Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16#include <linux/cpu.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/node.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/memblock.h>
23#include <linux/nodemask.h>
24#include <linux/notifier.h>
25#include <linux/export.h>
26#include <asm/mmzone.h>
27#include <asm/numa.h>
28#include <asm/cpu.h>
29
30static struct ia64_cpu *sysfs_cpus;
31
32void arch_fix_phys_package_id(int num, u32 slot)
33{
34#ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37#endif
38}
39EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40
41
42#ifdef CONFIG_HOTPLUG_CPU
43int __ref arch_register_cpu(int num)
44{
45 /*
46 * If CPEI can be re-targeted or if this is not
47 * CPEI target, then it is hotpluggable
48 */
49 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 sysfs_cpus[num].cpu.hotpluggable = 1;
51 map_cpu_to_node(num, node_cpuid[num].nid);
52 return register_cpu(&sysfs_cpus[num].cpu, num);
53}
54EXPORT_SYMBOL(arch_register_cpu);
55
56void __ref arch_unregister_cpu(int num)
57{
58 unregister_cpu(&sysfs_cpus[num].cpu);
59 unmap_cpu_from_node(num, cpu_to_node(num));
60}
61EXPORT_SYMBOL(arch_unregister_cpu);
62#else
63static int __init arch_register_cpu(int num)
64{
65 return register_cpu(&sysfs_cpus[num].cpu, num);
66}
67#endif /*CONFIG_HOTPLUG_CPU*/
68
69
70static int __init topology_init(void)
71{
72 int i, err = 0;
73
74#ifdef CONFIG_NUMA
75 /*
76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77 */
78 for_each_online_node(i) {
79 if ((err = register_one_node(i)))
80 goto out;
81 }
82#endif
83
84 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
85 if (!sysfs_cpus)
86 panic("kzalloc in topology_init failed - NR_CPUS too big?");
87
88 for_each_present_cpu(i) {
89 if((err = arch_register_cpu(i)))
90 goto out;
91 }
92out:
93 return err;
94}
95
96subsys_initcall(topology_init);
97
98
99/*
100 * Export cpu cache information through sysfs
101 */
102
103/*
104 * A bunch of string array to get pretty printing
105 */
106static const char *cache_types[] = {
107 "", /* not used */
108 "Instruction",
109 "Data",
110 "Unified" /* unified */
111};
112
113static const char *cache_mattrib[]={
114 "WriteThrough",
115 "WriteBack",
116 "", /* reserved */
117 "" /* reserved */
118};
119
120struct cache_info {
121 pal_cache_config_info_t cci;
122 cpumask_t shared_cpu_map;
123 int level;
124 int type;
125 struct kobject kobj;
126};
127
128struct cpu_cache_info {
129 struct cache_info *cache_leaves;
130 int num_cache_leaves;
131 struct kobject kobj;
132};
133
134static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
135#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
136
137#ifdef CONFIG_SMP
138static void cache_shared_cpu_map_setup(unsigned int cpu,
139 struct cache_info * this_leaf)
140{
141 pal_cache_shared_info_t csi;
142 int num_shared, i = 0;
143 unsigned int j;
144
145 if (cpu_data(cpu)->threads_per_core <= 1 &&
146 cpu_data(cpu)->cores_per_socket <= 1) {
147 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
148 return;
149 }
150
151 if (ia64_pal_cache_shared_info(this_leaf->level,
152 this_leaf->type,
153 0,
154 &csi) != PAL_STATUS_SUCCESS)
155 return;
156
157 num_shared = (int) csi.num_shared;
158 do {
159 for_each_possible_cpu(j)
160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 && cpu_data(j)->core_id == csi.log1_cid
162 && cpu_data(j)->thread_id == csi.log1_tid)
163 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
164
165 i++;
166 } while (i < num_shared &&
167 ia64_pal_cache_shared_info(this_leaf->level,
168 this_leaf->type,
169 i,
170 &csi) == PAL_STATUS_SUCCESS);
171}
172#else
173static void cache_shared_cpu_map_setup(unsigned int cpu,
174 struct cache_info * this_leaf)
175{
176 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
177 return;
178}
179#endif
180
181static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182 char *buf)
183{
184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
185}
186
187static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188 char *buf)
189{
190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
191}
192
193static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
194{
195 return sprintf(buf,
196 "%s\n",
197 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
198}
199
200static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201{
202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
203}
204
205static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206{
207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 number_of_sets /= this_leaf->cci.pcci_assoc;
209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210
211 return sprintf(buf, "%u\n", number_of_sets);
212}
213
214static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215{
216 cpumask_t shared_cpu_map;
217
218 cpumask_and(&shared_cpu_map,
219 &this_leaf->shared_cpu_map, cpu_online_mask);
220 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
221 cpumask_pr_args(&shared_cpu_map));
222}
223
224static ssize_t show_type(struct cache_info *this_leaf, char *buf)
225{
226 int type = this_leaf->type + this_leaf->cci.pcci_unified;
227 return sprintf(buf, "%s\n", cache_types[type]);
228}
229
230static ssize_t show_level(struct cache_info *this_leaf, char *buf)
231{
232 return sprintf(buf, "%u\n", this_leaf->level);
233}
234
235struct cache_attr {
236 struct attribute attr;
237 ssize_t (*show)(struct cache_info *, char *);
238 ssize_t (*store)(struct cache_info *, const char *, size_t count);
239};
240
241#ifdef define_one_ro
242 #undef define_one_ro
243#endif
244#define define_one_ro(_name) \
245 static struct cache_attr _name = \
246__ATTR(_name, 0444, show_##_name, NULL)
247
248define_one_ro(level);
249define_one_ro(type);
250define_one_ro(coherency_line_size);
251define_one_ro(ways_of_associativity);
252define_one_ro(size);
253define_one_ro(number_of_sets);
254define_one_ro(shared_cpu_map);
255define_one_ro(attributes);
256
257static struct attribute * cache_default_attrs[] = {
258 &type.attr,
259 &level.attr,
260 &coherency_line_size.attr,
261 &ways_of_associativity.attr,
262 &attributes.attr,
263 &size.attr,
264 &number_of_sets.attr,
265 &shared_cpu_map.attr,
266 NULL
267};
268
269#define to_object(k) container_of(k, struct cache_info, kobj)
270#define to_attr(a) container_of(a, struct cache_attr, attr)
271
272static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
273{
274 struct cache_attr *fattr = to_attr(attr);
275 struct cache_info *this_leaf = to_object(kobj);
276 ssize_t ret;
277
278 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
279 return ret;
280}
281
282static const struct sysfs_ops cache_sysfs_ops = {
283 .show = ia64_cache_show
284};
285
286static struct kobj_type cache_ktype = {
287 .sysfs_ops = &cache_sysfs_ops,
288 .default_attrs = cache_default_attrs,
289};
290
291static struct kobj_type cache_ktype_percpu_entry = {
292 .sysfs_ops = &cache_sysfs_ops,
293};
294
295static void cpu_cache_sysfs_exit(unsigned int cpu)
296{
297 kfree(all_cpu_cache_info[cpu].cache_leaves);
298 all_cpu_cache_info[cpu].cache_leaves = NULL;
299 all_cpu_cache_info[cpu].num_cache_leaves = 0;
300 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
301 return;
302}
303
304static int cpu_cache_sysfs_init(unsigned int cpu)
305{
306 unsigned long i, levels, unique_caches;
307 pal_cache_config_info_t cci;
308 int j;
309 long status;
310 struct cache_info *this_cache;
311 int num_cache_leaves = 0;
312
313 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
314 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
315 return -1;
316 }
317
318 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
319 GFP_KERNEL);
320 if (this_cache == NULL)
321 return -ENOMEM;
322
323 for (i=0; i < levels; i++) {
324 for (j=2; j >0 ; j--) {
325 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
326 PAL_STATUS_SUCCESS)
327 continue;
328
329 this_cache[num_cache_leaves].cci = cci;
330 this_cache[num_cache_leaves].level = i + 1;
331 this_cache[num_cache_leaves].type = j;
332
333 cache_shared_cpu_map_setup(cpu,
334 &this_cache[num_cache_leaves]);
335 num_cache_leaves ++;
336 }
337 }
338
339 all_cpu_cache_info[cpu].cache_leaves = this_cache;
340 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
341
342 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
343
344 return 0;
345}
346
347/* Add cache interface for CPU device */
348static int cache_add_dev(unsigned int cpu)
349{
350 struct device *sys_dev = get_cpu_device(cpu);
351 unsigned long i, j;
352 struct cache_info *this_object;
353 int retval = 0;
354
355 if (all_cpu_cache_info[cpu].kobj.parent)
356 return 0;
357
358
359 retval = cpu_cache_sysfs_init(cpu);
360 if (unlikely(retval < 0))
361 return retval;
362
363 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
364 &cache_ktype_percpu_entry, &sys_dev->kobj,
365 "%s", "cache");
366 if (unlikely(retval < 0)) {
367 cpu_cache_sysfs_exit(cpu);
368 return retval;
369 }
370
371 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
372 this_object = LEAF_KOBJECT_PTR(cpu,i);
373 retval = kobject_init_and_add(&(this_object->kobj),
374 &cache_ktype,
375 &all_cpu_cache_info[cpu].kobj,
376 "index%1lu", i);
377 if (unlikely(retval)) {
378 for (j = 0; j < i; j++) {
379 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
380 }
381 kobject_put(&all_cpu_cache_info[cpu].kobj);
382 cpu_cache_sysfs_exit(cpu);
383 return retval;
384 }
385 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
386 }
387 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
388 return retval;
389}
390
391/* Remove cache interface for CPU device */
392static int cache_remove_dev(unsigned int cpu)
393{
394 unsigned long i;
395
396 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
397 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
398
399 if (all_cpu_cache_info[cpu].kobj.parent) {
400 kobject_put(&all_cpu_cache_info[cpu].kobj);
401 memset(&all_cpu_cache_info[cpu].kobj,
402 0,
403 sizeof(struct kobject));
404 }
405
406 cpu_cache_sysfs_exit(cpu);
407
408 return 0;
409}
410
411static int __init cache_sysfs_init(void)
412{
413 int ret;
414
415 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
416 cache_add_dev, cache_remove_dev);
417 WARN_ON(ret < 0);
418 return 0;
419}
420device_initcall(cache_sysfs_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which are used on
7 * NUMA machines with contiguous memory.
8 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
9 * Populate cpu entries in sysfs for non-numa systems as well
10 * Intel Corporation - Ashok Raj
11 * 02/27/2006 Zhang, Yanmin
12 * Populate cpu cache entries in sysfs for cpu cache info
13 */
14
15#include <linux/cpu.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/node.h>
19#include <linux/slab.h>
20#include <linux/init.h>
21#include <linux/memblock.h>
22#include <linux/nodemask.h>
23#include <linux/notifier.h>
24#include <linux/export.h>
25#include <asm/mmzone.h>
26#include <asm/numa.h>
27#include <asm/cpu.h>
28
29static struct ia64_cpu *sysfs_cpus;
30
31void arch_fix_phys_package_id(int num, u32 slot)
32{
33#ifdef CONFIG_SMP
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
36#endif
37}
38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41#ifdef CONFIG_HOTPLUG_CPU
42int __ref arch_register_cpu(int num)
43{
44 /*
45 * If CPEI can be re-targeted or if this is not
46 * CPEI target, then it is hotpluggable
47 */
48 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 sysfs_cpus[num].cpu.hotpluggable = 1;
50 map_cpu_to_node(num, node_cpuid[num].nid);
51 return register_cpu(&sysfs_cpus[num].cpu, num);
52}
53EXPORT_SYMBOL(arch_register_cpu);
54
55void __ref arch_unregister_cpu(int num)
56{
57 unregister_cpu(&sysfs_cpus[num].cpu);
58 unmap_cpu_from_node(num, cpu_to_node(num));
59}
60EXPORT_SYMBOL(arch_unregister_cpu);
61#else
62static int __init arch_register_cpu(int num)
63{
64 return register_cpu(&sysfs_cpus[num].cpu, num);
65}
66#endif /*CONFIG_HOTPLUG_CPU*/
67
68
69static int __init topology_init(void)
70{
71 int i, err = 0;
72
73 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
74 if (!sysfs_cpus)
75 panic("kzalloc in topology_init failed - NR_CPUS too big?");
76
77 for_each_present_cpu(i) {
78 if((err = arch_register_cpu(i)))
79 goto out;
80 }
81out:
82 return err;
83}
84
85subsys_initcall(topology_init);
86
87
88/*
89 * Export cpu cache information through sysfs
90 */
91
92/*
93 * A bunch of string array to get pretty printing
94 */
95static const char *cache_types[] = {
96 "", /* not used */
97 "Instruction",
98 "Data",
99 "Unified" /* unified */
100};
101
102static const char *cache_mattrib[]={
103 "WriteThrough",
104 "WriteBack",
105 "", /* reserved */
106 "" /* reserved */
107};
108
109struct cache_info {
110 pal_cache_config_info_t cci;
111 cpumask_t shared_cpu_map;
112 int level;
113 int type;
114 struct kobject kobj;
115};
116
117struct cpu_cache_info {
118 struct cache_info *cache_leaves;
119 int num_cache_leaves;
120 struct kobject kobj;
121};
122
123static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
124#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
125
126#ifdef CONFIG_SMP
127static void cache_shared_cpu_map_setup(unsigned int cpu,
128 struct cache_info * this_leaf)
129{
130 pal_cache_shared_info_t csi;
131 int num_shared, i = 0;
132 unsigned int j;
133
134 if (cpu_data(cpu)->threads_per_core <= 1 &&
135 cpu_data(cpu)->cores_per_socket <= 1) {
136 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
137 return;
138 }
139
140 if (ia64_pal_cache_shared_info(this_leaf->level,
141 this_leaf->type,
142 0,
143 &csi) != PAL_STATUS_SUCCESS)
144 return;
145
146 num_shared = (int) csi.num_shared;
147 do {
148 for_each_possible_cpu(j)
149 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
150 && cpu_data(j)->core_id == csi.log1_cid
151 && cpu_data(j)->thread_id == csi.log1_tid)
152 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
153
154 i++;
155 } while (i < num_shared &&
156 ia64_pal_cache_shared_info(this_leaf->level,
157 this_leaf->type,
158 i,
159 &csi) == PAL_STATUS_SUCCESS);
160}
161#else
162static void cache_shared_cpu_map_setup(unsigned int cpu,
163 struct cache_info * this_leaf)
164{
165 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
166 return;
167}
168#endif
169
170static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
171 char *buf)
172{
173 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
174}
175
176static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
177 char *buf)
178{
179 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
180}
181
182static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
183{
184 return sprintf(buf,
185 "%s\n",
186 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
187}
188
189static ssize_t show_size(struct cache_info *this_leaf, char *buf)
190{
191 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
192}
193
194static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
195{
196 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
197 number_of_sets /= this_leaf->cci.pcci_assoc;
198 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
199
200 return sprintf(buf, "%u\n", number_of_sets);
201}
202
203static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
204{
205 cpumask_t shared_cpu_map;
206
207 cpumask_and(&shared_cpu_map,
208 &this_leaf->shared_cpu_map, cpu_online_mask);
209 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
210 cpumask_pr_args(&shared_cpu_map));
211}
212
213static ssize_t show_type(struct cache_info *this_leaf, char *buf)
214{
215 int type = this_leaf->type + this_leaf->cci.pcci_unified;
216 return sprintf(buf, "%s\n", cache_types[type]);
217}
218
219static ssize_t show_level(struct cache_info *this_leaf, char *buf)
220{
221 return sprintf(buf, "%u\n", this_leaf->level);
222}
223
224struct cache_attr {
225 struct attribute attr;
226 ssize_t (*show)(struct cache_info *, char *);
227 ssize_t (*store)(struct cache_info *, const char *, size_t count);
228};
229
230#ifdef define_one_ro
231 #undef define_one_ro
232#endif
233#define define_one_ro(_name) \
234 static struct cache_attr _name = \
235__ATTR(_name, 0444, show_##_name, NULL)
236
237define_one_ro(level);
238define_one_ro(type);
239define_one_ro(coherency_line_size);
240define_one_ro(ways_of_associativity);
241define_one_ro(size);
242define_one_ro(number_of_sets);
243define_one_ro(shared_cpu_map);
244define_one_ro(attributes);
245
246static struct attribute * cache_default_attrs[] = {
247 &type.attr,
248 &level.attr,
249 &coherency_line_size.attr,
250 &ways_of_associativity.attr,
251 &attributes.attr,
252 &size.attr,
253 &number_of_sets.attr,
254 &shared_cpu_map.attr,
255 NULL
256};
257ATTRIBUTE_GROUPS(cache_default);
258
259#define to_object(k) container_of(k, struct cache_info, kobj)
260#define to_attr(a) container_of(a, struct cache_attr, attr)
261
262static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
263{
264 struct cache_attr *fattr = to_attr(attr);
265 struct cache_info *this_leaf = to_object(kobj);
266 ssize_t ret;
267
268 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
269 return ret;
270}
271
272static const struct sysfs_ops cache_sysfs_ops = {
273 .show = ia64_cache_show
274};
275
276static struct kobj_type cache_ktype = {
277 .sysfs_ops = &cache_sysfs_ops,
278 .default_groups = cache_default_groups,
279};
280
281static struct kobj_type cache_ktype_percpu_entry = {
282 .sysfs_ops = &cache_sysfs_ops,
283};
284
285static void cpu_cache_sysfs_exit(unsigned int cpu)
286{
287 kfree(all_cpu_cache_info[cpu].cache_leaves);
288 all_cpu_cache_info[cpu].cache_leaves = NULL;
289 all_cpu_cache_info[cpu].num_cache_leaves = 0;
290 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
291 return;
292}
293
294static int cpu_cache_sysfs_init(unsigned int cpu)
295{
296 unsigned long i, levels, unique_caches;
297 pal_cache_config_info_t cci;
298 int j;
299 long status;
300 struct cache_info *this_cache;
301 int num_cache_leaves = 0;
302
303 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
304 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
305 return -1;
306 }
307
308 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
309 GFP_KERNEL);
310 if (this_cache == NULL)
311 return -ENOMEM;
312
313 for (i=0; i < levels; i++) {
314 for (j=2; j >0 ; j--) {
315 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
316 PAL_STATUS_SUCCESS)
317 continue;
318
319 this_cache[num_cache_leaves].cci = cci;
320 this_cache[num_cache_leaves].level = i + 1;
321 this_cache[num_cache_leaves].type = j;
322
323 cache_shared_cpu_map_setup(cpu,
324 &this_cache[num_cache_leaves]);
325 num_cache_leaves ++;
326 }
327 }
328
329 all_cpu_cache_info[cpu].cache_leaves = this_cache;
330 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
331
332 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
333
334 return 0;
335}
336
337/* Add cache interface for CPU device */
338static int cache_add_dev(unsigned int cpu)
339{
340 struct device *sys_dev = get_cpu_device(cpu);
341 unsigned long i, j;
342 struct cache_info *this_object;
343 int retval = 0;
344
345 if (all_cpu_cache_info[cpu].kobj.parent)
346 return 0;
347
348
349 retval = cpu_cache_sysfs_init(cpu);
350 if (unlikely(retval < 0))
351 return retval;
352
353 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
354 &cache_ktype_percpu_entry, &sys_dev->kobj,
355 "%s", "cache");
356 if (unlikely(retval < 0)) {
357 cpu_cache_sysfs_exit(cpu);
358 return retval;
359 }
360
361 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
362 this_object = LEAF_KOBJECT_PTR(cpu,i);
363 retval = kobject_init_and_add(&(this_object->kobj),
364 &cache_ktype,
365 &all_cpu_cache_info[cpu].kobj,
366 "index%1lu", i);
367 if (unlikely(retval)) {
368 for (j = 0; j < i; j++) {
369 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370 }
371 kobject_put(&all_cpu_cache_info[cpu].kobj);
372 cpu_cache_sysfs_exit(cpu);
373 return retval;
374 }
375 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
376 }
377 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
378 return retval;
379}
380
381/* Remove cache interface for CPU device */
382static int cache_remove_dev(unsigned int cpu)
383{
384 unsigned long i;
385
386 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
387 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
388
389 if (all_cpu_cache_info[cpu].kobj.parent) {
390 kobject_put(&all_cpu_cache_info[cpu].kobj);
391 memset(&all_cpu_cache_info[cpu].kobj,
392 0,
393 sizeof(struct kobject));
394 }
395
396 cpu_cache_sysfs_exit(cpu);
397
398 return 0;
399}
400
401static int __init cache_sysfs_init(void)
402{
403 int ret;
404
405 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
406 cache_add_dev, cache_remove_dev);
407 WARN_ON(ret < 0);
408 return 0;
409}
410device_initcall(cache_sysfs_init);