weight;
401		}
402	}
403
404	if (!num_actors)
405		return -ENODEV;
 
 
406
407	/*
408	 * We need to allocate five arrays of the same size:
409	 * req_power, max_power, granted_power, extra_actor_power and
410	 * weighted_req_power.  They are going to be needed until this
411	 * function returns.  Allocate them all in one go to simplify
412	 * the allocation and deallocation logic.
413	 */
414	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
415	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
416	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
417	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
418	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
419	if (!req_power)
420		return -ENOMEM;
 
 
421
422	max_power = &req_power[num_actors];
423	granted_power = &req_power[2 * num_actors];
424	extra_actor_power = &req_power[3 * num_actors];
425	weighted_req_power = &req_power[4 * num_actors];
426
427	i = 0;
428	total_weighted_req_power = 0;
429	total_req_power = 0;
430	max_allocatable_power = 0;
431
432	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
433		int weight;
434		struct thermal_cooling_device *cdev = instance->cdev;
435
436		if (instance->trip != trip_max_desired_temperature)
437			continue;
438
439		if (!cdev_is_power_actor(cdev))
440			continue;
441
442		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
443			continue;
444
445		if (!total_weight)
446			weight = 1 << FRAC_BITS;
447		else
448			weight = instance->weight;
449
450		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
451
452		if (cdev->ops->state2power(cdev, instance->lower,
453					   &max_power[i]))
454			continue;
455
456		total_req_power += req_power[i];
457		max_allocatable_power += max_power[i];
458		total_weighted_req_power += weighted_req_power[i];
459
460		i++;
461	}
462
463	power_range = pid_controller(tz, control_temp, max_allocatable_power);
464
465	divvy_up_power(weighted_req_power, max_power, num_actors,
466		       total_weighted_req_power, power_range, granted_power,
467		       extra_actor_power);
468
469	total_granted_power = 0;
470	i = 0;
471	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
472		if (instance->trip != trip_max_desired_temperature)
473			continue;
474
475		if (!cdev_is_power_actor(instance->cdev))
476			continue;
477
478		power_actor_set_power(instance->cdev, instance,
479				      granted_power[i]);
480		total_granted_power += granted_power[i];
481
482		i++;
483	}
484
485	trace_thermal_power_allocator(tz, req_power, total_req_power,
486				      granted_power, total_granted_power,
487				      num_actors, power_range,
488				      max_allocatable_power, tz->temperature,
489				      control_temp - tz->temperature);
490
491	kfree(req_power);
 
 
492
493	return ret;
494}
495
496/**
497 * get_governor_trips() - get the number of the two trip points that are key for this governor
498 * @tz:	thermal zone to operate on
499 * @params:	pointer to private data for this governor
500 *
501 * The power allocator governor works optimally with two trips points:
502 * a "switch on" trip point and a "maximum desired temperature".  These
503 * are defined as the first and last passive trip points.
504 *
505 * If there is only one trip point, then that's considered to be the
506 * "maximum desired temperature" trip point and the governor is always
507 * on.  If there are no passive or active trip points, then the
508 * governor won't do anything.  In fact, its throttle function
509 * won't be called at all.
510 */
511static void get_governor_trips(struct thermal_zone_device *tz,
512			       struct power_allocator_params *params)
513{
514	int i, last_active, last_passive;
515	bool found_first_passive;
516
517	found_first_passive = false;
518	last_active = INVALID_TRIP;
519	last_passive = INVALID_TRIP;
520
521	for (i = 0; i < tz->num_trips; i++) {
522		enum thermal_trip_type type;
523		int ret;
524
525		ret = tz->ops->get_trip_type(tz, i, &type);
526		if (ret) {
527			dev_warn(&tz->device,
528				 "Failed to get trip point %d type: %d\n", i,
529				 ret);
530			continue;
531		}
532
533		if (type == THERMAL_TRIP_PASSIVE) {
534			if (!found_first_passive) {
535				params->trip_switch_on = i;
536				found_first_passive = true;
537			} else  {
538				last_passive = i;
539			}
540		} else if (type == THERMAL_TRIP_ACTIVE) {
541			last_active = i;
542		} else {
543			break;
544		}
545	}
546
547	if (last_passive != INVALID_TRIP) {
548		params->trip_max_desired_temperature = last_passive;
549	} else if (found_first_passive) {
550		params->trip_max_desired_temperature = params->trip_switch_on;
551		params->trip_switch_on = INVALID_TRIP;
552	} else {
553		params->trip_switch_on = INVALID_TRIP;
554		params->trip_max_desired_temperature = last_active;
555	}
556}
557
558static void reset_pid_controller(struct power_allocator_params *params)
559{
560	params->err_integral = 0;
561	params->prev_err = 0;
562}
563
564static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
565{
566	struct thermal_instance *instance;
567	struct power_allocator_params *params = tz->governor_data;
568	u32 req_power;
569
 
570	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
571		struct thermal_cooling_device *cdev = instance->cdev;
572
573		if ((instance->trip != params->trip_max_desired_temperature) ||
574		    (!cdev_is_power_actor(instance->cdev)))
575			continue;
576
577		instance->target = 0;
578		mutex_lock(&instance->cdev->lock);
579		/*
580		 * Call for updating the cooling devices local stats and avoid
581		 * periods of dozen of seconds when those have not been
582		 * maintained.
583		 */
584		cdev->ops->get_requested_power(cdev, &req_power);
585
586		if (update)
587			__thermal_cdev_update(instance->cdev);
588
589		mutex_unlock(&instance->cdev->lock);
 
590	}
591}
592
593/**
594 * check_power_actors() - Check all cooling devices and warn when they are
595 *			not power actors
596 * @tz:		thermal zone to operate on
597 *
598 * Check all cooling devices in the @tz and warn every time they are missing
599 * power actor API. The warning should help to investigate the issue, which
600 * could be e.g. lack of Energy Model for a given device.
601 *
602 * Return: 0 on success, -EINVAL if any cooling device does not implement
603 * the power actor API.
604 */
605static int check_power_actors(struct thermal_zone_device *tz)
606{
607	struct thermal_instance *instance;
608	int ret = 0;
609
610	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
611		if (!cdev_is_power_actor(instance->cdev)) {
612			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
613				 instance->cdev->type);
614			ret = -EINVAL;
615		}
616	}
617
618	return ret;
619}
620
621/**
622 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
623 * @tz:	thermal zone to bind it to
624 *
625 * Initialize the PID controller parameters and bind it to the thermal
626 * zone.
627 *
628 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
629 * when there are unsupported cooling devices in the @tz.
630 */
631static int power_allocator_bind(struct thermal_zone_device *tz)
632{
633	int ret;
634	struct power_allocator_params *params;
635	int control_temp;
636
637	ret = check_power_actors(tz);
638	if (ret)
639		return ret;
640
641	params = kzalloc(sizeof(*params), GFP_KERNEL);
642	if (!params)
643		return -ENOMEM;
644
645	if (!tz->tzp) {
646		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
647		if (!tz->tzp) {
648			ret = -ENOMEM;
649			goto free_params;
650		}
651
652		params->allocated_tzp = true;
653	}
654
655	if (!tz->tzp->sustainable_power)
656		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
657
658	get_governor_trips(tz, params);
659
660	if (tz->num_trips > 0) {
661		ret = tz->ops->get_trip_temp(tz,
662					params->trip_max_desired_temperature,
663					&control_temp);
664		if (!ret)
665			estimate_pid_constants(tz, tz->tzp->sustainable_power,
666					       params->trip_switch_on,
667					       control_temp);
668	}
669
670	reset_pid_controller(params);
671
672	tz->governor_data = params;
673
674	return 0;
675
676free_params:
677	kfree(params);
678
679	return ret;
680}
681
682static void power_allocator_unbind(struct thermal_zone_device *tz)
683{
684	struct power_allocator_params *params = tz->governor_data;
685
686	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
687
688	if (params->allocated_tzp) {
689		kfree(tz->tzp);
690		tz->tzp = NULL;
691	}
692
693	kfree(tz->governor_data);
694	tz->governor_data = NULL;
695}
696
697static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
698{
699	int ret;
700	int switch_on_temp, control_temp;
701	struct power_allocator_params *params = tz->governor_data;
702	bool update;
703
704	lockdep_assert_held(&tz->lock);
705
706	/*
707	 * We get called for every trip point but we only need to do
708	 * our calculations once
709	 */
710	if (trip != params->trip_max_desired_temperature)
711		return 0;
712
713	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
714				     &switch_on_temp);
715	if (!ret && (tz->temperature < switch_on_temp)) {
716		update = (tz->last_temperature >= switch_on_temp);
717		tz->passive = 0;
718		reset_pid_controller(params);
719		allow_maximum_power(tz, update);
720		return 0;
721	}
722
723	tz->passive = 1;
724
725	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
726				&control_temp);
727	if (ret) {
728		dev_warn(&tz->device,
729			 "Failed to get the maximum desired temperature: %d\n",
730			 ret);
731		return ret;
732	}
733
734	return allocate_power(tz, control_temp);
735}
736
737static struct thermal_governor thermal_gov_power_allocator = {
738	.name		= "power_allocator",
739	.bind_to_tz	= power_allocator_bind,
740	.unbind_from_tz	= power_allocator_unbind,
741	.throttle	= power_allocator_throttle,
742};
743THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);