Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/init.c
  4 *
  5 * Copyright (C) 1995-2005 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/export.h>
 11#include <linux/errno.h>
 12#include <linux/swap.h>
 13#include <linux/init.h>
 14#include <linux/cache.h>
 15#include <linux/mman.h>
 16#include <linux/nodemask.h>
 17#include <linux/initrd.h>
 18#include <linux/gfp.h>
 19#include <linux/memblock.h>
 20#include <linux/sort.h>
 21#include <linux/of.h>
 22#include <linux/of_fdt.h>
 23#include <linux/dma-direct.h>
 24#include <linux/dma-mapping.h>
 25#include <linux/dma-contiguous.h>
 26#include <linux/efi.h>
 27#include <linux/swiotlb.h>
 28#include <linux/vmalloc.h>
 29#include <linux/mm.h>
 30#include <linux/kexec.h>
 31#include <linux/crash_dump.h>
 32#include <linux/hugetlb.h>
 
 
 33
 34#include <asm/boot.h>
 35#include <asm/fixmap.h>
 36#include <asm/kasan.h>
 37#include <asm/kernel-pgtable.h>
 
 38#include <asm/memory.h>
 39#include <asm/numa.h>
 40#include <asm/sections.h>
 41#include <asm/setup.h>
 42#include <linux/sizes.h>
 43#include <asm/tlb.h>
 44#include <asm/alternative.h>
 45
 46#define ARM64_ZONE_DMA_BITS	30
 47
 48/*
 49 * We need to be able to catch inadvertent references to memstart_addr
 50 * that occur (potentially in generic code) before arm64_memblock_init()
 51 * executes, which assigns it its actual value. So use a default value
 52 * that cannot be mistaken for a real physical address.
 53 */
 54s64 memstart_addr __ro_after_init = -1;
 55EXPORT_SYMBOL(memstart_addr);
 56
 57s64 physvirt_offset __ro_after_init;
 58EXPORT_SYMBOL(physvirt_offset);
 59
 60struct page *vmemmap __ro_after_init;
 61EXPORT_SYMBOL(vmemmap);
 62
 63/*
 64 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
 65 * memory as some devices, namely the Raspberry Pi 4, have peripherals with
 66 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
 67 * bit addressable memory area.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68 */
 69phys_addr_t arm64_dma_phys_limit __ro_after_init;
 70static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71
 72#ifdef CONFIG_KEXEC_CORE
 73/*
 74 * reserve_crashkernel() - reserves memory for crash kernel
 75 *
 76 * This function reserves memory area given in "crashkernel=" kernel command
 77 * line parameter. The memory reserved is used by dump capture kernel when
 78 * primary kernel is crashing.
 79 */
 80static void __init reserve_crashkernel(void)
 81{
 82	unsigned long long crash_base, crash_size;
 
 
 
 83	int ret;
 
 84
 85	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 86				&crash_size, &crash_base);
 87	/* no crashkernel= or invalid value specified */
 88	if (ret || !crash_size)
 89		return;
 90
 91	crash_size = PAGE_ALIGN(crash_size);
 92
 93	if (crash_base == 0) {
 94		/* Current arm64 boot protocol requires 2MB alignment */
 95		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
 96				crash_size, SZ_2M);
 97		if (crash_base == 0) {
 98			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
 99				crash_size);
100			return;
101		}
102	} else {
103		/* User specifies base address explicitly. */
104		if (!memblock_is_region_memory(crash_base, crash_size)) {
105			pr_warn("cannot reserve crashkernel: region is not memory\n");
106			return;
107		}
108
109		if (memblock_is_region_reserved(crash_base, crash_size)) {
110			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
 
 
 
 
 
 
111			return;
112		}
113
114		if (!IS_ALIGNED(crash_base, SZ_2M)) {
115			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
116			return;
117		}
118	}
119	memblock_reserve(crash_base, crash_size);
120
121	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
122		crash_base, crash_base + crash_size, crash_size >> 20);
123
124	crashk_res.start = crash_base;
125	crashk_res.end = crash_base + crash_size - 1;
126}
127#else
128static void __init reserve_crashkernel(void)
129{
130}
131#endif /* CONFIG_KEXEC_CORE */
132
133#ifdef CONFIG_CRASH_DUMP
134static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
135		const char *uname, int depth, void *data)
136{
137	const __be32 *reg;
138	int len;
139
140	if (depth != 1 || strcmp(uname, "chosen") != 0)
141		return 0;
142
143	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
144	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
145		return 1;
146
147	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
148	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
149
150	return 1;
151}
 
 
 
152
153/*
154 * reserve_elfcorehdr() - reserves memory for elf core header
155 *
156 * This function reserves the memory occupied by an elf core header
157 * described in the device tree. This region contains all the
158 * information about primary kernel's core image and is used by a dump
159 * capture kernel to access the system memory on primary kernel.
160 */
161static void __init reserve_elfcorehdr(void)
162{
163	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
 
 
 
164
165	if (!elfcorehdr_size)
 
166		return;
 
167
168	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
169		pr_warn("elfcorehdr is overlapped\n");
 
170		return;
171	}
172
173	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 
 
 
 
 
 
 
 
 
174
175	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
176		elfcorehdr_size >> 10, elfcorehdr_addr);
177}
178#else
179static void __init reserve_elfcorehdr(void)
180{
181}
182#endif /* CONFIG_CRASH_DUMP */
183
184/*
185 * Return the maximum physical address for a zone with a given address size
186 * limit. It currently assumes that for memory starting above 4G, 32-bit
187 * devices will use a DMA offset.
188 */
189static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
190{
191	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
192	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
 
 
 
 
 
 
 
193}
194
195static void __init zone_sizes_init(unsigned long min, unsigned long max)
196{
197	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
 
 
 
198
199#ifdef CONFIG_ZONE_DMA
 
 
 
 
200	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
201#endif
202#ifdef CONFIG_ZONE_DMA32
203	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
 
 
204#endif
205	max_zone_pfns[ZONE_NORMAL] = max;
206
207	free_area_init(max_zone_pfns);
208}
209
210int pfn_valid(unsigned long pfn)
211{
212	phys_addr_t addr = pfn << PAGE_SHIFT;
213
214	if ((addr >> PAGE_SHIFT) != pfn)
 
215		return 0;
216
217#ifdef CONFIG_SPARSEMEM
218	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
219		return 0;
220
221	if (!valid_section(__pfn_to_section(pfn)))
222		return 0;
223#endif
224	return memblock_is_map_memory(addr);
225}
226EXPORT_SYMBOL(pfn_valid);
227
228static phys_addr_t memory_limit = PHYS_ADDR_MAX;
229
230/*
231 * Limit the memory size that was specified via FDT.
232 */
233static int __init early_mem(char *p)
234{
235	if (!p)
236		return 1;
237
238	memory_limit = memparse(p, &p) & PAGE_MASK;
239	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
240
241	return 0;
242}
243early_param("mem", early_mem);
244
245static int __init early_init_dt_scan_usablemem(unsigned long node,
246		const char *uname, int depth, void *data)
247{
248	struct memblock_region *usablemem = data;
249	const __be32 *reg;
250	int len;
251
252	if (depth != 1 || strcmp(uname, "chosen") != 0)
253		return 0;
254
255	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
256	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
257		return 1;
258
259	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
260	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
261
262	return 1;
263}
264
265static void __init fdt_enforce_memory_region(void)
266{
267	struct memblock_region reg = {
268		.size = 0,
269	};
270
271	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
272
273	if (reg.size)
274		memblock_cap_memory_range(reg.base, reg.size);
275}
276
277void __init arm64_memblock_init(void)
278{
279	const s64 linear_region_size = BIT(vabits_actual - 1);
280
281	/* Handle linux,usable-memory-range property */
282	fdt_enforce_memory_region();
 
 
 
 
 
 
 
 
 
 
 
283
284	/* Remove memory above our supported physical address size */
285	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
286
287	/*
288	 * Select a suitable value for the base of physical memory.
289	 */
290	memstart_addr = round_down(memblock_start_of_DRAM(),
291				   ARM64_MEMSTART_ALIGN);
292
293	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
294
295	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
296
297	/*
298	 * If we are running with a 52-bit kernel VA config on a system that
299	 * does not support it, we have to offset our vmemmap and physvirt_offset
300	 * s.t. we avoid the 52-bit portion of the direct linear map
301	 */
302	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
303		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
304		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
305	}
306
307	/*
308	 * Remove the memory that we will not be able to cover with the
309	 * linear mapping. Take care not to clip the kernel which may be
310	 * high in memory.
311	 */
312	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
313			__pa_symbol(_end)), ULLONG_MAX);
314	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
315		/* ensure that memstart_addr remains sufficiently aligned */
316		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
317					 ARM64_MEMSTART_ALIGN);
318		memblock_remove(0, memstart_addr);
319	}
320
321	/*
 
 
 
 
 
 
 
 
 
 
322	 * Apply the memory limit if it was set. Since the kernel may be loaded
323	 * high up in memory, add back the kernel region that must be accessible
324	 * via the linear mapping.
325	 */
326	if (memory_limit != PHYS_ADDR_MAX) {
327		memblock_mem_limit_remove_map(memory_limit);
328		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
329	}
330
331	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
332		/*
333		 * Add back the memory we just removed if it results in the
334		 * initrd to become inaccessible via the linear mapping.
335		 * Otherwise, this is a no-op
336		 */
337		u64 base = phys_initrd_start & PAGE_MASK;
338		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
339
340		/*
341		 * We can only add back the initrd memory if we don't end up
342		 * with more memory than we can address via the linear mapping.
343		 * It is up to the bootloader to position the kernel and the
344		 * initrd reasonably close to each other (i.e., within 32 GB of
345		 * each other) so that all granule/#levels combinations can
346		 * always access both.
347		 */
348		if (WARN(base < memblock_start_of_DRAM() ||
349			 base + size > memblock_start_of_DRAM() +
350				       linear_region_size,
351			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
352			phys_initrd_size = 0;
353		} else {
354			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
355			memblock_add(base, size);
 
356			memblock_reserve(base, size);
357		}
358	}
359
360	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
361		extern u16 memstart_offset_seed;
362		u64 range = linear_region_size -
363			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
 
 
 
364
365		/*
366		 * If the size of the linear region exceeds, by a sufficient
367		 * margin, the size of the region that the available physical
368		 * memory spans, randomize the linear region as well.
369		 */
370		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
371			range /= ARM64_MEMSTART_ALIGN;
372			memstart_addr -= ARM64_MEMSTART_ALIGN *
373					 ((range * memstart_offset_seed) >> 16);
374		}
375	}
376
377	/*
378	 * Register the kernel text, kernel data, initrd, and initial
379	 * pagetables with memblock.
380	 */
381	memblock_reserve(__pa_symbol(_text), _end - _text);
382	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
383		/* the generic initrd code expects virtual addresses */
384		initrd_start = __phys_to_virt(phys_initrd_start);
385		initrd_end = initrd_start + phys_initrd_size;
386	}
387
388	early_init_fdt_scan_reserved_mem();
389
390	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
391		zone_dma_bits = ARM64_ZONE_DMA_BITS;
392		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
393	}
394
395	if (IS_ENABLED(CONFIG_ZONE_DMA32))
396		arm64_dma32_phys_limit = max_zone_phys(32);
397	else
398		arm64_dma32_phys_limit = PHYS_MASK + 1;
399
400	reserve_crashkernel();
401
402	reserve_elfcorehdr();
403
404	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
405
406	dma_contiguous_reserve(arm64_dma32_phys_limit);
407}
408
409void __init bootmem_init(void)
410{
411	unsigned long min, max;
412
413	min = PFN_UP(memblock_start_of_DRAM());
414	max = PFN_DOWN(memblock_end_of_DRAM());
415
416	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
417
418	max_pfn = max_low_pfn = max;
419	min_low_pfn = min;
420
421	arm64_numa_init();
422
423	/*
424	 * must be done after arm64_numa_init() which calls numa_init() to
425	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
426	 * while allocating required CMA size across online nodes.
427	 */
428#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
429	arm64_hugetlb_cma_reserve();
430#endif
431
 
 
 
 
432	/*
433	 * sparse_init() tries to allocate memory from memblock, so must be
434	 * done after the fixed reservations
435	 */
436	sparse_init();
437	zone_sizes_init(min, max);
438
439	memblock_dump_all();
440}
441
442#ifndef CONFIG_SPARSEMEM_VMEMMAP
443static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
444{
445	struct page *start_pg, *end_pg;
446	unsigned long pg, pgend;
447
448	/*
449	 * Convert start_pfn/end_pfn to a struct page pointer.
450	 */
451	start_pg = pfn_to_page(start_pfn - 1) + 1;
452	end_pg = pfn_to_page(end_pfn - 1) + 1;
453
454	/*
455	 * Convert to physical addresses, and round start upwards and end
456	 * downwards.
457	 */
458	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
459	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
460
461	/*
462	 * If there are free pages between these, free the section of the
463	 * memmap array.
464	 */
465	if (pg < pgend)
466		memblock_free(pg, pgend - pg);
467}
468
469/*
470 * The mem_map array can get very big. Free the unused area of the memory map.
471 */
472static void __init free_unused_memmap(void)
473{
474	unsigned long start, prev_end = 0;
475	struct memblock_region *reg;
476
477	for_each_memblock(memory, reg) {
478		start = __phys_to_pfn(reg->base);
479
480#ifdef CONFIG_SPARSEMEM
481		/*
482		 * Take care not to free memmap entries that don't exist due
483		 * to SPARSEMEM sections which aren't present.
484		 */
485		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
486#endif
487		/*
488		 * If we had a previous bank, and there is a space between the
489		 * current bank and the previous, free it.
490		 */
491		if (prev_end && prev_end < start)
492			free_memmap(prev_end, start);
493
494		/*
495		 * Align up here since the VM subsystem insists that the
496		 * memmap entries are valid from the bank end aligned to
497		 * MAX_ORDER_NR_PAGES.
498		 */
499		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
500				 MAX_ORDER_NR_PAGES);
501	}
502
503#ifdef CONFIG_SPARSEMEM
504	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
505		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
506#endif
507}
508#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
509
510/*
511 * mem_init() marks the free areas in the mem_map and tells us how much memory
512 * is free.  This is done after various parts of the system have claimed their
513 * memory after the kernel image.
514 */
515void __init mem_init(void)
516{
517	if (swiotlb_force == SWIOTLB_FORCE ||
518	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
519		swiotlb_init(1);
520	else
521		swiotlb_force = SWIOTLB_NO_FORCE;
522
523	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
524
525#ifndef CONFIG_SPARSEMEM_VMEMMAP
526	free_unused_memmap();
527#endif
528	/* this will put all unused low memory onto the freelists */
529	memblock_free_all();
530
531	mem_init_print_info(NULL);
532
533	/*
534	 * Check boundaries twice: Some fundamental inconsistencies can be
535	 * detected at build time already.
536	 */
537#ifdef CONFIG_COMPAT
538	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
539#endif
540
 
 
 
 
 
 
 
541	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
542		extern int sysctl_overcommit_memory;
543		/*
544		 * On a machine this small we won't get anywhere without
545		 * overcommit, so turn it on by default.
546		 */
547		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
548	}
549}
550
551void free_initmem(void)
552{
553	free_reserved_area(lm_alias(__init_begin),
554			   lm_alias(__init_end),
555			   POISON_FREE_INITMEM, "unused kernel");
556	/*
557	 * Unmap the __init region but leave the VM area in place. This
558	 * prevents the region from being reused for kernel modules, which
559	 * is not supported by kallsyms.
560	 */
561	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
562}
563
564void dump_mem_limit(void)
565{
566	if (memory_limit != PHYS_ADDR_MAX) {
567		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
568	} else {
569		pr_emerg("Memory Limit: none\n");
570	}
571}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/init.c
  4 *
  5 * Copyright (C) 1995-2005 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/export.h>
 11#include <linux/errno.h>
 12#include <linux/swap.h>
 13#include <linux/init.h>
 14#include <linux/cache.h>
 15#include <linux/mman.h>
 16#include <linux/nodemask.h>
 17#include <linux/initrd.h>
 18#include <linux/gfp.h>
 19#include <linux/memblock.h>
 20#include <linux/sort.h>
 21#include <linux/of.h>
 22#include <linux/of_fdt.h>
 23#include <linux/dma-direct.h>
 24#include <linux/dma-map-ops.h>
 
 25#include <linux/efi.h>
 26#include <linux/swiotlb.h>
 27#include <linux/vmalloc.h>
 28#include <linux/mm.h>
 29#include <linux/kexec.h>
 30#include <linux/crash_dump.h>
 31#include <linux/hugetlb.h>
 32#include <linux/acpi_iort.h>
 33#include <linux/kmemleak.h>
 34
 35#include <asm/boot.h>
 36#include <asm/fixmap.h>
 37#include <asm/kasan.h>
 38#include <asm/kernel-pgtable.h>
 39#include <asm/kvm_host.h>
 40#include <asm/memory.h>
 41#include <asm/numa.h>
 42#include <asm/sections.h>
 43#include <asm/setup.h>
 44#include <linux/sizes.h>
 45#include <asm/tlb.h>
 46#include <asm/alternative.h>
 47#include <asm/xen/swiotlb-xen.h>
 
 48
 49/*
 50 * We need to be able to catch inadvertent references to memstart_addr
 51 * that occur (potentially in generic code) before arm64_memblock_init()
 52 * executes, which assigns it its actual value. So use a default value
 53 * that cannot be mistaken for a real physical address.
 54 */
 55s64 memstart_addr __ro_after_init = -1;
 56EXPORT_SYMBOL(memstart_addr);
 57
 
 
 
 
 
 
 58/*
 59 * If the corresponding config options are enabled, we create both ZONE_DMA
 60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
 61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
 62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
 63 * otherwise it is empty.
 64 *
 65 * Memory reservation for crash kernel either done early or deferred
 66 * depending on DMA memory zones configs (ZONE_DMA) --
 67 *
 68 * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
 69 * here instead of max_zone_phys().  This lets early reservation of
 70 * crash kernel memory which has a dependency on arm64_dma_phys_limit.
 71 * Reserving memory early for crash kernel allows linear creation of block
 72 * mappings (greater than page-granularity) for all the memory bank rangs.
 73 * In this scheme a comparatively quicker boot is observed.
 74 *
 75 * If ZONE_DMA configs are defined, crash kernel memory reservation
 76 * is delayed until DMA zone memory range size initialization performed in
 77 * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
 78 * memory range to avoid overlap allocation.  So crash kernel memory boundaries
 79 * are not known when mapping all bank memory ranges, which otherwise means
 80 * not possible to exclude crash kernel range from creating block mappings
 81 * so page-granularity mappings are created for the entire memory range.
 82 * Hence a slightly slower boot is observed.
 83 *
 84 * Note: Page-granularity mappings are necessary for crash kernel memory
 85 * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
 86 */
 87#if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
 88phys_addr_t __ro_after_init arm64_dma_phys_limit;
 89#else
 90phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
 91#endif
 92
 93/* Current arm64 boot protocol requires 2MB alignment */
 94#define CRASH_ALIGN			SZ_2M
 95
 96#define CRASH_ADDR_LOW_MAX		arm64_dma_phys_limit
 97#define CRASH_ADDR_HIGH_MAX		(PHYS_MASK + 1)
 98
 99#define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
100
101static int __init reserve_crashkernel_low(unsigned long long low_size)
102{
103	unsigned long long low_base;
104
105	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
106	if (!low_base) {
107		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
108		return -ENOMEM;
109	}
110
111	pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
112		low_base, low_base + low_size, low_size >> 20);
113
114	crashk_low_res.start = low_base;
115	crashk_low_res.end   = low_base + low_size - 1;
116	insert_resource(&iomem_resource, &crashk_low_res);
117
118	return 0;
119}
120
 
121/*
122 * reserve_crashkernel() - reserves memory for crash kernel
123 *
124 * This function reserves memory area given in "crashkernel=" kernel command
125 * line parameter. The memory reserved is used by dump capture kernel when
126 * primary kernel is crashing.
127 */
128static void __init reserve_crashkernel(void)
129{
130	unsigned long long crash_base, crash_size;
131	unsigned long long crash_low_size = 0;
132	unsigned long long crash_max = CRASH_ADDR_LOW_MAX;
133	char *cmdline = boot_command_line;
134	int ret;
135	bool fixed_base = false;
136
137	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
 
 
 
138		return;
139
140	/* crashkernel=X[@offset] */
141	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
142				&crash_size, &crash_base);
143	if (ret == -ENOENT) {
144		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
145		if (ret || !crash_size)
 
 
 
 
 
 
 
 
 
146			return;
 
147
148		/*
149		 * crashkernel=Y,low can be specified or not, but invalid value
150		 * is not allowed.
151		 */
152		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
153		if (ret == -ENOENT)
154			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
155		else if (ret)
156			return;
 
157
158		crash_max = CRASH_ADDR_HIGH_MAX;
159	} else if (ret || !crash_size) {
160		/* The specified value is invalid */
161		return;
162	}
 
 
 
 
 
 
 
 
 
 
 
 
 
163
164	crash_size = PAGE_ALIGN(crash_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
166	/* User specifies base address explicitly. */
167	if (crash_base) {
168		fixed_base = true;
169		crash_max = crash_base + crash_size;
170	}
171
172retry:
173	crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
174					       crash_base, crash_max);
175	if (!crash_base) {
176		/*
177		 * If the first attempt was for low memory, fall back to
178		 * high memory, the minimum required low memory will be
179		 * reserved later.
180		 */
181		if (!fixed_base && (crash_max == CRASH_ADDR_LOW_MAX)) {
182			crash_max = CRASH_ADDR_HIGH_MAX;
183			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
184			goto retry;
185		}
186
187		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
188			crash_size);
189		return;
190	}
191
192	if ((crash_base > CRASH_ADDR_LOW_MAX - crash_low_size) &&
193	     crash_low_size && reserve_crashkernel_low(crash_low_size)) {
194		memblock_phys_free(crash_base, crash_size);
195		return;
196	}
197
198	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
199		crash_base, crash_base + crash_size, crash_size >> 20);
200
201	/*
202	 * The crashkernel memory will be removed from the kernel linear
203	 * map. Inform kmemleak so that it won't try to access it.
204	 */
205	kmemleak_ignore_phys(crash_base);
206	if (crashk_low_res.end)
207		kmemleak_ignore_phys(crashk_low_res.start);
208
209	crashk_res.start = crash_base;
210	crashk_res.end = crash_base + crash_size - 1;
211	insert_resource(&iomem_resource, &crashk_res);
 
 
 
212}
 
213
214/*
215 * Return the maximum physical address for a zone accessible by the given bits
216 * limit. If DRAM starts above 32-bit, expand the zone to the maximum
217 * available memory, otherwise cap it at 32-bit.
218 */
219static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
220{
221	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
222	phys_addr_t phys_start = memblock_start_of_DRAM();
223
224	if (phys_start > U32_MAX)
225		zone_mask = PHYS_ADDR_MAX;
226	else if (phys_start > zone_mask)
227		zone_mask = U32_MAX;
228
229	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
230}
231
232static void __init zone_sizes_init(void)
233{
234	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235	unsigned int __maybe_unused acpi_zone_dma_bits;
236	unsigned int __maybe_unused dt_zone_dma_bits;
237	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
238
239#ifdef CONFIG_ZONE_DMA
240	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
241	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
242	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
243	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
244	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
245#endif
246#ifdef CONFIG_ZONE_DMA32
247	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
248	if (!arm64_dma_phys_limit)
249		arm64_dma_phys_limit = dma32_phys_limit;
250#endif
251	max_zone_pfns[ZONE_NORMAL] = max_pfn;
252
253	free_area_init(max_zone_pfns);
254}
255
256int pfn_is_map_memory(unsigned long pfn)
257{
258	phys_addr_t addr = PFN_PHYS(pfn);
259
260	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
261	if (PHYS_PFN(addr) != pfn)
262		return 0;
263
 
 
 
 
 
 
 
264	return memblock_is_map_memory(addr);
265}
266EXPORT_SYMBOL(pfn_is_map_memory);
267
268static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
269
270/*
271 * Limit the memory size that was specified via FDT.
272 */
273static int __init early_mem(char *p)
274{
275	if (!p)
276		return 1;
277
278	memory_limit = memparse(p, &p) & PAGE_MASK;
279	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
280
281	return 0;
282}
283early_param("mem", early_mem);
284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285void __init arm64_memblock_init(void)
286{
287	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
288
289	/*
290	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
291	 * be limited in their ability to support a linear map that exceeds 51
292	 * bits of VA space, depending on the placement of the ID map. Given
293	 * that the placement of the ID map may be randomized, let's simply
294	 * limit the kernel's linear map to 51 bits as well if we detect this
295	 * configuration.
296	 */
297	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
298	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
299		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
300		linear_region_size = min_t(u64, linear_region_size, BIT(51));
301	}
302
303	/* Remove memory above our supported physical address size */
304	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
305
306	/*
307	 * Select a suitable value for the base of physical memory.
308	 */
309	memstart_addr = round_down(memblock_start_of_DRAM(),
310				   ARM64_MEMSTART_ALIGN);
311
312	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
313		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
 
 
 
 
 
 
 
 
 
 
 
314
315	/*
316	 * Remove the memory that we will not be able to cover with the
317	 * linear mapping. Take care not to clip the kernel which may be
318	 * high in memory.
319	 */
320	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
321			__pa_symbol(_end)), ULLONG_MAX);
322	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
323		/* ensure that memstart_addr remains sufficiently aligned */
324		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
325					 ARM64_MEMSTART_ALIGN);
326		memblock_remove(0, memstart_addr);
327	}
328
329	/*
330	 * If we are running with a 52-bit kernel VA config on a system that
331	 * does not support it, we have to place the available physical
332	 * memory in the 48-bit addressable part of the linear region, i.e.,
333	 * we have to move it upward. Since memstart_addr represents the
334	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
335	 */
336	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
337		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
338
339	/*
340	 * Apply the memory limit if it was set. Since the kernel may be loaded
341	 * high up in memory, add back the kernel region that must be accessible
342	 * via the linear mapping.
343	 */
344	if (memory_limit != PHYS_ADDR_MAX) {
345		memblock_mem_limit_remove_map(memory_limit);
346		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
347	}
348
349	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
350		/*
351		 * Add back the memory we just removed if it results in the
352		 * initrd to become inaccessible via the linear mapping.
353		 * Otherwise, this is a no-op
354		 */
355		u64 base = phys_initrd_start & PAGE_MASK;
356		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
357
358		/*
359		 * We can only add back the initrd memory if we don't end up
360		 * with more memory than we can address via the linear mapping.
361		 * It is up to the bootloader to position the kernel and the
362		 * initrd reasonably close to each other (i.e., within 32 GB of
363		 * each other) so that all granule/#levels combinations can
364		 * always access both.
365		 */
366		if (WARN(base < memblock_start_of_DRAM() ||
367			 base + size > memblock_start_of_DRAM() +
368				       linear_region_size,
369			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
370			phys_initrd_size = 0;
371		} else {
 
372			memblock_add(base, size);
373			memblock_clear_nomap(base, size);
374			memblock_reserve(base, size);
375		}
376	}
377
378	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
379		extern u16 memstart_offset_seed;
380		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
381		int parange = cpuid_feature_extract_unsigned_field(
382					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
383		s64 range = linear_region_size -
384			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
385
386		/*
387		 * If the size of the linear region exceeds, by a sufficient
388		 * margin, the size of the region that the physical memory can
389		 * span, randomize the linear region as well.
390		 */
391		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
392			range /= ARM64_MEMSTART_ALIGN;
393			memstart_addr -= ARM64_MEMSTART_ALIGN *
394					 ((range * memstart_offset_seed) >> 16);
395		}
396	}
397
398	/*
399	 * Register the kernel text, kernel data, initrd, and initial
400	 * pagetables with memblock.
401	 */
402	memblock_reserve(__pa_symbol(_stext), _end - _stext);
403	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
404		/* the generic initrd code expects virtual addresses */
405		initrd_start = __phys_to_virt(phys_initrd_start);
406		initrd_end = initrd_start + phys_initrd_size;
407	}
408
409	early_init_fdt_scan_reserved_mem();
410
411	if (!defer_reserve_crashkernel())
412		reserve_crashkernel();
 
 
 
 
 
 
 
 
 
 
 
413
414	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
 
 
415}
416
417void __init bootmem_init(void)
418{
419	unsigned long min, max;
420
421	min = PFN_UP(memblock_start_of_DRAM());
422	max = PFN_DOWN(memblock_end_of_DRAM());
423
424	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
425
426	max_pfn = max_low_pfn = max;
427	min_low_pfn = min;
428
429	arch_numa_init();
430
431	/*
432	 * must be done after arch_numa_init() which calls numa_init() to
433	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
434	 * while allocating required CMA size across online nodes.
435	 */
436#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
437	arm64_hugetlb_cma_reserve();
438#endif
439
440	dma_pernuma_cma_reserve();
441
442	kvm_hyp_reserve();
443
444	/*
445	 * sparse_init() tries to allocate memory from memblock, so must be
446	 * done after the fixed reservations
447	 */
448	sparse_init();
449	zone_sizes_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450
451	/*
452	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
 
453	 */
454	dma_contiguous_reserve(arm64_dma_phys_limit);
 
455
456	/*
457	 * request_standard_resources() depends on crashkernel's memory being
458	 * reserved, so do it here.
459	 */
460	if (defer_reserve_crashkernel())
461		reserve_crashkernel();
 
462
463	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464}
 
465
466/*
467 * mem_init() marks the free areas in the mem_map and tells us how much memory
468 * is free.  This is done after various parts of the system have claimed their
469 * memory after the kernel image.
470 */
471void __init mem_init(void)
472{
473	swiotlb_init(max_pfn > PFN_DOWN(arm64_dma_phys_limit), SWIOTLB_VERBOSE);
 
 
 
 
474
 
 
 
 
 
475	/* this will put all unused low memory onto the freelists */
476	memblock_free_all();
477
 
 
478	/*
479	 * Check boundaries twice: Some fundamental inconsistencies can be
480	 * detected at build time already.
481	 */
482#ifdef CONFIG_COMPAT
483	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
484#endif
485
486	/*
487	 * Selected page table levels should match when derived from
488	 * scratch using the virtual address range and page size.
489	 */
490	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
491		     CONFIG_PGTABLE_LEVELS);
492
493	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
494		extern int sysctl_overcommit_memory;
495		/*
496		 * On a machine this small we won't get anywhere without
497		 * overcommit, so turn it on by default.
498		 */
499		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
500	}
501}
502
503void free_initmem(void)
504{
505	free_reserved_area(lm_alias(__init_begin),
506			   lm_alias(__init_end),
507			   POISON_FREE_INITMEM, "unused kernel");
508	/*
509	 * Unmap the __init region but leave the VM area in place. This
510	 * prevents the region from being reused for kernel modules, which
511	 * is not supported by kallsyms.
512	 */
513	vunmap_range((u64)__init_begin, (u64)__init_end);
514}
515
516void dump_mem_limit(void)
517{
518	if (memory_limit != PHYS_ADDR_MAX) {
519		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
520	} else {
521		pr_emerg("Memory Limit: none\n");
522	}
523}