Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16#include <linux/cpu.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/node.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/memblock.h>
23#include <linux/nodemask.h>
24#include <linux/notifier.h>
25#include <linux/export.h>
26#include <asm/mmzone.h>
27#include <asm/numa.h>
28#include <asm/cpu.h>
29
30static struct ia64_cpu *sysfs_cpus;
31
32void arch_fix_phys_package_id(int num, u32 slot)
33{
34#ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37#endif
38}
39EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40
41
42#ifdef CONFIG_HOTPLUG_CPU
43int __ref arch_register_cpu(int num)
44{
45 /*
46 * If CPEI can be re-targeted or if this is not
47 * CPEI target, then it is hotpluggable
48 */
49 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 sysfs_cpus[num].cpu.hotpluggable = 1;
51 map_cpu_to_node(num, node_cpuid[num].nid);
52 return register_cpu(&sysfs_cpus[num].cpu, num);
53}
54EXPORT_SYMBOL(arch_register_cpu);
55
56void __ref arch_unregister_cpu(int num)
57{
58 unregister_cpu(&sysfs_cpus[num].cpu);
59 unmap_cpu_from_node(num, cpu_to_node(num));
60}
61EXPORT_SYMBOL(arch_unregister_cpu);
62#else
63static int __init arch_register_cpu(int num)
64{
65 return register_cpu(&sysfs_cpus[num].cpu, num);
66}
67#endif /*CONFIG_HOTPLUG_CPU*/
68
69
70static int __init topology_init(void)
71{
72 int i, err = 0;
73
74#ifdef CONFIG_NUMA
75 /*
76 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77 */
78 for_each_online_node(i) {
79 if ((err = register_one_node(i)))
80 goto out;
81 }
82#endif
83
84 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
85 if (!sysfs_cpus)
86 panic("kzalloc in topology_init failed - NR_CPUS too big?");
87
88 for_each_present_cpu(i) {
89 if((err = arch_register_cpu(i)))
90 goto out;
91 }
92out:
93 return err;
94}
95
96subsys_initcall(topology_init);
97
98
99/*
100 * Export cpu cache information through sysfs
101 */
102
103/*
104 * A bunch of string array to get pretty printing
105 */
106static const char *cache_types[] = {
107 "", /* not used */
108 "Instruction",
109 "Data",
110 "Unified" /* unified */
111};
112
113static const char *cache_mattrib[]={
114 "WriteThrough",
115 "WriteBack",
116 "", /* reserved */
117 "" /* reserved */
118};
119
120struct cache_info {
121 pal_cache_config_info_t cci;
122 cpumask_t shared_cpu_map;
123 int level;
124 int type;
125 struct kobject kobj;
126};
127
128struct cpu_cache_info {
129 struct cache_info *cache_leaves;
130 int num_cache_leaves;
131 struct kobject kobj;
132};
133
134static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
135#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
136
137#ifdef CONFIG_SMP
138static void cache_shared_cpu_map_setup(unsigned int cpu,
139 struct cache_info * this_leaf)
140{
141 pal_cache_shared_info_t csi;
142 int num_shared, i = 0;
143 unsigned int j;
144
145 if (cpu_data(cpu)->threads_per_core <= 1 &&
146 cpu_data(cpu)->cores_per_socket <= 1) {
147 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
148 return;
149 }
150
151 if (ia64_pal_cache_shared_info(this_leaf->level,
152 this_leaf->type,
153 0,
154 &csi) != PAL_STATUS_SUCCESS)
155 return;
156
157 num_shared = (int) csi.num_shared;
158 do {
159 for_each_possible_cpu(j)
160 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161 && cpu_data(j)->core_id == csi.log1_cid
162 && cpu_data(j)->thread_id == csi.log1_tid)
163 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
164
165 i++;
166 } while (i < num_shared &&
167 ia64_pal_cache_shared_info(this_leaf->level,
168 this_leaf->type,
169 i,
170 &csi) == PAL_STATUS_SUCCESS);
171}
172#else
173static void cache_shared_cpu_map_setup(unsigned int cpu,
174 struct cache_info * this_leaf)
175{
176 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
177 return;
178}
179#endif
180
181static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182 char *buf)
183{
184 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
185}
186
187static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188 char *buf)
189{
190 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
191}
192
193static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
194{
195 return sprintf(buf,
196 "%s\n",
197 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
198}
199
200static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201{
202 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
203}
204
205static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206{
207 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208 number_of_sets /= this_leaf->cci.pcci_assoc;
209 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210
211 return sprintf(buf, "%u\n", number_of_sets);
212}
213
214static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215{
216 cpumask_t shared_cpu_map;
217
218 cpumask_and(&shared_cpu_map,
219 &this_leaf->shared_cpu_map, cpu_online_mask);
220 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
221 cpumask_pr_args(&shared_cpu_map));
222}
223
224static ssize_t show_type(struct cache_info *this_leaf, char *buf)
225{
226 int type = this_leaf->type + this_leaf->cci.pcci_unified;
227 return sprintf(buf, "%s\n", cache_types[type]);
228}
229
230static ssize_t show_level(struct cache_info *this_leaf, char *buf)
231{
232 return sprintf(buf, "%u\n", this_leaf->level);
233}
234
235struct cache_attr {
236 struct attribute attr;
237 ssize_t (*show)(struct cache_info *, char *);
238 ssize_t (*store)(struct cache_info *, const char *, size_t count);
239};
240
241#ifdef define_one_ro
242 #undef define_one_ro
243#endif
244#define define_one_ro(_name) \
245 static struct cache_attr _name = \
246__ATTR(_name, 0444, show_##_name, NULL)
247
248define_one_ro(level);
249define_one_ro(type);
250define_one_ro(coherency_line_size);
251define_one_ro(ways_of_associativity);
252define_one_ro(size);
253define_one_ro(number_of_sets);
254define_one_ro(shared_cpu_map);
255define_one_ro(attributes);
256
257static struct attribute * cache_default_attrs[] = {
258 &type.attr,
259 &level.attr,
260 &coherency_line_size.attr,
261 &ways_of_associativity.attr,
262 &attributes.attr,
263 &size.attr,
264 &number_of_sets.attr,
265 &shared_cpu_map.attr,
266 NULL
267};
268
269#define to_object(k) container_of(k, struct cache_info, kobj)
270#define to_attr(a) container_of(a, struct cache_attr, attr)
271
272static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
273{
274 struct cache_attr *fattr = to_attr(attr);
275 struct cache_info *this_leaf = to_object(kobj);
276 ssize_t ret;
277
278 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
279 return ret;
280}
281
282static const struct sysfs_ops cache_sysfs_ops = {
283 .show = ia64_cache_show
284};
285
286static struct kobj_type cache_ktype = {
287 .sysfs_ops = &cache_sysfs_ops,
288 .default_attrs = cache_default_attrs,
289};
290
291static struct kobj_type cache_ktype_percpu_entry = {
292 .sysfs_ops = &cache_sysfs_ops,
293};
294
295static void cpu_cache_sysfs_exit(unsigned int cpu)
296{
297 kfree(all_cpu_cache_info[cpu].cache_leaves);
298 all_cpu_cache_info[cpu].cache_leaves = NULL;
299 all_cpu_cache_info[cpu].num_cache_leaves = 0;
300 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
301 return;
302}
303
304static int cpu_cache_sysfs_init(unsigned int cpu)
305{
306 unsigned long i, levels, unique_caches;
307 pal_cache_config_info_t cci;
308 int j;
309 long status;
310 struct cache_info *this_cache;
311 int num_cache_leaves = 0;
312
313 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
314 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
315 return -1;
316 }
317
318 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
319 GFP_KERNEL);
320 if (this_cache == NULL)
321 return -ENOMEM;
322
323 for (i=0; i < levels; i++) {
324 for (j=2; j >0 ; j--) {
325 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
326 PAL_STATUS_SUCCESS)
327 continue;
328
329 this_cache[num_cache_leaves].cci = cci;
330 this_cache[num_cache_leaves].level = i + 1;
331 this_cache[num_cache_leaves].type = j;
332
333 cache_shared_cpu_map_setup(cpu,
334 &this_cache[num_cache_leaves]);
335 num_cache_leaves ++;
336 }
337 }
338
339 all_cpu_cache_info[cpu].cache_leaves = this_cache;
340 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
341
342 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
343
344 return 0;
345}
346
347/* Add cache interface for CPU device */
348static int cache_add_dev(unsigned int cpu)
349{
350 struct device *sys_dev = get_cpu_device(cpu);
351 unsigned long i, j;
352 struct cache_info *this_object;
353 int retval = 0;
354
355 if (all_cpu_cache_info[cpu].kobj.parent)
356 return 0;
357
358
359 retval = cpu_cache_sysfs_init(cpu);
360 if (unlikely(retval < 0))
361 return retval;
362
363 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
364 &cache_ktype_percpu_entry, &sys_dev->kobj,
365 "%s", "cache");
366 if (unlikely(retval < 0)) {
367 cpu_cache_sysfs_exit(cpu);
368 return retval;
369 }
370
371 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
372 this_object = LEAF_KOBJECT_PTR(cpu,i);
373 retval = kobject_init_and_add(&(this_object->kobj),
374 &cache_ktype,
375 &all_cpu_cache_info[cpu].kobj,
376 "index%1lu", i);
377 if (unlikely(retval)) {
378 for (j = 0; j < i; j++) {
379 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
380 }
381 kobject_put(&all_cpu_cache_info[cpu].kobj);
382 cpu_cache_sysfs_exit(cpu);
383 return retval;
384 }
385 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
386 }
387 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
388 return retval;
389}
390
391/* Remove cache interface for CPU device */
392static int cache_remove_dev(unsigned int cpu)
393{
394 unsigned long i;
395
396 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
397 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
398
399 if (all_cpu_cache_info[cpu].kobj.parent) {
400 kobject_put(&all_cpu_cache_info[cpu].kobj);
401 memset(&all_cpu_cache_info[cpu].kobj,
402 0,
403 sizeof(struct kobject));
404 }
405
406 cpu_cache_sysfs_exit(cpu);
407
408 return 0;
409}
410
411static int __init cache_sysfs_init(void)
412{
413 int ret;
414
415 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
416 cache_add_dev, cache_remove_dev);
417 WARN_ON(ret < 0);
418 return 0;
419}
420device_initcall(cache_sysfs_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16#include <linux/cpu.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/node.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/bootmem.h>
23#include <linux/nodemask.h>
24#include <linux/notifier.h>
25#include <asm/mmzone.h>
26#include <asm/numa.h>
27#include <asm/cpu.h>
28
29static struct ia64_cpu *sysfs_cpus;
30
31void arch_fix_phys_package_id(int num, u32 slot)
32{
33#ifdef CONFIG_SMP
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
36#endif
37}
38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41#ifdef CONFIG_HOTPLUG_CPU
42int __ref arch_register_cpu(int num)
43{
44#ifdef CONFIG_ACPI
45 /*
46 * If CPEI can be re-targeted or if this is not
47 * CPEI target, then it is hotpluggable
48 */
49 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50 sysfs_cpus[num].cpu.hotpluggable = 1;
51 map_cpu_to_node(num, node_cpuid[num].nid);
52#endif
53 return register_cpu(&sysfs_cpus[num].cpu, num);
54}
55EXPORT_SYMBOL(arch_register_cpu);
56
57void __ref arch_unregister_cpu(int num)
58{
59 unregister_cpu(&sysfs_cpus[num].cpu);
60#ifdef CONFIG_ACPI
61 unmap_cpu_from_node(num, cpu_to_node(num));
62#endif
63}
64EXPORT_SYMBOL(arch_unregister_cpu);
65#else
66static int __init arch_register_cpu(int num)
67{
68 return register_cpu(&sysfs_cpus[num].cpu, num);
69}
70#endif /*CONFIG_HOTPLUG_CPU*/
71
72
73static int __init topology_init(void)
74{
75 int i, err = 0;
76
77#ifdef CONFIG_NUMA
78 /*
79 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
80 */
81 for_each_online_node(i) {
82 if ((err = register_one_node(i)))
83 goto out;
84 }
85#endif
86
87 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
88 if (!sysfs_cpus)
89 panic("kzalloc in topology_init failed - NR_CPUS too big?");
90
91 for_each_present_cpu(i) {
92 if((err = arch_register_cpu(i)))
93 goto out;
94 }
95out:
96 return err;
97}
98
99subsys_initcall(topology_init);
100
101
102/*
103 * Export cpu cache information through sysfs
104 */
105
106/*
107 * A bunch of string array to get pretty printing
108 */
109static const char *cache_types[] = {
110 "", /* not used */
111 "Instruction",
112 "Data",
113 "Unified" /* unified */
114};
115
116static const char *cache_mattrib[]={
117 "WriteThrough",
118 "WriteBack",
119 "", /* reserved */
120 "" /* reserved */
121};
122
123struct cache_info {
124 pal_cache_config_info_t cci;
125 cpumask_t shared_cpu_map;
126 int level;
127 int type;
128 struct kobject kobj;
129};
130
131struct cpu_cache_info {
132 struct cache_info *cache_leaves;
133 int num_cache_leaves;
134 struct kobject kobj;
135};
136
137static struct cpu_cache_info all_cpu_cache_info[NR_CPUS] __cpuinitdata;
138#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
139
140#ifdef CONFIG_SMP
141static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
142 struct cache_info * this_leaf)
143{
144 pal_cache_shared_info_t csi;
145 int num_shared, i = 0;
146 unsigned int j;
147
148 if (cpu_data(cpu)->threads_per_core <= 1 &&
149 cpu_data(cpu)->cores_per_socket <= 1) {
150 cpu_set(cpu, this_leaf->shared_cpu_map);
151 return;
152 }
153
154 if (ia64_pal_cache_shared_info(this_leaf->level,
155 this_leaf->type,
156 0,
157 &csi) != PAL_STATUS_SUCCESS)
158 return;
159
160 num_shared = (int) csi.num_shared;
161 do {
162 for_each_possible_cpu(j)
163 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
164 && cpu_data(j)->core_id == csi.log1_cid
165 && cpu_data(j)->thread_id == csi.log1_tid)
166 cpu_set(j, this_leaf->shared_cpu_map);
167
168 i++;
169 } while (i < num_shared &&
170 ia64_pal_cache_shared_info(this_leaf->level,
171 this_leaf->type,
172 i,
173 &csi) == PAL_STATUS_SUCCESS);
174}
175#else
176static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
177 struct cache_info * this_leaf)
178{
179 cpu_set(cpu, this_leaf->shared_cpu_map);
180 return;
181}
182#endif
183
184static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
185 char *buf)
186{
187 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
188}
189
190static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
191 char *buf)
192{
193 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
194}
195
196static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
197{
198 return sprintf(buf,
199 "%s\n",
200 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
201}
202
203static ssize_t show_size(struct cache_info *this_leaf, char *buf)
204{
205 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
206}
207
208static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
209{
210 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
211 number_of_sets /= this_leaf->cci.pcci_assoc;
212 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
213
214 return sprintf(buf, "%u\n", number_of_sets);
215}
216
217static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
218{
219 ssize_t len;
220 cpumask_t shared_cpu_map;
221
222 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
223 len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
224 len += sprintf(buf+len, "\n");
225 return len;
226}
227
228static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229{
230 int type = this_leaf->type + this_leaf->cci.pcci_unified;
231 return sprintf(buf, "%s\n", cache_types[type]);
232}
233
234static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235{
236 return sprintf(buf, "%u\n", this_leaf->level);
237}
238
239struct cache_attr {
240 struct attribute attr;
241 ssize_t (*show)(struct cache_info *, char *);
242 ssize_t (*store)(struct cache_info *, const char *, size_t count);
243};
244
245#ifdef define_one_ro
246 #undef define_one_ro
247#endif
248#define define_one_ro(_name) \
249 static struct cache_attr _name = \
250__ATTR(_name, 0444, show_##_name, NULL)
251
252define_one_ro(level);
253define_one_ro(type);
254define_one_ro(coherency_line_size);
255define_one_ro(ways_of_associativity);
256define_one_ro(size);
257define_one_ro(number_of_sets);
258define_one_ro(shared_cpu_map);
259define_one_ro(attributes);
260
261static struct attribute * cache_default_attrs[] = {
262 &type.attr,
263 &level.attr,
264 &coherency_line_size.attr,
265 &ways_of_associativity.attr,
266 &attributes.attr,
267 &size.attr,
268 &number_of_sets.attr,
269 &shared_cpu_map.attr,
270 NULL
271};
272
273#define to_object(k) container_of(k, struct cache_info, kobj)
274#define to_attr(a) container_of(a, struct cache_attr, attr)
275
276static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277{
278 struct cache_attr *fattr = to_attr(attr);
279 struct cache_info *this_leaf = to_object(kobj);
280 ssize_t ret;
281
282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283 return ret;
284}
285
286static const struct sysfs_ops cache_sysfs_ops = {
287 .show = cache_show
288};
289
290static struct kobj_type cache_ktype = {
291 .sysfs_ops = &cache_sysfs_ops,
292 .default_attrs = cache_default_attrs,
293};
294
295static struct kobj_type cache_ktype_percpu_entry = {
296 .sysfs_ops = &cache_sysfs_ops,
297};
298
299static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
300{
301 kfree(all_cpu_cache_info[cpu].cache_leaves);
302 all_cpu_cache_info[cpu].cache_leaves = NULL;
303 all_cpu_cache_info[cpu].num_cache_leaves = 0;
304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305 return;
306}
307
308static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
309{
310 unsigned long i, levels, unique_caches;
311 pal_cache_config_info_t cci;
312 int j;
313 long status;
314 struct cache_info *this_cache;
315 int num_cache_leaves = 0;
316
317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319 return -1;
320 }
321
322 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323 GFP_KERNEL);
324 if (this_cache == NULL)
325 return -ENOMEM;
326
327 for (i=0; i < levels; i++) {
328 for (j=2; j >0 ; j--) {
329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330 PAL_STATUS_SUCCESS)
331 continue;
332
333 this_cache[num_cache_leaves].cci = cci;
334 this_cache[num_cache_leaves].level = i + 1;
335 this_cache[num_cache_leaves].type = j;
336
337 cache_shared_cpu_map_setup(cpu,
338 &this_cache[num_cache_leaves]);
339 num_cache_leaves ++;
340 }
341 }
342
343 all_cpu_cache_info[cpu].cache_leaves = this_cache;
344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348 return 0;
349}
350
351/* Add cache interface for CPU device */
352static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
353{
354 unsigned int cpu = sys_dev->id;
355 unsigned long i, j;
356 struct cache_info *this_object;
357 int retval = 0;
358 cpumask_t oldmask;
359
360 if (all_cpu_cache_info[cpu].kobj.parent)
361 return 0;
362
363 oldmask = current->cpus_allowed;
364 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
365 if (unlikely(retval))
366 return retval;
367
368 retval = cpu_cache_sysfs_init(cpu);
369 set_cpus_allowed_ptr(current, &oldmask);
370 if (unlikely(retval < 0))
371 return retval;
372
373 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374 &cache_ktype_percpu_entry, &sys_dev->kobj,
375 "%s", "cache");
376 if (unlikely(retval < 0)) {
377 cpu_cache_sysfs_exit(cpu);
378 return retval;
379 }
380
381 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382 this_object = LEAF_KOBJECT_PTR(cpu,i);
383 retval = kobject_init_and_add(&(this_object->kobj),
384 &cache_ktype,
385 &all_cpu_cache_info[cpu].kobj,
386 "index%1lu", i);
387 if (unlikely(retval)) {
388 for (j = 0; j < i; j++) {
389 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
390 }
391 kobject_put(&all_cpu_cache_info[cpu].kobj);
392 cpu_cache_sysfs_exit(cpu);
393 return retval;
394 }
395 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
396 }
397 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398 return retval;
399}
400
401/* Remove cache interface for CPU device */
402static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
403{
404 unsigned int cpu = sys_dev->id;
405 unsigned long i;
406
407 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
409
410 if (all_cpu_cache_info[cpu].kobj.parent) {
411 kobject_put(&all_cpu_cache_info[cpu].kobj);
412 memset(&all_cpu_cache_info[cpu].kobj,
413 0,
414 sizeof(struct kobject));
415 }
416
417 cpu_cache_sysfs_exit(cpu);
418
419 return 0;
420}
421
422/*
423 * When a cpu is hot-plugged, do a check and initiate
424 * cache kobject if necessary
425 */
426static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
427 unsigned long action, void *hcpu)
428{
429 unsigned int cpu = (unsigned long)hcpu;
430 struct sys_device *sys_dev;
431
432 sys_dev = get_cpu_sysdev(cpu);
433 switch (action) {
434 case CPU_ONLINE:
435 case CPU_ONLINE_FROZEN:
436 cache_add_dev(sys_dev);
437 break;
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
440 cache_remove_dev(sys_dev);
441 break;
442 }
443 return NOTIFY_OK;
444}
445
446static struct notifier_block __cpuinitdata cache_cpu_notifier =
447{
448 .notifier_call = cache_cpu_callback
449};
450
451static int __init cache_sysfs_init(void)
452{
453 int i;
454
455 for_each_online_cpu(i) {
456 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
457 cache_add_dev(sys_dev);
458 }
459
460 register_hotcpu_notifier(&cache_cpu_notifier);
461
462 return 0;
463}
464
465device_initcall(cache_sysfs_init);
466