Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38#include <linux/cache.h>
39#include <linux/uaccess.h>
40#include <linux/bitops.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/string.h>
45#include <linux/socket.h>
46#include <linux/sockios.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/inetdevice.h>
51#include <linux/netdevice.h>
52#include <linux/if_arp.h>
53#include <linux/proc_fs.h>
54#include <linux/rcupdate.h>
55#include <linux/skbuff.h>
56#include <linux/netlink.h>
57#include <linux/init.h>
58#include <linux/list.h>
59#include <linux/slab.h>
60#include <linux/export.h>
61#include <linux/vmalloc.h>
62#include <linux/notifier.h>
63#include <net/net_namespace.h>
64#include <net/ip.h>
65#include <net/protocol.h>
66#include <net/route.h>
67#include <net/tcp.h>
68#include <net/sock.h>
69#include <net/ip_fib.h>
70#include <net/fib_notifier.h>
71#include <trace/events/fib.h>
72#include "fib_lookup.h"
73
74static int call_fib_entry_notifier(struct notifier_block *nb,
75 enum fib_event_type event_type, u32 dst,
76 int dst_len, struct fib_alias *fa,
77 struct netlink_ext_ack *extack)
78{
79 struct fib_entry_notifier_info info = {
80 .info.extack = extack,
81 .dst = dst,
82 .dst_len = dst_len,
83 .fi = fa->fa_info,
84 .tos = fa->fa_tos,
85 .type = fa->fa_type,
86 .tb_id = fa->tb_id,
87 };
88 return call_fib4_notifier(nb, event_type, &info.info);
89}
90
91static int call_fib_entry_notifiers(struct net *net,
92 enum fib_event_type event_type, u32 dst,
93 int dst_len, struct fib_alias *fa,
94 struct netlink_ext_ack *extack)
95{
96 struct fib_entry_notifier_info info = {
97 .info.extack = extack,
98 .dst = dst,
99 .dst_len = dst_len,
100 .fi = fa->fa_info,
101 .tos = fa->fa_tos,
102 .type = fa->fa_type,
103 .tb_id = fa->tb_id,
104 };
105 return call_fib4_notifiers(net, event_type, &info.info);
106}
107
108#define MAX_STAT_DEPTH 32
109
110#define KEYLENGTH (8*sizeof(t_key))
111#define KEY_MAX ((t_key)~0)
112
113typedef unsigned int t_key;
114
115#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116#define IS_TNODE(n) ((n)->bits)
117#define IS_LEAF(n) (!(n)->bits)
118
119struct key_vector {
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned char slen;
124 union {
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu *tnode[0];
129 };
130};
131
132struct tnode {
133 struct rcu_head rcu;
134 t_key empty_children; /* KEYLENGTH bits needed */
135 t_key full_children; /* KEYLENGTH bits needed */
136 struct key_vector __rcu *parent;
137 struct key_vector kv[1];
138#define tn_bits kv[0].bits
139};
140
141#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142#define LEAF_SIZE TNODE_SIZE(1)
143
144#ifdef CONFIG_IP_FIB_TRIE_STATS
145struct trie_use_stats {
146 unsigned int gets;
147 unsigned int backtrack;
148 unsigned int semantic_match_passed;
149 unsigned int semantic_match_miss;
150 unsigned int null_node_hit;
151 unsigned int resize_node_skipped;
152};
153#endif
154
155struct trie_stat {
156 unsigned int totdepth;
157 unsigned int maxdepth;
158 unsigned int tnodes;
159 unsigned int leaves;
160 unsigned int nullpointers;
161 unsigned int prefixes;
162 unsigned int nodesizes[MAX_STAT_DEPTH];
163};
164
165struct trie {
166 struct key_vector kv[1];
167#ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu *stats;
169#endif
170};
171
172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173static unsigned int tnode_free_size;
174
175/*
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
179 */
180unsigned int sysctl_fib_sync_mem = 512 * 1024;
181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183
184static struct kmem_cache *fn_alias_kmem __ro_after_init;
185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186
187static inline struct tnode *tn_info(struct key_vector *kv)
188{
189 return container_of(kv, struct tnode, kv[0]);
190}
191
192/* caller must hold RTNL */
193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195
196/* caller must hold RCU read lock or RTNL */
197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199
200/* wrapper for rcu_assign_pointer */
201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202{
203 if (n)
204 rcu_assign_pointer(tn_info(n)->parent, tp);
205}
206
207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208
209/* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
211 */
212static inline unsigned long child_length(const struct key_vector *tn)
213{
214 return (1ul << tn->bits) & ~(1ul);
215}
216
217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218
219static inline unsigned long get_index(t_key key, struct key_vector *kv)
220{
221 unsigned long index = key ^ kv->key;
222
223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 return 0;
225
226 return index >> kv->pos;
227}
228
229/* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
232 *
233 * Consider a node 'n' and its parent 'tp'.
234 *
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
240 * correct key path.
241 *
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
247 *
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
250 *
251 * Example:
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
256 *
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
261 *
262 * tp->pos = 22
263 * tp->bits = 3
264 * n->pos = 13
265 * n->bits = 4
266 *
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
270 *
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
274 *
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276 * for the node n.
277 *
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
280 *
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
283 *
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285 * at this point.
286 */
287
288static const int halve_threshold = 25;
289static const int inflate_threshold = 50;
290static const int halve_threshold_root = 15;
291static const int inflate_threshold_root = 30;
292
293static void __alias_free_mem(struct rcu_head *head)
294{
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
297}
298
299static inline void alias_free_mem_rcu(struct fib_alias *fa)
300{
301 call_rcu(&fa->rcu, __alias_free_mem);
302}
303
304#define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306
307static void __node_free_rcu(struct rcu_head *head)
308{
309 struct tnode *n = container_of(head, struct tnode, rcu);
310
311 if (!n->tn_bits)
312 kmem_cache_free(trie_leaf_kmem, n);
313 else
314 kvfree(n);
315}
316
317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318
319static struct tnode *tnode_alloc(int bits)
320{
321 size_t size;
322
323 /* verify bits is within bounds */
324 if (bits > TNODE_VMALLOC_MAX)
325 return NULL;
326
327 /* determine size and verify it is non-zero and didn't overflow */
328 size = TNODE_SIZE(1ul << bits);
329
330 if (size <= PAGE_SIZE)
331 return kzalloc(size, GFP_KERNEL);
332 else
333 return vzalloc(size);
334}
335
336static inline void empty_child_inc(struct key_vector *n)
337{
338 tn_info(n)->empty_children++;
339
340 if (!tn_info(n)->empty_children)
341 tn_info(n)->full_children++;
342}
343
344static inline void empty_child_dec(struct key_vector *n)
345{
346 if (!tn_info(n)->empty_children)
347 tn_info(n)->full_children--;
348
349 tn_info(n)->empty_children--;
350}
351
352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353{
354 struct key_vector *l;
355 struct tnode *kv;
356
357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 if (!kv)
359 return NULL;
360
361 /* initialize key vector */
362 l = kv->kv;
363 l->key = key;
364 l->pos = 0;
365 l->bits = 0;
366 l->slen = fa->fa_slen;
367
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l->leaf);
370 hlist_add_head(&fa->fa_list, &l->leaf);
371
372 return l;
373}
374
375static struct key_vector *tnode_new(t_key key, int pos, int bits)
376{
377 unsigned int shift = pos + bits;
378 struct key_vector *tn;
379 struct tnode *tnode;
380
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits || (shift > KEYLENGTH));
383
384 tnode = tnode_alloc(bits);
385 if (!tnode)
386 return NULL;
387
388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 sizeof(struct key_vector *) << bits);
390
391 if (bits == KEYLENGTH)
392 tnode->full_children = 1;
393 else
394 tnode->empty_children = 1ul << bits;
395
396 tn = tnode->kv;
397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->slen = pos;
401
402 return tn;
403}
404
405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
407 */
408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409{
410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411}
412
413/* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
416static void put_child(struct key_vector *tn, unsigned long i,
417 struct key_vector *n)
418{
419 struct key_vector *chi = get_child(tn, i);
420 int isfull, wasfull;
421
422 BUG_ON(i >= child_length(tn));
423
424 /* update emptyChildren, overflow into fullChildren */
425 if (!n && chi)
426 empty_child_inc(tn);
427 if (n && !chi)
428 empty_child_dec(tn);
429
430 /* update fullChildren */
431 wasfull = tnode_full(tn, chi);
432 isfull = tnode_full(tn, n);
433
434 if (wasfull && !isfull)
435 tn_info(tn)->full_children--;
436 else if (!wasfull && isfull)
437 tn_info(tn)->full_children++;
438
439 if (n && (tn->slen < n->slen))
440 tn->slen = n->slen;
441
442 rcu_assign_pointer(tn->tnode[i], n);
443}
444
445static void update_children(struct key_vector *tn)
446{
447 unsigned long i;
448
449 /* update all of the child parent pointers */
450 for (i = child_length(tn); i;) {
451 struct key_vector *inode = get_child(tn, --i);
452
453 if (!inode)
454 continue;
455
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
459 */
460 if (node_parent(inode) == tn)
461 update_children(inode);
462 else
463 node_set_parent(inode, tn);
464 }
465}
466
467static inline void put_child_root(struct key_vector *tp, t_key key,
468 struct key_vector *n)
469{
470 if (IS_TRIE(tp))
471 rcu_assign_pointer(tp->tnode[0], n);
472 else
473 put_child(tp, get_index(key, tp), n);
474}
475
476static inline void tnode_free_init(struct key_vector *tn)
477{
478 tn_info(tn)->rcu.next = NULL;
479}
480
481static inline void tnode_free_append(struct key_vector *tn,
482 struct key_vector *n)
483{
484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486}
487
488static void tnode_free(struct key_vector *tn)
489{
490 struct callback_head *head = &tn_info(tn)->rcu;
491
492 while (head) {
493 head = head->next;
494 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 node_free(tn);
496
497 tn = container_of(head, struct tnode, rcu)->kv;
498 }
499
500 if (tnode_free_size >= sysctl_fib_sync_mem) {
501 tnode_free_size = 0;
502 synchronize_rcu();
503 }
504}
505
506static struct key_vector *replace(struct trie *t,
507 struct key_vector *oldtnode,
508 struct key_vector *tn)
509{
510 struct key_vector *tp = node_parent(oldtnode);
511 unsigned long i;
512
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn, tp);
515 put_child_root(tp, tn->key, tn);
516
517 /* update all of the child parent pointers */
518 update_children(tn);
519
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode);
522
523 /* resize children now that oldtnode is freed */
524 for (i = child_length(tn); i;) {
525 struct key_vector *inode = get_child(tn, --i);
526
527 /* resize child node */
528 if (tnode_full(tn, inode))
529 tn = resize(t, inode);
530 }
531
532 return tp;
533}
534
535static struct key_vector *inflate(struct trie *t,
536 struct key_vector *oldtnode)
537{
538 struct key_vector *tn;
539 unsigned long i;
540 t_key m;
541
542 pr_debug("In inflate\n");
543
544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 if (!tn)
546 goto notnode;
547
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode);
550
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
554 * nodes.
555 */
556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 struct key_vector *inode = get_child(oldtnode, --i);
558 struct key_vector *node0, *node1;
559 unsigned long j, k;
560
561 /* An empty child */
562 if (!inode)
563 continue;
564
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode, inode)) {
567 put_child(tn, get_index(inode->key, tn), inode);
568 continue;
569 }
570
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode, inode);
573
574 /* An internal node with two children */
575 if (inode->bits == 1) {
576 put_child(tn, 2 * i + 1, get_child(inode, 1));
577 put_child(tn, 2 * i, get_child(inode, 0));
578 continue;
579 }
580
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
593 * two new keys.
594 */
595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 if (!node1)
597 goto nomem;
598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599
600 tnode_free_append(tn, node1);
601 if (!node0)
602 goto nomem;
603 tnode_free_append(tn, node0);
604
605 /* populate child pointers in new nodes */
606 for (k = child_length(inode), j = k / 2; j;) {
607 put_child(node1, --j, get_child(inode, --k));
608 put_child(node0, j, get_child(inode, j));
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 }
612
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1, tn);
615 NODE_INIT_PARENT(node0, tn);
616
617 /* link parent to nodes */
618 put_child(tn, 2 * i + 1, node1);
619 put_child(tn, 2 * i, node0);
620 }
621
622 /* setup the parent pointers into and out of this node */
623 return replace(t, oldtnode, tn);
624nomem:
625 /* all pointers should be clean so we are done */
626 tnode_free(tn);
627notnode:
628 return NULL;
629}
630
631static struct key_vector *halve(struct trie *t,
632 struct key_vector *oldtnode)
633{
634 struct key_vector *tn;
635 unsigned long i;
636
637 pr_debug("In halve\n");
638
639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 if (!tn)
641 goto notnode;
642
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode);
645
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
649 * nodes.
650 */
651 for (i = child_length(oldtnode); i;) {
652 struct key_vector *node1 = get_child(oldtnode, --i);
653 struct key_vector *node0 = get_child(oldtnode, --i);
654 struct key_vector *inode;
655
656 /* At least one of the children is empty */
657 if (!node1 || !node0) {
658 put_child(tn, i / 2, node1 ? : node0);
659 continue;
660 }
661
662 /* Two nonempty children */
663 inode = tnode_new(node0->key, oldtnode->pos, 1);
664 if (!inode)
665 goto nomem;
666 tnode_free_append(tn, inode);
667
668 /* initialize pointers out of node */
669 put_child(inode, 1, node1);
670 put_child(inode, 0, node0);
671 NODE_INIT_PARENT(inode, tn);
672
673 /* link parent to node */
674 put_child(tn, i / 2, inode);
675 }
676
677 /* setup the parent pointers into and out of this node */
678 return replace(t, oldtnode, tn);
679nomem:
680 /* all pointers should be clean so we are done */
681 tnode_free(tn);
682notnode:
683 return NULL;
684}
685
686static struct key_vector *collapse(struct trie *t,
687 struct key_vector *oldtnode)
688{
689 struct key_vector *n, *tp;
690 unsigned long i;
691
692 /* scan the tnode looking for that one child that might still exist */
693 for (n = NULL, i = child_length(oldtnode); !n && i;)
694 n = get_child(oldtnode, --i);
695
696 /* compress one level */
697 tp = node_parent(oldtnode);
698 put_child_root(tp, oldtnode->key, n);
699 node_set_parent(n, tp);
700
701 /* drop dead node */
702 node_free(oldtnode);
703
704 return tp;
705}
706
707static unsigned char update_suffix(struct key_vector *tn)
708{
709 unsigned char slen = tn->pos;
710 unsigned long stride, i;
711 unsigned char slen_max;
712
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
716 */
717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
723 */
724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 struct key_vector *n = get_child(tn, i);
726
727 if (!n || (n->slen <= slen))
728 continue;
729
730 /* update stride and slen based on new value */
731 stride <<= (n->slen - slen);
732 slen = n->slen;
733 i &= ~(stride - 1);
734
735 /* stop searching if we have hit the maximum possible value */
736 if (slen >= slen_max)
737 break;
738 }
739
740 tn->slen = slen;
741
742 return slen;
743}
744
745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
750 *
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
757 *
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
764 *
765 * A clearer way to write this would be:
766 *
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
769 * tn->full_children;
770 *
771 * new_child_length = child_length(tn) * 2;
772 *
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774 * new_child_length;
775 * if (new_fill_factor >= inflate_threshold)
776 *
777 * ...and so on, tho it would mess up the while () loop.
778 *
779 * anyway,
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * inflate_threshold
782 *
783 * avoid a division:
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
786 *
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
790 *
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
795 *
796 * shorten again:
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
799 * child_length(tn)
800 *
801 */
802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803{
804 unsigned long used = child_length(tn);
805 unsigned long threshold = used;
806
807 /* Keep root node larger */
808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 used -= tn_info(tn)->empty_children;
810 used += tn_info(tn)->full_children;
811
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
813
814 return (used > 1) && tn->pos && ((50 * used) >= threshold);
815}
816
817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818{
819 unsigned long used = child_length(tn);
820 unsigned long threshold = used;
821
822 /* Keep root node larger */
823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 used -= tn_info(tn)->empty_children;
825
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827
828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829}
830
831static inline bool should_collapse(struct key_vector *tn)
832{
833 unsigned long used = child_length(tn);
834
835 used -= tn_info(tn)->empty_children;
836
837 /* account for bits == KEYLENGTH case */
838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 used -= KEY_MAX;
840
841 /* One child or none, time to drop us from the trie */
842 return used < 2;
843}
844
845#define MAX_WORK 10
846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847{
848#ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu *stats = t->stats;
850#endif
851 struct key_vector *tp = node_parent(tn);
852 unsigned long cindex = get_index(tn->key, tp);
853 int max_work = MAX_WORK;
854
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn, inflate_threshold, halve_threshold);
857
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
861 */
862 BUG_ON(tn != get_child(tp, cindex));
863
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
866 */
867 while (should_inflate(tp, tn) && max_work) {
868 tp = inflate(t, tn);
869 if (!tp) {
870#ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats->resize_node_skipped);
872#endif
873 break;
874 }
875
876 max_work--;
877 tn = get_child(tp, cindex);
878 }
879
880 /* update parent in case inflate failed */
881 tp = node_parent(tn);
882
883 /* Return if at least one inflate is run */
884 if (max_work != MAX_WORK)
885 return tp;
886
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
889 */
890 while (should_halve(tp, tn) && max_work) {
891 tp = halve(t, tn);
892 if (!tp) {
893#ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats->resize_node_skipped);
895#endif
896 break;
897 }
898
899 max_work--;
900 tn = get_child(tp, cindex);
901 }
902
903 /* Only one child remains */
904 if (should_collapse(tn))
905 return collapse(t, tn);
906
907 /* update parent in case halve failed */
908 return node_parent(tn);
909}
910
911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912{
913 unsigned char node_slen = tn->slen;
914
915 while ((node_slen > tn->pos) && (node_slen > slen)) {
916 slen = update_suffix(tn);
917 if (node_slen == slen)
918 break;
919
920 tn = node_parent(tn);
921 node_slen = tn->slen;
922 }
923}
924
925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926{
927 while (tn->slen < slen) {
928 tn->slen = slen;
929 tn = node_parent(tn);
930 }
931}
932
933/* rcu_read_lock needs to be hold by caller from readside */
934static struct key_vector *fib_find_node(struct trie *t,
935 struct key_vector **tp, u32 key)
936{
937 struct key_vector *pn, *n = t->kv;
938 unsigned long index = 0;
939
940 do {
941 pn = n;
942 n = get_child_rcu(n, index);
943
944 if (!n)
945 break;
946
947 index = get_cindex(key, n);
948
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
956 * else
957 * we know the value is cindex
958 *
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
962 */
963 if (index >= (1ul << n->bits)) {
964 n = NULL;
965 break;
966 }
967
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n));
970
971 *tp = pn;
972
973 return n;
974}
975
976/* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
980 */
981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 u8 tos, u32 prio, u32 tb_id,
983 bool find_first)
984{
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040 struct fib_alias *fa_match;
1041
1042 rcu_read_lock();
1043
1044 fa_match = fib_find_matching_alias(net, fri);
1045 if (!fa_match)
1046 goto out;
1047
1048 fa_match->offload = fri->offload;
1049 fa_match->trap = fri->trap;
1050
1051out:
1052 rcu_read_unlock();
1053}
1054EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
1056static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057{
1058 while (!IS_TRIE(tn))
1059 tn = resize(t, tn);
1060}
1061
1062static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063 struct fib_alias *new, t_key key)
1064{
1065 struct key_vector *n, *l;
1066
1067 l = leaf_new(key, new);
1068 if (!l)
1069 goto noleaf;
1070
1071 /* retrieve child from parent node */
1072 n = get_child(tp, get_index(key, tp));
1073
1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075 *
1076 * Add a new tnode here
1077 * first tnode need some special handling
1078 * leaves us in position for handling as case 3
1079 */
1080 if (n) {
1081 struct key_vector *tn;
1082
1083 tn = tnode_new(key, __fls(key ^ n->key), 1);
1084 if (!tn)
1085 goto notnode;
1086
1087 /* initialize routes out of node */
1088 NODE_INIT_PARENT(tn, tp);
1089 put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091 /* start adding routes into the node */
1092 put_child_root(tp, key, tn);
1093 node_set_parent(n, tn);
1094
1095 /* parent now has a NULL spot where the leaf can go */
1096 tp = tn;
1097 }
1098
1099 /* Case 3: n is NULL, and will just insert a new leaf */
1100 node_push_suffix(tp, new->fa_slen);
1101 NODE_INIT_PARENT(l, tp);
1102 put_child_root(tp, key, l);
1103 trie_rebalance(t, tp);
1104
1105 return 0;
1106notnode:
1107 node_free(l);
1108noleaf:
1109 return -ENOMEM;
1110}
1111
1112static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113 struct key_vector *l, struct fib_alias *new,
1114 struct fib_alias *fa, t_key key)
1115{
1116 if (!l)
1117 return fib_insert_node(t, tp, new, key);
1118
1119 if (fa) {
1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121 } else {
1122 struct fib_alias *last;
1123
1124 hlist_for_each_entry(last, &l->leaf, fa_list) {
1125 if (new->fa_slen < last->fa_slen)
1126 break;
1127 if ((new->fa_slen == last->fa_slen) &&
1128 (new->tb_id > last->tb_id))
1129 break;
1130 fa = last;
1131 }
1132
1133 if (fa)
1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135 else
1136 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137 }
1138
1139 /* if we added to the tail node then we need to update slen */
1140 if (l->slen < new->fa_slen) {
1141 l->slen = new->fa_slen;
1142 node_push_suffix(tp, new->fa_slen);
1143 }
1144
1145 return 0;
1146}
1147
1148static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149{
1150 if (plen > KEYLENGTH) {
1151 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152 return false;
1153 }
1154
1155 if ((plen < KEYLENGTH) && (key << plen)) {
1156 NL_SET_ERR_MSG(extack,
1157 "Invalid prefix for given prefix length");
1158 return false;
1159 }
1160
1161 return true;
1162}
1163
1164static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165 struct key_vector *l, struct fib_alias *old);
1166
1167/* Caller must hold RTNL. */
1168int fib_table_insert(struct net *net, struct fib_table *tb,
1169 struct fib_config *cfg, struct netlink_ext_ack *extack)
1170{
1171 struct trie *t = (struct trie *)tb->tb_data;
1172 struct fib_alias *fa, *new_fa;
1173 struct key_vector *l, *tp;
1174 u16 nlflags = NLM_F_EXCL;
1175 struct fib_info *fi;
1176 u8 plen = cfg->fc_dst_len;
1177 u8 slen = KEYLENGTH - plen;
1178 u8 tos = cfg->fc_tos;
1179 u32 key;
1180 int err;
1181
1182 key = ntohl(cfg->fc_dst);
1183
1184 if (!fib_valid_key_len(key, plen, extack))
1185 return -EINVAL;
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 fi = fib_create_info(cfg, extack);
1190 if (IS_ERR(fi)) {
1191 err = PTR_ERR(fi);
1192 goto err;
1193 }
1194
1195 l = fib_find_node(t, &tp, key);
1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197 tb->tb_id, false) : NULL;
1198
1199 /* Now fa, if non-NULL, points to the first fib alias
1200 * with the same keys [prefix,tos,priority], if such key already
1201 * exists or to the node before which we will insert new one.
1202 *
1203 * If fa is NULL, we will need to allocate a new one and
1204 * insert to the tail of the section matching the suffix length
1205 * of the new alias.
1206 */
1207
1208 if (fa && fa->fa_tos == tos &&
1209 fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_first, *fa_match;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 nlflags &= ~NLM_F_EXCL;
1217
1218 /* We have 2 goals:
1219 * 1. Find exact match for type, scope, fib_info to avoid
1220 * duplicate routes
1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222 */
1223 fa_match = NULL;
1224 fa_first = fa;
1225 hlist_for_each_entry_from(fa, fa_list) {
1226 if ((fa->fa_slen != slen) ||
1227 (fa->tb_id != tb->tb_id) ||
1228 (fa->fa_tos != tos))
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == cfg->fc_type &&
1233 fa->fa_info == fi) {
1234 fa_match = fa;
1235 break;
1236 }
1237 }
1238
1239 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240 struct fib_info *fi_drop;
1241 u8 state;
1242
1243 nlflags |= NLM_F_REPLACE;
1244 fa = fa_first;
1245 if (fa_match) {
1246 if (fa == fa_match)
1247 err = 0;
1248 goto out;
1249 }
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (!new_fa)
1253 goto out;
1254
1255 fi_drop = fa->fa_info;
1256 new_fa->fa_tos = fa->fa_tos;
1257 new_fa->fa_info = fi;
1258 new_fa->fa_type = cfg->fc_type;
1259 state = fa->fa_state;
1260 new_fa->fa_state = state & ~FA_S_ACCESSED;
1261 new_fa->fa_slen = fa->fa_slen;
1262 new_fa->tb_id = tb->tb_id;
1263 new_fa->fa_default = -1;
1264 new_fa->offload = 0;
1265 new_fa->trap = 0;
1266
1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270 tb->tb_id, true) == new_fa) {
1271 enum fib_event_type fib_event;
1272
1273 fib_event = FIB_EVENT_ENTRY_REPLACE;
1274 err = call_fib_entry_notifiers(net, fib_event,
1275 key, plen,
1276 new_fa, extack);
1277 if (err) {
1278 hlist_replace_rcu(&new_fa->fa_list,
1279 &fa->fa_list);
1280 goto out_free_new_fa;
1281 }
1282 }
1283
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287 alias_free_mem_rcu(fa);
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293 goto succeeded;
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
1299 if (fa_match)
1300 goto out;
1301
1302 if (cfg->fc_nlflags & NLM_F_APPEND)
1303 nlflags |= NLM_F_APPEND;
1304 else
1305 fa = fa_first;
1306 }
1307 err = -ENOENT;
1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309 goto out;
1310
1311 nlflags |= NLM_F_CREATE;
1312 err = -ENOBUFS;
1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314 if (!new_fa)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
1319 new_fa->fa_type = cfg->fc_type;
1320 new_fa->fa_state = 0;
1321 new_fa->fa_slen = slen;
1322 new_fa->tb_id = tb->tb_id;
1323 new_fa->fa_default = -1;
1324 new_fa->offload = 0;
1325 new_fa->trap = 0;
1326
1327 /* Insert new entry to the list. */
1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329 if (err)
1330 goto out_free_new_fa;
1331
1332 /* The alias was already inserted, so the node must exist. */
1333 l = l ? l : fib_find_node(t, &tp, key);
1334 if (WARN_ON_ONCE(!l))
1335 goto out_free_new_fa;
1336
1337 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1338 new_fa) {
1339 enum fib_event_type fib_event;
1340
1341 fib_event = FIB_EVENT_ENTRY_REPLACE;
1342 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1343 new_fa, extack);
1344 if (err)
1345 goto out_remove_new_fa;
1346 }
1347
1348 if (!plen)
1349 tb->tb_num_default++;
1350
1351 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1352 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1353 &cfg->fc_nlinfo, nlflags);
1354succeeded:
1355 return 0;
1356
1357out_remove_new_fa:
1358 fib_remove_alias(t, tp, l, new_fa);
1359out_free_new_fa:
1360 kmem_cache_free(fn_alias_kmem, new_fa);
1361out:
1362 fib_release_info(fi);
1363err:
1364 return err;
1365}
1366
1367static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1368{
1369 t_key prefix = n->key;
1370
1371 return (key ^ prefix) & (prefix | -prefix);
1372}
1373
1374bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1375 const struct flowi4 *flp)
1376{
1377 if (nhc->nhc_flags & RTNH_F_DEAD)
1378 return false;
1379
1380 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1381 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1382 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1383 return false;
1384
1385 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1386 if (flp->flowi4_oif &&
1387 flp->flowi4_oif != nhc->nhc_oif)
1388 return false;
1389 }
1390
1391 return true;
1392}
1393
1394/* should be called with rcu_read_lock */
1395int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1396 struct fib_result *res, int fib_flags)
1397{
1398 struct trie *t = (struct trie *) tb->tb_data;
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400 struct trie_use_stats __percpu *stats = t->stats;
1401#endif
1402 const t_key key = ntohl(flp->daddr);
1403 struct key_vector *n, *pn;
1404 struct fib_alias *fa;
1405 unsigned long index;
1406 t_key cindex;
1407
1408 pn = t->kv;
1409 cindex = 0;
1410
1411 n = get_child_rcu(pn, cindex);
1412 if (!n) {
1413 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1414 return -EAGAIN;
1415 }
1416
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418 this_cpu_inc(stats->gets);
1419#endif
1420
1421 /* Step 1: Travel to the longest prefix match in the trie */
1422 for (;;) {
1423 index = get_cindex(key, n);
1424
1425 /* This bit of code is a bit tricky but it combines multiple
1426 * checks into a single check. The prefix consists of the
1427 * prefix plus zeros for the "bits" in the prefix. The index
1428 * is the difference between the key and this value. From
1429 * this we can actually derive several pieces of data.
1430 * if (index >= (1ul << bits))
1431 * we have a mismatch in skip bits and failed
1432 * else
1433 * we know the value is cindex
1434 *
1435 * This check is safe even if bits == KEYLENGTH due to the
1436 * fact that we can only allocate a node with 32 bits if a
1437 * long is greater than 32 bits.
1438 */
1439 if (index >= (1ul << n->bits))
1440 break;
1441
1442 /* we have found a leaf. Prefixes have already been compared */
1443 if (IS_LEAF(n))
1444 goto found;
1445
1446 /* only record pn and cindex if we are going to be chopping
1447 * bits later. Otherwise we are just wasting cycles.
1448 */
1449 if (n->slen > n->pos) {
1450 pn = n;
1451 cindex = index;
1452 }
1453
1454 n = get_child_rcu(n, index);
1455 if (unlikely(!n))
1456 goto backtrace;
1457 }
1458
1459 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1460 for (;;) {
1461 /* record the pointer where our next node pointer is stored */
1462 struct key_vector __rcu **cptr = n->tnode;
1463
1464 /* This test verifies that none of the bits that differ
1465 * between the key and the prefix exist in the region of
1466 * the lsb and higher in the prefix.
1467 */
1468 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1469 goto backtrace;
1470
1471 /* exit out and process leaf */
1472 if (unlikely(IS_LEAF(n)))
1473 break;
1474
1475 /* Don't bother recording parent info. Since we are in
1476 * prefix match mode we will have to come back to wherever
1477 * we started this traversal anyway
1478 */
1479
1480 while ((n = rcu_dereference(*cptr)) == NULL) {
1481backtrace:
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483 if (!n)
1484 this_cpu_inc(stats->null_node_hit);
1485#endif
1486 /* If we are at cindex 0 there are no more bits for
1487 * us to strip at this level so we must ascend back
1488 * up one level to see if there are any more bits to
1489 * be stripped there.
1490 */
1491 while (!cindex) {
1492 t_key pkey = pn->key;
1493
1494 /* If we don't have a parent then there is
1495 * nothing for us to do as we do not have any
1496 * further nodes to parse.
1497 */
1498 if (IS_TRIE(pn)) {
1499 trace_fib_table_lookup(tb->tb_id, flp,
1500 NULL, -EAGAIN);
1501 return -EAGAIN;
1502 }
1503#ifdef CONFIG_IP_FIB_TRIE_STATS
1504 this_cpu_inc(stats->backtrack);
1505#endif
1506 /* Get Child's index */
1507 pn = node_parent_rcu(pn);
1508 cindex = get_index(pkey, pn);
1509 }
1510
1511 /* strip the least significant bit from the cindex */
1512 cindex &= cindex - 1;
1513
1514 /* grab pointer for next child node */
1515 cptr = &pn->tnode[cindex];
1516 }
1517 }
1518
1519found:
1520 /* this line carries forward the xor from earlier in the function */
1521 index = key ^ n->key;
1522
1523 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1524 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1525 struct fib_info *fi = fa->fa_info;
1526 struct fib_nh_common *nhc;
1527 int nhsel, err;
1528
1529 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1530 if (index >= (1ul << fa->fa_slen))
1531 continue;
1532 }
1533 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1534 continue;
1535 if (fi->fib_dead)
1536 continue;
1537 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1538 continue;
1539 fib_alias_accessed(fa);
1540 err = fib_props[fa->fa_type].error;
1541 if (unlikely(err < 0)) {
1542out_reject:
1543#ifdef CONFIG_IP_FIB_TRIE_STATS
1544 this_cpu_inc(stats->semantic_match_passed);
1545#endif
1546 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1547 return err;
1548 }
1549 if (fi->fib_flags & RTNH_F_DEAD)
1550 continue;
1551
1552 if (unlikely(fi->nh)) {
1553 if (nexthop_is_blackhole(fi->nh)) {
1554 err = fib_props[RTN_BLACKHOLE].error;
1555 goto out_reject;
1556 }
1557
1558 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1559 &nhsel);
1560 if (nhc)
1561 goto set_result;
1562 goto miss;
1563 }
1564
1565 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1566 nhc = fib_info_nhc(fi, nhsel);
1567
1568 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1569 continue;
1570set_result:
1571 if (!(fib_flags & FIB_LOOKUP_NOREF))
1572 refcount_inc(&fi->fib_clntref);
1573
1574 res->prefix = htonl(n->key);
1575 res->prefixlen = KEYLENGTH - fa->fa_slen;
1576 res->nh_sel = nhsel;
1577 res->nhc = nhc;
1578 res->type = fa->fa_type;
1579 res->scope = fi->fib_scope;
1580 res->fi = fi;
1581 res->table = tb;
1582 res->fa_head = &n->leaf;
1583#ifdef CONFIG_IP_FIB_TRIE_STATS
1584 this_cpu_inc(stats->semantic_match_passed);
1585#endif
1586 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1587
1588 return err;
1589 }
1590 }
1591miss:
1592#ifdef CONFIG_IP_FIB_TRIE_STATS
1593 this_cpu_inc(stats->semantic_match_miss);
1594#endif
1595 goto backtrace;
1596}
1597EXPORT_SYMBOL_GPL(fib_table_lookup);
1598
1599static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1600 struct key_vector *l, struct fib_alias *old)
1601{
1602 /* record the location of the previous list_info entry */
1603 struct hlist_node **pprev = old->fa_list.pprev;
1604 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1605
1606 /* remove the fib_alias from the list */
1607 hlist_del_rcu(&old->fa_list);
1608
1609 /* if we emptied the list this leaf will be freed and we can sort
1610 * out parent suffix lengths as a part of trie_rebalance
1611 */
1612 if (hlist_empty(&l->leaf)) {
1613 if (tp->slen == l->slen)
1614 node_pull_suffix(tp, tp->pos);
1615 put_child_root(tp, l->key, NULL);
1616 node_free(l);
1617 trie_rebalance(t, tp);
1618 return;
1619 }
1620
1621 /* only access fa if it is pointing at the last valid hlist_node */
1622 if (*pprev)
1623 return;
1624
1625 /* update the trie with the latest suffix length */
1626 l->slen = fa->fa_slen;
1627 node_pull_suffix(tp, fa->fa_slen);
1628}
1629
1630static void fib_notify_alias_delete(struct net *net, u32 key,
1631 struct hlist_head *fah,
1632 struct fib_alias *fa_to_delete,
1633 struct netlink_ext_ack *extack)
1634{
1635 struct fib_alias *fa_next, *fa_to_notify;
1636 u32 tb_id = fa_to_delete->tb_id;
1637 u8 slen = fa_to_delete->fa_slen;
1638 enum fib_event_type fib_event;
1639
1640 /* Do not notify if we do not care about the route. */
1641 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1642 return;
1643
1644 /* Determine if the route should be replaced by the next route in the
1645 * list.
1646 */
1647 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1648 struct fib_alias, fa_list);
1649 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1650 fib_event = FIB_EVENT_ENTRY_REPLACE;
1651 fa_to_notify = fa_next;
1652 } else {
1653 fib_event = FIB_EVENT_ENTRY_DEL;
1654 fa_to_notify = fa_to_delete;
1655 }
1656 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1657 fa_to_notify, extack);
1658}
1659
1660/* Caller must hold RTNL. */
1661int fib_table_delete(struct net *net, struct fib_table *tb,
1662 struct fib_config *cfg, struct netlink_ext_ack *extack)
1663{
1664 struct trie *t = (struct trie *) tb->tb_data;
1665 struct fib_alias *fa, *fa_to_delete;
1666 struct key_vector *l, *tp;
1667 u8 plen = cfg->fc_dst_len;
1668 u8 slen = KEYLENGTH - plen;
1669 u8 tos = cfg->fc_tos;
1670 u32 key;
1671
1672 key = ntohl(cfg->fc_dst);
1673
1674 if (!fib_valid_key_len(key, plen, extack))
1675 return -EINVAL;
1676
1677 l = fib_find_node(t, &tp, key);
1678 if (!l)
1679 return -ESRCH;
1680
1681 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1682 if (!fa)
1683 return -ESRCH;
1684
1685 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1686
1687 fa_to_delete = NULL;
1688 hlist_for_each_entry_from(fa, fa_list) {
1689 struct fib_info *fi = fa->fa_info;
1690
1691 if ((fa->fa_slen != slen) ||
1692 (fa->tb_id != tb->tb_id) ||
1693 (fa->fa_tos != tos))
1694 break;
1695
1696 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1697 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1698 fa->fa_info->fib_scope == cfg->fc_scope) &&
1699 (!cfg->fc_prefsrc ||
1700 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1701 (!cfg->fc_protocol ||
1702 fi->fib_protocol == cfg->fc_protocol) &&
1703 fib_nh_match(net, cfg, fi, extack) == 0 &&
1704 fib_metrics_match(cfg, fi)) {
1705 fa_to_delete = fa;
1706 break;
1707 }
1708 }
1709
1710 if (!fa_to_delete)
1711 return -ESRCH;
1712
1713 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1714 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1715 &cfg->fc_nlinfo, 0);
1716
1717 if (!plen)
1718 tb->tb_num_default--;
1719
1720 fib_remove_alias(t, tp, l, fa_to_delete);
1721
1722 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1723 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1724
1725 fib_release_info(fa_to_delete->fa_info);
1726 alias_free_mem_rcu(fa_to_delete);
1727 return 0;
1728}
1729
1730/* Scan for the next leaf starting at the provided key value */
1731static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1732{
1733 struct key_vector *pn, *n = *tn;
1734 unsigned long cindex;
1735
1736 /* this loop is meant to try and find the key in the trie */
1737 do {
1738 /* record parent and next child index */
1739 pn = n;
1740 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1741
1742 if (cindex >> pn->bits)
1743 break;
1744
1745 /* descend into the next child */
1746 n = get_child_rcu(pn, cindex++);
1747 if (!n)
1748 break;
1749
1750 /* guarantee forward progress on the keys */
1751 if (IS_LEAF(n) && (n->key >= key))
1752 goto found;
1753 } while (IS_TNODE(n));
1754
1755 /* this loop will search for the next leaf with a greater key */
1756 while (!IS_TRIE(pn)) {
1757 /* if we exhausted the parent node we will need to climb */
1758 if (cindex >= (1ul << pn->bits)) {
1759 t_key pkey = pn->key;
1760
1761 pn = node_parent_rcu(pn);
1762 cindex = get_index(pkey, pn) + 1;
1763 continue;
1764 }
1765
1766 /* grab the next available node */
1767 n = get_child_rcu(pn, cindex++);
1768 if (!n)
1769 continue;
1770
1771 /* no need to compare keys since we bumped the index */
1772 if (IS_LEAF(n))
1773 goto found;
1774
1775 /* Rescan start scanning in new node */
1776 pn = n;
1777 cindex = 0;
1778 }
1779
1780 *tn = pn;
1781 return NULL; /* Root of trie */
1782found:
1783 /* if we are at the limit for keys just return NULL for the tnode */
1784 *tn = pn;
1785 return n;
1786}
1787
1788static void fib_trie_free(struct fib_table *tb)
1789{
1790 struct trie *t = (struct trie *)tb->tb_data;
1791 struct key_vector *pn = t->kv;
1792 unsigned long cindex = 1;
1793 struct hlist_node *tmp;
1794 struct fib_alias *fa;
1795
1796 /* walk trie in reverse order and free everything */
1797 for (;;) {
1798 struct key_vector *n;
1799
1800 if (!(cindex--)) {
1801 t_key pkey = pn->key;
1802
1803 if (IS_TRIE(pn))
1804 break;
1805
1806 n = pn;
1807 pn = node_parent(pn);
1808
1809 /* drop emptied tnode */
1810 put_child_root(pn, n->key, NULL);
1811 node_free(n);
1812
1813 cindex = get_index(pkey, pn);
1814
1815 continue;
1816 }
1817
1818 /* grab the next available node */
1819 n = get_child(pn, cindex);
1820 if (!n)
1821 continue;
1822
1823 if (IS_TNODE(n)) {
1824 /* record pn and cindex for leaf walking */
1825 pn = n;
1826 cindex = 1ul << n->bits;
1827
1828 continue;
1829 }
1830
1831 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832 hlist_del_rcu(&fa->fa_list);
1833 alias_free_mem_rcu(fa);
1834 }
1835
1836 put_child_root(pn, n->key, NULL);
1837 node_free(n);
1838 }
1839
1840#ifdef CONFIG_IP_FIB_TRIE_STATS
1841 free_percpu(t->stats);
1842#endif
1843 kfree(tb);
1844}
1845
1846struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1847{
1848 struct trie *ot = (struct trie *)oldtb->tb_data;
1849 struct key_vector *l, *tp = ot->kv;
1850 struct fib_table *local_tb;
1851 struct fib_alias *fa;
1852 struct trie *lt;
1853 t_key key = 0;
1854
1855 if (oldtb->tb_data == oldtb->__data)
1856 return oldtb;
1857
1858 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1859 if (!local_tb)
1860 return NULL;
1861
1862 lt = (struct trie *)local_tb->tb_data;
1863
1864 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1865 struct key_vector *local_l = NULL, *local_tp;
1866
1867 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1868 struct fib_alias *new_fa;
1869
1870 if (local_tb->tb_id != fa->tb_id)
1871 continue;
1872
1873 /* clone fa for new local table */
1874 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1875 if (!new_fa)
1876 goto out;
1877
1878 memcpy(new_fa, fa, sizeof(*fa));
1879
1880 /* insert clone into table */
1881 if (!local_l)
1882 local_l = fib_find_node(lt, &local_tp, l->key);
1883
1884 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1885 NULL, l->key)) {
1886 kmem_cache_free(fn_alias_kmem, new_fa);
1887 goto out;
1888 }
1889 }
1890
1891 /* stop loop if key wrapped back to 0 */
1892 key = l->key + 1;
1893 if (key < l->key)
1894 break;
1895 }
1896
1897 return local_tb;
1898out:
1899 fib_trie_free(local_tb);
1900
1901 return NULL;
1902}
1903
1904/* Caller must hold RTNL */
1905void fib_table_flush_external(struct fib_table *tb)
1906{
1907 struct trie *t = (struct trie *)tb->tb_data;
1908 struct key_vector *pn = t->kv;
1909 unsigned long cindex = 1;
1910 struct hlist_node *tmp;
1911 struct fib_alias *fa;
1912
1913 /* walk trie in reverse order */
1914 for (;;) {
1915 unsigned char slen = 0;
1916 struct key_vector *n;
1917
1918 if (!(cindex--)) {
1919 t_key pkey = pn->key;
1920
1921 /* cannot resize the trie vector */
1922 if (IS_TRIE(pn))
1923 break;
1924
1925 /* update the suffix to address pulled leaves */
1926 if (pn->slen > pn->pos)
1927 update_suffix(pn);
1928
1929 /* resize completed node */
1930 pn = resize(t, pn);
1931 cindex = get_index(pkey, pn);
1932
1933 continue;
1934 }
1935
1936 /* grab the next available node */
1937 n = get_child(pn, cindex);
1938 if (!n)
1939 continue;
1940
1941 if (IS_TNODE(n)) {
1942 /* record pn and cindex for leaf walking */
1943 pn = n;
1944 cindex = 1ul << n->bits;
1945
1946 continue;
1947 }
1948
1949 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1950 /* if alias was cloned to local then we just
1951 * need to remove the local copy from main
1952 */
1953 if (tb->tb_id != fa->tb_id) {
1954 hlist_del_rcu(&fa->fa_list);
1955 alias_free_mem_rcu(fa);
1956 continue;
1957 }
1958
1959 /* record local slen */
1960 slen = fa->fa_slen;
1961 }
1962
1963 /* update leaf slen */
1964 n->slen = slen;
1965
1966 if (hlist_empty(&n->leaf)) {
1967 put_child_root(pn, n->key, NULL);
1968 node_free(n);
1969 }
1970 }
1971}
1972
1973/* Caller must hold RTNL. */
1974int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1975{
1976 struct trie *t = (struct trie *)tb->tb_data;
1977 struct key_vector *pn = t->kv;
1978 unsigned long cindex = 1;
1979 struct hlist_node *tmp;
1980 struct fib_alias *fa;
1981 int found = 0;
1982
1983 /* walk trie in reverse order */
1984 for (;;) {
1985 unsigned char slen = 0;
1986 struct key_vector *n;
1987
1988 if (!(cindex--)) {
1989 t_key pkey = pn->key;
1990
1991 /* cannot resize the trie vector */
1992 if (IS_TRIE(pn))
1993 break;
1994
1995 /* update the suffix to address pulled leaves */
1996 if (pn->slen > pn->pos)
1997 update_suffix(pn);
1998
1999 /* resize completed node */
2000 pn = resize(t, pn);
2001 cindex = get_index(pkey, pn);
2002
2003 continue;
2004 }
2005
2006 /* grab the next available node */
2007 n = get_child(pn, cindex);
2008 if (!n)
2009 continue;
2010
2011 if (IS_TNODE(n)) {
2012 /* record pn and cindex for leaf walking */
2013 pn = n;
2014 cindex = 1ul << n->bits;
2015
2016 continue;
2017 }
2018
2019 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2020 struct fib_info *fi = fa->fa_info;
2021
2022 if (!fi || tb->tb_id != fa->tb_id ||
2023 (!(fi->fib_flags & RTNH_F_DEAD) &&
2024 !fib_props[fa->fa_type].error)) {
2025 slen = fa->fa_slen;
2026 continue;
2027 }
2028
2029 /* Do not flush error routes if network namespace is
2030 * not being dismantled
2031 */
2032 if (!flush_all && fib_props[fa->fa_type].error) {
2033 slen = fa->fa_slen;
2034 continue;
2035 }
2036
2037 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2038 NULL);
2039 hlist_del_rcu(&fa->fa_list);
2040 fib_release_info(fa->fa_info);
2041 alias_free_mem_rcu(fa);
2042 found++;
2043 }
2044
2045 /* update leaf slen */
2046 n->slen = slen;
2047
2048 if (hlist_empty(&n->leaf)) {
2049 put_child_root(pn, n->key, NULL);
2050 node_free(n);
2051 }
2052 }
2053
2054 pr_debug("trie_flush found=%d\n", found);
2055 return found;
2056}
2057
2058/* derived from fib_trie_free */
2059static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2060 struct nl_info *info)
2061{
2062 struct trie *t = (struct trie *)tb->tb_data;
2063 struct key_vector *pn = t->kv;
2064 unsigned long cindex = 1;
2065 struct fib_alias *fa;
2066
2067 for (;;) {
2068 struct key_vector *n;
2069
2070 if (!(cindex--)) {
2071 t_key pkey = pn->key;
2072
2073 if (IS_TRIE(pn))
2074 break;
2075
2076 pn = node_parent(pn);
2077 cindex = get_index(pkey, pn);
2078 continue;
2079 }
2080
2081 /* grab the next available node */
2082 n = get_child(pn, cindex);
2083 if (!n)
2084 continue;
2085
2086 if (IS_TNODE(n)) {
2087 /* record pn and cindex for leaf walking */
2088 pn = n;
2089 cindex = 1ul << n->bits;
2090
2091 continue;
2092 }
2093
2094 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2095 struct fib_info *fi = fa->fa_info;
2096
2097 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2098 continue;
2099
2100 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2101 KEYLENGTH - fa->fa_slen, tb->tb_id,
2102 info, NLM_F_REPLACE);
2103
2104 /* call_fib_entry_notifiers will be removed when
2105 * in-kernel notifier is implemented and supported
2106 * for nexthop objects
2107 */
2108 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2109 n->key,
2110 KEYLENGTH - fa->fa_slen, fa,
2111 NULL);
2112 }
2113 }
2114}
2115
2116void fib_info_notify_update(struct net *net, struct nl_info *info)
2117{
2118 unsigned int h;
2119
2120 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2121 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2122 struct fib_table *tb;
2123
2124 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2125 lockdep_rtnl_is_held())
2126 __fib_info_notify_update(net, tb, info);
2127 }
2128}
2129
2130static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2131 struct notifier_block *nb,
2132 struct netlink_ext_ack *extack)
2133{
2134 struct fib_alias *fa;
2135 int last_slen = -1;
2136 int err;
2137
2138 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2139 struct fib_info *fi = fa->fa_info;
2140
2141 if (!fi)
2142 continue;
2143
2144 /* local and main table can share the same trie,
2145 * so don't notify twice for the same entry.
2146 */
2147 if (tb->tb_id != fa->tb_id)
2148 continue;
2149
2150 if (fa->fa_slen == last_slen)
2151 continue;
2152
2153 last_slen = fa->fa_slen;
2154 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2155 l->key, KEYLENGTH - fa->fa_slen,
2156 fa, extack);
2157 if (err)
2158 return err;
2159 }
2160 return 0;
2161}
2162
2163static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2164 struct netlink_ext_ack *extack)
2165{
2166 struct trie *t = (struct trie *)tb->tb_data;
2167 struct key_vector *l, *tp = t->kv;
2168 t_key key = 0;
2169 int err;
2170
2171 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2172 err = fib_leaf_notify(l, tb, nb, extack);
2173 if (err)
2174 return err;
2175
2176 key = l->key + 1;
2177 /* stop in case of wrap around */
2178 if (key < l->key)
2179 break;
2180 }
2181 return 0;
2182}
2183
2184int fib_notify(struct net *net, struct notifier_block *nb,
2185 struct netlink_ext_ack *extack)
2186{
2187 unsigned int h;
2188 int err;
2189
2190 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2191 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2192 struct fib_table *tb;
2193
2194 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2195 err = fib_table_notify(tb, nb, extack);
2196 if (err)
2197 return err;
2198 }
2199 }
2200 return 0;
2201}
2202
2203static void __trie_free_rcu(struct rcu_head *head)
2204{
2205 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2206#ifdef CONFIG_IP_FIB_TRIE_STATS
2207 struct trie *t = (struct trie *)tb->tb_data;
2208
2209 if (tb->tb_data == tb->__data)
2210 free_percpu(t->stats);
2211#endif /* CONFIG_IP_FIB_TRIE_STATS */
2212 kfree(tb);
2213}
2214
2215void fib_free_table(struct fib_table *tb)
2216{
2217 call_rcu(&tb->rcu, __trie_free_rcu);
2218}
2219
2220static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2221 struct sk_buff *skb, struct netlink_callback *cb,
2222 struct fib_dump_filter *filter)
2223{
2224 unsigned int flags = NLM_F_MULTI;
2225 __be32 xkey = htonl(l->key);
2226 int i, s_i, i_fa, s_fa, err;
2227 struct fib_alias *fa;
2228
2229 if (filter->filter_set ||
2230 !filter->dump_exceptions || !filter->dump_routes)
2231 flags |= NLM_F_DUMP_FILTERED;
2232
2233 s_i = cb->args[4];
2234 s_fa = cb->args[5];
2235 i = 0;
2236
2237 /* rcu_read_lock is hold by caller */
2238 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2239 struct fib_info *fi = fa->fa_info;
2240
2241 if (i < s_i)
2242 goto next;
2243
2244 i_fa = 0;
2245
2246 if (tb->tb_id != fa->tb_id)
2247 goto next;
2248
2249 if (filter->filter_set) {
2250 if (filter->rt_type && fa->fa_type != filter->rt_type)
2251 goto next;
2252
2253 if ((filter->protocol &&
2254 fi->fib_protocol != filter->protocol))
2255 goto next;
2256
2257 if (filter->dev &&
2258 !fib_info_nh_uses_dev(fi, filter->dev))
2259 goto next;
2260 }
2261
2262 if (filter->dump_routes) {
2263 if (!s_fa) {
2264 struct fib_rt_info fri;
2265
2266 fri.fi = fi;
2267 fri.tb_id = tb->tb_id;
2268 fri.dst = xkey;
2269 fri.dst_len = KEYLENGTH - fa->fa_slen;
2270 fri.tos = fa->fa_tos;
2271 fri.type = fa->fa_type;
2272 fri.offload = fa->offload;
2273 fri.trap = fa->trap;
2274 err = fib_dump_info(skb,
2275 NETLINK_CB(cb->skb).portid,
2276 cb->nlh->nlmsg_seq,
2277 RTM_NEWROUTE, &fri, flags);
2278 if (err < 0)
2279 goto stop;
2280 }
2281
2282 i_fa++;
2283 }
2284
2285 if (filter->dump_exceptions) {
2286 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2287 &i_fa, s_fa, flags);
2288 if (err < 0)
2289 goto stop;
2290 }
2291
2292next:
2293 i++;
2294 }
2295
2296 cb->args[4] = i;
2297 return skb->len;
2298
2299stop:
2300 cb->args[4] = i;
2301 cb->args[5] = i_fa;
2302 return err;
2303}
2304
2305/* rcu_read_lock needs to be hold by caller from readside */
2306int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2307 struct netlink_callback *cb, struct fib_dump_filter *filter)
2308{
2309 struct trie *t = (struct trie *)tb->tb_data;
2310 struct key_vector *l, *tp = t->kv;
2311 /* Dump starting at last key.
2312 * Note: 0.0.0.0/0 (ie default) is first key.
2313 */
2314 int count = cb->args[2];
2315 t_key key = cb->args[3];
2316
2317 /* First time here, count and key are both always 0. Count > 0
2318 * and key == 0 means the dump has wrapped around and we are done.
2319 */
2320 if (count && !key)
2321 return skb->len;
2322
2323 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2324 int err;
2325
2326 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2327 if (err < 0) {
2328 cb->args[3] = key;
2329 cb->args[2] = count;
2330 return err;
2331 }
2332
2333 ++count;
2334 key = l->key + 1;
2335
2336 memset(&cb->args[4], 0,
2337 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2338
2339 /* stop loop if key wrapped back to 0 */
2340 if (key < l->key)
2341 break;
2342 }
2343
2344 cb->args[3] = key;
2345 cb->args[2] = count;
2346
2347 return skb->len;
2348}
2349
2350void __init fib_trie_init(void)
2351{
2352 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2353 sizeof(struct fib_alias),
2354 0, SLAB_PANIC, NULL);
2355
2356 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2357 LEAF_SIZE,
2358 0, SLAB_PANIC, NULL);
2359}
2360
2361struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2362{
2363 struct fib_table *tb;
2364 struct trie *t;
2365 size_t sz = sizeof(*tb);
2366
2367 if (!alias)
2368 sz += sizeof(struct trie);
2369
2370 tb = kzalloc(sz, GFP_KERNEL);
2371 if (!tb)
2372 return NULL;
2373
2374 tb->tb_id = id;
2375 tb->tb_num_default = 0;
2376 tb->tb_data = (alias ? alias->__data : tb->__data);
2377
2378 if (alias)
2379 return tb;
2380
2381 t = (struct trie *) tb->tb_data;
2382 t->kv[0].pos = KEYLENGTH;
2383 t->kv[0].slen = KEYLENGTH;
2384#ifdef CONFIG_IP_FIB_TRIE_STATS
2385 t->stats = alloc_percpu(struct trie_use_stats);
2386 if (!t->stats) {
2387 kfree(tb);
2388 tb = NULL;
2389 }
2390#endif
2391
2392 return tb;
2393}
2394
2395#ifdef CONFIG_PROC_FS
2396/* Depth first Trie walk iterator */
2397struct fib_trie_iter {
2398 struct seq_net_private p;
2399 struct fib_table *tb;
2400 struct key_vector *tnode;
2401 unsigned int index;
2402 unsigned int depth;
2403};
2404
2405static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2406{
2407 unsigned long cindex = iter->index;
2408 struct key_vector *pn = iter->tnode;
2409 t_key pkey;
2410
2411 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2412 iter->tnode, iter->index, iter->depth);
2413
2414 while (!IS_TRIE(pn)) {
2415 while (cindex < child_length(pn)) {
2416 struct key_vector *n = get_child_rcu(pn, cindex++);
2417
2418 if (!n)
2419 continue;
2420
2421 if (IS_LEAF(n)) {
2422 iter->tnode = pn;
2423 iter->index = cindex;
2424 } else {
2425 /* push down one level */
2426 iter->tnode = n;
2427 iter->index = 0;
2428 ++iter->depth;
2429 }
2430
2431 return n;
2432 }
2433
2434 /* Current node exhausted, pop back up */
2435 pkey = pn->key;
2436 pn = node_parent_rcu(pn);
2437 cindex = get_index(pkey, pn) + 1;
2438 --iter->depth;
2439 }
2440
2441 /* record root node so further searches know we are done */
2442 iter->tnode = pn;
2443 iter->index = 0;
2444
2445 return NULL;
2446}
2447
2448static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2449 struct trie *t)
2450{
2451 struct key_vector *n, *pn;
2452
2453 if (!t)
2454 return NULL;
2455
2456 pn = t->kv;
2457 n = rcu_dereference(pn->tnode[0]);
2458 if (!n)
2459 return NULL;
2460
2461 if (IS_TNODE(n)) {
2462 iter->tnode = n;
2463 iter->index = 0;
2464 iter->depth = 1;
2465 } else {
2466 iter->tnode = pn;
2467 iter->index = 0;
2468 iter->depth = 0;
2469 }
2470
2471 return n;
2472}
2473
2474static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2475{
2476 struct key_vector *n;
2477 struct fib_trie_iter iter;
2478
2479 memset(s, 0, sizeof(*s));
2480
2481 rcu_read_lock();
2482 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2483 if (IS_LEAF(n)) {
2484 struct fib_alias *fa;
2485
2486 s->leaves++;
2487 s->totdepth += iter.depth;
2488 if (iter.depth > s->maxdepth)
2489 s->maxdepth = iter.depth;
2490
2491 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2492 ++s->prefixes;
2493 } else {
2494 s->tnodes++;
2495 if (n->bits < MAX_STAT_DEPTH)
2496 s->nodesizes[n->bits]++;
2497 s->nullpointers += tn_info(n)->empty_children;
2498 }
2499 }
2500 rcu_read_unlock();
2501}
2502
2503/*
2504 * This outputs /proc/net/fib_triestats
2505 */
2506static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2507{
2508 unsigned int i, max, pointers, bytes, avdepth;
2509
2510 if (stat->leaves)
2511 avdepth = stat->totdepth*100 / stat->leaves;
2512 else
2513 avdepth = 0;
2514
2515 seq_printf(seq, "\tAver depth: %u.%02d\n",
2516 avdepth / 100, avdepth % 100);
2517 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2518
2519 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2520 bytes = LEAF_SIZE * stat->leaves;
2521
2522 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2523 bytes += sizeof(struct fib_alias) * stat->prefixes;
2524
2525 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2526 bytes += TNODE_SIZE(0) * stat->tnodes;
2527
2528 max = MAX_STAT_DEPTH;
2529 while (max > 0 && stat->nodesizes[max-1] == 0)
2530 max--;
2531
2532 pointers = 0;
2533 for (i = 1; i < max; i++)
2534 if (stat->nodesizes[i] != 0) {
2535 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2536 pointers += (1<<i) * stat->nodesizes[i];
2537 }
2538 seq_putc(seq, '\n');
2539 seq_printf(seq, "\tPointers: %u\n", pointers);
2540
2541 bytes += sizeof(struct key_vector *) * pointers;
2542 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2543 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2544}
2545
2546#ifdef CONFIG_IP_FIB_TRIE_STATS
2547static void trie_show_usage(struct seq_file *seq,
2548 const struct trie_use_stats __percpu *stats)
2549{
2550 struct trie_use_stats s = { 0 };
2551 int cpu;
2552
2553 /* loop through all of the CPUs and gather up the stats */
2554 for_each_possible_cpu(cpu) {
2555 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2556
2557 s.gets += pcpu->gets;
2558 s.backtrack += pcpu->backtrack;
2559 s.semantic_match_passed += pcpu->semantic_match_passed;
2560 s.semantic_match_miss += pcpu->semantic_match_miss;
2561 s.null_node_hit += pcpu->null_node_hit;
2562 s.resize_node_skipped += pcpu->resize_node_skipped;
2563 }
2564
2565 seq_printf(seq, "\nCounters:\n---------\n");
2566 seq_printf(seq, "gets = %u\n", s.gets);
2567 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2568 seq_printf(seq, "semantic match passed = %u\n",
2569 s.semantic_match_passed);
2570 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2571 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2572 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2573}
2574#endif /* CONFIG_IP_FIB_TRIE_STATS */
2575
2576static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2577{
2578 if (tb->tb_id == RT_TABLE_LOCAL)
2579 seq_puts(seq, "Local:\n");
2580 else if (tb->tb_id == RT_TABLE_MAIN)
2581 seq_puts(seq, "Main:\n");
2582 else
2583 seq_printf(seq, "Id %d:\n", tb->tb_id);
2584}
2585
2586
2587static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2588{
2589 struct net *net = (struct net *)seq->private;
2590 unsigned int h;
2591
2592 seq_printf(seq,
2593 "Basic info: size of leaf:"
2594 " %zd bytes, size of tnode: %zd bytes.\n",
2595 LEAF_SIZE, TNODE_SIZE(0));
2596
2597 rcu_read_lock();
2598 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2599 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2600 struct fib_table *tb;
2601
2602 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2603 struct trie *t = (struct trie *) tb->tb_data;
2604 struct trie_stat stat;
2605
2606 if (!t)
2607 continue;
2608
2609 fib_table_print(seq, tb);
2610
2611 trie_collect_stats(t, &stat);
2612 trie_show_stats(seq, &stat);
2613#ifdef CONFIG_IP_FIB_TRIE_STATS
2614 trie_show_usage(seq, t->stats);
2615#endif
2616 }
2617 cond_resched_rcu();
2618 }
2619 rcu_read_unlock();
2620
2621 return 0;
2622}
2623
2624static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2625{
2626 struct fib_trie_iter *iter = seq->private;
2627 struct net *net = seq_file_net(seq);
2628 loff_t idx = 0;
2629 unsigned int h;
2630
2631 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2632 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2633 struct fib_table *tb;
2634
2635 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2636 struct key_vector *n;
2637
2638 for (n = fib_trie_get_first(iter,
2639 (struct trie *) tb->tb_data);
2640 n; n = fib_trie_get_next(iter))
2641 if (pos == idx++) {
2642 iter->tb = tb;
2643 return n;
2644 }
2645 }
2646 }
2647
2648 return NULL;
2649}
2650
2651static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2652 __acquires(RCU)
2653{
2654 rcu_read_lock();
2655 return fib_trie_get_idx(seq, *pos);
2656}
2657
2658static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2659{
2660 struct fib_trie_iter *iter = seq->private;
2661 struct net *net = seq_file_net(seq);
2662 struct fib_table *tb = iter->tb;
2663 struct hlist_node *tb_node;
2664 unsigned int h;
2665 struct key_vector *n;
2666
2667 ++*pos;
2668 /* next node in same table */
2669 n = fib_trie_get_next(iter);
2670 if (n)
2671 return n;
2672
2673 /* walk rest of this hash chain */
2674 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2675 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2676 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2677 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2678 if (n)
2679 goto found;
2680 }
2681
2682 /* new hash chain */
2683 while (++h < FIB_TABLE_HASHSZ) {
2684 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2685 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2686 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2687 if (n)
2688 goto found;
2689 }
2690 }
2691 return NULL;
2692
2693found:
2694 iter->tb = tb;
2695 return n;
2696}
2697
2698static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2699 __releases(RCU)
2700{
2701 rcu_read_unlock();
2702}
2703
2704static void seq_indent(struct seq_file *seq, int n)
2705{
2706 while (n-- > 0)
2707 seq_puts(seq, " ");
2708}
2709
2710static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2711{
2712 switch (s) {
2713 case RT_SCOPE_UNIVERSE: return "universe";
2714 case RT_SCOPE_SITE: return "site";
2715 case RT_SCOPE_LINK: return "link";
2716 case RT_SCOPE_HOST: return "host";
2717 case RT_SCOPE_NOWHERE: return "nowhere";
2718 default:
2719 snprintf(buf, len, "scope=%d", s);
2720 return buf;
2721 }
2722}
2723
2724static const char *const rtn_type_names[__RTN_MAX] = {
2725 [RTN_UNSPEC] = "UNSPEC",
2726 [RTN_UNICAST] = "UNICAST",
2727 [RTN_LOCAL] = "LOCAL",
2728 [RTN_BROADCAST] = "BROADCAST",
2729 [RTN_ANYCAST] = "ANYCAST",
2730 [RTN_MULTICAST] = "MULTICAST",
2731 [RTN_BLACKHOLE] = "BLACKHOLE",
2732 [RTN_UNREACHABLE] = "UNREACHABLE",
2733 [RTN_PROHIBIT] = "PROHIBIT",
2734 [RTN_THROW] = "THROW",
2735 [RTN_NAT] = "NAT",
2736 [RTN_XRESOLVE] = "XRESOLVE",
2737};
2738
2739static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2740{
2741 if (t < __RTN_MAX && rtn_type_names[t])
2742 return rtn_type_names[t];
2743 snprintf(buf, len, "type %u", t);
2744 return buf;
2745}
2746
2747/* Pretty print the trie */
2748static int fib_trie_seq_show(struct seq_file *seq, void *v)
2749{
2750 const struct fib_trie_iter *iter = seq->private;
2751 struct key_vector *n = v;
2752
2753 if (IS_TRIE(node_parent_rcu(n)))
2754 fib_table_print(seq, iter->tb);
2755
2756 if (IS_TNODE(n)) {
2757 __be32 prf = htonl(n->key);
2758
2759 seq_indent(seq, iter->depth-1);
2760 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2761 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2762 tn_info(n)->full_children,
2763 tn_info(n)->empty_children);
2764 } else {
2765 __be32 val = htonl(n->key);
2766 struct fib_alias *fa;
2767
2768 seq_indent(seq, iter->depth);
2769 seq_printf(seq, " |-- %pI4\n", &val);
2770
2771 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2772 char buf1[32], buf2[32];
2773
2774 seq_indent(seq, iter->depth + 1);
2775 seq_printf(seq, " /%zu %s %s",
2776 KEYLENGTH - fa->fa_slen,
2777 rtn_scope(buf1, sizeof(buf1),
2778 fa->fa_info->fib_scope),
2779 rtn_type(buf2, sizeof(buf2),
2780 fa->fa_type));
2781 if (fa->fa_tos)
2782 seq_printf(seq, " tos=%d", fa->fa_tos);
2783 seq_putc(seq, '\n');
2784 }
2785 }
2786
2787 return 0;
2788}
2789
2790static const struct seq_operations fib_trie_seq_ops = {
2791 .start = fib_trie_seq_start,
2792 .next = fib_trie_seq_next,
2793 .stop = fib_trie_seq_stop,
2794 .show = fib_trie_seq_show,
2795};
2796
2797struct fib_route_iter {
2798 struct seq_net_private p;
2799 struct fib_table *main_tb;
2800 struct key_vector *tnode;
2801 loff_t pos;
2802 t_key key;
2803};
2804
2805static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2806 loff_t pos)
2807{
2808 struct key_vector *l, **tp = &iter->tnode;
2809 t_key key;
2810
2811 /* use cached location of previously found key */
2812 if (iter->pos > 0 && pos >= iter->pos) {
2813 key = iter->key;
2814 } else {
2815 iter->pos = 1;
2816 key = 0;
2817 }
2818
2819 pos -= iter->pos;
2820
2821 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2822 key = l->key + 1;
2823 iter->pos++;
2824 l = NULL;
2825
2826 /* handle unlikely case of a key wrap */
2827 if (!key)
2828 break;
2829 }
2830
2831 if (l)
2832 iter->key = l->key; /* remember it */
2833 else
2834 iter->pos = 0; /* forget it */
2835
2836 return l;
2837}
2838
2839static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2840 __acquires(RCU)
2841{
2842 struct fib_route_iter *iter = seq->private;
2843 struct fib_table *tb;
2844 struct trie *t;
2845
2846 rcu_read_lock();
2847
2848 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2849 if (!tb)
2850 return NULL;
2851
2852 iter->main_tb = tb;
2853 t = (struct trie *)tb->tb_data;
2854 iter->tnode = t->kv;
2855
2856 if (*pos != 0)
2857 return fib_route_get_idx(iter, *pos);
2858
2859 iter->pos = 0;
2860 iter->key = KEY_MAX;
2861
2862 return SEQ_START_TOKEN;
2863}
2864
2865static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2866{
2867 struct fib_route_iter *iter = seq->private;
2868 struct key_vector *l = NULL;
2869 t_key key = iter->key + 1;
2870
2871 ++*pos;
2872
2873 /* only allow key of 0 for start of sequence */
2874 if ((v == SEQ_START_TOKEN) || key)
2875 l = leaf_walk_rcu(&iter->tnode, key);
2876
2877 if (l) {
2878 iter->key = l->key;
2879 iter->pos++;
2880 } else {
2881 iter->pos = 0;
2882 }
2883
2884 return l;
2885}
2886
2887static void fib_route_seq_stop(struct seq_file *seq, void *v)
2888 __releases(RCU)
2889{
2890 rcu_read_unlock();
2891}
2892
2893static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2894{
2895 unsigned int flags = 0;
2896
2897 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2898 flags = RTF_REJECT;
2899 if (fi) {
2900 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2901
2902 if (nhc->nhc_gw.ipv4)
2903 flags |= RTF_GATEWAY;
2904 }
2905 if (mask == htonl(0xFFFFFFFF))
2906 flags |= RTF_HOST;
2907 flags |= RTF_UP;
2908 return flags;
2909}
2910
2911/*
2912 * This outputs /proc/net/route.
2913 * The format of the file is not supposed to be changed
2914 * and needs to be same as fib_hash output to avoid breaking
2915 * legacy utilities
2916 */
2917static int fib_route_seq_show(struct seq_file *seq, void *v)
2918{
2919 struct fib_route_iter *iter = seq->private;
2920 struct fib_table *tb = iter->main_tb;
2921 struct fib_alias *fa;
2922 struct key_vector *l = v;
2923 __be32 prefix;
2924
2925 if (v == SEQ_START_TOKEN) {
2926 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2927 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2928 "\tWindow\tIRTT");
2929 return 0;
2930 }
2931
2932 prefix = htonl(l->key);
2933
2934 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2935 struct fib_info *fi = fa->fa_info;
2936 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2937 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2938
2939 if ((fa->fa_type == RTN_BROADCAST) ||
2940 (fa->fa_type == RTN_MULTICAST))
2941 continue;
2942
2943 if (fa->tb_id != tb->tb_id)
2944 continue;
2945
2946 seq_setwidth(seq, 127);
2947
2948 if (fi) {
2949 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2950 __be32 gw = 0;
2951
2952 if (nhc->nhc_gw_family == AF_INET)
2953 gw = nhc->nhc_gw.ipv4;
2954
2955 seq_printf(seq,
2956 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2957 "%d\t%08X\t%d\t%u\t%u",
2958 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2959 prefix, gw, flags, 0, 0,
2960 fi->fib_priority,
2961 mask,
2962 (fi->fib_advmss ?
2963 fi->fib_advmss + 40 : 0),
2964 fi->fib_window,
2965 fi->fib_rtt >> 3);
2966 } else {
2967 seq_printf(seq,
2968 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2969 "%d\t%08X\t%d\t%u\t%u",
2970 prefix, 0, flags, 0, 0, 0,
2971 mask, 0, 0, 0);
2972 }
2973 seq_pad(seq, '\n');
2974 }
2975
2976 return 0;
2977}
2978
2979static const struct seq_operations fib_route_seq_ops = {
2980 .start = fib_route_seq_start,
2981 .next = fib_route_seq_next,
2982 .stop = fib_route_seq_stop,
2983 .show = fib_route_seq_show,
2984};
2985
2986int __net_init fib_proc_init(struct net *net)
2987{
2988 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2989 sizeof(struct fib_trie_iter)))
2990 goto out1;
2991
2992 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2993 fib_triestat_seq_show, NULL))
2994 goto out2;
2995
2996 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2997 sizeof(struct fib_route_iter)))
2998 goto out3;
2999
3000 return 0;
3001
3002out3:
3003 remove_proc_entry("fib_triestat", net->proc_net);
3004out2:
3005 remove_proc_entry("fib_trie", net->proc_net);
3006out1:
3007 return -ENOMEM;
3008}
3009
3010void __net_exit fib_proc_exit(struct net *net)
3011{
3012 remove_proc_entry("fib_trie", net->proc_net);
3013 remove_proc_entry("fib_triestat", net->proc_net);
3014 remove_proc_entry("route", net->proc_net);
3015}
3016
3017#endif /* CONFIG_PROC_FS */
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51#define VERSION "0.409"
52
53#include <linux/uaccess.h>
54#include <linux/bitops.h>
55#include <linux/types.h>
56#include <linux/kernel.h>
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
64#include <linux/inetdevice.h>
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
68#include <linux/rcupdate.h>
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
73#include <linux/slab.h>
74#include <linux/export.h>
75#include <linux/vmalloc.h>
76#include <linux/notifier.h>
77#include <net/net_namespace.h>
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
84#include <trace/events/fib.h>
85#include "fib_lookup.h"
86
87static unsigned int fib_seq_sum(void)
88{
89 unsigned int fib_seq = 0;
90 struct net *net;
91
92 rtnl_lock();
93 for_each_net(net)
94 fib_seq += net->ipv4.fib_seq;
95 rtnl_unlock();
96
97 return fib_seq;
98}
99
100static ATOMIC_NOTIFIER_HEAD(fib_chain);
101
102static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 enum fib_event_type event_type,
104 struct fib_notifier_info *info)
105{
106 info->net = net;
107 return nb->notifier_call(nb, event_type, info);
108}
109
110static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 enum fib_event_type event_type)
112{
113#ifdef CONFIG_IP_MULTIPLE_TABLES
114 struct fib_notifier_info info;
115
116 if (net->ipv4.fib_has_custom_rules)
117 call_fib_notifier(nb, net, event_type, &info);
118#endif
119}
120
121static void fib_notify(struct net *net, struct notifier_block *nb,
122 enum fib_event_type event_type);
123
124static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 enum fib_event_type event_type, u32 dst,
126 int dst_len, struct fib_info *fi,
127 u8 tos, u8 type, u32 tb_id, u32 nlflags)
128{
129 struct fib_entry_notifier_info info = {
130 .dst = dst,
131 .dst_len = dst_len,
132 .fi = fi,
133 .tos = tos,
134 .type = type,
135 .tb_id = tb_id,
136 .nlflags = nlflags,
137 };
138 return call_fib_notifier(nb, net, event_type, &info.info);
139}
140
141static bool fib_dump_is_consistent(struct notifier_block *nb,
142 void (*cb)(struct notifier_block *nb),
143 unsigned int fib_seq)
144{
145 atomic_notifier_chain_register(&fib_chain, nb);
146 if (fib_seq == fib_seq_sum())
147 return true;
148 atomic_notifier_chain_unregister(&fib_chain, nb);
149 if (cb)
150 cb(nb);
151 return false;
152}
153
154#define FIB_DUMP_MAX_RETRIES 5
155int register_fib_notifier(struct notifier_block *nb,
156 void (*cb)(struct notifier_block *nb))
157{
158 int retries = 0;
159
160 do {
161 unsigned int fib_seq = fib_seq_sum();
162 struct net *net;
163
164 /* Mutex semantics guarantee that every change done to
165 * FIB tries before we read the change sequence counter
166 * is now visible to us.
167 */
168 rcu_read_lock();
169 for_each_net_rcu(net) {
170 fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
171 fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
172 }
173 rcu_read_unlock();
174
175 if (fib_dump_is_consistent(nb, cb, fib_seq))
176 return 0;
177 } while (++retries < FIB_DUMP_MAX_RETRIES);
178
179 return -EBUSY;
180}
181EXPORT_SYMBOL(register_fib_notifier);
182
183int unregister_fib_notifier(struct notifier_block *nb)
184{
185 return atomic_notifier_chain_unregister(&fib_chain, nb);
186}
187EXPORT_SYMBOL(unregister_fib_notifier);
188
189int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
190 struct fib_notifier_info *info)
191{
192 net->ipv4.fib_seq++;
193 info->net = net;
194 return atomic_notifier_call_chain(&fib_chain, event_type, info);
195}
196
197static int call_fib_entry_notifiers(struct net *net,
198 enum fib_event_type event_type, u32 dst,
199 int dst_len, struct fib_info *fi,
200 u8 tos, u8 type, u32 tb_id, u32 nlflags)
201{
202 struct fib_entry_notifier_info info = {
203 .dst = dst,
204 .dst_len = dst_len,
205 .fi = fi,
206 .tos = tos,
207 .type = type,
208 .tb_id = tb_id,
209 .nlflags = nlflags,
210 };
211 return call_fib_notifiers(net, event_type, &info.info);
212}
213
214#define MAX_STAT_DEPTH 32
215
216#define KEYLENGTH (8*sizeof(t_key))
217#define KEY_MAX ((t_key)~0)
218
219typedef unsigned int t_key;
220
221#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
222#define IS_TNODE(n) ((n)->bits)
223#define IS_LEAF(n) (!(n)->bits)
224
225struct key_vector {
226 t_key key;
227 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
228 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
229 unsigned char slen;
230 union {
231 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
232 struct hlist_head leaf;
233 /* This array is valid if (pos | bits) > 0 (TNODE) */
234 struct key_vector __rcu *tnode[0];
235 };
236};
237
238struct tnode {
239 struct rcu_head rcu;
240 t_key empty_children; /* KEYLENGTH bits needed */
241 t_key full_children; /* KEYLENGTH bits needed */
242 struct key_vector __rcu *parent;
243 struct key_vector kv[1];
244#define tn_bits kv[0].bits
245};
246
247#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
248#define LEAF_SIZE TNODE_SIZE(1)
249
250#ifdef CONFIG_IP_FIB_TRIE_STATS
251struct trie_use_stats {
252 unsigned int gets;
253 unsigned int backtrack;
254 unsigned int semantic_match_passed;
255 unsigned int semantic_match_miss;
256 unsigned int null_node_hit;
257 unsigned int resize_node_skipped;
258};
259#endif
260
261struct trie_stat {
262 unsigned int totdepth;
263 unsigned int maxdepth;
264 unsigned int tnodes;
265 unsigned int leaves;
266 unsigned int nullpointers;
267 unsigned int prefixes;
268 unsigned int nodesizes[MAX_STAT_DEPTH];
269};
270
271struct trie {
272 struct key_vector kv[1];
273#ifdef CONFIG_IP_FIB_TRIE_STATS
274 struct trie_use_stats __percpu *stats;
275#endif
276};
277
278static struct key_vector *resize(struct trie *t, struct key_vector *tn);
279static size_t tnode_free_size;
280
281/*
282 * synchronize_rcu after call_rcu for that many pages; it should be especially
283 * useful before resizing the root node with PREEMPT_NONE configs; the value was
284 * obtained experimentally, aiming to avoid visible slowdown.
285 */
286static const int sync_pages = 128;
287
288static struct kmem_cache *fn_alias_kmem __read_mostly;
289static struct kmem_cache *trie_leaf_kmem __read_mostly;
290
291static inline struct tnode *tn_info(struct key_vector *kv)
292{
293 return container_of(kv, struct tnode, kv[0]);
294}
295
296/* caller must hold RTNL */
297#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
299
300/* caller must hold RCU read lock or RTNL */
301#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
303
304/* wrapper for rcu_assign_pointer */
305static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
306{
307 if (n)
308 rcu_assign_pointer(tn_info(n)->parent, tp);
309}
310
311#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
312
313/* This provides us with the number of children in this node, in the case of a
314 * leaf this will return 0 meaning none of the children are accessible.
315 */
316static inline unsigned long child_length(const struct key_vector *tn)
317{
318 return (1ul << tn->bits) & ~(1ul);
319}
320
321#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
322
323static inline unsigned long get_index(t_key key, struct key_vector *kv)
324{
325 unsigned long index = key ^ kv->key;
326
327 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
328 return 0;
329
330 return index >> kv->pos;
331}
332
333/* To understand this stuff, an understanding of keys and all their bits is
334 * necessary. Every node in the trie has a key associated with it, but not
335 * all of the bits in that key are significant.
336 *
337 * Consider a node 'n' and its parent 'tp'.
338 *
339 * If n is a leaf, every bit in its key is significant. Its presence is
340 * necessitated by path compression, since during a tree traversal (when
341 * searching for a leaf - unless we are doing an insertion) we will completely
342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343 * a potentially successful search, that we have indeed been walking the
344 * correct key path.
345 *
346 * Note that we can never "miss" the correct key in the tree if present by
347 * following the wrong path. Path compression ensures that segments of the key
348 * that are the same for all keys with a given prefix are skipped, but the
349 * skipped part *is* identical for each node in the subtrie below the skipped
350 * bit! trie_insert() in this implementation takes care of that.
351 *
352 * if n is an internal node - a 'tnode' here, the various parts of its key
353 * have many different meanings.
354 *
355 * Example:
356 * _________________________________________________________________
357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358 * -----------------------------------------------------------------
359 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
360 *
361 * _________________________________________________________________
362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363 * -----------------------------------------------------------------
364 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
365 *
366 * tp->pos = 22
367 * tp->bits = 3
368 * n->pos = 13
369 * n->bits = 4
370 *
371 * First, let's just ignore the bits that come before the parent tp, that is
372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373 * point we do not use them for anything.
374 *
375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376 * index into the parent's child array. That is, they will be used to find
377 * 'n' among tp's children.
378 *
379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
380 * for the node n.
381 *
382 * All the bits we have seen so far are significant to the node n. The rest
383 * of the bits are really not needed or indeed known in n->key.
384 *
385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386 * n's child array, and will of course be different for each child.
387 *
388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
389 * at this point.
390 */
391
392static const int halve_threshold = 25;
393static const int inflate_threshold = 50;
394static const int halve_threshold_root = 15;
395static const int inflate_threshold_root = 30;
396
397static void __alias_free_mem(struct rcu_head *head)
398{
399 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
400 kmem_cache_free(fn_alias_kmem, fa);
401}
402
403static inline void alias_free_mem_rcu(struct fib_alias *fa)
404{
405 call_rcu(&fa->rcu, __alias_free_mem);
406}
407
408#define TNODE_KMALLOC_MAX \
409 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410#define TNODE_VMALLOC_MAX \
411 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
412
413static void __node_free_rcu(struct rcu_head *head)
414{
415 struct tnode *n = container_of(head, struct tnode, rcu);
416
417 if (!n->tn_bits)
418 kmem_cache_free(trie_leaf_kmem, n);
419 else
420 kvfree(n);
421}
422
423#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
424
425static struct tnode *tnode_alloc(int bits)
426{
427 size_t size;
428
429 /* verify bits is within bounds */
430 if (bits > TNODE_VMALLOC_MAX)
431 return NULL;
432
433 /* determine size and verify it is non-zero and didn't overflow */
434 size = TNODE_SIZE(1ul << bits);
435
436 if (size <= PAGE_SIZE)
437 return kzalloc(size, GFP_KERNEL);
438 else
439 return vzalloc(size);
440}
441
442static inline void empty_child_inc(struct key_vector *n)
443{
444 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
445}
446
447static inline void empty_child_dec(struct key_vector *n)
448{
449 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
450}
451
452static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
453{
454 struct key_vector *l;
455 struct tnode *kv;
456
457 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
458 if (!kv)
459 return NULL;
460
461 /* initialize key vector */
462 l = kv->kv;
463 l->key = key;
464 l->pos = 0;
465 l->bits = 0;
466 l->slen = fa->fa_slen;
467
468 /* link leaf to fib alias */
469 INIT_HLIST_HEAD(&l->leaf);
470 hlist_add_head(&fa->fa_list, &l->leaf);
471
472 return l;
473}
474
475static struct key_vector *tnode_new(t_key key, int pos, int bits)
476{
477 unsigned int shift = pos + bits;
478 struct key_vector *tn;
479 struct tnode *tnode;
480
481 /* verify bits and pos their msb bits clear and values are valid */
482 BUG_ON(!bits || (shift > KEYLENGTH));
483
484 tnode = tnode_alloc(bits);
485 if (!tnode)
486 return NULL;
487
488 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
489 sizeof(struct key_vector *) << bits);
490
491 if (bits == KEYLENGTH)
492 tnode->full_children = 1;
493 else
494 tnode->empty_children = 1ul << bits;
495
496 tn = tnode->kv;
497 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
498 tn->pos = pos;
499 tn->bits = bits;
500 tn->slen = pos;
501
502 return tn;
503}
504
505/* Check whether a tnode 'n' is "full", i.e. it is an internal node
506 * and no bits are skipped. See discussion in dyntree paper p. 6
507 */
508static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
509{
510 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
511}
512
513/* Add a child at position i overwriting the old value.
514 * Update the value of full_children and empty_children.
515 */
516static void put_child(struct key_vector *tn, unsigned long i,
517 struct key_vector *n)
518{
519 struct key_vector *chi = get_child(tn, i);
520 int isfull, wasfull;
521
522 BUG_ON(i >= child_length(tn));
523
524 /* update emptyChildren, overflow into fullChildren */
525 if (!n && chi)
526 empty_child_inc(tn);
527 if (n && !chi)
528 empty_child_dec(tn);
529
530 /* update fullChildren */
531 wasfull = tnode_full(tn, chi);
532 isfull = tnode_full(tn, n);
533
534 if (wasfull && !isfull)
535 tn_info(tn)->full_children--;
536 else if (!wasfull && isfull)
537 tn_info(tn)->full_children++;
538
539 if (n && (tn->slen < n->slen))
540 tn->slen = n->slen;
541
542 rcu_assign_pointer(tn->tnode[i], n);
543}
544
545static void update_children(struct key_vector *tn)
546{
547 unsigned long i;
548
549 /* update all of the child parent pointers */
550 for (i = child_length(tn); i;) {
551 struct key_vector *inode = get_child(tn, --i);
552
553 if (!inode)
554 continue;
555
556 /* Either update the children of a tnode that
557 * already belongs to us or update the child
558 * to point to ourselves.
559 */
560 if (node_parent(inode) == tn)
561 update_children(inode);
562 else
563 node_set_parent(inode, tn);
564 }
565}
566
567static inline void put_child_root(struct key_vector *tp, t_key key,
568 struct key_vector *n)
569{
570 if (IS_TRIE(tp))
571 rcu_assign_pointer(tp->tnode[0], n);
572 else
573 put_child(tp, get_index(key, tp), n);
574}
575
576static inline void tnode_free_init(struct key_vector *tn)
577{
578 tn_info(tn)->rcu.next = NULL;
579}
580
581static inline void tnode_free_append(struct key_vector *tn,
582 struct key_vector *n)
583{
584 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
585 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
586}
587
588static void tnode_free(struct key_vector *tn)
589{
590 struct callback_head *head = &tn_info(tn)->rcu;
591
592 while (head) {
593 head = head->next;
594 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
595 node_free(tn);
596
597 tn = container_of(head, struct tnode, rcu)->kv;
598 }
599
600 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
601 tnode_free_size = 0;
602 synchronize_rcu();
603 }
604}
605
606static struct key_vector *replace(struct trie *t,
607 struct key_vector *oldtnode,
608 struct key_vector *tn)
609{
610 struct key_vector *tp = node_parent(oldtnode);
611 unsigned long i;
612
613 /* setup the parent pointer out of and back into this node */
614 NODE_INIT_PARENT(tn, tp);
615 put_child_root(tp, tn->key, tn);
616
617 /* update all of the child parent pointers */
618 update_children(tn);
619
620 /* all pointers should be clean so we are done */
621 tnode_free(oldtnode);
622
623 /* resize children now that oldtnode is freed */
624 for (i = child_length(tn); i;) {
625 struct key_vector *inode = get_child(tn, --i);
626
627 /* resize child node */
628 if (tnode_full(tn, inode))
629 tn = resize(t, inode);
630 }
631
632 return tp;
633}
634
635static struct key_vector *inflate(struct trie *t,
636 struct key_vector *oldtnode)
637{
638 struct key_vector *tn;
639 unsigned long i;
640 t_key m;
641
642 pr_debug("In inflate\n");
643
644 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
645 if (!tn)
646 goto notnode;
647
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
655 */
656 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
657 struct key_vector *inode = get_child(oldtnode, --i);
658 struct key_vector *node0, *node1;
659 unsigned long j, k;
660
661 /* An empty child */
662 if (!inode)
663 continue;
664
665 /* A leaf or an internal node with skipped bits */
666 if (!tnode_full(oldtnode, inode)) {
667 put_child(tn, get_index(inode->key, tn), inode);
668 continue;
669 }
670
671 /* drop the node in the old tnode free list */
672 tnode_free_append(oldtnode, inode);
673
674 /* An internal node with two children */
675 if (inode->bits == 1) {
676 put_child(tn, 2 * i + 1, get_child(inode, 1));
677 put_child(tn, 2 * i, get_child(inode, 0));
678 continue;
679 }
680
681 /* We will replace this node 'inode' with two new
682 * ones, 'node0' and 'node1', each with half of the
683 * original children. The two new nodes will have
684 * a position one bit further down the key and this
685 * means that the "significant" part of their keys
686 * (see the discussion near the top of this file)
687 * will differ by one bit, which will be "0" in
688 * node0's key and "1" in node1's key. Since we are
689 * moving the key position by one step, the bit that
690 * we are moving away from - the bit at position
691 * (tn->pos) - is the one that will differ between
692 * node0 and node1. So... we synthesize that bit in the
693 * two new keys.
694 */
695 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
696 if (!node1)
697 goto nomem;
698 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
699
700 tnode_free_append(tn, node1);
701 if (!node0)
702 goto nomem;
703 tnode_free_append(tn, node0);
704
705 /* populate child pointers in new nodes */
706 for (k = child_length(inode), j = k / 2; j;) {
707 put_child(node1, --j, get_child(inode, --k));
708 put_child(node0, j, get_child(inode, j));
709 put_child(node1, --j, get_child(inode, --k));
710 put_child(node0, j, get_child(inode, j));
711 }
712
713 /* link new nodes to parent */
714 NODE_INIT_PARENT(node1, tn);
715 NODE_INIT_PARENT(node0, tn);
716
717 /* link parent to nodes */
718 put_child(tn, 2 * i + 1, node1);
719 put_child(tn, 2 * i, node0);
720 }
721
722 /* setup the parent pointers into and out of this node */
723 return replace(t, oldtnode, tn);
724nomem:
725 /* all pointers should be clean so we are done */
726 tnode_free(tn);
727notnode:
728 return NULL;
729}
730
731static struct key_vector *halve(struct trie *t,
732 struct key_vector *oldtnode)
733{
734 struct key_vector *tn;
735 unsigned long i;
736
737 pr_debug("In halve\n");
738
739 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
740 if (!tn)
741 goto notnode;
742
743 /* prepare oldtnode to be freed */
744 tnode_free_init(oldtnode);
745
746 /* Assemble all of the pointers in our cluster, in this case that
747 * represents all of the pointers out of our allocated nodes that
748 * point to existing tnodes and the links between our allocated
749 * nodes.
750 */
751 for (i = child_length(oldtnode); i;) {
752 struct key_vector *node1 = get_child(oldtnode, --i);
753 struct key_vector *node0 = get_child(oldtnode, --i);
754 struct key_vector *inode;
755
756 /* At least one of the children is empty */
757 if (!node1 || !node0) {
758 put_child(tn, i / 2, node1 ? : node0);
759 continue;
760 }
761
762 /* Two nonempty children */
763 inode = tnode_new(node0->key, oldtnode->pos, 1);
764 if (!inode)
765 goto nomem;
766 tnode_free_append(tn, inode);
767
768 /* initialize pointers out of node */
769 put_child(inode, 1, node1);
770 put_child(inode, 0, node0);
771 NODE_INIT_PARENT(inode, tn);
772
773 /* link parent to node */
774 put_child(tn, i / 2, inode);
775 }
776
777 /* setup the parent pointers into and out of this node */
778 return replace(t, oldtnode, tn);
779nomem:
780 /* all pointers should be clean so we are done */
781 tnode_free(tn);
782notnode:
783 return NULL;
784}
785
786static struct key_vector *collapse(struct trie *t,
787 struct key_vector *oldtnode)
788{
789 struct key_vector *n, *tp;
790 unsigned long i;
791
792 /* scan the tnode looking for that one child that might still exist */
793 for (n = NULL, i = child_length(oldtnode); !n && i;)
794 n = get_child(oldtnode, --i);
795
796 /* compress one level */
797 tp = node_parent(oldtnode);
798 put_child_root(tp, oldtnode->key, n);
799 node_set_parent(n, tp);
800
801 /* drop dead node */
802 node_free(oldtnode);
803
804 return tp;
805}
806
807static unsigned char update_suffix(struct key_vector *tn)
808{
809 unsigned char slen = tn->pos;
810 unsigned long stride, i;
811 unsigned char slen_max;
812
813 /* only vector 0 can have a suffix length greater than or equal to
814 * tn->pos + tn->bits, the second highest node will have a suffix
815 * length at most of tn->pos + tn->bits - 1
816 */
817 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
818
819 /* search though the list of children looking for nodes that might
820 * have a suffix greater than the one we currently have. This is
821 * why we start with a stride of 2 since a stride of 1 would
822 * represent the nodes with suffix length equal to tn->pos
823 */
824 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
825 struct key_vector *n = get_child(tn, i);
826
827 if (!n || (n->slen <= slen))
828 continue;
829
830 /* update stride and slen based on new value */
831 stride <<= (n->slen - slen);
832 slen = n->slen;
833 i &= ~(stride - 1);
834
835 /* stop searching if we have hit the maximum possible value */
836 if (slen >= slen_max)
837 break;
838 }
839
840 tn->slen = slen;
841
842 return slen;
843}
844
845/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
846 * the Helsinki University of Technology and Matti Tikkanen of Nokia
847 * Telecommunications, page 6:
848 * "A node is doubled if the ratio of non-empty children to all
849 * children in the *doubled* node is at least 'high'."
850 *
851 * 'high' in this instance is the variable 'inflate_threshold'. It
852 * is expressed as a percentage, so we multiply it with
853 * child_length() and instead of multiplying by 2 (since the
854 * child array will be doubled by inflate()) and multiplying
855 * the left-hand side by 100 (to handle the percentage thing) we
856 * multiply the left-hand side by 50.
857 *
858 * The left-hand side may look a bit weird: child_length(tn)
859 * - tn->empty_children is of course the number of non-null children
860 * in the current node. tn->full_children is the number of "full"
861 * children, that is non-null tnodes with a skip value of 0.
862 * All of those will be doubled in the resulting inflated tnode, so
863 * we just count them one extra time here.
864 *
865 * A clearer way to write this would be:
866 *
867 * to_be_doubled = tn->full_children;
868 * not_to_be_doubled = child_length(tn) - tn->empty_children -
869 * tn->full_children;
870 *
871 * new_child_length = child_length(tn) * 2;
872 *
873 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
874 * new_child_length;
875 * if (new_fill_factor >= inflate_threshold)
876 *
877 * ...and so on, tho it would mess up the while () loop.
878 *
879 * anyway,
880 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
881 * inflate_threshold
882 *
883 * avoid a division:
884 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
885 * inflate_threshold * new_child_length
886 *
887 * expand not_to_be_doubled and to_be_doubled, and shorten:
888 * 100 * (child_length(tn) - tn->empty_children +
889 * tn->full_children) >= inflate_threshold * new_child_length
890 *
891 * expand new_child_length:
892 * 100 * (child_length(tn) - tn->empty_children +
893 * tn->full_children) >=
894 * inflate_threshold * child_length(tn) * 2
895 *
896 * shorten again:
897 * 50 * (tn->full_children + child_length(tn) -
898 * tn->empty_children) >= inflate_threshold *
899 * child_length(tn)
900 *
901 */
902static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
903{
904 unsigned long used = child_length(tn);
905 unsigned long threshold = used;
906
907 /* Keep root node larger */
908 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
909 used -= tn_info(tn)->empty_children;
910 used += tn_info(tn)->full_children;
911
912 /* if bits == KEYLENGTH then pos = 0, and will fail below */
913
914 return (used > 1) && tn->pos && ((50 * used) >= threshold);
915}
916
917static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
918{
919 unsigned long used = child_length(tn);
920 unsigned long threshold = used;
921
922 /* Keep root node larger */
923 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
924 used -= tn_info(tn)->empty_children;
925
926 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
927
928 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
929}
930
931static inline bool should_collapse(struct key_vector *tn)
932{
933 unsigned long used = child_length(tn);
934
935 used -= tn_info(tn)->empty_children;
936
937 /* account for bits == KEYLENGTH case */
938 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
939 used -= KEY_MAX;
940
941 /* One child or none, time to drop us from the trie */
942 return used < 2;
943}
944
945#define MAX_WORK 10
946static struct key_vector *resize(struct trie *t, struct key_vector *tn)
947{
948#ifdef CONFIG_IP_FIB_TRIE_STATS
949 struct trie_use_stats __percpu *stats = t->stats;
950#endif
951 struct key_vector *tp = node_parent(tn);
952 unsigned long cindex = get_index(tn->key, tp);
953 int max_work = MAX_WORK;
954
955 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
956 tn, inflate_threshold, halve_threshold);
957
958 /* track the tnode via the pointer from the parent instead of
959 * doing it ourselves. This way we can let RCU fully do its
960 * thing without us interfering
961 */
962 BUG_ON(tn != get_child(tp, cindex));
963
964 /* Double as long as the resulting node has a number of
965 * nonempty nodes that are above the threshold.
966 */
967 while (should_inflate(tp, tn) && max_work) {
968 tp = inflate(t, tn);
969 if (!tp) {
970#ifdef CONFIG_IP_FIB_TRIE_STATS
971 this_cpu_inc(stats->resize_node_skipped);
972#endif
973 break;
974 }
975
976 max_work--;
977 tn = get_child(tp, cindex);
978 }
979
980 /* update parent in case inflate failed */
981 tp = node_parent(tn);
982
983 /* Return if at least one inflate is run */
984 if (max_work != MAX_WORK)
985 return tp;
986
987 /* Halve as long as the number of empty children in this
988 * node is above threshold.
989 */
990 while (should_halve(tp, tn) && max_work) {
991 tp = halve(t, tn);
992 if (!tp) {
993#ifdef CONFIG_IP_FIB_TRIE_STATS
994 this_cpu_inc(stats->resize_node_skipped);
995#endif
996 break;
997 }
998
999 max_work--;
1000 tn = get_child(tp, cindex);
1001 }
1002
1003 /* Only one child remains */
1004 if (should_collapse(tn))
1005 return collapse(t, tn);
1006
1007 /* update parent in case halve failed */
1008 return node_parent(tn);
1009}
1010
1011static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1012{
1013 unsigned char node_slen = tn->slen;
1014
1015 while ((node_slen > tn->pos) && (node_slen > slen)) {
1016 slen = update_suffix(tn);
1017 if (node_slen == slen)
1018 break;
1019
1020 tn = node_parent(tn);
1021 node_slen = tn->slen;
1022 }
1023}
1024
1025static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1026{
1027 while (tn->slen < slen) {
1028 tn->slen = slen;
1029 tn = node_parent(tn);
1030 }
1031}
1032
1033/* rcu_read_lock needs to be hold by caller from readside */
1034static struct key_vector *fib_find_node(struct trie *t,
1035 struct key_vector **tp, u32 key)
1036{
1037 struct key_vector *pn, *n = t->kv;
1038 unsigned long index = 0;
1039
1040 do {
1041 pn = n;
1042 n = get_child_rcu(n, index);
1043
1044 if (!n)
1045 break;
1046
1047 index = get_cindex(key, n);
1048
1049 /* This bit of code is a bit tricky but it combines multiple
1050 * checks into a single check. The prefix consists of the
1051 * prefix plus zeros for the bits in the cindex. The index
1052 * is the difference between the key and this value. From
1053 * this we can actually derive several pieces of data.
1054 * if (index >= (1ul << bits))
1055 * we have a mismatch in skip bits and failed
1056 * else
1057 * we know the value is cindex
1058 *
1059 * This check is safe even if bits == KEYLENGTH due to the
1060 * fact that we can only allocate a node with 32 bits if a
1061 * long is greater than 32 bits.
1062 */
1063 if (index >= (1ul << n->bits)) {
1064 n = NULL;
1065 break;
1066 }
1067
1068 /* keep searching until we find a perfect match leaf or NULL */
1069 } while (IS_TNODE(n));
1070
1071 *tp = pn;
1072
1073 return n;
1074}
1075
1076/* Return the first fib alias matching TOS with
1077 * priority less than or equal to PRIO.
1078 */
1079static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1080 u8 tos, u32 prio, u32 tb_id)
1081{
1082 struct fib_alias *fa;
1083
1084 if (!fah)
1085 return NULL;
1086
1087 hlist_for_each_entry(fa, fah, fa_list) {
1088 if (fa->fa_slen < slen)
1089 continue;
1090 if (fa->fa_slen != slen)
1091 break;
1092 if (fa->tb_id > tb_id)
1093 continue;
1094 if (fa->tb_id != tb_id)
1095 break;
1096 if (fa->fa_tos > tos)
1097 continue;
1098 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099 return fa;
1100 }
1101
1102 return NULL;
1103}
1104
1105static void trie_rebalance(struct trie *t, struct key_vector *tn)
1106{
1107 while (!IS_TRIE(tn))
1108 tn = resize(t, tn);
1109}
1110
1111static int fib_insert_node(struct trie *t, struct key_vector *tp,
1112 struct fib_alias *new, t_key key)
1113{
1114 struct key_vector *n, *l;
1115
1116 l = leaf_new(key, new);
1117 if (!l)
1118 goto noleaf;
1119
1120 /* retrieve child from parent node */
1121 n = get_child(tp, get_index(key, tp));
1122
1123 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1124 *
1125 * Add a new tnode here
1126 * first tnode need some special handling
1127 * leaves us in position for handling as case 3
1128 */
1129 if (n) {
1130 struct key_vector *tn;
1131
1132 tn = tnode_new(key, __fls(key ^ n->key), 1);
1133 if (!tn)
1134 goto notnode;
1135
1136 /* initialize routes out of node */
1137 NODE_INIT_PARENT(tn, tp);
1138 put_child(tn, get_index(key, tn) ^ 1, n);
1139
1140 /* start adding routes into the node */
1141 put_child_root(tp, key, tn);
1142 node_set_parent(n, tn);
1143
1144 /* parent now has a NULL spot where the leaf can go */
1145 tp = tn;
1146 }
1147
1148 /* Case 3: n is NULL, and will just insert a new leaf */
1149 node_push_suffix(tp, new->fa_slen);
1150 NODE_INIT_PARENT(l, tp);
1151 put_child_root(tp, key, l);
1152 trie_rebalance(t, tp);
1153
1154 return 0;
1155notnode:
1156 node_free(l);
1157noleaf:
1158 return -ENOMEM;
1159}
1160
1161static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1162 struct key_vector *l, struct fib_alias *new,
1163 struct fib_alias *fa, t_key key)
1164{
1165 if (!l)
1166 return fib_insert_node(t, tp, new, key);
1167
1168 if (fa) {
1169 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1170 } else {
1171 struct fib_alias *last;
1172
1173 hlist_for_each_entry(last, &l->leaf, fa_list) {
1174 if (new->fa_slen < last->fa_slen)
1175 break;
1176 if ((new->fa_slen == last->fa_slen) &&
1177 (new->tb_id > last->tb_id))
1178 break;
1179 fa = last;
1180 }
1181
1182 if (fa)
1183 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1184 else
1185 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1186 }
1187
1188 /* if we added to the tail node then we need to update slen */
1189 if (l->slen < new->fa_slen) {
1190 l->slen = new->fa_slen;
1191 node_push_suffix(tp, new->fa_slen);
1192 }
1193
1194 return 0;
1195}
1196
1197/* Caller must hold RTNL. */
1198int fib_table_insert(struct net *net, struct fib_table *tb,
1199 struct fib_config *cfg)
1200{
1201 struct trie *t = (struct trie *)tb->tb_data;
1202 struct fib_alias *fa, *new_fa;
1203 struct key_vector *l, *tp;
1204 u16 nlflags = NLM_F_EXCL;
1205 struct fib_info *fi;
1206 u8 plen = cfg->fc_dst_len;
1207 u8 slen = KEYLENGTH - plen;
1208 u8 tos = cfg->fc_tos;
1209 u32 key;
1210 int err;
1211
1212 if (plen > KEYLENGTH)
1213 return -EINVAL;
1214
1215 key = ntohl(cfg->fc_dst);
1216
1217 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1218
1219 if ((plen < KEYLENGTH) && (key << plen))
1220 return -EINVAL;
1221
1222 fi = fib_create_info(cfg);
1223 if (IS_ERR(fi)) {
1224 err = PTR_ERR(fi);
1225 goto err;
1226 }
1227
1228 l = fib_find_node(t, &tp, key);
1229 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1230 tb->tb_id) : NULL;
1231
1232 /* Now fa, if non-NULL, points to the first fib alias
1233 * with the same keys [prefix,tos,priority], if such key already
1234 * exists or to the node before which we will insert new one.
1235 *
1236 * If fa is NULL, we will need to allocate a new one and
1237 * insert to the tail of the section matching the suffix length
1238 * of the new alias.
1239 */
1240
1241 if (fa && fa->fa_tos == tos &&
1242 fa->fa_info->fib_priority == fi->fib_priority) {
1243 struct fib_alias *fa_first, *fa_match;
1244
1245 err = -EEXIST;
1246 if (cfg->fc_nlflags & NLM_F_EXCL)
1247 goto out;
1248
1249 nlflags &= ~NLM_F_EXCL;
1250
1251 /* We have 2 goals:
1252 * 1. Find exact match for type, scope, fib_info to avoid
1253 * duplicate routes
1254 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1255 */
1256 fa_match = NULL;
1257 fa_first = fa;
1258 hlist_for_each_entry_from(fa, fa_list) {
1259 if ((fa->fa_slen != slen) ||
1260 (fa->tb_id != tb->tb_id) ||
1261 (fa->fa_tos != tos))
1262 break;
1263 if (fa->fa_info->fib_priority != fi->fib_priority)
1264 break;
1265 if (fa->fa_type == cfg->fc_type &&
1266 fa->fa_info == fi) {
1267 fa_match = fa;
1268 break;
1269 }
1270 }
1271
1272 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1273 struct fib_info *fi_drop;
1274 u8 state;
1275
1276 nlflags |= NLM_F_REPLACE;
1277 fa = fa_first;
1278 if (fa_match) {
1279 if (fa == fa_match)
1280 err = 0;
1281 goto out;
1282 }
1283 err = -ENOBUFS;
1284 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1285 if (!new_fa)
1286 goto out;
1287
1288 fi_drop = fa->fa_info;
1289 new_fa->fa_tos = fa->fa_tos;
1290 new_fa->fa_info = fi;
1291 new_fa->fa_type = cfg->fc_type;
1292 state = fa->fa_state;
1293 new_fa->fa_state = state & ~FA_S_ACCESSED;
1294 new_fa->fa_slen = fa->fa_slen;
1295 new_fa->tb_id = tb->tb_id;
1296 new_fa->fa_default = -1;
1297
1298 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1299
1300 alias_free_mem_rcu(fa);
1301
1302 fib_release_info(fi_drop);
1303 if (state & FA_S_ACCESSED)
1304 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1305
1306 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1307 key, plen, fi,
1308 new_fa->fa_tos, cfg->fc_type,
1309 tb->tb_id, cfg->fc_nlflags);
1310 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1311 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1312
1313 goto succeeded;
1314 }
1315 /* Error if we find a perfect match which
1316 * uses the same scope, type, and nexthop
1317 * information.
1318 */
1319 if (fa_match)
1320 goto out;
1321
1322 if (cfg->fc_nlflags & NLM_F_APPEND)
1323 nlflags |= NLM_F_APPEND;
1324 else
1325 fa = fa_first;
1326 }
1327 err = -ENOENT;
1328 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1329 goto out;
1330
1331 nlflags |= NLM_F_CREATE;
1332 err = -ENOBUFS;
1333 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1334 if (!new_fa)
1335 goto out;
1336
1337 new_fa->fa_info = fi;
1338 new_fa->fa_tos = tos;
1339 new_fa->fa_type = cfg->fc_type;
1340 new_fa->fa_state = 0;
1341 new_fa->fa_slen = slen;
1342 new_fa->tb_id = tb->tb_id;
1343 new_fa->fa_default = -1;
1344
1345 /* Insert new entry to the list. */
1346 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1347 if (err)
1348 goto out_free_new_fa;
1349
1350 if (!plen)
1351 tb->tb_num_default++;
1352
1353 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1355 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1356 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1357 &cfg->fc_nlinfo, nlflags);
1358succeeded:
1359 return 0;
1360
1361out_free_new_fa:
1362 kmem_cache_free(fn_alias_kmem, new_fa);
1363out:
1364 fib_release_info(fi);
1365err:
1366 return err;
1367}
1368
1369static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1370{
1371 t_key prefix = n->key;
1372
1373 return (key ^ prefix) & (prefix | -prefix);
1374}
1375
1376/* should be called with rcu_read_lock */
1377int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1378 struct fib_result *res, int fib_flags)
1379{
1380 struct trie *t = (struct trie *) tb->tb_data;
1381#ifdef CONFIG_IP_FIB_TRIE_STATS
1382 struct trie_use_stats __percpu *stats = t->stats;
1383#endif
1384 const t_key key = ntohl(flp->daddr);
1385 struct key_vector *n, *pn;
1386 struct fib_alias *fa;
1387 unsigned long index;
1388 t_key cindex;
1389
1390 trace_fib_table_lookup(tb->tb_id, flp);
1391
1392 pn = t->kv;
1393 cindex = 0;
1394
1395 n = get_child_rcu(pn, cindex);
1396 if (!n)
1397 return -EAGAIN;
1398
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400 this_cpu_inc(stats->gets);
1401#endif
1402
1403 /* Step 1: Travel to the longest prefix match in the trie */
1404 for (;;) {
1405 index = get_cindex(key, n);
1406
1407 /* This bit of code is a bit tricky but it combines multiple
1408 * checks into a single check. The prefix consists of the
1409 * prefix plus zeros for the "bits" in the prefix. The index
1410 * is the difference between the key and this value. From
1411 * this we can actually derive several pieces of data.
1412 * if (index >= (1ul << bits))
1413 * we have a mismatch in skip bits and failed
1414 * else
1415 * we know the value is cindex
1416 *
1417 * This check is safe even if bits == KEYLENGTH due to the
1418 * fact that we can only allocate a node with 32 bits if a
1419 * long is greater than 32 bits.
1420 */
1421 if (index >= (1ul << n->bits))
1422 break;
1423
1424 /* we have found a leaf. Prefixes have already been compared */
1425 if (IS_LEAF(n))
1426 goto found;
1427
1428 /* only record pn and cindex if we are going to be chopping
1429 * bits later. Otherwise we are just wasting cycles.
1430 */
1431 if (n->slen > n->pos) {
1432 pn = n;
1433 cindex = index;
1434 }
1435
1436 n = get_child_rcu(n, index);
1437 if (unlikely(!n))
1438 goto backtrace;
1439 }
1440
1441 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1442 for (;;) {
1443 /* record the pointer where our next node pointer is stored */
1444 struct key_vector __rcu **cptr = n->tnode;
1445
1446 /* This test verifies that none of the bits that differ
1447 * between the key and the prefix exist in the region of
1448 * the lsb and higher in the prefix.
1449 */
1450 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1451 goto backtrace;
1452
1453 /* exit out and process leaf */
1454 if (unlikely(IS_LEAF(n)))
1455 break;
1456
1457 /* Don't bother recording parent info. Since we are in
1458 * prefix match mode we will have to come back to wherever
1459 * we started this traversal anyway
1460 */
1461
1462 while ((n = rcu_dereference(*cptr)) == NULL) {
1463backtrace:
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465 if (!n)
1466 this_cpu_inc(stats->null_node_hit);
1467#endif
1468 /* If we are at cindex 0 there are no more bits for
1469 * us to strip at this level so we must ascend back
1470 * up one level to see if there are any more bits to
1471 * be stripped there.
1472 */
1473 while (!cindex) {
1474 t_key pkey = pn->key;
1475
1476 /* If we don't have a parent then there is
1477 * nothing for us to do as we do not have any
1478 * further nodes to parse.
1479 */
1480 if (IS_TRIE(pn))
1481 return -EAGAIN;
1482#ifdef CONFIG_IP_FIB_TRIE_STATS
1483 this_cpu_inc(stats->backtrack);
1484#endif
1485 /* Get Child's index */
1486 pn = node_parent_rcu(pn);
1487 cindex = get_index(pkey, pn);
1488 }
1489
1490 /* strip the least significant bit from the cindex */
1491 cindex &= cindex - 1;
1492
1493 /* grab pointer for next child node */
1494 cptr = &pn->tnode[cindex];
1495 }
1496 }
1497
1498found:
1499 /* this line carries forward the xor from earlier in the function */
1500 index = key ^ n->key;
1501
1502 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1503 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1504 struct fib_info *fi = fa->fa_info;
1505 int nhsel, err;
1506
1507 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1508 if (index >= (1ul << fa->fa_slen))
1509 continue;
1510 }
1511 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1512 continue;
1513 if (fi->fib_dead)
1514 continue;
1515 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1516 continue;
1517 fib_alias_accessed(fa);
1518 err = fib_props[fa->fa_type].error;
1519 if (unlikely(err < 0)) {
1520#ifdef CONFIG_IP_FIB_TRIE_STATS
1521 this_cpu_inc(stats->semantic_match_passed);
1522#endif
1523 return err;
1524 }
1525 if (fi->fib_flags & RTNH_F_DEAD)
1526 continue;
1527 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1528 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1529 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1530
1531 if (nh->nh_flags & RTNH_F_DEAD)
1532 continue;
1533 if (in_dev &&
1534 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1535 nh->nh_flags & RTNH_F_LINKDOWN &&
1536 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1537 continue;
1538 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1539 if (flp->flowi4_oif &&
1540 flp->flowi4_oif != nh->nh_oif)
1541 continue;
1542 }
1543
1544 if (!(fib_flags & FIB_LOOKUP_NOREF))
1545 atomic_inc(&fi->fib_clntref);
1546
1547 res->prefixlen = KEYLENGTH - fa->fa_slen;
1548 res->nh_sel = nhsel;
1549 res->type = fa->fa_type;
1550 res->scope = fi->fib_scope;
1551 res->fi = fi;
1552 res->table = tb;
1553 res->fa_head = &n->leaf;
1554#ifdef CONFIG_IP_FIB_TRIE_STATS
1555 this_cpu_inc(stats->semantic_match_passed);
1556#endif
1557 trace_fib_table_lookup_nh(nh);
1558
1559 return err;
1560 }
1561 }
1562#ifdef CONFIG_IP_FIB_TRIE_STATS
1563 this_cpu_inc(stats->semantic_match_miss);
1564#endif
1565 goto backtrace;
1566}
1567EXPORT_SYMBOL_GPL(fib_table_lookup);
1568
1569static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1570 struct key_vector *l, struct fib_alias *old)
1571{
1572 /* record the location of the previous list_info entry */
1573 struct hlist_node **pprev = old->fa_list.pprev;
1574 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1575
1576 /* remove the fib_alias from the list */
1577 hlist_del_rcu(&old->fa_list);
1578
1579 /* if we emptied the list this leaf will be freed and we can sort
1580 * out parent suffix lengths as a part of trie_rebalance
1581 */
1582 if (hlist_empty(&l->leaf)) {
1583 if (tp->slen == l->slen)
1584 node_pull_suffix(tp, tp->pos);
1585 put_child_root(tp, l->key, NULL);
1586 node_free(l);
1587 trie_rebalance(t, tp);
1588 return;
1589 }
1590
1591 /* only access fa if it is pointing at the last valid hlist_node */
1592 if (*pprev)
1593 return;
1594
1595 /* update the trie with the latest suffix length */
1596 l->slen = fa->fa_slen;
1597 node_pull_suffix(tp, fa->fa_slen);
1598}
1599
1600/* Caller must hold RTNL. */
1601int fib_table_delete(struct net *net, struct fib_table *tb,
1602 struct fib_config *cfg)
1603{
1604 struct trie *t = (struct trie *) tb->tb_data;
1605 struct fib_alias *fa, *fa_to_delete;
1606 struct key_vector *l, *tp;
1607 u8 plen = cfg->fc_dst_len;
1608 u8 slen = KEYLENGTH - plen;
1609 u8 tos = cfg->fc_tos;
1610 u32 key;
1611
1612 if (plen > KEYLENGTH)
1613 return -EINVAL;
1614
1615 key = ntohl(cfg->fc_dst);
1616
1617 if ((plen < KEYLENGTH) && (key << plen))
1618 return -EINVAL;
1619
1620 l = fib_find_node(t, &tp, key);
1621 if (!l)
1622 return -ESRCH;
1623
1624 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1625 if (!fa)
1626 return -ESRCH;
1627
1628 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1629
1630 fa_to_delete = NULL;
1631 hlist_for_each_entry_from(fa, fa_list) {
1632 struct fib_info *fi = fa->fa_info;
1633
1634 if ((fa->fa_slen != slen) ||
1635 (fa->tb_id != tb->tb_id) ||
1636 (fa->fa_tos != tos))
1637 break;
1638
1639 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1641 fa->fa_info->fib_scope == cfg->fc_scope) &&
1642 (!cfg->fc_prefsrc ||
1643 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1644 (!cfg->fc_protocol ||
1645 fi->fib_protocol == cfg->fc_protocol) &&
1646 fib_nh_match(cfg, fi) == 0) {
1647 fa_to_delete = fa;
1648 break;
1649 }
1650 }
1651
1652 if (!fa_to_delete)
1653 return -ESRCH;
1654
1655 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1656 fa_to_delete->fa_info, tos, cfg->fc_type,
1657 tb->tb_id, 0);
1658 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1659 &cfg->fc_nlinfo, 0);
1660
1661 if (!plen)
1662 tb->tb_num_default--;
1663
1664 fib_remove_alias(t, tp, l, fa_to_delete);
1665
1666 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1667 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1668
1669 fib_release_info(fa_to_delete->fa_info);
1670 alias_free_mem_rcu(fa_to_delete);
1671 return 0;
1672}
1673
1674/* Scan for the next leaf starting at the provided key value */
1675static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1676{
1677 struct key_vector *pn, *n = *tn;
1678 unsigned long cindex;
1679
1680 /* this loop is meant to try and find the key in the trie */
1681 do {
1682 /* record parent and next child index */
1683 pn = n;
1684 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1685
1686 if (cindex >> pn->bits)
1687 break;
1688
1689 /* descend into the next child */
1690 n = get_child_rcu(pn, cindex++);
1691 if (!n)
1692 break;
1693
1694 /* guarantee forward progress on the keys */
1695 if (IS_LEAF(n) && (n->key >= key))
1696 goto found;
1697 } while (IS_TNODE(n));
1698
1699 /* this loop will search for the next leaf with a greater key */
1700 while (!IS_TRIE(pn)) {
1701 /* if we exhausted the parent node we will need to climb */
1702 if (cindex >= (1ul << pn->bits)) {
1703 t_key pkey = pn->key;
1704
1705 pn = node_parent_rcu(pn);
1706 cindex = get_index(pkey, pn) + 1;
1707 continue;
1708 }
1709
1710 /* grab the next available node */
1711 n = get_child_rcu(pn, cindex++);
1712 if (!n)
1713 continue;
1714
1715 /* no need to compare keys since we bumped the index */
1716 if (IS_LEAF(n))
1717 goto found;
1718
1719 /* Rescan start scanning in new node */
1720 pn = n;
1721 cindex = 0;
1722 }
1723
1724 *tn = pn;
1725 return NULL; /* Root of trie */
1726found:
1727 /* if we are at the limit for keys just return NULL for the tnode */
1728 *tn = pn;
1729 return n;
1730}
1731
1732static void fib_trie_free(struct fib_table *tb)
1733{
1734 struct trie *t = (struct trie *)tb->tb_data;
1735 struct key_vector *pn = t->kv;
1736 unsigned long cindex = 1;
1737 struct hlist_node *tmp;
1738 struct fib_alias *fa;
1739
1740 /* walk trie in reverse order and free everything */
1741 for (;;) {
1742 struct key_vector *n;
1743
1744 if (!(cindex--)) {
1745 t_key pkey = pn->key;
1746
1747 if (IS_TRIE(pn))
1748 break;
1749
1750 n = pn;
1751 pn = node_parent(pn);
1752
1753 /* drop emptied tnode */
1754 put_child_root(pn, n->key, NULL);
1755 node_free(n);
1756
1757 cindex = get_index(pkey, pn);
1758
1759 continue;
1760 }
1761
1762 /* grab the next available node */
1763 n = get_child(pn, cindex);
1764 if (!n)
1765 continue;
1766
1767 if (IS_TNODE(n)) {
1768 /* record pn and cindex for leaf walking */
1769 pn = n;
1770 cindex = 1ul << n->bits;
1771
1772 continue;
1773 }
1774
1775 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776 hlist_del_rcu(&fa->fa_list);
1777 alias_free_mem_rcu(fa);
1778 }
1779
1780 put_child_root(pn, n->key, NULL);
1781 node_free(n);
1782 }
1783
1784#ifdef CONFIG_IP_FIB_TRIE_STATS
1785 free_percpu(t->stats);
1786#endif
1787 kfree(tb);
1788}
1789
1790struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1791{
1792 struct trie *ot = (struct trie *)oldtb->tb_data;
1793 struct key_vector *l, *tp = ot->kv;
1794 struct fib_table *local_tb;
1795 struct fib_alias *fa;
1796 struct trie *lt;
1797 t_key key = 0;
1798
1799 if (oldtb->tb_data == oldtb->__data)
1800 return oldtb;
1801
1802 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1803 if (!local_tb)
1804 return NULL;
1805
1806 lt = (struct trie *)local_tb->tb_data;
1807
1808 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1809 struct key_vector *local_l = NULL, *local_tp;
1810
1811 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1812 struct fib_alias *new_fa;
1813
1814 if (local_tb->tb_id != fa->tb_id)
1815 continue;
1816
1817 /* clone fa for new local table */
1818 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1819 if (!new_fa)
1820 goto out;
1821
1822 memcpy(new_fa, fa, sizeof(*fa));
1823
1824 /* insert clone into table */
1825 if (!local_l)
1826 local_l = fib_find_node(lt, &local_tp, l->key);
1827
1828 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1829 NULL, l->key)) {
1830 kmem_cache_free(fn_alias_kmem, new_fa);
1831 goto out;
1832 }
1833 }
1834
1835 /* stop loop if key wrapped back to 0 */
1836 key = l->key + 1;
1837 if (key < l->key)
1838 break;
1839 }
1840
1841 return local_tb;
1842out:
1843 fib_trie_free(local_tb);
1844
1845 return NULL;
1846}
1847
1848/* Caller must hold RTNL */
1849void fib_table_flush_external(struct fib_table *tb)
1850{
1851 struct trie *t = (struct trie *)tb->tb_data;
1852 struct key_vector *pn = t->kv;
1853 unsigned long cindex = 1;
1854 struct hlist_node *tmp;
1855 struct fib_alias *fa;
1856
1857 /* walk trie in reverse order */
1858 for (;;) {
1859 unsigned char slen = 0;
1860 struct key_vector *n;
1861
1862 if (!(cindex--)) {
1863 t_key pkey = pn->key;
1864
1865 /* cannot resize the trie vector */
1866 if (IS_TRIE(pn))
1867 break;
1868
1869 /* update the suffix to address pulled leaves */
1870 if (pn->slen > pn->pos)
1871 update_suffix(pn);
1872
1873 /* resize completed node */
1874 pn = resize(t, pn);
1875 cindex = get_index(pkey, pn);
1876
1877 continue;
1878 }
1879
1880 /* grab the next available node */
1881 n = get_child(pn, cindex);
1882 if (!n)
1883 continue;
1884
1885 if (IS_TNODE(n)) {
1886 /* record pn and cindex for leaf walking */
1887 pn = n;
1888 cindex = 1ul << n->bits;
1889
1890 continue;
1891 }
1892
1893 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894 /* if alias was cloned to local then we just
1895 * need to remove the local copy from main
1896 */
1897 if (tb->tb_id != fa->tb_id) {
1898 hlist_del_rcu(&fa->fa_list);
1899 alias_free_mem_rcu(fa);
1900 continue;
1901 }
1902
1903 /* record local slen */
1904 slen = fa->fa_slen;
1905 }
1906
1907 /* update leaf slen */
1908 n->slen = slen;
1909
1910 if (hlist_empty(&n->leaf)) {
1911 put_child_root(pn, n->key, NULL);
1912 node_free(n);
1913 }
1914 }
1915}
1916
1917/* Caller must hold RTNL. */
1918int fib_table_flush(struct net *net, struct fib_table *tb)
1919{
1920 struct trie *t = (struct trie *)tb->tb_data;
1921 struct key_vector *pn = t->kv;
1922 unsigned long cindex = 1;
1923 struct hlist_node *tmp;
1924 struct fib_alias *fa;
1925 int found = 0;
1926
1927 /* walk trie in reverse order */
1928 for (;;) {
1929 unsigned char slen = 0;
1930 struct key_vector *n;
1931
1932 if (!(cindex--)) {
1933 t_key pkey = pn->key;
1934
1935 /* cannot resize the trie vector */
1936 if (IS_TRIE(pn))
1937 break;
1938
1939 /* update the suffix to address pulled leaves */
1940 if (pn->slen > pn->pos)
1941 update_suffix(pn);
1942
1943 /* resize completed node */
1944 pn = resize(t, pn);
1945 cindex = get_index(pkey, pn);
1946
1947 continue;
1948 }
1949
1950 /* grab the next available node */
1951 n = get_child(pn, cindex);
1952 if (!n)
1953 continue;
1954
1955 if (IS_TNODE(n)) {
1956 /* record pn and cindex for leaf walking */
1957 pn = n;
1958 cindex = 1ul << n->bits;
1959
1960 continue;
1961 }
1962
1963 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1964 struct fib_info *fi = fa->fa_info;
1965
1966 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1967 slen = fa->fa_slen;
1968 continue;
1969 }
1970
1971 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1972 n->key,
1973 KEYLENGTH - fa->fa_slen,
1974 fi, fa->fa_tos, fa->fa_type,
1975 tb->tb_id, 0);
1976 hlist_del_rcu(&fa->fa_list);
1977 fib_release_info(fa->fa_info);
1978 alias_free_mem_rcu(fa);
1979 found++;
1980 }
1981
1982 /* update leaf slen */
1983 n->slen = slen;
1984
1985 if (hlist_empty(&n->leaf)) {
1986 put_child_root(pn, n->key, NULL);
1987 node_free(n);
1988 }
1989 }
1990
1991 pr_debug("trie_flush found=%d\n", found);
1992 return found;
1993}
1994
1995static void fib_leaf_notify(struct net *net, struct key_vector *l,
1996 struct fib_table *tb, struct notifier_block *nb,
1997 enum fib_event_type event_type)
1998{
1999 struct fib_alias *fa;
2000
2001 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2002 struct fib_info *fi = fa->fa_info;
2003
2004 if (!fi)
2005 continue;
2006
2007 /* local and main table can share the same trie,
2008 * so don't notify twice for the same entry.
2009 */
2010 if (tb->tb_id != fa->tb_id)
2011 continue;
2012
2013 call_fib_entry_notifier(nb, net, event_type, l->key,
2014 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2015 fa->fa_type, fa->tb_id, 0);
2016 }
2017}
2018
2019static void fib_table_notify(struct net *net, struct fib_table *tb,
2020 struct notifier_block *nb,
2021 enum fib_event_type event_type)
2022{
2023 struct trie *t = (struct trie *)tb->tb_data;
2024 struct key_vector *l, *tp = t->kv;
2025 t_key key = 0;
2026
2027 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2028 fib_leaf_notify(net, l, tb, nb, event_type);
2029
2030 key = l->key + 1;
2031 /* stop in case of wrap around */
2032 if (key < l->key)
2033 break;
2034 }
2035}
2036
2037static void fib_notify(struct net *net, struct notifier_block *nb,
2038 enum fib_event_type event_type)
2039{
2040 unsigned int h;
2041
2042 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2043 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2044 struct fib_table *tb;
2045
2046 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2047 fib_table_notify(net, tb, nb, event_type);
2048 }
2049}
2050
2051static void __trie_free_rcu(struct rcu_head *head)
2052{
2053 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2054#ifdef CONFIG_IP_FIB_TRIE_STATS
2055 struct trie *t = (struct trie *)tb->tb_data;
2056
2057 if (tb->tb_data == tb->__data)
2058 free_percpu(t->stats);
2059#endif /* CONFIG_IP_FIB_TRIE_STATS */
2060 kfree(tb);
2061}
2062
2063void fib_free_table(struct fib_table *tb)
2064{
2065 call_rcu(&tb->rcu, __trie_free_rcu);
2066}
2067
2068static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2069 struct sk_buff *skb, struct netlink_callback *cb)
2070{
2071 __be32 xkey = htonl(l->key);
2072 struct fib_alias *fa;
2073 int i, s_i;
2074
2075 s_i = cb->args[4];
2076 i = 0;
2077
2078 /* rcu_read_lock is hold by caller */
2079 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2080 if (i < s_i) {
2081 i++;
2082 continue;
2083 }
2084
2085 if (tb->tb_id != fa->tb_id) {
2086 i++;
2087 continue;
2088 }
2089
2090 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2091 cb->nlh->nlmsg_seq,
2092 RTM_NEWROUTE,
2093 tb->tb_id,
2094 fa->fa_type,
2095 xkey,
2096 KEYLENGTH - fa->fa_slen,
2097 fa->fa_tos,
2098 fa->fa_info, NLM_F_MULTI) < 0) {
2099 cb->args[4] = i;
2100 return -1;
2101 }
2102 i++;
2103 }
2104
2105 cb->args[4] = i;
2106 return skb->len;
2107}
2108
2109/* rcu_read_lock needs to be hold by caller from readside */
2110int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2111 struct netlink_callback *cb)
2112{
2113 struct trie *t = (struct trie *)tb->tb_data;
2114 struct key_vector *l, *tp = t->kv;
2115 /* Dump starting at last key.
2116 * Note: 0.0.0.0/0 (ie default) is first key.
2117 */
2118 int count = cb->args[2];
2119 t_key key = cb->args[3];
2120
2121 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2122 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2123 cb->args[3] = key;
2124 cb->args[2] = count;
2125 return -1;
2126 }
2127
2128 ++count;
2129 key = l->key + 1;
2130
2131 memset(&cb->args[4], 0,
2132 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2133
2134 /* stop loop if key wrapped back to 0 */
2135 if (key < l->key)
2136 break;
2137 }
2138
2139 cb->args[3] = key;
2140 cb->args[2] = count;
2141
2142 return skb->len;
2143}
2144
2145void __init fib_trie_init(void)
2146{
2147 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2148 sizeof(struct fib_alias),
2149 0, SLAB_PANIC, NULL);
2150
2151 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2152 LEAF_SIZE,
2153 0, SLAB_PANIC, NULL);
2154}
2155
2156struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2157{
2158 struct fib_table *tb;
2159 struct trie *t;
2160 size_t sz = sizeof(*tb);
2161
2162 if (!alias)
2163 sz += sizeof(struct trie);
2164
2165 tb = kzalloc(sz, GFP_KERNEL);
2166 if (!tb)
2167 return NULL;
2168
2169 tb->tb_id = id;
2170 tb->tb_num_default = 0;
2171 tb->tb_data = (alias ? alias->__data : tb->__data);
2172
2173 if (alias)
2174 return tb;
2175
2176 t = (struct trie *) tb->tb_data;
2177 t->kv[0].pos = KEYLENGTH;
2178 t->kv[0].slen = KEYLENGTH;
2179#ifdef CONFIG_IP_FIB_TRIE_STATS
2180 t->stats = alloc_percpu(struct trie_use_stats);
2181 if (!t->stats) {
2182 kfree(tb);
2183 tb = NULL;
2184 }
2185#endif
2186
2187 return tb;
2188}
2189
2190#ifdef CONFIG_PROC_FS
2191/* Depth first Trie walk iterator */
2192struct fib_trie_iter {
2193 struct seq_net_private p;
2194 struct fib_table *tb;
2195 struct key_vector *tnode;
2196 unsigned int index;
2197 unsigned int depth;
2198};
2199
2200static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2201{
2202 unsigned long cindex = iter->index;
2203 struct key_vector *pn = iter->tnode;
2204 t_key pkey;
2205
2206 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207 iter->tnode, iter->index, iter->depth);
2208
2209 while (!IS_TRIE(pn)) {
2210 while (cindex < child_length(pn)) {
2211 struct key_vector *n = get_child_rcu(pn, cindex++);
2212
2213 if (!n)
2214 continue;
2215
2216 if (IS_LEAF(n)) {
2217 iter->tnode = pn;
2218 iter->index = cindex;
2219 } else {
2220 /* push down one level */
2221 iter->tnode = n;
2222 iter->index = 0;
2223 ++iter->depth;
2224 }
2225
2226 return n;
2227 }
2228
2229 /* Current node exhausted, pop back up */
2230 pkey = pn->key;
2231 pn = node_parent_rcu(pn);
2232 cindex = get_index(pkey, pn) + 1;
2233 --iter->depth;
2234 }
2235
2236 /* record root node so further searches know we are done */
2237 iter->tnode = pn;
2238 iter->index = 0;
2239
2240 return NULL;
2241}
2242
2243static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2244 struct trie *t)
2245{
2246 struct key_vector *n, *pn;
2247
2248 if (!t)
2249 return NULL;
2250
2251 pn = t->kv;
2252 n = rcu_dereference(pn->tnode[0]);
2253 if (!n)
2254 return NULL;
2255
2256 if (IS_TNODE(n)) {
2257 iter->tnode = n;
2258 iter->index = 0;
2259 iter->depth = 1;
2260 } else {
2261 iter->tnode = pn;
2262 iter->index = 0;
2263 iter->depth = 0;
2264 }
2265
2266 return n;
2267}
2268
2269static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2270{
2271 struct key_vector *n;
2272 struct fib_trie_iter iter;
2273
2274 memset(s, 0, sizeof(*s));
2275
2276 rcu_read_lock();
2277 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2278 if (IS_LEAF(n)) {
2279 struct fib_alias *fa;
2280
2281 s->leaves++;
2282 s->totdepth += iter.depth;
2283 if (iter.depth > s->maxdepth)
2284 s->maxdepth = iter.depth;
2285
2286 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2287 ++s->prefixes;
2288 } else {
2289 s->tnodes++;
2290 if (n->bits < MAX_STAT_DEPTH)
2291 s->nodesizes[n->bits]++;
2292 s->nullpointers += tn_info(n)->empty_children;
2293 }
2294 }
2295 rcu_read_unlock();
2296}
2297
2298/*
2299 * This outputs /proc/net/fib_triestats
2300 */
2301static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2302{
2303 unsigned int i, max, pointers, bytes, avdepth;
2304
2305 if (stat->leaves)
2306 avdepth = stat->totdepth*100 / stat->leaves;
2307 else
2308 avdepth = 0;
2309
2310 seq_printf(seq, "\tAver depth: %u.%02d\n",
2311 avdepth / 100, avdepth % 100);
2312 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2313
2314 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2315 bytes = LEAF_SIZE * stat->leaves;
2316
2317 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2318 bytes += sizeof(struct fib_alias) * stat->prefixes;
2319
2320 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2321 bytes += TNODE_SIZE(0) * stat->tnodes;
2322
2323 max = MAX_STAT_DEPTH;
2324 while (max > 0 && stat->nodesizes[max-1] == 0)
2325 max--;
2326
2327 pointers = 0;
2328 for (i = 1; i < max; i++)
2329 if (stat->nodesizes[i] != 0) {
2330 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2331 pointers += (1<<i) * stat->nodesizes[i];
2332 }
2333 seq_putc(seq, '\n');
2334 seq_printf(seq, "\tPointers: %u\n", pointers);
2335
2336 bytes += sizeof(struct key_vector *) * pointers;
2337 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2338 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2339}
2340
2341#ifdef CONFIG_IP_FIB_TRIE_STATS
2342static void trie_show_usage(struct seq_file *seq,
2343 const struct trie_use_stats __percpu *stats)
2344{
2345 struct trie_use_stats s = { 0 };
2346 int cpu;
2347
2348 /* loop through all of the CPUs and gather up the stats */
2349 for_each_possible_cpu(cpu) {
2350 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2351
2352 s.gets += pcpu->gets;
2353 s.backtrack += pcpu->backtrack;
2354 s.semantic_match_passed += pcpu->semantic_match_passed;
2355 s.semantic_match_miss += pcpu->semantic_match_miss;
2356 s.null_node_hit += pcpu->null_node_hit;
2357 s.resize_node_skipped += pcpu->resize_node_skipped;
2358 }
2359
2360 seq_printf(seq, "\nCounters:\n---------\n");
2361 seq_printf(seq, "gets = %u\n", s.gets);
2362 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2363 seq_printf(seq, "semantic match passed = %u\n",
2364 s.semantic_match_passed);
2365 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2366 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2367 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2368}
2369#endif /* CONFIG_IP_FIB_TRIE_STATS */
2370
2371static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2372{
2373 if (tb->tb_id == RT_TABLE_LOCAL)
2374 seq_puts(seq, "Local:\n");
2375 else if (tb->tb_id == RT_TABLE_MAIN)
2376 seq_puts(seq, "Main:\n");
2377 else
2378 seq_printf(seq, "Id %d:\n", tb->tb_id);
2379}
2380
2381
2382static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2383{
2384 struct net *net = (struct net *)seq->private;
2385 unsigned int h;
2386
2387 seq_printf(seq,
2388 "Basic info: size of leaf:"
2389 " %Zd bytes, size of tnode: %Zd bytes.\n",
2390 LEAF_SIZE, TNODE_SIZE(0));
2391
2392 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2393 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2394 struct fib_table *tb;
2395
2396 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2397 struct trie *t = (struct trie *) tb->tb_data;
2398 struct trie_stat stat;
2399
2400 if (!t)
2401 continue;
2402
2403 fib_table_print(seq, tb);
2404
2405 trie_collect_stats(t, &stat);
2406 trie_show_stats(seq, &stat);
2407#ifdef CONFIG_IP_FIB_TRIE_STATS
2408 trie_show_usage(seq, t->stats);
2409#endif
2410 }
2411 }
2412
2413 return 0;
2414}
2415
2416static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2417{
2418 return single_open_net(inode, file, fib_triestat_seq_show);
2419}
2420
2421static const struct file_operations fib_triestat_fops = {
2422 .owner = THIS_MODULE,
2423 .open = fib_triestat_seq_open,
2424 .read = seq_read,
2425 .llseek = seq_lseek,
2426 .release = single_release_net,
2427};
2428
2429static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2430{
2431 struct fib_trie_iter *iter = seq->private;
2432 struct net *net = seq_file_net(seq);
2433 loff_t idx = 0;
2434 unsigned int h;
2435
2436 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2437 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2438 struct fib_table *tb;
2439
2440 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2441 struct key_vector *n;
2442
2443 for (n = fib_trie_get_first(iter,
2444 (struct trie *) tb->tb_data);
2445 n; n = fib_trie_get_next(iter))
2446 if (pos == idx++) {
2447 iter->tb = tb;
2448 return n;
2449 }
2450 }
2451 }
2452
2453 return NULL;
2454}
2455
2456static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2457 __acquires(RCU)
2458{
2459 rcu_read_lock();
2460 return fib_trie_get_idx(seq, *pos);
2461}
2462
2463static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2464{
2465 struct fib_trie_iter *iter = seq->private;
2466 struct net *net = seq_file_net(seq);
2467 struct fib_table *tb = iter->tb;
2468 struct hlist_node *tb_node;
2469 unsigned int h;
2470 struct key_vector *n;
2471
2472 ++*pos;
2473 /* next node in same table */
2474 n = fib_trie_get_next(iter);
2475 if (n)
2476 return n;
2477
2478 /* walk rest of this hash chain */
2479 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2480 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2481 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2482 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2483 if (n)
2484 goto found;
2485 }
2486
2487 /* new hash chain */
2488 while (++h < FIB_TABLE_HASHSZ) {
2489 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2490 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2491 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2492 if (n)
2493 goto found;
2494 }
2495 }
2496 return NULL;
2497
2498found:
2499 iter->tb = tb;
2500 return n;
2501}
2502
2503static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2504 __releases(RCU)
2505{
2506 rcu_read_unlock();
2507}
2508
2509static void seq_indent(struct seq_file *seq, int n)
2510{
2511 while (n-- > 0)
2512 seq_puts(seq, " ");
2513}
2514
2515static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2516{
2517 switch (s) {
2518 case RT_SCOPE_UNIVERSE: return "universe";
2519 case RT_SCOPE_SITE: return "site";
2520 case RT_SCOPE_LINK: return "link";
2521 case RT_SCOPE_HOST: return "host";
2522 case RT_SCOPE_NOWHERE: return "nowhere";
2523 default:
2524 snprintf(buf, len, "scope=%d", s);
2525 return buf;
2526 }
2527}
2528
2529static const char *const rtn_type_names[__RTN_MAX] = {
2530 [RTN_UNSPEC] = "UNSPEC",
2531 [RTN_UNICAST] = "UNICAST",
2532 [RTN_LOCAL] = "LOCAL",
2533 [RTN_BROADCAST] = "BROADCAST",
2534 [RTN_ANYCAST] = "ANYCAST",
2535 [RTN_MULTICAST] = "MULTICAST",
2536 [RTN_BLACKHOLE] = "BLACKHOLE",
2537 [RTN_UNREACHABLE] = "UNREACHABLE",
2538 [RTN_PROHIBIT] = "PROHIBIT",
2539 [RTN_THROW] = "THROW",
2540 [RTN_NAT] = "NAT",
2541 [RTN_XRESOLVE] = "XRESOLVE",
2542};
2543
2544static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2545{
2546 if (t < __RTN_MAX && rtn_type_names[t])
2547 return rtn_type_names[t];
2548 snprintf(buf, len, "type %u", t);
2549 return buf;
2550}
2551
2552/* Pretty print the trie */
2553static int fib_trie_seq_show(struct seq_file *seq, void *v)
2554{
2555 const struct fib_trie_iter *iter = seq->private;
2556 struct key_vector *n = v;
2557
2558 if (IS_TRIE(node_parent_rcu(n)))
2559 fib_table_print(seq, iter->tb);
2560
2561 if (IS_TNODE(n)) {
2562 __be32 prf = htonl(n->key);
2563
2564 seq_indent(seq, iter->depth-1);
2565 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2566 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2567 tn_info(n)->full_children,
2568 tn_info(n)->empty_children);
2569 } else {
2570 __be32 val = htonl(n->key);
2571 struct fib_alias *fa;
2572
2573 seq_indent(seq, iter->depth);
2574 seq_printf(seq, " |-- %pI4\n", &val);
2575
2576 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2577 char buf1[32], buf2[32];
2578
2579 seq_indent(seq, iter->depth + 1);
2580 seq_printf(seq, " /%zu %s %s",
2581 KEYLENGTH - fa->fa_slen,
2582 rtn_scope(buf1, sizeof(buf1),
2583 fa->fa_info->fib_scope),
2584 rtn_type(buf2, sizeof(buf2),
2585 fa->fa_type));
2586 if (fa->fa_tos)
2587 seq_printf(seq, " tos=%d", fa->fa_tos);
2588 seq_putc(seq, '\n');
2589 }
2590 }
2591
2592 return 0;
2593}
2594
2595static const struct seq_operations fib_trie_seq_ops = {
2596 .start = fib_trie_seq_start,
2597 .next = fib_trie_seq_next,
2598 .stop = fib_trie_seq_stop,
2599 .show = fib_trie_seq_show,
2600};
2601
2602static int fib_trie_seq_open(struct inode *inode, struct file *file)
2603{
2604 return seq_open_net(inode, file, &fib_trie_seq_ops,
2605 sizeof(struct fib_trie_iter));
2606}
2607
2608static const struct file_operations fib_trie_fops = {
2609 .owner = THIS_MODULE,
2610 .open = fib_trie_seq_open,
2611 .read = seq_read,
2612 .llseek = seq_lseek,
2613 .release = seq_release_net,
2614};
2615
2616struct fib_route_iter {
2617 struct seq_net_private p;
2618 struct fib_table *main_tb;
2619 struct key_vector *tnode;
2620 loff_t pos;
2621 t_key key;
2622};
2623
2624static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2625 loff_t pos)
2626{
2627 struct key_vector *l, **tp = &iter->tnode;
2628 t_key key;
2629
2630 /* use cached location of previously found key */
2631 if (iter->pos > 0 && pos >= iter->pos) {
2632 key = iter->key;
2633 } else {
2634 iter->pos = 1;
2635 key = 0;
2636 }
2637
2638 pos -= iter->pos;
2639
2640 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2641 key = l->key + 1;
2642 iter->pos++;
2643 l = NULL;
2644
2645 /* handle unlikely case of a key wrap */
2646 if (!key)
2647 break;
2648 }
2649
2650 if (l)
2651 iter->key = l->key; /* remember it */
2652 else
2653 iter->pos = 0; /* forget it */
2654
2655 return l;
2656}
2657
2658static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2659 __acquires(RCU)
2660{
2661 struct fib_route_iter *iter = seq->private;
2662 struct fib_table *tb;
2663 struct trie *t;
2664
2665 rcu_read_lock();
2666
2667 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2668 if (!tb)
2669 return NULL;
2670
2671 iter->main_tb = tb;
2672 t = (struct trie *)tb->tb_data;
2673 iter->tnode = t->kv;
2674
2675 if (*pos != 0)
2676 return fib_route_get_idx(iter, *pos);
2677
2678 iter->pos = 0;
2679 iter->key = KEY_MAX;
2680
2681 return SEQ_START_TOKEN;
2682}
2683
2684static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2685{
2686 struct fib_route_iter *iter = seq->private;
2687 struct key_vector *l = NULL;
2688 t_key key = iter->key + 1;
2689
2690 ++*pos;
2691
2692 /* only allow key of 0 for start of sequence */
2693 if ((v == SEQ_START_TOKEN) || key)
2694 l = leaf_walk_rcu(&iter->tnode, key);
2695
2696 if (l) {
2697 iter->key = l->key;
2698 iter->pos++;
2699 } else {
2700 iter->pos = 0;
2701 }
2702
2703 return l;
2704}
2705
2706static void fib_route_seq_stop(struct seq_file *seq, void *v)
2707 __releases(RCU)
2708{
2709 rcu_read_unlock();
2710}
2711
2712static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2713{
2714 unsigned int flags = 0;
2715
2716 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2717 flags = RTF_REJECT;
2718 if (fi && fi->fib_nh->nh_gw)
2719 flags |= RTF_GATEWAY;
2720 if (mask == htonl(0xFFFFFFFF))
2721 flags |= RTF_HOST;
2722 flags |= RTF_UP;
2723 return flags;
2724}
2725
2726/*
2727 * This outputs /proc/net/route.
2728 * The format of the file is not supposed to be changed
2729 * and needs to be same as fib_hash output to avoid breaking
2730 * legacy utilities
2731 */
2732static int fib_route_seq_show(struct seq_file *seq, void *v)
2733{
2734 struct fib_route_iter *iter = seq->private;
2735 struct fib_table *tb = iter->main_tb;
2736 struct fib_alias *fa;
2737 struct key_vector *l = v;
2738 __be32 prefix;
2739
2740 if (v == SEQ_START_TOKEN) {
2741 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2742 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2743 "\tWindow\tIRTT");
2744 return 0;
2745 }
2746
2747 prefix = htonl(l->key);
2748
2749 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2750 const struct fib_info *fi = fa->fa_info;
2751 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2752 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2753
2754 if ((fa->fa_type == RTN_BROADCAST) ||
2755 (fa->fa_type == RTN_MULTICAST))
2756 continue;
2757
2758 if (fa->tb_id != tb->tb_id)
2759 continue;
2760
2761 seq_setwidth(seq, 127);
2762
2763 if (fi)
2764 seq_printf(seq,
2765 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766 "%d\t%08X\t%d\t%u\t%u",
2767 fi->fib_dev ? fi->fib_dev->name : "*",
2768 prefix,
2769 fi->fib_nh->nh_gw, flags, 0, 0,
2770 fi->fib_priority,
2771 mask,
2772 (fi->fib_advmss ?
2773 fi->fib_advmss + 40 : 0),
2774 fi->fib_window,
2775 fi->fib_rtt >> 3);
2776 else
2777 seq_printf(seq,
2778 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 "%d\t%08X\t%d\t%u\t%u",
2780 prefix, 0, flags, 0, 0, 0,
2781 mask, 0, 0, 0);
2782
2783 seq_pad(seq, '\n');
2784 }
2785
2786 return 0;
2787}
2788
2789static const struct seq_operations fib_route_seq_ops = {
2790 .start = fib_route_seq_start,
2791 .next = fib_route_seq_next,
2792 .stop = fib_route_seq_stop,
2793 .show = fib_route_seq_show,
2794};
2795
2796static int fib_route_seq_open(struct inode *inode, struct file *file)
2797{
2798 return seq_open_net(inode, file, &fib_route_seq_ops,
2799 sizeof(struct fib_route_iter));
2800}
2801
2802static const struct file_operations fib_route_fops = {
2803 .owner = THIS_MODULE,
2804 .open = fib_route_seq_open,
2805 .read = seq_read,
2806 .llseek = seq_lseek,
2807 .release = seq_release_net,
2808};
2809
2810int __net_init fib_proc_init(struct net *net)
2811{
2812 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2813 goto out1;
2814
2815 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2816 &fib_triestat_fops))
2817 goto out2;
2818
2819 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2820 goto out3;
2821
2822 return 0;
2823
2824out3:
2825 remove_proc_entry("fib_triestat", net->proc_net);
2826out2:
2827 remove_proc_entry("fib_trie", net->proc_net);
2828out1:
2829 return -ENOMEM;
2830}
2831
2832void __net_exit fib_proc_exit(struct net *net)
2833{
2834 remove_proc_entry("fib_trie", net->proc_net);
2835 remove_proc_entry("fib_triestat", net->proc_net);
2836 remove_proc_entry("route", net->proc_net);
2837}
2838
2839#endif /* CONFIG_PROC_FS */