Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Here is where the ball gets rolling as far as the kernel is concerned.
   4 * When control is transferred to _start, the bootload has already
   5 * loaded us to the correct address.  All that's left to do here is
   6 * to set up the kernel's global pointer and jump to the kernel
   7 * entry point.
   8 *
   9 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
  10 *	David Mosberger-Tang <davidm@hpl.hp.com>
  11 *	Stephane Eranian <eranian@hpl.hp.com>
  12 * Copyright (C) 1999 VA Linux Systems
  13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  14 * Copyright (C) 1999 Intel Corp.
  15 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  16 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  17 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  18 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  19 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  20 *   Support for CPU Hotplug
  21 */
  22
  23
  24#include <linux/pgtable.h>
  25#include <asm/asmmacro.h>
  26#include <asm/fpu.h>
  27#include <asm/kregs.h>
  28#include <asm/mmu_context.h>
  29#include <asm/asm-offsets.h>
  30#include <asm/pal.h>
 
  31#include <asm/processor.h>
  32#include <asm/ptrace.h>
  33#include <asm/mca_asm.h>
  34#include <linux/init.h>
  35#include <linux/linkage.h>
  36#include <linux/pgtable.h>
  37#include <asm/export.h>
  38
  39#ifdef CONFIG_HOTPLUG_CPU
  40#define SAL_PSR_BITS_TO_SET				\
  41	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  42
  43#define SAVE_FROM_REG(src, ptr, dest)	\
  44	mov dest=src;;						\
  45	st8 [ptr]=dest,0x08
  46
  47#define RESTORE_REG(reg, ptr, _tmp)		\
  48	ld8 _tmp=[ptr],0x08;;				\
  49	mov reg=_tmp
  50
  51#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  52	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
  53	mov _idx=0;; 								\
  541: 												\
  55	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
  56	add _idx=1,_idx;;							\
  57	br.cloop.sptk.many 1b
  58
  59#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  60	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
  61	mov _idx=0;;							\
  62_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
  63	add _idx=1, _idx;;						\
  64	br.cloop.sptk.many _lbl
  65
  66#define SAVE_ONE_RR(num, _reg, _tmp) \
  67	movl _tmp=(num<<61);;	\
  68	mov _reg=rr[_tmp]
  69
  70#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  71	SAVE_ONE_RR(0,_r0, _tmp);; \
  72	SAVE_ONE_RR(1,_r1, _tmp);; \
  73	SAVE_ONE_RR(2,_r2, _tmp);; \
  74	SAVE_ONE_RR(3,_r3, _tmp);; \
  75	SAVE_ONE_RR(4,_r4, _tmp);; \
  76	SAVE_ONE_RR(5,_r5, _tmp);; \
  77	SAVE_ONE_RR(6,_r6, _tmp);; \
  78	SAVE_ONE_RR(7,_r7, _tmp);;
  79
  80#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  81	st8 [ptr]=_r0, 8;; \
  82	st8 [ptr]=_r1, 8;; \
  83	st8 [ptr]=_r2, 8;; \
  84	st8 [ptr]=_r3, 8;; \
  85	st8 [ptr]=_r4, 8;; \
  86	st8 [ptr]=_r5, 8;; \
  87	st8 [ptr]=_r6, 8;; \
  88	st8 [ptr]=_r7, 8;;
  89
  90#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  91	mov		ar.lc=0x08-1;;						\
  92	movl	_idx1=0x00;;						\
  93RestRR:											\
  94	dep.z	_idx2=_idx1,61,3;;					\
  95	ld8		_tmp=[ptr],8;;						\
  96	mov		rr[_idx2]=_tmp;;					\
  97	srlz.d;;									\
  98	add		_idx1=1,_idx1;;						\
  99	br.cloop.sptk.few	RestRR
 100
 101#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
 102	movl reg1=sal_state_for_booting_cpu;;	\
 103	ld8 reg2=[reg1];;
 104
 105/*
 106 * Adjust region registers saved before starting to save
 107 * break regs and rest of the states that need to be preserved.
 108 */
 109#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
 110	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
 111	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
 112	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
 113	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
 114	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
 115	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
 116	st8 [_reg1]=r1,0x08;;								\
 117	st8 [_reg1]=r12,0x08;;								\
 118	st8 [_reg1]=r13,0x08;;								\
 119	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
 120	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
 121	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
 122	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
 123	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
 124	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
 125	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
 126	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
 127	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
 128	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
 129	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
 130	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
 131	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
 132	st8 [_reg1]=r4,0x08;;								\
 133	st8 [_reg1]=r5,0x08;;								\
 134	st8 [_reg1]=r6,0x08;;								\
 135	st8 [_reg1]=r7,0x08;;								\
 136	st8 [_reg1]=_pred,0x08;;							\
 137	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
 138	stf.spill.nta [_reg1]=f2,16;;						\
 139	stf.spill.nta [_reg1]=f3,16;;						\
 140	stf.spill.nta [_reg1]=f4,16;;						\
 141	stf.spill.nta [_reg1]=f5,16;;						\
 142	stf.spill.nta [_reg1]=f16,16;;						\
 143	stf.spill.nta [_reg1]=f17,16;;						\
 144	stf.spill.nta [_reg1]=f18,16;;						\
 145	stf.spill.nta [_reg1]=f19,16;;						\
 146	stf.spill.nta [_reg1]=f20,16;;						\
 147	stf.spill.nta [_reg1]=f21,16;;						\
 148	stf.spill.nta [_reg1]=f22,16;;						\
 149	stf.spill.nta [_reg1]=f23,16;;						\
 150	stf.spill.nta [_reg1]=f24,16;;						\
 151	stf.spill.nta [_reg1]=f25,16;;						\
 152	stf.spill.nta [_reg1]=f26,16;;						\
 153	stf.spill.nta [_reg1]=f27,16;;						\
 154	stf.spill.nta [_reg1]=f28,16;;						\
 155	stf.spill.nta [_reg1]=f29,16;;						\
 156	stf.spill.nta [_reg1]=f30,16;;						\
 157	stf.spill.nta [_reg1]=f31,16;;
 158
 159#else
 160#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
 161#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
 162#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 163#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 164#endif
 165
 166#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
 167	movl _tmp1=(num << 61);;	\
 168	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
 169	mov rr[_tmp1]=_tmp2
 170
 171	__PAGE_ALIGNED_DATA
 172
 173	.global empty_zero_page
 174EXPORT_DATA_SYMBOL_GPL(empty_zero_page)
 175empty_zero_page:
 176	.skip PAGE_SIZE
 177
 178	.global swapper_pg_dir
 179swapper_pg_dir:
 180	.skip PAGE_SIZE
 181
 182	.rodata
 183halt_msg:
 184	stringz "Halting kernel\n"
 185
 186	__REF
 187
 188	.global start_ap
 189
 190	/*
 191	 * Start the kernel.  When the bootloader passes control to _start(), r28
 192	 * points to the address of the boot parameter area.  Execution reaches
 193	 * here in physical mode.
 194	 */
 195GLOBAL_ENTRY(_start)
 196start_ap:
 197	.prologue
 198	.save rp, r0		// terminate unwind chain with a NULL rp
 199	.body
 200
 201	rsm psr.i | psr.ic
 202	;;
 203	srlz.i
 204	;;
 205 {
 206	flushrs				// must be first insn in group
 207	srlz.i
 208 }
 209	;;
 210	/*
 211	 * Save the region registers, predicate before they get clobbered
 212	 */
 213	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
 214	mov r25=pr;;
 215
 216	/*
 217	 * Initialize kernel region registers:
 218	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
 219	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
 220	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
 221	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
 222	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
 223	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
 224	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 225	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 226	 * We initialize all of them to prevent inadvertently assuming
 227	 * something about the state of address translation early in boot.
 228	 */
 229	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
 230	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
 231	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
 232	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
 233	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
 234	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
 235	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
 236	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
 237	/*
 238	 * Now pin mappings into the TLB for kernel text and data
 239	 */
 240	mov r18=KERNEL_TR_PAGE_SHIFT<<2
 241	movl r17=KERNEL_START
 242	;;
 243	mov cr.itir=r18
 244	mov cr.ifa=r17
 245	mov r16=IA64_TR_KERNEL
 246	mov r3=ip
 247	movl r18=PAGE_KERNEL
 248	;;
 249	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
 250	;;
 251	or r18=r2,r18
 252	;;
 253	srlz.i
 254	;;
 255	itr.i itr[r16]=r18
 256	;;
 257	itr.d dtr[r16]=r18
 258	;;
 259	srlz.i
 260
 261	/*
 262	 * Switch into virtual mode:
 263	 */
 264	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
 265		  |IA64_PSR_DI)
 266	;;
 267	mov cr.ipsr=r16
 268	movl r17=1f
 269	;;
 270	mov cr.iip=r17
 271	mov cr.ifs=r0
 272	;;
 273	rfi
 274	;;
 2751:	// now we are in virtual mode
 276
 277	SET_AREA_FOR_BOOTING_CPU(r2, r16);
 278
 279	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
 280	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
 281	;;
 282
 283	// set IVT entry point---can't access I/O ports without it
 284	movl r3=ia64_ivt
 285	;;
 286	mov cr.iva=r3
 287	movl r2=FPSR_DEFAULT
 288	;;
 289	srlz.i
 290	movl gp=__gp
 291
 292	mov ar.fpsr=r2
 293	;;
 294
 295#define isAP	p2	// are we an Application Processor?
 296#define isBP	p3	// are we the Bootstrap Processor?
 297
 298#ifdef CONFIG_SMP
 299	/*
 300	 * Find the init_task for the currently booting CPU.  At poweron, and in
 301	 * UP mode, task_for_booting_cpu is NULL.
 302	 */
 303	movl r3=task_for_booting_cpu
 304 	;;
 305	ld8 r3=[r3]
 306	movl r2=init_task
 307	;;
 308	cmp.eq isBP,isAP=r3,r0
 309	;;
 310(isAP)	mov r2=r3
 311#else
 312	movl r2=init_task
 313	cmp.eq isBP,isAP=r0,r0
 314#endif
 315	;;
 316	tpa r3=r2		// r3 == phys addr of task struct
 317	mov r16=-1
 318(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
 319
 320	// load mapping for stack (virtaddr in r2, physaddr in r3)
 321	rsm psr.ic
 322	movl r17=PAGE_KERNEL
 323	;;
 324	srlz.d
 325	dep r18=0,r3,0,12
 326	;;
 327	or r18=r17,r18
 328	dep r2=-1,r3,61,3	// IMVA of task
 329	;;
 330	mov r17=rr[r2]
 331	shr.u r16=r3,IA64_GRANULE_SHIFT
 332	;;
 333	dep r17=0,r17,8,24
 334	;;
 335	mov cr.itir=r17
 336	mov cr.ifa=r2
 337
 338	mov r19=IA64_TR_CURRENT_STACK
 339	;;
 340	itr.d dtr[r19]=r18
 341	;;
 342	ssm psr.ic
 343	srlz.d
 344  	;;
 345
 346.load_current:
 347	// load the "current" pointer (r13) and ar.k6 with the current task
 348	mov IA64_KR(CURRENT)=r2		// virtual address
 349	mov IA64_KR(CURRENT_STACK)=r16
 350	mov r13=r2
 351	/*
 352	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
 353	 * threads don't store interesting values in that structure, but the space
 354	 * still needs to be there because time-critical stuff such as the context
 355	 * switching can be implemented more efficiently (for example, __switch_to()
 356	 * always sets the psr.dfh bit of the task it is switching to).
 357	 */
 358
 359	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
 360	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
 361	mov ar.rsc=0		// place RSE in enforced lazy mode
 362	;;
 363	loadrs			// clear the dirty partition
 364	movl r19=__phys_per_cpu_start
 365	mov r18=PERCPU_PAGE_SIZE
 366	;;
 367#ifndef CONFIG_SMP
 368	add r19=r19,r18
 369	;;
 370#else
 371(isAP)	br.few 2f
 372	movl r20=__cpu0_per_cpu
 373	;;
 374	shr.u r18=r18,3
 3751:
 376	ld8 r21=[r19],8;;
 377	st8[r20]=r21,8
 378	adds r18=-1,r18;;
 379	cmp4.lt p7,p6=0,r18
 380(p7)	br.cond.dptk.few 1b
 381	mov r19=r20
 382	;;
 3832:
 384#endif
 385	tpa r19=r19
 386	;;
 387	.pred.rel.mutex isBP,isAP
 388(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
 389(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
 390	;;
 391	mov ar.bspstore=r2	// establish the new RSE stack
 392	;;
 393	mov ar.rsc=0x3		// place RSE in eager mode
 394
 395(isBP)	dep r28=-1,r28,61,3	// make address virtual
 396(isBP)	movl r2=ia64_boot_param
 397	;;
 398(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
 399
 400#ifdef CONFIG_SMP
 401(isAP)	br.call.sptk.many rp=start_secondary
 402.ret0:
 403(isAP)	br.cond.sptk self
 404#endif
 405
 406	// This is executed by the bootstrap processor (bsp) only:
 407
 408#ifdef CONFIG_IA64_FW_EMU
 409	// initialize PAL & SAL emulator:
 410	br.call.sptk.many rp=sys_fw_init
 411.ret1:
 412#endif
 413	br.call.sptk.many rp=start_kernel
 414.ret2:	addl r3=@ltoff(halt_msg),gp
 415	;;
 416	alloc r2=ar.pfs,8,0,2,0
 417	;;
 418	ld8 out0=[r3]
 419	br.call.sptk.many b0=console_print
 420
 421self:	hint @pause
 422	br.sptk.many self		// endless loop
 423END(_start)
 424
 425	.text
 426
 427GLOBAL_ENTRY(ia64_save_debug_regs)
 428	alloc r16=ar.pfs,1,0,0,0
 429	mov r20=ar.lc			// preserve ar.lc
 430	mov ar.lc=IA64_NUM_DBG_REGS-1
 431	mov r18=0
 432	add r19=IA64_NUM_DBG_REGS*8,in0
 433	;;
 4341:	mov r16=dbr[r18]
 435#ifdef CONFIG_ITANIUM
 436	;;
 437	srlz.d
 438#endif
 439	mov r17=ibr[r18]
 440	add r18=1,r18
 441	;;
 442	st8.nta [in0]=r16,8
 443	st8.nta [r19]=r17,8
 444	br.cloop.sptk.many 1b
 445	;;
 446	mov ar.lc=r20			// restore ar.lc
 447	br.ret.sptk.many rp
 448END(ia64_save_debug_regs)
 449
 450GLOBAL_ENTRY(ia64_load_debug_regs)
 451	alloc r16=ar.pfs,1,0,0,0
 452	lfetch.nta [in0]
 453	mov r20=ar.lc			// preserve ar.lc
 454	add r19=IA64_NUM_DBG_REGS*8,in0
 455	mov ar.lc=IA64_NUM_DBG_REGS-1
 456	mov r18=-1
 457	;;
 4581:	ld8.nta r16=[in0],8
 459	ld8.nta r17=[r19],8
 460	add r18=1,r18
 461	;;
 462	mov dbr[r18]=r16
 463#ifdef CONFIG_ITANIUM
 464	;;
 465	srlz.d				// Errata 132 (NoFix status)
 466#endif
 467	mov ibr[r18]=r17
 468	br.cloop.sptk.many 1b
 469	;;
 470	mov ar.lc=r20			// restore ar.lc
 471	br.ret.sptk.many rp
 472END(ia64_load_debug_regs)
 473
 474GLOBAL_ENTRY(__ia64_save_fpu)
 475	alloc r2=ar.pfs,1,4,0,0
 476	adds loc0=96*16-16,in0
 477	adds loc1=96*16-16-128,in0
 478	;;
 479	stf.spill.nta [loc0]=f127,-256
 480	stf.spill.nta [loc1]=f119,-256
 481	;;
 482	stf.spill.nta [loc0]=f111,-256
 483	stf.spill.nta [loc1]=f103,-256
 484	;;
 485	stf.spill.nta [loc0]=f95,-256
 486	stf.spill.nta [loc1]=f87,-256
 487	;;
 488	stf.spill.nta [loc0]=f79,-256
 489	stf.spill.nta [loc1]=f71,-256
 490	;;
 491	stf.spill.nta [loc0]=f63,-256
 492	stf.spill.nta [loc1]=f55,-256
 493	adds loc2=96*16-32,in0
 494	;;
 495	stf.spill.nta [loc0]=f47,-256
 496	stf.spill.nta [loc1]=f39,-256
 497	adds loc3=96*16-32-128,in0
 498	;;
 499	stf.spill.nta [loc2]=f126,-256
 500	stf.spill.nta [loc3]=f118,-256
 501	;;
 502	stf.spill.nta [loc2]=f110,-256
 503	stf.spill.nta [loc3]=f102,-256
 504	;;
 505	stf.spill.nta [loc2]=f94,-256
 506	stf.spill.nta [loc3]=f86,-256
 507	;;
 508	stf.spill.nta [loc2]=f78,-256
 509	stf.spill.nta [loc3]=f70,-256
 510	;;
 511	stf.spill.nta [loc2]=f62,-256
 512	stf.spill.nta [loc3]=f54,-256
 513	adds loc0=96*16-48,in0
 514	;;
 515	stf.spill.nta [loc2]=f46,-256
 516	stf.spill.nta [loc3]=f38,-256
 517	adds loc1=96*16-48-128,in0
 518	;;
 519	stf.spill.nta [loc0]=f125,-256
 520	stf.spill.nta [loc1]=f117,-256
 521	;;
 522	stf.spill.nta [loc0]=f109,-256
 523	stf.spill.nta [loc1]=f101,-256
 524	;;
 525	stf.spill.nta [loc0]=f93,-256
 526	stf.spill.nta [loc1]=f85,-256
 527	;;
 528	stf.spill.nta [loc0]=f77,-256
 529	stf.spill.nta [loc1]=f69,-256
 530	;;
 531	stf.spill.nta [loc0]=f61,-256
 532	stf.spill.nta [loc1]=f53,-256
 533	adds loc2=96*16-64,in0
 534	;;
 535	stf.spill.nta [loc0]=f45,-256
 536	stf.spill.nta [loc1]=f37,-256
 537	adds loc3=96*16-64-128,in0
 538	;;
 539	stf.spill.nta [loc2]=f124,-256
 540	stf.spill.nta [loc3]=f116,-256
 541	;;
 542	stf.spill.nta [loc2]=f108,-256
 543	stf.spill.nta [loc3]=f100,-256
 544	;;
 545	stf.spill.nta [loc2]=f92,-256
 546	stf.spill.nta [loc3]=f84,-256
 547	;;
 548	stf.spill.nta [loc2]=f76,-256
 549	stf.spill.nta [loc3]=f68,-256
 550	;;
 551	stf.spill.nta [loc2]=f60,-256
 552	stf.spill.nta [loc3]=f52,-256
 553	adds loc0=96*16-80,in0
 554	;;
 555	stf.spill.nta [loc2]=f44,-256
 556	stf.spill.nta [loc3]=f36,-256
 557	adds loc1=96*16-80-128,in0
 558	;;
 559	stf.spill.nta [loc0]=f123,-256
 560	stf.spill.nta [loc1]=f115,-256
 561	;;
 562	stf.spill.nta [loc0]=f107,-256
 563	stf.spill.nta [loc1]=f99,-256
 564	;;
 565	stf.spill.nta [loc0]=f91,-256
 566	stf.spill.nta [loc1]=f83,-256
 567	;;
 568	stf.spill.nta [loc0]=f75,-256
 569	stf.spill.nta [loc1]=f67,-256
 570	;;
 571	stf.spill.nta [loc0]=f59,-256
 572	stf.spill.nta [loc1]=f51,-256
 573	adds loc2=96*16-96,in0
 574	;;
 575	stf.spill.nta [loc0]=f43,-256
 576	stf.spill.nta [loc1]=f35,-256
 577	adds loc3=96*16-96-128,in0
 578	;;
 579	stf.spill.nta [loc2]=f122,-256
 580	stf.spill.nta [loc3]=f114,-256
 581	;;
 582	stf.spill.nta [loc2]=f106,-256
 583	stf.spill.nta [loc3]=f98,-256
 584	;;
 585	stf.spill.nta [loc2]=f90,-256
 586	stf.spill.nta [loc3]=f82,-256
 587	;;
 588	stf.spill.nta [loc2]=f74,-256
 589	stf.spill.nta [loc3]=f66,-256
 590	;;
 591	stf.spill.nta [loc2]=f58,-256
 592	stf.spill.nta [loc3]=f50,-256
 593	adds loc0=96*16-112,in0
 594	;;
 595	stf.spill.nta [loc2]=f42,-256
 596	stf.spill.nta [loc3]=f34,-256
 597	adds loc1=96*16-112-128,in0
 598	;;
 599	stf.spill.nta [loc0]=f121,-256
 600	stf.spill.nta [loc1]=f113,-256
 601	;;
 602	stf.spill.nta [loc0]=f105,-256
 603	stf.spill.nta [loc1]=f97,-256
 604	;;
 605	stf.spill.nta [loc0]=f89,-256
 606	stf.spill.nta [loc1]=f81,-256
 607	;;
 608	stf.spill.nta [loc0]=f73,-256
 609	stf.spill.nta [loc1]=f65,-256
 610	;;
 611	stf.spill.nta [loc0]=f57,-256
 612	stf.spill.nta [loc1]=f49,-256
 613	adds loc2=96*16-128,in0
 614	;;
 615	stf.spill.nta [loc0]=f41,-256
 616	stf.spill.nta [loc1]=f33,-256
 617	adds loc3=96*16-128-128,in0
 618	;;
 619	stf.spill.nta [loc2]=f120,-256
 620	stf.spill.nta [loc3]=f112,-256
 621	;;
 622	stf.spill.nta [loc2]=f104,-256
 623	stf.spill.nta [loc3]=f96,-256
 624	;;
 625	stf.spill.nta [loc2]=f88,-256
 626	stf.spill.nta [loc3]=f80,-256
 627	;;
 628	stf.spill.nta [loc2]=f72,-256
 629	stf.spill.nta [loc3]=f64,-256
 630	;;
 631	stf.spill.nta [loc2]=f56,-256
 632	stf.spill.nta [loc3]=f48,-256
 633	;;
 634	stf.spill.nta [loc2]=f40
 635	stf.spill.nta [loc3]=f32
 636	br.ret.sptk.many rp
 637END(__ia64_save_fpu)
 638
 639GLOBAL_ENTRY(__ia64_load_fpu)
 640	alloc r2=ar.pfs,1,2,0,0
 641	adds r3=128,in0
 642	adds r14=256,in0
 643	adds r15=384,in0
 644	mov loc0=512
 645	mov loc1=-1024+16
 646	;;
 647	ldf.fill.nta f32=[in0],loc0
 648	ldf.fill.nta f40=[ r3],loc0
 649	ldf.fill.nta f48=[r14],loc0
 650	ldf.fill.nta f56=[r15],loc0
 651	;;
 652	ldf.fill.nta f64=[in0],loc0
 653	ldf.fill.nta f72=[ r3],loc0
 654	ldf.fill.nta f80=[r14],loc0
 655	ldf.fill.nta f88=[r15],loc0
 656	;;
 657	ldf.fill.nta f96=[in0],loc1
 658	ldf.fill.nta f104=[ r3],loc1
 659	ldf.fill.nta f112=[r14],loc1
 660	ldf.fill.nta f120=[r15],loc1
 661	;;
 662	ldf.fill.nta f33=[in0],loc0
 663	ldf.fill.nta f41=[ r3],loc0
 664	ldf.fill.nta f49=[r14],loc0
 665	ldf.fill.nta f57=[r15],loc0
 666	;;
 667	ldf.fill.nta f65=[in0],loc0
 668	ldf.fill.nta f73=[ r3],loc0
 669	ldf.fill.nta f81=[r14],loc0
 670	ldf.fill.nta f89=[r15],loc0
 671	;;
 672	ldf.fill.nta f97=[in0],loc1
 673	ldf.fill.nta f105=[ r3],loc1
 674	ldf.fill.nta f113=[r14],loc1
 675	ldf.fill.nta f121=[r15],loc1
 676	;;
 677	ldf.fill.nta f34=[in0],loc0
 678	ldf.fill.nta f42=[ r3],loc0
 679	ldf.fill.nta f50=[r14],loc0
 680	ldf.fill.nta f58=[r15],loc0
 681	;;
 682	ldf.fill.nta f66=[in0],loc0
 683	ldf.fill.nta f74=[ r3],loc0
 684	ldf.fill.nta f82=[r14],loc0
 685	ldf.fill.nta f90=[r15],loc0
 686	;;
 687	ldf.fill.nta f98=[in0],loc1
 688	ldf.fill.nta f106=[ r3],loc1
 689	ldf.fill.nta f114=[r14],loc1
 690	ldf.fill.nta f122=[r15],loc1
 691	;;
 692	ldf.fill.nta f35=[in0],loc0
 693	ldf.fill.nta f43=[ r3],loc0
 694	ldf.fill.nta f51=[r14],loc0
 695	ldf.fill.nta f59=[r15],loc0
 696	;;
 697	ldf.fill.nta f67=[in0],loc0
 698	ldf.fill.nta f75=[ r3],loc0
 699	ldf.fill.nta f83=[r14],loc0
 700	ldf.fill.nta f91=[r15],loc0
 701	;;
 702	ldf.fill.nta f99=[in0],loc1
 703	ldf.fill.nta f107=[ r3],loc1
 704	ldf.fill.nta f115=[r14],loc1
 705	ldf.fill.nta f123=[r15],loc1
 706	;;
 707	ldf.fill.nta f36=[in0],loc0
 708	ldf.fill.nta f44=[ r3],loc0
 709	ldf.fill.nta f52=[r14],loc0
 710	ldf.fill.nta f60=[r15],loc0
 711	;;
 712	ldf.fill.nta f68=[in0],loc0
 713	ldf.fill.nta f76=[ r3],loc0
 714	ldf.fill.nta f84=[r14],loc0
 715	ldf.fill.nta f92=[r15],loc0
 716	;;
 717	ldf.fill.nta f100=[in0],loc1
 718	ldf.fill.nta f108=[ r3],loc1
 719	ldf.fill.nta f116=[r14],loc1
 720	ldf.fill.nta f124=[r15],loc1
 721	;;
 722	ldf.fill.nta f37=[in0],loc0
 723	ldf.fill.nta f45=[ r3],loc0
 724	ldf.fill.nta f53=[r14],loc0
 725	ldf.fill.nta f61=[r15],loc0
 726	;;
 727	ldf.fill.nta f69=[in0],loc0
 728	ldf.fill.nta f77=[ r3],loc0
 729	ldf.fill.nta f85=[r14],loc0
 730	ldf.fill.nta f93=[r15],loc0
 731	;;
 732	ldf.fill.nta f101=[in0],loc1
 733	ldf.fill.nta f109=[ r3],loc1
 734	ldf.fill.nta f117=[r14],loc1
 735	ldf.fill.nta f125=[r15],loc1
 736	;;
 737	ldf.fill.nta f38 =[in0],loc0
 738	ldf.fill.nta f46 =[ r3],loc0
 739	ldf.fill.nta f54 =[r14],loc0
 740	ldf.fill.nta f62 =[r15],loc0
 741	;;
 742	ldf.fill.nta f70 =[in0],loc0
 743	ldf.fill.nta f78 =[ r3],loc0
 744	ldf.fill.nta f86 =[r14],loc0
 745	ldf.fill.nta f94 =[r15],loc0
 746	;;
 747	ldf.fill.nta f102=[in0],loc1
 748	ldf.fill.nta f110=[ r3],loc1
 749	ldf.fill.nta f118=[r14],loc1
 750	ldf.fill.nta f126=[r15],loc1
 751	;;
 752	ldf.fill.nta f39 =[in0],loc0
 753	ldf.fill.nta f47 =[ r3],loc0
 754	ldf.fill.nta f55 =[r14],loc0
 755	ldf.fill.nta f63 =[r15],loc0
 756	;;
 757	ldf.fill.nta f71 =[in0],loc0
 758	ldf.fill.nta f79 =[ r3],loc0
 759	ldf.fill.nta f87 =[r14],loc0
 760	ldf.fill.nta f95 =[r15],loc0
 761	;;
 762	ldf.fill.nta f103=[in0]
 763	ldf.fill.nta f111=[ r3]
 764	ldf.fill.nta f119=[r14]
 765	ldf.fill.nta f127=[r15]
 766	br.ret.sptk.many rp
 767END(__ia64_load_fpu)
 768
 769GLOBAL_ENTRY(__ia64_init_fpu)
 770	stf.spill [sp]=f0		// M3
 771	mov	 f32=f0			// F
 772	nop.b	 0
 773
 774	ldfps	 f33,f34=[sp]		// M0
 775	ldfps	 f35,f36=[sp]		// M1
 776	mov      f37=f0			// F
 777	;;
 778
 779	setf.s	 f38=r0			// M2
 780	setf.s	 f39=r0			// M3
 781	mov      f40=f0			// F
 782
 783	ldfps	 f41,f42=[sp]		// M0
 784	ldfps	 f43,f44=[sp]		// M1
 785	mov      f45=f0			// F
 786
 787	setf.s	 f46=r0			// M2
 788	setf.s	 f47=r0			// M3
 789	mov      f48=f0			// F
 790
 791	ldfps	 f49,f50=[sp]		// M0
 792	ldfps	 f51,f52=[sp]		// M1
 793	mov      f53=f0			// F
 794
 795	setf.s	 f54=r0			// M2
 796	setf.s	 f55=r0			// M3
 797	mov      f56=f0			// F
 798
 799	ldfps	 f57,f58=[sp]		// M0
 800	ldfps	 f59,f60=[sp]		// M1
 801	mov      f61=f0			// F
 802
 803	setf.s	 f62=r0			// M2
 804	setf.s	 f63=r0			// M3
 805	mov      f64=f0			// F
 806
 807	ldfps	 f65,f66=[sp]		// M0
 808	ldfps	 f67,f68=[sp]		// M1
 809	mov      f69=f0			// F
 810
 811	setf.s	 f70=r0			// M2
 812	setf.s	 f71=r0			// M3
 813	mov      f72=f0			// F
 814
 815	ldfps	 f73,f74=[sp]		// M0
 816	ldfps	 f75,f76=[sp]		// M1
 817	mov      f77=f0			// F
 818
 819	setf.s	 f78=r0			// M2
 820	setf.s	 f79=r0			// M3
 821	mov      f80=f0			// F
 822
 823	ldfps	 f81,f82=[sp]		// M0
 824	ldfps	 f83,f84=[sp]		// M1
 825	mov      f85=f0			// F
 826
 827	setf.s	 f86=r0			// M2
 828	setf.s	 f87=r0			// M3
 829	mov      f88=f0			// F
 830
 831	/*
 832	 * When the instructions are cached, it would be faster to initialize
 833	 * the remaining registers with simply mov instructions (F-unit).
 834	 * This gets the time down to ~29 cycles.  However, this would use up
 835	 * 33 bundles, whereas continuing with the above pattern yields
 836	 * 10 bundles and ~30 cycles.
 837	 */
 838
 839	ldfps	 f89,f90=[sp]		// M0
 840	ldfps	 f91,f92=[sp]		// M1
 841	mov      f93=f0			// F
 842
 843	setf.s	 f94=r0			// M2
 844	setf.s	 f95=r0			// M3
 845	mov      f96=f0			// F
 846
 847	ldfps	 f97,f98=[sp]		// M0
 848	ldfps	 f99,f100=[sp]		// M1
 849	mov      f101=f0		// F
 850
 851	setf.s	 f102=r0		// M2
 852	setf.s	 f103=r0		// M3
 853	mov      f104=f0		// F
 854
 855	ldfps	 f105,f106=[sp]		// M0
 856	ldfps	 f107,f108=[sp]		// M1
 857	mov      f109=f0		// F
 858
 859	setf.s	 f110=r0		// M2
 860	setf.s	 f111=r0		// M3
 861	mov      f112=f0		// F
 862
 863	ldfps	 f113,f114=[sp]		// M0
 864	ldfps	 f115,f116=[sp]		// M1
 865	mov      f117=f0		// F
 866
 867	setf.s	 f118=r0		// M2
 868	setf.s	 f119=r0		// M3
 869	mov      f120=f0		// F
 870
 871	ldfps	 f121,f122=[sp]		// M0
 872	ldfps	 f123,f124=[sp]		// M1
 873	mov      f125=f0		// F
 874
 875	setf.s	 f126=r0		// M2
 876	setf.s	 f127=r0		// M3
 877	br.ret.sptk.many rp		// F
 878END(__ia64_init_fpu)
 879
 880/*
 881 * Switch execution mode from virtual to physical
 882 *
 883 * Inputs:
 884 *	r16 = new psr to establish
 885 * Output:
 886 *	r19 = old virtual address of ar.bsp
 887 *	r20 = old virtual address of sp
 888 *
 889 * Note: RSE must already be in enforced lazy mode
 890 */
 891GLOBAL_ENTRY(ia64_switch_mode_phys)
 892 {
 893	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 894	mov r15=ip
 895 }
 896	;;
 897 {
 898	flushrs				// must be first insn in group
 899	srlz.i
 900 }
 901	;;
 902	mov cr.ipsr=r16			// set new PSR
 903	add r3=1f-ia64_switch_mode_phys,r15
 904
 905	mov r19=ar.bsp
 906	mov r20=sp
 907	mov r14=rp			// get return address into a general register
 908	;;
 909
 910	// going to physical mode, use tpa to translate virt->phys
 911	tpa r17=r19
 912	tpa r3=r3
 913	tpa sp=sp
 914	tpa r14=r14
 915	;;
 916
 917	mov r18=ar.rnat			// save ar.rnat
 918	mov ar.bspstore=r17		// this steps on ar.rnat
 919	mov cr.iip=r3
 920	mov cr.ifs=r0
 921	;;
 922	mov ar.rnat=r18			// restore ar.rnat
 923	rfi				// must be last insn in group
 924	;;
 9251:	mov rp=r14
 926	br.ret.sptk.many rp
 927END(ia64_switch_mode_phys)
 928
 929/*
 930 * Switch execution mode from physical to virtual
 931 *
 932 * Inputs:
 933 *	r16 = new psr to establish
 934 *	r19 = new bspstore to establish
 935 *	r20 = new sp to establish
 936 *
 937 * Note: RSE must already be in enforced lazy mode
 938 */
 939GLOBAL_ENTRY(ia64_switch_mode_virt)
 940 {
 941	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 942	mov r15=ip
 943 }
 944	;;
 945 {
 946	flushrs				// must be first insn in group
 947	srlz.i
 948 }
 949	;;
 950	mov cr.ipsr=r16			// set new PSR
 951	add r3=1f-ia64_switch_mode_virt,r15
 952
 953	mov r14=rp			// get return address into a general register
 954	;;
 955
 956	// going to virtual
 957	//   - for code addresses, set upper bits of addr to KERNEL_START
 958	//   - for stack addresses, copy from input argument
 959	movl r18=KERNEL_START
 960	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 961	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 962	mov sp=r20
 963	;;
 964	or r3=r3,r18
 965	or r14=r14,r18
 966	;;
 967
 968	mov r18=ar.rnat			// save ar.rnat
 969	mov ar.bspstore=r19		// this steps on ar.rnat
 970	mov cr.iip=r3
 971	mov cr.ifs=r0
 972	;;
 973	mov ar.rnat=r18			// restore ar.rnat
 974	rfi				// must be last insn in group
 975	;;
 9761:	mov rp=r14
 977	br.ret.sptk.many rp
 978END(ia64_switch_mode_virt)
 979
 980GLOBAL_ENTRY(ia64_delay_loop)
 981	.prologue
 982{	nop 0			// work around GAS unwind info generation bug...
 983	.save ar.lc,r2
 984	mov r2=ar.lc
 985	.body
 986	;;
 987	mov ar.lc=r32
 988}
 989	;;
 990	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
 991	// inside function body without corrupting unwind info).
 992{	nop 0 }
 9931:	br.cloop.sptk.few 1b
 994	;;
 995	mov ar.lc=r2
 996	br.ret.sptk.many rp
 997END(ia64_delay_loop)
 998
 999/*
1000 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
1001 * NOT synchronized across CPUs its return value must never be
1002 * compared against the values returned on another CPU.  The usage in
1003 * kernel/sched/core.c ensures that.
1004 *
1005 * The return-value of sched_clock() is NOT supposed to wrap-around.
1006 * If it did, it would cause some scheduling hiccups (at the worst).
1007 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1008 * that would happen only once every 5+ years.
1009 *
1010 * The code below basically calculates:
1011 *
1012 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1013 *
1014 * except that the multiplication and the shift are done with 128-bit
1015 * intermediate precision so that we can produce a full 64-bit result.
1016 */
1017GLOBAL_ENTRY(ia64_native_sched_clock)
1018	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1019	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1020	;;
1021	ldf8 f8=[r8]
1022	;;
1023	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1024	;;
1025	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1026	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1027	;;
1028	getf.sig r8=f10		//						(5 cyc)
1029	getf.sig r9=f11
1030	;;
1031	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1032	br.ret.sptk.many rp
1033END(ia64_native_sched_clock)
1034
1035#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1036GLOBAL_ENTRY(cycle_to_nsec)
1037	alloc r16=ar.pfs,1,0,0,0
1038	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1039	;;
1040	ldf8 f8=[r8]
1041	;;
1042	setf.sig f9=r32
1043	;;
1044	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1045	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1046	;;
1047	getf.sig r8=f10		//						(5 cyc)
1048	getf.sig r9=f11
1049	;;
1050	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1051	br.ret.sptk.many rp
1052END(cycle_to_nsec)
1053#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1054
1055#ifdef CONFIG_IA64_BRL_EMU
1056
1057/*
1058 *  Assembly routines used by brl_emu.c to set preserved register state.
1059 */
1060
1061#define SET_REG(reg)				\
1062 GLOBAL_ENTRY(ia64_set_##reg);			\
1063	alloc r16=ar.pfs,1,0,0,0;		\
1064	mov reg=r32;				\
1065	;;					\
1066	br.ret.sptk.many rp;			\
1067 END(ia64_set_##reg)
1068
1069SET_REG(b1);
1070SET_REG(b2);
1071SET_REG(b3);
1072SET_REG(b4);
1073SET_REG(b5);
1074
1075#endif /* CONFIG_IA64_BRL_EMU */
1076
1077#ifdef CONFIG_SMP
1078
1079#ifdef CONFIG_HOTPLUG_CPU
1080GLOBAL_ENTRY(ia64_jump_to_sal)
1081	alloc r16=ar.pfs,1,0,0,0;;
1082	rsm psr.i  | psr.ic
1083{
1084	flushrs
1085	srlz.i
1086}
1087	tpa r25=in0
1088	movl r18=tlb_purge_done;;
1089	DATA_VA_TO_PA(r18);;
1090	mov b1=r18 	// Return location
1091	movl r18=ia64_do_tlb_purge;;
1092	DATA_VA_TO_PA(r18);;
1093	mov b2=r18 	// doing tlb_flush work
1094	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1095	movl r17=1f;;
1096	DATA_VA_TO_PA(r17);;
1097	mov cr.iip=r17
1098	movl r16=SAL_PSR_BITS_TO_SET;;
1099	mov cr.ipsr=r16
1100	mov cr.ifs=r0;;
1101	rfi;;			// note: this unmask MCA/INIT (psr.mc)
11021:
1103	/*
1104	 * Invalidate all TLB data/inst
1105	 */
1106	br.sptk.many b2;; // jump to tlb purge code
1107
1108tlb_purge_done:
1109	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1110	RESTORE_REG(b0, r25, r17);;
1111	RESTORE_REG(b1, r25, r17);;
1112	RESTORE_REG(b2, r25, r17);;
1113	RESTORE_REG(b3, r25, r17);;
1114	RESTORE_REG(b4, r25, r17);;
1115	RESTORE_REG(b5, r25, r17);;
1116	ld8 r1=[r25],0x08;;
1117	ld8 r12=[r25],0x08;;
1118	ld8 r13=[r25],0x08;;
1119	RESTORE_REG(ar.fpsr, r25, r17);;
1120	RESTORE_REG(ar.pfs, r25, r17);;
1121	RESTORE_REG(ar.rnat, r25, r17);;
1122	RESTORE_REG(ar.unat, r25, r17);;
1123	RESTORE_REG(ar.bspstore, r25, r17);;
1124	RESTORE_REG(cr.dcr, r25, r17);;
1125	RESTORE_REG(cr.iva, r25, r17);;
1126	RESTORE_REG(cr.pta, r25, r17);;
1127	srlz.d;;	// required not to violate RAW dependency
1128	RESTORE_REG(cr.itv, r25, r17);;
1129	RESTORE_REG(cr.pmv, r25, r17);;
1130	RESTORE_REG(cr.cmcv, r25, r17);;
1131	RESTORE_REG(cr.lrr0, r25, r17);;
1132	RESTORE_REG(cr.lrr1, r25, r17);;
1133	ld8 r4=[r25],0x08;;
1134	ld8 r5=[r25],0x08;;
1135	ld8 r6=[r25],0x08;;
1136	ld8 r7=[r25],0x08;;
1137	ld8 r17=[r25],0x08;;
1138	mov pr=r17,-1;;
1139	RESTORE_REG(ar.lc, r25, r17);;
1140	/*
1141	 * Now Restore floating point regs
1142	 */
1143	ldf.fill.nta f2=[r25],16;;
1144	ldf.fill.nta f3=[r25],16;;
1145	ldf.fill.nta f4=[r25],16;;
1146	ldf.fill.nta f5=[r25],16;;
1147	ldf.fill.nta f16=[r25],16;;
1148	ldf.fill.nta f17=[r25],16;;
1149	ldf.fill.nta f18=[r25],16;;
1150	ldf.fill.nta f19=[r25],16;;
1151	ldf.fill.nta f20=[r25],16;;
1152	ldf.fill.nta f21=[r25],16;;
1153	ldf.fill.nta f22=[r25],16;;
1154	ldf.fill.nta f23=[r25],16;;
1155	ldf.fill.nta f24=[r25],16;;
1156	ldf.fill.nta f25=[r25],16;;
1157	ldf.fill.nta f26=[r25],16;;
1158	ldf.fill.nta f27=[r25],16;;
1159	ldf.fill.nta f28=[r25],16;;
1160	ldf.fill.nta f29=[r25],16;;
1161	ldf.fill.nta f30=[r25],16;;
1162	ldf.fill.nta f31=[r25],16;;
1163
1164	/*
1165	 * Now that we have done all the register restores
1166	 * we are now ready for the big DIVE to SAL Land
1167	 */
1168	ssm psr.ic;;
1169	srlz.d;;
1170	br.ret.sptk.many b0;;
1171END(ia64_jump_to_sal)
1172#endif /* CONFIG_HOTPLUG_CPU */
1173
1174#endif /* CONFIG_SMP */
v4.6
 
   1/*
   2 * Here is where the ball gets rolling as far as the kernel is concerned.
   3 * When control is transferred to _start, the bootload has already
   4 * loaded us to the correct address.  All that's left to do here is
   5 * to set up the kernel's global pointer and jump to the kernel
   6 * entry point.
   7 *
   8 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *	Stephane Eranian <eranian@hpl.hp.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 * Copyright (C) 1999 Intel Corp.
  14 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  15 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  16 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  17 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  18 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  19 *   Support for CPU Hotplug
  20 */
  21
  22
 
  23#include <asm/asmmacro.h>
  24#include <asm/fpu.h>
  25#include <asm/kregs.h>
  26#include <asm/mmu_context.h>
  27#include <asm/asm-offsets.h>
  28#include <asm/pal.h>
  29#include <asm/pgtable.h>
  30#include <asm/processor.h>
  31#include <asm/ptrace.h>
  32#include <asm/mca_asm.h>
  33#include <linux/init.h>
  34#include <linux/linkage.h>
 
 
  35
  36#ifdef CONFIG_HOTPLUG_CPU
  37#define SAL_PSR_BITS_TO_SET				\
  38	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  39
  40#define SAVE_FROM_REG(src, ptr, dest)	\
  41	mov dest=src;;						\
  42	st8 [ptr]=dest,0x08
  43
  44#define RESTORE_REG(reg, ptr, _tmp)		\
  45	ld8 _tmp=[ptr],0x08;;				\
  46	mov reg=_tmp
  47
  48#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  49	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
  50	mov _idx=0;; 								\
  511: 												\
  52	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
  53	add _idx=1,_idx;;							\
  54	br.cloop.sptk.many 1b
  55
  56#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  57	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
  58	mov _idx=0;;							\
  59_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
  60	add _idx=1, _idx;;						\
  61	br.cloop.sptk.many _lbl
  62
  63#define SAVE_ONE_RR(num, _reg, _tmp) \
  64	movl _tmp=(num<<61);;	\
  65	mov _reg=rr[_tmp]
  66
  67#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  68	SAVE_ONE_RR(0,_r0, _tmp);; \
  69	SAVE_ONE_RR(1,_r1, _tmp);; \
  70	SAVE_ONE_RR(2,_r2, _tmp);; \
  71	SAVE_ONE_RR(3,_r3, _tmp);; \
  72	SAVE_ONE_RR(4,_r4, _tmp);; \
  73	SAVE_ONE_RR(5,_r5, _tmp);; \
  74	SAVE_ONE_RR(6,_r6, _tmp);; \
  75	SAVE_ONE_RR(7,_r7, _tmp);;
  76
  77#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  78	st8 [ptr]=_r0, 8;; \
  79	st8 [ptr]=_r1, 8;; \
  80	st8 [ptr]=_r2, 8;; \
  81	st8 [ptr]=_r3, 8;; \
  82	st8 [ptr]=_r4, 8;; \
  83	st8 [ptr]=_r5, 8;; \
  84	st8 [ptr]=_r6, 8;; \
  85	st8 [ptr]=_r7, 8;;
  86
  87#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  88	mov		ar.lc=0x08-1;;						\
  89	movl	_idx1=0x00;;						\
  90RestRR:											\
  91	dep.z	_idx2=_idx1,61,3;;					\
  92	ld8		_tmp=[ptr],8;;						\
  93	mov		rr[_idx2]=_tmp;;					\
  94	srlz.d;;									\
  95	add		_idx1=1,_idx1;;						\
  96	br.cloop.sptk.few	RestRR
  97
  98#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
  99	movl reg1=sal_state_for_booting_cpu;;	\
 100	ld8 reg2=[reg1];;
 101
 102/*
 103 * Adjust region registers saved before starting to save
 104 * break regs and rest of the states that need to be preserved.
 105 */
 106#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
 107	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
 108	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
 109	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
 110	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
 111	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
 112	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
 113	st8 [_reg1]=r1,0x08;;								\
 114	st8 [_reg1]=r12,0x08;;								\
 115	st8 [_reg1]=r13,0x08;;								\
 116	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
 117	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
 118	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
 119	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
 120	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
 121	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
 122	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
 123	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
 124	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
 125	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
 126	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
 127	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
 128	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
 129	st8 [_reg1]=r4,0x08;;								\
 130	st8 [_reg1]=r5,0x08;;								\
 131	st8 [_reg1]=r6,0x08;;								\
 132	st8 [_reg1]=r7,0x08;;								\
 133	st8 [_reg1]=_pred,0x08;;							\
 134	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
 135	stf.spill.nta [_reg1]=f2,16;;						\
 136	stf.spill.nta [_reg1]=f3,16;;						\
 137	stf.spill.nta [_reg1]=f4,16;;						\
 138	stf.spill.nta [_reg1]=f5,16;;						\
 139	stf.spill.nta [_reg1]=f16,16;;						\
 140	stf.spill.nta [_reg1]=f17,16;;						\
 141	stf.spill.nta [_reg1]=f18,16;;						\
 142	stf.spill.nta [_reg1]=f19,16;;						\
 143	stf.spill.nta [_reg1]=f20,16;;						\
 144	stf.spill.nta [_reg1]=f21,16;;						\
 145	stf.spill.nta [_reg1]=f22,16;;						\
 146	stf.spill.nta [_reg1]=f23,16;;						\
 147	stf.spill.nta [_reg1]=f24,16;;						\
 148	stf.spill.nta [_reg1]=f25,16;;						\
 149	stf.spill.nta [_reg1]=f26,16;;						\
 150	stf.spill.nta [_reg1]=f27,16;;						\
 151	stf.spill.nta [_reg1]=f28,16;;						\
 152	stf.spill.nta [_reg1]=f29,16;;						\
 153	stf.spill.nta [_reg1]=f30,16;;						\
 154	stf.spill.nta [_reg1]=f31,16;;
 155
 156#else
 157#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
 158#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
 159#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 160#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
 161#endif
 162
 163#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
 164	movl _tmp1=(num << 61);;	\
 165	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
 166	mov rr[_tmp1]=_tmp2
 167
 168	__PAGE_ALIGNED_DATA
 169
 170	.global empty_zero_page
 
 171empty_zero_page:
 172	.skip PAGE_SIZE
 173
 174	.global swapper_pg_dir
 175swapper_pg_dir:
 176	.skip PAGE_SIZE
 177
 178	.rodata
 179halt_msg:
 180	stringz "Halting kernel\n"
 181
 182	__REF
 183
 184	.global start_ap
 185
 186	/*
 187	 * Start the kernel.  When the bootloader passes control to _start(), r28
 188	 * points to the address of the boot parameter area.  Execution reaches
 189	 * here in physical mode.
 190	 */
 191GLOBAL_ENTRY(_start)
 192start_ap:
 193	.prologue
 194	.save rp, r0		// terminate unwind chain with a NULL rp
 195	.body
 196
 197	rsm psr.i | psr.ic
 198	;;
 199	srlz.i
 200	;;
 201 {
 202	flushrs				// must be first insn in group
 203	srlz.i
 204 }
 205	;;
 206	/*
 207	 * Save the region registers, predicate before they get clobbered
 208	 */
 209	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
 210	mov r25=pr;;
 211
 212	/*
 213	 * Initialize kernel region registers:
 214	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
 215	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
 216	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
 217	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
 218	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
 219	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
 220	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 221	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
 222	 * We initialize all of them to prevent inadvertently assuming
 223	 * something about the state of address translation early in boot.
 224	 */
 225	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
 226	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
 227	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
 228	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
 229	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
 230	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
 231	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
 232	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
 233	/*
 234	 * Now pin mappings into the TLB for kernel text and data
 235	 */
 236	mov r18=KERNEL_TR_PAGE_SHIFT<<2
 237	movl r17=KERNEL_START
 238	;;
 239	mov cr.itir=r18
 240	mov cr.ifa=r17
 241	mov r16=IA64_TR_KERNEL
 242	mov r3=ip
 243	movl r18=PAGE_KERNEL
 244	;;
 245	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
 246	;;
 247	or r18=r2,r18
 248	;;
 249	srlz.i
 250	;;
 251	itr.i itr[r16]=r18
 252	;;
 253	itr.d dtr[r16]=r18
 254	;;
 255	srlz.i
 256
 257	/*
 258	 * Switch into virtual mode:
 259	 */
 260	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
 261		  |IA64_PSR_DI)
 262	;;
 263	mov cr.ipsr=r16
 264	movl r17=1f
 265	;;
 266	mov cr.iip=r17
 267	mov cr.ifs=r0
 268	;;
 269	rfi
 270	;;
 2711:	// now we are in virtual mode
 272
 273	SET_AREA_FOR_BOOTING_CPU(r2, r16);
 274
 275	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
 276	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
 277	;;
 278
 279	// set IVT entry point---can't access I/O ports without it
 280	movl r3=ia64_ivt
 281	;;
 282	mov cr.iva=r3
 283	movl r2=FPSR_DEFAULT
 284	;;
 285	srlz.i
 286	movl gp=__gp
 287
 288	mov ar.fpsr=r2
 289	;;
 290
 291#define isAP	p2	// are we an Application Processor?
 292#define isBP	p3	// are we the Bootstrap Processor?
 293
 294#ifdef CONFIG_SMP
 295	/*
 296	 * Find the init_task for the currently booting CPU.  At poweron, and in
 297	 * UP mode, task_for_booting_cpu is NULL.
 298	 */
 299	movl r3=task_for_booting_cpu
 300 	;;
 301	ld8 r3=[r3]
 302	movl r2=init_task
 303	;;
 304	cmp.eq isBP,isAP=r3,r0
 305	;;
 306(isAP)	mov r2=r3
 307#else
 308	movl r2=init_task
 309	cmp.eq isBP,isAP=r0,r0
 310#endif
 311	;;
 312	tpa r3=r2		// r3 == phys addr of task struct
 313	mov r16=-1
 314(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
 315
 316	// load mapping for stack (virtaddr in r2, physaddr in r3)
 317	rsm psr.ic
 318	movl r17=PAGE_KERNEL
 319	;;
 320	srlz.d
 321	dep r18=0,r3,0,12
 322	;;
 323	or r18=r17,r18
 324	dep r2=-1,r3,61,3	// IMVA of task
 325	;;
 326	mov r17=rr[r2]
 327	shr.u r16=r3,IA64_GRANULE_SHIFT
 328	;;
 329	dep r17=0,r17,8,24
 330	;;
 331	mov cr.itir=r17
 332	mov cr.ifa=r2
 333
 334	mov r19=IA64_TR_CURRENT_STACK
 335	;;
 336	itr.d dtr[r19]=r18
 337	;;
 338	ssm psr.ic
 339	srlz.d
 340  	;;
 341
 342.load_current:
 343	// load the "current" pointer (r13) and ar.k6 with the current task
 344	mov IA64_KR(CURRENT)=r2		// virtual address
 345	mov IA64_KR(CURRENT_STACK)=r16
 346	mov r13=r2
 347	/*
 348	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
 349	 * threads don't store interesting values in that structure, but the space
 350	 * still needs to be there because time-critical stuff such as the context
 351	 * switching can be implemented more efficiently (for example, __switch_to()
 352	 * always sets the psr.dfh bit of the task it is switching to).
 353	 */
 354
 355	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
 356	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
 357	mov ar.rsc=0		// place RSE in enforced lazy mode
 358	;;
 359	loadrs			// clear the dirty partition
 360	movl r19=__phys_per_cpu_start
 361	mov r18=PERCPU_PAGE_SIZE
 362	;;
 363#ifndef CONFIG_SMP
 364	add r19=r19,r18
 365	;;
 366#else
 367(isAP)	br.few 2f
 368	movl r20=__cpu0_per_cpu
 369	;;
 370	shr.u r18=r18,3
 3711:
 372	ld8 r21=[r19],8;;
 373	st8[r20]=r21,8
 374	adds r18=-1,r18;;
 375	cmp4.lt p7,p6=0,r18
 376(p7)	br.cond.dptk.few 1b
 377	mov r19=r20
 378	;;
 3792:
 380#endif
 381	tpa r19=r19
 382	;;
 383	.pred.rel.mutex isBP,isAP
 384(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
 385(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
 386	;;
 387	mov ar.bspstore=r2	// establish the new RSE stack
 388	;;
 389	mov ar.rsc=0x3		// place RSE in eager mode
 390
 391(isBP)	dep r28=-1,r28,61,3	// make address virtual
 392(isBP)	movl r2=ia64_boot_param
 393	;;
 394(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
 395
 396#ifdef CONFIG_SMP
 397(isAP)	br.call.sptk.many rp=start_secondary
 398.ret0:
 399(isAP)	br.cond.sptk self
 400#endif
 401
 402	// This is executed by the bootstrap processor (bsp) only:
 403
 404#ifdef CONFIG_IA64_FW_EMU
 405	// initialize PAL & SAL emulator:
 406	br.call.sptk.many rp=sys_fw_init
 407.ret1:
 408#endif
 409	br.call.sptk.many rp=start_kernel
 410.ret2:	addl r3=@ltoff(halt_msg),gp
 411	;;
 412	alloc r2=ar.pfs,8,0,2,0
 413	;;
 414	ld8 out0=[r3]
 415	br.call.sptk.many b0=console_print
 416
 417self:	hint @pause
 418	br.sptk.many self		// endless loop
 419END(_start)
 420
 421	.text
 422
 423GLOBAL_ENTRY(ia64_save_debug_regs)
 424	alloc r16=ar.pfs,1,0,0,0
 425	mov r20=ar.lc			// preserve ar.lc
 426	mov ar.lc=IA64_NUM_DBG_REGS-1
 427	mov r18=0
 428	add r19=IA64_NUM_DBG_REGS*8,in0
 429	;;
 4301:	mov r16=dbr[r18]
 431#ifdef CONFIG_ITANIUM
 432	;;
 433	srlz.d
 434#endif
 435	mov r17=ibr[r18]
 436	add r18=1,r18
 437	;;
 438	st8.nta [in0]=r16,8
 439	st8.nta [r19]=r17,8
 440	br.cloop.sptk.many 1b
 441	;;
 442	mov ar.lc=r20			// restore ar.lc
 443	br.ret.sptk.many rp
 444END(ia64_save_debug_regs)
 445
 446GLOBAL_ENTRY(ia64_load_debug_regs)
 447	alloc r16=ar.pfs,1,0,0,0
 448	lfetch.nta [in0]
 449	mov r20=ar.lc			// preserve ar.lc
 450	add r19=IA64_NUM_DBG_REGS*8,in0
 451	mov ar.lc=IA64_NUM_DBG_REGS-1
 452	mov r18=-1
 453	;;
 4541:	ld8.nta r16=[in0],8
 455	ld8.nta r17=[r19],8
 456	add r18=1,r18
 457	;;
 458	mov dbr[r18]=r16
 459#ifdef CONFIG_ITANIUM
 460	;;
 461	srlz.d				// Errata 132 (NoFix status)
 462#endif
 463	mov ibr[r18]=r17
 464	br.cloop.sptk.many 1b
 465	;;
 466	mov ar.lc=r20			// restore ar.lc
 467	br.ret.sptk.many rp
 468END(ia64_load_debug_regs)
 469
 470GLOBAL_ENTRY(__ia64_save_fpu)
 471	alloc r2=ar.pfs,1,4,0,0
 472	adds loc0=96*16-16,in0
 473	adds loc1=96*16-16-128,in0
 474	;;
 475	stf.spill.nta [loc0]=f127,-256
 476	stf.spill.nta [loc1]=f119,-256
 477	;;
 478	stf.spill.nta [loc0]=f111,-256
 479	stf.spill.nta [loc1]=f103,-256
 480	;;
 481	stf.spill.nta [loc0]=f95,-256
 482	stf.spill.nta [loc1]=f87,-256
 483	;;
 484	stf.spill.nta [loc0]=f79,-256
 485	stf.spill.nta [loc1]=f71,-256
 486	;;
 487	stf.spill.nta [loc0]=f63,-256
 488	stf.spill.nta [loc1]=f55,-256
 489	adds loc2=96*16-32,in0
 490	;;
 491	stf.spill.nta [loc0]=f47,-256
 492	stf.spill.nta [loc1]=f39,-256
 493	adds loc3=96*16-32-128,in0
 494	;;
 495	stf.spill.nta [loc2]=f126,-256
 496	stf.spill.nta [loc3]=f118,-256
 497	;;
 498	stf.spill.nta [loc2]=f110,-256
 499	stf.spill.nta [loc3]=f102,-256
 500	;;
 501	stf.spill.nta [loc2]=f94,-256
 502	stf.spill.nta [loc3]=f86,-256
 503	;;
 504	stf.spill.nta [loc2]=f78,-256
 505	stf.spill.nta [loc3]=f70,-256
 506	;;
 507	stf.spill.nta [loc2]=f62,-256
 508	stf.spill.nta [loc3]=f54,-256
 509	adds loc0=96*16-48,in0
 510	;;
 511	stf.spill.nta [loc2]=f46,-256
 512	stf.spill.nta [loc3]=f38,-256
 513	adds loc1=96*16-48-128,in0
 514	;;
 515	stf.spill.nta [loc0]=f125,-256
 516	stf.spill.nta [loc1]=f117,-256
 517	;;
 518	stf.spill.nta [loc0]=f109,-256
 519	stf.spill.nta [loc1]=f101,-256
 520	;;
 521	stf.spill.nta [loc0]=f93,-256
 522	stf.spill.nta [loc1]=f85,-256
 523	;;
 524	stf.spill.nta [loc0]=f77,-256
 525	stf.spill.nta [loc1]=f69,-256
 526	;;
 527	stf.spill.nta [loc0]=f61,-256
 528	stf.spill.nta [loc1]=f53,-256
 529	adds loc2=96*16-64,in0
 530	;;
 531	stf.spill.nta [loc0]=f45,-256
 532	stf.spill.nta [loc1]=f37,-256
 533	adds loc3=96*16-64-128,in0
 534	;;
 535	stf.spill.nta [loc2]=f124,-256
 536	stf.spill.nta [loc3]=f116,-256
 537	;;
 538	stf.spill.nta [loc2]=f108,-256
 539	stf.spill.nta [loc3]=f100,-256
 540	;;
 541	stf.spill.nta [loc2]=f92,-256
 542	stf.spill.nta [loc3]=f84,-256
 543	;;
 544	stf.spill.nta [loc2]=f76,-256
 545	stf.spill.nta [loc3]=f68,-256
 546	;;
 547	stf.spill.nta [loc2]=f60,-256
 548	stf.spill.nta [loc3]=f52,-256
 549	adds loc0=96*16-80,in0
 550	;;
 551	stf.spill.nta [loc2]=f44,-256
 552	stf.spill.nta [loc3]=f36,-256
 553	adds loc1=96*16-80-128,in0
 554	;;
 555	stf.spill.nta [loc0]=f123,-256
 556	stf.spill.nta [loc1]=f115,-256
 557	;;
 558	stf.spill.nta [loc0]=f107,-256
 559	stf.spill.nta [loc1]=f99,-256
 560	;;
 561	stf.spill.nta [loc0]=f91,-256
 562	stf.spill.nta [loc1]=f83,-256
 563	;;
 564	stf.spill.nta [loc0]=f75,-256
 565	stf.spill.nta [loc1]=f67,-256
 566	;;
 567	stf.spill.nta [loc0]=f59,-256
 568	stf.spill.nta [loc1]=f51,-256
 569	adds loc2=96*16-96,in0
 570	;;
 571	stf.spill.nta [loc0]=f43,-256
 572	stf.spill.nta [loc1]=f35,-256
 573	adds loc3=96*16-96-128,in0
 574	;;
 575	stf.spill.nta [loc2]=f122,-256
 576	stf.spill.nta [loc3]=f114,-256
 577	;;
 578	stf.spill.nta [loc2]=f106,-256
 579	stf.spill.nta [loc3]=f98,-256
 580	;;
 581	stf.spill.nta [loc2]=f90,-256
 582	stf.spill.nta [loc3]=f82,-256
 583	;;
 584	stf.spill.nta [loc2]=f74,-256
 585	stf.spill.nta [loc3]=f66,-256
 586	;;
 587	stf.spill.nta [loc2]=f58,-256
 588	stf.spill.nta [loc3]=f50,-256
 589	adds loc0=96*16-112,in0
 590	;;
 591	stf.spill.nta [loc2]=f42,-256
 592	stf.spill.nta [loc3]=f34,-256
 593	adds loc1=96*16-112-128,in0
 594	;;
 595	stf.spill.nta [loc0]=f121,-256
 596	stf.spill.nta [loc1]=f113,-256
 597	;;
 598	stf.spill.nta [loc0]=f105,-256
 599	stf.spill.nta [loc1]=f97,-256
 600	;;
 601	stf.spill.nta [loc0]=f89,-256
 602	stf.spill.nta [loc1]=f81,-256
 603	;;
 604	stf.spill.nta [loc0]=f73,-256
 605	stf.spill.nta [loc1]=f65,-256
 606	;;
 607	stf.spill.nta [loc0]=f57,-256
 608	stf.spill.nta [loc1]=f49,-256
 609	adds loc2=96*16-128,in0
 610	;;
 611	stf.spill.nta [loc0]=f41,-256
 612	stf.spill.nta [loc1]=f33,-256
 613	adds loc3=96*16-128-128,in0
 614	;;
 615	stf.spill.nta [loc2]=f120,-256
 616	stf.spill.nta [loc3]=f112,-256
 617	;;
 618	stf.spill.nta [loc2]=f104,-256
 619	stf.spill.nta [loc3]=f96,-256
 620	;;
 621	stf.spill.nta [loc2]=f88,-256
 622	stf.spill.nta [loc3]=f80,-256
 623	;;
 624	stf.spill.nta [loc2]=f72,-256
 625	stf.spill.nta [loc3]=f64,-256
 626	;;
 627	stf.spill.nta [loc2]=f56,-256
 628	stf.spill.nta [loc3]=f48,-256
 629	;;
 630	stf.spill.nta [loc2]=f40
 631	stf.spill.nta [loc3]=f32
 632	br.ret.sptk.many rp
 633END(__ia64_save_fpu)
 634
 635GLOBAL_ENTRY(__ia64_load_fpu)
 636	alloc r2=ar.pfs,1,2,0,0
 637	adds r3=128,in0
 638	adds r14=256,in0
 639	adds r15=384,in0
 640	mov loc0=512
 641	mov loc1=-1024+16
 642	;;
 643	ldf.fill.nta f32=[in0],loc0
 644	ldf.fill.nta f40=[ r3],loc0
 645	ldf.fill.nta f48=[r14],loc0
 646	ldf.fill.nta f56=[r15],loc0
 647	;;
 648	ldf.fill.nta f64=[in0],loc0
 649	ldf.fill.nta f72=[ r3],loc0
 650	ldf.fill.nta f80=[r14],loc0
 651	ldf.fill.nta f88=[r15],loc0
 652	;;
 653	ldf.fill.nta f96=[in0],loc1
 654	ldf.fill.nta f104=[ r3],loc1
 655	ldf.fill.nta f112=[r14],loc1
 656	ldf.fill.nta f120=[r15],loc1
 657	;;
 658	ldf.fill.nta f33=[in0],loc0
 659	ldf.fill.nta f41=[ r3],loc0
 660	ldf.fill.nta f49=[r14],loc0
 661	ldf.fill.nta f57=[r15],loc0
 662	;;
 663	ldf.fill.nta f65=[in0],loc0
 664	ldf.fill.nta f73=[ r3],loc0
 665	ldf.fill.nta f81=[r14],loc0
 666	ldf.fill.nta f89=[r15],loc0
 667	;;
 668	ldf.fill.nta f97=[in0],loc1
 669	ldf.fill.nta f105=[ r3],loc1
 670	ldf.fill.nta f113=[r14],loc1
 671	ldf.fill.nta f121=[r15],loc1
 672	;;
 673	ldf.fill.nta f34=[in0],loc0
 674	ldf.fill.nta f42=[ r3],loc0
 675	ldf.fill.nta f50=[r14],loc0
 676	ldf.fill.nta f58=[r15],loc0
 677	;;
 678	ldf.fill.nta f66=[in0],loc0
 679	ldf.fill.nta f74=[ r3],loc0
 680	ldf.fill.nta f82=[r14],loc0
 681	ldf.fill.nta f90=[r15],loc0
 682	;;
 683	ldf.fill.nta f98=[in0],loc1
 684	ldf.fill.nta f106=[ r3],loc1
 685	ldf.fill.nta f114=[r14],loc1
 686	ldf.fill.nta f122=[r15],loc1
 687	;;
 688	ldf.fill.nta f35=[in0],loc0
 689	ldf.fill.nta f43=[ r3],loc0
 690	ldf.fill.nta f51=[r14],loc0
 691	ldf.fill.nta f59=[r15],loc0
 692	;;
 693	ldf.fill.nta f67=[in0],loc0
 694	ldf.fill.nta f75=[ r3],loc0
 695	ldf.fill.nta f83=[r14],loc0
 696	ldf.fill.nta f91=[r15],loc0
 697	;;
 698	ldf.fill.nta f99=[in0],loc1
 699	ldf.fill.nta f107=[ r3],loc1
 700	ldf.fill.nta f115=[r14],loc1
 701	ldf.fill.nta f123=[r15],loc1
 702	;;
 703	ldf.fill.nta f36=[in0],loc0
 704	ldf.fill.nta f44=[ r3],loc0
 705	ldf.fill.nta f52=[r14],loc0
 706	ldf.fill.nta f60=[r15],loc0
 707	;;
 708	ldf.fill.nta f68=[in0],loc0
 709	ldf.fill.nta f76=[ r3],loc0
 710	ldf.fill.nta f84=[r14],loc0
 711	ldf.fill.nta f92=[r15],loc0
 712	;;
 713	ldf.fill.nta f100=[in0],loc1
 714	ldf.fill.nta f108=[ r3],loc1
 715	ldf.fill.nta f116=[r14],loc1
 716	ldf.fill.nta f124=[r15],loc1
 717	;;
 718	ldf.fill.nta f37=[in0],loc0
 719	ldf.fill.nta f45=[ r3],loc0
 720	ldf.fill.nta f53=[r14],loc0
 721	ldf.fill.nta f61=[r15],loc0
 722	;;
 723	ldf.fill.nta f69=[in0],loc0
 724	ldf.fill.nta f77=[ r3],loc0
 725	ldf.fill.nta f85=[r14],loc0
 726	ldf.fill.nta f93=[r15],loc0
 727	;;
 728	ldf.fill.nta f101=[in0],loc1
 729	ldf.fill.nta f109=[ r3],loc1
 730	ldf.fill.nta f117=[r14],loc1
 731	ldf.fill.nta f125=[r15],loc1
 732	;;
 733	ldf.fill.nta f38 =[in0],loc0
 734	ldf.fill.nta f46 =[ r3],loc0
 735	ldf.fill.nta f54 =[r14],loc0
 736	ldf.fill.nta f62 =[r15],loc0
 737	;;
 738	ldf.fill.nta f70 =[in0],loc0
 739	ldf.fill.nta f78 =[ r3],loc0
 740	ldf.fill.nta f86 =[r14],loc0
 741	ldf.fill.nta f94 =[r15],loc0
 742	;;
 743	ldf.fill.nta f102=[in0],loc1
 744	ldf.fill.nta f110=[ r3],loc1
 745	ldf.fill.nta f118=[r14],loc1
 746	ldf.fill.nta f126=[r15],loc1
 747	;;
 748	ldf.fill.nta f39 =[in0],loc0
 749	ldf.fill.nta f47 =[ r3],loc0
 750	ldf.fill.nta f55 =[r14],loc0
 751	ldf.fill.nta f63 =[r15],loc0
 752	;;
 753	ldf.fill.nta f71 =[in0],loc0
 754	ldf.fill.nta f79 =[ r3],loc0
 755	ldf.fill.nta f87 =[r14],loc0
 756	ldf.fill.nta f95 =[r15],loc0
 757	;;
 758	ldf.fill.nta f103=[in0]
 759	ldf.fill.nta f111=[ r3]
 760	ldf.fill.nta f119=[r14]
 761	ldf.fill.nta f127=[r15]
 762	br.ret.sptk.many rp
 763END(__ia64_load_fpu)
 764
 765GLOBAL_ENTRY(__ia64_init_fpu)
 766	stf.spill [sp]=f0		// M3
 767	mov	 f32=f0			// F
 768	nop.b	 0
 769
 770	ldfps	 f33,f34=[sp]		// M0
 771	ldfps	 f35,f36=[sp]		// M1
 772	mov      f37=f0			// F
 773	;;
 774
 775	setf.s	 f38=r0			// M2
 776	setf.s	 f39=r0			// M3
 777	mov      f40=f0			// F
 778
 779	ldfps	 f41,f42=[sp]		// M0
 780	ldfps	 f43,f44=[sp]		// M1
 781	mov      f45=f0			// F
 782
 783	setf.s	 f46=r0			// M2
 784	setf.s	 f47=r0			// M3
 785	mov      f48=f0			// F
 786
 787	ldfps	 f49,f50=[sp]		// M0
 788	ldfps	 f51,f52=[sp]		// M1
 789	mov      f53=f0			// F
 790
 791	setf.s	 f54=r0			// M2
 792	setf.s	 f55=r0			// M3
 793	mov      f56=f0			// F
 794
 795	ldfps	 f57,f58=[sp]		// M0
 796	ldfps	 f59,f60=[sp]		// M1
 797	mov      f61=f0			// F
 798
 799	setf.s	 f62=r0			// M2
 800	setf.s	 f63=r0			// M3
 801	mov      f64=f0			// F
 802
 803	ldfps	 f65,f66=[sp]		// M0
 804	ldfps	 f67,f68=[sp]		// M1
 805	mov      f69=f0			// F
 806
 807	setf.s	 f70=r0			// M2
 808	setf.s	 f71=r0			// M3
 809	mov      f72=f0			// F
 810
 811	ldfps	 f73,f74=[sp]		// M0
 812	ldfps	 f75,f76=[sp]		// M1
 813	mov      f77=f0			// F
 814
 815	setf.s	 f78=r0			// M2
 816	setf.s	 f79=r0			// M3
 817	mov      f80=f0			// F
 818
 819	ldfps	 f81,f82=[sp]		// M0
 820	ldfps	 f83,f84=[sp]		// M1
 821	mov      f85=f0			// F
 822
 823	setf.s	 f86=r0			// M2
 824	setf.s	 f87=r0			// M3
 825	mov      f88=f0			// F
 826
 827	/*
 828	 * When the instructions are cached, it would be faster to initialize
 829	 * the remaining registers with simply mov instructions (F-unit).
 830	 * This gets the time down to ~29 cycles.  However, this would use up
 831	 * 33 bundles, whereas continuing with the above pattern yields
 832	 * 10 bundles and ~30 cycles.
 833	 */
 834
 835	ldfps	 f89,f90=[sp]		// M0
 836	ldfps	 f91,f92=[sp]		// M1
 837	mov      f93=f0			// F
 838
 839	setf.s	 f94=r0			// M2
 840	setf.s	 f95=r0			// M3
 841	mov      f96=f0			// F
 842
 843	ldfps	 f97,f98=[sp]		// M0
 844	ldfps	 f99,f100=[sp]		// M1
 845	mov      f101=f0		// F
 846
 847	setf.s	 f102=r0		// M2
 848	setf.s	 f103=r0		// M3
 849	mov      f104=f0		// F
 850
 851	ldfps	 f105,f106=[sp]		// M0
 852	ldfps	 f107,f108=[sp]		// M1
 853	mov      f109=f0		// F
 854
 855	setf.s	 f110=r0		// M2
 856	setf.s	 f111=r0		// M3
 857	mov      f112=f0		// F
 858
 859	ldfps	 f113,f114=[sp]		// M0
 860	ldfps	 f115,f116=[sp]		// M1
 861	mov      f117=f0		// F
 862
 863	setf.s	 f118=r0		// M2
 864	setf.s	 f119=r0		// M3
 865	mov      f120=f0		// F
 866
 867	ldfps	 f121,f122=[sp]		// M0
 868	ldfps	 f123,f124=[sp]		// M1
 869	mov      f125=f0		// F
 870
 871	setf.s	 f126=r0		// M2
 872	setf.s	 f127=r0		// M3
 873	br.ret.sptk.many rp		// F
 874END(__ia64_init_fpu)
 875
 876/*
 877 * Switch execution mode from virtual to physical
 878 *
 879 * Inputs:
 880 *	r16 = new psr to establish
 881 * Output:
 882 *	r19 = old virtual address of ar.bsp
 883 *	r20 = old virtual address of sp
 884 *
 885 * Note: RSE must already be in enforced lazy mode
 886 */
 887GLOBAL_ENTRY(ia64_switch_mode_phys)
 888 {
 889	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 890	mov r15=ip
 891 }
 892	;;
 893 {
 894	flushrs				// must be first insn in group
 895	srlz.i
 896 }
 897	;;
 898	mov cr.ipsr=r16			// set new PSR
 899	add r3=1f-ia64_switch_mode_phys,r15
 900
 901	mov r19=ar.bsp
 902	mov r20=sp
 903	mov r14=rp			// get return address into a general register
 904	;;
 905
 906	// going to physical mode, use tpa to translate virt->phys
 907	tpa r17=r19
 908	tpa r3=r3
 909	tpa sp=sp
 910	tpa r14=r14
 911	;;
 912
 913	mov r18=ar.rnat			// save ar.rnat
 914	mov ar.bspstore=r17		// this steps on ar.rnat
 915	mov cr.iip=r3
 916	mov cr.ifs=r0
 917	;;
 918	mov ar.rnat=r18			// restore ar.rnat
 919	rfi				// must be last insn in group
 920	;;
 9211:	mov rp=r14
 922	br.ret.sptk.many rp
 923END(ia64_switch_mode_phys)
 924
 925/*
 926 * Switch execution mode from physical to virtual
 927 *
 928 * Inputs:
 929 *	r16 = new psr to establish
 930 *	r19 = new bspstore to establish
 931 *	r20 = new sp to establish
 932 *
 933 * Note: RSE must already be in enforced lazy mode
 934 */
 935GLOBAL_ENTRY(ia64_switch_mode_virt)
 936 {
 937	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
 938	mov r15=ip
 939 }
 940	;;
 941 {
 942	flushrs				// must be first insn in group
 943	srlz.i
 944 }
 945	;;
 946	mov cr.ipsr=r16			// set new PSR
 947	add r3=1f-ia64_switch_mode_virt,r15
 948
 949	mov r14=rp			// get return address into a general register
 950	;;
 951
 952	// going to virtual
 953	//   - for code addresses, set upper bits of addr to KERNEL_START
 954	//   - for stack addresses, copy from input argument
 955	movl r18=KERNEL_START
 956	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 957	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
 958	mov sp=r20
 959	;;
 960	or r3=r3,r18
 961	or r14=r14,r18
 962	;;
 963
 964	mov r18=ar.rnat			// save ar.rnat
 965	mov ar.bspstore=r19		// this steps on ar.rnat
 966	mov cr.iip=r3
 967	mov cr.ifs=r0
 968	;;
 969	mov ar.rnat=r18			// restore ar.rnat
 970	rfi				// must be last insn in group
 971	;;
 9721:	mov rp=r14
 973	br.ret.sptk.many rp
 974END(ia64_switch_mode_virt)
 975
 976GLOBAL_ENTRY(ia64_delay_loop)
 977	.prologue
 978{	nop 0			// work around GAS unwind info generation bug...
 979	.save ar.lc,r2
 980	mov r2=ar.lc
 981	.body
 982	;;
 983	mov ar.lc=r32
 984}
 985	;;
 986	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
 987	// inside function body without corrupting unwind info).
 988{	nop 0 }
 9891:	br.cloop.sptk.few 1b
 990	;;
 991	mov ar.lc=r2
 992	br.ret.sptk.many rp
 993END(ia64_delay_loop)
 994
 995/*
 996 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
 997 * NOT synchronized across CPUs its return value must never be
 998 * compared against the values returned on another CPU.  The usage in
 999 * kernel/sched/core.c ensures that.
1000 *
1001 * The return-value of sched_clock() is NOT supposed to wrap-around.
1002 * If it did, it would cause some scheduling hiccups (at the worst).
1003 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1004 * that would happen only once every 5+ years.
1005 *
1006 * The code below basically calculates:
1007 *
1008 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1009 *
1010 * except that the multiplication and the shift are done with 128-bit
1011 * intermediate precision so that we can produce a full 64-bit result.
1012 */
1013GLOBAL_ENTRY(ia64_native_sched_clock)
1014	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1015	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1016	;;
1017	ldf8 f8=[r8]
1018	;;
1019	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1020	;;
1021	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1022	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1023	;;
1024	getf.sig r8=f10		//						(5 cyc)
1025	getf.sig r9=f11
1026	;;
1027	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1028	br.ret.sptk.many rp
1029END(ia64_native_sched_clock)
1030
1031#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1032GLOBAL_ENTRY(cycle_to_cputime)
1033	alloc r16=ar.pfs,1,0,0,0
1034	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1035	;;
1036	ldf8 f8=[r8]
1037	;;
1038	setf.sig f9=r32
1039	;;
1040	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1041	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1042	;;
1043	getf.sig r8=f10		//						(5 cyc)
1044	getf.sig r9=f11
1045	;;
1046	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1047	br.ret.sptk.many rp
1048END(cycle_to_cputime)
1049#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1050
1051#ifdef CONFIG_IA64_BRL_EMU
1052
1053/*
1054 *  Assembly routines used by brl_emu.c to set preserved register state.
1055 */
1056
1057#define SET_REG(reg)				\
1058 GLOBAL_ENTRY(ia64_set_##reg);			\
1059	alloc r16=ar.pfs,1,0,0,0;		\
1060	mov reg=r32;				\
1061	;;					\
1062	br.ret.sptk.many rp;			\
1063 END(ia64_set_##reg)
1064
1065SET_REG(b1);
1066SET_REG(b2);
1067SET_REG(b3);
1068SET_REG(b4);
1069SET_REG(b5);
1070
1071#endif /* CONFIG_IA64_BRL_EMU */
1072
1073#ifdef CONFIG_SMP
1074
1075#ifdef CONFIG_HOTPLUG_CPU
1076GLOBAL_ENTRY(ia64_jump_to_sal)
1077	alloc r16=ar.pfs,1,0,0,0;;
1078	rsm psr.i  | psr.ic
1079{
1080	flushrs
1081	srlz.i
1082}
1083	tpa r25=in0
1084	movl r18=tlb_purge_done;;
1085	DATA_VA_TO_PA(r18);;
1086	mov b1=r18 	// Return location
1087	movl r18=ia64_do_tlb_purge;;
1088	DATA_VA_TO_PA(r18);;
1089	mov b2=r18 	// doing tlb_flush work
1090	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1091	movl r17=1f;;
1092	DATA_VA_TO_PA(r17);;
1093	mov cr.iip=r17
1094	movl r16=SAL_PSR_BITS_TO_SET;;
1095	mov cr.ipsr=r16
1096	mov cr.ifs=r0;;
1097	rfi;;			// note: this unmask MCA/INIT (psr.mc)
10981:
1099	/*
1100	 * Invalidate all TLB data/inst
1101	 */
1102	br.sptk.many b2;; // jump to tlb purge code
1103
1104tlb_purge_done:
1105	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1106	RESTORE_REG(b0, r25, r17);;
1107	RESTORE_REG(b1, r25, r17);;
1108	RESTORE_REG(b2, r25, r17);;
1109	RESTORE_REG(b3, r25, r17);;
1110	RESTORE_REG(b4, r25, r17);;
1111	RESTORE_REG(b5, r25, r17);;
1112	ld8 r1=[r25],0x08;;
1113	ld8 r12=[r25],0x08;;
1114	ld8 r13=[r25],0x08;;
1115	RESTORE_REG(ar.fpsr, r25, r17);;
1116	RESTORE_REG(ar.pfs, r25, r17);;
1117	RESTORE_REG(ar.rnat, r25, r17);;
1118	RESTORE_REG(ar.unat, r25, r17);;
1119	RESTORE_REG(ar.bspstore, r25, r17);;
1120	RESTORE_REG(cr.dcr, r25, r17);;
1121	RESTORE_REG(cr.iva, r25, r17);;
1122	RESTORE_REG(cr.pta, r25, r17);;
1123	srlz.d;;	// required not to violate RAW dependency
1124	RESTORE_REG(cr.itv, r25, r17);;
1125	RESTORE_REG(cr.pmv, r25, r17);;
1126	RESTORE_REG(cr.cmcv, r25, r17);;
1127	RESTORE_REG(cr.lrr0, r25, r17);;
1128	RESTORE_REG(cr.lrr1, r25, r17);;
1129	ld8 r4=[r25],0x08;;
1130	ld8 r5=[r25],0x08;;
1131	ld8 r6=[r25],0x08;;
1132	ld8 r7=[r25],0x08;;
1133	ld8 r17=[r25],0x08;;
1134	mov pr=r17,-1;;
1135	RESTORE_REG(ar.lc, r25, r17);;
1136	/*
1137	 * Now Restore floating point regs
1138	 */
1139	ldf.fill.nta f2=[r25],16;;
1140	ldf.fill.nta f3=[r25],16;;
1141	ldf.fill.nta f4=[r25],16;;
1142	ldf.fill.nta f5=[r25],16;;
1143	ldf.fill.nta f16=[r25],16;;
1144	ldf.fill.nta f17=[r25],16;;
1145	ldf.fill.nta f18=[r25],16;;
1146	ldf.fill.nta f19=[r25],16;;
1147	ldf.fill.nta f20=[r25],16;;
1148	ldf.fill.nta f21=[r25],16;;
1149	ldf.fill.nta f22=[r25],16;;
1150	ldf.fill.nta f23=[r25],16;;
1151	ldf.fill.nta f24=[r25],16;;
1152	ldf.fill.nta f25=[r25],16;;
1153	ldf.fill.nta f26=[r25],16;;
1154	ldf.fill.nta f27=[r25],16;;
1155	ldf.fill.nta f28=[r25],16;;
1156	ldf.fill.nta f29=[r25],16;;
1157	ldf.fill.nta f30=[r25],16;;
1158	ldf.fill.nta f31=[r25],16;;
1159
1160	/*
1161	 * Now that we have done all the register restores
1162	 * we are now ready for the big DIVE to SAL Land
1163	 */
1164	ssm psr.ic;;
1165	srlz.d;;
1166	br.ret.sptk.many b0;;
1167END(ia64_jump_to_sal)
1168#endif /* CONFIG_HOTPLUG_CPU */
1169
1170#endif /* CONFIG_SMP */