Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 11#include <linux/rculist.h>
 12#include <linux/slab.h>
 13#include <linux/thermal.h>
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/thermal_power_allocator.h>
 17
 18#include "thermal_core.h"
 19
 20#define INVALID_TRIP -1
 21
 22#define FRAC_BITS 10
 23#define int_to_frac(x) ((x) << FRAC_BITS)
 24#define frac_to_int(x) ((x) >> FRAC_BITS)
 25
 26/**
 27 * mul_frac() - multiply two fixed-point numbers
 28 * @x:	first multiplicand
 29 * @y:	second multiplicand
 30 *
 31 * Return: the result of multiplying two fixed-point numbers.  The
 32 * result is also a fixed-point number.
 33 */
 34static inline s64 mul_frac(s64 x, s64 y)
 35{
 36	return (x * y) >> FRAC_BITS;
 37}
 38
 39/**
 40 * div_frac() - divide two fixed-point numbers
 41 * @x:	the dividend
 42 * @y:	the divisor
 43 *
 44 * Return: the result of dividing two fixed-point numbers.  The
 45 * result is also a fixed-point number.
 46 */
 47static inline s64 div_frac(s64 x, s64 y)
 48{
 49	return div_s64(x << FRAC_BITS, y);
 50}
 51
 52/**
 53 * struct power_allocator_params - parameters for the power allocator governor
 54 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 55 *			it needs to be freed on unbind
 56 * @err_integral:	accumulated error in the PID controller.
 57 * @prev_err:	error in the previous iteration of the PID controller.
 58 *		Used to calculate the derivative term.
 59 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 60 *			governor switches on when this trip point is crossed.
 61 *			If the thermal zone only has one passive trip point,
 62 *			@trip_switch_on should be INVALID_TRIP.
 63 * @trip_max_desired_temperature:	last passive trip point of the thermal
 64 *					zone.  The temperature we are
 65 *					controlling for.
 
 
 66 */
 67struct power_allocator_params {
 68	bool allocated_tzp;
 69	s64 err_integral;
 70	s32 prev_err;
 71	int trip_switch_on;
 72	int trip_max_desired_temperature;
 
 73};
 74
 75/**
 76 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 77 * @tz: thermal zone we are operating in
 78 *
 79 * For thermal zones that don't provide a sustainable_power in their
 80 * thermal_zone_params, estimate one.  Calculate it using the minimum
 81 * power of all the cooling devices as that gives a valid value that
 82 * can give some degree of functionality.  For optimal performance of
 83 * this governor, provide a sustainable_power in the thermal zone's
 84 * thermal_zone_params.
 85 */
 86static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 87{
 88	u32 sustainable_power = 0;
 89	struct thermal_instance *instance;
 90	struct power_allocator_params *params = tz->governor_data;
 91
 92	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 93		struct thermal_cooling_device *cdev = instance->cdev;
 94		u32 min_power;
 95
 96		if (instance->trip != params->trip_max_desired_temperature)
 97			continue;
 98
 99		if (power_actor_get_min_power(cdev, tz, &min_power))
 
 
 
100			continue;
101
102		sustainable_power += min_power;
103	}
104
105	return sustainable_power;
106}
107
108/**
109 * estimate_pid_constants() - Estimate the constants for the PID controller
110 * @tz:		thermal zone for which to estimate the constants
111 * @sustainable_power:	sustainable power for the thermal zone
112 * @trip_switch_on:	trip point number for the switch on temperature
113 * @control_temp:	target temperature for the power allocator governor
114 * @force:	whether to force the update of the constants
115 *
116 * This function is used to update the estimation of the PID
117 * controller constants in struct thermal_zone_parameters.
118 * Sustainable power is provided in case it was estimated.  The
119 * estimated sustainable_power should not be stored in the
120 * thermal_zone_parameters so it has to be passed explicitly to this
121 * function.
122 *
123 * If @force is not set, the values in the thermal zone's parameters
124 * are preserved if they are not zero.  If @force is set, the values
125 * in thermal zone's parameters are overwritten.
126 */
127static void estimate_pid_constants(struct thermal_zone_device *tz,
128				   u32 sustainable_power, int trip_switch_on,
129				   int control_temp, bool force)
130{
131	int ret;
132	int switch_on_temp;
133	u32 temperature_threshold;
 
134
135	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
136	if (ret)
137		switch_on_temp = 0;
138
139	temperature_threshold = control_temp - switch_on_temp;
140	/*
141	 * estimate_pid_constants() tries to find appropriate default
142	 * values for thermal zones that don't provide them. If a
143	 * system integrator has configured a thermal zone with two
144	 * passive trip points at the same temperature, that person
145	 * hasn't put any effort to set up the thermal zone properly
146	 * so just give up.
147	 */
148	if (!temperature_threshold)
149		return;
150
151	if (!tz->tzp->k_po || force)
152		tz->tzp->k_po = int_to_frac(sustainable_power) /
153			temperature_threshold;
154
155	if (!tz->tzp->k_pu || force)
156		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
157			temperature_threshold;
 
158
159	if (!tz->tzp->k_i || force)
160		tz->tzp->k_i = int_to_frac(10) / 1000;
161	/*
162	 * The default for k_d and integral_cutoff is 0, so we can
163	 * leave them as they are.
164	 */
165}
166
167/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168 * pid_controller() - PID controller
169 * @tz:	thermal zone we are operating in
170 * @control_temp:	the target temperature in millicelsius
171 * @max_allocatable_power:	maximum allocatable power for this thermal zone
172 *
173 * This PID controller increases the available power budget so that the
174 * temperature of the thermal zone gets as close as possible to
175 * @control_temp and limits the power if it exceeds it.  k_po is the
176 * proportional term when we are overshooting, k_pu is the
177 * proportional term when we are undershooting.  integral_cutoff is a
178 * threshold below which we stop accumulating the error.  The
179 * accumulated error is only valid if the requested power will make
180 * the system warmer.  If the system is mostly idle, there's no point
181 * in accumulating positive error.
182 *
183 * Return: The power budget for the next period.
184 */
185static u32 pid_controller(struct thermal_zone_device *tz,
186			  int control_temp,
187			  u32 max_allocatable_power)
188{
189	s64 p, i, d, power_range;
190	s32 err, max_power_frac;
191	u32 sustainable_power;
192	struct power_allocator_params *params = tz->governor_data;
193
194	max_power_frac = int_to_frac(max_allocatable_power);
195
196	if (tz->tzp->sustainable_power) {
197		sustainable_power = tz->tzp->sustainable_power;
198	} else {
199		sustainable_power = estimate_sustainable_power(tz);
200		estimate_pid_constants(tz, sustainable_power,
201				       params->trip_switch_on, control_temp,
202				       true);
203	}
204
205	err = control_temp - tz->temperature;
206	err = int_to_frac(err);
207
208	/* Calculate the proportional term */
209	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
210
211	/*
212	 * Calculate the integral term
213	 *
214	 * if the error is less than cut off allow integration (but
215	 * the integral is limited to max power)
216	 */
217	i = mul_frac(tz->tzp->k_i, params->err_integral);
218
219	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
220		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
221
222		if (abs(i_next) < max_power_frac) {
223			i = i_next;
224			params->err_integral += err;
225		}
226	}
227
228	/*
229	 * Calculate the derivative term
230	 *
231	 * We do err - prev_err, so with a positive k_d, a decreasing
232	 * error (i.e. driving closer to the line) results in less
233	 * power being applied, slowing down the controller)
234	 */
235	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
236	d = div_frac(d, tz->passive_delay);
237	params->prev_err = err;
238
239	power_range = p + i + d;
240
241	/* feed-forward the known sustainable dissipatable power */
242	power_range = sustainable_power + frac_to_int(power_range);
243
244	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
245
246	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
247					  frac_to_int(params->err_integral),
248					  frac_to_int(p), frac_to_int(i),
249					  frac_to_int(d), power_range);
250
251	return power_range;
252}
253
254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255 * divvy_up_power() - divvy the allocated power between the actors
256 * @req_power:	each actor's requested power
257 * @max_power:	each actor's maximum available power
258 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
259 * @total_req_power: sum of @req_power
260 * @power_range:	total allocated power
261 * @granted_power:	output array: each actor's granted power
262 * @extra_actor_power:	an appropriately sized array to be used in the
263 *			function as temporary storage of the extra power given
264 *			to the actors
265 *
266 * This function divides the total allocated power (@power_range)
267 * fairly between the actors.  It first tries to give each actor a
268 * share of the @power_range according to how much power it requested
269 * compared to the rest of the actors.  For example, if only one actor
270 * requests power, then it receives all the @power_range.  If
271 * three actors each requests 1mW, each receives a third of the
272 * @power_range.
273 *
274 * If any actor received more than their maximum power, then that
275 * surplus is re-divvied among the actors based on how far they are
276 * from their respective maximums.
277 *
278 * Granted power for each actor is written to @granted_power, which
279 * should've been allocated by the calling function.
280 */
281static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
282			   u32 total_req_power, u32 power_range,
283			   u32 *granted_power, u32 *extra_actor_power)
284{
285	u32 extra_power, capped_extra_power;
286	int i;
287
288	/*
289	 * Prevent division by 0 if none of the actors request power.
290	 */
291	if (!total_req_power)
292		total_req_power = 1;
293
294	capped_extra_power = 0;
295	extra_power = 0;
296	for (i = 0; i < num_actors; i++) {
297		u64 req_range = (u64)req_power[i] * power_range;
298
299		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
300							 total_req_power);
301
302		if (granted_power[i] > max_power[i]) {
303			extra_power += granted_power[i] - max_power[i];
304			granted_power[i] = max_power[i];
305		}
306
307		extra_actor_power[i] = max_power[i] - granted_power[i];
308		capped_extra_power += extra_actor_power[i];
309	}
310
311	if (!extra_power)
312		return;
313
314	/*
315	 * Re-divvy the reclaimed extra among actors based on
316	 * how far they are from the max
317	 */
318	extra_power = min(extra_power, capped_extra_power);
319	if (capped_extra_power > 0)
320		for (i = 0; i < num_actors; i++)
321			granted_power[i] += (extra_actor_power[i] *
322					extra_power) / capped_extra_power;
 
 
323}
324
325static int allocate_power(struct thermal_zone_device *tz,
326			  int control_temp)
327{
328	struct thermal_instance *instance;
329	struct power_allocator_params *params = tz->governor_data;
330	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
331	u32 *weighted_req_power;
332	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
333	u32 total_granted_power, power_range;
334	int i, num_actors, total_weight, ret = 0;
335	int trip_max_desired_temperature = params->trip_max_desired_temperature;
336
337	mutex_lock(&tz->lock);
338
339	num_actors = 0;
340	total_weight = 0;
341	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
342		if ((instance->trip == trip_max_desired_temperature) &&
343		    cdev_is_power_actor(instance->cdev)) {
344			num_actors++;
345			total_weight += instance->weight;
346		}
347	}
348
349	if (!num_actors) {
350		ret = -ENODEV;
351		goto unlock;
352	}
353
354	/*
355	 * We need to allocate five arrays of the same size:
356	 * req_power, max_power, granted_power, extra_actor_power and
357	 * weighted_req_power.  They are going to be needed until this
358	 * function returns.  Allocate them all in one go to simplify
359	 * the allocation and deallocation logic.
360	 */
361	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
362	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
363	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
364	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
365	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
366	if (!req_power) {
367		ret = -ENOMEM;
368		goto unlock;
369	}
370
371	max_power = &req_power[num_actors];
372	granted_power = &req_power[2 * num_actors];
373	extra_actor_power = &req_power[3 * num_actors];
374	weighted_req_power = &req_power[4 * num_actors];
375
376	i = 0;
377	total_weighted_req_power = 0;
378	total_req_power = 0;
379	max_allocatable_power = 0;
380
381	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
382		int weight;
383		struct thermal_cooling_device *cdev = instance->cdev;
384
385		if (instance->trip != trip_max_desired_temperature)
386			continue;
387
388		if (!cdev_is_power_actor(cdev))
389			continue;
390
391		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
392			continue;
393
394		if (!total_weight)
395			weight = 1 << FRAC_BITS;
396		else
397			weight = instance->weight;
398
399		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
400
401		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
 
402			continue;
403
404		total_req_power += req_power[i];
405		max_allocatable_power += max_power[i];
406		total_weighted_req_power += weighted_req_power[i];
407
408		i++;
409	}
410
411	power_range = pid_controller(tz, control_temp, max_allocatable_power);
412
413	divvy_up_power(weighted_req_power, max_power, num_actors,
414		       total_weighted_req_power, power_range, granted_power,
415		       extra_actor_power);
416
417	total_granted_power = 0;
418	i = 0;
419	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
420		if (instance->trip != trip_max_desired_temperature)
421			continue;
422
423		if (!cdev_is_power_actor(instance->cdev))
424			continue;
425
426		power_actor_set_power(instance->cdev, instance,
427				      granted_power[i]);
428		total_granted_power += granted_power[i];
429
430		i++;
431	}
432
433	trace_thermal_power_allocator(tz, req_power, total_req_power,
434				      granted_power, total_granted_power,
435				      num_actors, power_range,
436				      max_allocatable_power, tz->temperature,
437				      control_temp - tz->temperature);
438
439	kfree(req_power);
440unlock:
441	mutex_unlock(&tz->lock);
442
443	return ret;
444}
445
446/**
447 * get_governor_trips() - get the number of the two trip points that are key for this governor
448 * @tz:	thermal zone to operate on
449 * @params:	pointer to private data for this governor
450 *
451 * The power allocator governor works optimally with two trips points:
452 * a "switch on" trip point and a "maximum desired temperature".  These
453 * are defined as the first and last passive trip points.
454 *
455 * If there is only one trip point, then that's considered to be the
456 * "maximum desired temperature" trip point and the governor is always
457 * on.  If there are no passive or active trip points, then the
458 * governor won't do anything.  In fact, its throttle function
459 * won't be called at all.
460 */
461static void get_governor_trips(struct thermal_zone_device *tz,
462			       struct power_allocator_params *params)
463{
464	int i, last_active, last_passive;
465	bool found_first_passive;
466
467	found_first_passive = false;
468	last_active = INVALID_TRIP;
469	last_passive = INVALID_TRIP;
470
471	for (i = 0; i < tz->trips; i++) {
472		enum thermal_trip_type type;
473		int ret;
474
475		ret = tz->ops->get_trip_type(tz, i, &type);
476		if (ret) {
477			dev_warn(&tz->device,
478				 "Failed to get trip point %d type: %d\n", i,
479				 ret);
480			continue;
481		}
482
483		if (type == THERMAL_TRIP_PASSIVE) {
484			if (!found_first_passive) {
485				params->trip_switch_on = i;
486				found_first_passive = true;
487			} else  {
488				last_passive = i;
489			}
490		} else if (type == THERMAL_TRIP_ACTIVE) {
491			last_active = i;
492		} else {
493			break;
494		}
495	}
496
497	if (last_passive != INVALID_TRIP) {
498		params->trip_max_desired_temperature = last_passive;
499	} else if (found_first_passive) {
500		params->trip_max_desired_temperature = params->trip_switch_on;
501		params->trip_switch_on = INVALID_TRIP;
502	} else {
503		params->trip_switch_on = INVALID_TRIP;
504		params->trip_max_desired_temperature = last_active;
505	}
506}
507
508static void reset_pid_controller(struct power_allocator_params *params)
509{
510	params->err_integral = 0;
511	params->prev_err = 0;
512}
513
514static void allow_maximum_power(struct thermal_zone_device *tz)
515{
516	struct thermal_instance *instance;
517	struct power_allocator_params *params = tz->governor_data;
 
518
519	mutex_lock(&tz->lock);
520	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 
 
521		if ((instance->trip != params->trip_max_desired_temperature) ||
522		    (!cdev_is_power_actor(instance->cdev)))
523			continue;
524
525		instance->target = 0;
526		mutex_lock(&instance->cdev->lock);
527		instance->cdev->updated = false;
 
 
 
 
 
 
 
 
 
528		mutex_unlock(&instance->cdev->lock);
529		thermal_cdev_update(instance->cdev);
530	}
531	mutex_unlock(&tz->lock);
532}
533
534/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
536 * @tz:	thermal zone to bind it to
537 *
538 * Initialize the PID controller parameters and bind it to the thermal
539 * zone.
540 *
541 * Return: 0 on success, or -ENOMEM if we ran out of memory.
 
542 */
543static int power_allocator_bind(struct thermal_zone_device *tz)
544{
545	int ret;
546	struct power_allocator_params *params;
547	int control_temp;
548
 
 
 
 
549	params = kzalloc(sizeof(*params), GFP_KERNEL);
550	if (!params)
551		return -ENOMEM;
552
553	if (!tz->tzp) {
554		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
555		if (!tz->tzp) {
556			ret = -ENOMEM;
557			goto free_params;
558		}
559
560		params->allocated_tzp = true;
561	}
562
563	if (!tz->tzp->sustainable_power)
564		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
565
566	get_governor_trips(tz, params);
567
568	if (tz->trips > 0) {
569		ret = tz->ops->get_trip_temp(tz,
570					params->trip_max_desired_temperature,
571					&control_temp);
572		if (!ret)
573			estimate_pid_constants(tz, tz->tzp->sustainable_power,
574					       params->trip_switch_on,
575					       control_temp, false);
576	}
577
578	reset_pid_controller(params);
579
580	tz->governor_data = params;
581
582	return 0;
583
584free_params:
585	kfree(params);
586
587	return ret;
588}
589
590static void power_allocator_unbind(struct thermal_zone_device *tz)
591{
592	struct power_allocator_params *params = tz->governor_data;
593
594	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
595
596	if (params->allocated_tzp) {
597		kfree(tz->tzp);
598		tz->tzp = NULL;
599	}
600
601	kfree(tz->governor_data);
602	tz->governor_data = NULL;
603}
604
605static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
606{
607	int ret;
608	int switch_on_temp, control_temp;
609	struct power_allocator_params *params = tz->governor_data;
 
610
611	/*
612	 * We get called for every trip point but we only need to do
613	 * our calculations once
614	 */
615	if (trip != params->trip_max_desired_temperature)
616		return 0;
617
618	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
619				     &switch_on_temp);
620	if (!ret && (tz->temperature < switch_on_temp)) {
 
621		tz->passive = 0;
622		reset_pid_controller(params);
623		allow_maximum_power(tz);
624		return 0;
625	}
626
627	tz->passive = 1;
628
629	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
630				&control_temp);
631	if (ret) {
632		dev_warn(&tz->device,
633			 "Failed to get the maximum desired temperature: %d\n",
634			 ret);
635		return ret;
636	}
637
638	return allocate_power(tz, control_temp);
639}
640
641static struct thermal_governor thermal_gov_power_allocator = {
642	.name		= "power_allocator",
643	.bind_to_tz	= power_allocator_bind,
644	.unbind_from_tz	= power_allocator_unbind,
645	.throttle	= power_allocator_throttle,
646};
647THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A power allocator to manage temperature
  4 *
  5 * Copyright (C) 2014 ARM Ltd.
  6 *
  7 */
  8
  9#define pr_fmt(fmt) "Power allocator: " fmt
 10
 11#include <linux/rculist.h>
 12#include <linux/slab.h>
 13#include <linux/thermal.h>
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/thermal_power_allocator.h>
 17
 18#include "thermal_core.h"
 19
 20#define INVALID_TRIP -1
 21
 22#define FRAC_BITS 10
 23#define int_to_frac(x) ((x) << FRAC_BITS)
 24#define frac_to_int(x) ((x) >> FRAC_BITS)
 25
 26/**
 27 * mul_frac() - multiply two fixed-point numbers
 28 * @x:	first multiplicand
 29 * @y:	second multiplicand
 30 *
 31 * Return: the result of multiplying two fixed-point numbers.  The
 32 * result is also a fixed-point number.
 33 */
 34static inline s64 mul_frac(s64 x, s64 y)
 35{
 36	return (x * y) >> FRAC_BITS;
 37}
 38
 39/**
 40 * div_frac() - divide two fixed-point numbers
 41 * @x:	the dividend
 42 * @y:	the divisor
 43 *
 44 * Return: the result of dividing two fixed-point numbers.  The
 45 * result is also a fixed-point number.
 46 */
 47static inline s64 div_frac(s64 x, s64 y)
 48{
 49	return div_s64(x << FRAC_BITS, y);
 50}
 51
 52/**
 53 * struct power_allocator_params - parameters for the power allocator governor
 54 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 55 *			it needs to be freed on unbind
 56 * @err_integral:	accumulated error in the PID controller.
 57 * @prev_err:	error in the previous iteration of the PID controller.
 58 *		Used to calculate the derivative term.
 59 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 60 *			governor switches on when this trip point is crossed.
 61 *			If the thermal zone only has one passive trip point,
 62 *			@trip_switch_on should be INVALID_TRIP.
 63 * @trip_max_desired_temperature:	last passive trip point of the thermal
 64 *					zone.  The temperature we are
 65 *					controlling for.
 66 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 67 *			dissipate
 68 */
 69struct power_allocator_params {
 70	bool allocated_tzp;
 71	s64 err_integral;
 72	s32 prev_err;
 73	int trip_switch_on;
 74	int trip_max_desired_temperature;
 75	u32 sustainable_power;
 76};
 77
 78/**
 79 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 80 * @tz: thermal zone we are operating in
 81 *
 82 * For thermal zones that don't provide a sustainable_power in their
 83 * thermal_zone_params, estimate one.  Calculate it using the minimum
 84 * power of all the cooling devices as that gives a valid value that
 85 * can give some degree of functionality.  For optimal performance of
 86 * this governor, provide a sustainable_power in the thermal zone's
 87 * thermal_zone_params.
 88 */
 89static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 90{
 91	u32 sustainable_power = 0;
 92	struct thermal_instance *instance;
 93	struct power_allocator_params *params = tz->governor_data;
 94
 95	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 96		struct thermal_cooling_device *cdev = instance->cdev;
 97		u32 min_power;
 98
 99		if (instance->trip != params->trip_max_desired_temperature)
100			continue;
101
102		if (!cdev_is_power_actor(cdev))
103			continue;
104
105		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
106			continue;
107
108		sustainable_power += min_power;
109	}
110
111	return sustainable_power;
112}
113
114/**
115 * estimate_pid_constants() - Estimate the constants for the PID controller
116 * @tz:		thermal zone for which to estimate the constants
117 * @sustainable_power:	sustainable power for the thermal zone
118 * @trip_switch_on:	trip point number for the switch on temperature
119 * @control_temp:	target temperature for the power allocator governor
 
120 *
121 * This function is used to update the estimation of the PID
122 * controller constants in struct thermal_zone_parameters.
 
 
 
 
 
 
 
 
123 */
124static void estimate_pid_constants(struct thermal_zone_device *tz,
125				   u32 sustainable_power, int trip_switch_on,
126				   int control_temp)
127{
128	int ret;
129	int switch_on_temp;
130	u32 temperature_threshold;
131	s32 k_i;
132
133	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
134	if (ret)
135		switch_on_temp = 0;
136
137	temperature_threshold = control_temp - switch_on_temp;
138	/*
139	 * estimate_pid_constants() tries to find appropriate default
140	 * values for thermal zones that don't provide them. If a
141	 * system integrator has configured a thermal zone with two
142	 * passive trip points at the same temperature, that person
143	 * hasn't put any effort to set up the thermal zone properly
144	 * so just give up.
145	 */
146	if (!temperature_threshold)
147		return;
148
149	tz->tzp->k_po = int_to_frac(sustainable_power) /
150		temperature_threshold;
151
152	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
153		temperature_threshold;
154
155	k_i = tz->tzp->k_pu / 10;
156	tz->tzp->k_i = k_i > 0 ? k_i : 1;
157
 
 
158	/*
159	 * The default for k_d and integral_cutoff is 0, so we can
160	 * leave them as they are.
161	 */
162}
163
164/**
165 * get_sustainable_power() - Get the right sustainable power
166 * @tz:		thermal zone for which to estimate the constants
167 * @params:	parameters for the power allocator governor
168 * @control_temp:	target temperature for the power allocator governor
169 *
170 * This function is used for getting the proper sustainable power value based
171 * on variables which might be updated by the user sysfs interface. If that
172 * happen the new value is going to be estimated and updated. It is also used
173 * after thermal zone binding, where the initial values where set to 0.
174 */
175static u32 get_sustainable_power(struct thermal_zone_device *tz,
176				 struct power_allocator_params *params,
177				 int control_temp)
178{
179	u32 sustainable_power;
180
181	if (!tz->tzp->sustainable_power)
182		sustainable_power = estimate_sustainable_power(tz);
183	else
184		sustainable_power = tz->tzp->sustainable_power;
185
186	/* Check if it's init value 0 or there was update via sysfs */
187	if (sustainable_power != params->sustainable_power) {
188		estimate_pid_constants(tz, sustainable_power,
189				       params->trip_switch_on, control_temp);
190
191		/* Do the estimation only once and make available in sysfs */
192		tz->tzp->sustainable_power = sustainable_power;
193		params->sustainable_power = sustainable_power;
194	}
195
196	return sustainable_power;
197}
198
199/**
200 * pid_controller() - PID controller
201 * @tz:	thermal zone we are operating in
202 * @control_temp:	the target temperature in millicelsius
203 * @max_allocatable_power:	maximum allocatable power for this thermal zone
204 *
205 * This PID controller increases the available power budget so that the
206 * temperature of the thermal zone gets as close as possible to
207 * @control_temp and limits the power if it exceeds it.  k_po is the
208 * proportional term when we are overshooting, k_pu is the
209 * proportional term when we are undershooting.  integral_cutoff is a
210 * threshold below which we stop accumulating the error.  The
211 * accumulated error is only valid if the requested power will make
212 * the system warmer.  If the system is mostly idle, there's no point
213 * in accumulating positive error.
214 *
215 * Return: The power budget for the next period.
216 */
217static u32 pid_controller(struct thermal_zone_device *tz,
218			  int control_temp,
219			  u32 max_allocatable_power)
220{
221	s64 p, i, d, power_range;
222	s32 err, max_power_frac;
223	u32 sustainable_power;
224	struct power_allocator_params *params = tz->governor_data;
225
226	max_power_frac = int_to_frac(max_allocatable_power);
227
228	sustainable_power = get_sustainable_power(tz, params, control_temp);
 
 
 
 
 
 
 
229
230	err = control_temp - tz->temperature;
231	err = int_to_frac(err);
232
233	/* Calculate the proportional term */
234	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
235
236	/*
237	 * Calculate the integral term
238	 *
239	 * if the error is less than cut off allow integration (but
240	 * the integral is limited to max power)
241	 */
242	i = mul_frac(tz->tzp->k_i, params->err_integral);
243
244	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
245		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
246
247		if (abs(i_next) < max_power_frac) {
248			i = i_next;
249			params->err_integral += err;
250		}
251	}
252
253	/*
254	 * Calculate the derivative term
255	 *
256	 * We do err - prev_err, so with a positive k_d, a decreasing
257	 * error (i.e. driving closer to the line) results in less
258	 * power being applied, slowing down the controller)
259	 */
260	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
261	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
262	params->prev_err = err;
263
264	power_range = p + i + d;
265
266	/* feed-forward the known sustainable dissipatable power */
267	power_range = sustainable_power + frac_to_int(power_range);
268
269	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
270
271	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
272					  frac_to_int(params->err_integral),
273					  frac_to_int(p), frac_to_int(i),
274					  frac_to_int(d), power_range);
275
276	return power_range;
277}
278
279/**
280 * power_actor_set_power() - limit the maximum power a cooling device consumes
281 * @cdev:	pointer to &thermal_cooling_device
282 * @instance:	thermal instance to update
283 * @power:	the power in milliwatts
284 *
285 * Set the cooling device to consume at most @power milliwatts. The limit is
286 * expected to be a cap at the maximum power consumption.
287 *
288 * Return: 0 on success, -EINVAL if the cooling device does not
289 * implement the power actor API or -E* for other failures.
290 */
291static int
292power_actor_set_power(struct thermal_cooling_device *cdev,
293		      struct thermal_instance *instance, u32 power)
294{
295	unsigned long state;
296	int ret;
297
298	ret = cdev->ops->power2state(cdev, power, &state);
299	if (ret)
300		return ret;
301
302	instance->target = clamp_val(state, instance->lower, instance->upper);
303	mutex_lock(&cdev->lock);
304	__thermal_cdev_update(cdev);
305	mutex_unlock(&cdev->lock);
306
307	return 0;
308}
309
310/**
311 * divvy_up_power() - divvy the allocated power between the actors
312 * @req_power:	each actor's requested power
313 * @max_power:	each actor's maximum available power
314 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
315 * @total_req_power: sum of @req_power
316 * @power_range:	total allocated power
317 * @granted_power:	output array: each actor's granted power
318 * @extra_actor_power:	an appropriately sized array to be used in the
319 *			function as temporary storage of the extra power given
320 *			to the actors
321 *
322 * This function divides the total allocated power (@power_range)
323 * fairly between the actors.  It first tries to give each actor a
324 * share of the @power_range according to how much power it requested
325 * compared to the rest of the actors.  For example, if only one actor
326 * requests power, then it receives all the @power_range.  If
327 * three actors each requests 1mW, each receives a third of the
328 * @power_range.
329 *
330 * If any actor received more than their maximum power, then that
331 * surplus is re-divvied among the actors based on how far they are
332 * from their respective maximums.
333 *
334 * Granted power for each actor is written to @granted_power, which
335 * should've been allocated by the calling function.
336 */
337static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
338			   u32 total_req_power, u32 power_range,
339			   u32 *granted_power, u32 *extra_actor_power)
340{
341	u32 extra_power, capped_extra_power;
342	int i;
343
344	/*
345	 * Prevent division by 0 if none of the actors request power.
346	 */
347	if (!total_req_power)
348		total_req_power = 1;
349
350	capped_extra_power = 0;
351	extra_power = 0;
352	for (i = 0; i < num_actors; i++) {
353		u64 req_range = (u64)req_power[i] * power_range;
354
355		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
356							 total_req_power);
357
358		if (granted_power[i] > max_power[i]) {
359			extra_power += granted_power[i] - max_power[i];
360			granted_power[i] = max_power[i];
361		}
362
363		extra_actor_power[i] = max_power[i] - granted_power[i];
364		capped_extra_power += extra_actor_power[i];
365	}
366
367	if (!extra_power)
368		return;
369
370	/*
371	 * Re-divvy the reclaimed extra among actors based on
372	 * how far they are from the max
373	 */
374	extra_power = min(extra_power, capped_extra_power);
375	if (capped_extra_power > 0)
376		for (i = 0; i < num_actors; i++) {
377			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
378			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
379							 capped_extra_power);
380		}
381}
382
383static int allocate_power(struct thermal_zone_device *tz,
384			  int control_temp)
385{
386	struct thermal_instance *instance;
387	struct power_allocator_params *params = tz->governor_data;
388	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
389	u32 *weighted_req_power;
390	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
391	u32 total_granted_power, power_range;
392	int i, num_actors, total_weight, ret = 0;
393	int trip_max_desired_temperature = params->trip_max_desired_temperature;
394
395	mutex_lock(&tz->lock);
396
397	num_actors = 0;
398	total_weight = 0;
399	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
400		if ((instance->trip == trip_max_desired_temperature) &&
401		    cdev_is_power_actor(instance->cdev)) {
402			num_actors++;
403			total_weight += instance->weight;
404		}
405	}
406
407	if (!num_actors) {
408		ret = -ENODEV;
409		goto unlock;
410	}
411
412	/*
413	 * We need to allocate five arrays of the same size:
414	 * req_power, max_power, granted_power, extra_actor_power and
415	 * weighted_req_power.  They are going to be needed until this
416	 * function returns.  Allocate them all in one go to simplify
417	 * the allocation and deallocation logic.
418	 */
419	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
420	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
421	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
422	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
423	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
424	if (!req_power) {
425		ret = -ENOMEM;
426		goto unlock;
427	}
428
429	max_power = &req_power[num_actors];
430	granted_power = &req_power[2 * num_actors];
431	extra_actor_power = &req_power[3 * num_actors];
432	weighted_req_power = &req_power[4 * num_actors];
433
434	i = 0;
435	total_weighted_req_power = 0;
436	total_req_power = 0;
437	max_allocatable_power = 0;
438
439	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
440		int weight;
441		struct thermal_cooling_device *cdev = instance->cdev;
442
443		if (instance->trip != trip_max_desired_temperature)
444			continue;
445
446		if (!cdev_is_power_actor(cdev))
447			continue;
448
449		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
450			continue;
451
452		if (!total_weight)
453			weight = 1 << FRAC_BITS;
454		else
455			weight = instance->weight;
456
457		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
458
459		if (cdev->ops->state2power(cdev, instance->lower,
460					   &max_power[i]))
461			continue;
462
463		total_req_power += req_power[i];
464		max_allocatable_power += max_power[i];
465		total_weighted_req_power += weighted_req_power[i];
466
467		i++;
468	}
469
470	power_range = pid_controller(tz, control_temp, max_allocatable_power);
471
472	divvy_up_power(weighted_req_power, max_power, num_actors,
473		       total_weighted_req_power, power_range, granted_power,
474		       extra_actor_power);
475
476	total_granted_power = 0;
477	i = 0;
478	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
479		if (instance->trip != trip_max_desired_temperature)
480			continue;
481
482		if (!cdev_is_power_actor(instance->cdev))
483			continue;
484
485		power_actor_set_power(instance->cdev, instance,
486				      granted_power[i]);
487		total_granted_power += granted_power[i];
488
489		i++;
490	}
491
492	trace_thermal_power_allocator(tz, req_power, total_req_power,
493				      granted_power, total_granted_power,
494				      num_actors, power_range,
495				      max_allocatable_power, tz->temperature,
496				      control_temp - tz->temperature);
497
498	kfree(req_power);
499unlock:
500	mutex_unlock(&tz->lock);
501
502	return ret;
503}
504
505/**
506 * get_governor_trips() - get the number of the two trip points that are key for this governor
507 * @tz:	thermal zone to operate on
508 * @params:	pointer to private data for this governor
509 *
510 * The power allocator governor works optimally with two trips points:
511 * a "switch on" trip point and a "maximum desired temperature".  These
512 * are defined as the first and last passive trip points.
513 *
514 * If there is only one trip point, then that's considered to be the
515 * "maximum desired temperature" trip point and the governor is always
516 * on.  If there are no passive or active trip points, then the
517 * governor won't do anything.  In fact, its throttle function
518 * won't be called at all.
519 */
520static void get_governor_trips(struct thermal_zone_device *tz,
521			       struct power_allocator_params *params)
522{
523	int i, last_active, last_passive;
524	bool found_first_passive;
525
526	found_first_passive = false;
527	last_active = INVALID_TRIP;
528	last_passive = INVALID_TRIP;
529
530	for (i = 0; i < tz->trips; i++) {
531		enum thermal_trip_type type;
532		int ret;
533
534		ret = tz->ops->get_trip_type(tz, i, &type);
535		if (ret) {
536			dev_warn(&tz->device,
537				 "Failed to get trip point %d type: %d\n", i,
538				 ret);
539			continue;
540		}
541
542		if (type == THERMAL_TRIP_PASSIVE) {
543			if (!found_first_passive) {
544				params->trip_switch_on = i;
545				found_first_passive = true;
546			} else  {
547				last_passive = i;
548			}
549		} else if (type == THERMAL_TRIP_ACTIVE) {
550			last_active = i;
551		} else {
552			break;
553		}
554	}
555
556	if (last_passive != INVALID_TRIP) {
557		params->trip_max_desired_temperature = last_passive;
558	} else if (found_first_passive) {
559		params->trip_max_desired_temperature = params->trip_switch_on;
560		params->trip_switch_on = INVALID_TRIP;
561	} else {
562		params->trip_switch_on = INVALID_TRIP;
563		params->trip_max_desired_temperature = last_active;
564	}
565}
566
567static void reset_pid_controller(struct power_allocator_params *params)
568{
569	params->err_integral = 0;
570	params->prev_err = 0;
571}
572
573static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
574{
575	struct thermal_instance *instance;
576	struct power_allocator_params *params = tz->governor_data;
577	u32 req_power;
578
579	mutex_lock(&tz->lock);
580	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
581		struct thermal_cooling_device *cdev = instance->cdev;
582
583		if ((instance->trip != params->trip_max_desired_temperature) ||
584		    (!cdev_is_power_actor(instance->cdev)))
585			continue;
586
587		instance->target = 0;
588		mutex_lock(&instance->cdev->lock);
589		/*
590		 * Call for updating the cooling devices local stats and avoid
591		 * periods of dozen of seconds when those have not been
592		 * maintained.
593		 */
594		cdev->ops->get_requested_power(cdev, &req_power);
595
596		if (update)
597			__thermal_cdev_update(instance->cdev);
598
599		mutex_unlock(&instance->cdev->lock);
 
600	}
601	mutex_unlock(&tz->lock);
602}
603
604/**
605 * check_power_actors() - Check all cooling devices and warn when they are
606 *			not power actors
607 * @tz:		thermal zone to operate on
608 *
609 * Check all cooling devices in the @tz and warn every time they are missing
610 * power actor API. The warning should help to investigate the issue, which
611 * could be e.g. lack of Energy Model for a given device.
612 *
613 * Return: 0 on success, -EINVAL if any cooling device does not implement
614 * the power actor API.
615 */
616static int check_power_actors(struct thermal_zone_device *tz)
617{
618	struct thermal_instance *instance;
619	int ret = 0;
620
621	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
622		if (!cdev_is_power_actor(instance->cdev)) {
623			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
624				 instance->cdev->type);
625			ret = -EINVAL;
626		}
627	}
628
629	return ret;
630}
631
632/**
633 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
634 * @tz:	thermal zone to bind it to
635 *
636 * Initialize the PID controller parameters and bind it to the thermal
637 * zone.
638 *
639 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
640 * when there are unsupported cooling devices in the @tz.
641 */
642static int power_allocator_bind(struct thermal_zone_device *tz)
643{
644	int ret;
645	struct power_allocator_params *params;
646	int control_temp;
647
648	ret = check_power_actors(tz);
649	if (ret)
650		return ret;
651
652	params = kzalloc(sizeof(*params), GFP_KERNEL);
653	if (!params)
654		return -ENOMEM;
655
656	if (!tz->tzp) {
657		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
658		if (!tz->tzp) {
659			ret = -ENOMEM;
660			goto free_params;
661		}
662
663		params->allocated_tzp = true;
664	}
665
666	if (!tz->tzp->sustainable_power)
667		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
668
669	get_governor_trips(tz, params);
670
671	if (tz->trips > 0) {
672		ret = tz->ops->get_trip_temp(tz,
673					params->trip_max_desired_temperature,
674					&control_temp);
675		if (!ret)
676			estimate_pid_constants(tz, tz->tzp->sustainable_power,
677					       params->trip_switch_on,
678					       control_temp);
679	}
680
681	reset_pid_controller(params);
682
683	tz->governor_data = params;
684
685	return 0;
686
687free_params:
688	kfree(params);
689
690	return ret;
691}
692
693static void power_allocator_unbind(struct thermal_zone_device *tz)
694{
695	struct power_allocator_params *params = tz->governor_data;
696
697	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
698
699	if (params->allocated_tzp) {
700		kfree(tz->tzp);
701		tz->tzp = NULL;
702	}
703
704	kfree(tz->governor_data);
705	tz->governor_data = NULL;
706}
707
708static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
709{
710	int ret;
711	int switch_on_temp, control_temp;
712	struct power_allocator_params *params = tz->governor_data;
713	bool update;
714
715	/*
716	 * We get called for every trip point but we only need to do
717	 * our calculations once
718	 */
719	if (trip != params->trip_max_desired_temperature)
720		return 0;
721
722	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
723				     &switch_on_temp);
724	if (!ret && (tz->temperature < switch_on_temp)) {
725		update = (tz->last_temperature >= switch_on_temp);
726		tz->passive = 0;
727		reset_pid_controller(params);
728		allow_maximum_power(tz, update);
729		return 0;
730	}
731
732	tz->passive = 1;
733
734	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
735				&control_temp);
736	if (ret) {
737		dev_warn(&tz->device,
738			 "Failed to get the maximum desired temperature: %d\n",
739			 ret);
740		return ret;
741	}
742
743	return allocate_power(tz, control_temp);
744}
745
746static struct thermal_governor thermal_gov_power_allocator = {
747	.name		= "power_allocator",
748	.bind_to_tz	= power_allocator_bind,
749	.unbind_from_tz	= power_allocator_unbind,
750	.throttle	= power_allocator_throttle,
751};
752THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);