Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Intel Corporation. */
  3
  4#include <net/xdp_sock_drv.h>
  5#include "ice_base.h"
  6#include "ice_lib.h"
  7#include "ice_dcb_lib.h"
 
  8
  9/**
 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 12 *
 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 14 */
 15static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 16{
 17	unsigned int offset, i;
 18
 19	mutex_lock(qs_cfg->qs_mutex);
 20	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 21					    0, qs_cfg->q_count, 0);
 22	if (offset >= qs_cfg->pf_map_size) {
 23		mutex_unlock(qs_cfg->qs_mutex);
 24		return -ENOMEM;
 25	}
 26
 27	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 28	for (i = 0; i < qs_cfg->q_count; i++)
 29		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
 30	mutex_unlock(qs_cfg->qs_mutex);
 31
 32	return 0;
 33}
 34
 35/**
 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 38 *
 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 40 */
 41static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 42{
 43	unsigned int i, index = 0;
 44
 45	mutex_lock(qs_cfg->qs_mutex);
 46	for (i = 0; i < qs_cfg->q_count; i++) {
 47		index = find_next_zero_bit(qs_cfg->pf_map,
 48					   qs_cfg->pf_map_size, index);
 49		if (index >= qs_cfg->pf_map_size)
 50			goto err_scatter;
 51		set_bit(index, qs_cfg->pf_map);
 52		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
 53	}
 54	mutex_unlock(qs_cfg->qs_mutex);
 55
 56	return 0;
 57err_scatter:
 58	for (index = 0; index < i; index++) {
 59		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 60		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 61	}
 62	mutex_unlock(qs_cfg->qs_mutex);
 63
 64	return -ENOMEM;
 65}
 66
 67/**
 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 69 * @pf: the PF being configured
 70 * @pf_q: the PF queue
 71 * @ena: enable or disable state of the queue
 72 *
 73 * This routine will wait for the given Rx queue of the PF to reach the
 74 * enabled or disabled state.
 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 76 * multiple retries; else will return 0 in case of success.
 77 */
 78static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 79{
 80	int i;
 81
 82	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 83		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 84			      QRX_CTRL_QENA_STAT_M))
 85			return 0;
 86
 87		usleep_range(20, 40);
 88	}
 89
 90	return -ETIMEDOUT;
 91}
 92
 93/**
 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 95 * @vsi: the VSI being configured
 96 * @v_idx: index of the vector in the VSI struct
 97 *
 98 * We allocate one q_vector and set default value for ITR setting associated
 99 * with this q_vector. If allocation fails we return -ENOMEM.
100 */
101static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102{
103	struct ice_pf *pf = vsi->back;
104	struct ice_q_vector *q_vector;
105
106	/* allocate q_vector */
107	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108				GFP_KERNEL);
109	if (!q_vector)
110		return -ENOMEM;
111
112	q_vector->vsi = vsi;
113	q_vector->v_idx = v_idx;
114	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 
 
 
 
 
116	if (vsi->type == ICE_VSI_VF)
117		goto out;
118	/* only set affinity_mask if the CPU is online */
119	if (cpu_online(v_idx))
120		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
121
122	/* This will not be called in the driver load path because the netdev
123	 * will not be created yet. All other cases with register the NAPI
124	 * handler here (i.e. resume, reset/rebuild, etc.)
125	 */
126	if (vsi->netdev)
127		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
128			       NAPI_POLL_WEIGHT);
129
130out:
131	/* tie q_vector and VSI together */
132	vsi->q_vectors[v_idx] = q_vector;
133
134	return 0;
135}
136
137/**
138 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
139 * @vsi: VSI having the memory freed
140 * @v_idx: index of the vector to be freed
141 */
142static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
143{
144	struct ice_q_vector *q_vector;
145	struct ice_pf *pf = vsi->back;
146	struct ice_ring *ring;
 
147	struct device *dev;
148
149	dev = ice_pf_to_dev(pf);
150	if (!vsi->q_vectors[v_idx]) {
151		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
152		return;
153	}
154	q_vector = vsi->q_vectors[v_idx];
155
156	ice_for_each_ring(ring, q_vector->tx)
157		ring->q_vector = NULL;
158	ice_for_each_ring(ring, q_vector->rx)
159		ring->q_vector = NULL;
160
161	/* only VSI with an associated netdev is set up with NAPI */
162	if (vsi->netdev)
163		netif_napi_del(&q_vector->napi);
164
165	devm_kfree(dev, q_vector);
166	vsi->q_vectors[v_idx] = NULL;
167}
168
169/**
170 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
171 * @hw: board specific structure
172 */
173static void ice_cfg_itr_gran(struct ice_hw *hw)
174{
175	u32 regval = rd32(hw, GLINT_CTL);
176
177	/* no need to update global register if ITR gran is already set */
178	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
179	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
180	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
181	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
182	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
183	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
184	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
185	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
186	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
187		return;
188
189	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
190		  GLINT_CTL_ITR_GRAN_200_M) |
191		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
192		  GLINT_CTL_ITR_GRAN_100_M) |
193		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
194		  GLINT_CTL_ITR_GRAN_50_M) |
195		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
196		  GLINT_CTL_ITR_GRAN_25_M);
197	wr32(hw, GLINT_CTL, regval);
198}
199
200/**
201 * ice_calc_q_handle - calculate the queue handle
202 * @vsi: VSI that ring belongs to
203 * @ring: ring to get the absolute queue index
204 * @tc: traffic class number
205 */
206static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
207{
208	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
209
 
 
 
210	/* Idea here for calculation is that we subtract the number of queue
211	 * count from TC that ring belongs to from it's absolute queue index
212	 * and as a result we get the queue's index within TC.
213	 */
214	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
215}
216
217/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
219 * @ring: The Tx ring to configure
220 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
221 * @pf_q: queue index in the PF space
222 *
223 * Configure the Tx descriptor ring in TLAN context.
224 */
225static void
226ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
227{
228	struct ice_vsi *vsi = ring->vsi;
229	struct ice_hw *hw = &vsi->back->hw;
230
231	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
232
233	tlan_ctx->port_num = vsi->port_info->lport;
234
235	/* Transmit Queue Length */
236	tlan_ctx->qlen = ring->count;
237
238	ice_set_cgd_num(tlan_ctx, ring);
239
240	/* PF number */
241	tlan_ctx->pf_num = hw->pf_id;
242
243	/* queue belongs to a specific VSI type
244	 * VF / VM index should be programmed per vmvf_type setting:
245	 * for vmvf_type = VF, it is VF number between 0-256
246	 * for vmvf_type = VM, it is VM number between 0-767
247	 * for PF or EMP this field should be set to zero
248	 */
249	switch (vsi->type) {
250	case ICE_VSI_LB:
251	case ICE_VSI_CTRL:
252	case ICE_VSI_PF:
253		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 
 
 
254		break;
255	case ICE_VSI_VF:
256		/* Firmware expects vmvf_num to be absolute VF ID */
257		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
258		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
259		break;
 
 
 
260	default:
261		return;
262	}
263
264	/* make sure the context is associated with the right VSI */
265	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 
 
 
 
 
 
 
 
 
 
 
 
266
267	tlan_ctx->tso_ena = ICE_TX_LEGACY;
268	tlan_ctx->tso_qnum = pf_q;
269
270	/* Legacy or Advanced Host Interface:
271	 * 0: Advanced Host Interface
272	 * 1: Legacy Host Interface
273	 */
274	tlan_ctx->legacy_int = ICE_TX_LEGACY;
275}
276
277/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278 * ice_setup_rx_ctx - Configure a receive ring context
279 * @ring: The Rx ring to configure
280 *
281 * Configure the Rx descriptor ring in RLAN context.
282 */
283int ice_setup_rx_ctx(struct ice_ring *ring)
284{
285	struct device *dev = ice_pf_to_dev(ring->vsi->back);
286	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
287	u16 num_bufs = ICE_DESC_UNUSED(ring);
288	struct ice_vsi *vsi = ring->vsi;
289	u32 rxdid = ICE_RXDID_FLEX_NIC;
290	struct ice_rlan_ctx rlan_ctx;
291	struct ice_hw *hw;
292	u16 pf_q;
293	int err;
294
295	hw = &vsi->back->hw;
296
297	/* what is Rx queue number in global space of 2K Rx queues */
298	pf_q = vsi->rxq_map[ring->q_index];
299
300	/* clear the context structure first */
301	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
302
303	ring->rx_buf_len = vsi->rx_buf_len;
304
305	if (ring->vsi->type == ICE_VSI_PF) {
306		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
307			/* coverity[check_return] */
308			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
309					 ring->q_index);
310
311		ring->xsk_umem = ice_xsk_umem(ring);
312		if (ring->xsk_umem) {
313			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
314
315			ring->rx_buf_len =
316				xsk_umem_get_rx_frame_size(ring->xsk_umem);
317			/* For AF_XDP ZC, we disallow packets to span on
318			 * multiple buffers, thus letting us skip that
319			 * handling in the fast-path.
320			 */
321			chain_len = 1;
322			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
323							 MEM_TYPE_XSK_BUFF_POOL,
324							 NULL);
325			if (err)
326				return err;
327			xsk_buff_set_rxq_info(ring->xsk_umem, &ring->xdp_rxq);
328
329			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
330				 ring->q_index);
331		} else {
332			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
333				/* coverity[check_return] */
334				xdp_rxq_info_reg(&ring->xdp_rxq,
335						 ring->netdev,
336						 ring->q_index);
337
338			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
339							 MEM_TYPE_PAGE_SHARED,
340							 NULL);
341			if (err)
342				return err;
343		}
344	}
345	/* Receive Queue Base Address.
346	 * Indicates the starting address of the descriptor queue defined in
347	 * 128 Byte units.
348	 */
349	rlan_ctx.base = ring->dma >> 7;
350
351	rlan_ctx.qlen = ring->count;
352
353	/* Receive Packet Data Buffer Size.
354	 * The Packet Data Buffer Size is defined in 128 byte units.
355	 */
356	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
357
358	/* use 32 byte descriptors */
359	rlan_ctx.dsize = 1;
360
361	/* Strip the Ethernet CRC bytes before the packet is posted to host
362	 * memory.
363	 */
364	rlan_ctx.crcstrip = 1;
365
366	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
367	rlan_ctx.l2tsel = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
370	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
371	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
372
373	/* This controls whether VLAN is stripped from inner headers
374	 * The VLAN in the inner L2 header is stripped to the receive
375	 * descriptor if enabled by this flag.
376	 */
377	rlan_ctx.showiv = 0;
378
 
 
 
 
 
 
379	/* Max packet size for this queue - must not be set to a larger value
380	 * than 5 x DBUF
381	 */
382	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
383			       chain_len * ring->rx_buf_len);
384
385	/* Rx queue threshold in units of 64 */
386	rlan_ctx.lrxqthresh = 1;
387
388	/* Enable Flexible Descriptors in the queue context which
389	 * allows this driver to select a specific receive descriptor format
390	 * increasing context priority to pick up profile ID; default is 0x01;
391	 * setting to 0x03 to ensure profile is programming if prev context is
392	 * of same priority
393	 */
394	if (vsi->type != ICE_VSI_VF)
395		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
396	else
397		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
 
398
399	/* Absolute queue number out of 2K needs to be passed */
400	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
401	if (err) {
402		dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
403			pf_q, err);
404		return -EIO;
405	}
406
407	if (vsi->type == ICE_VSI_VF)
408		return 0;
409
410	/* configure Rx buffer alignment */
411	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
412		ice_clear_ring_build_skb_ena(ring);
413	else
414		ice_set_ring_build_skb_ena(ring);
415
 
 
416	/* init queue specific tail register */
417	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
418	writel(0, ring->tail);
419
420	if (ring->xsk_umem) {
421		if (!xsk_buff_can_alloc(ring->xsk_umem, num_bufs)) {
422			dev_warn(dev, "UMEM does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423				 num_bufs, ring->q_index);
424			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
425
426			return 0;
427		}
428
429		err = ice_alloc_rx_bufs_zc(ring, num_bufs);
430		if (err)
431			dev_info(dev, "Failed to allocate some buffers on UMEM enabled Rx ring %d (pf_q %d)\n",
 
 
432				 ring->q_index, pf_q);
 
 
433		return 0;
434	}
435
436	ice_alloc_rx_bufs(ring, num_bufs);
437
438	return 0;
439}
440
441/**
442 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
443 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
444 *
445 * This function first tries to find contiguous space. If it is not successful,
446 * it tries with the scatter approach.
447 *
448 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
449 */
450int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
451{
452	int ret = 0;
453
454	ret = __ice_vsi_get_qs_contig(qs_cfg);
455	if (ret) {
456		/* contig failed, so try with scatter approach */
457		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
458		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
459					qs_cfg->scatter_count);
460		ret = __ice_vsi_get_qs_sc(qs_cfg);
461	}
462	return ret;
463}
464
465/**
466 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
467 * @vsi: the VSI being configured
468 * @ena: start or stop the Rx ring
469 * @rxq_idx: 0-based Rx queue index for the VSI passed in
470 * @wait: wait or don't wait for configuration to finish in hardware
471 *
472 * Return 0 on success and negative on error.
473 */
474int
475ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
476{
477	int pf_q = vsi->rxq_map[rxq_idx];
478	struct ice_pf *pf = vsi->back;
479	struct ice_hw *hw = &pf->hw;
480	u32 rx_reg;
481
482	rx_reg = rd32(hw, QRX_CTRL(pf_q));
483
484	/* Skip if the queue is already in the requested state */
485	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
486		return 0;
487
488	/* turn on/off the queue */
489	if (ena)
490		rx_reg |= QRX_CTRL_QENA_REQ_M;
491	else
492		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
493	wr32(hw, QRX_CTRL(pf_q), rx_reg);
494
495	if (!wait)
496		return 0;
497
498	ice_flush(hw);
499	return ice_pf_rxq_wait(pf, pf_q, ena);
500}
501
502/**
503 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
504 * @vsi: the VSI being configured
505 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
506 * @rxq_idx: 0-based Rx queue index for the VSI passed in
507 *
508 * This routine will wait for the given Rx queue of the VSI to reach the
509 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
510 * the requested state after multiple retries; else will return 0 in case of
511 * success.
512 */
513int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
514{
515	int pf_q = vsi->rxq_map[rxq_idx];
516	struct ice_pf *pf = vsi->back;
517
518	return ice_pf_rxq_wait(pf, pf_q, ena);
519}
520
521/**
522 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
523 * @vsi: the VSI being configured
524 *
525 * We allocate one q_vector per queue interrupt. If allocation fails we
526 * return -ENOMEM.
527 */
528int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
529{
530	struct device *dev = ice_pf_to_dev(vsi->back);
531	u16 v_idx;
532	int err;
533
534	if (vsi->q_vectors[0]) {
535		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
536		return -EEXIST;
537	}
538
539	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
540		err = ice_vsi_alloc_q_vector(vsi, v_idx);
541		if (err)
542			goto err_out;
543	}
544
545	return 0;
546
547err_out:
548	while (v_idx--)
549		ice_free_q_vector(vsi, v_idx);
550
551	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
552		vsi->num_q_vectors, vsi->vsi_num, err);
553	vsi->num_q_vectors = 0;
554	return err;
555}
556
557/**
558 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
559 * @vsi: the VSI being configured
560 *
561 * This function maps descriptor rings to the queue-specific vectors allotted
562 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
563 * and Rx rings to the vector as "efficiently" as possible.
564 */
565void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
566{
567	int q_vectors = vsi->num_q_vectors;
568	u16 tx_rings_rem, rx_rings_rem;
569	int v_id;
570
571	/* initially assigning remaining rings count to VSIs num queue value */
572	tx_rings_rem = vsi->num_txq;
573	rx_rings_rem = vsi->num_rxq;
574
575	for (v_id = 0; v_id < q_vectors; v_id++) {
576		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
577		u8 tx_rings_per_v, rx_rings_per_v;
578		u16 q_id, q_base;
579
580		/* Tx rings mapping to vector */
581		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
582						  q_vectors - v_id);
583		q_vector->num_ring_tx = tx_rings_per_v;
584		q_vector->tx.ring = NULL;
585		q_vector->tx.itr_idx = ICE_TX_ITR;
586		q_base = vsi->num_txq - tx_rings_rem;
587
588		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
589			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
590
591			tx_ring->q_vector = q_vector;
592			tx_ring->next = q_vector->tx.ring;
593			q_vector->tx.ring = tx_ring;
594		}
595		tx_rings_rem -= tx_rings_per_v;
596
597		/* Rx rings mapping to vector */
598		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
599						  q_vectors - v_id);
600		q_vector->num_ring_rx = rx_rings_per_v;
601		q_vector->rx.ring = NULL;
602		q_vector->rx.itr_idx = ICE_RX_ITR;
603		q_base = vsi->num_rxq - rx_rings_rem;
604
605		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
606			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
607
608			rx_ring->q_vector = q_vector;
609			rx_ring->next = q_vector->rx.ring;
610			q_vector->rx.ring = rx_ring;
611		}
612		rx_rings_rem -= rx_rings_per_v;
613	}
614}
615
616/**
617 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
618 * @vsi: the VSI having memory freed
619 */
620void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
621{
622	int v_idx;
623
624	ice_for_each_q_vector(vsi, v_idx)
625		ice_free_q_vector(vsi, v_idx);
626}
627
628/**
629 * ice_vsi_cfg_txq - Configure single Tx queue
630 * @vsi: the VSI that queue belongs to
631 * @ring: Tx ring to be configured
632 * @qg_buf: queue group buffer
633 */
634int
635ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
636		struct ice_aqc_add_tx_qgrp *qg_buf)
637{
638	u8 buf_len = struct_size(qg_buf, txqs, 1);
639	struct ice_tlan_ctx tlan_ctx = { 0 };
640	struct ice_aqc_add_txqs_perq *txq;
 
641	struct ice_pf *pf = vsi->back;
642	struct ice_hw *hw = &pf->hw;
643	enum ice_status status;
644	u16 pf_q;
645	u8 tc;
646
 
 
 
647	pf_q = ring->reg_idx;
648	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
649	/* copy context contents into the qg_buf */
650	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
651	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
652		    ice_tlan_ctx_info);
653
654	/* init queue specific tail reg. It is referred as
655	 * transmit comm scheduler queue doorbell.
656	 */
657	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
658
659	if (IS_ENABLED(CONFIG_DCB))
660		tc = ring->dcb_tc;
661	else
662		tc = 0;
663
664	/* Add unique software queue handle of the Tx queue per
665	 * TC into the VSI Tx ring
666	 */
667	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
 
 
 
 
 
 
 
668
669	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
670				 1, qg_buf, buf_len, NULL);
 
 
 
 
 
 
671	if (status) {
672		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
673			ice_stat_str(status));
674		return -ENODEV;
675	}
676
677	/* Add Tx Queue TEID into the VSI Tx ring from the
678	 * response. This will complete configuring and
679	 * enabling the queue.
680	 */
681	txq = &qg_buf->txqs[0];
682	if (pf_q == le16_to_cpu(txq->txq_id))
683		ring->txq_teid = le32_to_cpu(txq->q_teid);
684
685	return 0;
686}
687
688/**
689 * ice_cfg_itr - configure the initial interrupt throttle values
690 * @hw: pointer to the HW structure
691 * @q_vector: interrupt vector that's being configured
692 *
693 * Configure interrupt throttling values for the ring containers that are
694 * associated with the interrupt vector passed in.
695 */
696void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
697{
698	ice_cfg_itr_gran(hw);
699
700	if (q_vector->num_ring_rx) {
701		struct ice_ring_container *rc = &q_vector->rx;
702
703		rc->target_itr = ITR_TO_REG(rc->itr_setting);
704		rc->next_update = jiffies + 1;
705		rc->current_itr = rc->target_itr;
706		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
707		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
708	}
709
710	if (q_vector->num_ring_tx) {
711		struct ice_ring_container *rc = &q_vector->tx;
712
713		rc->target_itr = ITR_TO_REG(rc->itr_setting);
714		rc->next_update = jiffies + 1;
715		rc->current_itr = rc->target_itr;
716		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
717		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
718	}
719}
720
721/**
722 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
723 * @vsi: the VSI being configured
724 * @txq: Tx queue being mapped to MSI-X vector
725 * @msix_idx: MSI-X vector index within the function
726 * @itr_idx: ITR index of the interrupt cause
727 *
728 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
729 * within the function space.
730 */
731void
732ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
733{
734	struct ice_pf *pf = vsi->back;
735	struct ice_hw *hw = &pf->hw;
736	u32 val;
737
738	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
739
740	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
741	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
742
743	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
744	if (ice_is_xdp_ena_vsi(vsi)) {
745		u32 xdp_txq = txq + vsi->num_xdp_txq;
746
747		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
748		     val);
749	}
750	ice_flush(hw);
751}
752
753/**
754 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
755 * @vsi: the VSI being configured
756 * @rxq: Rx queue being mapped to MSI-X vector
757 * @msix_idx: MSI-X vector index within the function
758 * @itr_idx: ITR index of the interrupt cause
759 *
760 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
761 * within the function space.
762 */
763void
764ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
765{
766	struct ice_pf *pf = vsi->back;
767	struct ice_hw *hw = &pf->hw;
768	u32 val;
769
770	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
771
772	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
773	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
774
775	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
776
777	ice_flush(hw);
778}
779
780/**
781 * ice_trigger_sw_intr - trigger a software interrupt
782 * @hw: pointer to the HW structure
783 * @q_vector: interrupt vector to trigger the software interrupt for
784 */
785void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
786{
787	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
788	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
789	     GLINT_DYN_CTL_SWINT_TRIG_M |
790	     GLINT_DYN_CTL_INTENA_M);
791}
792
793/**
794 * ice_vsi_stop_tx_ring - Disable single Tx ring
795 * @vsi: the VSI being configured
796 * @rst_src: reset source
797 * @rel_vmvf_num: Relative ID of VF/VM
798 * @ring: Tx ring to be stopped
799 * @txq_meta: Meta data of Tx ring to be stopped
800 */
801int
802ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
803		     u16 rel_vmvf_num, struct ice_ring *ring,
804		     struct ice_txq_meta *txq_meta)
805{
806	struct ice_pf *pf = vsi->back;
807	struct ice_q_vector *q_vector;
808	struct ice_hw *hw = &pf->hw;
809	enum ice_status status;
810	u32 val;
811
812	/* clear cause_ena bit for disabled queues */
813	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
814	val &= ~QINT_TQCTL_CAUSE_ENA_M;
815	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
816
817	/* software is expected to wait for 100 ns */
818	ndelay(100);
819
820	/* trigger a software interrupt for the vector
821	 * associated to the queue to schedule NAPI handler
822	 */
823	q_vector = ring->q_vector;
824	if (q_vector)
825		ice_trigger_sw_intr(hw, q_vector);
826
827	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
828				 txq_meta->tc, 1, &txq_meta->q_handle,
829				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
830				 rel_vmvf_num, NULL);
831
832	/* if the disable queue command was exercised during an
833	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
834	 * This is not an error as the reset operation disables
835	 * queues at the hardware level anyway.
836	 */
837	if (status == ICE_ERR_RESET_ONGOING) {
838		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
839	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
840		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
841	} else if (status) {
842		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
843			ice_stat_str(status));
844		return -ENODEV;
845	}
846
847	return 0;
848}
849
850/**
851 * ice_fill_txq_meta - Prepare the Tx queue's meta data
852 * @vsi: VSI that ring belongs to
853 * @ring: ring that txq_meta will be based on
854 * @txq_meta: a helper struct that wraps Tx queue's information
855 *
856 * Set up a helper struct that will contain all the necessary fields that
857 * are needed for stopping Tx queue
858 */
859void
860ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
861		  struct ice_txq_meta *txq_meta)
862{
 
863	u8 tc;
864
865	if (IS_ENABLED(CONFIG_DCB))
866		tc = ring->dcb_tc;
867	else
868		tc = 0;
869
870	txq_meta->q_id = ring->reg_idx;
871	txq_meta->q_teid = ring->txq_teid;
872	txq_meta->q_handle = ring->q_handle;
873	txq_meta->vsi_idx = vsi->idx;
874	txq_meta->tc = tc;
 
 
 
 
 
875}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <net/xdp_sock_drv.h>
   5#include "ice_base.h"
   6#include "ice_lib.h"
   7#include "ice_dcb_lib.h"
   8#include "ice_sriov.h"
   9
  10/**
  11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
  12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
  13 *
  14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  15 */
  16static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
  17{
  18	unsigned int offset, i;
  19
  20	mutex_lock(qs_cfg->qs_mutex);
  21	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
  22					    0, qs_cfg->q_count, 0);
  23	if (offset >= qs_cfg->pf_map_size) {
  24		mutex_unlock(qs_cfg->qs_mutex);
  25		return -ENOMEM;
  26	}
  27
  28	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
  29	for (i = 0; i < qs_cfg->q_count; i++)
  30		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
  31	mutex_unlock(qs_cfg->qs_mutex);
  32
  33	return 0;
  34}
  35
  36/**
  37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
  38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
  39 *
  40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  41 */
  42static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
  43{
  44	unsigned int i, index = 0;
  45
  46	mutex_lock(qs_cfg->qs_mutex);
  47	for (i = 0; i < qs_cfg->q_count; i++) {
  48		index = find_next_zero_bit(qs_cfg->pf_map,
  49					   qs_cfg->pf_map_size, index);
  50		if (index >= qs_cfg->pf_map_size)
  51			goto err_scatter;
  52		set_bit(index, qs_cfg->pf_map);
  53		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
  54	}
  55	mutex_unlock(qs_cfg->qs_mutex);
  56
  57	return 0;
  58err_scatter:
  59	for (index = 0; index < i; index++) {
  60		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
  61		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
  62	}
  63	mutex_unlock(qs_cfg->qs_mutex);
  64
  65	return -ENOMEM;
  66}
  67
  68/**
  69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
  70 * @pf: the PF being configured
  71 * @pf_q: the PF queue
  72 * @ena: enable or disable state of the queue
  73 *
  74 * This routine will wait for the given Rx queue of the PF to reach the
  75 * enabled or disabled state.
  76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
  77 * multiple retries; else will return 0 in case of success.
  78 */
  79static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
  80{
  81	int i;
  82
  83	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
  84		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
  85			      QRX_CTRL_QENA_STAT_M))
  86			return 0;
  87
  88		usleep_range(20, 40);
  89	}
  90
  91	return -ETIMEDOUT;
  92}
  93
  94/**
  95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
  96 * @vsi: the VSI being configured
  97 * @v_idx: index of the vector in the VSI struct
  98 *
  99 * We allocate one q_vector and set default value for ITR setting associated
 100 * with this q_vector. If allocation fails we return -ENOMEM.
 101 */
 102static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
 103{
 104	struct ice_pf *pf = vsi->back;
 105	struct ice_q_vector *q_vector;
 106
 107	/* allocate q_vector */
 108	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
 109				GFP_KERNEL);
 110	if (!q_vector)
 111		return -ENOMEM;
 112
 113	q_vector->vsi = vsi;
 114	q_vector->v_idx = v_idx;
 115	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
 116	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 117	q_vector->tx.itr_mode = ITR_DYNAMIC;
 118	q_vector->rx.itr_mode = ITR_DYNAMIC;
 119	q_vector->tx.type = ICE_TX_CONTAINER;
 120	q_vector->rx.type = ICE_RX_CONTAINER;
 121
 122	if (vsi->type == ICE_VSI_VF)
 123		goto out;
 124	/* only set affinity_mask if the CPU is online */
 125	if (cpu_online(v_idx))
 126		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
 127
 128	/* This will not be called in the driver load path because the netdev
 129	 * will not be created yet. All other cases with register the NAPI
 130	 * handler here (i.e. resume, reset/rebuild, etc.)
 131	 */
 132	if (vsi->netdev)
 133		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
 
 134
 135out:
 136	/* tie q_vector and VSI together */
 137	vsi->q_vectors[v_idx] = q_vector;
 138
 139	return 0;
 140}
 141
 142/**
 143 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 144 * @vsi: VSI having the memory freed
 145 * @v_idx: index of the vector to be freed
 146 */
 147static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
 148{
 149	struct ice_q_vector *q_vector;
 150	struct ice_pf *pf = vsi->back;
 151	struct ice_tx_ring *tx_ring;
 152	struct ice_rx_ring *rx_ring;
 153	struct device *dev;
 154
 155	dev = ice_pf_to_dev(pf);
 156	if (!vsi->q_vectors[v_idx]) {
 157		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
 158		return;
 159	}
 160	q_vector = vsi->q_vectors[v_idx];
 161
 162	ice_for_each_tx_ring(tx_ring, q_vector->tx)
 163		tx_ring->q_vector = NULL;
 164	ice_for_each_rx_ring(rx_ring, q_vector->rx)
 165		rx_ring->q_vector = NULL;
 166
 167	/* only VSI with an associated netdev is set up with NAPI */
 168	if (vsi->netdev)
 169		netif_napi_del(&q_vector->napi);
 170
 171	devm_kfree(dev, q_vector);
 172	vsi->q_vectors[v_idx] = NULL;
 173}
 174
 175/**
 176 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 177 * @hw: board specific structure
 178 */
 179static void ice_cfg_itr_gran(struct ice_hw *hw)
 180{
 181	u32 regval = rd32(hw, GLINT_CTL);
 182
 183	/* no need to update global register if ITR gran is already set */
 184	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
 185	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
 186	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
 187	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
 188	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
 189	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
 190	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
 191	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
 192	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
 193		return;
 194
 195	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
 196		  GLINT_CTL_ITR_GRAN_200_M) |
 197		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
 198		  GLINT_CTL_ITR_GRAN_100_M) |
 199		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
 200		  GLINT_CTL_ITR_GRAN_50_M) |
 201		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
 202		  GLINT_CTL_ITR_GRAN_25_M);
 203	wr32(hw, GLINT_CTL, regval);
 204}
 205
 206/**
 207 * ice_calc_txq_handle - calculate the queue handle
 208 * @vsi: VSI that ring belongs to
 209 * @ring: ring to get the absolute queue index
 210 * @tc: traffic class number
 211 */
 212static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
 213{
 214	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
 215
 216	if (ring->ch)
 217		return ring->q_index - ring->ch->base_q;
 218
 219	/* Idea here for calculation is that we subtract the number of queue
 220	 * count from TC that ring belongs to from it's absolute queue index
 221	 * and as a result we get the queue's index within TC.
 222	 */
 223	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
 224}
 225
 226/**
 227 * ice_eswitch_calc_txq_handle
 228 * @ring: pointer to ring which unique index is needed
 229 *
 230 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
 231 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
 232 * here by finding index in vsi->tx_rings of this ring.
 233 *
 234 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
 235 * because VSI is get from ring->vsi, so it has to be present in this VSI.
 236 */
 237static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
 238{
 239	struct ice_vsi *vsi = ring->vsi;
 240	int i;
 241
 242	ice_for_each_txq(vsi, i) {
 243		if (vsi->tx_rings[i] == ring)
 244			return i;
 245	}
 246
 247	return ICE_INVAL_Q_INDEX;
 248}
 249
 250/**
 251 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
 252 * @ring: The Tx ring to configure
 253 *
 254 * This enables/disables XPS for a given Tx descriptor ring
 255 * based on the TCs enabled for the VSI that ring belongs to.
 256 */
 257static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
 258{
 259	if (!ring->q_vector || !ring->netdev)
 260		return;
 261
 262	/* We only initialize XPS once, so as not to overwrite user settings */
 263	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
 264		return;
 265
 266	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
 267			    ring->q_index);
 268}
 269
 270/**
 271 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 272 * @ring: The Tx ring to configure
 273 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 274 * @pf_q: queue index in the PF space
 275 *
 276 * Configure the Tx descriptor ring in TLAN context.
 277 */
 278static void
 279ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 280{
 281	struct ice_vsi *vsi = ring->vsi;
 282	struct ice_hw *hw = &vsi->back->hw;
 283
 284	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 285
 286	tlan_ctx->port_num = vsi->port_info->lport;
 287
 288	/* Transmit Queue Length */
 289	tlan_ctx->qlen = ring->count;
 290
 291	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
 292
 293	/* PF number */
 294	tlan_ctx->pf_num = hw->pf_id;
 295
 296	/* queue belongs to a specific VSI type
 297	 * VF / VM index should be programmed per vmvf_type setting:
 298	 * for vmvf_type = VF, it is VF number between 0-256
 299	 * for vmvf_type = VM, it is VM number between 0-767
 300	 * for PF or EMP this field should be set to zero
 301	 */
 302	switch (vsi->type) {
 303	case ICE_VSI_LB:
 304	case ICE_VSI_CTRL:
 305	case ICE_VSI_PF:
 306		if (ring->ch)
 307			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 308		else
 309			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 310		break;
 311	case ICE_VSI_VF:
 312		/* Firmware expects vmvf_num to be absolute VF ID */
 313		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
 314		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 315		break;
 316	case ICE_VSI_SWITCHDEV_CTRL:
 317		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 318		break;
 319	default:
 320		return;
 321	}
 322
 323	/* make sure the context is associated with the right VSI */
 324	if (ring->ch)
 325		tlan_ctx->src_vsi = ring->ch->vsi_num;
 326	else
 327		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 328
 329	/* Restrict Tx timestamps to the PF VSI */
 330	switch (vsi->type) {
 331	case ICE_VSI_PF:
 332		tlan_ctx->tsyn_ena = 1;
 333		break;
 334	default:
 335		break;
 336	}
 337
 338	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 339	tlan_ctx->tso_qnum = pf_q;
 340
 341	/* Legacy or Advanced Host Interface:
 342	 * 0: Advanced Host Interface
 343	 * 1: Legacy Host Interface
 344	 */
 345	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 346}
 347
 348/**
 349 * ice_rx_offset - Return expected offset into page to access data
 350 * @rx_ring: Ring we are requesting offset of
 351 *
 352 * Returns the offset value for ring into the data buffer.
 353 */
 354static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
 355{
 356	if (ice_ring_uses_build_skb(rx_ring))
 357		return ICE_SKB_PAD;
 358	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 359		return XDP_PACKET_HEADROOM;
 360
 361	return 0;
 362}
 363
 364/**
 365 * ice_setup_rx_ctx - Configure a receive ring context
 366 * @ring: The Rx ring to configure
 367 *
 368 * Configure the Rx descriptor ring in RLAN context.
 369 */
 370static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
 371{
 
 372	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
 
 373	struct ice_vsi *vsi = ring->vsi;
 374	u32 rxdid = ICE_RXDID_FLEX_NIC;
 375	struct ice_rlan_ctx rlan_ctx;
 376	struct ice_hw *hw;
 377	u16 pf_q;
 378	int err;
 379
 380	hw = &vsi->back->hw;
 381
 382	/* what is Rx queue number in global space of 2K Rx queues */
 383	pf_q = vsi->rxq_map[ring->q_index];
 384
 385	/* clear the context structure first */
 386	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
 387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388	/* Receive Queue Base Address.
 389	 * Indicates the starting address of the descriptor queue defined in
 390	 * 128 Byte units.
 391	 */
 392	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
 393
 394	rlan_ctx.qlen = ring->count;
 395
 396	/* Receive Packet Data Buffer Size.
 397	 * The Packet Data Buffer Size is defined in 128 byte units.
 398	 */
 399	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
 400
 401	/* use 32 byte descriptors */
 402	rlan_ctx.dsize = 1;
 403
 404	/* Strip the Ethernet CRC bytes before the packet is posted to host
 405	 * memory.
 406	 */
 407	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
 408
 409	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
 410	 * and it needs to remain 1 for non-DVM capable configurations to not
 411	 * break backward compatibility for VF drivers. Setting this field to 0
 412	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
 413	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
 414	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
 415	 * check for the tag
 416	 */
 417	if (ice_is_dvm_ena(hw))
 418		if (vsi->type == ICE_VSI_VF &&
 419		    ice_vf_is_port_vlan_ena(vsi->vf))
 420			rlan_ctx.l2tsel = 1;
 421		else
 422			rlan_ctx.l2tsel = 0;
 423	else
 424		rlan_ctx.l2tsel = 1;
 425
 426	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
 427	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
 428	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
 429
 430	/* This controls whether VLAN is stripped from inner headers
 431	 * The VLAN in the inner L2 header is stripped to the receive
 432	 * descriptor if enabled by this flag.
 433	 */
 434	rlan_ctx.showiv = 0;
 435
 436	/* For AF_XDP ZC, we disallow packets to span on
 437	 * multiple buffers, thus letting us skip that
 438	 * handling in the fast-path.
 439	 */
 440	if (ring->xsk_pool)
 441		chain_len = 1;
 442	/* Max packet size for this queue - must not be set to a larger value
 443	 * than 5 x DBUF
 444	 */
 445	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
 446			       chain_len * ring->rx_buf_len);
 447
 448	/* Rx queue threshold in units of 64 */
 449	rlan_ctx.lrxqthresh = 1;
 450
 451	/* Enable Flexible Descriptors in the queue context which
 452	 * allows this driver to select a specific receive descriptor format
 453	 * increasing context priority to pick up profile ID; default is 0x01;
 454	 * setting to 0x03 to ensure profile is programming if prev context is
 455	 * of same priority
 456	 */
 457	if (vsi->type != ICE_VSI_VF)
 458		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
 459	else
 460		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
 461					false);
 462
 463	/* Absolute queue number out of 2K needs to be passed */
 464	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
 465	if (err) {
 466		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
 467			pf_q, err);
 468		return -EIO;
 469	}
 470
 471	if (vsi->type == ICE_VSI_VF)
 472		return 0;
 473
 474	/* configure Rx buffer alignment */
 475	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
 476		ice_clear_ring_build_skb_ena(ring);
 477	else
 478		ice_set_ring_build_skb_ena(ring);
 479
 480	ring->rx_offset = ice_rx_offset(ring);
 481
 482	/* init queue specific tail register */
 483	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 484	writel(0, ring->tail);
 485
 486	return 0;
 487}
 488
 489/**
 490 * ice_vsi_cfg_rxq - Configure an Rx queue
 491 * @ring: the ring being configured
 492 *
 493 * Return 0 on success and a negative value on error.
 494 */
 495int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
 496{
 497	struct device *dev = ice_pf_to_dev(ring->vsi->back);
 498	u16 num_bufs = ICE_DESC_UNUSED(ring);
 499	int err;
 500
 501	ring->rx_buf_len = ring->vsi->rx_buf_len;
 502
 503	if (ring->vsi->type == ICE_VSI_PF) {
 504		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
 505			/* coverity[check_return] */
 506			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 507					 ring->q_index, ring->q_vector->napi.napi_id);
 508
 509		ring->xsk_pool = ice_xsk_pool(ring);
 510		if (ring->xsk_pool) {
 511			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 512
 513			ring->rx_buf_len =
 514				xsk_pool_get_rx_frame_size(ring->xsk_pool);
 515			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 516							 MEM_TYPE_XSK_BUFF_POOL,
 517							 NULL);
 518			if (err)
 519				return err;
 520			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 521
 522			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
 523				 ring->q_index);
 524		} else {
 525			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
 526				/* coverity[check_return] */
 527				xdp_rxq_info_reg(&ring->xdp_rxq,
 528						 ring->netdev,
 529						 ring->q_index, ring->q_vector->napi.napi_id);
 530
 531			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 532							 MEM_TYPE_PAGE_SHARED,
 533							 NULL);
 534			if (err)
 535				return err;
 536		}
 537	}
 538
 539	err = ice_setup_rx_ctx(ring);
 540	if (err) {
 541		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
 542			ring->q_index, err);
 543		return err;
 544	}
 545
 546	if (ring->xsk_pool) {
 547		bool ok;
 548
 549		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
 550			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 551				 num_bufs, ring->q_index);
 552			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
 553
 554			return 0;
 555		}
 556
 557		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
 558		if (!ok) {
 559			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
 560
 561			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
 562				 ring->q_index, pf_q);
 563		}
 564
 565		return 0;
 566	}
 567
 568	ice_alloc_rx_bufs(ring, num_bufs);
 569
 570	return 0;
 571}
 572
 573/**
 574 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 575 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 576 *
 577 * This function first tries to find contiguous space. If it is not successful,
 578 * it tries with the scatter approach.
 579 *
 580 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 581 */
 582int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 583{
 584	int ret = 0;
 585
 586	ret = __ice_vsi_get_qs_contig(qs_cfg);
 587	if (ret) {
 588		/* contig failed, so try with scatter approach */
 589		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 590		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
 591					qs_cfg->scatter_count);
 592		ret = __ice_vsi_get_qs_sc(qs_cfg);
 593	}
 594	return ret;
 595}
 596
 597/**
 598 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 599 * @vsi: the VSI being configured
 600 * @ena: start or stop the Rx ring
 601 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 602 * @wait: wait or don't wait for configuration to finish in hardware
 603 *
 604 * Return 0 on success and negative on error.
 605 */
 606int
 607ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
 608{
 609	int pf_q = vsi->rxq_map[rxq_idx];
 610	struct ice_pf *pf = vsi->back;
 611	struct ice_hw *hw = &pf->hw;
 612	u32 rx_reg;
 613
 614	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 615
 616	/* Skip if the queue is already in the requested state */
 617	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 618		return 0;
 619
 620	/* turn on/off the queue */
 621	if (ena)
 622		rx_reg |= QRX_CTRL_QENA_REQ_M;
 623	else
 624		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 625	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 626
 627	if (!wait)
 628		return 0;
 629
 630	ice_flush(hw);
 631	return ice_pf_rxq_wait(pf, pf_q, ena);
 632}
 633
 634/**
 635 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 636 * @vsi: the VSI being configured
 637 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 638 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 639 *
 640 * This routine will wait for the given Rx queue of the VSI to reach the
 641 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 642 * the requested state after multiple retries; else will return 0 in case of
 643 * success.
 644 */
 645int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 646{
 647	int pf_q = vsi->rxq_map[rxq_idx];
 648	struct ice_pf *pf = vsi->back;
 649
 650	return ice_pf_rxq_wait(pf, pf_q, ena);
 651}
 652
 653/**
 654 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 655 * @vsi: the VSI being configured
 656 *
 657 * We allocate one q_vector per queue interrupt. If allocation fails we
 658 * return -ENOMEM.
 659 */
 660int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 661{
 662	struct device *dev = ice_pf_to_dev(vsi->back);
 663	u16 v_idx;
 664	int err;
 665
 666	if (vsi->q_vectors[0]) {
 667		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
 668		return -EEXIST;
 669	}
 670
 671	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
 672		err = ice_vsi_alloc_q_vector(vsi, v_idx);
 673		if (err)
 674			goto err_out;
 675	}
 676
 677	return 0;
 678
 679err_out:
 680	while (v_idx--)
 681		ice_free_q_vector(vsi, v_idx);
 682
 683	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
 684		vsi->num_q_vectors, vsi->vsi_num, err);
 685	vsi->num_q_vectors = 0;
 686	return err;
 687}
 688
 689/**
 690 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 691 * @vsi: the VSI being configured
 692 *
 693 * This function maps descriptor rings to the queue-specific vectors allotted
 694 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 695 * and Rx rings to the vector as "efficiently" as possible.
 696 */
 697void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
 698{
 699	int q_vectors = vsi->num_q_vectors;
 700	u16 tx_rings_rem, rx_rings_rem;
 701	int v_id;
 702
 703	/* initially assigning remaining rings count to VSIs num queue value */
 704	tx_rings_rem = vsi->num_txq;
 705	rx_rings_rem = vsi->num_rxq;
 706
 707	for (v_id = 0; v_id < q_vectors; v_id++) {
 708		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
 709		u8 tx_rings_per_v, rx_rings_per_v;
 710		u16 q_id, q_base;
 711
 712		/* Tx rings mapping to vector */
 713		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
 714						  q_vectors - v_id);
 715		q_vector->num_ring_tx = tx_rings_per_v;
 716		q_vector->tx.tx_ring = NULL;
 717		q_vector->tx.itr_idx = ICE_TX_ITR;
 718		q_base = vsi->num_txq - tx_rings_rem;
 719
 720		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
 721			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
 722
 723			tx_ring->q_vector = q_vector;
 724			tx_ring->next = q_vector->tx.tx_ring;
 725			q_vector->tx.tx_ring = tx_ring;
 726		}
 727		tx_rings_rem -= tx_rings_per_v;
 728
 729		/* Rx rings mapping to vector */
 730		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
 731						  q_vectors - v_id);
 732		q_vector->num_ring_rx = rx_rings_per_v;
 733		q_vector->rx.rx_ring = NULL;
 734		q_vector->rx.itr_idx = ICE_RX_ITR;
 735		q_base = vsi->num_rxq - rx_rings_rem;
 736
 737		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
 738			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
 739
 740			rx_ring->q_vector = q_vector;
 741			rx_ring->next = q_vector->rx.rx_ring;
 742			q_vector->rx.rx_ring = rx_ring;
 743		}
 744		rx_rings_rem -= rx_rings_per_v;
 745	}
 746}
 747
 748/**
 749 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 750 * @vsi: the VSI having memory freed
 751 */
 752void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
 753{
 754	int v_idx;
 755
 756	ice_for_each_q_vector(vsi, v_idx)
 757		ice_free_q_vector(vsi, v_idx);
 758}
 759
 760/**
 761 * ice_vsi_cfg_txq - Configure single Tx queue
 762 * @vsi: the VSI that queue belongs to
 763 * @ring: Tx ring to be configured
 764 * @qg_buf: queue group buffer
 765 */
 766int
 767ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
 768		struct ice_aqc_add_tx_qgrp *qg_buf)
 769{
 770	u8 buf_len = struct_size(qg_buf, txqs, 1);
 771	struct ice_tlan_ctx tlan_ctx = { 0 };
 772	struct ice_aqc_add_txqs_perq *txq;
 773	struct ice_channel *ch = ring->ch;
 774	struct ice_pf *pf = vsi->back;
 775	struct ice_hw *hw = &pf->hw;
 776	int status;
 777	u16 pf_q;
 778	u8 tc;
 779
 780	/* Configure XPS */
 781	ice_cfg_xps_tx_ring(ring);
 782
 783	pf_q = ring->reg_idx;
 784	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
 785	/* copy context contents into the qg_buf */
 786	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
 787	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
 788		    ice_tlan_ctx_info);
 789
 790	/* init queue specific tail reg. It is referred as
 791	 * transmit comm scheduler queue doorbell.
 792	 */
 793	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
 794
 795	if (IS_ENABLED(CONFIG_DCB))
 796		tc = ring->dcb_tc;
 797	else
 798		tc = 0;
 799
 800	/* Add unique software queue handle of the Tx queue per
 801	 * TC into the VSI Tx ring
 802	 */
 803	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
 804		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
 805
 806		if (ring->q_handle == ICE_INVAL_Q_INDEX)
 807			return -ENODEV;
 808	} else {
 809		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
 810	}
 811
 812	if (ch)
 813		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
 814					 ring->q_handle, 1, qg_buf, buf_len,
 815					 NULL);
 816	else
 817		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
 818					 ring->q_handle, 1, qg_buf, buf_len,
 819					 NULL);
 820	if (status) {
 821		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
 822			status);
 823		return status;
 824	}
 825
 826	/* Add Tx Queue TEID into the VSI Tx ring from the
 827	 * response. This will complete configuring and
 828	 * enabling the queue.
 829	 */
 830	txq = &qg_buf->txqs[0];
 831	if (pf_q == le16_to_cpu(txq->txq_id))
 832		ring->txq_teid = le32_to_cpu(txq->q_teid);
 833
 834	return 0;
 835}
 836
 837/**
 838 * ice_cfg_itr - configure the initial interrupt throttle values
 839 * @hw: pointer to the HW structure
 840 * @q_vector: interrupt vector that's being configured
 841 *
 842 * Configure interrupt throttling values for the ring containers that are
 843 * associated with the interrupt vector passed in.
 844 */
 845void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
 846{
 847	ice_cfg_itr_gran(hw);
 848
 849	if (q_vector->num_ring_rx)
 850		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
 851
 852	if (q_vector->num_ring_tx)
 853		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
 854
 855	ice_write_intrl(q_vector, q_vector->intrl);
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857
 858/**
 859 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
 860 * @vsi: the VSI being configured
 861 * @txq: Tx queue being mapped to MSI-X vector
 862 * @msix_idx: MSI-X vector index within the function
 863 * @itr_idx: ITR index of the interrupt cause
 864 *
 865 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
 866 * within the function space.
 867 */
 868void
 869ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
 870{
 871	struct ice_pf *pf = vsi->back;
 872	struct ice_hw *hw = &pf->hw;
 873	u32 val;
 874
 875	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
 876
 877	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
 878	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
 879
 880	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
 881	if (ice_is_xdp_ena_vsi(vsi)) {
 882		u32 xdp_txq = txq + vsi->num_xdp_txq;
 883
 884		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
 885		     val);
 886	}
 887	ice_flush(hw);
 888}
 889
 890/**
 891 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
 892 * @vsi: the VSI being configured
 893 * @rxq: Rx queue being mapped to MSI-X vector
 894 * @msix_idx: MSI-X vector index within the function
 895 * @itr_idx: ITR index of the interrupt cause
 896 *
 897 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
 898 * within the function space.
 899 */
 900void
 901ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
 902{
 903	struct ice_pf *pf = vsi->back;
 904	struct ice_hw *hw = &pf->hw;
 905	u32 val;
 906
 907	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
 908
 909	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
 910	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
 911
 912	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
 913
 914	ice_flush(hw);
 915}
 916
 917/**
 918 * ice_trigger_sw_intr - trigger a software interrupt
 919 * @hw: pointer to the HW structure
 920 * @q_vector: interrupt vector to trigger the software interrupt for
 921 */
 922void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
 923{
 924	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
 925	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
 926	     GLINT_DYN_CTL_SWINT_TRIG_M |
 927	     GLINT_DYN_CTL_INTENA_M);
 928}
 929
 930/**
 931 * ice_vsi_stop_tx_ring - Disable single Tx ring
 932 * @vsi: the VSI being configured
 933 * @rst_src: reset source
 934 * @rel_vmvf_num: Relative ID of VF/VM
 935 * @ring: Tx ring to be stopped
 936 * @txq_meta: Meta data of Tx ring to be stopped
 937 */
 938int
 939ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
 940		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
 941		     struct ice_txq_meta *txq_meta)
 942{
 943	struct ice_pf *pf = vsi->back;
 944	struct ice_q_vector *q_vector;
 945	struct ice_hw *hw = &pf->hw;
 946	int status;
 947	u32 val;
 948
 949	/* clear cause_ena bit for disabled queues */
 950	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
 951	val &= ~QINT_TQCTL_CAUSE_ENA_M;
 952	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
 953
 954	/* software is expected to wait for 100 ns */
 955	ndelay(100);
 956
 957	/* trigger a software interrupt for the vector
 958	 * associated to the queue to schedule NAPI handler
 959	 */
 960	q_vector = ring->q_vector;
 961	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
 962		ice_trigger_sw_intr(hw, q_vector);
 963
 964	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
 965				 txq_meta->tc, 1, &txq_meta->q_handle,
 966				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
 967				 rel_vmvf_num, NULL);
 968
 969	/* if the disable queue command was exercised during an
 970	 * active reset flow, -EBUSY is returned.
 971	 * This is not an error as the reset operation disables
 972	 * queues at the hardware level anyway.
 973	 */
 974	if (status == -EBUSY) {
 975		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
 976	} else if (status == -ENOENT) {
 977		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
 978	} else if (status) {
 979		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
 980			status);
 981		return status;
 982	}
 983
 984	return 0;
 985}
 986
 987/**
 988 * ice_fill_txq_meta - Prepare the Tx queue's meta data
 989 * @vsi: VSI that ring belongs to
 990 * @ring: ring that txq_meta will be based on
 991 * @txq_meta: a helper struct that wraps Tx queue's information
 992 *
 993 * Set up a helper struct that will contain all the necessary fields that
 994 * are needed for stopping Tx queue
 995 */
 996void
 997ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
 998		  struct ice_txq_meta *txq_meta)
 999{
1000	struct ice_channel *ch = ring->ch;
1001	u8 tc;
1002
1003	if (IS_ENABLED(CONFIG_DCB))
1004		tc = ring->dcb_tc;
1005	else
1006		tc = 0;
1007
1008	txq_meta->q_id = ring->reg_idx;
1009	txq_meta->q_teid = ring->txq_teid;
1010	txq_meta->q_handle = ring->q_handle;
1011	if (ch) {
1012		txq_meta->vsi_idx = ch->ch_vsi->idx;
1013		txq_meta->tc = 0;
1014	} else {
1015		txq_meta->vsi_idx = vsi->idx;
1016		txq_meta->tc = tc;
1017	}
1018}