Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Here is where the ball gets rolling as far as the kernel is concerned.
   4 * When control is transferred to _start, the bootload has already
   5 * loaded us to the correct address.  All that's left to do here is
   6 * to set up the kernel's global pointer and jump to the kernel
   7 * entry point.
   8 *
   9 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
  10 *	David Mosberger-Tang <davidm@hpl.hp.com>
  11 *	Stephane Eranian <eranian@hpl.hp.com>
  12 * Copyright (C) 1999 VA Linux Systems
  13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  14 * Copyright (C) 1999 Intel Corp.
  15 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  16 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  17 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  18 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  19 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  20 *   Support for CPU Hotplug
  21 */
  22
  23
  24#include <linux/pgtable.h>
  25#include <asm/asmmacro.h>
  26#include <asm/fpu.h>
  27#include <asm/kregs.h>
  28#include <asm/mmu_context.h>
  29#include <asm/asm-offsets.h>
  30#include <asm/pal.h>
  31#include <asm/processor.h>
  32#include <asm/ptrace.h>
  33#include <asm/mca_asm.h>
  34#include <linux/init.h>
  35#include <linux/linkage.h>
  36#include <linux/pgtable.h>
  37#include <asm/export.h>
  38
  39#ifdef CONFIG_HOTPLUG_CPU
  40#define SAL_PSR_BITS_TO_SET				\
  41	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  42
  43#define SAVE_FROM_REG(src, ptr, dest)	\
  44	mov dest=src;;						\
  45	st8 [ptr]=dest,0x08
  46
  47#define RESTORE_REG(reg, ptr, _tmp)		\
  48	ld8 _tmp=[ptr],0x08;;				\
  49	mov reg=_tmp
  50
  51#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  52	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
  53	mov _idx=0;; 								\
  541: 												\
  55	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
  56	add _idx=1,_idx;;							\
  57	br.cloop.sptk.many 1b
  58
  59#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  60	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
  61	mov _idx=0;;							\
  62_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
  63	add _idx=1, _idx;;						\
  64	br.cloop.sptk.many _lbl
  65
  66#define SAVE_ONE_RR(num, _reg, _tmp) \
  67	movl _tmp=(num<<61);;	\
  68	mov _reg=rr[_tmp]
  69
  70#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  71	SAVE_ONE_RR(0,_r0, _tmp);; \
  72	SAVE_ONE_RR(1,_r1, _tmp);; \
  73	SAVE_ONE_RR(2,_r2, _tmp);; \
  74	SAVE_ONE_RR(3,_r3, _tmp);; \
  75	SAVE_ONE_RR(4,_r4, _tmp);; \
  76	SAVE_ONE_RR(5,_r5, _tmp);; \
  77	SAVE_ONE_RR(6,_r6, _tmp);; \
  78	SAVE_ONE_RR(7,_r7, _tmp);;
  79
  80#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  81	st8 [ptr]=_r0, 8;; \
  82	st8 [ptr]=_r1, 8;; \
  83	st8 [ptr]=_r2, 8;; \
  84	st8 [ptr]=_r3, 8;; \
  85	st8 [ptr]=_r4, 8;; \
  86	st8 [ptr]=_r5, 8;; \
  87	st8 [ptr]=_r6, 8;; \
  88	st8 [ptr]=_r7, 8;;
  89
  90#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  91	mov		ar.lc=0x08-1;;						\
  92	movl	_idx1=0x00;;						\
  93RestRR:											\
  94	dep.z	_idx2=_idx1,61,3;;					\
  95	ld8		_tmp=[ptr],8;;						\
  96	mov		rr[_idx2]=_tmp;;					\
  97	srlz.d;;									\
  98	add		_idx1=1,_idx1;;						\
  99	br.cloop.sptk.few	RestRR
 100
 101#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
 102	movl reg1=sal_state_for_booting_cpu;;	\
 103	ld8 reg2=[reg1];;
 104
 105/*
 106 * Adjust region registers saved before starting to save
 107 * break regs and rest of the states that need to be preserved.
 108 */
 109#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
 110	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
 111	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
 112	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
 113	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
 114	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
 115	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
 116	st8 [_reg1]=r1,0x08;;								\
 117	st8 [_reg1]=r12,0x08;;								\
 118	st8 [_reg1]=r13,0x08;;								\
 119	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
 120	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
 121	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
 122	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
 123	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
 124	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
 125	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
 126	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
 127	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
 128	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
 129	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
 130	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
 131	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
 132	st8 [_reg1]=r4,0x08;;								\
 133	st8 [_reg1]=r5,0x08;;								\
 134	st8 [_reg1]=r6,0x08;;								\
 135	st8 [_reg1]=r7,0x08;;								\
 136	st8 [_reg1]=_pred,0x08;;							\
 137	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
 138	stf.spill.nta [_reg1]=f2,16;;						\
 139	stf.spill.nta [_reg1]=f3,16;;						\
 140	stf.spill.nta [_reg1]=f4,16;;						\
 141	stf.spill.nta [_reg1]=f5,16;;						\
 142	stf.spill.nta [_reg1]=f16,16;;						\
 143	stf.spill.nta [_reg1]=f17,16;;						\
 144	stf.spill.nta [_reg1]=f18,16;;						\
 145	stf.spill.nta [_reg1]=f19,16;;						\
 146	stf.spill.nta [_reg1]=f20,16;;						\
 147	stf.spill.nta [_reg1]=f21,16;;						\
 148	stf.spill.nta [_reg1]=f22,16;;						\
 149	stf.spill.nta [_reg1]=f23,16;;						\
 150	stf.spill.nta [_reg1]=f24,16;;						\
 151	stf.spill.nta [_reg1]=f25,16;;						\
 152	stf.spill.nta [_reg1]=f26,16;;						\
 153	stf.spill.nta [_reg1]=f27,16;;						\
 154	stf.spill.nta [_reg1]=f28,16;;						\
 155	stf.spill.nta [_reg1]=f29,16;;						\
 156	stf.spill.nta [_reg1]=f30,16;;						\
 157	stf.spill.nta [_reg1]=f31,16;;
 158
 159#else
 160#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
 161#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
 162#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 163#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 164#endif
 165
 166#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
 167	movl _tmp1=(num << 61);;	\
 168	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
 169	mov rr[_tmp1]=_tmp2
 170
 171	__PAGE_ALIGNED_DATA
 172
 173	.global empty_zero_page
 174EXPORT_DATA_SYMBOL_GPL(empty_zero_page)
 175empty_zero_page:
 176	.skip PAGE_SIZE
 177
 178	.global swapper_pg_dir
 179swapper_pg_dir:
 180	.skip PAGE_SIZE
 181
 182	.rodata
 183halt_msg:
 184	stringz "Halting kernel\n"
 185
 186	__REF
 187
 188	.global start_ap
 189
 190	/*
 191	 * Start the kernel.  When the bootloader passes control to _start(), r28
 192	 * points to the address of the boot parameter area.  Execution reaches
 193	 * here in physical mode.
 194	 */
 195GLOBAL_ENTRY(_start)
 196start_ap:
 197	.prologue
 198	.save rp, r0		// terminate unwind chain with a NULL rp
 199	.body
 200
 201	rsm psr.i | psr.ic
 202	;;
 203	srlz.i
 204	;;
 205 {
 206	flushrs				// must be first insn in group
 207	srlz.i
 208 }
 209	;;
 210	/*
 211	 * Save the region registers, predicate before they get clobbered
 212	 */
 213	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
 214	mov r25=pr;;
 215
 216	/*
 217	 * Initialize kernel region registers:
 218	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
 219	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
 220	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
 221	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
 222	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
 223	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
 224	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 225	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 226	 * We initialize all of them to prevent inadvertently assuming
 227	 * something about the state of address translation early in boot.
 228	 */
 229	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
 230	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
 231	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
 232	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
 233	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
 234	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
 235	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
 236	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
 237	/*
 238	 * Now pin mappings into the TLB for kernel text and data
 239	 */
 240	mov r18=KERNEL_TR_PAGE_SHIFT<<2
 241	movl r17=KERNEL_START
 242	;;
 243	mov cr.itir=r18
 244	mov cr.ifa=r17
 245	mov r16=IA64_TR_KERNEL
 246	mov r3=ip
 247	movl r18=PAGE_KERNEL
 248	;;
 249	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
 250	;;
 251	or r18=r2,r18
 252	;;
 253	srlz.i
 254	;;
 255	itr.i itr[r16]=r18
 256	;;
 257	itr.d dtr[r16]=r18
 258	;;
 259	srlz.i
 260
 261	/*
 262	 * Switch into virtual mode:
 263	 */
 264	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
 265		  |IA64_PSR_DI)
 266	;;
 267	mov cr.ipsr=r16
 268	movl r17=1f
 269	;;
 270	mov cr.iip=r17
 271	mov cr.ifs=r0
 272	;;
 273	rfi
 274	;;
 2751:	// now we are in virtual mode
 276
 277	SET_AREA_FOR_BOOTING_CPU(r2, r16);
 278
 279	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
 280	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
 281	;;
 282
 283	// set IVT entry point---can't access I/O ports without it
 284	movl r3=ia64_ivt
 285	;;
 286	mov cr.iva=r3
 287	movl r2=FPSR_DEFAULT
 288	;;
 289	srlz.i
 290	movl gp=__gp
 291
 292	mov ar.fpsr=r2
 293	;;
 294
 295#define isAP	p2	// are we an Application Processor?
 296#define isBP	p3	// are we the Bootstrap Processor?
 297
 298#ifdef CONFIG_SMP
 299	/*
 300	 * Find the init_task for the currently booting CPU.  At poweron, and in
 301	 * UP mode, task_for_booting_cpu is NULL.
 302	 */
 303	movl r3=task_for_booting_cpu
 304 	;;
 305	ld8 r3=[r3]
 306	movl r2=init_task
 307	;;
 308	cmp.eq isBP,isAP=r3,r0
 309	;;
 310(isAP)	mov r2=r3
 311#else
 312	movl r2=init_task
 313	cmp.eq isBP,isAP=r0,r0
 314#endif
 315	;;
 316	tpa r3=r2		// r3 == phys addr of task struct
 317	mov r16=-1
 318(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
 319
 320	// load mapping for stack (virtaddr in r2, physaddr in r3)
 321	rsm psr.ic
 322	movl r17=PAGE_KERNEL
 323	;;
 324	srlz.d
 325	dep r18=0,r3,0,12
 326	;;
 327	or r18=r17,r18
 328	dep r2=-1,r3,61,3	// IMVA of task
 329	;;
 330	mov r17=rr[r2]
 331	shr.u r16=r3,IA64_GRANULE_SHIFT
 332	;;
 333	dep r17=0,r17,8,24
 334	;;
 335	mov cr.itir=r17
 336	mov cr.ifa=r2
 337
 338	mov r19=IA64_TR_CURRENT_STACK
 339	;;
 340	itr.d dtr[r19]=r18
 341	;;
 342	ssm psr.ic
 343	srlz.d
 344  	;;
 345
 346.load_current:
 347	// load the "current" pointer (r13) and ar.k6 with the current task
 348	mov IA64_KR(CURRENT)=r2		// virtual address
 349	mov IA64_KR(CURRENT_STACK)=r16
 350	mov r13=r2
 351	/*
 352	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
 353	 * threads don't store interesting values in that structure, but the space
 354	 * still needs to be there because time-critical stuff such as the context
 355	 * switching can be implemented more efficiently (for example, __switch_to()
 356	 * always sets the psr.dfh bit of the task it is switching to).
 357	 */
 358
 359	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
 360	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
 361	mov ar.rsc=0		// place RSE in enforced lazy mode
 362	;;
 363	loadrs			// clear the dirty partition
 364	movl r19=__phys_per_cpu_start
 365	mov r18=PERCPU_PAGE_SIZE
 366	;;
 367#ifndef CONFIG_SMP
 368	add r19=r19,r18
 369	;;
 370#else
 371(isAP)	br.few 2f
 372	movl r20=__cpu0_per_cpu
 373	;;
 374	shr.u r18=r18,3
 3751:
 376	ld8 r21=[r19],8;;
 377	st8[r20]=r21,8
 378	adds r18=-1,r18;;
 379	cmp4.lt p7,p6=0,r18
 380(p7)	br.cond.dptk.few 1b
 381	mov r19=r20
 382	;;
 3832:
 384#endif
 385	tpa r19=r19
 386	;;
 387	.pred.rel.mutex isBP,isAP
 388(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
 389(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
 390	;;
 391	mov ar.bspstore=r2	// establish the new RSE stack
 392	;;
 393	mov ar.rsc=0x3		// place RSE in eager mode
 394
 395(isBP)	dep r28=-1,r28,61,3	// make address virtual
 396(isBP)	movl r2=ia64_boot_param
 397	;;
 398(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
 399
 400#ifdef CONFIG_SMP
 401(isAP)	br.call.sptk.many rp=start_secondary
 402.ret0:
 403(isAP)	br.cond.sptk self
 404#endif
 405
 406	// This is executed by the bootstrap processor (bsp) only:
 407
 408#ifdef CONFIG_IA64_FW_EMU
 409	// initialize PAL & SAL emulator:
 410	br.call.sptk.many rp=sys_fw_init
 411.ret1:
 412#endif
 413	br.call.sptk.many rp=start_kernel
 414.ret2:	addl r3=@ltoff(halt_msg),gp
 415	;;
 416	alloc r2=ar.pfs,8,0,2,0
 417	;;
 418	ld8 out0=[r3]
 419	br.call.sptk.many b0=console_print
 420
 421self:	hint @pause
 422	br.sptk.many self		// endless loop
 423END(_start)
 424
 425	.text
 426
 427GLOBAL_ENTRY(ia64_save_debug_regs)
 428	alloc r16=ar.pfs,1,0,0,0
 429	mov r20=ar.lc			// preserve ar.lc
 430	mov ar.lc=IA64_NUM_DBG_REGS-1
 431	mov r18=0
 432	add r19=IA64_NUM_DBG_REGS*8,in0
 433	;;
 4341:	mov r16=dbr[r18]
 435#ifdef CONFIG_ITANIUM
 436	;;
 437	srlz.d
 438#endif
 439	mov r17=ibr[r18]
 440	add r18=1,r18
 441	;;
 442	st8.nta [in0]=r16,8
 443	st8.nta [r19]=r17,8
 444	br.cloop.sptk.many 1b
 445	;;
 446	mov ar.lc=r20			// restore ar.lc
 447	br.ret.sptk.many rp
 448END(ia64_save_debug_regs)
 449
 450GLOBAL_ENTRY(ia64_load_debug_regs)
 451	alloc r16=ar.pfs,1,0,0,0
 452	lfetch.nta [in0]
 453	mov r20=ar.lc			// preserve ar.lc
 454	add r19=IA64_NUM_DBG_REGS*8,in0
 455	mov ar.lc=IA64_NUM_DBG_REGS-1
 456	mov r18=-1
 457	;;
 4581:	ld8.nta r16=[in0],8
 459	ld8.nta r17=[r19],8
 460	add r18=1,r18
 461	;;
 462	mov dbr[r18]=r16
 463#ifdef CONFIG_ITANIUM
 464	;;
 465	srlz.d				// Errata 132 (NoFix status)
 466#endif
 467	mov ibr[r18]=r17
 468	br.cloop.sptk.many 1b
 469	;;
 470	mov ar.lc=r20			// restore ar.lc
 471	br.ret.sptk.many rp
 472END(ia64_load_debug_regs)
 473
 474GLOBAL_ENTRY(__ia64_save_fpu)
 475	alloc r2=ar.pfs,1,4,0,0
 476	adds loc0=96*16-16,in0
 477	adds loc1=96*16-16-128,in0
 478	;;
 479	stf.spill.nta [loc0]=f127,-256
 480	stf.spill.nta [loc1]=f119,-256
 481	;;
 482	stf.spill.nta [loc0]=f111,-256
 483	stf.spill.nta [loc1]=f103,-256
 484	;;
 485	stf.spill.nta [loc0]=f95,-256
 486	stf.spill.nta [loc1]=f87,-256
 487	;;
 488	stf.spill.nta [loc0]=f79,-256
 489	stf.spill.nta [loc1]=f71,-256
 490	;;
 491	stf.spill.nta [loc0]=f63,-256
 492	stf.spill.nta [loc1]=f55,-256
 493	adds loc2=96*16-32,in0
 494	;;
 495	stf.spill.nta [loc0]=f47,-256
 496	stf.spill.nta [loc1]=f39,-256
 497	adds loc3=96*16-32-128,in0
 498	;;
 499	stf.spill.nta [loc2]=f126,-256
 500	stf.spill.nta [loc3]=f118,-256
 501	;;
 502	stf.spill.nta [loc2]=f110,-256
 503	stf.spill.nta [loc3]=f102,-256
 504	;;
 505	stf.spill.nta [loc2]=f94,-256
 506	stf.spill.nta [loc3]=f86,-256
 507	;;
 508	stf.spill.nta [loc2]=f78,-256
 509	stf.spill.nta [loc3]=f70,-256
 510	;;
 511	stf.spill.nta [loc2]=f62,-256
 512	stf.spill.nta [loc3]=f54,-256
 513	adds loc0=96*16-48,in0
 514	;;
 515	stf.spill.nta [loc2]=f46,-256
 516	stf.spill.nta [loc3]=f38,-256
 517	adds loc1=96*16-48-128,in0
 518	;;
 519	stf.spill.nta [loc0]=f125,-256
 520	stf.spill.nta [loc1]=f117,-256
 521	;;
 522	stf.spill.nta [loc0]=f109,-256
 523	stf.spill.nta [loc1]=f101,-256
 524	;;
 525	stf.spill.nta [loc0]=f93,-256
 526	stf.spill.nta [loc1]=f85,-256
 527	;;
 528	stf.spill.nta [loc0]=f77,-256
 529	stf.spill.nta [loc1]=f69,-256
 530	;;
 531	stf.spill.nta [loc0]=f61,-256
 532	stf.spill.nta [loc1]=f53,-256
 533	adds loc2=96*16-64,in0
 534	;;
 535	stf.spill.nta [loc0]=f45,-256
 536	stf.spill.nta [loc1]=f37,-256
 537	adds loc3=96*16-64-128,in0
 538	;;
 539	stf.spill.nta [loc2]=f124,-256
 540	stf.spill.nta [loc3]=f116,-256
 541	;;
 542	stf.spill.nta [loc2]=f108,-256
 543	stf.spill.nta [loc3]=f100,-256
 544	;;
 545	stf.spill.nta [loc2]=f92,-256
 546	stf.spill.nta [loc3]=f84,-256
 547	;;
 548	stf.spill.nta [loc2]=f76,-256
 549	stf.spill.nta [loc3]=f68,-256
 550	;;
 551	stf.spill.nta [loc2]=f60,-256
 552	stf.spill.nta [loc3]=f52,-256
 553	adds loc0=96*16-80,in0
 554	;;
 555	stf.spill.nta [loc2]=f44,-256
 556	stf.spill.nta [loc3]=f36,-256
 557	adds loc1=96*16-80-128,in0
 558	;;
 559	stf.spill.nta [loc0]=f123,-256
 560	stf.spill.nta [loc1]=f115,-256
 561	;;
 562	stf.spill.nta [loc0]=f107,-256
 563	stf.spill.nta [loc1]=f99,-256
 564	;;
 565	stf.spill.nta [loc0]=f91,-256
 566	stf.spill.nta [loc1]=f83,-256
 567	;;
 568	stf.spill.nta [loc0]=f75,-256
 569	stf.spill.nta [loc1]=f67,-256
 570	;;
 571	stf.spill.nta [loc0]=f59,-256
 572	stf.spill.nta [loc1]=f51,-256
 573	adds loc2=96*16-96,in0
 574	;;
 575	stf.spill.nta [loc0]=f43,-256
 576	stf.spill.nta [loc1]=f35,-256
 577	adds loc3=96*16-96-128,in0
 578	;;
 579	stf.spill.nta [loc2]=f122,-256
 580	stf.spill.nta [loc3]=f114,-256
 581	;;
 582	stf.spill.nta [loc2]=f106,-256
 583	stf.spill.nta [loc3]=f98,-256
 584	;;
 585	stf.spill.nta [loc2]=f90,-256
 586	stf.spill.nta [loc3]=f82,-256
 587	;;
 588	stf.spill.nta [loc2]=f74,-256
 589	stf.spill.nta [loc3]=f66,-256
 590	;;
 591	stf.spill.nta [loc2]=f58,-256
 592	stf.spill.nta [loc3]=f50,-256
 593	adds loc0=96*16-112,in0
 594	;;
 595	stf.spill.nta [loc2]=f42,-256
 596	stf.spill.nta [loc3]=f34,-256
 597	adds loc1=96*16-112-128,in0
 598	;;
 599	stf.spill.nta [loc0]=f121,-256
 600	stf.spill.nta [loc1]=f113,-256
 601	;;
 602	stf.spill.nta [loc0]=f105,-256
 603	stf.spill.nta [loc1]=f97,-256
 604	;;
 605	stf.spill.nta [loc0]=f89,-256
 606	stf.spill.nta [loc1]=f81,-256
 607	;;
 608	stf.spill.nta [loc0]=f73,-256
 609	stf.spill.nta [loc1]=f65,-256
 610	;;
 611	stf.spill.nta [loc0]=f57,-256
 612	stf.spill.nta [loc1]=f49,-256
 613	adds loc2=96*16-128,in0
 614	;;
 615	stf.spill.nta [loc0]=f41,-256
 616	stf.spill.nta [loc1]=f33,-256
 617	adds loc3=96*16-128-128,in0
 618	;;
 619	stf.spill.nta [loc2]=f120,-256
 620	stf.spill.nta [loc3]=f112,-256
 621	;;
 622	stf.spill.nta [loc2]=f104,-256
 623	stf.spill.nta [loc3]=f96,-256
 624	;;
 625	stf.spill.nta [loc2]=f88,-256
 626	stf.spill.nta [loc3]=f80,-256
 627	;;
 628	stf.spill.nta [loc2]=f72,-256
 629	stf.spill.nta [loc3]=f64,-256
 630	;;
 631	stf.spill.nta [loc2]=f56,-256
 632	stf.spill.nta [loc3]=f48,-256
 633	;;
 634	stf.spill.nta [loc2]=f40
 635	stf.spill.nta [loc3]=f32
 636	br.ret.sptk.many rp
 637END(__ia64_save_fpu)
 638
 639GLOBAL_ENTRY(__ia64_load_fpu)
 640	alloc r2=ar.pfs,1,2,0,0
 641	adds r3=128,in0
 642	adds r14=256,in0
 643	adds r15=384,in0
 644	mov loc0=512
 645	mov loc1=-1024+16
 646	;;
 647	ldf.fill.nta f32=[in0],loc0
 648	ldf.fill.nta f40=[ r3],loc0
 649	ldf.fill.nta f48=[r14],loc0
 650	ldf.fill.nta f56=[r15],loc0
 651	;;
 652	ldf.fill.nta f64=[in0],loc0
 653	ldf.fill.nta f72=[ r3],loc0
 654	ldf.fill.nta f80=[r14],loc0
 655	ldf.fill.nta f88=[r15],loc0
 656	;;
 657	ldf.fill.nta f96=[in0],loc1
 658	ldf.fill.nta f104=[ r3],loc1
 659	ldf.fill.nta f112=[r14],loc1
 660	ldf.fill.nta f120=[r15],loc1
 661	;;
 662	ldf.fill.nta f33=[in0],loc0
 663	ldf.fill.nta f41=[ r3],loc0
 664	ldf.fill.nta f49=[r14],loc0
 665	ldf.fill.nta f57=[r15],loc0
 666	;;
 667	ldf.fill.nta f65=[in0],loc0
 668	ldf.fill.nta f73=[ r3],loc0
 669	ldf.fill.nta f81=[r14],loc0
 670	ldf.fill.nta f89=[r15],loc0
 671	;;
 672	ldf.fill.nta f97=[in0],loc1
 673	ldf.fill.nta f105=[ r3],loc1
 674	ldf.fill.nta f113=[r14],loc1
 675	ldf.fill.nta f121=[r15],loc1
 676	;;
 677	ldf.fill.nta f34=[in0],loc0
 678	ldf.fill.nta f42=[ r3],loc0
 679	ldf.fill.nta f50=[r14],loc0
 680	ldf.fill.nta f58=[r15],loc0
 681	;;
 682	ldf.fill.nta f66=[in0],loc0
 683	ldf.fill.nta f74=[ r3],loc0
 684	ldf.fill.nta f82=[r14],loc0
 685	ldf.fill.nta f90=[r15],loc0
 686	;;
 687	ldf.fill.nta f98=[in0],loc1
 688	ldf.fill.nta f106=[ r3],loc1
 689	ldf.fill.nta f114=[r14],loc1
 690	ldf.fill.nta f122=[r15],loc1
 691	;;
 692	ldf.fill.nta f35=[in0],loc0
 693	ldf.fill.nta f43=[ r3],loc0
 694	ldf.fill.nta f51=[r14],loc0
 695	ldf.fill.nta f59=[r15],loc0
 696	;;
 697	ldf.fill.nta f67=[in0],loc0
 698	ldf.fill.nta f75=[ r3],loc0
 699	ldf.fill.nta f83=[r14],loc0
 700	ldf.fill.nta f91=[r15],loc0
 701	;;
 702	ldf.fill.nta f99=[in0],loc1
 703	ldf.fill.nta f107=[ r3],loc1
 704	ldf.fill.nta f115=[r14],loc1
 705	ldf.fill.nta f123=[r15],loc1
 706	;;
 707	ldf.fill.nta f36=[in0],loc0
 708	ldf.fill.nta f44=[ r3],loc0
 709	ldf.fill.nta f52=[r14],loc0
 710	ldf.fill.nta f60=[r15],loc0
 711	;;
 712	ldf.fill.nta f68=[in0],loc0
 713	ldf.fill.nta f76=[ r3],loc0
 714	ldf.fill.nta f84=[r14],loc0
 715	ldf.fill.nta f92=[r15],loc0
 716	;;
 717	ldf.fill.nta f100=[in0],loc1
 718	ldf.fill.nta f108=[ r3],loc1
 719	ldf.fill.nta f116=[r14],loc1
 720	ldf.fill.nta f124=[r15],loc1
 721	;;
 722	ldf.fill.nta f37=[in0],loc0
 723	ldf.fill.nta f45=[ r3],loc0
 724	ldf.fill.nta f53=[r14],loc0
 725	ldf.fill.nta f61=[r15],loc0
 726	;;
 727	ldf.fill.nta f69=[in0],loc0
 728	ldf.fill.nta f77=[ r3],loc0
 729	ldf.fill.nta f85=[r14],loc0
 730	ldf.fill.nta f93=[r15],loc0
 731	;;
 732	ldf.fill.nta f101=[in0],loc1
 733	ldf.fill.nta f109=[ r3],loc1
 734	ldf.fill.nta f117=[r14],loc1
 735	ldf.fill.nta f125=[r15],loc1
 736	;;
 737	ldf.fill.nta f38 =[in0],loc0
 738	ldf.fill.nta f46 =[ r3],loc0
 739	ldf.fill.nta f54 =[r14],loc0
 740	ldf.fill.nta f62 =[r15],loc0
 741	;;
 742	ldf.fill.nta f70 =[in0],loc0
 743	ldf.fill.nta f78 =[ r3],loc0
 744	ldf.fill.nta f86 =[r14],loc0
 745	ldf.fill.nta f94 =[r15],loc0
 746	;;
 747	ldf.fill.nta f102=[in0],loc1
 748	ldf.fill.nta f110=[ r3],loc1
 749	ldf.fill.nta f118=[r14],loc1
 750	ldf.fill.nta f126=[r15],loc1
 751	;;
 752	ldf.fill.nta f39 =[in0],loc0
 753	ldf.fill.nta f47 =[ r3],loc0
 754	ldf.fill.nta f55 =[r14],loc0
 755	ldf.fill.nta f63 =[r15],loc0
 756	;;
 757	ldf.fill.nta f71 =[in0],loc0
 758	ldf.fill.nta f79 =[ r3],loc0
 759	ldf.fill.nta f87 =[r14],loc0
 760	ldf.fill.nta f95 =[r15],loc0
 761	;;
 762	ldf.fill.nta f103=[in0]
 763	ldf.fill.nta f111=[ r3]
 764	ldf.fill.nta f119=[r14]
 765	ldf.fill.nta f127=[r15]
 766	br.ret.sptk.many rp
 767END(__ia64_load_fpu)
 768
 769GLOBAL_ENTRY(__ia64_init_fpu)
 770	stf.spill [sp]=f0		// M3
 771	mov	 f32=f0			// F
 772	nop.b	 0
 773
 774	ldfps	 f33,f34=[sp]		// M0
 775	ldfps	 f35,f36=[sp]		// M1
 776	mov      f37=f0			// F
 777	;;
 778
 779	setf.s	 f38=r0			// M2
 780	setf.s	 f39=r0			// M3
 781	mov      f40=f0			// F
 782
 783	ldfps	 f41,f42=[sp]		// M0
 784	ldfps	 f43,f44=[sp]		// M1
 785	mov      f45=f0			// F
 786
 787	setf.s	 f46=r0			// M2
 788	setf.s	 f47=r0			// M3
 789	mov      f48=f0			// F
 790
 791	ldfps	 f49,f50=[sp]		// M0
 792	ldfps	 f51,f52=[sp]		// M1
 793	mov      f53=f0			// F
 794
 795	setf.s	 f54=r0			// M2
 796	setf.s	 f55=r0			// M3
 797	mov      f56=f0			// F
 798
 799	ldfps	 f57,f58=[sp]		// M0
 800	ldfps	 f59,f60=[sp]		// M1
 801	mov      f61=f0			// F
 802
 803	setf.s	 f62=r0			// M2
 804	setf.s	 f63=r0			// M3
 805	mov      f64=f0			// F
 806
 807	ldfps	 f65,f66=[sp]		// M0
 808	ldfps	 f67,f68=[sp]		// M1
 809	mov      f69=f0			// F
 810
 811	setf.s	 f70=r0			// M2
 812	setf.s	 f71=r0			// M3
 813	mov      f72=f0			// F
 814
 815	ldfps	 f73,f74=[sp]		// M0
 816	ldfps	 f75,f76=[sp]		// M1
 817	mov      f77=f0			// F
 818
 819	setf.s	 f78=r0			// M2
 820	setf.s	 f79=r0			// M3
 821	mov      f80=f0			// F
 822
 823	ldfps	 f81,f82=[sp]		// M0
 824	ldfps	 f83,f84=[sp]		// M1
 825	mov      f85=f0			// F
 826
 827	setf.s	 f86=r0			// M2
 828	setf.s	 f87=r0			// M3
 829	mov      f88=f0			// F
 830
 831	/*
 832	 * When the instructions are cached, it would be faster to initialize
 833	 * the remaining registers with simply mov instructions (F-unit).
 834	 * This gets the time down to ~29 cycles.  However, this would use up
 835	 * 33 bundles, whereas continuing with the above pattern yields
 836	 * 10 bundles and ~30 cycles.
 837	 */
 838
 839	ldfps	 f89,f90=[sp]		// M0
 840	ldfps	 f91,f92=[sp]		// M1
 841	mov      f93=f0			// F
 842
 843	setf.s	 f94=r0			// M2
 844	setf.s	 f95=r0			// M3
 845	mov      f96=f0			// F
 846
 847	ldfps	 f97,f98=[sp]		// M0
 848	ldfps	 f99,f100=[sp]		// M1
 849	mov      f101=f0		// F
 850
 851	setf.s	 f102=r0		// M2
 852	setf.s	 f103=r0		// M3
 853	mov      f104=f0		// F
 854
 855	ldfps	 f105,f106=[sp]		// M0
 856	ldfps	 f107,f108=[sp]		// M1
 857	mov      f109=f0		// F
 858
 859	setf.s	 f110=r0		// M2
 860	setf.s	 f111=r0		// M3
 861	mov      f112=f0		// F
 862
 863	ldfps	 f113,f114=[sp]		// M0
 864	ldfps	 f115,f116=[sp]		// M1
 865	mov      f117=f0		// F
 866
 867	setf.s	 f118=r0		// M2
 868	setf.s	 f119=r0		// M3
 869	mov      f120=f0		// F
 870
 871	ldfps	 f121,f122=[sp]		// M0
 872	ldfps	 f123,f124=[sp]		// M1
 873	mov      f125=f0		// F
 874
 875	setf.s	 f126=r0		// M2
 876	setf.s	 f127=r0		// M3
 877	br.ret.sptk.many rp		// F
 878END(__ia64_init_fpu)
 879
 880/*
 881 * Switch execution mode from virtual to physical
 882 *
 883 * Inputs:
 884 *	r16 = new psr to establish
 885 * Output:
 886 *	r19 = old virtual address of ar.bsp
 887 *	r20 = old virtual address of sp
 888 *
 889 * Note: RSE must already be in enforced lazy mode
 890 */
 891GLOBAL_ENTRY(ia64_switch_mode_phys)
 892 {
 893	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 894	mov r15=ip
 895 }
 896	;;
 897 {
 898	flushrs				// must be first insn in group
 899	srlz.i
 900 }
 901	;;
 902	mov cr.ipsr=r16			// set new PSR
 903	add r3=1f-ia64_switch_mode_phys,r15
 904
 905	mov r19=ar.bsp
 906	mov r20=sp
 907	mov r14=rp			// get return address into a general register
 908	;;
 909
 910	// going to physical mode, use tpa to translate virt->phys
 911	tpa r17=r19
 912	tpa r3=r3
 913	tpa sp=sp
 914	tpa r14=r14
 915	;;
 916
 917	mov r18=ar.rnat			// save ar.rnat
 918	mov ar.bspstore=r17		// this steps on ar.rnat
 919	mov cr.iip=r3
 920	mov cr.ifs=r0
 921	;;
 922	mov ar.rnat=r18			// restore ar.rnat
 923	rfi				// must be last insn in group
 924	;;
 9251:	mov rp=r14
 926	br.ret.sptk.many rp
 927END(ia64_switch_mode_phys)
 928
 929/*
 930 * Switch execution mode from physical to virtual
 931 *
 932 * Inputs:
 933 *	r16 = new psr to establish
 934 *	r19 = new bspstore to establish
 935 *	r20 = new sp to establish
 936 *
 937 * Note: RSE must already be in enforced lazy mode
 938 */
 939GLOBAL_ENTRY(ia64_switch_mode_virt)
 940 {
 941	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 942	mov r15=ip
 943 }
 944	;;
 945 {
 946	flushrs				// must be first insn in group
 947	srlz.i
 948 }
 949	;;
 950	mov cr.ipsr=r16			// set new PSR
 951	add r3=1f-ia64_switch_mode_virt,r15
 952
 953	mov r14=rp			// get return address into a general register
 954	;;
 955
 956	// going to virtual
 957	//   - for code addresses, set upper bits of addr to KERNEL_START
 958	//   - for stack addresses, copy from input argument
 959	movl r18=KERNEL_START
 960	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 961	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 962	mov sp=r20
 963	;;
 964	or r3=r3,r18
 965	or r14=r14,r18
 966	;;
 967
 968	mov r18=ar.rnat			// save ar.rnat
 969	mov ar.bspstore=r19		// this steps on ar.rnat
 970	mov cr.iip=r3
 971	mov cr.ifs=r0
 972	;;
 973	mov ar.rnat=r18			// restore ar.rnat
 974	rfi				// must be last insn in group
 975	;;
 9761:	mov rp=r14
 977	br.ret.sptk.many rp
 978END(ia64_switch_mode_virt)
 979
 980GLOBAL_ENTRY(ia64_delay_loop)
 981	.prologue
 982{	nop 0			// work around GAS unwind info generation bug...
 983	.save ar.lc,r2
 984	mov r2=ar.lc
 985	.body
 986	;;
 987	mov ar.lc=r32
 988}
 989	;;
 990	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
 991	// inside function body without corrupting unwind info).
 992{	nop 0 }
 9931:	br.cloop.sptk.few 1b
 994	;;
 995	mov ar.lc=r2
 996	br.ret.sptk.many rp
 997END(ia64_delay_loop)
 998
 999/*
1000 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
1001 * NOT synchronized across CPUs its return value must never be
1002 * compared against the values returned on another CPU.  The usage in
1003 * kernel/sched/core.c ensures that.
1004 *
1005 * The return-value of sched_clock() is NOT supposed to wrap-around.
1006 * If it did, it would cause some scheduling hiccups (at the worst).
1007 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1008 * that would happen only once every 5+ years.
1009 *
1010 * The code below basically calculates:
1011 *
1012 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1013 *
1014 * except that the multiplication and the shift are done with 128-bit
1015 * intermediate precision so that we can produce a full 64-bit result.
1016 */
1017GLOBAL_ENTRY(ia64_native_sched_clock)
1018	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1019	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1020	;;
1021	ldf8 f8=[r8]
1022	;;
1023	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1024	;;
1025	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1026	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1027	;;
1028	getf.sig r8=f10		//						(5 cyc)
1029	getf.sig r9=f11
1030	;;
1031	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1032	br.ret.sptk.many rp
1033END(ia64_native_sched_clock)
1034
1035#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1036GLOBAL_ENTRY(cycle_to_nsec)
1037	alloc r16=ar.pfs,1,0,0,0
1038	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1039	;;
1040	ldf8 f8=[r8]
1041	;;
1042	setf.sig f9=r32
1043	;;
1044	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1045	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1046	;;
1047	getf.sig r8=f10		//						(5 cyc)
1048	getf.sig r9=f11
1049	;;
1050	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1051	br.ret.sptk.many rp
1052END(cycle_to_nsec)
1053#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1054
1055#ifdef CONFIG_IA64_BRL_EMU
1056
1057/*
1058 *  Assembly routines used by brl_emu.c to set preserved register state.
1059 */
1060
1061#define SET_REG(reg)				\
1062 GLOBAL_ENTRY(ia64_set_##reg);			\
1063	alloc r16=ar.pfs,1,0,0,0;		\
1064	mov reg=r32;				\
1065	;;					\
1066	br.ret.sptk.many rp;			\
1067 END(ia64_set_##reg)
1068
1069SET_REG(b1);
1070SET_REG(b2);
1071SET_REG(b3);
1072SET_REG(b4);
1073SET_REG(b5);
1074
1075#endif /* CONFIG_IA64_BRL_EMU */
1076
1077#ifdef CONFIG_SMP
1078
1079#ifdef CONFIG_HOTPLUG_CPU
1080GLOBAL_ENTRY(ia64_jump_to_sal)
1081	alloc r16=ar.pfs,1,0,0,0;;
1082	rsm psr.i  | psr.ic
1083{
1084	flushrs
1085	srlz.i
1086}
1087	tpa r25=in0
1088	movl r18=tlb_purge_done;;
1089	DATA_VA_TO_PA(r18);;
1090	mov b1=r18 	// Return location
1091	movl r18=ia64_do_tlb_purge;;
1092	DATA_VA_TO_PA(r18);;
1093	mov b2=r18 	// doing tlb_flush work
1094	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1095	movl r17=1f;;
1096	DATA_VA_TO_PA(r17);;
1097	mov cr.iip=r17
1098	movl r16=SAL_PSR_BITS_TO_SET;;
1099	mov cr.ipsr=r16
1100	mov cr.ifs=r0;;
1101	rfi;;			// note: this unmask MCA/INIT (psr.mc)
11021:
1103	/*
1104	 * Invalidate all TLB data/inst
1105	 */
1106	br.sptk.many b2;; // jump to tlb purge code
1107
1108tlb_purge_done:
1109	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1110	RESTORE_REG(b0, r25, r17);;
1111	RESTORE_REG(b1, r25, r17);;
1112	RESTORE_REG(b2, r25, r17);;
1113	RESTORE_REG(b3, r25, r17);;
1114	RESTORE_REG(b4, r25, r17);;
1115	RESTORE_REG(b5, r25, r17);;
1116	ld8 r1=[r25],0x08;;
1117	ld8 r12=[r25],0x08;;
1118	ld8 r13=[r25],0x08;;
1119	RESTORE_REG(ar.fpsr, r25, r17);;
1120	RESTORE_REG(ar.pfs, r25, r17);;
1121	RESTORE_REG(ar.rnat, r25, r17);;
1122	RESTORE_REG(ar.unat, r25, r17);;
1123	RESTORE_REG(ar.bspstore, r25, r17);;
1124	RESTORE_REG(cr.dcr, r25, r17);;
1125	RESTORE_REG(cr.iva, r25, r17);;
1126	RESTORE_REG(cr.pta, r25, r17);;
1127	srlz.d;;	// required not to violate RAW dependency
1128	RESTORE_REG(cr.itv, r25, r17);;
1129	RESTORE_REG(cr.pmv, r25, r17);;
1130	RESTORE_REG(cr.cmcv, r25, r17);;
1131	RESTORE_REG(cr.lrr0, r25, r17);;
1132	RESTORE_REG(cr.lrr1, r25, r17);;
1133	ld8 r4=[r25],0x08;;
1134	ld8 r5=[r25],0x08;;
1135	ld8 r6=[r25],0x08;;
1136	ld8 r7=[r25],0x08;;
1137	ld8 r17=[r25],0x08;;
1138	mov pr=r17,-1;;
1139	RESTORE_REG(ar.lc, r25, r17);;
1140	/*
1141	 * Now Restore floating point regs
1142	 */
1143	ldf.fill.nta f2=[r25],16;;
1144	ldf.fill.nta f3=[r25],16;;
1145	ldf.fill.nta f4=[r25],16;;
1146	ldf.fill.nta f5=[r25],16;;
1147	ldf.fill.nta f16=[r25],16;;
1148	ldf.fill.nta f17=[r25],16;;
1149	ldf.fill.nta f18=[r25],16;;
1150	ldf.fill.nta f19=[r25],16;;
1151	ldf.fill.nta f20=[r25],16;;
1152	ldf.fill.nta f21=[r25],16;;
1153	ldf.fill.nta f22=[r25],16;;
1154	ldf.fill.nta f23=[r25],16;;
1155	ldf.fill.nta f24=[r25],16;;
1156	ldf.fill.nta f25=[r25],16;;
1157	ldf.fill.nta f26=[r25],16;;
1158	ldf.fill.nta f27=[r25],16;;
1159	ldf.fill.nta f28=[r25],16;;
1160	ldf.fill.nta f29=[r25],16;;
1161	ldf.fill.nta f30=[r25],16;;
1162	ldf.fill.nta f31=[r25],16;;
1163
1164	/*
1165	 * Now that we have done all the register restores
1166	 * we are now ready for the big DIVE to SAL Land
1167	 */
1168	ssm psr.ic;;
1169	srlz.d;;
1170	br.ret.sptk.many b0;;
1171END(ia64_jump_to_sal)
1172#endif /* CONFIG_HOTPLUG_CPU */
1173
1174#endif /* CONFIG_SMP */
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Here is where the ball gets rolling as far as the kernel is concerned.
   4 * When control is transferred to _start, the bootload has already
   5 * loaded us to the correct address.  All that's left to do here is
   6 * to set up the kernel's global pointer and jump to the kernel
   7 * entry point.
   8 *
   9 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
  10 *	David Mosberger-Tang <davidm@hpl.hp.com>
  11 *	Stephane Eranian <eranian@hpl.hp.com>
  12 * Copyright (C) 1999 VA Linux Systems
  13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  14 * Copyright (C) 1999 Intel Corp.
  15 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  16 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  17 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  18 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  19 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  20 *   Support for CPU Hotplug
  21 */
  22
  23
  24#include <linux/pgtable.h>
  25#include <asm/asmmacro.h>
  26#include <asm/fpu.h>
  27#include <asm/kregs.h>
  28#include <asm/mmu_context.h>
  29#include <asm/asm-offsets.h>
  30#include <asm/pal.h>
  31#include <asm/processor.h>
  32#include <asm/ptrace.h>
  33#include <asm/mca_asm.h>
  34#include <linux/init.h>
  35#include <linux/linkage.h>
 
  36#include <asm/export.h>
  37
  38#ifdef CONFIG_HOTPLUG_CPU
  39#define SAL_PSR_BITS_TO_SET				\
  40	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  41
  42#define SAVE_FROM_REG(src, ptr, dest)	\
  43	mov dest=src;;						\
  44	st8 [ptr]=dest,0x08
  45
  46#define RESTORE_REG(reg, ptr, _tmp)		\
  47	ld8 _tmp=[ptr],0x08;;				\
  48	mov reg=_tmp
  49
  50#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  51	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
  52	mov _idx=0;; 								\
  531: 												\
  54	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
  55	add _idx=1,_idx;;							\
  56	br.cloop.sptk.many 1b
  57
  58#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  59	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
  60	mov _idx=0;;							\
  61_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
  62	add _idx=1, _idx;;						\
  63	br.cloop.sptk.many _lbl
  64
  65#define SAVE_ONE_RR(num, _reg, _tmp) \
  66	movl _tmp=(num<<61);;	\
  67	mov _reg=rr[_tmp]
  68
  69#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  70	SAVE_ONE_RR(0,_r0, _tmp);; \
  71	SAVE_ONE_RR(1,_r1, _tmp);; \
  72	SAVE_ONE_RR(2,_r2, _tmp);; \
  73	SAVE_ONE_RR(3,_r3, _tmp);; \
  74	SAVE_ONE_RR(4,_r4, _tmp);; \
  75	SAVE_ONE_RR(5,_r5, _tmp);; \
  76	SAVE_ONE_RR(6,_r6, _tmp);; \
  77	SAVE_ONE_RR(7,_r7, _tmp);;
  78
  79#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  80	st8 [ptr]=_r0, 8;; \
  81	st8 [ptr]=_r1, 8;; \
  82	st8 [ptr]=_r2, 8;; \
  83	st8 [ptr]=_r3, 8;; \
  84	st8 [ptr]=_r4, 8;; \
  85	st8 [ptr]=_r5, 8;; \
  86	st8 [ptr]=_r6, 8;; \
  87	st8 [ptr]=_r7, 8;;
  88
  89#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  90	mov		ar.lc=0x08-1;;						\
  91	movl	_idx1=0x00;;						\
  92RestRR:											\
  93	dep.z	_idx2=_idx1,61,3;;					\
  94	ld8		_tmp=[ptr],8;;						\
  95	mov		rr[_idx2]=_tmp;;					\
  96	srlz.d;;									\
  97	add		_idx1=1,_idx1;;						\
  98	br.cloop.sptk.few	RestRR
  99
 100#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
 101	movl reg1=sal_state_for_booting_cpu;;	\
 102	ld8 reg2=[reg1];;
 103
 104/*
 105 * Adjust region registers saved before starting to save
 106 * break regs and rest of the states that need to be preserved.
 107 */
 108#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
 109	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
 110	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
 111	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
 112	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
 113	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
 114	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
 115	st8 [_reg1]=r1,0x08;;								\
 116	st8 [_reg1]=r12,0x08;;								\
 117	st8 [_reg1]=r13,0x08;;								\
 118	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
 119	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
 120	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
 121	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
 122	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
 123	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
 124	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
 125	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
 126	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
 127	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
 128	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
 129	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
 130	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
 131	st8 [_reg1]=r4,0x08;;								\
 132	st8 [_reg1]=r5,0x08;;								\
 133	st8 [_reg1]=r6,0x08;;								\
 134	st8 [_reg1]=r7,0x08;;								\
 135	st8 [_reg1]=_pred,0x08;;							\
 136	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
 137	stf.spill.nta [_reg1]=f2,16;;						\
 138	stf.spill.nta [_reg1]=f3,16;;						\
 139	stf.spill.nta [_reg1]=f4,16;;						\
 140	stf.spill.nta [_reg1]=f5,16;;						\
 141	stf.spill.nta [_reg1]=f16,16;;						\
 142	stf.spill.nta [_reg1]=f17,16;;						\
 143	stf.spill.nta [_reg1]=f18,16;;						\
 144	stf.spill.nta [_reg1]=f19,16;;						\
 145	stf.spill.nta [_reg1]=f20,16;;						\
 146	stf.spill.nta [_reg1]=f21,16;;						\
 147	stf.spill.nta [_reg1]=f22,16;;						\
 148	stf.spill.nta [_reg1]=f23,16;;						\
 149	stf.spill.nta [_reg1]=f24,16;;						\
 150	stf.spill.nta [_reg1]=f25,16;;						\
 151	stf.spill.nta [_reg1]=f26,16;;						\
 152	stf.spill.nta [_reg1]=f27,16;;						\
 153	stf.spill.nta [_reg1]=f28,16;;						\
 154	stf.spill.nta [_reg1]=f29,16;;						\
 155	stf.spill.nta [_reg1]=f30,16;;						\
 156	stf.spill.nta [_reg1]=f31,16;;
 157
 158#else
 159#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
 160#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
 161#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 162#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 163#endif
 164
 165#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
 166	movl _tmp1=(num << 61);;	\
 167	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
 168	mov rr[_tmp1]=_tmp2
 169
 170	__PAGE_ALIGNED_DATA
 171
 172	.global empty_zero_page
 173EXPORT_DATA_SYMBOL_GPL(empty_zero_page)
 174empty_zero_page:
 175	.skip PAGE_SIZE
 176
 177	.global swapper_pg_dir
 178swapper_pg_dir:
 179	.skip PAGE_SIZE
 180
 181	.rodata
 182halt_msg:
 183	stringz "Halting kernel\n"
 184
 185	__REF
 186
 187	.global start_ap
 188
 189	/*
 190	 * Start the kernel.  When the bootloader passes control to _start(), r28
 191	 * points to the address of the boot parameter area.  Execution reaches
 192	 * here in physical mode.
 193	 */
 194GLOBAL_ENTRY(_start)
 195start_ap:
 196	.prologue
 197	.save rp, r0		// terminate unwind chain with a NULL rp
 198	.body
 199
 200	rsm psr.i | psr.ic
 201	;;
 202	srlz.i
 203	;;
 204 {
 205	flushrs				// must be first insn in group
 206	srlz.i
 207 }
 208	;;
 209	/*
 210	 * Save the region registers, predicate before they get clobbered
 211	 */
 212	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
 213	mov r25=pr;;
 214
 215	/*
 216	 * Initialize kernel region registers:
 217	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
 218	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
 219	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
 220	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
 221	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
 222	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
 223	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 224	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 225	 * We initialize all of them to prevent inadvertently assuming
 226	 * something about the state of address translation early in boot.
 227	 */
 228	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
 229	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
 230	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
 231	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
 232	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
 233	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
 234	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
 235	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
 236	/*
 237	 * Now pin mappings into the TLB for kernel text and data
 238	 */
 239	mov r18=KERNEL_TR_PAGE_SHIFT<<2
 240	movl r17=KERNEL_START
 241	;;
 242	mov cr.itir=r18
 243	mov cr.ifa=r17
 244	mov r16=IA64_TR_KERNEL
 245	mov r3=ip
 246	movl r18=PAGE_KERNEL
 247	;;
 248	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
 249	;;
 250	or r18=r2,r18
 251	;;
 252	srlz.i
 253	;;
 254	itr.i itr[r16]=r18
 255	;;
 256	itr.d dtr[r16]=r18
 257	;;
 258	srlz.i
 259
 260	/*
 261	 * Switch into virtual mode:
 262	 */
 263	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
 264		  |IA64_PSR_DI)
 265	;;
 266	mov cr.ipsr=r16
 267	movl r17=1f
 268	;;
 269	mov cr.iip=r17
 270	mov cr.ifs=r0
 271	;;
 272	rfi
 273	;;
 2741:	// now we are in virtual mode
 275
 276	SET_AREA_FOR_BOOTING_CPU(r2, r16);
 277
 278	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
 279	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
 280	;;
 281
 282	// set IVT entry point---can't access I/O ports without it
 283	movl r3=ia64_ivt
 284	;;
 285	mov cr.iva=r3
 286	movl r2=FPSR_DEFAULT
 287	;;
 288	srlz.i
 289	movl gp=__gp
 290
 291	mov ar.fpsr=r2
 292	;;
 293
 294#define isAP	p2	// are we an Application Processor?
 295#define isBP	p3	// are we the Bootstrap Processor?
 296
 297#ifdef CONFIG_SMP
 298	/*
 299	 * Find the init_task for the currently booting CPU.  At poweron, and in
 300	 * UP mode, task_for_booting_cpu is NULL.
 301	 */
 302	movl r3=task_for_booting_cpu
 303 	;;
 304	ld8 r3=[r3]
 305	movl r2=init_task
 306	;;
 307	cmp.eq isBP,isAP=r3,r0
 308	;;
 309(isAP)	mov r2=r3
 310#else
 311	movl r2=init_task
 312	cmp.eq isBP,isAP=r0,r0
 313#endif
 314	;;
 315	tpa r3=r2		// r3 == phys addr of task struct
 316	mov r16=-1
 317(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
 318
 319	// load mapping for stack (virtaddr in r2, physaddr in r3)
 320	rsm psr.ic
 321	movl r17=PAGE_KERNEL
 322	;;
 323	srlz.d
 324	dep r18=0,r3,0,12
 325	;;
 326	or r18=r17,r18
 327	dep r2=-1,r3,61,3	// IMVA of task
 328	;;
 329	mov r17=rr[r2]
 330	shr.u r16=r3,IA64_GRANULE_SHIFT
 331	;;
 332	dep r17=0,r17,8,24
 333	;;
 334	mov cr.itir=r17
 335	mov cr.ifa=r2
 336
 337	mov r19=IA64_TR_CURRENT_STACK
 338	;;
 339	itr.d dtr[r19]=r18
 340	;;
 341	ssm psr.ic
 342	srlz.d
 343  	;;
 344
 345.load_current:
 346	// load the "current" pointer (r13) and ar.k6 with the current task
 347	mov IA64_KR(CURRENT)=r2		// virtual address
 348	mov IA64_KR(CURRENT_STACK)=r16
 349	mov r13=r2
 350	/*
 351	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
 352	 * threads don't store interesting values in that structure, but the space
 353	 * still needs to be there because time-critical stuff such as the context
 354	 * switching can be implemented more efficiently (for example, __switch_to()
 355	 * always sets the psr.dfh bit of the task it is switching to).
 356	 */
 357
 358	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
 359	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
 360	mov ar.rsc=0		// place RSE in enforced lazy mode
 361	;;
 362	loadrs			// clear the dirty partition
 363	movl r19=__phys_per_cpu_start
 364	mov r18=PERCPU_PAGE_SIZE
 365	;;
 366#ifndef CONFIG_SMP
 367	add r19=r19,r18
 368	;;
 369#else
 370(isAP)	br.few 2f
 371	movl r20=__cpu0_per_cpu
 372	;;
 373	shr.u r18=r18,3
 3741:
 375	ld8 r21=[r19],8;;
 376	st8[r20]=r21,8
 377	adds r18=-1,r18;;
 378	cmp4.lt p7,p6=0,r18
 379(p7)	br.cond.dptk.few 1b
 380	mov r19=r20
 381	;;
 3822:
 383#endif
 384	tpa r19=r19
 385	;;
 386	.pred.rel.mutex isBP,isAP
 387(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
 388(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
 389	;;
 390	mov ar.bspstore=r2	// establish the new RSE stack
 391	;;
 392	mov ar.rsc=0x3		// place RSE in eager mode
 393
 394(isBP)	dep r28=-1,r28,61,3	// make address virtual
 395(isBP)	movl r2=ia64_boot_param
 396	;;
 397(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
 398
 399#ifdef CONFIG_SMP
 400(isAP)	br.call.sptk.many rp=start_secondary
 401.ret0:
 402(isAP)	br.cond.sptk self
 403#endif
 404
 405	// This is executed by the bootstrap processor (bsp) only:
 406
 
 
 
 
 
 407	br.call.sptk.many rp=start_kernel
 408.ret2:	addl r3=@ltoff(halt_msg),gp
 409	;;
 410	alloc r2=ar.pfs,8,0,2,0
 411	;;
 412	ld8 out0=[r3]
 413	br.call.sptk.many b0=console_print
 414
 415self:	hint @pause
 416	br.sptk.many self		// endless loop
 417END(_start)
 418
 419	.text
 420
 421GLOBAL_ENTRY(ia64_save_debug_regs)
 422	alloc r16=ar.pfs,1,0,0,0
 423	mov r20=ar.lc			// preserve ar.lc
 424	mov ar.lc=IA64_NUM_DBG_REGS-1
 425	mov r18=0
 426	add r19=IA64_NUM_DBG_REGS*8,in0
 427	;;
 4281:	mov r16=dbr[r18]
 429#ifdef CONFIG_ITANIUM
 430	;;
 431	srlz.d
 432#endif
 433	mov r17=ibr[r18]
 434	add r18=1,r18
 435	;;
 436	st8.nta [in0]=r16,8
 437	st8.nta [r19]=r17,8
 438	br.cloop.sptk.many 1b
 439	;;
 440	mov ar.lc=r20			// restore ar.lc
 441	br.ret.sptk.many rp
 442END(ia64_save_debug_regs)
 443
 444GLOBAL_ENTRY(ia64_load_debug_regs)
 445	alloc r16=ar.pfs,1,0,0,0
 446	lfetch.nta [in0]
 447	mov r20=ar.lc			// preserve ar.lc
 448	add r19=IA64_NUM_DBG_REGS*8,in0
 449	mov ar.lc=IA64_NUM_DBG_REGS-1
 450	mov r18=-1
 451	;;
 4521:	ld8.nta r16=[in0],8
 453	ld8.nta r17=[r19],8
 454	add r18=1,r18
 455	;;
 456	mov dbr[r18]=r16
 457#ifdef CONFIG_ITANIUM
 458	;;
 459	srlz.d				// Errata 132 (NoFix status)
 460#endif
 461	mov ibr[r18]=r17
 462	br.cloop.sptk.many 1b
 463	;;
 464	mov ar.lc=r20			// restore ar.lc
 465	br.ret.sptk.many rp
 466END(ia64_load_debug_regs)
 467
 468GLOBAL_ENTRY(__ia64_save_fpu)
 469	alloc r2=ar.pfs,1,4,0,0
 470	adds loc0=96*16-16,in0
 471	adds loc1=96*16-16-128,in0
 472	;;
 473	stf.spill.nta [loc0]=f127,-256
 474	stf.spill.nta [loc1]=f119,-256
 475	;;
 476	stf.spill.nta [loc0]=f111,-256
 477	stf.spill.nta [loc1]=f103,-256
 478	;;
 479	stf.spill.nta [loc0]=f95,-256
 480	stf.spill.nta [loc1]=f87,-256
 481	;;
 482	stf.spill.nta [loc0]=f79,-256
 483	stf.spill.nta [loc1]=f71,-256
 484	;;
 485	stf.spill.nta [loc0]=f63,-256
 486	stf.spill.nta [loc1]=f55,-256
 487	adds loc2=96*16-32,in0
 488	;;
 489	stf.spill.nta [loc0]=f47,-256
 490	stf.spill.nta [loc1]=f39,-256
 491	adds loc3=96*16-32-128,in0
 492	;;
 493	stf.spill.nta [loc2]=f126,-256
 494	stf.spill.nta [loc3]=f118,-256
 495	;;
 496	stf.spill.nta [loc2]=f110,-256
 497	stf.spill.nta [loc3]=f102,-256
 498	;;
 499	stf.spill.nta [loc2]=f94,-256
 500	stf.spill.nta [loc3]=f86,-256
 501	;;
 502	stf.spill.nta [loc2]=f78,-256
 503	stf.spill.nta [loc3]=f70,-256
 504	;;
 505	stf.spill.nta [loc2]=f62,-256
 506	stf.spill.nta [loc3]=f54,-256
 507	adds loc0=96*16-48,in0
 508	;;
 509	stf.spill.nta [loc2]=f46,-256
 510	stf.spill.nta [loc3]=f38,-256
 511	adds loc1=96*16-48-128,in0
 512	;;
 513	stf.spill.nta [loc0]=f125,-256
 514	stf.spill.nta [loc1]=f117,-256
 515	;;
 516	stf.spill.nta [loc0]=f109,-256
 517	stf.spill.nta [loc1]=f101,-256
 518	;;
 519	stf.spill.nta [loc0]=f93,-256
 520	stf.spill.nta [loc1]=f85,-256
 521	;;
 522	stf.spill.nta [loc0]=f77,-256
 523	stf.spill.nta [loc1]=f69,-256
 524	;;
 525	stf.spill.nta [loc0]=f61,-256
 526	stf.spill.nta [loc1]=f53,-256
 527	adds loc2=96*16-64,in0
 528	;;
 529	stf.spill.nta [loc0]=f45,-256
 530	stf.spill.nta [loc1]=f37,-256
 531	adds loc3=96*16-64-128,in0
 532	;;
 533	stf.spill.nta [loc2]=f124,-256
 534	stf.spill.nta [loc3]=f116,-256
 535	;;
 536	stf.spill.nta [loc2]=f108,-256
 537	stf.spill.nta [loc3]=f100,-256
 538	;;
 539	stf.spill.nta [loc2]=f92,-256
 540	stf.spill.nta [loc3]=f84,-256
 541	;;
 542	stf.spill.nta [loc2]=f76,-256
 543	stf.spill.nta [loc3]=f68,-256
 544	;;
 545	stf.spill.nta [loc2]=f60,-256
 546	stf.spill.nta [loc3]=f52,-256
 547	adds loc0=96*16-80,in0
 548	;;
 549	stf.spill.nta [loc2]=f44,-256
 550	stf.spill.nta [loc3]=f36,-256
 551	adds loc1=96*16-80-128,in0
 552	;;
 553	stf.spill.nta [loc0]=f123,-256
 554	stf.spill.nta [loc1]=f115,-256
 555	;;
 556	stf.spill.nta [loc0]=f107,-256
 557	stf.spill.nta [loc1]=f99,-256
 558	;;
 559	stf.spill.nta [loc0]=f91,-256
 560	stf.spill.nta [loc1]=f83,-256
 561	;;
 562	stf.spill.nta [loc0]=f75,-256
 563	stf.spill.nta [loc1]=f67,-256
 564	;;
 565	stf.spill.nta [loc0]=f59,-256
 566	stf.spill.nta [loc1]=f51,-256
 567	adds loc2=96*16-96,in0
 568	;;
 569	stf.spill.nta [loc0]=f43,-256
 570	stf.spill.nta [loc1]=f35,-256
 571	adds loc3=96*16-96-128,in0
 572	;;
 573	stf.spill.nta [loc2]=f122,-256
 574	stf.spill.nta [loc3]=f114,-256
 575	;;
 576	stf.spill.nta [loc2]=f106,-256
 577	stf.spill.nta [loc3]=f98,-256
 578	;;
 579	stf.spill.nta [loc2]=f90,-256
 580	stf.spill.nta [loc3]=f82,-256
 581	;;
 582	stf.spill.nta [loc2]=f74,-256
 583	stf.spill.nta [loc3]=f66,-256
 584	;;
 585	stf.spill.nta [loc2]=f58,-256
 586	stf.spill.nta [loc3]=f50,-256
 587	adds loc0=96*16-112,in0
 588	;;
 589	stf.spill.nta [loc2]=f42,-256
 590	stf.spill.nta [loc3]=f34,-256
 591	adds loc1=96*16-112-128,in0
 592	;;
 593	stf.spill.nta [loc0]=f121,-256
 594	stf.spill.nta [loc1]=f113,-256
 595	;;
 596	stf.spill.nta [loc0]=f105,-256
 597	stf.spill.nta [loc1]=f97,-256
 598	;;
 599	stf.spill.nta [loc0]=f89,-256
 600	stf.spill.nta [loc1]=f81,-256
 601	;;
 602	stf.spill.nta [loc0]=f73,-256
 603	stf.spill.nta [loc1]=f65,-256
 604	;;
 605	stf.spill.nta [loc0]=f57,-256
 606	stf.spill.nta [loc1]=f49,-256
 607	adds loc2=96*16-128,in0
 608	;;
 609	stf.spill.nta [loc0]=f41,-256
 610	stf.spill.nta [loc1]=f33,-256
 611	adds loc3=96*16-128-128,in0
 612	;;
 613	stf.spill.nta [loc2]=f120,-256
 614	stf.spill.nta [loc3]=f112,-256
 615	;;
 616	stf.spill.nta [loc2]=f104,-256
 617	stf.spill.nta [loc3]=f96,-256
 618	;;
 619	stf.spill.nta [loc2]=f88,-256
 620	stf.spill.nta [loc3]=f80,-256
 621	;;
 622	stf.spill.nta [loc2]=f72,-256
 623	stf.spill.nta [loc3]=f64,-256
 624	;;
 625	stf.spill.nta [loc2]=f56,-256
 626	stf.spill.nta [loc3]=f48,-256
 627	;;
 628	stf.spill.nta [loc2]=f40
 629	stf.spill.nta [loc3]=f32
 630	br.ret.sptk.many rp
 631END(__ia64_save_fpu)
 632
 633GLOBAL_ENTRY(__ia64_load_fpu)
 634	alloc r2=ar.pfs,1,2,0,0
 635	adds r3=128,in0
 636	adds r14=256,in0
 637	adds r15=384,in0
 638	mov loc0=512
 639	mov loc1=-1024+16
 640	;;
 641	ldf.fill.nta f32=[in0],loc0
 642	ldf.fill.nta f40=[ r3],loc0
 643	ldf.fill.nta f48=[r14],loc0
 644	ldf.fill.nta f56=[r15],loc0
 645	;;
 646	ldf.fill.nta f64=[in0],loc0
 647	ldf.fill.nta f72=[ r3],loc0
 648	ldf.fill.nta f80=[r14],loc0
 649	ldf.fill.nta f88=[r15],loc0
 650	;;
 651	ldf.fill.nta f96=[in0],loc1
 652	ldf.fill.nta f104=[ r3],loc1
 653	ldf.fill.nta f112=[r14],loc1
 654	ldf.fill.nta f120=[r15],loc1
 655	;;
 656	ldf.fill.nta f33=[in0],loc0
 657	ldf.fill.nta f41=[ r3],loc0
 658	ldf.fill.nta f49=[r14],loc0
 659	ldf.fill.nta f57=[r15],loc0
 660	;;
 661	ldf.fill.nta f65=[in0],loc0
 662	ldf.fill.nta f73=[ r3],loc0
 663	ldf.fill.nta f81=[r14],loc0
 664	ldf.fill.nta f89=[r15],loc0
 665	;;
 666	ldf.fill.nta f97=[in0],loc1
 667	ldf.fill.nta f105=[ r3],loc1
 668	ldf.fill.nta f113=[r14],loc1
 669	ldf.fill.nta f121=[r15],loc1
 670	;;
 671	ldf.fill.nta f34=[in0],loc0
 672	ldf.fill.nta f42=[ r3],loc0
 673	ldf.fill.nta f50=[r14],loc0
 674	ldf.fill.nta f58=[r15],loc0
 675	;;
 676	ldf.fill.nta f66=[in0],loc0
 677	ldf.fill.nta f74=[ r3],loc0
 678	ldf.fill.nta f82=[r14],loc0
 679	ldf.fill.nta f90=[r15],loc0
 680	;;
 681	ldf.fill.nta f98=[in0],loc1
 682	ldf.fill.nta f106=[ r3],loc1
 683	ldf.fill.nta f114=[r14],loc1
 684	ldf.fill.nta f122=[r15],loc1
 685	;;
 686	ldf.fill.nta f35=[in0],loc0
 687	ldf.fill.nta f43=[ r3],loc0
 688	ldf.fill.nta f51=[r14],loc0
 689	ldf.fill.nta f59=[r15],loc0
 690	;;
 691	ldf.fill.nta f67=[in0],loc0
 692	ldf.fill.nta f75=[ r3],loc0
 693	ldf.fill.nta f83=[r14],loc0
 694	ldf.fill.nta f91=[r15],loc0
 695	;;
 696	ldf.fill.nta f99=[in0],loc1
 697	ldf.fill.nta f107=[ r3],loc1
 698	ldf.fill.nta f115=[r14],loc1
 699	ldf.fill.nta f123=[r15],loc1
 700	;;
 701	ldf.fill.nta f36=[in0],loc0
 702	ldf.fill.nta f44=[ r3],loc0
 703	ldf.fill.nta f52=[r14],loc0
 704	ldf.fill.nta f60=[r15],loc0
 705	;;
 706	ldf.fill.nta f68=[in0],loc0
 707	ldf.fill.nta f76=[ r3],loc0
 708	ldf.fill.nta f84=[r14],loc0
 709	ldf.fill.nta f92=[r15],loc0
 710	;;
 711	ldf.fill.nta f100=[in0],loc1
 712	ldf.fill.nta f108=[ r3],loc1
 713	ldf.fill.nta f116=[r14],loc1
 714	ldf.fill.nta f124=[r15],loc1
 715	;;
 716	ldf.fill.nta f37=[in0],loc0
 717	ldf.fill.nta f45=[ r3],loc0
 718	ldf.fill.nta f53=[r14],loc0
 719	ldf.fill.nta f61=[r15],loc0
 720	;;
 721	ldf.fill.nta f69=[in0],loc0
 722	ldf.fill.nta f77=[ r3],loc0
 723	ldf.fill.nta f85=[r14],loc0
 724	ldf.fill.nta f93=[r15],loc0
 725	;;
 726	ldf.fill.nta f101=[in0],loc1
 727	ldf.fill.nta f109=[ r3],loc1
 728	ldf.fill.nta f117=[r14],loc1
 729	ldf.fill.nta f125=[r15],loc1
 730	;;
 731	ldf.fill.nta f38 =[in0],loc0
 732	ldf.fill.nta f46 =[ r3],loc0
 733	ldf.fill.nta f54 =[r14],loc0
 734	ldf.fill.nta f62 =[r15],loc0
 735	;;
 736	ldf.fill.nta f70 =[in0],loc0
 737	ldf.fill.nta f78 =[ r3],loc0
 738	ldf.fill.nta f86 =[r14],loc0
 739	ldf.fill.nta f94 =[r15],loc0
 740	;;
 741	ldf.fill.nta f102=[in0],loc1
 742	ldf.fill.nta f110=[ r3],loc1
 743	ldf.fill.nta f118=[r14],loc1
 744	ldf.fill.nta f126=[r15],loc1
 745	;;
 746	ldf.fill.nta f39 =[in0],loc0
 747	ldf.fill.nta f47 =[ r3],loc0
 748	ldf.fill.nta f55 =[r14],loc0
 749	ldf.fill.nta f63 =[r15],loc0
 750	;;
 751	ldf.fill.nta f71 =[in0],loc0
 752	ldf.fill.nta f79 =[ r3],loc0
 753	ldf.fill.nta f87 =[r14],loc0
 754	ldf.fill.nta f95 =[r15],loc0
 755	;;
 756	ldf.fill.nta f103=[in0]
 757	ldf.fill.nta f111=[ r3]
 758	ldf.fill.nta f119=[r14]
 759	ldf.fill.nta f127=[r15]
 760	br.ret.sptk.many rp
 761END(__ia64_load_fpu)
 762
 763GLOBAL_ENTRY(__ia64_init_fpu)
 764	stf.spill [sp]=f0		// M3
 765	mov	 f32=f0			// F
 766	nop.b	 0
 767
 768	ldfps	 f33,f34=[sp]		// M0
 769	ldfps	 f35,f36=[sp]		// M1
 770	mov      f37=f0			// F
 771	;;
 772
 773	setf.s	 f38=r0			// M2
 774	setf.s	 f39=r0			// M3
 775	mov      f40=f0			// F
 776
 777	ldfps	 f41,f42=[sp]		// M0
 778	ldfps	 f43,f44=[sp]		// M1
 779	mov      f45=f0			// F
 780
 781	setf.s	 f46=r0			// M2
 782	setf.s	 f47=r0			// M3
 783	mov      f48=f0			// F
 784
 785	ldfps	 f49,f50=[sp]		// M0
 786	ldfps	 f51,f52=[sp]		// M1
 787	mov      f53=f0			// F
 788
 789	setf.s	 f54=r0			// M2
 790	setf.s	 f55=r0			// M3
 791	mov      f56=f0			// F
 792
 793	ldfps	 f57,f58=[sp]		// M0
 794	ldfps	 f59,f60=[sp]		// M1
 795	mov      f61=f0			// F
 796
 797	setf.s	 f62=r0			// M2
 798	setf.s	 f63=r0			// M3
 799	mov      f64=f0			// F
 800
 801	ldfps	 f65,f66=[sp]		// M0
 802	ldfps	 f67,f68=[sp]		// M1
 803	mov      f69=f0			// F
 804
 805	setf.s	 f70=r0			// M2
 806	setf.s	 f71=r0			// M3
 807	mov      f72=f0			// F
 808
 809	ldfps	 f73,f74=[sp]		// M0
 810	ldfps	 f75,f76=[sp]		// M1
 811	mov      f77=f0			// F
 812
 813	setf.s	 f78=r0			// M2
 814	setf.s	 f79=r0			// M3
 815	mov      f80=f0			// F
 816
 817	ldfps	 f81,f82=[sp]		// M0
 818	ldfps	 f83,f84=[sp]		// M1
 819	mov      f85=f0			// F
 820
 821	setf.s	 f86=r0			// M2
 822	setf.s	 f87=r0			// M3
 823	mov      f88=f0			// F
 824
 825	/*
 826	 * When the instructions are cached, it would be faster to initialize
 827	 * the remaining registers with simply mov instructions (F-unit).
 828	 * This gets the time down to ~29 cycles.  However, this would use up
 829	 * 33 bundles, whereas continuing with the above pattern yields
 830	 * 10 bundles and ~30 cycles.
 831	 */
 832
 833	ldfps	 f89,f90=[sp]		// M0
 834	ldfps	 f91,f92=[sp]		// M1
 835	mov      f93=f0			// F
 836
 837	setf.s	 f94=r0			// M2
 838	setf.s	 f95=r0			// M3
 839	mov      f96=f0			// F
 840
 841	ldfps	 f97,f98=[sp]		// M0
 842	ldfps	 f99,f100=[sp]		// M1
 843	mov      f101=f0		// F
 844
 845	setf.s	 f102=r0		// M2
 846	setf.s	 f103=r0		// M3
 847	mov      f104=f0		// F
 848
 849	ldfps	 f105,f106=[sp]		// M0
 850	ldfps	 f107,f108=[sp]		// M1
 851	mov      f109=f0		// F
 852
 853	setf.s	 f110=r0		// M2
 854	setf.s	 f111=r0		// M3
 855	mov      f112=f0		// F
 856
 857	ldfps	 f113,f114=[sp]		// M0
 858	ldfps	 f115,f116=[sp]		// M1
 859	mov      f117=f0		// F
 860
 861	setf.s	 f118=r0		// M2
 862	setf.s	 f119=r0		// M3
 863	mov      f120=f0		// F
 864
 865	ldfps	 f121,f122=[sp]		// M0
 866	ldfps	 f123,f124=[sp]		// M1
 867	mov      f125=f0		// F
 868
 869	setf.s	 f126=r0		// M2
 870	setf.s	 f127=r0		// M3
 871	br.ret.sptk.many rp		// F
 872END(__ia64_init_fpu)
 873
 874/*
 875 * Switch execution mode from virtual to physical
 876 *
 877 * Inputs:
 878 *	r16 = new psr to establish
 879 * Output:
 880 *	r19 = old virtual address of ar.bsp
 881 *	r20 = old virtual address of sp
 882 *
 883 * Note: RSE must already be in enforced lazy mode
 884 */
 885GLOBAL_ENTRY(ia64_switch_mode_phys)
 886 {
 887	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 888	mov r15=ip
 889 }
 890	;;
 891 {
 892	flushrs				// must be first insn in group
 893	srlz.i
 894 }
 895	;;
 896	mov cr.ipsr=r16			// set new PSR
 897	add r3=1f-ia64_switch_mode_phys,r15
 898
 899	mov r19=ar.bsp
 900	mov r20=sp
 901	mov r14=rp			// get return address into a general register
 902	;;
 903
 904	// going to physical mode, use tpa to translate virt->phys
 905	tpa r17=r19
 906	tpa r3=r3
 907	tpa sp=sp
 908	tpa r14=r14
 909	;;
 910
 911	mov r18=ar.rnat			// save ar.rnat
 912	mov ar.bspstore=r17		// this steps on ar.rnat
 913	mov cr.iip=r3
 914	mov cr.ifs=r0
 915	;;
 916	mov ar.rnat=r18			// restore ar.rnat
 917	rfi				// must be last insn in group
 918	;;
 9191:	mov rp=r14
 920	br.ret.sptk.many rp
 921END(ia64_switch_mode_phys)
 922
 923/*
 924 * Switch execution mode from physical to virtual
 925 *
 926 * Inputs:
 927 *	r16 = new psr to establish
 928 *	r19 = new bspstore to establish
 929 *	r20 = new sp to establish
 930 *
 931 * Note: RSE must already be in enforced lazy mode
 932 */
 933GLOBAL_ENTRY(ia64_switch_mode_virt)
 934 {
 935	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 936	mov r15=ip
 937 }
 938	;;
 939 {
 940	flushrs				// must be first insn in group
 941	srlz.i
 942 }
 943	;;
 944	mov cr.ipsr=r16			// set new PSR
 945	add r3=1f-ia64_switch_mode_virt,r15
 946
 947	mov r14=rp			// get return address into a general register
 948	;;
 949
 950	// going to virtual
 951	//   - for code addresses, set upper bits of addr to KERNEL_START
 952	//   - for stack addresses, copy from input argument
 953	movl r18=KERNEL_START
 954	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 955	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 956	mov sp=r20
 957	;;
 958	or r3=r3,r18
 959	or r14=r14,r18
 960	;;
 961
 962	mov r18=ar.rnat			// save ar.rnat
 963	mov ar.bspstore=r19		// this steps on ar.rnat
 964	mov cr.iip=r3
 965	mov cr.ifs=r0
 966	;;
 967	mov ar.rnat=r18			// restore ar.rnat
 968	rfi				// must be last insn in group
 969	;;
 9701:	mov rp=r14
 971	br.ret.sptk.many rp
 972END(ia64_switch_mode_virt)
 973
 974GLOBAL_ENTRY(ia64_delay_loop)
 975	.prologue
 976{	nop 0			// work around GAS unwind info generation bug...
 977	.save ar.lc,r2
 978	mov r2=ar.lc
 979	.body
 980	;;
 981	mov ar.lc=r32
 982}
 983	;;
 984	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
 985	// inside function body without corrupting unwind info).
 986{	nop 0 }
 9871:	br.cloop.sptk.few 1b
 988	;;
 989	mov ar.lc=r2
 990	br.ret.sptk.many rp
 991END(ia64_delay_loop)
 992
 993/*
 994 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
 995 * NOT synchronized across CPUs its return value must never be
 996 * compared against the values returned on another CPU.  The usage in
 997 * kernel/sched/core.c ensures that.
 998 *
 999 * The return-value of sched_clock() is NOT supposed to wrap-around.
1000 * If it did, it would cause some scheduling hiccups (at the worst).
1001 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1002 * that would happen only once every 5+ years.
1003 *
1004 * The code below basically calculates:
1005 *
1006 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1007 *
1008 * except that the multiplication and the shift are done with 128-bit
1009 * intermediate precision so that we can produce a full 64-bit result.
1010 */
1011GLOBAL_ENTRY(ia64_native_sched_clock)
1012	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1013	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1014	;;
1015	ldf8 f8=[r8]
1016	;;
1017	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1018	;;
1019	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1020	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1021	;;
1022	getf.sig r8=f10		//						(5 cyc)
1023	getf.sig r9=f11
1024	;;
1025	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1026	br.ret.sptk.many rp
1027END(ia64_native_sched_clock)
1028
1029#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1030GLOBAL_ENTRY(cycle_to_nsec)
1031	alloc r16=ar.pfs,1,0,0,0
1032	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1033	;;
1034	ldf8 f8=[r8]
1035	;;
1036	setf.sig f9=r32
1037	;;
1038	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1039	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1040	;;
1041	getf.sig r8=f10		//						(5 cyc)
1042	getf.sig r9=f11
1043	;;
1044	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1045	br.ret.sptk.many rp
1046END(cycle_to_nsec)
1047#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1048
1049#ifdef CONFIG_IA64_BRL_EMU
1050
1051/*
1052 *  Assembly routines used by brl_emu.c to set preserved register state.
1053 */
1054
1055#define SET_REG(reg)				\
1056 GLOBAL_ENTRY(ia64_set_##reg);			\
1057	alloc r16=ar.pfs,1,0,0,0;		\
1058	mov reg=r32;				\
1059	;;					\
1060	br.ret.sptk.many rp;			\
1061 END(ia64_set_##reg)
1062
1063SET_REG(b1);
1064SET_REG(b2);
1065SET_REG(b3);
1066SET_REG(b4);
1067SET_REG(b5);
1068
1069#endif /* CONFIG_IA64_BRL_EMU */
1070
1071#ifdef CONFIG_SMP
1072
1073#ifdef CONFIG_HOTPLUG_CPU
1074GLOBAL_ENTRY(ia64_jump_to_sal)
1075	alloc r16=ar.pfs,1,0,0,0;;
1076	rsm psr.i  | psr.ic
1077{
1078	flushrs
1079	srlz.i
1080}
1081	tpa r25=in0
1082	movl r18=tlb_purge_done;;
1083	DATA_VA_TO_PA(r18);;
1084	mov b1=r18 	// Return location
1085	movl r18=ia64_do_tlb_purge;;
1086	DATA_VA_TO_PA(r18);;
1087	mov b2=r18 	// doing tlb_flush work
1088	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1089	movl r17=1f;;
1090	DATA_VA_TO_PA(r17);;
1091	mov cr.iip=r17
1092	movl r16=SAL_PSR_BITS_TO_SET;;
1093	mov cr.ipsr=r16
1094	mov cr.ifs=r0;;
1095	rfi;;			// note: this unmask MCA/INIT (psr.mc)
10961:
1097	/*
1098	 * Invalidate all TLB data/inst
1099	 */
1100	br.sptk.many b2;; // jump to tlb purge code
1101
1102tlb_purge_done:
1103	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1104	RESTORE_REG(b0, r25, r17);;
1105	RESTORE_REG(b1, r25, r17);;
1106	RESTORE_REG(b2, r25, r17);;
1107	RESTORE_REG(b3, r25, r17);;
1108	RESTORE_REG(b4, r25, r17);;
1109	RESTORE_REG(b5, r25, r17);;
1110	ld8 r1=[r25],0x08;;
1111	ld8 r12=[r25],0x08;;
1112	ld8 r13=[r25],0x08;;
1113	RESTORE_REG(ar.fpsr, r25, r17);;
1114	RESTORE_REG(ar.pfs, r25, r17);;
1115	RESTORE_REG(ar.rnat, r25, r17);;
1116	RESTORE_REG(ar.unat, r25, r17);;
1117	RESTORE_REG(ar.bspstore, r25, r17);;
1118	RESTORE_REG(cr.dcr, r25, r17);;
1119	RESTORE_REG(cr.iva, r25, r17);;
1120	RESTORE_REG(cr.pta, r25, r17);;
1121	srlz.d;;	// required not to violate RAW dependency
1122	RESTORE_REG(cr.itv, r25, r17);;
1123	RESTORE_REG(cr.pmv, r25, r17);;
1124	RESTORE_REG(cr.cmcv, r25, r17);;
1125	RESTORE_REG(cr.lrr0, r25, r17);;
1126	RESTORE_REG(cr.lrr1, r25, r17);;
1127	ld8 r4=[r25],0x08;;
1128	ld8 r5=[r25],0x08;;
1129	ld8 r6=[r25],0x08;;
1130	ld8 r7=[r25],0x08;;
1131	ld8 r17=[r25],0x08;;
1132	mov pr=r17,-1;;
1133	RESTORE_REG(ar.lc, r25, r17);;
1134	/*
1135	 * Now Restore floating point regs
1136	 */
1137	ldf.fill.nta f2=[r25],16;;
1138	ldf.fill.nta f3=[r25],16;;
1139	ldf.fill.nta f4=[r25],16;;
1140	ldf.fill.nta f5=[r25],16;;
1141	ldf.fill.nta f16=[r25],16;;
1142	ldf.fill.nta f17=[r25],16;;
1143	ldf.fill.nta f18=[r25],16;;
1144	ldf.fill.nta f19=[r25],16;;
1145	ldf.fill.nta f20=[r25],16;;
1146	ldf.fill.nta f21=[r25],16;;
1147	ldf.fill.nta f22=[r25],16;;
1148	ldf.fill.nta f23=[r25],16;;
1149	ldf.fill.nta f24=[r25],16;;
1150	ldf.fill.nta f25=[r25],16;;
1151	ldf.fill.nta f26=[r25],16;;
1152	ldf.fill.nta f27=[r25],16;;
1153	ldf.fill.nta f28=[r25],16;;
1154	ldf.fill.nta f29=[r25],16;;
1155	ldf.fill.nta f30=[r25],16;;
1156	ldf.fill.nta f31=[r25],16;;
1157
1158	/*
1159	 * Now that we have done all the register restores
1160	 * we are now ready for the big DIVE to SAL Land
1161	 */
1162	ssm psr.ic;;
1163	srlz.d;;
1164	br.ret.sptk.many b0;;
1165END(ia64_jump_to_sal)
1166#endif /* CONFIG_HOTPLUG_CPU */
1167
1168#endif /* CONFIG_SMP */