Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
 
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75				   enum fib_event_type event_type, u32 dst,
  76				   int dst_len, struct fib_alias *fa,
  77				   struct netlink_ext_ack *extack)
  78{
  79	struct fib_entry_notifier_info info = {
  80		.info.extack = extack,
  81		.dst = dst,
  82		.dst_len = dst_len,
  83		.fi = fa->fa_info,
  84		.tos = fa->fa_tos,
  85		.type = fa->fa_type,
  86		.tb_id = fa->tb_id,
  87	};
  88	return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92				    enum fib_event_type event_type, u32 dst,
  93				    int dst_len, struct fib_alias *fa,
  94				    struct netlink_ext_ack *extack)
  95{
  96	struct fib_entry_notifier_info info = {
  97		.info.extack = extack,
  98		.dst = dst,
  99		.dst_len = dst_len,
 100		.fi = fa->fa_info,
 101		.tos = fa->fa_tos,
 102		.type = fa->fa_type,
 103		.tb_id = fa->tb_id,
 104	};
 105	return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH	(8*sizeof(t_key))
 111#define KEY_MAX		((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)	((n)->bits)
 117#define IS_LEAF(n)	(!(n)->bits)
 118
 119struct key_vector {
 120	t_key key;
 121	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 122	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char slen;
 124	union {
 125		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126		struct hlist_head leaf;
 127		/* This array is valid if (pos | bits) > 0 (TNODE) */
 128		struct key_vector __rcu *tnode[0];
 129	};
 130};
 131
 132struct tnode {
 133	struct rcu_head rcu;
 134	t_key empty_children;		/* KEYLENGTH bits needed */
 135	t_key full_children;		/* KEYLENGTH bits needed */
 136	struct key_vector __rcu *parent;
 137	struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE	TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146	unsigned int gets;
 147	unsigned int backtrack;
 148	unsigned int semantic_match_passed;
 149	unsigned int semantic_match_miss;
 150	unsigned int null_node_hit;
 151	unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156	unsigned int totdepth;
 157	unsigned int maxdepth;
 158	unsigned int tnodes;
 159	unsigned int leaves;
 160	unsigned int nullpointers;
 161	unsigned int prefixes;
 162	unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166	struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168	struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189	return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203	if (n)
 204		rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214	return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221	unsigned long index = key ^ kv->key;
 222
 223	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224		return 0;
 225
 226	return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296	kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301	call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 304#define TNODE_VMALLOC_MAX \
 305	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309	struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311	if (!n->tn_bits)
 312		kmem_cache_free(trie_leaf_kmem, n);
 313	else
 314		kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321	size_t size;
 322
 323	/* verify bits is within bounds */
 324	if (bits > TNODE_VMALLOC_MAX)
 325		return NULL;
 326
 327	/* determine size and verify it is non-zero and didn't overflow */
 328	size = TNODE_SIZE(1ul << bits);
 329
 330	if (size <= PAGE_SIZE)
 331		return kzalloc(size, GFP_KERNEL);
 332	else
 333		return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338	tn_info(n)->empty_children++;
 339
 340	if (!tn_info(n)->empty_children)
 341		tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346	if (!tn_info(n)->empty_children)
 347		tn_info(n)->full_children--;
 348
 349	tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354	struct key_vector *l;
 355	struct tnode *kv;
 356
 357	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358	if (!kv)
 359		return NULL;
 360
 361	/* initialize key vector */
 362	l = kv->kv;
 363	l->key = key;
 364	l->pos = 0;
 365	l->bits = 0;
 366	l->slen = fa->fa_slen;
 367
 368	/* link leaf to fib alias */
 369	INIT_HLIST_HEAD(&l->leaf);
 370	hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372	return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377	unsigned int shift = pos + bits;
 378	struct key_vector *tn;
 379	struct tnode *tnode;
 380
 381	/* verify bits and pos their msb bits clear and values are valid */
 382	BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384	tnode = tnode_alloc(bits);
 385	if (!tnode)
 386		return NULL;
 387
 388	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389		 sizeof(struct key_vector *) << bits);
 390
 391	if (bits == KEYLENGTH)
 392		tnode->full_children = 1;
 393	else
 394		tnode->empty_children = 1ul << bits;
 395
 396	tn = tnode->kv;
 397	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398	tn->pos = pos;
 399	tn->bits = bits;
 400	tn->slen = pos;
 401
 402	return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417		      struct key_vector *n)
 418{
 419	struct key_vector *chi = get_child(tn, i);
 420	int isfull, wasfull;
 421
 422	BUG_ON(i >= child_length(tn));
 423
 424	/* update emptyChildren, overflow into fullChildren */
 425	if (!n && chi)
 426		empty_child_inc(tn);
 427	if (n && !chi)
 428		empty_child_dec(tn);
 429
 430	/* update fullChildren */
 431	wasfull = tnode_full(tn, chi);
 432	isfull = tnode_full(tn, n);
 433
 434	if (wasfull && !isfull)
 435		tn_info(tn)->full_children--;
 436	else if (!wasfull && isfull)
 437		tn_info(tn)->full_children++;
 438
 439	if (n && (tn->slen < n->slen))
 440		tn->slen = n->slen;
 441
 442	rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447	unsigned long i;
 448
 449	/* update all of the child parent pointers */
 450	for (i = child_length(tn); i;) {
 451		struct key_vector *inode = get_child(tn, --i);
 452
 453		if (!inode)
 454			continue;
 455
 456		/* Either update the children of a tnode that
 457		 * already belongs to us or update the child
 458		 * to point to ourselves.
 459		 */
 460		if (node_parent(inode) == tn)
 461			update_children(inode);
 462		else
 463			node_set_parent(inode, tn);
 464	}
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468				  struct key_vector *n)
 469{
 470	if (IS_TRIE(tp))
 471		rcu_assign_pointer(tp->tnode[0], n);
 472	else
 473		put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478	tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482				     struct key_vector *n)
 483{
 484	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490	struct callback_head *head = &tn_info(tn)->rcu;
 491
 492	while (head) {
 493		head = head->next;
 494		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495		node_free(tn);
 496
 497		tn = container_of(head, struct tnode, rcu)->kv;
 498	}
 499
 500	if (tnode_free_size >= sysctl_fib_sync_mem) {
 501		tnode_free_size = 0;
 502		synchronize_rcu();
 503	}
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507				  struct key_vector *oldtnode,
 508				  struct key_vector *tn)
 509{
 510	struct key_vector *tp = node_parent(oldtnode);
 511	unsigned long i;
 512
 513	/* setup the parent pointer out of and back into this node */
 514	NODE_INIT_PARENT(tn, tp);
 515	put_child_root(tp, tn->key, tn);
 516
 517	/* update all of the child parent pointers */
 518	update_children(tn);
 519
 520	/* all pointers should be clean so we are done */
 521	tnode_free(oldtnode);
 522
 523	/* resize children now that oldtnode is freed */
 524	for (i = child_length(tn); i;) {
 525		struct key_vector *inode = get_child(tn, --i);
 526
 527		/* resize child node */
 528		if (tnode_full(tn, inode))
 529			tn = resize(t, inode);
 530	}
 531
 532	return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536				  struct key_vector *oldtnode)
 537{
 538	struct key_vector *tn;
 539	unsigned long i;
 540	t_key m;
 541
 542	pr_debug("In inflate\n");
 543
 544	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545	if (!tn)
 546		goto notnode;
 547
 548	/* prepare oldtnode to be freed */
 549	tnode_free_init(oldtnode);
 550
 551	/* Assemble all of the pointers in our cluster, in this case that
 552	 * represents all of the pointers out of our allocated nodes that
 553	 * point to existing tnodes and the links between our allocated
 554	 * nodes.
 555	 */
 556	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557		struct key_vector *inode = get_child(oldtnode, --i);
 558		struct key_vector *node0, *node1;
 559		unsigned long j, k;
 560
 561		/* An empty child */
 562		if (!inode)
 563			continue;
 564
 565		/* A leaf or an internal node with skipped bits */
 566		if (!tnode_full(oldtnode, inode)) {
 567			put_child(tn, get_index(inode->key, tn), inode);
 568			continue;
 569		}
 570
 571		/* drop the node in the old tnode free list */
 572		tnode_free_append(oldtnode, inode);
 573
 574		/* An internal node with two children */
 575		if (inode->bits == 1) {
 576			put_child(tn, 2 * i + 1, get_child(inode, 1));
 577			put_child(tn, 2 * i, get_child(inode, 0));
 578			continue;
 579		}
 580
 581		/* We will replace this node 'inode' with two new
 582		 * ones, 'node0' and 'node1', each with half of the
 583		 * original children. The two new nodes will have
 584		 * a position one bit further down the key and this
 585		 * means that the "significant" part of their keys
 586		 * (see the discussion near the top of this file)
 587		 * will differ by one bit, which will be "0" in
 588		 * node0's key and "1" in node1's key. Since we are
 589		 * moving the key position by one step, the bit that
 590		 * we are moving away from - the bit at position
 591		 * (tn->pos) - is the one that will differ between
 592		 * node0 and node1. So... we synthesize that bit in the
 593		 * two new keys.
 594		 */
 595		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596		if (!node1)
 597			goto nomem;
 598		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600		tnode_free_append(tn, node1);
 601		if (!node0)
 602			goto nomem;
 603		tnode_free_append(tn, node0);
 604
 605		/* populate child pointers in new nodes */
 606		for (k = child_length(inode), j = k / 2; j;) {
 607			put_child(node1, --j, get_child(inode, --k));
 608			put_child(node0, j, get_child(inode, j));
 609			put_child(node1, --j, get_child(inode, --k));
 610			put_child(node0, j, get_child(inode, j));
 611		}
 612
 613		/* link new nodes to parent */
 614		NODE_INIT_PARENT(node1, tn);
 615		NODE_INIT_PARENT(node0, tn);
 616
 617		/* link parent to nodes */
 618		put_child(tn, 2 * i + 1, node1);
 619		put_child(tn, 2 * i, node0);
 620	}
 621
 622	/* setup the parent pointers into and out of this node */
 623	return replace(t, oldtnode, tn);
 624nomem:
 625	/* all pointers should be clean so we are done */
 626	tnode_free(tn);
 627notnode:
 628	return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632				struct key_vector *oldtnode)
 633{
 634	struct key_vector *tn;
 635	unsigned long i;
 636
 637	pr_debug("In halve\n");
 638
 639	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640	if (!tn)
 641		goto notnode;
 642
 643	/* prepare oldtnode to be freed */
 644	tnode_free_init(oldtnode);
 645
 646	/* Assemble all of the pointers in our cluster, in this case that
 647	 * represents all of the pointers out of our allocated nodes that
 648	 * point to existing tnodes and the links between our allocated
 649	 * nodes.
 650	 */
 651	for (i = child_length(oldtnode); i;) {
 652		struct key_vector *node1 = get_child(oldtnode, --i);
 653		struct key_vector *node0 = get_child(oldtnode, --i);
 654		struct key_vector *inode;
 655
 656		/* At least one of the children is empty */
 657		if (!node1 || !node0) {
 658			put_child(tn, i / 2, node1 ? : node0);
 659			continue;
 660		}
 661
 662		/* Two nonempty children */
 663		inode = tnode_new(node0->key, oldtnode->pos, 1);
 664		if (!inode)
 665			goto nomem;
 666		tnode_free_append(tn, inode);
 667
 668		/* initialize pointers out of node */
 669		put_child(inode, 1, node1);
 670		put_child(inode, 0, node0);
 671		NODE_INIT_PARENT(inode, tn);
 672
 673		/* link parent to node */
 674		put_child(tn, i / 2, inode);
 675	}
 676
 677	/* setup the parent pointers into and out of this node */
 678	return replace(t, oldtnode, tn);
 679nomem:
 680	/* all pointers should be clean so we are done */
 681	tnode_free(tn);
 682notnode:
 683	return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687				   struct key_vector *oldtnode)
 688{
 689	struct key_vector *n, *tp;
 690	unsigned long i;
 691
 692	/* scan the tnode looking for that one child that might still exist */
 693	for (n = NULL, i = child_length(oldtnode); !n && i;)
 694		n = get_child(oldtnode, --i);
 695
 696	/* compress one level */
 697	tp = node_parent(oldtnode);
 698	put_child_root(tp, oldtnode->key, n);
 699	node_set_parent(n, tp);
 700
 701	/* drop dead node */
 702	node_free(oldtnode);
 703
 704	return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709	unsigned char slen = tn->pos;
 710	unsigned long stride, i;
 711	unsigned char slen_max;
 712
 713	/* only vector 0 can have a suffix length greater than or equal to
 714	 * tn->pos + tn->bits, the second highest node will have a suffix
 715	 * length at most of tn->pos + tn->bits - 1
 716	 */
 717	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719	/* search though the list of children looking for nodes that might
 720	 * have a suffix greater than the one we currently have.  This is
 721	 * why we start with a stride of 2 since a stride of 1 would
 722	 * represent the nodes with suffix length equal to tn->pos
 723	 */
 724	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725		struct key_vector *n = get_child(tn, i);
 726
 727		if (!n || (n->slen <= slen))
 728			continue;
 729
 730		/* update stride and slen based on new value */
 731		stride <<= (n->slen - slen);
 732		slen = n->slen;
 733		i &= ~(stride - 1);
 734
 735		/* stop searching if we have hit the maximum possible value */
 736		if (slen >= slen_max)
 737			break;
 738	}
 739
 740	tn->slen = slen;
 741
 742	return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804	unsigned long used = child_length(tn);
 805	unsigned long threshold = used;
 806
 807	/* Keep root node larger */
 808	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809	used -= tn_info(tn)->empty_children;
 810	used += tn_info(tn)->full_children;
 811
 812	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819	unsigned long used = child_length(tn);
 820	unsigned long threshold = used;
 821
 822	/* Keep root node larger */
 823	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824	used -= tn_info(tn)->empty_children;
 825
 826	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833	unsigned long used = child_length(tn);
 834
 835	used -= tn_info(tn)->empty_children;
 836
 837	/* account for bits == KEYLENGTH case */
 838	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839		used -= KEY_MAX;
 840
 841	/* One child or none, time to drop us from the trie */
 842	return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849	struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851	struct key_vector *tp = node_parent(tn);
 852	unsigned long cindex = get_index(tn->key, tp);
 853	int max_work = MAX_WORK;
 854
 855	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856		 tn, inflate_threshold, halve_threshold);
 857
 858	/* track the tnode via the pointer from the parent instead of
 859	 * doing it ourselves.  This way we can let RCU fully do its
 860	 * thing without us interfering
 861	 */
 862	BUG_ON(tn != get_child(tp, cindex));
 863
 864	/* Double as long as the resulting node has a number of
 865	 * nonempty nodes that are above the threshold.
 866	 */
 867	while (should_inflate(tp, tn) && max_work) {
 868		tp = inflate(t, tn);
 869		if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871			this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873			break;
 874		}
 875
 876		max_work--;
 877		tn = get_child(tp, cindex);
 878	}
 879
 880	/* update parent in case inflate failed */
 881	tp = node_parent(tn);
 882
 883	/* Return if at least one inflate is run */
 884	if (max_work != MAX_WORK)
 885		return tp;
 886
 887	/* Halve as long as the number of empty children in this
 888	 * node is above threshold.
 889	 */
 890	while (should_halve(tp, tn) && max_work) {
 891		tp = halve(t, tn);
 892		if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894			this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896			break;
 897		}
 898
 899		max_work--;
 900		tn = get_child(tp, cindex);
 901	}
 902
 903	/* Only one child remains */
 904	if (should_collapse(tn))
 905		return collapse(t, tn);
 906
 907	/* update parent in case halve failed */
 908	return node_parent(tn);
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913	unsigned char node_slen = tn->slen;
 914
 915	while ((node_slen > tn->pos) && (node_slen > slen)) {
 916		slen = update_suffix(tn);
 917		if (node_slen == slen)
 918			break;
 919
 920		tn = node_parent(tn);
 921		node_slen = tn->slen;
 922	}
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927	while (tn->slen < slen) {
 928		tn->slen = slen;
 929		tn = node_parent(tn);
 930	}
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935					struct key_vector **tp, u32 key)
 936{
 937	struct key_vector *pn, *n = t->kv;
 938	unsigned long index = 0;
 939
 940	do {
 941		pn = n;
 942		n = get_child_rcu(n, index);
 943
 944		if (!n)
 945			break;
 946
 947		index = get_cindex(key, n);
 948
 949		/* This bit of code is a bit tricky but it combines multiple
 950		 * checks into a single check.  The prefix consists of the
 951		 * prefix plus zeros for the bits in the cindex. The index
 952		 * is the difference between the key and this value.  From
 953		 * this we can actually derive several pieces of data.
 954		 *   if (index >= (1ul << bits))
 955		 *     we have a mismatch in skip bits and failed
 956		 *   else
 957		 *     we know the value is cindex
 958		 *
 959		 * This check is safe even if bits == KEYLENGTH due to the
 960		 * fact that we can only allocate a node with 32 bits if a
 961		 * long is greater than 32 bits.
 962		 */
 963		if (index >= (1ul << n->bits)) {
 964			n = NULL;
 965			break;
 966		}
 967
 968		/* keep searching until we find a perfect match leaf or NULL */
 969	} while (IS_TNODE(n));
 970
 971	*tp = pn;
 972
 973	return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982					u8 tos, u32 prio, u32 tb_id,
 983					bool find_first)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 
 
 
 
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (fa->fa_tos > tos)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
 
1040	struct fib_alias *fa_match;
 
 
1041
1042	rcu_read_lock();
1043
1044	fa_match = fib_find_matching_alias(net, fri);
1045	if (!fa_match)
1046		goto out;
1047
1048	fa_match->offload = fri->offload;
1049	fa_match->trap = fri->trap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051out:
1052	rcu_read_unlock();
1053}
1054EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
1056static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057{
1058	while (!IS_TRIE(tn))
1059		tn = resize(t, tn);
1060}
1061
1062static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063			   struct fib_alias *new, t_key key)
1064{
1065	struct key_vector *n, *l;
1066
1067	l = leaf_new(key, new);
1068	if (!l)
1069		goto noleaf;
1070
1071	/* retrieve child from parent node */
1072	n = get_child(tp, get_index(key, tp));
1073
1074	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075	 *
1076	 *  Add a new tnode here
1077	 *  first tnode need some special handling
1078	 *  leaves us in position for handling as case 3
1079	 */
1080	if (n) {
1081		struct key_vector *tn;
1082
1083		tn = tnode_new(key, __fls(key ^ n->key), 1);
1084		if (!tn)
1085			goto notnode;
1086
1087		/* initialize routes out of node */
1088		NODE_INIT_PARENT(tn, tp);
1089		put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091		/* start adding routes into the node */
1092		put_child_root(tp, key, tn);
1093		node_set_parent(n, tn);
1094
1095		/* parent now has a NULL spot where the leaf can go */
1096		tp = tn;
1097	}
1098
1099	/* Case 3: n is NULL, and will just insert a new leaf */
1100	node_push_suffix(tp, new->fa_slen);
1101	NODE_INIT_PARENT(l, tp);
1102	put_child_root(tp, key, l);
1103	trie_rebalance(t, tp);
1104
1105	return 0;
1106notnode:
1107	node_free(l);
1108noleaf:
1109	return -ENOMEM;
1110}
1111
1112static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113			    struct key_vector *l, struct fib_alias *new,
1114			    struct fib_alias *fa, t_key key)
1115{
1116	if (!l)
1117		return fib_insert_node(t, tp, new, key);
1118
1119	if (fa) {
1120		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121	} else {
1122		struct fib_alias *last;
1123
1124		hlist_for_each_entry(last, &l->leaf, fa_list) {
1125			if (new->fa_slen < last->fa_slen)
1126				break;
1127			if ((new->fa_slen == last->fa_slen) &&
1128			    (new->tb_id > last->tb_id))
1129				break;
1130			fa = last;
1131		}
1132
1133		if (fa)
1134			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135		else
1136			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137	}
1138
1139	/* if we added to the tail node then we need to update slen */
1140	if (l->slen < new->fa_slen) {
1141		l->slen = new->fa_slen;
1142		node_push_suffix(tp, new->fa_slen);
1143	}
1144
1145	return 0;
1146}
1147
1148static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149{
1150	if (plen > KEYLENGTH) {
1151		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152		return false;
1153	}
1154
1155	if ((plen < KEYLENGTH) && (key << plen)) {
1156		NL_SET_ERR_MSG(extack,
1157			       "Invalid prefix for given prefix length");
1158		return false;
1159	}
1160
1161	return true;
1162}
1163
1164static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165			     struct key_vector *l, struct fib_alias *old);
1166
1167/* Caller must hold RTNL. */
1168int fib_table_insert(struct net *net, struct fib_table *tb,
1169		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1170{
1171	struct trie *t = (struct trie *)tb->tb_data;
1172	struct fib_alias *fa, *new_fa;
1173	struct key_vector *l, *tp;
1174	u16 nlflags = NLM_F_EXCL;
1175	struct fib_info *fi;
1176	u8 plen = cfg->fc_dst_len;
1177	u8 slen = KEYLENGTH - plen;
1178	u8 tos = cfg->fc_tos;
1179	u32 key;
1180	int err;
1181
1182	key = ntohl(cfg->fc_dst);
1183
1184	if (!fib_valid_key_len(key, plen, extack))
1185		return -EINVAL;
1186
1187	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189	fi = fib_create_info(cfg, extack);
1190	if (IS_ERR(fi)) {
1191		err = PTR_ERR(fi);
1192		goto err;
1193	}
1194
 
1195	l = fib_find_node(t, &tp, key);
1196	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197				tb->tb_id, false) : NULL;
1198
1199	/* Now fa, if non-NULL, points to the first fib alias
1200	 * with the same keys [prefix,tos,priority], if such key already
1201	 * exists or to the node before which we will insert new one.
1202	 *
1203	 * If fa is NULL, we will need to allocate a new one and
1204	 * insert to the tail of the section matching the suffix length
1205	 * of the new alias.
1206	 */
1207
1208	if (fa && fa->fa_tos == tos &&
1209	    fa->fa_info->fib_priority == fi->fib_priority) {
1210		struct fib_alias *fa_first, *fa_match;
1211
1212		err = -EEXIST;
1213		if (cfg->fc_nlflags & NLM_F_EXCL)
1214			goto out;
1215
1216		nlflags &= ~NLM_F_EXCL;
1217
1218		/* We have 2 goals:
1219		 * 1. Find exact match for type, scope, fib_info to avoid
1220		 * duplicate routes
1221		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222		 */
1223		fa_match = NULL;
1224		fa_first = fa;
1225		hlist_for_each_entry_from(fa, fa_list) {
1226			if ((fa->fa_slen != slen) ||
1227			    (fa->tb_id != tb->tb_id) ||
1228			    (fa->fa_tos != tos))
1229				break;
1230			if (fa->fa_info->fib_priority != fi->fib_priority)
1231				break;
1232			if (fa->fa_type == cfg->fc_type &&
1233			    fa->fa_info == fi) {
1234				fa_match = fa;
1235				break;
1236			}
1237		}
1238
1239		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240			struct fib_info *fi_drop;
1241			u8 state;
1242
1243			nlflags |= NLM_F_REPLACE;
1244			fa = fa_first;
1245			if (fa_match) {
1246				if (fa == fa_match)
1247					err = 0;
1248				goto out;
1249			}
1250			err = -ENOBUFS;
1251			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252			if (!new_fa)
1253				goto out;
1254
1255			fi_drop = fa->fa_info;
1256			new_fa->fa_tos = fa->fa_tos;
1257			new_fa->fa_info = fi;
1258			new_fa->fa_type = cfg->fc_type;
1259			state = fa->fa_state;
1260			new_fa->fa_state = state & ~FA_S_ACCESSED;
1261			new_fa->fa_slen = fa->fa_slen;
1262			new_fa->tb_id = tb->tb_id;
1263			new_fa->fa_default = -1;
1264			new_fa->offload = 0;
1265			new_fa->trap = 0;
 
1266
1267			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270					   tb->tb_id, true) == new_fa) {
1271				enum fib_event_type fib_event;
1272
1273				fib_event = FIB_EVENT_ENTRY_REPLACE;
1274				err = call_fib_entry_notifiers(net, fib_event,
1275							       key, plen,
1276							       new_fa, extack);
1277				if (err) {
1278					hlist_replace_rcu(&new_fa->fa_list,
1279							  &fa->fa_list);
1280					goto out_free_new_fa;
1281				}
1282			}
1283
1284			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287			alias_free_mem_rcu(fa);
1288
1289			fib_release_info(fi_drop);
1290			if (state & FA_S_ACCESSED)
1291				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293			goto succeeded;
1294		}
1295		/* Error if we find a perfect match which
1296		 * uses the same scope, type, and nexthop
1297		 * information.
1298		 */
1299		if (fa_match)
1300			goto out;
1301
1302		if (cfg->fc_nlflags & NLM_F_APPEND)
1303			nlflags |= NLM_F_APPEND;
1304		else
1305			fa = fa_first;
1306	}
1307	err = -ENOENT;
1308	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309		goto out;
1310
1311	nlflags |= NLM_F_CREATE;
1312	err = -ENOBUFS;
1313	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314	if (!new_fa)
1315		goto out;
1316
1317	new_fa->fa_info = fi;
1318	new_fa->fa_tos = tos;
1319	new_fa->fa_type = cfg->fc_type;
1320	new_fa->fa_state = 0;
1321	new_fa->fa_slen = slen;
1322	new_fa->tb_id = tb->tb_id;
1323	new_fa->fa_default = -1;
1324	new_fa->offload = 0;
1325	new_fa->trap = 0;
 
1326
1327	/* Insert new entry to the list. */
1328	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329	if (err)
1330		goto out_free_new_fa;
1331
1332	/* The alias was already inserted, so the node must exist. */
1333	l = l ? l : fib_find_node(t, &tp, key);
1334	if (WARN_ON_ONCE(!l))
 
1335		goto out_free_new_fa;
 
1336
1337	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1338	    new_fa) {
1339		enum fib_event_type fib_event;
1340
1341		fib_event = FIB_EVENT_ENTRY_REPLACE;
1342		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1343					       new_fa, extack);
1344		if (err)
1345			goto out_remove_new_fa;
1346	}
1347
1348	if (!plen)
1349		tb->tb_num_default++;
1350
1351	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1352	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1353		  &cfg->fc_nlinfo, nlflags);
1354succeeded:
1355	return 0;
1356
1357out_remove_new_fa:
1358	fib_remove_alias(t, tp, l, new_fa);
1359out_free_new_fa:
1360	kmem_cache_free(fn_alias_kmem, new_fa);
1361out:
1362	fib_release_info(fi);
1363err:
1364	return err;
1365}
1366
1367static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1368{
1369	t_key prefix = n->key;
1370
1371	return (key ^ prefix) & (prefix | -prefix);
1372}
1373
1374bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1375			 const struct flowi4 *flp)
1376{
1377	if (nhc->nhc_flags & RTNH_F_DEAD)
1378		return false;
1379
1380	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1381	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1382	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1383		return false;
1384
1385	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1386		if (flp->flowi4_oif &&
1387		    flp->flowi4_oif != nhc->nhc_oif)
1388			return false;
1389	}
1390
1391	return true;
1392}
1393
1394/* should be called with rcu_read_lock */
1395int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1396		     struct fib_result *res, int fib_flags)
1397{
1398	struct trie *t = (struct trie *) tb->tb_data;
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400	struct trie_use_stats __percpu *stats = t->stats;
1401#endif
1402	const t_key key = ntohl(flp->daddr);
1403	struct key_vector *n, *pn;
1404	struct fib_alias *fa;
1405	unsigned long index;
1406	t_key cindex;
1407
1408	pn = t->kv;
1409	cindex = 0;
1410
1411	n = get_child_rcu(pn, cindex);
1412	if (!n) {
1413		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1414		return -EAGAIN;
1415	}
1416
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418	this_cpu_inc(stats->gets);
1419#endif
1420
1421	/* Step 1: Travel to the longest prefix match in the trie */
1422	for (;;) {
1423		index = get_cindex(key, n);
1424
1425		/* This bit of code is a bit tricky but it combines multiple
1426		 * checks into a single check.  The prefix consists of the
1427		 * prefix plus zeros for the "bits" in the prefix. The index
1428		 * is the difference between the key and this value.  From
1429		 * this we can actually derive several pieces of data.
1430		 *   if (index >= (1ul << bits))
1431		 *     we have a mismatch in skip bits and failed
1432		 *   else
1433		 *     we know the value is cindex
1434		 *
1435		 * This check is safe even if bits == KEYLENGTH due to the
1436		 * fact that we can only allocate a node with 32 bits if a
1437		 * long is greater than 32 bits.
1438		 */
1439		if (index >= (1ul << n->bits))
1440			break;
1441
1442		/* we have found a leaf. Prefixes have already been compared */
1443		if (IS_LEAF(n))
1444			goto found;
1445
1446		/* only record pn and cindex if we are going to be chopping
1447		 * bits later.  Otherwise we are just wasting cycles.
1448		 */
1449		if (n->slen > n->pos) {
1450			pn = n;
1451			cindex = index;
1452		}
1453
1454		n = get_child_rcu(n, index);
1455		if (unlikely(!n))
1456			goto backtrace;
1457	}
1458
1459	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1460	for (;;) {
1461		/* record the pointer where our next node pointer is stored */
1462		struct key_vector __rcu **cptr = n->tnode;
1463
1464		/* This test verifies that none of the bits that differ
1465		 * between the key and the prefix exist in the region of
1466		 * the lsb and higher in the prefix.
1467		 */
1468		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1469			goto backtrace;
1470
1471		/* exit out and process leaf */
1472		if (unlikely(IS_LEAF(n)))
1473			break;
1474
1475		/* Don't bother recording parent info.  Since we are in
1476		 * prefix match mode we will have to come back to wherever
1477		 * we started this traversal anyway
1478		 */
1479
1480		while ((n = rcu_dereference(*cptr)) == NULL) {
1481backtrace:
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483			if (!n)
1484				this_cpu_inc(stats->null_node_hit);
1485#endif
1486			/* If we are at cindex 0 there are no more bits for
1487			 * us to strip at this level so we must ascend back
1488			 * up one level to see if there are any more bits to
1489			 * be stripped there.
1490			 */
1491			while (!cindex) {
1492				t_key pkey = pn->key;
1493
1494				/* If we don't have a parent then there is
1495				 * nothing for us to do as we do not have any
1496				 * further nodes to parse.
1497				 */
1498				if (IS_TRIE(pn)) {
1499					trace_fib_table_lookup(tb->tb_id, flp,
1500							       NULL, -EAGAIN);
1501					return -EAGAIN;
1502				}
1503#ifdef CONFIG_IP_FIB_TRIE_STATS
1504				this_cpu_inc(stats->backtrack);
1505#endif
1506				/* Get Child's index */
1507				pn = node_parent_rcu(pn);
1508				cindex = get_index(pkey, pn);
1509			}
1510
1511			/* strip the least significant bit from the cindex */
1512			cindex &= cindex - 1;
1513
1514			/* grab pointer for next child node */
1515			cptr = &pn->tnode[cindex];
1516		}
1517	}
1518
1519found:
1520	/* this line carries forward the xor from earlier in the function */
1521	index = key ^ n->key;
1522
1523	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1524	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1525		struct fib_info *fi = fa->fa_info;
1526		struct fib_nh_common *nhc;
1527		int nhsel, err;
1528
1529		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1530			if (index >= (1ul << fa->fa_slen))
1531				continue;
1532		}
1533		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
 
1534			continue;
1535		if (fi->fib_dead)
1536			continue;
1537		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1538			continue;
1539		fib_alias_accessed(fa);
1540		err = fib_props[fa->fa_type].error;
1541		if (unlikely(err < 0)) {
1542out_reject:
1543#ifdef CONFIG_IP_FIB_TRIE_STATS
1544			this_cpu_inc(stats->semantic_match_passed);
1545#endif
1546			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1547			return err;
1548		}
1549		if (fi->fib_flags & RTNH_F_DEAD)
1550			continue;
1551
1552		if (unlikely(fi->nh)) {
1553			if (nexthop_is_blackhole(fi->nh)) {
1554				err = fib_props[RTN_BLACKHOLE].error;
1555				goto out_reject;
1556			}
1557
1558			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1559						     &nhsel);
1560			if (nhc)
1561				goto set_result;
1562			goto miss;
1563		}
1564
1565		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1566			nhc = fib_info_nhc(fi, nhsel);
1567
1568			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1569				continue;
1570set_result:
1571			if (!(fib_flags & FIB_LOOKUP_NOREF))
1572				refcount_inc(&fi->fib_clntref);
1573
1574			res->prefix = htonl(n->key);
1575			res->prefixlen = KEYLENGTH - fa->fa_slen;
1576			res->nh_sel = nhsel;
1577			res->nhc = nhc;
1578			res->type = fa->fa_type;
1579			res->scope = fi->fib_scope;
1580			res->fi = fi;
1581			res->table = tb;
1582			res->fa_head = &n->leaf;
1583#ifdef CONFIG_IP_FIB_TRIE_STATS
1584			this_cpu_inc(stats->semantic_match_passed);
1585#endif
1586			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1587
1588			return err;
1589		}
1590	}
1591miss:
1592#ifdef CONFIG_IP_FIB_TRIE_STATS
1593	this_cpu_inc(stats->semantic_match_miss);
1594#endif
1595	goto backtrace;
1596}
1597EXPORT_SYMBOL_GPL(fib_table_lookup);
1598
1599static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1600			     struct key_vector *l, struct fib_alias *old)
1601{
1602	/* record the location of the previous list_info entry */
1603	struct hlist_node **pprev = old->fa_list.pprev;
1604	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1605
1606	/* remove the fib_alias from the list */
1607	hlist_del_rcu(&old->fa_list);
1608
1609	/* if we emptied the list this leaf will be freed and we can sort
1610	 * out parent suffix lengths as a part of trie_rebalance
1611	 */
1612	if (hlist_empty(&l->leaf)) {
1613		if (tp->slen == l->slen)
1614			node_pull_suffix(tp, tp->pos);
1615		put_child_root(tp, l->key, NULL);
1616		node_free(l);
1617		trie_rebalance(t, tp);
1618		return;
1619	}
1620
1621	/* only access fa if it is pointing at the last valid hlist_node */
1622	if (*pprev)
1623		return;
1624
1625	/* update the trie with the latest suffix length */
1626	l->slen = fa->fa_slen;
1627	node_pull_suffix(tp, fa->fa_slen);
1628}
1629
1630static void fib_notify_alias_delete(struct net *net, u32 key,
1631				    struct hlist_head *fah,
1632				    struct fib_alias *fa_to_delete,
1633				    struct netlink_ext_ack *extack)
1634{
1635	struct fib_alias *fa_next, *fa_to_notify;
1636	u32 tb_id = fa_to_delete->tb_id;
1637	u8 slen = fa_to_delete->fa_slen;
1638	enum fib_event_type fib_event;
1639
1640	/* Do not notify if we do not care about the route. */
1641	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1642		return;
1643
1644	/* Determine if the route should be replaced by the next route in the
1645	 * list.
1646	 */
1647	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1648				   struct fib_alias, fa_list);
1649	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1650		fib_event = FIB_EVENT_ENTRY_REPLACE;
1651		fa_to_notify = fa_next;
1652	} else {
1653		fib_event = FIB_EVENT_ENTRY_DEL;
1654		fa_to_notify = fa_to_delete;
1655	}
1656	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1657				 fa_to_notify, extack);
1658}
1659
1660/* Caller must hold RTNL. */
1661int fib_table_delete(struct net *net, struct fib_table *tb,
1662		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1663{
1664	struct trie *t = (struct trie *) tb->tb_data;
1665	struct fib_alias *fa, *fa_to_delete;
1666	struct key_vector *l, *tp;
1667	u8 plen = cfg->fc_dst_len;
1668	u8 slen = KEYLENGTH - plen;
1669	u8 tos = cfg->fc_tos;
1670	u32 key;
1671
1672	key = ntohl(cfg->fc_dst);
1673
1674	if (!fib_valid_key_len(key, plen, extack))
1675		return -EINVAL;
1676
1677	l = fib_find_node(t, &tp, key);
1678	if (!l)
1679		return -ESRCH;
1680
1681	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
 
1682	if (!fa)
1683		return -ESRCH;
1684
1685	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
 
1686
1687	fa_to_delete = NULL;
1688	hlist_for_each_entry_from(fa, fa_list) {
1689		struct fib_info *fi = fa->fa_info;
1690
1691		if ((fa->fa_slen != slen) ||
1692		    (fa->tb_id != tb->tb_id) ||
1693		    (fa->fa_tos != tos))
1694			break;
1695
1696		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1697		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1698		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1699		    (!cfg->fc_prefsrc ||
1700		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1701		    (!cfg->fc_protocol ||
1702		     fi->fib_protocol == cfg->fc_protocol) &&
1703		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1704		    fib_metrics_match(cfg, fi)) {
1705			fa_to_delete = fa;
1706			break;
1707		}
1708	}
1709
1710	if (!fa_to_delete)
1711		return -ESRCH;
1712
1713	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1714	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1715		  &cfg->fc_nlinfo, 0);
1716
1717	if (!plen)
1718		tb->tb_num_default--;
1719
1720	fib_remove_alias(t, tp, l, fa_to_delete);
1721
1722	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1723		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1724
1725	fib_release_info(fa_to_delete->fa_info);
1726	alias_free_mem_rcu(fa_to_delete);
1727	return 0;
1728}
1729
1730/* Scan for the next leaf starting at the provided key value */
1731static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1732{
1733	struct key_vector *pn, *n = *tn;
1734	unsigned long cindex;
1735
1736	/* this loop is meant to try and find the key in the trie */
1737	do {
1738		/* record parent and next child index */
1739		pn = n;
1740		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1741
1742		if (cindex >> pn->bits)
1743			break;
1744
1745		/* descend into the next child */
1746		n = get_child_rcu(pn, cindex++);
1747		if (!n)
1748			break;
1749
1750		/* guarantee forward progress on the keys */
1751		if (IS_LEAF(n) && (n->key >= key))
1752			goto found;
1753	} while (IS_TNODE(n));
1754
1755	/* this loop will search for the next leaf with a greater key */
1756	while (!IS_TRIE(pn)) {
1757		/* if we exhausted the parent node we will need to climb */
1758		if (cindex >= (1ul << pn->bits)) {
1759			t_key pkey = pn->key;
1760
1761			pn = node_parent_rcu(pn);
1762			cindex = get_index(pkey, pn) + 1;
1763			continue;
1764		}
1765
1766		/* grab the next available node */
1767		n = get_child_rcu(pn, cindex++);
1768		if (!n)
1769			continue;
1770
1771		/* no need to compare keys since we bumped the index */
1772		if (IS_LEAF(n))
1773			goto found;
1774
1775		/* Rescan start scanning in new node */
1776		pn = n;
1777		cindex = 0;
1778	}
1779
1780	*tn = pn;
1781	return NULL; /* Root of trie */
1782found:
1783	/* if we are at the limit for keys just return NULL for the tnode */
1784	*tn = pn;
1785	return n;
1786}
1787
1788static void fib_trie_free(struct fib_table *tb)
1789{
1790	struct trie *t = (struct trie *)tb->tb_data;
1791	struct key_vector *pn = t->kv;
1792	unsigned long cindex = 1;
1793	struct hlist_node *tmp;
1794	struct fib_alias *fa;
1795
1796	/* walk trie in reverse order and free everything */
1797	for (;;) {
1798		struct key_vector *n;
1799
1800		if (!(cindex--)) {
1801			t_key pkey = pn->key;
1802
1803			if (IS_TRIE(pn))
1804				break;
1805
1806			n = pn;
1807			pn = node_parent(pn);
1808
1809			/* drop emptied tnode */
1810			put_child_root(pn, n->key, NULL);
1811			node_free(n);
1812
1813			cindex = get_index(pkey, pn);
1814
1815			continue;
1816		}
1817
1818		/* grab the next available node */
1819		n = get_child(pn, cindex);
1820		if (!n)
1821			continue;
1822
1823		if (IS_TNODE(n)) {
1824			/* record pn and cindex for leaf walking */
1825			pn = n;
1826			cindex = 1ul << n->bits;
1827
1828			continue;
1829		}
1830
1831		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832			hlist_del_rcu(&fa->fa_list);
1833			alias_free_mem_rcu(fa);
1834		}
1835
1836		put_child_root(pn, n->key, NULL);
1837		node_free(n);
1838	}
1839
1840#ifdef CONFIG_IP_FIB_TRIE_STATS
1841	free_percpu(t->stats);
1842#endif
1843	kfree(tb);
1844}
1845
1846struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1847{
1848	struct trie *ot = (struct trie *)oldtb->tb_data;
1849	struct key_vector *l, *tp = ot->kv;
1850	struct fib_table *local_tb;
1851	struct fib_alias *fa;
1852	struct trie *lt;
1853	t_key key = 0;
1854
1855	if (oldtb->tb_data == oldtb->__data)
1856		return oldtb;
1857
1858	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1859	if (!local_tb)
1860		return NULL;
1861
1862	lt = (struct trie *)local_tb->tb_data;
1863
1864	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1865		struct key_vector *local_l = NULL, *local_tp;
1866
1867		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1868			struct fib_alias *new_fa;
1869
1870			if (local_tb->tb_id != fa->tb_id)
1871				continue;
1872
1873			/* clone fa for new local table */
1874			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1875			if (!new_fa)
1876				goto out;
1877
1878			memcpy(new_fa, fa, sizeof(*fa));
1879
1880			/* insert clone into table */
1881			if (!local_l)
1882				local_l = fib_find_node(lt, &local_tp, l->key);
1883
1884			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1885					     NULL, l->key)) {
1886				kmem_cache_free(fn_alias_kmem, new_fa);
1887				goto out;
1888			}
1889		}
1890
1891		/* stop loop if key wrapped back to 0 */
1892		key = l->key + 1;
1893		if (key < l->key)
1894			break;
1895	}
1896
1897	return local_tb;
1898out:
1899	fib_trie_free(local_tb);
1900
1901	return NULL;
1902}
1903
1904/* Caller must hold RTNL */
1905void fib_table_flush_external(struct fib_table *tb)
1906{
1907	struct trie *t = (struct trie *)tb->tb_data;
1908	struct key_vector *pn = t->kv;
1909	unsigned long cindex = 1;
1910	struct hlist_node *tmp;
1911	struct fib_alias *fa;
1912
1913	/* walk trie in reverse order */
1914	for (;;) {
1915		unsigned char slen = 0;
1916		struct key_vector *n;
1917
1918		if (!(cindex--)) {
1919			t_key pkey = pn->key;
1920
1921			/* cannot resize the trie vector */
1922			if (IS_TRIE(pn))
1923				break;
1924
1925			/* update the suffix to address pulled leaves */
1926			if (pn->slen > pn->pos)
1927				update_suffix(pn);
1928
1929			/* resize completed node */
1930			pn = resize(t, pn);
1931			cindex = get_index(pkey, pn);
1932
1933			continue;
1934		}
1935
1936		/* grab the next available node */
1937		n = get_child(pn, cindex);
1938		if (!n)
1939			continue;
1940
1941		if (IS_TNODE(n)) {
1942			/* record pn and cindex for leaf walking */
1943			pn = n;
1944			cindex = 1ul << n->bits;
1945
1946			continue;
1947		}
1948
1949		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1950			/* if alias was cloned to local then we just
1951			 * need to remove the local copy from main
1952			 */
1953			if (tb->tb_id != fa->tb_id) {
1954				hlist_del_rcu(&fa->fa_list);
1955				alias_free_mem_rcu(fa);
1956				continue;
1957			}
1958
1959			/* record local slen */
1960			slen = fa->fa_slen;
1961		}
1962
1963		/* update leaf slen */
1964		n->slen = slen;
1965
1966		if (hlist_empty(&n->leaf)) {
1967			put_child_root(pn, n->key, NULL);
1968			node_free(n);
1969		}
1970	}
1971}
1972
1973/* Caller must hold RTNL. */
1974int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1975{
1976	struct trie *t = (struct trie *)tb->tb_data;
1977	struct key_vector *pn = t->kv;
1978	unsigned long cindex = 1;
1979	struct hlist_node *tmp;
1980	struct fib_alias *fa;
1981	int found = 0;
1982
1983	/* walk trie in reverse order */
1984	for (;;) {
1985		unsigned char slen = 0;
1986		struct key_vector *n;
1987
1988		if (!(cindex--)) {
1989			t_key pkey = pn->key;
1990
1991			/* cannot resize the trie vector */
1992			if (IS_TRIE(pn))
1993				break;
1994
1995			/* update the suffix to address pulled leaves */
1996			if (pn->slen > pn->pos)
1997				update_suffix(pn);
1998
1999			/* resize completed node */
2000			pn = resize(t, pn);
2001			cindex = get_index(pkey, pn);
2002
2003			continue;
2004		}
2005
2006		/* grab the next available node */
2007		n = get_child(pn, cindex);
2008		if (!n)
2009			continue;
2010
2011		if (IS_TNODE(n)) {
2012			/* record pn and cindex for leaf walking */
2013			pn = n;
2014			cindex = 1ul << n->bits;
2015
2016			continue;
2017		}
2018
2019		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2020			struct fib_info *fi = fa->fa_info;
2021
2022			if (!fi || tb->tb_id != fa->tb_id ||
2023			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2024			     !fib_props[fa->fa_type].error)) {
2025				slen = fa->fa_slen;
2026				continue;
2027			}
2028
2029			/* Do not flush error routes if network namespace is
2030			 * not being dismantled
2031			 */
2032			if (!flush_all && fib_props[fa->fa_type].error) {
2033				slen = fa->fa_slen;
2034				continue;
2035			}
2036
2037			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2038						NULL);
2039			hlist_del_rcu(&fa->fa_list);
2040			fib_release_info(fa->fa_info);
2041			alias_free_mem_rcu(fa);
2042			found++;
2043		}
2044
2045		/* update leaf slen */
2046		n->slen = slen;
2047
2048		if (hlist_empty(&n->leaf)) {
2049			put_child_root(pn, n->key, NULL);
2050			node_free(n);
2051		}
2052	}
2053
2054	pr_debug("trie_flush found=%d\n", found);
2055	return found;
2056}
2057
2058/* derived from fib_trie_free */
2059static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2060				     struct nl_info *info)
2061{
2062	struct trie *t = (struct trie *)tb->tb_data;
2063	struct key_vector *pn = t->kv;
2064	unsigned long cindex = 1;
2065	struct fib_alias *fa;
2066
2067	for (;;) {
2068		struct key_vector *n;
2069
2070		if (!(cindex--)) {
2071			t_key pkey = pn->key;
2072
2073			if (IS_TRIE(pn))
2074				break;
2075
2076			pn = node_parent(pn);
2077			cindex = get_index(pkey, pn);
2078			continue;
2079		}
2080
2081		/* grab the next available node */
2082		n = get_child(pn, cindex);
2083		if (!n)
2084			continue;
2085
2086		if (IS_TNODE(n)) {
2087			/* record pn and cindex for leaf walking */
2088			pn = n;
2089			cindex = 1ul << n->bits;
2090
2091			continue;
2092		}
2093
2094		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2095			struct fib_info *fi = fa->fa_info;
2096
2097			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2098				continue;
2099
2100			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2101				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2102				  info, NLM_F_REPLACE);
2103
2104			/* call_fib_entry_notifiers will be removed when
2105			 * in-kernel notifier is implemented and supported
2106			 * for nexthop objects
2107			 */
2108			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2109						 n->key,
2110						 KEYLENGTH - fa->fa_slen, fa,
2111						 NULL);
2112		}
2113	}
2114}
2115
2116void fib_info_notify_update(struct net *net, struct nl_info *info)
2117{
2118	unsigned int h;
2119
2120	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2121		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2122		struct fib_table *tb;
2123
2124		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2125					 lockdep_rtnl_is_held())
2126			__fib_info_notify_update(net, tb, info);
2127	}
2128}
2129
2130static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2131			   struct notifier_block *nb,
2132			   struct netlink_ext_ack *extack)
2133{
2134	struct fib_alias *fa;
2135	int last_slen = -1;
2136	int err;
2137
2138	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2139		struct fib_info *fi = fa->fa_info;
2140
2141		if (!fi)
2142			continue;
2143
2144		/* local and main table can share the same trie,
2145		 * so don't notify twice for the same entry.
2146		 */
2147		if (tb->tb_id != fa->tb_id)
2148			continue;
2149
2150		if (fa->fa_slen == last_slen)
2151			continue;
2152
2153		last_slen = fa->fa_slen;
2154		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2155					      l->key, KEYLENGTH - fa->fa_slen,
2156					      fa, extack);
2157		if (err)
2158			return err;
2159	}
2160	return 0;
2161}
2162
2163static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2164			    struct netlink_ext_ack *extack)
2165{
2166	struct trie *t = (struct trie *)tb->tb_data;
2167	struct key_vector *l, *tp = t->kv;
2168	t_key key = 0;
2169	int err;
2170
2171	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2172		err = fib_leaf_notify(l, tb, nb, extack);
2173		if (err)
2174			return err;
2175
2176		key = l->key + 1;
2177		/* stop in case of wrap around */
2178		if (key < l->key)
2179			break;
2180	}
2181	return 0;
2182}
2183
2184int fib_notify(struct net *net, struct notifier_block *nb,
2185	       struct netlink_ext_ack *extack)
2186{
2187	unsigned int h;
2188	int err;
2189
2190	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2191		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2192		struct fib_table *tb;
2193
2194		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2195			err = fib_table_notify(tb, nb, extack);
2196			if (err)
2197				return err;
2198		}
2199	}
2200	return 0;
2201}
2202
2203static void __trie_free_rcu(struct rcu_head *head)
2204{
2205	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2206#ifdef CONFIG_IP_FIB_TRIE_STATS
2207	struct trie *t = (struct trie *)tb->tb_data;
2208
2209	if (tb->tb_data == tb->__data)
2210		free_percpu(t->stats);
2211#endif /* CONFIG_IP_FIB_TRIE_STATS */
2212	kfree(tb);
2213}
2214
2215void fib_free_table(struct fib_table *tb)
2216{
2217	call_rcu(&tb->rcu, __trie_free_rcu);
2218}
2219
2220static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2221			     struct sk_buff *skb, struct netlink_callback *cb,
2222			     struct fib_dump_filter *filter)
2223{
2224	unsigned int flags = NLM_F_MULTI;
2225	__be32 xkey = htonl(l->key);
2226	int i, s_i, i_fa, s_fa, err;
2227	struct fib_alias *fa;
2228
2229	if (filter->filter_set ||
2230	    !filter->dump_exceptions || !filter->dump_routes)
2231		flags |= NLM_F_DUMP_FILTERED;
2232
2233	s_i = cb->args[4];
2234	s_fa = cb->args[5];
2235	i = 0;
2236
2237	/* rcu_read_lock is hold by caller */
2238	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2239		struct fib_info *fi = fa->fa_info;
2240
2241		if (i < s_i)
2242			goto next;
2243
2244		i_fa = 0;
2245
2246		if (tb->tb_id != fa->tb_id)
2247			goto next;
2248
2249		if (filter->filter_set) {
2250			if (filter->rt_type && fa->fa_type != filter->rt_type)
2251				goto next;
2252
2253			if ((filter->protocol &&
2254			     fi->fib_protocol != filter->protocol))
2255				goto next;
2256
2257			if (filter->dev &&
2258			    !fib_info_nh_uses_dev(fi, filter->dev))
2259				goto next;
2260		}
2261
2262		if (filter->dump_routes) {
2263			if (!s_fa) {
2264				struct fib_rt_info fri;
2265
2266				fri.fi = fi;
2267				fri.tb_id = tb->tb_id;
2268				fri.dst = xkey;
2269				fri.dst_len = KEYLENGTH - fa->fa_slen;
2270				fri.tos = fa->fa_tos;
2271				fri.type = fa->fa_type;
2272				fri.offload = fa->offload;
2273				fri.trap = fa->trap;
 
2274				err = fib_dump_info(skb,
2275						    NETLINK_CB(cb->skb).portid,
2276						    cb->nlh->nlmsg_seq,
2277						    RTM_NEWROUTE, &fri, flags);
2278				if (err < 0)
2279					goto stop;
2280			}
2281
2282			i_fa++;
2283		}
2284
2285		if (filter->dump_exceptions) {
2286			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2287						 &i_fa, s_fa, flags);
2288			if (err < 0)
2289				goto stop;
2290		}
2291
2292next:
2293		i++;
2294	}
2295
2296	cb->args[4] = i;
2297	return skb->len;
2298
2299stop:
2300	cb->args[4] = i;
2301	cb->args[5] = i_fa;
2302	return err;
2303}
2304
2305/* rcu_read_lock needs to be hold by caller from readside */
2306int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2307		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2308{
2309	struct trie *t = (struct trie *)tb->tb_data;
2310	struct key_vector *l, *tp = t->kv;
2311	/* Dump starting at last key.
2312	 * Note: 0.0.0.0/0 (ie default) is first key.
2313	 */
2314	int count = cb->args[2];
2315	t_key key = cb->args[3];
2316
2317	/* First time here, count and key are both always 0. Count > 0
2318	 * and key == 0 means the dump has wrapped around and we are done.
2319	 */
2320	if (count && !key)
2321		return skb->len;
2322
2323	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2324		int err;
2325
2326		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2327		if (err < 0) {
2328			cb->args[3] = key;
2329			cb->args[2] = count;
2330			return err;
2331		}
2332
2333		++count;
2334		key = l->key + 1;
2335
2336		memset(&cb->args[4], 0,
2337		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2338
2339		/* stop loop if key wrapped back to 0 */
2340		if (key < l->key)
2341			break;
2342	}
2343
2344	cb->args[3] = key;
2345	cb->args[2] = count;
2346
2347	return skb->len;
2348}
2349
2350void __init fib_trie_init(void)
2351{
2352	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2353					  sizeof(struct fib_alias),
2354					  0, SLAB_PANIC, NULL);
2355
2356	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2357					   LEAF_SIZE,
2358					   0, SLAB_PANIC, NULL);
2359}
2360
2361struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2362{
2363	struct fib_table *tb;
2364	struct trie *t;
2365	size_t sz = sizeof(*tb);
2366
2367	if (!alias)
2368		sz += sizeof(struct trie);
2369
2370	tb = kzalloc(sz, GFP_KERNEL);
2371	if (!tb)
2372		return NULL;
2373
2374	tb->tb_id = id;
2375	tb->tb_num_default = 0;
2376	tb->tb_data = (alias ? alias->__data : tb->__data);
2377
2378	if (alias)
2379		return tb;
2380
2381	t = (struct trie *) tb->tb_data;
2382	t->kv[0].pos = KEYLENGTH;
2383	t->kv[0].slen = KEYLENGTH;
2384#ifdef CONFIG_IP_FIB_TRIE_STATS
2385	t->stats = alloc_percpu(struct trie_use_stats);
2386	if (!t->stats) {
2387		kfree(tb);
2388		tb = NULL;
2389	}
2390#endif
2391
2392	return tb;
2393}
2394
2395#ifdef CONFIG_PROC_FS
2396/* Depth first Trie walk iterator */
2397struct fib_trie_iter {
2398	struct seq_net_private p;
2399	struct fib_table *tb;
2400	struct key_vector *tnode;
2401	unsigned int index;
2402	unsigned int depth;
2403};
2404
2405static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2406{
2407	unsigned long cindex = iter->index;
2408	struct key_vector *pn = iter->tnode;
2409	t_key pkey;
2410
2411	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2412		 iter->tnode, iter->index, iter->depth);
2413
2414	while (!IS_TRIE(pn)) {
2415		while (cindex < child_length(pn)) {
2416			struct key_vector *n = get_child_rcu(pn, cindex++);
2417
2418			if (!n)
2419				continue;
2420
2421			if (IS_LEAF(n)) {
2422				iter->tnode = pn;
2423				iter->index = cindex;
2424			} else {
2425				/* push down one level */
2426				iter->tnode = n;
2427				iter->index = 0;
2428				++iter->depth;
2429			}
2430
2431			return n;
2432		}
2433
2434		/* Current node exhausted, pop back up */
2435		pkey = pn->key;
2436		pn = node_parent_rcu(pn);
2437		cindex = get_index(pkey, pn) + 1;
2438		--iter->depth;
2439	}
2440
2441	/* record root node so further searches know we are done */
2442	iter->tnode = pn;
2443	iter->index = 0;
2444
2445	return NULL;
2446}
2447
2448static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2449					     struct trie *t)
2450{
2451	struct key_vector *n, *pn;
2452
2453	if (!t)
2454		return NULL;
2455
2456	pn = t->kv;
2457	n = rcu_dereference(pn->tnode[0]);
2458	if (!n)
2459		return NULL;
2460
2461	if (IS_TNODE(n)) {
2462		iter->tnode = n;
2463		iter->index = 0;
2464		iter->depth = 1;
2465	} else {
2466		iter->tnode = pn;
2467		iter->index = 0;
2468		iter->depth = 0;
2469	}
2470
2471	return n;
2472}
2473
2474static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2475{
2476	struct key_vector *n;
2477	struct fib_trie_iter iter;
2478
2479	memset(s, 0, sizeof(*s));
2480
2481	rcu_read_lock();
2482	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2483		if (IS_LEAF(n)) {
2484			struct fib_alias *fa;
2485
2486			s->leaves++;
2487			s->totdepth += iter.depth;
2488			if (iter.depth > s->maxdepth)
2489				s->maxdepth = iter.depth;
2490
2491			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2492				++s->prefixes;
2493		} else {
2494			s->tnodes++;
2495			if (n->bits < MAX_STAT_DEPTH)
2496				s->nodesizes[n->bits]++;
2497			s->nullpointers += tn_info(n)->empty_children;
2498		}
2499	}
2500	rcu_read_unlock();
2501}
2502
2503/*
2504 *	This outputs /proc/net/fib_triestats
2505 */
2506static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2507{
2508	unsigned int i, max, pointers, bytes, avdepth;
2509
2510	if (stat->leaves)
2511		avdepth = stat->totdepth*100 / stat->leaves;
2512	else
2513		avdepth = 0;
2514
2515	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2516		   avdepth / 100, avdepth % 100);
2517	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2518
2519	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2520	bytes = LEAF_SIZE * stat->leaves;
2521
2522	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2523	bytes += sizeof(struct fib_alias) * stat->prefixes;
2524
2525	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2526	bytes += TNODE_SIZE(0) * stat->tnodes;
2527
2528	max = MAX_STAT_DEPTH;
2529	while (max > 0 && stat->nodesizes[max-1] == 0)
2530		max--;
2531
2532	pointers = 0;
2533	for (i = 1; i < max; i++)
2534		if (stat->nodesizes[i] != 0) {
2535			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2536			pointers += (1<<i) * stat->nodesizes[i];
2537		}
2538	seq_putc(seq, '\n');
2539	seq_printf(seq, "\tPointers: %u\n", pointers);
2540
2541	bytes += sizeof(struct key_vector *) * pointers;
2542	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2543	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2544}
2545
2546#ifdef CONFIG_IP_FIB_TRIE_STATS
2547static void trie_show_usage(struct seq_file *seq,
2548			    const struct trie_use_stats __percpu *stats)
2549{
2550	struct trie_use_stats s = { 0 };
2551	int cpu;
2552
2553	/* loop through all of the CPUs and gather up the stats */
2554	for_each_possible_cpu(cpu) {
2555		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2556
2557		s.gets += pcpu->gets;
2558		s.backtrack += pcpu->backtrack;
2559		s.semantic_match_passed += pcpu->semantic_match_passed;
2560		s.semantic_match_miss += pcpu->semantic_match_miss;
2561		s.null_node_hit += pcpu->null_node_hit;
2562		s.resize_node_skipped += pcpu->resize_node_skipped;
2563	}
2564
2565	seq_printf(seq, "\nCounters:\n---------\n");
2566	seq_printf(seq, "gets = %u\n", s.gets);
2567	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2568	seq_printf(seq, "semantic match passed = %u\n",
2569		   s.semantic_match_passed);
2570	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2571	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2572	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2573}
2574#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2575
2576static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2577{
2578	if (tb->tb_id == RT_TABLE_LOCAL)
2579		seq_puts(seq, "Local:\n");
2580	else if (tb->tb_id == RT_TABLE_MAIN)
2581		seq_puts(seq, "Main:\n");
2582	else
2583		seq_printf(seq, "Id %d:\n", tb->tb_id);
2584}
2585
2586
2587static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2588{
2589	struct net *net = (struct net *)seq->private;
2590	unsigned int h;
2591
2592	seq_printf(seq,
2593		   "Basic info: size of leaf:"
2594		   " %zd bytes, size of tnode: %zd bytes.\n",
2595		   LEAF_SIZE, TNODE_SIZE(0));
2596
2597	rcu_read_lock();
2598	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2599		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2600		struct fib_table *tb;
2601
2602		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2603			struct trie *t = (struct trie *) tb->tb_data;
2604			struct trie_stat stat;
2605
2606			if (!t)
2607				continue;
2608
2609			fib_table_print(seq, tb);
2610
2611			trie_collect_stats(t, &stat);
2612			trie_show_stats(seq, &stat);
2613#ifdef CONFIG_IP_FIB_TRIE_STATS
2614			trie_show_usage(seq, t->stats);
2615#endif
2616		}
2617		cond_resched_rcu();
2618	}
2619	rcu_read_unlock();
2620
2621	return 0;
2622}
2623
2624static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2625{
2626	struct fib_trie_iter *iter = seq->private;
2627	struct net *net = seq_file_net(seq);
2628	loff_t idx = 0;
2629	unsigned int h;
2630
2631	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2632		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2633		struct fib_table *tb;
2634
2635		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2636			struct key_vector *n;
2637
2638			for (n = fib_trie_get_first(iter,
2639						    (struct trie *) tb->tb_data);
2640			     n; n = fib_trie_get_next(iter))
2641				if (pos == idx++) {
2642					iter->tb = tb;
2643					return n;
2644				}
2645		}
2646	}
2647
2648	return NULL;
2649}
2650
2651static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2652	__acquires(RCU)
2653{
2654	rcu_read_lock();
2655	return fib_trie_get_idx(seq, *pos);
2656}
2657
2658static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2659{
2660	struct fib_trie_iter *iter = seq->private;
2661	struct net *net = seq_file_net(seq);
2662	struct fib_table *tb = iter->tb;
2663	struct hlist_node *tb_node;
2664	unsigned int h;
2665	struct key_vector *n;
2666
2667	++*pos;
2668	/* next node in same table */
2669	n = fib_trie_get_next(iter);
2670	if (n)
2671		return n;
2672
2673	/* walk rest of this hash chain */
2674	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2675	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2676		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2677		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2678		if (n)
2679			goto found;
2680	}
2681
2682	/* new hash chain */
2683	while (++h < FIB_TABLE_HASHSZ) {
2684		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2685		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2686			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2687			if (n)
2688				goto found;
2689		}
2690	}
2691	return NULL;
2692
2693found:
2694	iter->tb = tb;
2695	return n;
2696}
2697
2698static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2699	__releases(RCU)
2700{
2701	rcu_read_unlock();
2702}
2703
2704static void seq_indent(struct seq_file *seq, int n)
2705{
2706	while (n-- > 0)
2707		seq_puts(seq, "   ");
2708}
2709
2710static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2711{
2712	switch (s) {
2713	case RT_SCOPE_UNIVERSE: return "universe";
2714	case RT_SCOPE_SITE:	return "site";
2715	case RT_SCOPE_LINK:	return "link";
2716	case RT_SCOPE_HOST:	return "host";
2717	case RT_SCOPE_NOWHERE:	return "nowhere";
2718	default:
2719		snprintf(buf, len, "scope=%d", s);
2720		return buf;
2721	}
2722}
2723
2724static const char *const rtn_type_names[__RTN_MAX] = {
2725	[RTN_UNSPEC] = "UNSPEC",
2726	[RTN_UNICAST] = "UNICAST",
2727	[RTN_LOCAL] = "LOCAL",
2728	[RTN_BROADCAST] = "BROADCAST",
2729	[RTN_ANYCAST] = "ANYCAST",
2730	[RTN_MULTICAST] = "MULTICAST",
2731	[RTN_BLACKHOLE] = "BLACKHOLE",
2732	[RTN_UNREACHABLE] = "UNREACHABLE",
2733	[RTN_PROHIBIT] = "PROHIBIT",
2734	[RTN_THROW] = "THROW",
2735	[RTN_NAT] = "NAT",
2736	[RTN_XRESOLVE] = "XRESOLVE",
2737};
2738
2739static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2740{
2741	if (t < __RTN_MAX && rtn_type_names[t])
2742		return rtn_type_names[t];
2743	snprintf(buf, len, "type %u", t);
2744	return buf;
2745}
2746
2747/* Pretty print the trie */
2748static int fib_trie_seq_show(struct seq_file *seq, void *v)
2749{
2750	const struct fib_trie_iter *iter = seq->private;
2751	struct key_vector *n = v;
2752
2753	if (IS_TRIE(node_parent_rcu(n)))
2754		fib_table_print(seq, iter->tb);
2755
2756	if (IS_TNODE(n)) {
2757		__be32 prf = htonl(n->key);
2758
2759		seq_indent(seq, iter->depth-1);
2760		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2761			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2762			   tn_info(n)->full_children,
2763			   tn_info(n)->empty_children);
2764	} else {
2765		__be32 val = htonl(n->key);
2766		struct fib_alias *fa;
2767
2768		seq_indent(seq, iter->depth);
2769		seq_printf(seq, "  |-- %pI4\n", &val);
2770
2771		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2772			char buf1[32], buf2[32];
2773
2774			seq_indent(seq, iter->depth + 1);
2775			seq_printf(seq, "  /%zu %s %s",
2776				   KEYLENGTH - fa->fa_slen,
2777				   rtn_scope(buf1, sizeof(buf1),
2778					     fa->fa_info->fib_scope),
2779				   rtn_type(buf2, sizeof(buf2),
2780					    fa->fa_type));
2781			if (fa->fa_tos)
2782				seq_printf(seq, " tos=%d", fa->fa_tos);
 
2783			seq_putc(seq, '\n');
2784		}
2785	}
2786
2787	return 0;
2788}
2789
2790static const struct seq_operations fib_trie_seq_ops = {
2791	.start  = fib_trie_seq_start,
2792	.next   = fib_trie_seq_next,
2793	.stop   = fib_trie_seq_stop,
2794	.show   = fib_trie_seq_show,
2795};
2796
2797struct fib_route_iter {
2798	struct seq_net_private p;
2799	struct fib_table *main_tb;
2800	struct key_vector *tnode;
2801	loff_t	pos;
2802	t_key	key;
2803};
2804
2805static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2806					    loff_t pos)
2807{
2808	struct key_vector *l, **tp = &iter->tnode;
2809	t_key key;
2810
2811	/* use cached location of previously found key */
2812	if (iter->pos > 0 && pos >= iter->pos) {
2813		key = iter->key;
2814	} else {
2815		iter->pos = 1;
2816		key = 0;
2817	}
2818
2819	pos -= iter->pos;
2820
2821	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2822		key = l->key + 1;
2823		iter->pos++;
2824		l = NULL;
2825
2826		/* handle unlikely case of a key wrap */
2827		if (!key)
2828			break;
2829	}
2830
2831	if (l)
2832		iter->key = l->key;	/* remember it */
2833	else
2834		iter->pos = 0;		/* forget it */
2835
2836	return l;
2837}
2838
2839static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2840	__acquires(RCU)
2841{
2842	struct fib_route_iter *iter = seq->private;
2843	struct fib_table *tb;
2844	struct trie *t;
2845
2846	rcu_read_lock();
2847
2848	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2849	if (!tb)
2850		return NULL;
2851
2852	iter->main_tb = tb;
2853	t = (struct trie *)tb->tb_data;
2854	iter->tnode = t->kv;
2855
2856	if (*pos != 0)
2857		return fib_route_get_idx(iter, *pos);
2858
2859	iter->pos = 0;
2860	iter->key = KEY_MAX;
2861
2862	return SEQ_START_TOKEN;
2863}
2864
2865static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2866{
2867	struct fib_route_iter *iter = seq->private;
2868	struct key_vector *l = NULL;
2869	t_key key = iter->key + 1;
2870
2871	++*pos;
2872
2873	/* only allow key of 0 for start of sequence */
2874	if ((v == SEQ_START_TOKEN) || key)
2875		l = leaf_walk_rcu(&iter->tnode, key);
2876
2877	if (l) {
2878		iter->key = l->key;
2879		iter->pos++;
2880	} else {
2881		iter->pos = 0;
2882	}
2883
2884	return l;
2885}
2886
2887static void fib_route_seq_stop(struct seq_file *seq, void *v)
2888	__releases(RCU)
2889{
2890	rcu_read_unlock();
2891}
2892
2893static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2894{
2895	unsigned int flags = 0;
2896
2897	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2898		flags = RTF_REJECT;
2899	if (fi) {
2900		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2901
2902		if (nhc->nhc_gw.ipv4)
2903			flags |= RTF_GATEWAY;
2904	}
2905	if (mask == htonl(0xFFFFFFFF))
2906		flags |= RTF_HOST;
2907	flags |= RTF_UP;
2908	return flags;
2909}
2910
2911/*
2912 *	This outputs /proc/net/route.
2913 *	The format of the file is not supposed to be changed
2914 *	and needs to be same as fib_hash output to avoid breaking
2915 *	legacy utilities
2916 */
2917static int fib_route_seq_show(struct seq_file *seq, void *v)
2918{
2919	struct fib_route_iter *iter = seq->private;
2920	struct fib_table *tb = iter->main_tb;
2921	struct fib_alias *fa;
2922	struct key_vector *l = v;
2923	__be32 prefix;
2924
2925	if (v == SEQ_START_TOKEN) {
2926		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2927			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2928			   "\tWindow\tIRTT");
2929		return 0;
2930	}
2931
2932	prefix = htonl(l->key);
2933
2934	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2935		struct fib_info *fi = fa->fa_info;
2936		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2937		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2938
2939		if ((fa->fa_type == RTN_BROADCAST) ||
2940		    (fa->fa_type == RTN_MULTICAST))
2941			continue;
2942
2943		if (fa->tb_id != tb->tb_id)
2944			continue;
2945
2946		seq_setwidth(seq, 127);
2947
2948		if (fi) {
2949			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2950			__be32 gw = 0;
2951
2952			if (nhc->nhc_gw_family == AF_INET)
2953				gw = nhc->nhc_gw.ipv4;
2954
2955			seq_printf(seq,
2956				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2957				   "%d\t%08X\t%d\t%u\t%u",
2958				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2959				   prefix, gw, flags, 0, 0,
2960				   fi->fib_priority,
2961				   mask,
2962				   (fi->fib_advmss ?
2963				    fi->fib_advmss + 40 : 0),
2964				   fi->fib_window,
2965				   fi->fib_rtt >> 3);
2966		} else {
2967			seq_printf(seq,
2968				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2969				   "%d\t%08X\t%d\t%u\t%u",
2970				   prefix, 0, flags, 0, 0, 0,
2971				   mask, 0, 0, 0);
2972		}
2973		seq_pad(seq, '\n');
2974	}
2975
2976	return 0;
2977}
2978
2979static const struct seq_operations fib_route_seq_ops = {
2980	.start  = fib_route_seq_start,
2981	.next   = fib_route_seq_next,
2982	.stop   = fib_route_seq_stop,
2983	.show   = fib_route_seq_show,
2984};
2985
2986int __net_init fib_proc_init(struct net *net)
2987{
2988	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2989			sizeof(struct fib_trie_iter)))
2990		goto out1;
2991
2992	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2993			fib_triestat_seq_show, NULL))
2994		goto out2;
2995
2996	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2997			sizeof(struct fib_route_iter)))
2998		goto out3;
2999
3000	return 0;
3001
3002out3:
3003	remove_proc_entry("fib_triestat", net->proc_net);
3004out2:
3005	remove_proc_entry("fib_trie", net->proc_net);
3006out1:
3007	return -ENOMEM;
3008}
3009
3010void __net_exit fib_proc_exit(struct net *net)
3011{
3012	remove_proc_entry("fib_trie", net->proc_net);
3013	remove_proc_entry("fib_triestat", net->proc_net);
3014	remove_proc_entry("route", net->proc_net);
3015}
3016
3017#endif /* CONFIG_PROC_FS */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
  64#include <net/inet_dscp.h>
  65#include <net/ip.h>
  66#include <net/protocol.h>
  67#include <net/route.h>
  68#include <net/tcp.h>
  69#include <net/sock.h>
  70#include <net/ip_fib.h>
  71#include <net/fib_notifier.h>
  72#include <trace/events/fib.h>
  73#include "fib_lookup.h"
  74
  75static int call_fib_entry_notifier(struct notifier_block *nb,
  76				   enum fib_event_type event_type, u32 dst,
  77				   int dst_len, struct fib_alias *fa,
  78				   struct netlink_ext_ack *extack)
  79{
  80	struct fib_entry_notifier_info info = {
  81		.info.extack = extack,
  82		.dst = dst,
  83		.dst_len = dst_len,
  84		.fi = fa->fa_info,
  85		.dscp = fa->fa_dscp,
  86		.type = fa->fa_type,
  87		.tb_id = fa->tb_id,
  88	};
  89	return call_fib4_notifier(nb, event_type, &info.info);
  90}
  91
  92static int call_fib_entry_notifiers(struct net *net,
  93				    enum fib_event_type event_type, u32 dst,
  94				    int dst_len, struct fib_alias *fa,
  95				    struct netlink_ext_ack *extack)
  96{
  97	struct fib_entry_notifier_info info = {
  98		.info.extack = extack,
  99		.dst = dst,
 100		.dst_len = dst_len,
 101		.fi = fa->fa_info,
 102		.dscp = fa->fa_dscp,
 103		.type = fa->fa_type,
 104		.tb_id = fa->tb_id,
 105	};
 106	return call_fib4_notifiers(net, event_type, &info.info);
 107}
 108
 109#define MAX_STAT_DEPTH 32
 110
 111#define KEYLENGTH	(8*sizeof(t_key))
 112#define KEY_MAX		((t_key)~0)
 113
 114typedef unsigned int t_key;
 115
 116#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 117#define IS_TNODE(n)	((n)->bits)
 118#define IS_LEAF(n)	(!(n)->bits)
 119
 120struct key_vector {
 121	t_key key;
 122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char slen;
 125	union {
 126		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 127		struct hlist_head leaf;
 128		/* This array is valid if (pos | bits) > 0 (TNODE) */
 129		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
 130	};
 131};
 132
 133struct tnode {
 134	struct rcu_head rcu;
 135	t_key empty_children;		/* KEYLENGTH bits needed */
 136	t_key full_children;		/* KEYLENGTH bits needed */
 137	struct key_vector __rcu *parent;
 138	struct key_vector kv[1];
 139#define tn_bits kv[0].bits
 140};
 141
 142#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 143#define LEAF_SIZE	TNODE_SIZE(1)
 144
 145#ifdef CONFIG_IP_FIB_TRIE_STATS
 146struct trie_use_stats {
 147	unsigned int gets;
 148	unsigned int backtrack;
 149	unsigned int semantic_match_passed;
 150	unsigned int semantic_match_miss;
 151	unsigned int null_node_hit;
 152	unsigned int resize_node_skipped;
 153};
 154#endif
 155
 156struct trie_stat {
 157	unsigned int totdepth;
 158	unsigned int maxdepth;
 159	unsigned int tnodes;
 160	unsigned int leaves;
 161	unsigned int nullpointers;
 162	unsigned int prefixes;
 163	unsigned int nodesizes[MAX_STAT_DEPTH];
 164};
 165
 166struct trie {
 167	struct key_vector kv[1];
 168#ifdef CONFIG_IP_FIB_TRIE_STATS
 169	struct trie_use_stats __percpu *stats;
 170#endif
 171};
 172
 173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 174static unsigned int tnode_free_size;
 175
 176/*
 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 178 * especially useful before resizing the root node with PREEMPT_NONE configs;
 179 * the value was obtained experimentally, aiming to avoid visible slowdown.
 180 */
 181unsigned int sysctl_fib_sync_mem = 512 * 1024;
 182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 184
 185static struct kmem_cache *fn_alias_kmem __ro_after_init;
 186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 187
 188static inline struct tnode *tn_info(struct key_vector *kv)
 189{
 190	return container_of(kv, struct tnode, kv[0]);
 191}
 192
 193/* caller must hold RTNL */
 194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 196
 197/* caller must hold RCU read lock or RTNL */
 198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 200
 201/* wrapper for rcu_assign_pointer */
 202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 203{
 204	if (n)
 205		rcu_assign_pointer(tn_info(n)->parent, tp);
 206}
 207
 208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 209
 210/* This provides us with the number of children in this node, in the case of a
 211 * leaf this will return 0 meaning none of the children are accessible.
 212 */
 213static inline unsigned long child_length(const struct key_vector *tn)
 214{
 215	return (1ul << tn->bits) & ~(1ul);
 216}
 217
 218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 219
 220static inline unsigned long get_index(t_key key, struct key_vector *kv)
 221{
 222	unsigned long index = key ^ kv->key;
 223
 224	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 225		return 0;
 226
 227	return index >> kv->pos;
 228}
 229
 230/* To understand this stuff, an understanding of keys and all their bits is
 231 * necessary. Every node in the trie has a key associated with it, but not
 232 * all of the bits in that key are significant.
 233 *
 234 * Consider a node 'n' and its parent 'tp'.
 235 *
 236 * If n is a leaf, every bit in its key is significant. Its presence is
 237 * necessitated by path compression, since during a tree traversal (when
 238 * searching for a leaf - unless we are doing an insertion) we will completely
 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 240 * a potentially successful search, that we have indeed been walking the
 241 * correct key path.
 242 *
 243 * Note that we can never "miss" the correct key in the tree if present by
 244 * following the wrong path. Path compression ensures that segments of the key
 245 * that are the same for all keys with a given prefix are skipped, but the
 246 * skipped part *is* identical for each node in the subtrie below the skipped
 247 * bit! trie_insert() in this implementation takes care of that.
 248 *
 249 * if n is an internal node - a 'tnode' here, the various parts of its key
 250 * have many different meanings.
 251 *
 252 * Example:
 253 * _________________________________________________________________
 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 255 * -----------------------------------------------------------------
 256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 257 *
 258 * _________________________________________________________________
 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 260 * -----------------------------------------------------------------
 261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 262 *
 263 * tp->pos = 22
 264 * tp->bits = 3
 265 * n->pos = 13
 266 * n->bits = 4
 267 *
 268 * First, let's just ignore the bits that come before the parent tp, that is
 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 270 * point we do not use them for anything.
 271 *
 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 273 * index into the parent's child array. That is, they will be used to find
 274 * 'n' among tp's children.
 275 *
 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 277 * for the node n.
 278 *
 279 * All the bits we have seen so far are significant to the node n. The rest
 280 * of the bits are really not needed or indeed known in n->key.
 281 *
 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 283 * n's child array, and will of course be different for each child.
 284 *
 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 286 * at this point.
 287 */
 288
 289static const int halve_threshold = 25;
 290static const int inflate_threshold = 50;
 291static const int halve_threshold_root = 15;
 292static const int inflate_threshold_root = 30;
 293
 294static void __alias_free_mem(struct rcu_head *head)
 295{
 296	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 297	kmem_cache_free(fn_alias_kmem, fa);
 298}
 299
 300static inline void alias_free_mem_rcu(struct fib_alias *fa)
 301{
 302	call_rcu(&fa->rcu, __alias_free_mem);
 303}
 304
 305#define TNODE_VMALLOC_MAX \
 306	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 307
 308static void __node_free_rcu(struct rcu_head *head)
 309{
 310	struct tnode *n = container_of(head, struct tnode, rcu);
 311
 312	if (!n->tn_bits)
 313		kmem_cache_free(trie_leaf_kmem, n);
 314	else
 315		kvfree(n);
 316}
 317
 318#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 319
 320static struct tnode *tnode_alloc(int bits)
 321{
 322	size_t size;
 323
 324	/* verify bits is within bounds */
 325	if (bits > TNODE_VMALLOC_MAX)
 326		return NULL;
 327
 328	/* determine size and verify it is non-zero and didn't overflow */
 329	size = TNODE_SIZE(1ul << bits);
 330
 331	if (size <= PAGE_SIZE)
 332		return kzalloc(size, GFP_KERNEL);
 333	else
 334		return vzalloc(size);
 335}
 336
 337static inline void empty_child_inc(struct key_vector *n)
 338{
 339	tn_info(n)->empty_children++;
 340
 341	if (!tn_info(n)->empty_children)
 342		tn_info(n)->full_children++;
 343}
 344
 345static inline void empty_child_dec(struct key_vector *n)
 346{
 347	if (!tn_info(n)->empty_children)
 348		tn_info(n)->full_children--;
 349
 350	tn_info(n)->empty_children--;
 351}
 352
 353static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 354{
 355	struct key_vector *l;
 356	struct tnode *kv;
 357
 358	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 359	if (!kv)
 360		return NULL;
 361
 362	/* initialize key vector */
 363	l = kv->kv;
 364	l->key = key;
 365	l->pos = 0;
 366	l->bits = 0;
 367	l->slen = fa->fa_slen;
 368
 369	/* link leaf to fib alias */
 370	INIT_HLIST_HEAD(&l->leaf);
 371	hlist_add_head(&fa->fa_list, &l->leaf);
 372
 373	return l;
 374}
 375
 376static struct key_vector *tnode_new(t_key key, int pos, int bits)
 377{
 378	unsigned int shift = pos + bits;
 379	struct key_vector *tn;
 380	struct tnode *tnode;
 381
 382	/* verify bits and pos their msb bits clear and values are valid */
 383	BUG_ON(!bits || (shift > KEYLENGTH));
 384
 385	tnode = tnode_alloc(bits);
 386	if (!tnode)
 387		return NULL;
 388
 389	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 390		 sizeof(struct key_vector *) << bits);
 391
 392	if (bits == KEYLENGTH)
 393		tnode->full_children = 1;
 394	else
 395		tnode->empty_children = 1ul << bits;
 396
 397	tn = tnode->kv;
 398	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 399	tn->pos = pos;
 400	tn->bits = bits;
 401	tn->slen = pos;
 402
 403	return tn;
 404}
 405
 406/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 407 * and no bits are skipped. See discussion in dyntree paper p. 6
 408 */
 409static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 410{
 411	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 412}
 413
 414/* Add a child at position i overwriting the old value.
 415 * Update the value of full_children and empty_children.
 416 */
 417static void put_child(struct key_vector *tn, unsigned long i,
 418		      struct key_vector *n)
 419{
 420	struct key_vector *chi = get_child(tn, i);
 421	int isfull, wasfull;
 422
 423	BUG_ON(i >= child_length(tn));
 424
 425	/* update emptyChildren, overflow into fullChildren */
 426	if (!n && chi)
 427		empty_child_inc(tn);
 428	if (n && !chi)
 429		empty_child_dec(tn);
 430
 431	/* update fullChildren */
 432	wasfull = tnode_full(tn, chi);
 433	isfull = tnode_full(tn, n);
 434
 435	if (wasfull && !isfull)
 436		tn_info(tn)->full_children--;
 437	else if (!wasfull && isfull)
 438		tn_info(tn)->full_children++;
 439
 440	if (n && (tn->slen < n->slen))
 441		tn->slen = n->slen;
 442
 443	rcu_assign_pointer(tn->tnode[i], n);
 444}
 445
 446static void update_children(struct key_vector *tn)
 447{
 448	unsigned long i;
 449
 450	/* update all of the child parent pointers */
 451	for (i = child_length(tn); i;) {
 452		struct key_vector *inode = get_child(tn, --i);
 453
 454		if (!inode)
 455			continue;
 456
 457		/* Either update the children of a tnode that
 458		 * already belongs to us or update the child
 459		 * to point to ourselves.
 460		 */
 461		if (node_parent(inode) == tn)
 462			update_children(inode);
 463		else
 464			node_set_parent(inode, tn);
 465	}
 466}
 467
 468static inline void put_child_root(struct key_vector *tp, t_key key,
 469				  struct key_vector *n)
 470{
 471	if (IS_TRIE(tp))
 472		rcu_assign_pointer(tp->tnode[0], n);
 473	else
 474		put_child(tp, get_index(key, tp), n);
 475}
 476
 477static inline void tnode_free_init(struct key_vector *tn)
 478{
 479	tn_info(tn)->rcu.next = NULL;
 480}
 481
 482static inline void tnode_free_append(struct key_vector *tn,
 483				     struct key_vector *n)
 484{
 485	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 486	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 487}
 488
 489static void tnode_free(struct key_vector *tn)
 490{
 491	struct callback_head *head = &tn_info(tn)->rcu;
 492
 493	while (head) {
 494		head = head->next;
 495		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 496		node_free(tn);
 497
 498		tn = container_of(head, struct tnode, rcu)->kv;
 499	}
 500
 501	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
 502		tnode_free_size = 0;
 503		synchronize_rcu();
 504	}
 505}
 506
 507static struct key_vector *replace(struct trie *t,
 508				  struct key_vector *oldtnode,
 509				  struct key_vector *tn)
 510{
 511	struct key_vector *tp = node_parent(oldtnode);
 512	unsigned long i;
 513
 514	/* setup the parent pointer out of and back into this node */
 515	NODE_INIT_PARENT(tn, tp);
 516	put_child_root(tp, tn->key, tn);
 517
 518	/* update all of the child parent pointers */
 519	update_children(tn);
 520
 521	/* all pointers should be clean so we are done */
 522	tnode_free(oldtnode);
 523
 524	/* resize children now that oldtnode is freed */
 525	for (i = child_length(tn); i;) {
 526		struct key_vector *inode = get_child(tn, --i);
 527
 528		/* resize child node */
 529		if (tnode_full(tn, inode))
 530			tn = resize(t, inode);
 531	}
 532
 533	return tp;
 534}
 535
 536static struct key_vector *inflate(struct trie *t,
 537				  struct key_vector *oldtnode)
 538{
 539	struct key_vector *tn;
 540	unsigned long i;
 541	t_key m;
 542
 543	pr_debug("In inflate\n");
 544
 545	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 546	if (!tn)
 547		goto notnode;
 548
 549	/* prepare oldtnode to be freed */
 550	tnode_free_init(oldtnode);
 551
 552	/* Assemble all of the pointers in our cluster, in this case that
 553	 * represents all of the pointers out of our allocated nodes that
 554	 * point to existing tnodes and the links between our allocated
 555	 * nodes.
 556	 */
 557	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 558		struct key_vector *inode = get_child(oldtnode, --i);
 559		struct key_vector *node0, *node1;
 560		unsigned long j, k;
 561
 562		/* An empty child */
 563		if (!inode)
 564			continue;
 565
 566		/* A leaf or an internal node with skipped bits */
 567		if (!tnode_full(oldtnode, inode)) {
 568			put_child(tn, get_index(inode->key, tn), inode);
 569			continue;
 570		}
 571
 572		/* drop the node in the old tnode free list */
 573		tnode_free_append(oldtnode, inode);
 574
 575		/* An internal node with two children */
 576		if (inode->bits == 1) {
 577			put_child(tn, 2 * i + 1, get_child(inode, 1));
 578			put_child(tn, 2 * i, get_child(inode, 0));
 579			continue;
 580		}
 581
 582		/* We will replace this node 'inode' with two new
 583		 * ones, 'node0' and 'node1', each with half of the
 584		 * original children. The two new nodes will have
 585		 * a position one bit further down the key and this
 586		 * means that the "significant" part of their keys
 587		 * (see the discussion near the top of this file)
 588		 * will differ by one bit, which will be "0" in
 589		 * node0's key and "1" in node1's key. Since we are
 590		 * moving the key position by one step, the bit that
 591		 * we are moving away from - the bit at position
 592		 * (tn->pos) - is the one that will differ between
 593		 * node0 and node1. So... we synthesize that bit in the
 594		 * two new keys.
 595		 */
 596		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 597		if (!node1)
 598			goto nomem;
 599		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 600
 601		tnode_free_append(tn, node1);
 602		if (!node0)
 603			goto nomem;
 604		tnode_free_append(tn, node0);
 605
 606		/* populate child pointers in new nodes */
 607		for (k = child_length(inode), j = k / 2; j;) {
 608			put_child(node1, --j, get_child(inode, --k));
 609			put_child(node0, j, get_child(inode, j));
 610			put_child(node1, --j, get_child(inode, --k));
 611			put_child(node0, j, get_child(inode, j));
 612		}
 613
 614		/* link new nodes to parent */
 615		NODE_INIT_PARENT(node1, tn);
 616		NODE_INIT_PARENT(node0, tn);
 617
 618		/* link parent to nodes */
 619		put_child(tn, 2 * i + 1, node1);
 620		put_child(tn, 2 * i, node0);
 621	}
 622
 623	/* setup the parent pointers into and out of this node */
 624	return replace(t, oldtnode, tn);
 625nomem:
 626	/* all pointers should be clean so we are done */
 627	tnode_free(tn);
 628notnode:
 629	return NULL;
 630}
 631
 632static struct key_vector *halve(struct trie *t,
 633				struct key_vector *oldtnode)
 634{
 635	struct key_vector *tn;
 636	unsigned long i;
 637
 638	pr_debug("In halve\n");
 639
 640	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 641	if (!tn)
 642		goto notnode;
 643
 644	/* prepare oldtnode to be freed */
 645	tnode_free_init(oldtnode);
 646
 647	/* Assemble all of the pointers in our cluster, in this case that
 648	 * represents all of the pointers out of our allocated nodes that
 649	 * point to existing tnodes and the links between our allocated
 650	 * nodes.
 651	 */
 652	for (i = child_length(oldtnode); i;) {
 653		struct key_vector *node1 = get_child(oldtnode, --i);
 654		struct key_vector *node0 = get_child(oldtnode, --i);
 655		struct key_vector *inode;
 656
 657		/* At least one of the children is empty */
 658		if (!node1 || !node0) {
 659			put_child(tn, i / 2, node1 ? : node0);
 660			continue;
 661		}
 662
 663		/* Two nonempty children */
 664		inode = tnode_new(node0->key, oldtnode->pos, 1);
 665		if (!inode)
 666			goto nomem;
 667		tnode_free_append(tn, inode);
 668
 669		/* initialize pointers out of node */
 670		put_child(inode, 1, node1);
 671		put_child(inode, 0, node0);
 672		NODE_INIT_PARENT(inode, tn);
 673
 674		/* link parent to node */
 675		put_child(tn, i / 2, inode);
 676	}
 677
 678	/* setup the parent pointers into and out of this node */
 679	return replace(t, oldtnode, tn);
 680nomem:
 681	/* all pointers should be clean so we are done */
 682	tnode_free(tn);
 683notnode:
 684	return NULL;
 685}
 686
 687static struct key_vector *collapse(struct trie *t,
 688				   struct key_vector *oldtnode)
 689{
 690	struct key_vector *n, *tp;
 691	unsigned long i;
 692
 693	/* scan the tnode looking for that one child that might still exist */
 694	for (n = NULL, i = child_length(oldtnode); !n && i;)
 695		n = get_child(oldtnode, --i);
 696
 697	/* compress one level */
 698	tp = node_parent(oldtnode);
 699	put_child_root(tp, oldtnode->key, n);
 700	node_set_parent(n, tp);
 701
 702	/* drop dead node */
 703	node_free(oldtnode);
 704
 705	return tp;
 706}
 707
 708static unsigned char update_suffix(struct key_vector *tn)
 709{
 710	unsigned char slen = tn->pos;
 711	unsigned long stride, i;
 712	unsigned char slen_max;
 713
 714	/* only vector 0 can have a suffix length greater than or equal to
 715	 * tn->pos + tn->bits, the second highest node will have a suffix
 716	 * length at most of tn->pos + tn->bits - 1
 717	 */
 718	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 719
 720	/* search though the list of children looking for nodes that might
 721	 * have a suffix greater than the one we currently have.  This is
 722	 * why we start with a stride of 2 since a stride of 1 would
 723	 * represent the nodes with suffix length equal to tn->pos
 724	 */
 725	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 726		struct key_vector *n = get_child(tn, i);
 727
 728		if (!n || (n->slen <= slen))
 729			continue;
 730
 731		/* update stride and slen based on new value */
 732		stride <<= (n->slen - slen);
 733		slen = n->slen;
 734		i &= ~(stride - 1);
 735
 736		/* stop searching if we have hit the maximum possible value */
 737		if (slen >= slen_max)
 738			break;
 739	}
 740
 741	tn->slen = slen;
 742
 743	return slen;
 744}
 745
 746/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 747 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 748 * Telecommunications, page 6:
 749 * "A node is doubled if the ratio of non-empty children to all
 750 * children in the *doubled* node is at least 'high'."
 751 *
 752 * 'high' in this instance is the variable 'inflate_threshold'. It
 753 * is expressed as a percentage, so we multiply it with
 754 * child_length() and instead of multiplying by 2 (since the
 755 * child array will be doubled by inflate()) and multiplying
 756 * the left-hand side by 100 (to handle the percentage thing) we
 757 * multiply the left-hand side by 50.
 758 *
 759 * The left-hand side may look a bit weird: child_length(tn)
 760 * - tn->empty_children is of course the number of non-null children
 761 * in the current node. tn->full_children is the number of "full"
 762 * children, that is non-null tnodes with a skip value of 0.
 763 * All of those will be doubled in the resulting inflated tnode, so
 764 * we just count them one extra time here.
 765 *
 766 * A clearer way to write this would be:
 767 *
 768 * to_be_doubled = tn->full_children;
 769 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 770 *     tn->full_children;
 771 *
 772 * new_child_length = child_length(tn) * 2;
 773 *
 774 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 775 *      new_child_length;
 776 * if (new_fill_factor >= inflate_threshold)
 777 *
 778 * ...and so on, tho it would mess up the while () loop.
 779 *
 780 * anyway,
 781 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 782 *      inflate_threshold
 783 *
 784 * avoid a division:
 785 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 786 *      inflate_threshold * new_child_length
 787 *
 788 * expand not_to_be_doubled and to_be_doubled, and shorten:
 789 * 100 * (child_length(tn) - tn->empty_children +
 790 *    tn->full_children) >= inflate_threshold * new_child_length
 791 *
 792 * expand new_child_length:
 793 * 100 * (child_length(tn) - tn->empty_children +
 794 *    tn->full_children) >=
 795 *      inflate_threshold * child_length(tn) * 2
 796 *
 797 * shorten again:
 798 * 50 * (tn->full_children + child_length(tn) -
 799 *    tn->empty_children) >= inflate_threshold *
 800 *    child_length(tn)
 801 *
 802 */
 803static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 804{
 805	unsigned long used = child_length(tn);
 806	unsigned long threshold = used;
 807
 808	/* Keep root node larger */
 809	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 810	used -= tn_info(tn)->empty_children;
 811	used += tn_info(tn)->full_children;
 812
 813	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 814
 815	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 816}
 817
 818static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 819{
 820	unsigned long used = child_length(tn);
 821	unsigned long threshold = used;
 822
 823	/* Keep root node larger */
 824	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 825	used -= tn_info(tn)->empty_children;
 826
 827	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 828
 829	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 830}
 831
 832static inline bool should_collapse(struct key_vector *tn)
 833{
 834	unsigned long used = child_length(tn);
 835
 836	used -= tn_info(tn)->empty_children;
 837
 838	/* account for bits == KEYLENGTH case */
 839	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 840		used -= KEY_MAX;
 841
 842	/* One child or none, time to drop us from the trie */
 843	return used < 2;
 844}
 845
 846#define MAX_WORK 10
 847static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 848{
 849#ifdef CONFIG_IP_FIB_TRIE_STATS
 850	struct trie_use_stats __percpu *stats = t->stats;
 851#endif
 852	struct key_vector *tp = node_parent(tn);
 853	unsigned long cindex = get_index(tn->key, tp);
 854	int max_work = MAX_WORK;
 855
 856	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 857		 tn, inflate_threshold, halve_threshold);
 858
 859	/* track the tnode via the pointer from the parent instead of
 860	 * doing it ourselves.  This way we can let RCU fully do its
 861	 * thing without us interfering
 862	 */
 863	BUG_ON(tn != get_child(tp, cindex));
 864
 865	/* Double as long as the resulting node has a number of
 866	 * nonempty nodes that are above the threshold.
 867	 */
 868	while (should_inflate(tp, tn) && max_work) {
 869		tp = inflate(t, tn);
 870		if (!tp) {
 871#ifdef CONFIG_IP_FIB_TRIE_STATS
 872			this_cpu_inc(stats->resize_node_skipped);
 873#endif
 874			break;
 875		}
 876
 877		max_work--;
 878		tn = get_child(tp, cindex);
 879	}
 880
 881	/* update parent in case inflate failed */
 882	tp = node_parent(tn);
 883
 884	/* Return if at least one inflate is run */
 885	if (max_work != MAX_WORK)
 886		return tp;
 887
 888	/* Halve as long as the number of empty children in this
 889	 * node is above threshold.
 890	 */
 891	while (should_halve(tp, tn) && max_work) {
 892		tp = halve(t, tn);
 893		if (!tp) {
 894#ifdef CONFIG_IP_FIB_TRIE_STATS
 895			this_cpu_inc(stats->resize_node_skipped);
 896#endif
 897			break;
 898		}
 899
 900		max_work--;
 901		tn = get_child(tp, cindex);
 902	}
 903
 904	/* Only one child remains */
 905	if (should_collapse(tn))
 906		return collapse(t, tn);
 907
 908	/* update parent in case halve failed */
 909	return node_parent(tn);
 910}
 911
 912static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 913{
 914	unsigned char node_slen = tn->slen;
 915
 916	while ((node_slen > tn->pos) && (node_slen > slen)) {
 917		slen = update_suffix(tn);
 918		if (node_slen == slen)
 919			break;
 920
 921		tn = node_parent(tn);
 922		node_slen = tn->slen;
 923	}
 924}
 925
 926static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 927{
 928	while (tn->slen < slen) {
 929		tn->slen = slen;
 930		tn = node_parent(tn);
 931	}
 932}
 933
 934/* rcu_read_lock needs to be hold by caller from readside */
 935static struct key_vector *fib_find_node(struct trie *t,
 936					struct key_vector **tp, u32 key)
 937{
 938	struct key_vector *pn, *n = t->kv;
 939	unsigned long index = 0;
 940
 941	do {
 942		pn = n;
 943		n = get_child_rcu(n, index);
 944
 945		if (!n)
 946			break;
 947
 948		index = get_cindex(key, n);
 949
 950		/* This bit of code is a bit tricky but it combines multiple
 951		 * checks into a single check.  The prefix consists of the
 952		 * prefix plus zeros for the bits in the cindex. The index
 953		 * is the difference between the key and this value.  From
 954		 * this we can actually derive several pieces of data.
 955		 *   if (index >= (1ul << bits))
 956		 *     we have a mismatch in skip bits and failed
 957		 *   else
 958		 *     we know the value is cindex
 959		 *
 960		 * This check is safe even if bits == KEYLENGTH due to the
 961		 * fact that we can only allocate a node with 32 bits if a
 962		 * long is greater than 32 bits.
 963		 */
 964		if (index >= (1ul << n->bits)) {
 965			n = NULL;
 966			break;
 967		}
 968
 969		/* keep searching until we find a perfect match leaf or NULL */
 970	} while (IS_TNODE(n));
 971
 972	*tp = pn;
 973
 974	return n;
 975}
 976
 977/* Return the first fib alias matching DSCP with
 978 * priority less than or equal to PRIO.
 979 * If 'find_first' is set, return the first matching
 980 * fib alias, regardless of DSCP and priority.
 981 */
 982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 983					dscp_t dscp, u32 prio, u32 tb_id,
 984					bool find_first)
 985{
 986	struct fib_alias *fa;
 987
 988	if (!fah)
 989		return NULL;
 990
 991	hlist_for_each_entry(fa, fah, fa_list) {
 992		/* Avoid Sparse warning when using dscp_t in inequalities */
 993		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
 994		u8 __dscp = inet_dscp_to_dsfield(dscp);
 995
 996		if (fa->fa_slen < slen)
 997			continue;
 998		if (fa->fa_slen != slen)
 999			break;
1000		if (fa->tb_id > tb_id)
1001			continue;
1002		if (fa->tb_id != tb_id)
1003			break;
1004		if (find_first)
1005			return fa;
1006		if (__fa_dscp > __dscp)
1007			continue;
1008		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1009			return fa;
1010	}
1011
1012	return NULL;
1013}
1014
1015static struct fib_alias *
1016fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017{
1018	u8 slen = KEYLENGTH - fri->dst_len;
1019	struct key_vector *l, *tp;
1020	struct fib_table *tb;
1021	struct fib_alias *fa;
1022	struct trie *t;
1023
1024	tb = fib_get_table(net, fri->tb_id);
1025	if (!tb)
1026		return NULL;
1027
1028	t = (struct trie *)tb->tb_data;
1029	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1030	if (!l)
1031		return NULL;
1032
1033	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1036		    fa->fa_type == fri->type)
1037			return fa;
1038	}
1039
1040	return NULL;
1041}
1042
1043void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044{
1045	u8 fib_notify_on_flag_change;
1046	struct fib_alias *fa_match;
1047	struct sk_buff *skb;
1048	int err;
1049
1050	rcu_read_lock();
1051
1052	fa_match = fib_find_matching_alias(net, fri);
1053	if (!fa_match)
1054		goto out;
1055
1056	/* These are paired with the WRITE_ONCE() happening in this function.
1057	 * The reason is that we are only protected by RCU at this point.
1058	 */
1059	if (READ_ONCE(fa_match->offload) == fri->offload &&
1060	    READ_ONCE(fa_match->trap) == fri->trap &&
1061	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1062		goto out;
1063
1064	WRITE_ONCE(fa_match->offload, fri->offload);
1065	WRITE_ONCE(fa_match->trap, fri->trap);
1066
1067	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1068
1069	/* 2 means send notifications only if offload_failed was changed. */
1070	if (fib_notify_on_flag_change == 2 &&
1071	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1072		goto out;
1073
1074	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1075
1076	if (!fib_notify_on_flag_change)
1077		goto out;
1078
1079	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1080	if (!skb) {
1081		err = -ENOBUFS;
1082		goto errout;
1083	}
1084
1085	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1086	if (err < 0) {
1087		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1088		WARN_ON(err == -EMSGSIZE);
1089		kfree_skb(skb);
1090		goto errout;
1091	}
1092
1093	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1094	goto out;
1095
1096errout:
1097	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1098out:
1099	rcu_read_unlock();
1100}
1101EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1102
1103static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104{
1105	while (!IS_TRIE(tn))
1106		tn = resize(t, tn);
1107}
1108
1109static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110			   struct fib_alias *new, t_key key)
1111{
1112	struct key_vector *n, *l;
1113
1114	l = leaf_new(key, new);
1115	if (!l)
1116		goto noleaf;
1117
1118	/* retrieve child from parent node */
1119	n = get_child(tp, get_index(key, tp));
1120
1121	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122	 *
1123	 *  Add a new tnode here
1124	 *  first tnode need some special handling
1125	 *  leaves us in position for handling as case 3
1126	 */
1127	if (n) {
1128		struct key_vector *tn;
1129
1130		tn = tnode_new(key, __fls(key ^ n->key), 1);
1131		if (!tn)
1132			goto notnode;
1133
1134		/* initialize routes out of node */
1135		NODE_INIT_PARENT(tn, tp);
1136		put_child(tn, get_index(key, tn) ^ 1, n);
1137
1138		/* start adding routes into the node */
1139		put_child_root(tp, key, tn);
1140		node_set_parent(n, tn);
1141
1142		/* parent now has a NULL spot where the leaf can go */
1143		tp = tn;
1144	}
1145
1146	/* Case 3: n is NULL, and will just insert a new leaf */
1147	node_push_suffix(tp, new->fa_slen);
1148	NODE_INIT_PARENT(l, tp);
1149	put_child_root(tp, key, l);
1150	trie_rebalance(t, tp);
1151
1152	return 0;
1153notnode:
1154	node_free(l);
1155noleaf:
1156	return -ENOMEM;
1157}
1158
1159static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160			    struct key_vector *l, struct fib_alias *new,
1161			    struct fib_alias *fa, t_key key)
1162{
1163	if (!l)
1164		return fib_insert_node(t, tp, new, key);
1165
1166	if (fa) {
1167		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168	} else {
1169		struct fib_alias *last;
1170
1171		hlist_for_each_entry(last, &l->leaf, fa_list) {
1172			if (new->fa_slen < last->fa_slen)
1173				break;
1174			if ((new->fa_slen == last->fa_slen) &&
1175			    (new->tb_id > last->tb_id))
1176				break;
1177			fa = last;
1178		}
1179
1180		if (fa)
1181			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1182		else
1183			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184	}
1185
1186	/* if we added to the tail node then we need to update slen */
1187	if (l->slen < new->fa_slen) {
1188		l->slen = new->fa_slen;
1189		node_push_suffix(tp, new->fa_slen);
1190	}
1191
1192	return 0;
1193}
1194
1195static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1196{
1197	if (plen > KEYLENGTH) {
1198		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1199		return false;
1200	}
1201
1202	if ((plen < KEYLENGTH) && (key << plen)) {
1203		NL_SET_ERR_MSG(extack,
1204			       "Invalid prefix for given prefix length");
1205		return false;
1206	}
1207
1208	return true;
1209}
1210
1211static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1212			     struct key_vector *l, struct fib_alias *old);
1213
1214/* Caller must hold RTNL. */
1215int fib_table_insert(struct net *net, struct fib_table *tb,
1216		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1217{
1218	struct trie *t = (struct trie *)tb->tb_data;
1219	struct fib_alias *fa, *new_fa;
1220	struct key_vector *l, *tp;
1221	u16 nlflags = NLM_F_EXCL;
1222	struct fib_info *fi;
1223	u8 plen = cfg->fc_dst_len;
1224	u8 slen = KEYLENGTH - plen;
1225	dscp_t dscp;
1226	u32 key;
1227	int err;
1228
1229	key = ntohl(cfg->fc_dst);
1230
1231	if (!fib_valid_key_len(key, plen, extack))
1232		return -EINVAL;
1233
1234	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1235
1236	fi = fib_create_info(cfg, extack);
1237	if (IS_ERR(fi)) {
1238		err = PTR_ERR(fi);
1239		goto err;
1240	}
1241
1242	dscp = cfg->fc_dscp;
1243	l = fib_find_node(t, &tp, key);
1244	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1245				tb->tb_id, false) : NULL;
1246
1247	/* Now fa, if non-NULL, points to the first fib alias
1248	 * with the same keys [prefix,dscp,priority], if such key already
1249	 * exists or to the node before which we will insert new one.
1250	 *
1251	 * If fa is NULL, we will need to allocate a new one and
1252	 * insert to the tail of the section matching the suffix length
1253	 * of the new alias.
1254	 */
1255
1256	if (fa && fa->fa_dscp == dscp &&
1257	    fa->fa_info->fib_priority == fi->fib_priority) {
1258		struct fib_alias *fa_first, *fa_match;
1259
1260		err = -EEXIST;
1261		if (cfg->fc_nlflags & NLM_F_EXCL)
1262			goto out;
1263
1264		nlflags &= ~NLM_F_EXCL;
1265
1266		/* We have 2 goals:
1267		 * 1. Find exact match for type, scope, fib_info to avoid
1268		 * duplicate routes
1269		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1270		 */
1271		fa_match = NULL;
1272		fa_first = fa;
1273		hlist_for_each_entry_from(fa, fa_list) {
1274			if ((fa->fa_slen != slen) ||
1275			    (fa->tb_id != tb->tb_id) ||
1276			    (fa->fa_dscp != dscp))
1277				break;
1278			if (fa->fa_info->fib_priority != fi->fib_priority)
1279				break;
1280			if (fa->fa_type == cfg->fc_type &&
1281			    fa->fa_info == fi) {
1282				fa_match = fa;
1283				break;
1284			}
1285		}
1286
1287		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1288			struct fib_info *fi_drop;
1289			u8 state;
1290
1291			nlflags |= NLM_F_REPLACE;
1292			fa = fa_first;
1293			if (fa_match) {
1294				if (fa == fa_match)
1295					err = 0;
1296				goto out;
1297			}
1298			err = -ENOBUFS;
1299			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300			if (!new_fa)
1301				goto out;
1302
1303			fi_drop = fa->fa_info;
1304			new_fa->fa_dscp = fa->fa_dscp;
1305			new_fa->fa_info = fi;
1306			new_fa->fa_type = cfg->fc_type;
1307			state = fa->fa_state;
1308			new_fa->fa_state = state & ~FA_S_ACCESSED;
1309			new_fa->fa_slen = fa->fa_slen;
1310			new_fa->tb_id = tb->tb_id;
1311			new_fa->fa_default = -1;
1312			new_fa->offload = 0;
1313			new_fa->trap = 0;
1314			new_fa->offload_failed = 0;
1315
1316			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1317
1318			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1319					   tb->tb_id, true) == new_fa) {
1320				enum fib_event_type fib_event;
1321
1322				fib_event = FIB_EVENT_ENTRY_REPLACE;
1323				err = call_fib_entry_notifiers(net, fib_event,
1324							       key, plen,
1325							       new_fa, extack);
1326				if (err) {
1327					hlist_replace_rcu(&new_fa->fa_list,
1328							  &fa->fa_list);
1329					goto out_free_new_fa;
1330				}
1331			}
1332
1333			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1334				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1335
1336			alias_free_mem_rcu(fa);
1337
1338			fib_release_info(fi_drop);
1339			if (state & FA_S_ACCESSED)
1340				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1341
1342			goto succeeded;
1343		}
1344		/* Error if we find a perfect match which
1345		 * uses the same scope, type, and nexthop
1346		 * information.
1347		 */
1348		if (fa_match)
1349			goto out;
1350
1351		if (cfg->fc_nlflags & NLM_F_APPEND)
1352			nlflags |= NLM_F_APPEND;
1353		else
1354			fa = fa_first;
1355	}
1356	err = -ENOENT;
1357	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1358		goto out;
1359
1360	nlflags |= NLM_F_CREATE;
1361	err = -ENOBUFS;
1362	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1363	if (!new_fa)
1364		goto out;
1365
1366	new_fa->fa_info = fi;
1367	new_fa->fa_dscp = dscp;
1368	new_fa->fa_type = cfg->fc_type;
1369	new_fa->fa_state = 0;
1370	new_fa->fa_slen = slen;
1371	new_fa->tb_id = tb->tb_id;
1372	new_fa->fa_default = -1;
1373	new_fa->offload = 0;
1374	new_fa->trap = 0;
1375	new_fa->offload_failed = 0;
1376
1377	/* Insert new entry to the list. */
1378	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1379	if (err)
1380		goto out_free_new_fa;
1381
1382	/* The alias was already inserted, so the node must exist. */
1383	l = l ? l : fib_find_node(t, &tp, key);
1384	if (WARN_ON_ONCE(!l)) {
1385		err = -ENOENT;
1386		goto out_free_new_fa;
1387	}
1388
1389	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1390	    new_fa) {
1391		enum fib_event_type fib_event;
1392
1393		fib_event = FIB_EVENT_ENTRY_REPLACE;
1394		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1395					       new_fa, extack);
1396		if (err)
1397			goto out_remove_new_fa;
1398	}
1399
1400	if (!plen)
1401		tb->tb_num_default++;
1402
1403	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1404	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1405		  &cfg->fc_nlinfo, nlflags);
1406succeeded:
1407	return 0;
1408
1409out_remove_new_fa:
1410	fib_remove_alias(t, tp, l, new_fa);
1411out_free_new_fa:
1412	kmem_cache_free(fn_alias_kmem, new_fa);
1413out:
1414	fib_release_info(fi);
1415err:
1416	return err;
1417}
1418
1419static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1420{
1421	t_key prefix = n->key;
1422
1423	return (key ^ prefix) & (prefix | -prefix);
1424}
1425
1426bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1427			 const struct flowi4 *flp)
1428{
1429	if (nhc->nhc_flags & RTNH_F_DEAD)
1430		return false;
1431
1432	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1433	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1434	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1435		return false;
1436
1437	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1438		return false;
 
 
 
1439
1440	return true;
1441}
1442
1443/* should be called with rcu_read_lock */
1444int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1445		     struct fib_result *res, int fib_flags)
1446{
1447	struct trie *t = (struct trie *) tb->tb_data;
1448#ifdef CONFIG_IP_FIB_TRIE_STATS
1449	struct trie_use_stats __percpu *stats = t->stats;
1450#endif
1451	const t_key key = ntohl(flp->daddr);
1452	struct key_vector *n, *pn;
1453	struct fib_alias *fa;
1454	unsigned long index;
1455	t_key cindex;
1456
1457	pn = t->kv;
1458	cindex = 0;
1459
1460	n = get_child_rcu(pn, cindex);
1461	if (!n) {
1462		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1463		return -EAGAIN;
1464	}
1465
1466#ifdef CONFIG_IP_FIB_TRIE_STATS
1467	this_cpu_inc(stats->gets);
1468#endif
1469
1470	/* Step 1: Travel to the longest prefix match in the trie */
1471	for (;;) {
1472		index = get_cindex(key, n);
1473
1474		/* This bit of code is a bit tricky but it combines multiple
1475		 * checks into a single check.  The prefix consists of the
1476		 * prefix plus zeros for the "bits" in the prefix. The index
1477		 * is the difference between the key and this value.  From
1478		 * this we can actually derive several pieces of data.
1479		 *   if (index >= (1ul << bits))
1480		 *     we have a mismatch in skip bits and failed
1481		 *   else
1482		 *     we know the value is cindex
1483		 *
1484		 * This check is safe even if bits == KEYLENGTH due to the
1485		 * fact that we can only allocate a node with 32 bits if a
1486		 * long is greater than 32 bits.
1487		 */
1488		if (index >= (1ul << n->bits))
1489			break;
1490
1491		/* we have found a leaf. Prefixes have already been compared */
1492		if (IS_LEAF(n))
1493			goto found;
1494
1495		/* only record pn and cindex if we are going to be chopping
1496		 * bits later.  Otherwise we are just wasting cycles.
1497		 */
1498		if (n->slen > n->pos) {
1499			pn = n;
1500			cindex = index;
1501		}
1502
1503		n = get_child_rcu(n, index);
1504		if (unlikely(!n))
1505			goto backtrace;
1506	}
1507
1508	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1509	for (;;) {
1510		/* record the pointer where our next node pointer is stored */
1511		struct key_vector __rcu **cptr = n->tnode;
1512
1513		/* This test verifies that none of the bits that differ
1514		 * between the key and the prefix exist in the region of
1515		 * the lsb and higher in the prefix.
1516		 */
1517		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1518			goto backtrace;
1519
1520		/* exit out and process leaf */
1521		if (unlikely(IS_LEAF(n)))
1522			break;
1523
1524		/* Don't bother recording parent info.  Since we are in
1525		 * prefix match mode we will have to come back to wherever
1526		 * we started this traversal anyway
1527		 */
1528
1529		while ((n = rcu_dereference(*cptr)) == NULL) {
1530backtrace:
1531#ifdef CONFIG_IP_FIB_TRIE_STATS
1532			if (!n)
1533				this_cpu_inc(stats->null_node_hit);
1534#endif
1535			/* If we are at cindex 0 there are no more bits for
1536			 * us to strip at this level so we must ascend back
1537			 * up one level to see if there are any more bits to
1538			 * be stripped there.
1539			 */
1540			while (!cindex) {
1541				t_key pkey = pn->key;
1542
1543				/* If we don't have a parent then there is
1544				 * nothing for us to do as we do not have any
1545				 * further nodes to parse.
1546				 */
1547				if (IS_TRIE(pn)) {
1548					trace_fib_table_lookup(tb->tb_id, flp,
1549							       NULL, -EAGAIN);
1550					return -EAGAIN;
1551				}
1552#ifdef CONFIG_IP_FIB_TRIE_STATS
1553				this_cpu_inc(stats->backtrack);
1554#endif
1555				/* Get Child's index */
1556				pn = node_parent_rcu(pn);
1557				cindex = get_index(pkey, pn);
1558			}
1559
1560			/* strip the least significant bit from the cindex */
1561			cindex &= cindex - 1;
1562
1563			/* grab pointer for next child node */
1564			cptr = &pn->tnode[cindex];
1565		}
1566	}
1567
1568found:
1569	/* this line carries forward the xor from earlier in the function */
1570	index = key ^ n->key;
1571
1572	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1573	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1574		struct fib_info *fi = fa->fa_info;
1575		struct fib_nh_common *nhc;
1576		int nhsel, err;
1577
1578		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1579			if (index >= (1ul << fa->fa_slen))
1580				continue;
1581		}
1582		if (fa->fa_dscp &&
1583		    inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1584			continue;
1585		if (fi->fib_dead)
1586			continue;
1587		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1588			continue;
1589		fib_alias_accessed(fa);
1590		err = fib_props[fa->fa_type].error;
1591		if (unlikely(err < 0)) {
1592out_reject:
1593#ifdef CONFIG_IP_FIB_TRIE_STATS
1594			this_cpu_inc(stats->semantic_match_passed);
1595#endif
1596			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1597			return err;
1598		}
1599		if (fi->fib_flags & RTNH_F_DEAD)
1600			continue;
1601
1602		if (unlikely(fi->nh)) {
1603			if (nexthop_is_blackhole(fi->nh)) {
1604				err = fib_props[RTN_BLACKHOLE].error;
1605				goto out_reject;
1606			}
1607
1608			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1609						     &nhsel);
1610			if (nhc)
1611				goto set_result;
1612			goto miss;
1613		}
1614
1615		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1616			nhc = fib_info_nhc(fi, nhsel);
1617
1618			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1619				continue;
1620set_result:
1621			if (!(fib_flags & FIB_LOOKUP_NOREF))
1622				refcount_inc(&fi->fib_clntref);
1623
1624			res->prefix = htonl(n->key);
1625			res->prefixlen = KEYLENGTH - fa->fa_slen;
1626			res->nh_sel = nhsel;
1627			res->nhc = nhc;
1628			res->type = fa->fa_type;
1629			res->scope = fi->fib_scope;
1630			res->fi = fi;
1631			res->table = tb;
1632			res->fa_head = &n->leaf;
1633#ifdef CONFIG_IP_FIB_TRIE_STATS
1634			this_cpu_inc(stats->semantic_match_passed);
1635#endif
1636			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1637
1638			return err;
1639		}
1640	}
1641miss:
1642#ifdef CONFIG_IP_FIB_TRIE_STATS
1643	this_cpu_inc(stats->semantic_match_miss);
1644#endif
1645	goto backtrace;
1646}
1647EXPORT_SYMBOL_GPL(fib_table_lookup);
1648
1649static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1650			     struct key_vector *l, struct fib_alias *old)
1651{
1652	/* record the location of the previous list_info entry */
1653	struct hlist_node **pprev = old->fa_list.pprev;
1654	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1655
1656	/* remove the fib_alias from the list */
1657	hlist_del_rcu(&old->fa_list);
1658
1659	/* if we emptied the list this leaf will be freed and we can sort
1660	 * out parent suffix lengths as a part of trie_rebalance
1661	 */
1662	if (hlist_empty(&l->leaf)) {
1663		if (tp->slen == l->slen)
1664			node_pull_suffix(tp, tp->pos);
1665		put_child_root(tp, l->key, NULL);
1666		node_free(l);
1667		trie_rebalance(t, tp);
1668		return;
1669	}
1670
1671	/* only access fa if it is pointing at the last valid hlist_node */
1672	if (*pprev)
1673		return;
1674
1675	/* update the trie with the latest suffix length */
1676	l->slen = fa->fa_slen;
1677	node_pull_suffix(tp, fa->fa_slen);
1678}
1679
1680static void fib_notify_alias_delete(struct net *net, u32 key,
1681				    struct hlist_head *fah,
1682				    struct fib_alias *fa_to_delete,
1683				    struct netlink_ext_ack *extack)
1684{
1685	struct fib_alias *fa_next, *fa_to_notify;
1686	u32 tb_id = fa_to_delete->tb_id;
1687	u8 slen = fa_to_delete->fa_slen;
1688	enum fib_event_type fib_event;
1689
1690	/* Do not notify if we do not care about the route. */
1691	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1692		return;
1693
1694	/* Determine if the route should be replaced by the next route in the
1695	 * list.
1696	 */
1697	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1698				   struct fib_alias, fa_list);
1699	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1700		fib_event = FIB_EVENT_ENTRY_REPLACE;
1701		fa_to_notify = fa_next;
1702	} else {
1703		fib_event = FIB_EVENT_ENTRY_DEL;
1704		fa_to_notify = fa_to_delete;
1705	}
1706	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1707				 fa_to_notify, extack);
1708}
1709
1710/* Caller must hold RTNL. */
1711int fib_table_delete(struct net *net, struct fib_table *tb,
1712		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1713{
1714	struct trie *t = (struct trie *) tb->tb_data;
1715	struct fib_alias *fa, *fa_to_delete;
1716	struct key_vector *l, *tp;
1717	u8 plen = cfg->fc_dst_len;
1718	u8 slen = KEYLENGTH - plen;
1719	dscp_t dscp;
1720	u32 key;
1721
1722	key = ntohl(cfg->fc_dst);
1723
1724	if (!fib_valid_key_len(key, plen, extack))
1725		return -EINVAL;
1726
1727	l = fib_find_node(t, &tp, key);
1728	if (!l)
1729		return -ESRCH;
1730
1731	dscp = cfg->fc_dscp;
1732	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1733	if (!fa)
1734		return -ESRCH;
1735
1736	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1737		 inet_dscp_to_dsfield(dscp), t);
1738
1739	fa_to_delete = NULL;
1740	hlist_for_each_entry_from(fa, fa_list) {
1741		struct fib_info *fi = fa->fa_info;
1742
1743		if ((fa->fa_slen != slen) ||
1744		    (fa->tb_id != tb->tb_id) ||
1745		    (fa->fa_dscp != dscp))
1746			break;
1747
1748		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1749		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1750		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1751		    (!cfg->fc_prefsrc ||
1752		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1753		    (!cfg->fc_protocol ||
1754		     fi->fib_protocol == cfg->fc_protocol) &&
1755		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1756		    fib_metrics_match(cfg, fi)) {
1757			fa_to_delete = fa;
1758			break;
1759		}
1760	}
1761
1762	if (!fa_to_delete)
1763		return -ESRCH;
1764
1765	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1766	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1767		  &cfg->fc_nlinfo, 0);
1768
1769	if (!plen)
1770		tb->tb_num_default--;
1771
1772	fib_remove_alias(t, tp, l, fa_to_delete);
1773
1774	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1775		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1776
1777	fib_release_info(fa_to_delete->fa_info);
1778	alias_free_mem_rcu(fa_to_delete);
1779	return 0;
1780}
1781
1782/* Scan for the next leaf starting at the provided key value */
1783static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1784{
1785	struct key_vector *pn, *n = *tn;
1786	unsigned long cindex;
1787
1788	/* this loop is meant to try and find the key in the trie */
1789	do {
1790		/* record parent and next child index */
1791		pn = n;
1792		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1793
1794		if (cindex >> pn->bits)
1795			break;
1796
1797		/* descend into the next child */
1798		n = get_child_rcu(pn, cindex++);
1799		if (!n)
1800			break;
1801
1802		/* guarantee forward progress on the keys */
1803		if (IS_LEAF(n) && (n->key >= key))
1804			goto found;
1805	} while (IS_TNODE(n));
1806
1807	/* this loop will search for the next leaf with a greater key */
1808	while (!IS_TRIE(pn)) {
1809		/* if we exhausted the parent node we will need to climb */
1810		if (cindex >= (1ul << pn->bits)) {
1811			t_key pkey = pn->key;
1812
1813			pn = node_parent_rcu(pn);
1814			cindex = get_index(pkey, pn) + 1;
1815			continue;
1816		}
1817
1818		/* grab the next available node */
1819		n = get_child_rcu(pn, cindex++);
1820		if (!n)
1821			continue;
1822
1823		/* no need to compare keys since we bumped the index */
1824		if (IS_LEAF(n))
1825			goto found;
1826
1827		/* Rescan start scanning in new node */
1828		pn = n;
1829		cindex = 0;
1830	}
1831
1832	*tn = pn;
1833	return NULL; /* Root of trie */
1834found:
1835	/* if we are at the limit for keys just return NULL for the tnode */
1836	*tn = pn;
1837	return n;
1838}
1839
1840static void fib_trie_free(struct fib_table *tb)
1841{
1842	struct trie *t = (struct trie *)tb->tb_data;
1843	struct key_vector *pn = t->kv;
1844	unsigned long cindex = 1;
1845	struct hlist_node *tmp;
1846	struct fib_alias *fa;
1847
1848	/* walk trie in reverse order and free everything */
1849	for (;;) {
1850		struct key_vector *n;
1851
1852		if (!(cindex--)) {
1853			t_key pkey = pn->key;
1854
1855			if (IS_TRIE(pn))
1856				break;
1857
1858			n = pn;
1859			pn = node_parent(pn);
1860
1861			/* drop emptied tnode */
1862			put_child_root(pn, n->key, NULL);
1863			node_free(n);
1864
1865			cindex = get_index(pkey, pn);
1866
1867			continue;
1868		}
1869
1870		/* grab the next available node */
1871		n = get_child(pn, cindex);
1872		if (!n)
1873			continue;
1874
1875		if (IS_TNODE(n)) {
1876			/* record pn and cindex for leaf walking */
1877			pn = n;
1878			cindex = 1ul << n->bits;
1879
1880			continue;
1881		}
1882
1883		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1884			hlist_del_rcu(&fa->fa_list);
1885			alias_free_mem_rcu(fa);
1886		}
1887
1888		put_child_root(pn, n->key, NULL);
1889		node_free(n);
1890	}
1891
1892#ifdef CONFIG_IP_FIB_TRIE_STATS
1893	free_percpu(t->stats);
1894#endif
1895	kfree(tb);
1896}
1897
1898struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1899{
1900	struct trie *ot = (struct trie *)oldtb->tb_data;
1901	struct key_vector *l, *tp = ot->kv;
1902	struct fib_table *local_tb;
1903	struct fib_alias *fa;
1904	struct trie *lt;
1905	t_key key = 0;
1906
1907	if (oldtb->tb_data == oldtb->__data)
1908		return oldtb;
1909
1910	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1911	if (!local_tb)
1912		return NULL;
1913
1914	lt = (struct trie *)local_tb->tb_data;
1915
1916	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1917		struct key_vector *local_l = NULL, *local_tp;
1918
1919		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1920			struct fib_alias *new_fa;
1921
1922			if (local_tb->tb_id != fa->tb_id)
1923				continue;
1924
1925			/* clone fa for new local table */
1926			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1927			if (!new_fa)
1928				goto out;
1929
1930			memcpy(new_fa, fa, sizeof(*fa));
1931
1932			/* insert clone into table */
1933			if (!local_l)
1934				local_l = fib_find_node(lt, &local_tp, l->key);
1935
1936			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1937					     NULL, l->key)) {
1938				kmem_cache_free(fn_alias_kmem, new_fa);
1939				goto out;
1940			}
1941		}
1942
1943		/* stop loop if key wrapped back to 0 */
1944		key = l->key + 1;
1945		if (key < l->key)
1946			break;
1947	}
1948
1949	return local_tb;
1950out:
1951	fib_trie_free(local_tb);
1952
1953	return NULL;
1954}
1955
1956/* Caller must hold RTNL */
1957void fib_table_flush_external(struct fib_table *tb)
1958{
1959	struct trie *t = (struct trie *)tb->tb_data;
1960	struct key_vector *pn = t->kv;
1961	unsigned long cindex = 1;
1962	struct hlist_node *tmp;
1963	struct fib_alias *fa;
1964
1965	/* walk trie in reverse order */
1966	for (;;) {
1967		unsigned char slen = 0;
1968		struct key_vector *n;
1969
1970		if (!(cindex--)) {
1971			t_key pkey = pn->key;
1972
1973			/* cannot resize the trie vector */
1974			if (IS_TRIE(pn))
1975				break;
1976
1977			/* update the suffix to address pulled leaves */
1978			if (pn->slen > pn->pos)
1979				update_suffix(pn);
1980
1981			/* resize completed node */
1982			pn = resize(t, pn);
1983			cindex = get_index(pkey, pn);
1984
1985			continue;
1986		}
1987
1988		/* grab the next available node */
1989		n = get_child(pn, cindex);
1990		if (!n)
1991			continue;
1992
1993		if (IS_TNODE(n)) {
1994			/* record pn and cindex for leaf walking */
1995			pn = n;
1996			cindex = 1ul << n->bits;
1997
1998			continue;
1999		}
2000
2001		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2002			/* if alias was cloned to local then we just
2003			 * need to remove the local copy from main
2004			 */
2005			if (tb->tb_id != fa->tb_id) {
2006				hlist_del_rcu(&fa->fa_list);
2007				alias_free_mem_rcu(fa);
2008				continue;
2009			}
2010
2011			/* record local slen */
2012			slen = fa->fa_slen;
2013		}
2014
2015		/* update leaf slen */
2016		n->slen = slen;
2017
2018		if (hlist_empty(&n->leaf)) {
2019			put_child_root(pn, n->key, NULL);
2020			node_free(n);
2021		}
2022	}
2023}
2024
2025/* Caller must hold RTNL. */
2026int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2027{
2028	struct trie *t = (struct trie *)tb->tb_data;
2029	struct key_vector *pn = t->kv;
2030	unsigned long cindex = 1;
2031	struct hlist_node *tmp;
2032	struct fib_alias *fa;
2033	int found = 0;
2034
2035	/* walk trie in reverse order */
2036	for (;;) {
2037		unsigned char slen = 0;
2038		struct key_vector *n;
2039
2040		if (!(cindex--)) {
2041			t_key pkey = pn->key;
2042
2043			/* cannot resize the trie vector */
2044			if (IS_TRIE(pn))
2045				break;
2046
2047			/* update the suffix to address pulled leaves */
2048			if (pn->slen > pn->pos)
2049				update_suffix(pn);
2050
2051			/* resize completed node */
2052			pn = resize(t, pn);
2053			cindex = get_index(pkey, pn);
2054
2055			continue;
2056		}
2057
2058		/* grab the next available node */
2059		n = get_child(pn, cindex);
2060		if (!n)
2061			continue;
2062
2063		if (IS_TNODE(n)) {
2064			/* record pn and cindex for leaf walking */
2065			pn = n;
2066			cindex = 1ul << n->bits;
2067
2068			continue;
2069		}
2070
2071		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2072			struct fib_info *fi = fa->fa_info;
2073
2074			if (!fi || tb->tb_id != fa->tb_id ||
2075			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2076			     !fib_props[fa->fa_type].error)) {
2077				slen = fa->fa_slen;
2078				continue;
2079			}
2080
2081			/* Do not flush error routes if network namespace is
2082			 * not being dismantled
2083			 */
2084			if (!flush_all && fib_props[fa->fa_type].error) {
2085				slen = fa->fa_slen;
2086				continue;
2087			}
2088
2089			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2090						NULL);
2091			hlist_del_rcu(&fa->fa_list);
2092			fib_release_info(fa->fa_info);
2093			alias_free_mem_rcu(fa);
2094			found++;
2095		}
2096
2097		/* update leaf slen */
2098		n->slen = slen;
2099
2100		if (hlist_empty(&n->leaf)) {
2101			put_child_root(pn, n->key, NULL);
2102			node_free(n);
2103		}
2104	}
2105
2106	pr_debug("trie_flush found=%d\n", found);
2107	return found;
2108}
2109
2110/* derived from fib_trie_free */
2111static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2112				     struct nl_info *info)
2113{
2114	struct trie *t = (struct trie *)tb->tb_data;
2115	struct key_vector *pn = t->kv;
2116	unsigned long cindex = 1;
2117	struct fib_alias *fa;
2118
2119	for (;;) {
2120		struct key_vector *n;
2121
2122		if (!(cindex--)) {
2123			t_key pkey = pn->key;
2124
2125			if (IS_TRIE(pn))
2126				break;
2127
2128			pn = node_parent(pn);
2129			cindex = get_index(pkey, pn);
2130			continue;
2131		}
2132
2133		/* grab the next available node */
2134		n = get_child(pn, cindex);
2135		if (!n)
2136			continue;
2137
2138		if (IS_TNODE(n)) {
2139			/* record pn and cindex for leaf walking */
2140			pn = n;
2141			cindex = 1ul << n->bits;
2142
2143			continue;
2144		}
2145
2146		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2147			struct fib_info *fi = fa->fa_info;
2148
2149			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2150				continue;
2151
2152			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2153				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2154				  info, NLM_F_REPLACE);
 
 
 
 
 
 
 
 
 
2155		}
2156	}
2157}
2158
2159void fib_info_notify_update(struct net *net, struct nl_info *info)
2160{
2161	unsigned int h;
2162
2163	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2164		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2165		struct fib_table *tb;
2166
2167		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2168					 lockdep_rtnl_is_held())
2169			__fib_info_notify_update(net, tb, info);
2170	}
2171}
2172
2173static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2174			   struct notifier_block *nb,
2175			   struct netlink_ext_ack *extack)
2176{
2177	struct fib_alias *fa;
2178	int last_slen = -1;
2179	int err;
2180
2181	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2182		struct fib_info *fi = fa->fa_info;
2183
2184		if (!fi)
2185			continue;
2186
2187		/* local and main table can share the same trie,
2188		 * so don't notify twice for the same entry.
2189		 */
2190		if (tb->tb_id != fa->tb_id)
2191			continue;
2192
2193		if (fa->fa_slen == last_slen)
2194			continue;
2195
2196		last_slen = fa->fa_slen;
2197		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2198					      l->key, KEYLENGTH - fa->fa_slen,
2199					      fa, extack);
2200		if (err)
2201			return err;
2202	}
2203	return 0;
2204}
2205
2206static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2207			    struct netlink_ext_ack *extack)
2208{
2209	struct trie *t = (struct trie *)tb->tb_data;
2210	struct key_vector *l, *tp = t->kv;
2211	t_key key = 0;
2212	int err;
2213
2214	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2215		err = fib_leaf_notify(l, tb, nb, extack);
2216		if (err)
2217			return err;
2218
2219		key = l->key + 1;
2220		/* stop in case of wrap around */
2221		if (key < l->key)
2222			break;
2223	}
2224	return 0;
2225}
2226
2227int fib_notify(struct net *net, struct notifier_block *nb,
2228	       struct netlink_ext_ack *extack)
2229{
2230	unsigned int h;
2231	int err;
2232
2233	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235		struct fib_table *tb;
2236
2237		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2238			err = fib_table_notify(tb, nb, extack);
2239			if (err)
2240				return err;
2241		}
2242	}
2243	return 0;
2244}
2245
2246static void __trie_free_rcu(struct rcu_head *head)
2247{
2248	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2249#ifdef CONFIG_IP_FIB_TRIE_STATS
2250	struct trie *t = (struct trie *)tb->tb_data;
2251
2252	if (tb->tb_data == tb->__data)
2253		free_percpu(t->stats);
2254#endif /* CONFIG_IP_FIB_TRIE_STATS */
2255	kfree(tb);
2256}
2257
2258void fib_free_table(struct fib_table *tb)
2259{
2260	call_rcu(&tb->rcu, __trie_free_rcu);
2261}
2262
2263static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2264			     struct sk_buff *skb, struct netlink_callback *cb,
2265			     struct fib_dump_filter *filter)
2266{
2267	unsigned int flags = NLM_F_MULTI;
2268	__be32 xkey = htonl(l->key);
2269	int i, s_i, i_fa, s_fa, err;
2270	struct fib_alias *fa;
2271
2272	if (filter->filter_set ||
2273	    !filter->dump_exceptions || !filter->dump_routes)
2274		flags |= NLM_F_DUMP_FILTERED;
2275
2276	s_i = cb->args[4];
2277	s_fa = cb->args[5];
2278	i = 0;
2279
2280	/* rcu_read_lock is hold by caller */
2281	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2282		struct fib_info *fi = fa->fa_info;
2283
2284		if (i < s_i)
2285			goto next;
2286
2287		i_fa = 0;
2288
2289		if (tb->tb_id != fa->tb_id)
2290			goto next;
2291
2292		if (filter->filter_set) {
2293			if (filter->rt_type && fa->fa_type != filter->rt_type)
2294				goto next;
2295
2296			if ((filter->protocol &&
2297			     fi->fib_protocol != filter->protocol))
2298				goto next;
2299
2300			if (filter->dev &&
2301			    !fib_info_nh_uses_dev(fi, filter->dev))
2302				goto next;
2303		}
2304
2305		if (filter->dump_routes) {
2306			if (!s_fa) {
2307				struct fib_rt_info fri;
2308
2309				fri.fi = fi;
2310				fri.tb_id = tb->tb_id;
2311				fri.dst = xkey;
2312				fri.dst_len = KEYLENGTH - fa->fa_slen;
2313				fri.dscp = fa->fa_dscp;
2314				fri.type = fa->fa_type;
2315				fri.offload = READ_ONCE(fa->offload);
2316				fri.trap = READ_ONCE(fa->trap);
2317				fri.offload_failed = READ_ONCE(fa->offload_failed);
2318				err = fib_dump_info(skb,
2319						    NETLINK_CB(cb->skb).portid,
2320						    cb->nlh->nlmsg_seq,
2321						    RTM_NEWROUTE, &fri, flags);
2322				if (err < 0)
2323					goto stop;
2324			}
2325
2326			i_fa++;
2327		}
2328
2329		if (filter->dump_exceptions) {
2330			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2331						 &i_fa, s_fa, flags);
2332			if (err < 0)
2333				goto stop;
2334		}
2335
2336next:
2337		i++;
2338	}
2339
2340	cb->args[4] = i;
2341	return skb->len;
2342
2343stop:
2344	cb->args[4] = i;
2345	cb->args[5] = i_fa;
2346	return err;
2347}
2348
2349/* rcu_read_lock needs to be hold by caller from readside */
2350int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2351		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2352{
2353	struct trie *t = (struct trie *)tb->tb_data;
2354	struct key_vector *l, *tp = t->kv;
2355	/* Dump starting at last key.
2356	 * Note: 0.0.0.0/0 (ie default) is first key.
2357	 */
2358	int count = cb->args[2];
2359	t_key key = cb->args[3];
2360
2361	/* First time here, count and key are both always 0. Count > 0
2362	 * and key == 0 means the dump has wrapped around and we are done.
2363	 */
2364	if (count && !key)
2365		return skb->len;
2366
2367	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2368		int err;
2369
2370		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2371		if (err < 0) {
2372			cb->args[3] = key;
2373			cb->args[2] = count;
2374			return err;
2375		}
2376
2377		++count;
2378		key = l->key + 1;
2379
2380		memset(&cb->args[4], 0,
2381		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2382
2383		/* stop loop if key wrapped back to 0 */
2384		if (key < l->key)
2385			break;
2386	}
2387
2388	cb->args[3] = key;
2389	cb->args[2] = count;
2390
2391	return skb->len;
2392}
2393
2394void __init fib_trie_init(void)
2395{
2396	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2397					  sizeof(struct fib_alias),
2398					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2399
2400	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2401					   LEAF_SIZE,
2402					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2403}
2404
2405struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2406{
2407	struct fib_table *tb;
2408	struct trie *t;
2409	size_t sz = sizeof(*tb);
2410
2411	if (!alias)
2412		sz += sizeof(struct trie);
2413
2414	tb = kzalloc(sz, GFP_KERNEL);
2415	if (!tb)
2416		return NULL;
2417
2418	tb->tb_id = id;
2419	tb->tb_num_default = 0;
2420	tb->tb_data = (alias ? alias->__data : tb->__data);
2421
2422	if (alias)
2423		return tb;
2424
2425	t = (struct trie *) tb->tb_data;
2426	t->kv[0].pos = KEYLENGTH;
2427	t->kv[0].slen = KEYLENGTH;
2428#ifdef CONFIG_IP_FIB_TRIE_STATS
2429	t->stats = alloc_percpu(struct trie_use_stats);
2430	if (!t->stats) {
2431		kfree(tb);
2432		tb = NULL;
2433	}
2434#endif
2435
2436	return tb;
2437}
2438
2439#ifdef CONFIG_PROC_FS
2440/* Depth first Trie walk iterator */
2441struct fib_trie_iter {
2442	struct seq_net_private p;
2443	struct fib_table *tb;
2444	struct key_vector *tnode;
2445	unsigned int index;
2446	unsigned int depth;
2447};
2448
2449static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2450{
2451	unsigned long cindex = iter->index;
2452	struct key_vector *pn = iter->tnode;
2453	t_key pkey;
2454
2455	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456		 iter->tnode, iter->index, iter->depth);
2457
2458	while (!IS_TRIE(pn)) {
2459		while (cindex < child_length(pn)) {
2460			struct key_vector *n = get_child_rcu(pn, cindex++);
2461
2462			if (!n)
2463				continue;
2464
2465			if (IS_LEAF(n)) {
2466				iter->tnode = pn;
2467				iter->index = cindex;
2468			} else {
2469				/* push down one level */
2470				iter->tnode = n;
2471				iter->index = 0;
2472				++iter->depth;
2473			}
2474
2475			return n;
2476		}
2477
2478		/* Current node exhausted, pop back up */
2479		pkey = pn->key;
2480		pn = node_parent_rcu(pn);
2481		cindex = get_index(pkey, pn) + 1;
2482		--iter->depth;
2483	}
2484
2485	/* record root node so further searches know we are done */
2486	iter->tnode = pn;
2487	iter->index = 0;
2488
2489	return NULL;
2490}
2491
2492static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2493					     struct trie *t)
2494{
2495	struct key_vector *n, *pn;
2496
2497	if (!t)
2498		return NULL;
2499
2500	pn = t->kv;
2501	n = rcu_dereference(pn->tnode[0]);
2502	if (!n)
2503		return NULL;
2504
2505	if (IS_TNODE(n)) {
2506		iter->tnode = n;
2507		iter->index = 0;
2508		iter->depth = 1;
2509	} else {
2510		iter->tnode = pn;
2511		iter->index = 0;
2512		iter->depth = 0;
2513	}
2514
2515	return n;
2516}
2517
2518static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2519{
2520	struct key_vector *n;
2521	struct fib_trie_iter iter;
2522
2523	memset(s, 0, sizeof(*s));
2524
2525	rcu_read_lock();
2526	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2527		if (IS_LEAF(n)) {
2528			struct fib_alias *fa;
2529
2530			s->leaves++;
2531			s->totdepth += iter.depth;
2532			if (iter.depth > s->maxdepth)
2533				s->maxdepth = iter.depth;
2534
2535			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2536				++s->prefixes;
2537		} else {
2538			s->tnodes++;
2539			if (n->bits < MAX_STAT_DEPTH)
2540				s->nodesizes[n->bits]++;
2541			s->nullpointers += tn_info(n)->empty_children;
2542		}
2543	}
2544	rcu_read_unlock();
2545}
2546
2547/*
2548 *	This outputs /proc/net/fib_triestats
2549 */
2550static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2551{
2552	unsigned int i, max, pointers, bytes, avdepth;
2553
2554	if (stat->leaves)
2555		avdepth = stat->totdepth*100 / stat->leaves;
2556	else
2557		avdepth = 0;
2558
2559	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2560		   avdepth / 100, avdepth % 100);
2561	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2562
2563	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2564	bytes = LEAF_SIZE * stat->leaves;
2565
2566	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2567	bytes += sizeof(struct fib_alias) * stat->prefixes;
2568
2569	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2570	bytes += TNODE_SIZE(0) * stat->tnodes;
2571
2572	max = MAX_STAT_DEPTH;
2573	while (max > 0 && stat->nodesizes[max-1] == 0)
2574		max--;
2575
2576	pointers = 0;
2577	for (i = 1; i < max; i++)
2578		if (stat->nodesizes[i] != 0) {
2579			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2580			pointers += (1<<i) * stat->nodesizes[i];
2581		}
2582	seq_putc(seq, '\n');
2583	seq_printf(seq, "\tPointers: %u\n", pointers);
2584
2585	bytes += sizeof(struct key_vector *) * pointers;
2586	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2587	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2588}
2589
2590#ifdef CONFIG_IP_FIB_TRIE_STATS
2591static void trie_show_usage(struct seq_file *seq,
2592			    const struct trie_use_stats __percpu *stats)
2593{
2594	struct trie_use_stats s = { 0 };
2595	int cpu;
2596
2597	/* loop through all of the CPUs and gather up the stats */
2598	for_each_possible_cpu(cpu) {
2599		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2600
2601		s.gets += pcpu->gets;
2602		s.backtrack += pcpu->backtrack;
2603		s.semantic_match_passed += pcpu->semantic_match_passed;
2604		s.semantic_match_miss += pcpu->semantic_match_miss;
2605		s.null_node_hit += pcpu->null_node_hit;
2606		s.resize_node_skipped += pcpu->resize_node_skipped;
2607	}
2608
2609	seq_printf(seq, "\nCounters:\n---------\n");
2610	seq_printf(seq, "gets = %u\n", s.gets);
2611	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2612	seq_printf(seq, "semantic match passed = %u\n",
2613		   s.semantic_match_passed);
2614	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2615	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2616	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2617}
2618#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2619
2620static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2621{
2622	if (tb->tb_id == RT_TABLE_LOCAL)
2623		seq_puts(seq, "Local:\n");
2624	else if (tb->tb_id == RT_TABLE_MAIN)
2625		seq_puts(seq, "Main:\n");
2626	else
2627		seq_printf(seq, "Id %d:\n", tb->tb_id);
2628}
2629
2630
2631static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2632{
2633	struct net *net = seq->private;
2634	unsigned int h;
2635
2636	seq_printf(seq,
2637		   "Basic info: size of leaf:"
2638		   " %zd bytes, size of tnode: %zd bytes.\n",
2639		   LEAF_SIZE, TNODE_SIZE(0));
2640
2641	rcu_read_lock();
2642	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2643		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2644		struct fib_table *tb;
2645
2646		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2647			struct trie *t = (struct trie *) tb->tb_data;
2648			struct trie_stat stat;
2649
2650			if (!t)
2651				continue;
2652
2653			fib_table_print(seq, tb);
2654
2655			trie_collect_stats(t, &stat);
2656			trie_show_stats(seq, &stat);
2657#ifdef CONFIG_IP_FIB_TRIE_STATS
2658			trie_show_usage(seq, t->stats);
2659#endif
2660		}
2661		cond_resched_rcu();
2662	}
2663	rcu_read_unlock();
2664
2665	return 0;
2666}
2667
2668static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2669{
2670	struct fib_trie_iter *iter = seq->private;
2671	struct net *net = seq_file_net(seq);
2672	loff_t idx = 0;
2673	unsigned int h;
2674
2675	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2676		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2677		struct fib_table *tb;
2678
2679		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2680			struct key_vector *n;
2681
2682			for (n = fib_trie_get_first(iter,
2683						    (struct trie *) tb->tb_data);
2684			     n; n = fib_trie_get_next(iter))
2685				if (pos == idx++) {
2686					iter->tb = tb;
2687					return n;
2688				}
2689		}
2690	}
2691
2692	return NULL;
2693}
2694
2695static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2696	__acquires(RCU)
2697{
2698	rcu_read_lock();
2699	return fib_trie_get_idx(seq, *pos);
2700}
2701
2702static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2703{
2704	struct fib_trie_iter *iter = seq->private;
2705	struct net *net = seq_file_net(seq);
2706	struct fib_table *tb = iter->tb;
2707	struct hlist_node *tb_node;
2708	unsigned int h;
2709	struct key_vector *n;
2710
2711	++*pos;
2712	/* next node in same table */
2713	n = fib_trie_get_next(iter);
2714	if (n)
2715		return n;
2716
2717	/* walk rest of this hash chain */
2718	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2719	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2720		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2721		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2722		if (n)
2723			goto found;
2724	}
2725
2726	/* new hash chain */
2727	while (++h < FIB_TABLE_HASHSZ) {
2728		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2729		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2730			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2731			if (n)
2732				goto found;
2733		}
2734	}
2735	return NULL;
2736
2737found:
2738	iter->tb = tb;
2739	return n;
2740}
2741
2742static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2743	__releases(RCU)
2744{
2745	rcu_read_unlock();
2746}
2747
2748static void seq_indent(struct seq_file *seq, int n)
2749{
2750	while (n-- > 0)
2751		seq_puts(seq, "   ");
2752}
2753
2754static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2755{
2756	switch (s) {
2757	case RT_SCOPE_UNIVERSE: return "universe";
2758	case RT_SCOPE_SITE:	return "site";
2759	case RT_SCOPE_LINK:	return "link";
2760	case RT_SCOPE_HOST:	return "host";
2761	case RT_SCOPE_NOWHERE:	return "nowhere";
2762	default:
2763		snprintf(buf, len, "scope=%d", s);
2764		return buf;
2765	}
2766}
2767
2768static const char *const rtn_type_names[__RTN_MAX] = {
2769	[RTN_UNSPEC] = "UNSPEC",
2770	[RTN_UNICAST] = "UNICAST",
2771	[RTN_LOCAL] = "LOCAL",
2772	[RTN_BROADCAST] = "BROADCAST",
2773	[RTN_ANYCAST] = "ANYCAST",
2774	[RTN_MULTICAST] = "MULTICAST",
2775	[RTN_BLACKHOLE] = "BLACKHOLE",
2776	[RTN_UNREACHABLE] = "UNREACHABLE",
2777	[RTN_PROHIBIT] = "PROHIBIT",
2778	[RTN_THROW] = "THROW",
2779	[RTN_NAT] = "NAT",
2780	[RTN_XRESOLVE] = "XRESOLVE",
2781};
2782
2783static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2784{
2785	if (t < __RTN_MAX && rtn_type_names[t])
2786		return rtn_type_names[t];
2787	snprintf(buf, len, "type %u", t);
2788	return buf;
2789}
2790
2791/* Pretty print the trie */
2792static int fib_trie_seq_show(struct seq_file *seq, void *v)
2793{
2794	const struct fib_trie_iter *iter = seq->private;
2795	struct key_vector *n = v;
2796
2797	if (IS_TRIE(node_parent_rcu(n)))
2798		fib_table_print(seq, iter->tb);
2799
2800	if (IS_TNODE(n)) {
2801		__be32 prf = htonl(n->key);
2802
2803		seq_indent(seq, iter->depth-1);
2804		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2805			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2806			   tn_info(n)->full_children,
2807			   tn_info(n)->empty_children);
2808	} else {
2809		__be32 val = htonl(n->key);
2810		struct fib_alias *fa;
2811
2812		seq_indent(seq, iter->depth);
2813		seq_printf(seq, "  |-- %pI4\n", &val);
2814
2815		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2816			char buf1[32], buf2[32];
2817
2818			seq_indent(seq, iter->depth + 1);
2819			seq_printf(seq, "  /%zu %s %s",
2820				   KEYLENGTH - fa->fa_slen,
2821				   rtn_scope(buf1, sizeof(buf1),
2822					     fa->fa_info->fib_scope),
2823				   rtn_type(buf2, sizeof(buf2),
2824					    fa->fa_type));
2825			if (fa->fa_dscp)
2826				seq_printf(seq, " tos=%d",
2827					   inet_dscp_to_dsfield(fa->fa_dscp));
2828			seq_putc(seq, '\n');
2829		}
2830	}
2831
2832	return 0;
2833}
2834
2835static const struct seq_operations fib_trie_seq_ops = {
2836	.start  = fib_trie_seq_start,
2837	.next   = fib_trie_seq_next,
2838	.stop   = fib_trie_seq_stop,
2839	.show   = fib_trie_seq_show,
2840};
2841
2842struct fib_route_iter {
2843	struct seq_net_private p;
2844	struct fib_table *main_tb;
2845	struct key_vector *tnode;
2846	loff_t	pos;
2847	t_key	key;
2848};
2849
2850static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2851					    loff_t pos)
2852{
2853	struct key_vector *l, **tp = &iter->tnode;
2854	t_key key;
2855
2856	/* use cached location of previously found key */
2857	if (iter->pos > 0 && pos >= iter->pos) {
2858		key = iter->key;
2859	} else {
2860		iter->pos = 1;
2861		key = 0;
2862	}
2863
2864	pos -= iter->pos;
2865
2866	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2867		key = l->key + 1;
2868		iter->pos++;
2869		l = NULL;
2870
2871		/* handle unlikely case of a key wrap */
2872		if (!key)
2873			break;
2874	}
2875
2876	if (l)
2877		iter->key = l->key;	/* remember it */
2878	else
2879		iter->pos = 0;		/* forget it */
2880
2881	return l;
2882}
2883
2884static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2885	__acquires(RCU)
2886{
2887	struct fib_route_iter *iter = seq->private;
2888	struct fib_table *tb;
2889	struct trie *t;
2890
2891	rcu_read_lock();
2892
2893	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2894	if (!tb)
2895		return NULL;
2896
2897	iter->main_tb = tb;
2898	t = (struct trie *)tb->tb_data;
2899	iter->tnode = t->kv;
2900
2901	if (*pos != 0)
2902		return fib_route_get_idx(iter, *pos);
2903
2904	iter->pos = 0;
2905	iter->key = KEY_MAX;
2906
2907	return SEQ_START_TOKEN;
2908}
2909
2910static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2911{
2912	struct fib_route_iter *iter = seq->private;
2913	struct key_vector *l = NULL;
2914	t_key key = iter->key + 1;
2915
2916	++*pos;
2917
2918	/* only allow key of 0 for start of sequence */
2919	if ((v == SEQ_START_TOKEN) || key)
2920		l = leaf_walk_rcu(&iter->tnode, key);
2921
2922	if (l) {
2923		iter->key = l->key;
2924		iter->pos++;
2925	} else {
2926		iter->pos = 0;
2927	}
2928
2929	return l;
2930}
2931
2932static void fib_route_seq_stop(struct seq_file *seq, void *v)
2933	__releases(RCU)
2934{
2935	rcu_read_unlock();
2936}
2937
2938static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2939{
2940	unsigned int flags = 0;
2941
2942	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2943		flags = RTF_REJECT;
2944	if (fi) {
2945		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2946
2947		if (nhc->nhc_gw.ipv4)
2948			flags |= RTF_GATEWAY;
2949	}
2950	if (mask == htonl(0xFFFFFFFF))
2951		flags |= RTF_HOST;
2952	flags |= RTF_UP;
2953	return flags;
2954}
2955
2956/*
2957 *	This outputs /proc/net/route.
2958 *	The format of the file is not supposed to be changed
2959 *	and needs to be same as fib_hash output to avoid breaking
2960 *	legacy utilities
2961 */
2962static int fib_route_seq_show(struct seq_file *seq, void *v)
2963{
2964	struct fib_route_iter *iter = seq->private;
2965	struct fib_table *tb = iter->main_tb;
2966	struct fib_alias *fa;
2967	struct key_vector *l = v;
2968	__be32 prefix;
2969
2970	if (v == SEQ_START_TOKEN) {
2971		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2972			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2973			   "\tWindow\tIRTT");
2974		return 0;
2975	}
2976
2977	prefix = htonl(l->key);
2978
2979	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2980		struct fib_info *fi = fa->fa_info;
2981		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2982		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2983
2984		if ((fa->fa_type == RTN_BROADCAST) ||
2985		    (fa->fa_type == RTN_MULTICAST))
2986			continue;
2987
2988		if (fa->tb_id != tb->tb_id)
2989			continue;
2990
2991		seq_setwidth(seq, 127);
2992
2993		if (fi) {
2994			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2995			__be32 gw = 0;
2996
2997			if (nhc->nhc_gw_family == AF_INET)
2998				gw = nhc->nhc_gw.ipv4;
2999
3000			seq_printf(seq,
3001				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002				   "%d\t%08X\t%d\t%u\t%u",
3003				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3004				   prefix, gw, flags, 0, 0,
3005				   fi->fib_priority,
3006				   mask,
3007				   (fi->fib_advmss ?
3008				    fi->fib_advmss + 40 : 0),
3009				   fi->fib_window,
3010				   fi->fib_rtt >> 3);
3011		} else {
3012			seq_printf(seq,
3013				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014				   "%d\t%08X\t%d\t%u\t%u",
3015				   prefix, 0, flags, 0, 0, 0,
3016				   mask, 0, 0, 0);
3017		}
3018		seq_pad(seq, '\n');
3019	}
3020
3021	return 0;
3022}
3023
3024static const struct seq_operations fib_route_seq_ops = {
3025	.start  = fib_route_seq_start,
3026	.next   = fib_route_seq_next,
3027	.stop   = fib_route_seq_stop,
3028	.show   = fib_route_seq_show,
3029};
3030
3031int __net_init fib_proc_init(struct net *net)
3032{
3033	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3034			sizeof(struct fib_trie_iter)))
3035		goto out1;
3036
3037	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3038			fib_triestat_seq_show, NULL))
3039		goto out2;
3040
3041	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3042			sizeof(struct fib_route_iter)))
3043		goto out3;
3044
3045	return 0;
3046
3047out3:
3048	remove_proc_entry("fib_triestat", net->proc_net);
3049out2:
3050	remove_proc_entry("fib_trie", net->proc_net);
3051out1:
3052	return -ENOMEM;
3053}
3054
3055void __net_exit fib_proc_exit(struct net *net)
3056{
3057	remove_proc_entry("fib_trie", net->proc_net);
3058	remove_proc_entry("fib_triestat", net->proc_net);
3059	remove_proc_entry("route", net->proc_net);
3060}
3061
3062#endif /* CONFIG_PROC_FS */