Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/init.c
  4 *
  5 * Copyright (C) 1995-2005 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
  9#include <linux/kernel.h>
 10#include <linux/export.h>
 11#include <linux/errno.h>
 12#include <linux/swap.h>
 13#include <linux/init.h>
 
 14#include <linux/cache.h>
 15#include <linux/mman.h>
 16#include <linux/nodemask.h>
 17#include <linux/initrd.h>
 18#include <linux/gfp.h>
 19#include <linux/memblock.h>
 20#include <linux/sort.h>
 21#include <linux/of.h>
 22#include <linux/of_fdt.h>
 23#include <linux/dma-direct.h>
 24#include <linux/dma-mapping.h>
 25#include <linux/dma-contiguous.h>
 26#include <linux/efi.h>
 27#include <linux/swiotlb.h>
 28#include <linux/vmalloc.h>
 29#include <linux/mm.h>
 30#include <linux/kexec.h>
 31#include <linux/crash_dump.h>
 32#include <linux/hugetlb.h>
 33
 34#include <asm/boot.h>
 35#include <asm/fixmap.h>
 36#include <asm/kasan.h>
 37#include <asm/kernel-pgtable.h>
 38#include <asm/memory.h>
 39#include <asm/numa.h>
 40#include <asm/sections.h>
 41#include <asm/setup.h>
 42#include <linux/sizes.h>
 43#include <asm/tlb.h>
 44#include <asm/alternative.h>
 45
 46#define ARM64_ZONE_DMA_BITS	30
 47
 48/*
 49 * We need to be able to catch inadvertent references to memstart_addr
 50 * that occur (potentially in generic code) before arm64_memblock_init()
 51 * executes, which assigns it its actual value. So use a default value
 52 * that cannot be mistaken for a real physical address.
 53 */
 54s64 memstart_addr __ro_after_init = -1;
 55EXPORT_SYMBOL(memstart_addr);
 56
 57s64 physvirt_offset __ro_after_init;
 58EXPORT_SYMBOL(physvirt_offset);
 
 
 
 59
 60struct page *vmemmap __ro_after_init;
 61EXPORT_SYMBOL(vmemmap);
 
 62
 63/*
 64 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
 65 * memory as some devices, namely the Raspberry Pi 4, have peripherals with
 66 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
 67 * bit addressable memory area.
 68 */
 69phys_addr_t arm64_dma_phys_limit __ro_after_init;
 70static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
 71
 72#ifdef CONFIG_KEXEC_CORE
 73/*
 74 * reserve_crashkernel() - reserves memory for crash kernel
 75 *
 76 * This function reserves memory area given in "crashkernel=" kernel command
 77 * line parameter. The memory reserved is used by dump capture kernel when
 78 * primary kernel is crashing.
 79 */
 80static void __init reserve_crashkernel(void)
 81{
 82	unsigned long long crash_base, crash_size;
 83	int ret;
 84
 85	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 86				&crash_size, &crash_base);
 87	/* no crashkernel= or invalid value specified */
 88	if (ret || !crash_size)
 89		return;
 90
 91	crash_size = PAGE_ALIGN(crash_size);
 92
 93	if (crash_base == 0) {
 94		/* Current arm64 boot protocol requires 2MB alignment */
 95		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
 96				crash_size, SZ_2M);
 97		if (crash_base == 0) {
 98			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
 99				crash_size);
100			return;
101		}
102	} else {
103		/* User specifies base address explicitly. */
104		if (!memblock_is_region_memory(crash_base, crash_size)) {
105			pr_warn("cannot reserve crashkernel: region is not memory\n");
106			return;
107		}
108
109		if (memblock_is_region_reserved(crash_base, crash_size)) {
110			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
111			return;
112		}
113
114		if (!IS_ALIGNED(crash_base, SZ_2M)) {
115			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
116			return;
117		}
118	}
119	memblock_reserve(crash_base, crash_size);
120
121	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
122		crash_base, crash_base + crash_size, crash_size >> 20);
123
124	crashk_res.start = crash_base;
125	crashk_res.end = crash_base + crash_size - 1;
126}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127#else
128static void __init reserve_crashkernel(void)
129{
130}
 
 
 
 
131#endif /* CONFIG_KEXEC_CORE */
132
133#ifdef CONFIG_CRASH_DUMP
134static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
135		const char *uname, int depth, void *data)
136{
137	const __be32 *reg;
138	int len;
139
140	if (depth != 1 || strcmp(uname, "chosen") != 0)
141		return 0;
142
143	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
144	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
145		return 1;
146
147	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
148	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
149
150	return 1;
151}
152
153/*
154 * reserve_elfcorehdr() - reserves memory for elf core header
155 *
156 * This function reserves the memory occupied by an elf core header
157 * described in the device tree. This region contains all the
158 * information about primary kernel's core image and is used by a dump
159 * capture kernel to access the system memory on primary kernel.
160 */
161static void __init reserve_elfcorehdr(void)
162{
163	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
164
165	if (!elfcorehdr_size)
166		return;
167
168	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
169		pr_warn("elfcorehdr is overlapped\n");
170		return;
171	}
172
173	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
174
175	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
176		elfcorehdr_size >> 10, elfcorehdr_addr);
177}
178#else
179static void __init reserve_elfcorehdr(void)
180{
181}
182#endif /* CONFIG_CRASH_DUMP */
183
184/*
185 * Return the maximum physical address for a zone with a given address size
186 * limit. It currently assumes that for memory starting above 4G, 32-bit
187 * devices will use a DMA offset.
188 */
189static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
190{
191	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
192	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
193}
194
 
 
195static void __init zone_sizes_init(unsigned long min, unsigned long max)
196{
197	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
198
199#ifdef CONFIG_ZONE_DMA
200	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201#endif
 
 
 
 
 
 
 
 
 
 
 
202#ifdef CONFIG_ZONE_DMA32
203	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
 
 
 
204#endif
205	max_zone_pfns[ZONE_NORMAL] = max;
 
 
 
 
 
206
207	free_area_init(max_zone_pfns);
208}
209
 
 
 
210int pfn_valid(unsigned long pfn)
211{
212	phys_addr_t addr = pfn << PAGE_SHIFT;
 
 
 
213
214	if ((addr >> PAGE_SHIFT) != pfn)
215		return 0;
 
 
 
 
 
 
216
217#ifdef CONFIG_SPARSEMEM
218	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
219		return 0;
220
221	if (!valid_section(__pfn_to_section(pfn)))
222		return 0;
223#endif
224	return memblock_is_map_memory(addr);
225}
226EXPORT_SYMBOL(pfn_valid);
227
228static phys_addr_t memory_limit = PHYS_ADDR_MAX;
229
230/*
231 * Limit the memory size that was specified via FDT.
232 */
233static int __init early_mem(char *p)
234{
235	if (!p)
236		return 1;
237
238	memory_limit = memparse(p, &p) & PAGE_MASK;
239	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
240
241	return 0;
242}
243early_param("mem", early_mem);
244
245static int __init early_init_dt_scan_usablemem(unsigned long node,
246		const char *uname, int depth, void *data)
247{
248	struct memblock_region *usablemem = data;
249	const __be32 *reg;
250	int len;
251
252	if (depth != 1 || strcmp(uname, "chosen") != 0)
253		return 0;
254
255	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
256	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
257		return 1;
258
259	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
260	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
261
262	return 1;
263}
264
265static void __init fdt_enforce_memory_region(void)
266{
267	struct memblock_region reg = {
268		.size = 0,
269	};
270
271	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
272
273	if (reg.size)
274		memblock_cap_memory_range(reg.base, reg.size);
275}
276
277void __init arm64_memblock_init(void)
278{
279	const s64 linear_region_size = BIT(vabits_actual - 1);
280
281	/* Handle linux,usable-memory-range property */
282	fdt_enforce_memory_region();
283
284	/* Remove memory above our supported physical address size */
285	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
286
287	/*
288	 * Select a suitable value for the base of physical memory.
 
 
289	 */
290	memstart_addr = round_down(memblock_start_of_DRAM(),
291				   ARM64_MEMSTART_ALIGN);
292
293	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
294
295	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
296
297	/*
298	 * If we are running with a 52-bit kernel VA config on a system that
299	 * does not support it, we have to offset our vmemmap and physvirt_offset
300	 * s.t. we avoid the 52-bit portion of the direct linear map
301	 */
302	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
303		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
304		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
305	}
306
307	/*
308	 * Remove the memory that we will not be able to cover with the
309	 * linear mapping. Take care not to clip the kernel which may be
310	 * high in memory.
311	 */
312	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
313			__pa_symbol(_end)), ULLONG_MAX);
314	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
315		/* ensure that memstart_addr remains sufficiently aligned */
316		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
317					 ARM64_MEMSTART_ALIGN);
318		memblock_remove(0, memstart_addr);
319	}
320
321	/*
322	 * Apply the memory limit if it was set. Since the kernel may be loaded
323	 * high up in memory, add back the kernel region that must be accessible
324	 * via the linear mapping.
325	 */
326	if (memory_limit != PHYS_ADDR_MAX) {
327		memblock_mem_limit_remove_map(memory_limit);
328		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
329	}
330
331	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
332		/*
333		 * Add back the memory we just removed if it results in the
334		 * initrd to become inaccessible via the linear mapping.
335		 * Otherwise, this is a no-op
336		 */
337		u64 base = phys_initrd_start & PAGE_MASK;
338		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
339
340		/*
341		 * We can only add back the initrd memory if we don't end up
342		 * with more memory than we can address via the linear mapping.
343		 * It is up to the bootloader to position the kernel and the
344		 * initrd reasonably close to each other (i.e., within 32 GB of
345		 * each other) so that all granule/#levels combinations can
346		 * always access both.
347		 */
348		if (WARN(base < memblock_start_of_DRAM() ||
349			 base + size > memblock_start_of_DRAM() +
350				       linear_region_size,
351			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
352			phys_initrd_size = 0;
353		} else {
354			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
355			memblock_add(base, size);
356			memblock_reserve(base, size);
357		}
358	}
359
360	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
361		extern u16 memstart_offset_seed;
362		u64 range = linear_region_size -
363			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
364
365		/*
366		 * If the size of the linear region exceeds, by a sufficient
367		 * margin, the size of the region that the available physical
368		 * memory spans, randomize the linear region as well.
369		 */
370		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
371			range /= ARM64_MEMSTART_ALIGN;
372			memstart_addr -= ARM64_MEMSTART_ALIGN *
373					 ((range * memstart_offset_seed) >> 16);
374		}
375	}
376
377	/*
378	 * Register the kernel text, kernel data, initrd, and initial
379	 * pagetables with memblock.
380	 */
381	memblock_reserve(__pa_symbol(_text), _end - _text);
382	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
 
 
 
383		/* the generic initrd code expects virtual addresses */
384		initrd_start = __phys_to_virt(phys_initrd_start);
385		initrd_end = initrd_start + phys_initrd_size;
386	}
 
387
388	early_init_fdt_scan_reserved_mem();
389
390	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
391		zone_dma_bits = ARM64_ZONE_DMA_BITS;
392		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
393	}
394
395	if (IS_ENABLED(CONFIG_ZONE_DMA32))
396		arm64_dma32_phys_limit = max_zone_phys(32);
397	else
398		arm64_dma32_phys_limit = PHYS_MASK + 1;
399
400	reserve_crashkernel();
401
402	reserve_elfcorehdr();
403
404	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
405
406	dma_contiguous_reserve(arm64_dma32_phys_limit);
 
 
407}
408
409void __init bootmem_init(void)
410{
411	unsigned long min, max;
412
413	min = PFN_UP(memblock_start_of_DRAM());
414	max = PFN_DOWN(memblock_end_of_DRAM());
415
416	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
417
418	max_pfn = max_low_pfn = max;
419	min_low_pfn = min;
420
421	arm64_numa_init();
422
423	/*
424	 * must be done after arm64_numa_init() which calls numa_init() to
425	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
426	 * while allocating required CMA size across online nodes.
427	 */
428#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
429	arm64_hugetlb_cma_reserve();
430#endif
431
432	/*
433	 * sparse_init() tries to allocate memory from memblock, so must be
434	 * done after the fixed reservations
435	 */
436	sparse_init();
437	zone_sizes_init(min, max);
438
439	memblock_dump_all();
440}
441
442#ifndef CONFIG_SPARSEMEM_VMEMMAP
443static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
444{
445	struct page *start_pg, *end_pg;
446	unsigned long pg, pgend;
447
448	/*
449	 * Convert start_pfn/end_pfn to a struct page pointer.
450	 */
451	start_pg = pfn_to_page(start_pfn - 1) + 1;
452	end_pg = pfn_to_page(end_pfn - 1) + 1;
453
454	/*
455	 * Convert to physical addresses, and round start upwards and end
456	 * downwards.
457	 */
458	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
459	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
460
461	/*
462	 * If there are free pages between these, free the section of the
463	 * memmap array.
464	 */
465	if (pg < pgend)
466		memblock_free(pg, pgend - pg);
467}
468
469/*
470 * The mem_map array can get very big. Free the unused area of the memory map.
471 */
472static void __init free_unused_memmap(void)
473{
474	unsigned long start, prev_end = 0;
475	struct memblock_region *reg;
476
477	for_each_memblock(memory, reg) {
478		start = __phys_to_pfn(reg->base);
479
480#ifdef CONFIG_SPARSEMEM
481		/*
482		 * Take care not to free memmap entries that don't exist due
483		 * to SPARSEMEM sections which aren't present.
484		 */
485		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
486#endif
487		/*
488		 * If we had a previous bank, and there is a space between the
489		 * current bank and the previous, free it.
490		 */
491		if (prev_end && prev_end < start)
492			free_memmap(prev_end, start);
493
494		/*
495		 * Align up here since the VM subsystem insists that the
496		 * memmap entries are valid from the bank end aligned to
497		 * MAX_ORDER_NR_PAGES.
498		 */
499		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
500				 MAX_ORDER_NR_PAGES);
501	}
502
503#ifdef CONFIG_SPARSEMEM
504	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
505		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
506#endif
507}
508#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
509
510/*
511 * mem_init() marks the free areas in the mem_map and tells us how much memory
512 * is free.  This is done after various parts of the system have claimed their
513 * memory after the kernel image.
514 */
515void __init mem_init(void)
516{
517	if (swiotlb_force == SWIOTLB_FORCE ||
518	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
519		swiotlb_init(1);
520	else
521		swiotlb_force = SWIOTLB_NO_FORCE;
522
523	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
524
525#ifndef CONFIG_SPARSEMEM_VMEMMAP
526	free_unused_memmap();
527#endif
528	/* this will put all unused low memory onto the freelists */
529	memblock_free_all();
 
 
530
531	mem_init_print_info(NULL);
532
533	/*
534	 * Check boundaries twice: Some fundamental inconsistencies can be
535	 * detected at build time already.
536	 */
537#ifdef CONFIG_COMPAT
538	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
539#endif
540
 
 
 
 
 
 
541	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
542		extern int sysctl_overcommit_memory;
543		/*
544		 * On a machine this small we won't get anywhere without
545		 * overcommit, so turn it on by default.
546		 */
547		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
548	}
549}
550
551void free_initmem(void)
552{
553	free_reserved_area(lm_alias(__init_begin),
554			   lm_alias(__init_end),
555			   POISON_FREE_INITMEM, "unused kernel");
556	/*
557	 * Unmap the __init region but leave the VM area in place. This
558	 * prevents the region from being reused for kernel modules, which
559	 * is not supported by kallsyms.
560	 */
561	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
562}
563
564void dump_mem_limit(void)
 
 
 
 
565{
566	if (memory_limit != PHYS_ADDR_MAX) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
568	} else {
569		pr_emerg("Memory Limit: none\n");
570	}
 
 
 
 
 
 
 
 
 
 
 
 
571}
v4.17
 
  1/*
  2 * Based on arch/arm/mm/init.c
  3 *
  4 * Copyright (C) 1995-2005 Russell King
  5 * Copyright (C) 2012 ARM Ltd.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/export.h>
 22#include <linux/errno.h>
 23#include <linux/swap.h>
 24#include <linux/init.h>
 25#include <linux/bootmem.h>
 26#include <linux/cache.h>
 27#include <linux/mman.h>
 28#include <linux/nodemask.h>
 29#include <linux/initrd.h>
 30#include <linux/gfp.h>
 31#include <linux/memblock.h>
 32#include <linux/sort.h>
 33#include <linux/of.h>
 34#include <linux/of_fdt.h>
 
 35#include <linux/dma-mapping.h>
 36#include <linux/dma-contiguous.h>
 37#include <linux/efi.h>
 38#include <linux/swiotlb.h>
 39#include <linux/vmalloc.h>
 40#include <linux/mm.h>
 41#include <linux/kexec.h>
 42#include <linux/crash_dump.h>
 
 43
 44#include <asm/boot.h>
 45#include <asm/fixmap.h>
 46#include <asm/kasan.h>
 47#include <asm/kernel-pgtable.h>
 48#include <asm/memory.h>
 49#include <asm/numa.h>
 50#include <asm/sections.h>
 51#include <asm/setup.h>
 52#include <asm/sizes.h>
 53#include <asm/tlb.h>
 54#include <asm/alternative.h>
 55
 
 
 56/*
 57 * We need to be able to catch inadvertent references to memstart_addr
 58 * that occur (potentially in generic code) before arm64_memblock_init()
 59 * executes, which assigns it its actual value. So use a default value
 60 * that cannot be mistaken for a real physical address.
 61 */
 62s64 memstart_addr __ro_after_init = -1;
 63phys_addr_t arm64_dma_phys_limit __ro_after_init;
 64
 65#ifdef CONFIG_BLK_DEV_INITRD
 66static int __init early_initrd(char *p)
 67{
 68	unsigned long start, size;
 69	char *endp;
 70
 71	start = memparse(p, &endp);
 72	if (*endp == ',') {
 73		size = memparse(endp + 1, NULL);
 74
 75		initrd_start = start;
 76		initrd_end = start + size;
 77	}
 78	return 0;
 79}
 80early_param("initrd", early_initrd);
 81#endif
 
 82
 83#ifdef CONFIG_KEXEC_CORE
 84/*
 85 * reserve_crashkernel() - reserves memory for crash kernel
 86 *
 87 * This function reserves memory area given in "crashkernel=" kernel command
 88 * line parameter. The memory reserved is used by dump capture kernel when
 89 * primary kernel is crashing.
 90 */
 91static void __init reserve_crashkernel(void)
 92{
 93	unsigned long long crash_base, crash_size;
 94	int ret;
 95
 96	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 97				&crash_size, &crash_base);
 98	/* no crashkernel= or invalid value specified */
 99	if (ret || !crash_size)
100		return;
101
102	crash_size = PAGE_ALIGN(crash_size);
103
104	if (crash_base == 0) {
105		/* Current arm64 boot protocol requires 2MB alignment */
106		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107				crash_size, SZ_2M);
108		if (crash_base == 0) {
109			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110				crash_size);
111			return;
112		}
113	} else {
114		/* User specifies base address explicitly. */
115		if (!memblock_is_region_memory(crash_base, crash_size)) {
116			pr_warn("cannot reserve crashkernel: region is not memory\n");
117			return;
118		}
119
120		if (memblock_is_region_reserved(crash_base, crash_size)) {
121			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122			return;
123		}
124
125		if (!IS_ALIGNED(crash_base, SZ_2M)) {
126			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127			return;
128		}
129	}
130	memblock_reserve(crash_base, crash_size);
131
132	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133		crash_base, crash_base + crash_size, crash_size >> 20);
134
135	crashk_res.start = crash_base;
136	crashk_res.end = crash_base + crash_size - 1;
137}
138
139static void __init kexec_reserve_crashkres_pages(void)
140{
141#ifdef CONFIG_HIBERNATION
142	phys_addr_t addr;
143	struct page *page;
144
145	if (!crashk_res.end)
146		return;
147
148	/*
149	 * To reduce the size of hibernation image, all the pages are
150	 * marked as Reserved initially.
151	 */
152	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153			addr += PAGE_SIZE) {
154		page = phys_to_page(addr);
155		SetPageReserved(page);
156	}
157#endif
158}
159#else
160static void __init reserve_crashkernel(void)
161{
162}
163
164static void __init kexec_reserve_crashkres_pages(void)
165{
166}
167#endif /* CONFIG_KEXEC_CORE */
168
169#ifdef CONFIG_CRASH_DUMP
170static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171		const char *uname, int depth, void *data)
172{
173	const __be32 *reg;
174	int len;
175
176	if (depth != 1 || strcmp(uname, "chosen") != 0)
177		return 0;
178
179	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181		return 1;
182
183	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185
186	return 1;
187}
188
189/*
190 * reserve_elfcorehdr() - reserves memory for elf core header
191 *
192 * This function reserves the memory occupied by an elf core header
193 * described in the device tree. This region contains all the
194 * information about primary kernel's core image and is used by a dump
195 * capture kernel to access the system memory on primary kernel.
196 */
197static void __init reserve_elfcorehdr(void)
198{
199	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200
201	if (!elfcorehdr_size)
202		return;
203
204	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205		pr_warn("elfcorehdr is overlapped\n");
206		return;
207	}
208
209	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210
211	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212		elfcorehdr_size >> 10, elfcorehdr_addr);
213}
214#else
215static void __init reserve_elfcorehdr(void)
216{
217}
218#endif /* CONFIG_CRASH_DUMP */
 
219/*
220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
221 * currently assumes that for memory starting above 4G, 32-bit devices will
222 * use a DMA offset.
223 */
224static phys_addr_t __init max_zone_dma_phys(void)
225{
226	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228}
229
230#ifdef CONFIG_NUMA
231
232static void __init zone_sizes_init(unsigned long min, unsigned long max)
233{
234	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235
236	if (IS_ENABLED(CONFIG_ZONE_DMA32))
237		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
238	max_zone_pfns[ZONE_NORMAL] = max;
239
240	free_area_init_nodes(max_zone_pfns);
241}
242
243#else
244
245static void __init zone_sizes_init(unsigned long min, unsigned long max)
246{
247	struct memblock_region *reg;
248	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249	unsigned long max_dma = min;
250
251	memset(zone_size, 0, sizeof(zone_size));
252
253	/* 4GB maximum for 32-bit only capable devices */
254#ifdef CONFIG_ZONE_DMA32
255	max_dma = PFN_DOWN(arm64_dma_phys_limit);
256	zone_size[ZONE_DMA32] = max_dma - min;
257#endif
258	zone_size[ZONE_NORMAL] = max - max_dma;
259
260	memcpy(zhole_size, zone_size, sizeof(zhole_size));
261
262	for_each_memblock(memory, reg) {
263		unsigned long start = memblock_region_memory_base_pfn(reg);
264		unsigned long end = memblock_region_memory_end_pfn(reg);
265
266		if (start >= max)
267			continue;
268
269#ifdef CONFIG_ZONE_DMA32
270		if (start < max_dma) {
271			unsigned long dma_end = min(end, max_dma);
272			zhole_size[ZONE_DMA32] -= dma_end - start;
273		}
274#endif
275		if (end > max_dma) {
276			unsigned long normal_end = min(end, max);
277			unsigned long normal_start = max(start, max_dma);
278			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279		}
280	}
281
282	free_area_init_node(0, zone_size, min, zhole_size);
283}
284
285#endif /* CONFIG_NUMA */
286
287#ifdef CONFIG_HAVE_ARCH_PFN_VALID
288int pfn_valid(unsigned long pfn)
289{
290	return memblock_is_map_memory(pfn << PAGE_SHIFT);
291}
292EXPORT_SYMBOL(pfn_valid);
293#endif
294
295#ifndef CONFIG_SPARSEMEM
296static void __init arm64_memory_present(void)
297{
298}
299#else
300static void __init arm64_memory_present(void)
301{
302	struct memblock_region *reg;
303
304	for_each_memblock(memory, reg) {
305		int nid = memblock_get_region_node(reg);
 
306
307		memory_present(nid, memblock_region_memory_base_pfn(reg),
308				memblock_region_memory_end_pfn(reg));
309	}
 
310}
311#endif
312
313static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
314
315/*
316 * Limit the memory size that was specified via FDT.
317 */
318static int __init early_mem(char *p)
319{
320	if (!p)
321		return 1;
322
323	memory_limit = memparse(p, &p) & PAGE_MASK;
324	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
325
326	return 0;
327}
328early_param("mem", early_mem);
329
330static int __init early_init_dt_scan_usablemem(unsigned long node,
331		const char *uname, int depth, void *data)
332{
333	struct memblock_region *usablemem = data;
334	const __be32 *reg;
335	int len;
336
337	if (depth != 1 || strcmp(uname, "chosen") != 0)
338		return 0;
339
340	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
341	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
342		return 1;
343
344	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
345	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
346
347	return 1;
348}
349
350static void __init fdt_enforce_memory_region(void)
351{
352	struct memblock_region reg = {
353		.size = 0,
354	};
355
356	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
357
358	if (reg.size)
359		memblock_cap_memory_range(reg.base, reg.size);
360}
361
362void __init arm64_memblock_init(void)
363{
364	const s64 linear_region_size = -(s64)PAGE_OFFSET;
365
366	/* Handle linux,usable-memory-range property */
367	fdt_enforce_memory_region();
368
369	/* Remove memory above our supported physical address size */
370	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
371
372	/*
373	 * Ensure that the linear region takes up exactly half of the kernel
374	 * virtual address space. This way, we can distinguish a linear address
375	 * from a kernel/module/vmalloc address by testing a single bit.
376	 */
377	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
 
 
 
 
 
378
379	/*
380	 * Select a suitable value for the base of physical memory.
 
 
381	 */
382	memstart_addr = round_down(memblock_start_of_DRAM(),
383				   ARM64_MEMSTART_ALIGN);
 
 
384
385	/*
386	 * Remove the memory that we will not be able to cover with the
387	 * linear mapping. Take care not to clip the kernel which may be
388	 * high in memory.
389	 */
390	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
391			__pa_symbol(_end)), ULLONG_MAX);
392	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
393		/* ensure that memstart_addr remains sufficiently aligned */
394		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
395					 ARM64_MEMSTART_ALIGN);
396		memblock_remove(0, memstart_addr);
397	}
398
399	/*
400	 * Apply the memory limit if it was set. Since the kernel may be loaded
401	 * high up in memory, add back the kernel region that must be accessible
402	 * via the linear mapping.
403	 */
404	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
405		memblock_mem_limit_remove_map(memory_limit);
406		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
407	}
408
409	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
410		/*
411		 * Add back the memory we just removed if it results in the
412		 * initrd to become inaccessible via the linear mapping.
413		 * Otherwise, this is a no-op
414		 */
415		u64 base = initrd_start & PAGE_MASK;
416		u64 size = PAGE_ALIGN(initrd_end) - base;
417
418		/*
419		 * We can only add back the initrd memory if we don't end up
420		 * with more memory than we can address via the linear mapping.
421		 * It is up to the bootloader to position the kernel and the
422		 * initrd reasonably close to each other (i.e., within 32 GB of
423		 * each other) so that all granule/#levels combinations can
424		 * always access both.
425		 */
426		if (WARN(base < memblock_start_of_DRAM() ||
427			 base + size > memblock_start_of_DRAM() +
428				       linear_region_size,
429			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
430			initrd_start = 0;
431		} else {
432			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
433			memblock_add(base, size);
434			memblock_reserve(base, size);
435		}
436	}
437
438	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
439		extern u16 memstart_offset_seed;
440		u64 range = linear_region_size -
441			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
442
443		/*
444		 * If the size of the linear region exceeds, by a sufficient
445		 * margin, the size of the region that the available physical
446		 * memory spans, randomize the linear region as well.
447		 */
448		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
449			range = range / ARM64_MEMSTART_ALIGN + 1;
450			memstart_addr -= ARM64_MEMSTART_ALIGN *
451					 ((range * memstart_offset_seed) >> 16);
452		}
453	}
454
455	/*
456	 * Register the kernel text, kernel data, initrd, and initial
457	 * pagetables with memblock.
458	 */
459	memblock_reserve(__pa_symbol(_text), _end - _text);
460#ifdef CONFIG_BLK_DEV_INITRD
461	if (initrd_start) {
462		memblock_reserve(initrd_start, initrd_end - initrd_start);
463
464		/* the generic initrd code expects virtual addresses */
465		initrd_start = __phys_to_virt(initrd_start);
466		initrd_end = __phys_to_virt(initrd_end);
467	}
468#endif
469
470	early_init_fdt_scan_reserved_mem();
471
472	/* 4GB maximum for 32-bit only capable devices */
 
 
 
 
473	if (IS_ENABLED(CONFIG_ZONE_DMA32))
474		arm64_dma_phys_limit = max_zone_dma_phys();
475	else
476		arm64_dma_phys_limit = PHYS_MASK + 1;
477
478	reserve_crashkernel();
479
480	reserve_elfcorehdr();
481
482	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
483
484	dma_contiguous_reserve(arm64_dma_phys_limit);
485
486	memblock_allow_resize();
487}
488
489void __init bootmem_init(void)
490{
491	unsigned long min, max;
492
493	min = PFN_UP(memblock_start_of_DRAM());
494	max = PFN_DOWN(memblock_end_of_DRAM());
495
496	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
497
498	max_pfn = max_low_pfn = max;
 
499
500	arm64_numa_init();
 
501	/*
502	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
503	 * done after the fixed reservations.
 
504	 */
505	arm64_memory_present();
 
 
506
 
 
 
 
507	sparse_init();
508	zone_sizes_init(min, max);
509
510	memblock_dump_all();
511}
512
513#ifndef CONFIG_SPARSEMEM_VMEMMAP
514static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
515{
516	struct page *start_pg, *end_pg;
517	unsigned long pg, pgend;
518
519	/*
520	 * Convert start_pfn/end_pfn to a struct page pointer.
521	 */
522	start_pg = pfn_to_page(start_pfn - 1) + 1;
523	end_pg = pfn_to_page(end_pfn - 1) + 1;
524
525	/*
526	 * Convert to physical addresses, and round start upwards and end
527	 * downwards.
528	 */
529	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
530	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
531
532	/*
533	 * If there are free pages between these, free the section of the
534	 * memmap array.
535	 */
536	if (pg < pgend)
537		free_bootmem(pg, pgend - pg);
538}
539
540/*
541 * The mem_map array can get very big. Free the unused area of the memory map.
542 */
543static void __init free_unused_memmap(void)
544{
545	unsigned long start, prev_end = 0;
546	struct memblock_region *reg;
547
548	for_each_memblock(memory, reg) {
549		start = __phys_to_pfn(reg->base);
550
551#ifdef CONFIG_SPARSEMEM
552		/*
553		 * Take care not to free memmap entries that don't exist due
554		 * to SPARSEMEM sections which aren't present.
555		 */
556		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
557#endif
558		/*
559		 * If we had a previous bank, and there is a space between the
560		 * current bank and the previous, free it.
561		 */
562		if (prev_end && prev_end < start)
563			free_memmap(prev_end, start);
564
565		/*
566		 * Align up here since the VM subsystem insists that the
567		 * memmap entries are valid from the bank end aligned to
568		 * MAX_ORDER_NR_PAGES.
569		 */
570		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
571				 MAX_ORDER_NR_PAGES);
572	}
573
574#ifdef CONFIG_SPARSEMEM
575	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
576		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
577#endif
578}
579#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
580
581/*
582 * mem_init() marks the free areas in the mem_map and tells us how much memory
583 * is free.  This is done after various parts of the system have claimed their
584 * memory after the kernel image.
585 */
586void __init mem_init(void)
587{
588	if (swiotlb_force == SWIOTLB_FORCE ||
589	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
590		swiotlb_init(1);
591	else
592		swiotlb_force = SWIOTLB_NO_FORCE;
593
594	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
595
596#ifndef CONFIG_SPARSEMEM_VMEMMAP
597	free_unused_memmap();
598#endif
599	/* this will put all unused low memory onto the freelists */
600	free_all_bootmem();
601
602	kexec_reserve_crashkres_pages();
603
604	mem_init_print_info(NULL);
605
606	/*
607	 * Check boundaries twice: Some fundamental inconsistencies can be
608	 * detected at build time already.
609	 */
610#ifdef CONFIG_COMPAT
611	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
612#endif
613
614	/*
615	 * Make sure we chose the upper bound of sizeof(struct page)
616	 * correctly.
617	 */
618	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
619
620	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
621		extern int sysctl_overcommit_memory;
622		/*
623		 * On a machine this small we won't get anywhere without
624		 * overcommit, so turn it on by default.
625		 */
626		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
627	}
628}
629
630void free_initmem(void)
631{
632	free_reserved_area(lm_alias(__init_begin),
633			   lm_alias(__init_end),
634			   0, "unused kernel");
635	/*
636	 * Unmap the __init region but leave the VM area in place. This
637	 * prevents the region from being reused for kernel modules, which
638	 * is not supported by kallsyms.
639	 */
640	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
641}
642
643#ifdef CONFIG_BLK_DEV_INITRD
644
645static int keep_initrd __initdata;
646
647void __init free_initrd_mem(unsigned long start, unsigned long end)
648{
649	if (!keep_initrd) {
650		free_reserved_area((void *)start, (void *)end, 0, "initrd");
651		memblock_free(__virt_to_phys(start), end - start);
652	}
653}
654
655static int __init keepinitrd_setup(char *__unused)
656{
657	keep_initrd = 1;
658	return 1;
659}
660
661__setup("keepinitrd", keepinitrd_setup);
662#endif
663
664/*
665 * Dump out memory limit information on panic.
666 */
667static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
668{
669	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
670		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
671	} else {
672		pr_emerg("Memory Limit: none\n");
673	}
674	return 0;
675}
676
677static struct notifier_block mem_limit_notifier = {
678	.notifier_call = dump_mem_limit,
679};
680
681static int __init register_mem_limit_dumper(void)
682{
683	atomic_notifier_chain_register(&panic_notifier_list,
684				       &mem_limit_notifier);
685	return 0;
686}
687__initcall(register_mem_limit_dumper);