Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
 
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <linux/debugfs.h>
 
  21#include <asm/cacheflush.h>
  22#include <asm/tlbflush.h>
  23#include <asm/page.h>
  24#include <linux/memcontrol.h>
  25
  26#define CREATE_TRACE_POINTS
  27#include <trace/events/kmem.h>
  28
  29#include "internal.h"
  30
  31#include "slab.h"
  32
 
 
 
  33enum slab_state slab_state;
  34LIST_HEAD(slab_caches);
  35DEFINE_MUTEX(slab_mutex);
  36struct kmem_cache *kmem_cache;
  37
  38#ifdef CONFIG_HARDENED_USERCOPY
  39bool usercopy_fallback __ro_after_init =
  40		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  41module_param(usercopy_fallback, bool, 0400);
  42MODULE_PARM_DESC(usercopy_fallback,
  43		"WARN instead of reject usercopy whitelist violations");
  44#endif
  45
  46static LIST_HEAD(slab_caches_to_rcu_destroy);
  47static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  48static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  49		    slab_caches_to_rcu_destroy_workfn);
  50
  51/*
  52 * Set of flags that will prevent slab merging
  53 */
  54#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  55		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  56		SLAB_FAILSLAB | SLAB_KASAN)
  57
  58#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  59			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  60
  61/*
  62 * Merge control. If this is set then no merging of slab caches will occur.
  63 */
  64static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  65
  66static int __init setup_slab_nomerge(char *str)
  67{
  68	slab_nomerge = true;
  69	return 1;
  70}
  71
 
 
 
 
 
 
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 
  74#endif
  75
  76__setup("slab_nomerge", setup_slab_nomerge);
 
  77
  78/*
  79 * Determine the size of a slab object
  80 */
  81unsigned int kmem_cache_size(struct kmem_cache *s)
  82{
  83	return s->object_size;
  84}
  85EXPORT_SYMBOL(kmem_cache_size);
  86
  87#ifdef CONFIG_DEBUG_VM
  88static int kmem_cache_sanity_check(const char *name, unsigned int size)
  89{
  90	if (!name || in_interrupt() || size < sizeof(void *) ||
  91		size > KMALLOC_MAX_SIZE) {
  92		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  93		return -EINVAL;
  94	}
  95
  96	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  97	return 0;
  98}
  99#else
 100static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 101{
 102	return 0;
 103}
 104#endif
 105
 106void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 107{
 108	size_t i;
 109
 110	for (i = 0; i < nr; i++) {
 111		if (s)
 112			kmem_cache_free(s, p[i]);
 113		else
 114			kfree(p[i]);
 115	}
 116}
 117
 118int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 119								void **p)
 120{
 121	size_t i;
 122
 123	for (i = 0; i < nr; i++) {
 124		void *x = p[i] = kmem_cache_alloc(s, flags);
 125		if (!x) {
 126			__kmem_cache_free_bulk(s, i, p);
 127			return 0;
 128		}
 129	}
 130	return i;
 131}
 132
 133/*
 134 * Figure out what the alignment of the objects will be given a set of
 135 * flags, a user specified alignment and the size of the objects.
 136 */
 137static unsigned int calculate_alignment(slab_flags_t flags,
 138		unsigned int align, unsigned int size)
 139{
 140	/*
 141	 * If the user wants hardware cache aligned objects then follow that
 142	 * suggestion if the object is sufficiently large.
 143	 *
 144	 * The hardware cache alignment cannot override the specified
 145	 * alignment though. If that is greater then use it.
 146	 */
 147	if (flags & SLAB_HWCACHE_ALIGN) {
 148		unsigned int ralign;
 149
 150		ralign = cache_line_size();
 151		while (size <= ralign / 2)
 152			ralign /= 2;
 153		align = max(align, ralign);
 154	}
 155
 156	if (align < ARCH_SLAB_MINALIGN)
 157		align = ARCH_SLAB_MINALIGN;
 158
 159	return ALIGN(align, sizeof(void *));
 160}
 161
 162/*
 163 * Find a mergeable slab cache
 164 */
 165int slab_unmergeable(struct kmem_cache *s)
 166{
 167	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 168		return 1;
 169
 170	if (s->ctor)
 171		return 1;
 172
 
 173	if (s->usersize)
 174		return 1;
 
 175
 176	/*
 177	 * We may have set a slab to be unmergeable during bootstrap.
 178	 */
 179	if (s->refcount < 0)
 180		return 1;
 181
 182	return 0;
 183}
 184
 185struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 186		slab_flags_t flags, const char *name, void (*ctor)(void *))
 187{
 188	struct kmem_cache *s;
 189
 190	if (slab_nomerge)
 191		return NULL;
 192
 193	if (ctor)
 194		return NULL;
 195
 196	size = ALIGN(size, sizeof(void *));
 197	align = calculate_alignment(flags, align, size);
 198	size = ALIGN(size, align);
 199	flags = kmem_cache_flags(size, flags, name, NULL);
 200
 201	if (flags & SLAB_NEVER_MERGE)
 202		return NULL;
 203
 204	list_for_each_entry_reverse(s, &slab_caches, list) {
 205		if (slab_unmergeable(s))
 206			continue;
 207
 208		if (size > s->size)
 209			continue;
 210
 211		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 212			continue;
 213		/*
 214		 * Check if alignment is compatible.
 215		 * Courtesy of Adrian Drzewiecki
 216		 */
 217		if ((s->size & ~(align - 1)) != s->size)
 218			continue;
 219
 220		if (s->size - size >= sizeof(void *))
 221			continue;
 222
 223		if (IS_ENABLED(CONFIG_SLAB) && align &&
 224			(align > s->align || s->align % align))
 225			continue;
 226
 227		return s;
 228	}
 229	return NULL;
 230}
 231
 232static struct kmem_cache *create_cache(const char *name,
 233		unsigned int object_size, unsigned int align,
 234		slab_flags_t flags, unsigned int useroffset,
 235		unsigned int usersize, void (*ctor)(void *),
 236		struct kmem_cache *root_cache)
 237{
 238	struct kmem_cache *s;
 239	int err;
 240
 241	if (WARN_ON(useroffset + usersize > object_size))
 242		useroffset = usersize = 0;
 243
 244	err = -ENOMEM;
 245	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 246	if (!s)
 247		goto out;
 248
 249	s->name = name;
 250	s->size = s->object_size = object_size;
 251	s->align = align;
 252	s->ctor = ctor;
 
 253	s->useroffset = useroffset;
 254	s->usersize = usersize;
 
 255
 256	err = __kmem_cache_create(s, flags);
 257	if (err)
 258		goto out_free_cache;
 259
 260	s->refcount = 1;
 261	list_add(&s->list, &slab_caches);
 262out:
 263	if (err)
 264		return ERR_PTR(err);
 265	return s;
 266
 267out_free_cache:
 268	kmem_cache_free(kmem_cache, s);
 269	goto out;
 270}
 271
 272/**
 273 * kmem_cache_create_usercopy - Create a cache with a region suitable
 274 * for copying to userspace
 275 * @name: A string which is used in /proc/slabinfo to identify this cache.
 276 * @size: The size of objects to be created in this cache.
 277 * @align: The required alignment for the objects.
 278 * @flags: SLAB flags
 279 * @useroffset: Usercopy region offset
 280 * @usersize: Usercopy region size
 281 * @ctor: A constructor for the objects.
 282 *
 283 * Cannot be called within a interrupt, but can be interrupted.
 284 * The @ctor is run when new pages are allocated by the cache.
 285 *
 286 * The flags are
 287 *
 288 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 289 * to catch references to uninitialised memory.
 290 *
 291 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 292 * for buffer overruns.
 293 *
 294 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 295 * cacheline.  This can be beneficial if you're counting cycles as closely
 296 * as davem.
 297 *
 298 * Return: a pointer to the cache on success, NULL on failure.
 299 */
 300struct kmem_cache *
 301kmem_cache_create_usercopy(const char *name,
 302		  unsigned int size, unsigned int align,
 303		  slab_flags_t flags,
 304		  unsigned int useroffset, unsigned int usersize,
 305		  void (*ctor)(void *))
 306{
 307	struct kmem_cache *s = NULL;
 308	const char *cache_name;
 309	int err;
 310
 311	get_online_cpus();
 312	get_online_mems();
 
 
 
 
 
 
 
 
 
 
 
 313
 314	mutex_lock(&slab_mutex);
 315
 316	err = kmem_cache_sanity_check(name, size);
 317	if (err) {
 318		goto out_unlock;
 319	}
 320
 321	/* Refuse requests with allocator specific flags */
 322	if (flags & ~SLAB_FLAGS_PERMITTED) {
 323		err = -EINVAL;
 324		goto out_unlock;
 325	}
 326
 327	/*
 328	 * Some allocators will constraint the set of valid flags to a subset
 329	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 330	 * case, and we'll just provide them with a sanitized version of the
 331	 * passed flags.
 332	 */
 333	flags &= CACHE_CREATE_MASK;
 334
 335	/* Fail closed on bad usersize of useroffset values. */
 336	if (WARN_ON(!usersize && useroffset) ||
 
 337	    WARN_ON(size < usersize || size - usersize < useroffset))
 338		usersize = useroffset = 0;
 339
 340	if (!usersize)
 341		s = __kmem_cache_alias(name, size, align, flags, ctor);
 342	if (s)
 343		goto out_unlock;
 344
 345	cache_name = kstrdup_const(name, GFP_KERNEL);
 346	if (!cache_name) {
 347		err = -ENOMEM;
 348		goto out_unlock;
 349	}
 350
 351	s = create_cache(cache_name, size,
 352			 calculate_alignment(flags, align, size),
 353			 flags, useroffset, usersize, ctor, NULL);
 354	if (IS_ERR(s)) {
 355		err = PTR_ERR(s);
 356		kfree_const(cache_name);
 357	}
 358
 359out_unlock:
 360	mutex_unlock(&slab_mutex);
 361
 362	put_online_mems();
 363	put_online_cpus();
 364
 365	if (err) {
 366		if (flags & SLAB_PANIC)
 367			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 368				name, err);
 369		else {
 370			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 371				name, err);
 372			dump_stack();
 373		}
 374		return NULL;
 375	}
 376	return s;
 377}
 378EXPORT_SYMBOL(kmem_cache_create_usercopy);
 379
 380/**
 381 * kmem_cache_create - Create a cache.
 382 * @name: A string which is used in /proc/slabinfo to identify this cache.
 383 * @size: The size of objects to be created in this cache.
 384 * @align: The required alignment for the objects.
 385 * @flags: SLAB flags
 386 * @ctor: A constructor for the objects.
 387 *
 388 * Cannot be called within a interrupt, but can be interrupted.
 389 * The @ctor is run when new pages are allocated by the cache.
 390 *
 391 * The flags are
 392 *
 393 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 394 * to catch references to uninitialised memory.
 395 *
 396 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 397 * for buffer overruns.
 398 *
 399 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 400 * cacheline.  This can be beneficial if you're counting cycles as closely
 401 * as davem.
 402 *
 403 * Return: a pointer to the cache on success, NULL on failure.
 404 */
 405struct kmem_cache *
 406kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 407		slab_flags_t flags, void (*ctor)(void *))
 408{
 409	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 410					  ctor);
 411}
 412EXPORT_SYMBOL(kmem_cache_create);
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 415{
 416	LIST_HEAD(to_destroy);
 417	struct kmem_cache *s, *s2;
 418
 419	/*
 420	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 421	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 422	 * through RCU and the associated kmem_cache are dereferenced
 423	 * while freeing the pages, so the kmem_caches should be freed only
 424	 * after the pending RCU operations are finished.  As rcu_barrier()
 425	 * is a pretty slow operation, we batch all pending destructions
 426	 * asynchronously.
 427	 */
 428	mutex_lock(&slab_mutex);
 429	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 430	mutex_unlock(&slab_mutex);
 431
 432	if (list_empty(&to_destroy))
 433		return;
 434
 435	rcu_barrier();
 436
 437	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 438#ifdef SLAB_SUPPORTS_SYSFS
 439		sysfs_slab_release(s);
 440#else
 441		slab_kmem_cache_release(s);
 442#endif
 443	}
 444}
 445
 446static int shutdown_cache(struct kmem_cache *s)
 447{
 448	/* free asan quarantined objects */
 449	kasan_cache_shutdown(s);
 450
 451	if (__kmem_cache_shutdown(s) != 0)
 452		return -EBUSY;
 453
 454	list_del(&s->list);
 455
 456	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 457#ifdef SLAB_SUPPORTS_SYSFS
 458		sysfs_slab_unlink(s);
 459#endif
 460		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 461		schedule_work(&slab_caches_to_rcu_destroy_work);
 462	} else {
 463#ifdef SLAB_SUPPORTS_SYSFS
 464		sysfs_slab_unlink(s);
 465		sysfs_slab_release(s);
 466#else
 467		slab_kmem_cache_release(s);
 468#endif
 469	}
 470
 471	return 0;
 472}
 473
 474void slab_kmem_cache_release(struct kmem_cache *s)
 475{
 476	__kmem_cache_release(s);
 477	kfree_const(s->name);
 478	kmem_cache_free(kmem_cache, s);
 479}
 480
 481void kmem_cache_destroy(struct kmem_cache *s)
 482{
 483	int err;
 
 484
 485	if (unlikely(!s))
 486		return;
 487
 488	get_online_cpus();
 489	get_online_mems();
 490
 491	mutex_lock(&slab_mutex);
 492
 493	s->refcount--;
 494	if (s->refcount)
 
 
 495		goto out_unlock;
 496
 497	err = shutdown_cache(s);
 498	if (err) {
 499		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 500		       s->name);
 501		dump_stack();
 502	}
 503out_unlock:
 504	mutex_unlock(&slab_mutex);
 505
 506	put_online_mems();
 507	put_online_cpus();
 508}
 509EXPORT_SYMBOL(kmem_cache_destroy);
 510
 511/**
 512 * kmem_cache_shrink - Shrink a cache.
 513 * @cachep: The cache to shrink.
 514 *
 515 * Releases as many slabs as possible for a cache.
 516 * To help debugging, a zero exit status indicates all slabs were released.
 517 *
 518 * Return: %0 if all slabs were released, non-zero otherwise
 519 */
 520int kmem_cache_shrink(struct kmem_cache *cachep)
 521{
 522	int ret;
 523
 524	get_online_cpus();
 525	get_online_mems();
 526	kasan_cache_shrink(cachep);
 527	ret = __kmem_cache_shrink(cachep);
 528	put_online_mems();
 529	put_online_cpus();
 530	return ret;
 531}
 532EXPORT_SYMBOL(kmem_cache_shrink);
 533
 534bool slab_is_available(void)
 535{
 536	return slab_state >= UP;
 537}
 538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539#ifndef CONFIG_SLOB
 540/* Create a cache during boot when no slab services are available yet */
 541void __init create_boot_cache(struct kmem_cache *s, const char *name,
 542		unsigned int size, slab_flags_t flags,
 543		unsigned int useroffset, unsigned int usersize)
 544{
 545	int err;
 546	unsigned int align = ARCH_KMALLOC_MINALIGN;
 547
 548	s->name = name;
 549	s->size = s->object_size = size;
 550
 551	/*
 552	 * For power of two sizes, guarantee natural alignment for kmalloc
 553	 * caches, regardless of SL*B debugging options.
 554	 */
 555	if (is_power_of_2(size))
 556		align = max(align, size);
 557	s->align = calculate_alignment(flags, align, size);
 558
 
 559	s->useroffset = useroffset;
 560	s->usersize = usersize;
 
 561
 562	err = __kmem_cache_create(s, flags);
 563
 564	if (err)
 565		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 566					name, size, err);
 567
 568	s->refcount = -1;	/* Exempt from merging for now */
 569}
 570
 571struct kmem_cache *__init create_kmalloc_cache(const char *name,
 572		unsigned int size, slab_flags_t flags,
 573		unsigned int useroffset, unsigned int usersize)
 574{
 575	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 576
 577	if (!s)
 578		panic("Out of memory when creating slab %s\n", name);
 579
 580	create_boot_cache(s, name, size, flags, useroffset, usersize);
 
 
 581	list_add(&s->list, &slab_caches);
 582	s->refcount = 1;
 583	return s;
 584}
 585
 586struct kmem_cache *
 587kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 588{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 589EXPORT_SYMBOL(kmalloc_caches);
 590
 591/*
 592 * Conversion table for small slabs sizes / 8 to the index in the
 593 * kmalloc array. This is necessary for slabs < 192 since we have non power
 594 * of two cache sizes there. The size of larger slabs can be determined using
 595 * fls.
 596 */
 597static u8 size_index[24] __ro_after_init = {
 598	3,	/* 8 */
 599	4,	/* 16 */
 600	5,	/* 24 */
 601	5,	/* 32 */
 602	6,	/* 40 */
 603	6,	/* 48 */
 604	6,	/* 56 */
 605	6,	/* 64 */
 606	1,	/* 72 */
 607	1,	/* 80 */
 608	1,	/* 88 */
 609	1,	/* 96 */
 610	7,	/* 104 */
 611	7,	/* 112 */
 612	7,	/* 120 */
 613	7,	/* 128 */
 614	2,	/* 136 */
 615	2,	/* 144 */
 616	2,	/* 152 */
 617	2,	/* 160 */
 618	2,	/* 168 */
 619	2,	/* 176 */
 620	2,	/* 184 */
 621	2	/* 192 */
 622};
 623
 624static inline unsigned int size_index_elem(unsigned int bytes)
 625{
 626	return (bytes - 1) / 8;
 627}
 628
 629/*
 630 * Find the kmem_cache structure that serves a given size of
 631 * allocation
 632 */
 633struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 634{
 635	unsigned int index;
 636
 637	if (size <= 192) {
 638		if (!size)
 639			return ZERO_SIZE_PTR;
 640
 641		index = size_index[size_index_elem(size)];
 642	} else {
 643		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 644			return NULL;
 645		index = fls(size - 1);
 646	}
 647
 648	return kmalloc_caches[kmalloc_type(flags)][index];
 649}
 650
 651#ifdef CONFIG_ZONE_DMA
 652#define INIT_KMALLOC_INFO(__size, __short_size)			\
 653{								\
 654	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 655	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 656	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
 657	.size = __size,						\
 
 
 
 
 
 
 
 
 
 
 658}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659#else
 
 
 
 660#define INIT_KMALLOC_INFO(__size, __short_size)			\
 661{								\
 662	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 663	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 
 
 664	.size = __size,						\
 665}
 666#endif
 667
 668/*
 669 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 670 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 671 * kmalloc-67108864.
 672 */
 673const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 674	INIT_KMALLOC_INFO(0, 0),
 675	INIT_KMALLOC_INFO(96, 96),
 676	INIT_KMALLOC_INFO(192, 192),
 677	INIT_KMALLOC_INFO(8, 8),
 678	INIT_KMALLOC_INFO(16, 16),
 679	INIT_KMALLOC_INFO(32, 32),
 680	INIT_KMALLOC_INFO(64, 64),
 681	INIT_KMALLOC_INFO(128, 128),
 682	INIT_KMALLOC_INFO(256, 256),
 683	INIT_KMALLOC_INFO(512, 512),
 684	INIT_KMALLOC_INFO(1024, 1k),
 685	INIT_KMALLOC_INFO(2048, 2k),
 686	INIT_KMALLOC_INFO(4096, 4k),
 687	INIT_KMALLOC_INFO(8192, 8k),
 688	INIT_KMALLOC_INFO(16384, 16k),
 689	INIT_KMALLOC_INFO(32768, 32k),
 690	INIT_KMALLOC_INFO(65536, 64k),
 691	INIT_KMALLOC_INFO(131072, 128k),
 692	INIT_KMALLOC_INFO(262144, 256k),
 693	INIT_KMALLOC_INFO(524288, 512k),
 694	INIT_KMALLOC_INFO(1048576, 1M),
 695	INIT_KMALLOC_INFO(2097152, 2M),
 696	INIT_KMALLOC_INFO(4194304, 4M),
 697	INIT_KMALLOC_INFO(8388608, 8M),
 698	INIT_KMALLOC_INFO(16777216, 16M),
 699	INIT_KMALLOC_INFO(33554432, 32M),
 700	INIT_KMALLOC_INFO(67108864, 64M)
 701};
 702
 703/*
 704 * Patch up the size_index table if we have strange large alignment
 705 * requirements for the kmalloc array. This is only the case for
 706 * MIPS it seems. The standard arches will not generate any code here.
 707 *
 708 * Largest permitted alignment is 256 bytes due to the way we
 709 * handle the index determination for the smaller caches.
 710 *
 711 * Make sure that nothing crazy happens if someone starts tinkering
 712 * around with ARCH_KMALLOC_MINALIGN
 713 */
 714void __init setup_kmalloc_cache_index_table(void)
 715{
 716	unsigned int i;
 717
 718	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 719		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 720
 721	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 722		unsigned int elem = size_index_elem(i);
 723
 724		if (elem >= ARRAY_SIZE(size_index))
 725			break;
 726		size_index[elem] = KMALLOC_SHIFT_LOW;
 727	}
 728
 729	if (KMALLOC_MIN_SIZE >= 64) {
 730		/*
 731		 * The 96 byte size cache is not used if the alignment
 732		 * is 64 byte.
 733		 */
 734		for (i = 64 + 8; i <= 96; i += 8)
 735			size_index[size_index_elem(i)] = 7;
 736
 737	}
 738
 739	if (KMALLOC_MIN_SIZE >= 128) {
 740		/*
 741		 * The 192 byte sized cache is not used if the alignment
 742		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 743		 * instead.
 744		 */
 745		for (i = 128 + 8; i <= 192; i += 8)
 746			size_index[size_index_elem(i)] = 8;
 747	}
 748}
 749
 750static void __init
 751new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 752{
 753	if (type == KMALLOC_RECLAIM)
 754		flags |= SLAB_RECLAIM_ACCOUNT;
 
 
 
 
 
 
 
 
 
 755
 756	kmalloc_caches[type][idx] = create_kmalloc_cache(
 757					kmalloc_info[idx].name[type],
 758					kmalloc_info[idx].size, flags, 0,
 759					kmalloc_info[idx].size);
 
 
 
 
 
 
 
 760}
 761
 762/*
 763 * Create the kmalloc array. Some of the regular kmalloc arrays
 764 * may already have been created because they were needed to
 765 * enable allocations for slab creation.
 766 */
 767void __init create_kmalloc_caches(slab_flags_t flags)
 768{
 769	int i;
 770	enum kmalloc_cache_type type;
 771
 772	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 
 
 
 773		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 774			if (!kmalloc_caches[type][i])
 775				new_kmalloc_cache(i, type, flags);
 776
 777			/*
 778			 * Caches that are not of the two-to-the-power-of size.
 779			 * These have to be created immediately after the
 780			 * earlier power of two caches
 781			 */
 782			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 783					!kmalloc_caches[type][1])
 784				new_kmalloc_cache(1, type, flags);
 785			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 786					!kmalloc_caches[type][2])
 787				new_kmalloc_cache(2, type, flags);
 788		}
 789	}
 790
 791	/* Kmalloc array is now usable */
 792	slab_state = UP;
 
 793
 794#ifdef CONFIG_ZONE_DMA
 795	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 796		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 797
 798		if (s) {
 799			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 800				kmalloc_info[i].name[KMALLOC_DMA],
 801				kmalloc_info[i].size,
 802				SLAB_CACHE_DMA | flags, 0,
 803				kmalloc_info[i].size);
 804		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806#endif
 
 
 807}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808#endif /* !CONFIG_SLOB */
 809
 810gfp_t kmalloc_fix_flags(gfp_t flags)
 811{
 812	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 813
 814	flags &= ~GFP_SLAB_BUG_MASK;
 815	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 816			invalid_mask, &invalid_mask, flags, &flags);
 817	dump_stack();
 818
 819	return flags;
 820}
 821
 822/*
 823 * To avoid unnecessary overhead, we pass through large allocation requests
 824 * directly to the page allocator. We use __GFP_COMP, because we will need to
 825 * know the allocation order to free the pages properly in kfree.
 826 */
 827void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 
 828{
 829	void *ret = NULL;
 830	struct page *page;
 
 
 831
 832	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 833		flags = kmalloc_fix_flags(flags);
 834
 835	flags |= __GFP_COMP;
 836	page = alloc_pages(flags, order);
 837	if (likely(page)) {
 838		ret = page_address(page);
 839		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
 840				    PAGE_SIZE << order);
 841	}
 842	ret = kasan_kmalloc_large(ret, size, flags);
 843	/* As ret might get tagged, call kmemleak hook after KASAN. */
 844	kmemleak_alloc(ret, size, 1, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 845	return ret;
 846}
 847EXPORT_SYMBOL(kmalloc_order);
 848
 849#ifdef CONFIG_TRACING
 850void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 851{
 852	void *ret = kmalloc_order(size, flags, order);
 853	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 
 
 854	return ret;
 855}
 856EXPORT_SYMBOL(kmalloc_order_trace);
 857#endif
 858
 859#ifdef CONFIG_SLAB_FREELIST_RANDOM
 860/* Randomize a generic freelist */
 861static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 862			       unsigned int count)
 863{
 864	unsigned int rand;
 865	unsigned int i;
 866
 867	for (i = 0; i < count; i++)
 868		list[i] = i;
 869
 870	/* Fisher-Yates shuffle */
 871	for (i = count - 1; i > 0; i--) {
 872		rand = prandom_u32_state(state);
 873		rand %= (i + 1);
 874		swap(list[i], list[rand]);
 875	}
 876}
 877
 878/* Create a random sequence per cache */
 879int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 880				    gfp_t gfp)
 881{
 882	struct rnd_state state;
 883
 884	if (count < 2 || cachep->random_seq)
 885		return 0;
 886
 887	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 888	if (!cachep->random_seq)
 889		return -ENOMEM;
 890
 891	/* Get best entropy at this stage of boot */
 892	prandom_seed_state(&state, get_random_long());
 893
 894	freelist_randomize(&state, cachep->random_seq, count);
 895	return 0;
 896}
 897
 898/* Destroy the per-cache random freelist sequence */
 899void cache_random_seq_destroy(struct kmem_cache *cachep)
 900{
 901	kfree(cachep->random_seq);
 902	cachep->random_seq = NULL;
 903}
 904#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 905
 906#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 907#ifdef CONFIG_SLAB
 908#define SLABINFO_RIGHTS (0600)
 909#else
 910#define SLABINFO_RIGHTS (0400)
 911#endif
 912
 913static void print_slabinfo_header(struct seq_file *m)
 914{
 915	/*
 916	 * Output format version, so at least we can change it
 917	 * without _too_ many complaints.
 918	 */
 919#ifdef CONFIG_DEBUG_SLAB
 920	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 921#else
 922	seq_puts(m, "slabinfo - version: 2.1\n");
 923#endif
 924	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 925	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 926	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 927#ifdef CONFIG_DEBUG_SLAB
 928	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 929	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 930#endif
 931	seq_putc(m, '\n');
 932}
 933
 934void *slab_start(struct seq_file *m, loff_t *pos)
 935{
 936	mutex_lock(&slab_mutex);
 937	return seq_list_start(&slab_caches, *pos);
 938}
 939
 940void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 941{
 942	return seq_list_next(p, &slab_caches, pos);
 943}
 944
 945void slab_stop(struct seq_file *m, void *p)
 946{
 947	mutex_unlock(&slab_mutex);
 948}
 949
 950static void cache_show(struct kmem_cache *s, struct seq_file *m)
 951{
 952	struct slabinfo sinfo;
 953
 954	memset(&sinfo, 0, sizeof(sinfo));
 955	get_slabinfo(s, &sinfo);
 956
 957	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 958		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 959		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 960
 961	seq_printf(m, " : tunables %4u %4u %4u",
 962		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 963	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 964		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 965	slabinfo_show_stats(m, s);
 966	seq_putc(m, '\n');
 967}
 968
 969static int slab_show(struct seq_file *m, void *p)
 970{
 971	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 972
 973	if (p == slab_caches.next)
 974		print_slabinfo_header(m);
 975	cache_show(s, m);
 976	return 0;
 977}
 978
 979void dump_unreclaimable_slab(void)
 980{
 981	struct kmem_cache *s, *s2;
 982	struct slabinfo sinfo;
 983
 984	/*
 985	 * Here acquiring slab_mutex is risky since we don't prefer to get
 986	 * sleep in oom path. But, without mutex hold, it may introduce a
 987	 * risk of crash.
 988	 * Use mutex_trylock to protect the list traverse, dump nothing
 989	 * without acquiring the mutex.
 990	 */
 991	if (!mutex_trylock(&slab_mutex)) {
 992		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 993		return;
 994	}
 995
 996	pr_info("Unreclaimable slab info:\n");
 997	pr_info("Name                      Used          Total\n");
 998
 999	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1000		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1001			continue;
1002
1003		get_slabinfo(s, &sinfo);
1004
1005		if (sinfo.num_objs > 0)
1006			pr_info("%-17s %10luKB %10luKB\n", s->name,
1007				(sinfo.active_objs * s->size) / 1024,
1008				(sinfo.num_objs * s->size) / 1024);
1009	}
1010	mutex_unlock(&slab_mutex);
1011}
1012
1013#if defined(CONFIG_MEMCG_KMEM)
1014int memcg_slab_show(struct seq_file *m, void *p)
1015{
1016	/*
1017	 * Deprecated.
1018	 * Please, take a look at tools/cgroup/slabinfo.py .
1019	 */
1020	return 0;
1021}
1022#endif
1023
1024/*
1025 * slabinfo_op - iterator that generates /proc/slabinfo
1026 *
1027 * Output layout:
1028 * cache-name
1029 * num-active-objs
1030 * total-objs
1031 * object size
1032 * num-active-slabs
1033 * total-slabs
1034 * num-pages-per-slab
1035 * + further values on SMP and with statistics enabled
1036 */
1037static const struct seq_operations slabinfo_op = {
1038	.start = slab_start,
1039	.next = slab_next,
1040	.stop = slab_stop,
1041	.show = slab_show,
1042};
1043
1044static int slabinfo_open(struct inode *inode, struct file *file)
1045{
1046	return seq_open(file, &slabinfo_op);
1047}
1048
1049static const struct proc_ops slabinfo_proc_ops = {
1050	.proc_flags	= PROC_ENTRY_PERMANENT,
1051	.proc_open	= slabinfo_open,
1052	.proc_read	= seq_read,
1053	.proc_write	= slabinfo_write,
1054	.proc_lseek	= seq_lseek,
1055	.proc_release	= seq_release,
1056};
1057
1058static int __init slab_proc_init(void)
1059{
1060	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1061	return 0;
1062}
1063module_init(slab_proc_init);
1064
1065#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1066
1067static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1068					   gfp_t flags)
1069{
1070	void *ret;
1071	size_t ks;
1072
1073	ks = ksize(p);
 
 
 
 
 
 
1074
 
1075	if (ks >= new_size) {
1076		p = kasan_krealloc((void *)p, new_size, flags);
1077		return (void *)p;
1078	}
1079
1080	ret = kmalloc_track_caller(new_size, flags);
1081	if (ret && p)
1082		memcpy(ret, p, ks);
 
 
 
 
1083
1084	return ret;
1085}
1086
1087/**
1088 * krealloc - reallocate memory. The contents will remain unchanged.
1089 * @p: object to reallocate memory for.
1090 * @new_size: how many bytes of memory are required.
1091 * @flags: the type of memory to allocate.
1092 *
1093 * The contents of the object pointed to are preserved up to the
1094 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1095 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1096 * %NULL pointer, the object pointed to is freed.
1097 *
1098 * Return: pointer to the allocated memory or %NULL in case of error
1099 */
1100void *krealloc(const void *p, size_t new_size, gfp_t flags)
1101{
1102	void *ret;
1103
1104	if (unlikely(!new_size)) {
1105		kfree(p);
1106		return ZERO_SIZE_PTR;
1107	}
1108
1109	ret = __do_krealloc(p, new_size, flags);
1110	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1111		kfree(p);
1112
1113	return ret;
1114}
1115EXPORT_SYMBOL(krealloc);
1116
1117/**
1118 * kfree_sensitive - Clear sensitive information in memory before freeing
1119 * @p: object to free memory of
1120 *
1121 * The memory of the object @p points to is zeroed before freed.
1122 * If @p is %NULL, kfree_sensitive() does nothing.
1123 *
1124 * Note: this function zeroes the whole allocated buffer which can be a good
1125 * deal bigger than the requested buffer size passed to kmalloc(). So be
1126 * careful when using this function in performance sensitive code.
1127 */
1128void kfree_sensitive(const void *p)
1129{
1130	size_t ks;
1131	void *mem = (void *)p;
1132
1133	ks = ksize(mem);
1134	if (ks)
 
1135		memzero_explicit(mem, ks);
 
1136	kfree(mem);
1137}
1138EXPORT_SYMBOL(kfree_sensitive);
1139
1140/**
1141 * ksize - get the actual amount of memory allocated for a given object
1142 * @objp: Pointer to the object
1143 *
1144 * kmalloc may internally round up allocations and return more memory
1145 * than requested. ksize() can be used to determine the actual amount of
1146 * memory allocated. The caller may use this additional memory, even though
1147 * a smaller amount of memory was initially specified with the kmalloc call.
1148 * The caller must guarantee that objp points to a valid object previously
1149 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1150 * must not be freed during the duration of the call.
1151 *
1152 * Return: size of the actual memory used by @objp in bytes
1153 */
1154size_t ksize(const void *objp)
1155{
1156	size_t size;
1157
1158	/*
1159	 * We need to check that the pointed to object is valid, and only then
1160	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1161	 * generate a more useful report at the time ksize() is called (rather
1162	 * than later where behaviour is undefined due to potential
1163	 * use-after-free or double-free).
1164	 *
1165	 * If the pointed to memory is invalid we return 0, to avoid users of
 
 
 
1166	 * ksize() writing to and potentially corrupting the memory region.
1167	 *
1168	 * We want to perform the check before __ksize(), to avoid potentially
1169	 * crashing in __ksize() due to accessing invalid metadata.
1170	 */
1171	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1172		return 0;
1173
1174	size = __ksize(objp);
1175	/*
1176	 * We assume that ksize callers could use whole allocated area,
1177	 * so we need to unpoison this area.
1178	 */
1179	kasan_unpoison_shadow(objp, size);
1180	return size;
1181}
1182EXPORT_SYMBOL(ksize);
1183
1184/* Tracepoints definitions. */
1185EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1186EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1187EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1188EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1189EXPORT_TRACEPOINT_SYMBOL(kfree);
1190EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1191
1192int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1193{
1194	if (__should_failslab(s, gfpflags))
1195		return -ENOMEM;
1196	return 0;
1197}
1198ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27#include <linux/stackdepot.h>
 
 
  28
  29#include "internal.h"
 
  30#include "slab.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/kmem.h>
  34
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
 
 
 
 
 
 
 
 
  40static LIST_HEAD(slab_caches_to_rcu_destroy);
  41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  43		    slab_caches_to_rcu_destroy_workfn);
  44
  45/*
  46 * Set of flags that will prevent slab merging
  47 */
  48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  49		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  50		SLAB_FAILSLAB | kasan_never_merge())
  51
  52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  53			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  54
  55/*
  56 * Merge control. If this is set then no merging of slab caches will occur.
  57 */
  58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  59
  60static int __init setup_slab_nomerge(char *str)
  61{
  62	slab_nomerge = true;
  63	return 1;
  64}
  65
  66static int __init setup_slab_merge(char *str)
  67{
  68	slab_nomerge = false;
  69	return 1;
  70}
  71
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  75#endif
  76
  77__setup("slab_nomerge", setup_slab_nomerge);
  78__setup("slab_merge", setup_slab_merge);
  79
  80/*
  81 * Determine the size of a slab object
  82 */
  83unsigned int kmem_cache_size(struct kmem_cache *s)
  84{
  85	return s->object_size;
  86}
  87EXPORT_SYMBOL(kmem_cache_size);
  88
  89#ifdef CONFIG_DEBUG_VM
  90static int kmem_cache_sanity_check(const char *name, unsigned int size)
  91{
  92	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 
  93		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  94		return -EINVAL;
  95	}
  96
  97	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  98	return 0;
  99}
 100#else
 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 102{
 103	return 0;
 104}
 105#endif
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/*
 108 * Figure out what the alignment of the objects will be given a set of
 109 * flags, a user specified alignment and the size of the objects.
 110 */
 111static unsigned int calculate_alignment(slab_flags_t flags,
 112		unsigned int align, unsigned int size)
 113{
 114	/*
 115	 * If the user wants hardware cache aligned objects then follow that
 116	 * suggestion if the object is sufficiently large.
 117	 *
 118	 * The hardware cache alignment cannot override the specified
 119	 * alignment though. If that is greater then use it.
 120	 */
 121	if (flags & SLAB_HWCACHE_ALIGN) {
 122		unsigned int ralign;
 123
 124		ralign = cache_line_size();
 125		while (size <= ralign / 2)
 126			ralign /= 2;
 127		align = max(align, ralign);
 128	}
 129
 130	align = max(align, arch_slab_minalign());
 
 131
 132	return ALIGN(align, sizeof(void *));
 133}
 134
 135/*
 136 * Find a mergeable slab cache
 137 */
 138int slab_unmergeable(struct kmem_cache *s)
 139{
 140	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 141		return 1;
 142
 143	if (s->ctor)
 144		return 1;
 145
 146#ifdef CONFIG_HARDENED_USERCOPY
 147	if (s->usersize)
 148		return 1;
 149#endif
 150
 151	/*
 152	 * We may have set a slab to be unmergeable during bootstrap.
 153	 */
 154	if (s->refcount < 0)
 155		return 1;
 156
 157	return 0;
 158}
 159
 160struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 161		slab_flags_t flags, const char *name, void (*ctor)(void *))
 162{
 163	struct kmem_cache *s;
 164
 165	if (slab_nomerge)
 166		return NULL;
 167
 168	if (ctor)
 169		return NULL;
 170
 171	size = ALIGN(size, sizeof(void *));
 172	align = calculate_alignment(flags, align, size);
 173	size = ALIGN(size, align);
 174	flags = kmem_cache_flags(size, flags, name);
 175
 176	if (flags & SLAB_NEVER_MERGE)
 177		return NULL;
 178
 179	list_for_each_entry_reverse(s, &slab_caches, list) {
 180		if (slab_unmergeable(s))
 181			continue;
 182
 183		if (size > s->size)
 184			continue;
 185
 186		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 187			continue;
 188		/*
 189		 * Check if alignment is compatible.
 190		 * Courtesy of Adrian Drzewiecki
 191		 */
 192		if ((s->size & ~(align - 1)) != s->size)
 193			continue;
 194
 195		if (s->size - size >= sizeof(void *))
 196			continue;
 197
 198		if (IS_ENABLED(CONFIG_SLAB) && align &&
 199			(align > s->align || s->align % align))
 200			continue;
 201
 202		return s;
 203	}
 204	return NULL;
 205}
 206
 207static struct kmem_cache *create_cache(const char *name,
 208		unsigned int object_size, unsigned int align,
 209		slab_flags_t flags, unsigned int useroffset,
 210		unsigned int usersize, void (*ctor)(void *),
 211		struct kmem_cache *root_cache)
 212{
 213	struct kmem_cache *s;
 214	int err;
 215
 216	if (WARN_ON(useroffset + usersize > object_size))
 217		useroffset = usersize = 0;
 218
 219	err = -ENOMEM;
 220	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 221	if (!s)
 222		goto out;
 223
 224	s->name = name;
 225	s->size = s->object_size = object_size;
 226	s->align = align;
 227	s->ctor = ctor;
 228#ifdef CONFIG_HARDENED_USERCOPY
 229	s->useroffset = useroffset;
 230	s->usersize = usersize;
 231#endif
 232
 233	err = __kmem_cache_create(s, flags);
 234	if (err)
 235		goto out_free_cache;
 236
 237	s->refcount = 1;
 238	list_add(&s->list, &slab_caches);
 239out:
 240	if (err)
 241		return ERR_PTR(err);
 242	return s;
 243
 244out_free_cache:
 245	kmem_cache_free(kmem_cache, s);
 246	goto out;
 247}
 248
 249/**
 250 * kmem_cache_create_usercopy - Create a cache with a region suitable
 251 * for copying to userspace
 252 * @name: A string which is used in /proc/slabinfo to identify this cache.
 253 * @size: The size of objects to be created in this cache.
 254 * @align: The required alignment for the objects.
 255 * @flags: SLAB flags
 256 * @useroffset: Usercopy region offset
 257 * @usersize: Usercopy region size
 258 * @ctor: A constructor for the objects.
 259 *
 260 * Cannot be called within a interrupt, but can be interrupted.
 261 * The @ctor is run when new pages are allocated by the cache.
 262 *
 263 * The flags are
 264 *
 265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 266 * to catch references to uninitialised memory.
 267 *
 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 269 * for buffer overruns.
 270 *
 271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 272 * cacheline.  This can be beneficial if you're counting cycles as closely
 273 * as davem.
 274 *
 275 * Return: a pointer to the cache on success, NULL on failure.
 276 */
 277struct kmem_cache *
 278kmem_cache_create_usercopy(const char *name,
 279		  unsigned int size, unsigned int align,
 280		  slab_flags_t flags,
 281		  unsigned int useroffset, unsigned int usersize,
 282		  void (*ctor)(void *))
 283{
 284	struct kmem_cache *s = NULL;
 285	const char *cache_name;
 286	int err;
 287
 288#ifdef CONFIG_SLUB_DEBUG
 289	/*
 290	 * If no slub_debug was enabled globally, the static key is not yet
 291	 * enabled by setup_slub_debug(). Enable it if the cache is being
 292	 * created with any of the debugging flags passed explicitly.
 293	 * It's also possible that this is the first cache created with
 294	 * SLAB_STORE_USER and we should init stack_depot for it.
 295	 */
 296	if (flags & SLAB_DEBUG_FLAGS)
 297		static_branch_enable(&slub_debug_enabled);
 298	if (flags & SLAB_STORE_USER)
 299		stack_depot_init();
 300#endif
 301
 302	mutex_lock(&slab_mutex);
 303
 304	err = kmem_cache_sanity_check(name, size);
 305	if (err) {
 306		goto out_unlock;
 307	}
 308
 309	/* Refuse requests with allocator specific flags */
 310	if (flags & ~SLAB_FLAGS_PERMITTED) {
 311		err = -EINVAL;
 312		goto out_unlock;
 313	}
 314
 315	/*
 316	 * Some allocators will constraint the set of valid flags to a subset
 317	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 318	 * case, and we'll just provide them with a sanitized version of the
 319	 * passed flags.
 320	 */
 321	flags &= CACHE_CREATE_MASK;
 322
 323	/* Fail closed on bad usersize of useroffset values. */
 324	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 325	    WARN_ON(!usersize && useroffset) ||
 326	    WARN_ON(size < usersize || size - usersize < useroffset))
 327		usersize = useroffset = 0;
 328
 329	if (!usersize)
 330		s = __kmem_cache_alias(name, size, align, flags, ctor);
 331	if (s)
 332		goto out_unlock;
 333
 334	cache_name = kstrdup_const(name, GFP_KERNEL);
 335	if (!cache_name) {
 336		err = -ENOMEM;
 337		goto out_unlock;
 338	}
 339
 340	s = create_cache(cache_name, size,
 341			 calculate_alignment(flags, align, size),
 342			 flags, useroffset, usersize, ctor, NULL);
 343	if (IS_ERR(s)) {
 344		err = PTR_ERR(s);
 345		kfree_const(cache_name);
 346	}
 347
 348out_unlock:
 349	mutex_unlock(&slab_mutex);
 350
 
 
 
 351	if (err) {
 352		if (flags & SLAB_PANIC)
 353			panic("%s: Failed to create slab '%s'. Error %d\n",
 354				__func__, name, err);
 355		else {
 356			pr_warn("%s(%s) failed with error %d\n",
 357				__func__, name, err);
 358			dump_stack();
 359		}
 360		return NULL;
 361	}
 362	return s;
 363}
 364EXPORT_SYMBOL(kmem_cache_create_usercopy);
 365
 366/**
 367 * kmem_cache_create - Create a cache.
 368 * @name: A string which is used in /proc/slabinfo to identify this cache.
 369 * @size: The size of objects to be created in this cache.
 370 * @align: The required alignment for the objects.
 371 * @flags: SLAB flags
 372 * @ctor: A constructor for the objects.
 373 *
 374 * Cannot be called within a interrupt, but can be interrupted.
 375 * The @ctor is run when new pages are allocated by the cache.
 376 *
 377 * The flags are
 378 *
 379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 380 * to catch references to uninitialised memory.
 381 *
 382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 383 * for buffer overruns.
 384 *
 385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 386 * cacheline.  This can be beneficial if you're counting cycles as closely
 387 * as davem.
 388 *
 389 * Return: a pointer to the cache on success, NULL on failure.
 390 */
 391struct kmem_cache *
 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 393		slab_flags_t flags, void (*ctor)(void *))
 394{
 395	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 396					  ctor);
 397}
 398EXPORT_SYMBOL(kmem_cache_create);
 399
 400#ifdef SLAB_SUPPORTS_SYSFS
 401/*
 402 * For a given kmem_cache, kmem_cache_destroy() should only be called
 403 * once or there will be a use-after-free problem. The actual deletion
 404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 405 * protection. So they are now done without holding those locks.
 406 *
 407 * Note that there will be a slight delay in the deletion of sysfs files
 408 * if kmem_cache_release() is called indrectly from a work function.
 409 */
 410static void kmem_cache_release(struct kmem_cache *s)
 411{
 412	sysfs_slab_unlink(s);
 413	sysfs_slab_release(s);
 414}
 415#else
 416static void kmem_cache_release(struct kmem_cache *s)
 417{
 418	slab_kmem_cache_release(s);
 419}
 420#endif
 421
 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 423{
 424	LIST_HEAD(to_destroy);
 425	struct kmem_cache *s, *s2;
 426
 427	/*
 428	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 429	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 430	 * through RCU and the associated kmem_cache are dereferenced
 431	 * while freeing the pages, so the kmem_caches should be freed only
 432	 * after the pending RCU operations are finished.  As rcu_barrier()
 433	 * is a pretty slow operation, we batch all pending destructions
 434	 * asynchronously.
 435	 */
 436	mutex_lock(&slab_mutex);
 437	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 438	mutex_unlock(&slab_mutex);
 439
 440	if (list_empty(&to_destroy))
 441		return;
 442
 443	rcu_barrier();
 444
 445	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 446		debugfs_slab_release(s);
 447		kfence_shutdown_cache(s);
 448		kmem_cache_release(s);
 
 
 449	}
 450}
 451
 452static int shutdown_cache(struct kmem_cache *s)
 453{
 454	/* free asan quarantined objects */
 455	kasan_cache_shutdown(s);
 456
 457	if (__kmem_cache_shutdown(s) != 0)
 458		return -EBUSY;
 459
 460	list_del(&s->list);
 461
 462	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 
 
 
 463		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 464		schedule_work(&slab_caches_to_rcu_destroy_work);
 465	} else {
 466		kfence_shutdown_cache(s);
 467		debugfs_slab_release(s);
 
 
 
 
 468	}
 469
 470	return 0;
 471}
 472
 473void slab_kmem_cache_release(struct kmem_cache *s)
 474{
 475	__kmem_cache_release(s);
 476	kfree_const(s->name);
 477	kmem_cache_free(kmem_cache, s);
 478}
 479
 480void kmem_cache_destroy(struct kmem_cache *s)
 481{
 482	int refcnt;
 483	bool rcu_set;
 484
 485	if (unlikely(!s) || !kasan_check_byte(s))
 486		return;
 487
 488	cpus_read_lock();
 
 
 489	mutex_lock(&slab_mutex);
 490
 491	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
 492
 493	refcnt = --s->refcount;
 494	if (refcnt)
 495		goto out_unlock;
 496
 497	WARN(shutdown_cache(s),
 498	     "%s %s: Slab cache still has objects when called from %pS",
 499	     __func__, s->name, (void *)_RET_IP_);
 
 
 
 500out_unlock:
 501	mutex_unlock(&slab_mutex);
 502	cpus_read_unlock();
 503	if (!refcnt && !rcu_set)
 504		kmem_cache_release(s);
 505}
 506EXPORT_SYMBOL(kmem_cache_destroy);
 507
 508/**
 509 * kmem_cache_shrink - Shrink a cache.
 510 * @cachep: The cache to shrink.
 511 *
 512 * Releases as many slabs as possible for a cache.
 513 * To help debugging, a zero exit status indicates all slabs were released.
 514 *
 515 * Return: %0 if all slabs were released, non-zero otherwise
 516 */
 517int kmem_cache_shrink(struct kmem_cache *cachep)
 518{
 
 
 
 
 519	kasan_cache_shrink(cachep);
 520
 521	return __kmem_cache_shrink(cachep);
 
 
 522}
 523EXPORT_SYMBOL(kmem_cache_shrink);
 524
 525bool slab_is_available(void)
 526{
 527	return slab_state >= UP;
 528}
 529
 530#ifdef CONFIG_PRINTK
 531/**
 532 * kmem_valid_obj - does the pointer reference a valid slab object?
 533 * @object: pointer to query.
 534 *
 535 * Return: %true if the pointer is to a not-yet-freed object from
 536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 537 * is to an already-freed object, and %false otherwise.
 538 */
 539bool kmem_valid_obj(void *object)
 540{
 541	struct folio *folio;
 542
 543	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 544	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 545		return false;
 546	folio = virt_to_folio(object);
 547	return folio_test_slab(folio);
 548}
 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
 550
 551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 552{
 553	if (__kfence_obj_info(kpp, object, slab))
 554		return;
 555	__kmem_obj_info(kpp, object, slab);
 556}
 557
 558/**
 559 * kmem_dump_obj - Print available slab provenance information
 560 * @object: slab object for which to find provenance information.
 561 *
 562 * This function uses pr_cont(), so that the caller is expected to have
 563 * printed out whatever preamble is appropriate.  The provenance information
 564 * depends on the type of object and on how much debugging is enabled.
 565 * For a slab-cache object, the fact that it is a slab object is printed,
 566 * and, if available, the slab name, return address, and stack trace from
 567 * the allocation and last free path of that object.
 568 *
 569 * This function will splat if passed a pointer to a non-slab object.
 570 * If you are not sure what type of object you have, you should instead
 571 * use mem_dump_obj().
 572 */
 573void kmem_dump_obj(void *object)
 574{
 575	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 576	int i;
 577	struct slab *slab;
 578	unsigned long ptroffset;
 579	struct kmem_obj_info kp = { };
 580
 581	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 582		return;
 583	slab = virt_to_slab(object);
 584	if (WARN_ON_ONCE(!slab)) {
 585		pr_cont(" non-slab memory.\n");
 586		return;
 587	}
 588	kmem_obj_info(&kp, object, slab);
 589	if (kp.kp_slab_cache)
 590		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 591	else
 592		pr_cont(" slab%s", cp);
 593	if (is_kfence_address(object))
 594		pr_cont(" (kfence)");
 595	if (kp.kp_objp)
 596		pr_cont(" start %px", kp.kp_objp);
 597	if (kp.kp_data_offset)
 598		pr_cont(" data offset %lu", kp.kp_data_offset);
 599	if (kp.kp_objp) {
 600		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 601		pr_cont(" pointer offset %lu", ptroffset);
 602	}
 603	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 604		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 605	if (kp.kp_ret)
 606		pr_cont(" allocated at %pS\n", kp.kp_ret);
 607	else
 608		pr_cont("\n");
 609	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 610		if (!kp.kp_stack[i])
 611			break;
 612		pr_info("    %pS\n", kp.kp_stack[i]);
 613	}
 614
 615	if (kp.kp_free_stack[0])
 616		pr_cont(" Free path:\n");
 617
 618	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 619		if (!kp.kp_free_stack[i])
 620			break;
 621		pr_info("    %pS\n", kp.kp_free_stack[i]);
 622	}
 623
 624}
 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
 626#endif
 627
 628#ifndef CONFIG_SLOB
 629/* Create a cache during boot when no slab services are available yet */
 630void __init create_boot_cache(struct kmem_cache *s, const char *name,
 631		unsigned int size, slab_flags_t flags,
 632		unsigned int useroffset, unsigned int usersize)
 633{
 634	int err;
 635	unsigned int align = ARCH_KMALLOC_MINALIGN;
 636
 637	s->name = name;
 638	s->size = s->object_size = size;
 639
 640	/*
 641	 * For power of two sizes, guarantee natural alignment for kmalloc
 642	 * caches, regardless of SL*B debugging options.
 643	 */
 644	if (is_power_of_2(size))
 645		align = max(align, size);
 646	s->align = calculate_alignment(flags, align, size);
 647
 648#ifdef CONFIG_HARDENED_USERCOPY
 649	s->useroffset = useroffset;
 650	s->usersize = usersize;
 651#endif
 652
 653	err = __kmem_cache_create(s, flags);
 654
 655	if (err)
 656		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 657					name, size, err);
 658
 659	s->refcount = -1;	/* Exempt from merging for now */
 660}
 661
 662struct kmem_cache *__init create_kmalloc_cache(const char *name,
 663		unsigned int size, slab_flags_t flags,
 664		unsigned int useroffset, unsigned int usersize)
 665{
 666	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 667
 668	if (!s)
 669		panic("Out of memory when creating slab %s\n", name);
 670
 671	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
 672								usersize);
 673	kasan_cache_create_kmalloc(s);
 674	list_add(&s->list, &slab_caches);
 675	s->refcount = 1;
 676	return s;
 677}
 678
 679struct kmem_cache *
 680kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 681{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 682EXPORT_SYMBOL(kmalloc_caches);
 683
 684/*
 685 * Conversion table for small slabs sizes / 8 to the index in the
 686 * kmalloc array. This is necessary for slabs < 192 since we have non power
 687 * of two cache sizes there. The size of larger slabs can be determined using
 688 * fls.
 689 */
 690static u8 size_index[24] __ro_after_init = {
 691	3,	/* 8 */
 692	4,	/* 16 */
 693	5,	/* 24 */
 694	5,	/* 32 */
 695	6,	/* 40 */
 696	6,	/* 48 */
 697	6,	/* 56 */
 698	6,	/* 64 */
 699	1,	/* 72 */
 700	1,	/* 80 */
 701	1,	/* 88 */
 702	1,	/* 96 */
 703	7,	/* 104 */
 704	7,	/* 112 */
 705	7,	/* 120 */
 706	7,	/* 128 */
 707	2,	/* 136 */
 708	2,	/* 144 */
 709	2,	/* 152 */
 710	2,	/* 160 */
 711	2,	/* 168 */
 712	2,	/* 176 */
 713	2,	/* 184 */
 714	2	/* 192 */
 715};
 716
 717static inline unsigned int size_index_elem(unsigned int bytes)
 718{
 719	return (bytes - 1) / 8;
 720}
 721
 722/*
 723 * Find the kmem_cache structure that serves a given size of
 724 * allocation
 725 */
 726struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 727{
 728	unsigned int index;
 729
 730	if (size <= 192) {
 731		if (!size)
 732			return ZERO_SIZE_PTR;
 733
 734		index = size_index[size_index_elem(size)];
 735	} else {
 736		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 737			return NULL;
 738		index = fls(size - 1);
 739	}
 740
 741	return kmalloc_caches[kmalloc_type(flags)][index];
 742}
 743
 744size_t kmalloc_size_roundup(size_t size)
 745{
 746	struct kmem_cache *c;
 747
 748	/* Short-circuit the 0 size case. */
 749	if (unlikely(size == 0))
 750		return 0;
 751	/* Short-circuit saturated "too-large" case. */
 752	if (unlikely(size == SIZE_MAX))
 753		return SIZE_MAX;
 754	/* Above the smaller buckets, size is a multiple of page size. */
 755	if (size > KMALLOC_MAX_CACHE_SIZE)
 756		return PAGE_SIZE << get_order(size);
 757
 758	/* The flags don't matter since size_index is common to all. */
 759	c = kmalloc_slab(size, GFP_KERNEL);
 760	return c ? c->object_size : 0;
 761}
 762EXPORT_SYMBOL(kmalloc_size_roundup);
 763
 764#ifdef CONFIG_ZONE_DMA
 765#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 766#else
 767#define KMALLOC_DMA_NAME(sz)
 768#endif
 769
 770#ifdef CONFIG_MEMCG_KMEM
 771#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 772#else
 773#define KMALLOC_CGROUP_NAME(sz)
 774#endif
 775
 776#ifndef CONFIG_SLUB_TINY
 777#define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 778#else
 779#define KMALLOC_RCL_NAME(sz)
 780#endif
 781
 782#define INIT_KMALLOC_INFO(__size, __short_size)			\
 783{								\
 784	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 785	KMALLOC_RCL_NAME(__short_size)				\
 786	KMALLOC_CGROUP_NAME(__short_size)			\
 787	KMALLOC_DMA_NAME(__short_size)				\
 788	.size = __size,						\
 789}
 
 790
 791/*
 792 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 793 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 794 * kmalloc-2M.
 795 */
 796const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 797	INIT_KMALLOC_INFO(0, 0),
 798	INIT_KMALLOC_INFO(96, 96),
 799	INIT_KMALLOC_INFO(192, 192),
 800	INIT_KMALLOC_INFO(8, 8),
 801	INIT_KMALLOC_INFO(16, 16),
 802	INIT_KMALLOC_INFO(32, 32),
 803	INIT_KMALLOC_INFO(64, 64),
 804	INIT_KMALLOC_INFO(128, 128),
 805	INIT_KMALLOC_INFO(256, 256),
 806	INIT_KMALLOC_INFO(512, 512),
 807	INIT_KMALLOC_INFO(1024, 1k),
 808	INIT_KMALLOC_INFO(2048, 2k),
 809	INIT_KMALLOC_INFO(4096, 4k),
 810	INIT_KMALLOC_INFO(8192, 8k),
 811	INIT_KMALLOC_INFO(16384, 16k),
 812	INIT_KMALLOC_INFO(32768, 32k),
 813	INIT_KMALLOC_INFO(65536, 64k),
 814	INIT_KMALLOC_INFO(131072, 128k),
 815	INIT_KMALLOC_INFO(262144, 256k),
 816	INIT_KMALLOC_INFO(524288, 512k),
 817	INIT_KMALLOC_INFO(1048576, 1M),
 818	INIT_KMALLOC_INFO(2097152, 2M)
 
 
 
 
 
 819};
 820
 821/*
 822 * Patch up the size_index table if we have strange large alignment
 823 * requirements for the kmalloc array. This is only the case for
 824 * MIPS it seems. The standard arches will not generate any code here.
 825 *
 826 * Largest permitted alignment is 256 bytes due to the way we
 827 * handle the index determination for the smaller caches.
 828 *
 829 * Make sure that nothing crazy happens if someone starts tinkering
 830 * around with ARCH_KMALLOC_MINALIGN
 831 */
 832void __init setup_kmalloc_cache_index_table(void)
 833{
 834	unsigned int i;
 835
 836	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 837		!is_power_of_2(KMALLOC_MIN_SIZE));
 838
 839	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 840		unsigned int elem = size_index_elem(i);
 841
 842		if (elem >= ARRAY_SIZE(size_index))
 843			break;
 844		size_index[elem] = KMALLOC_SHIFT_LOW;
 845	}
 846
 847	if (KMALLOC_MIN_SIZE >= 64) {
 848		/*
 849		 * The 96 byte sized cache is not used if the alignment
 850		 * is 64 byte.
 851		 */
 852		for (i = 64 + 8; i <= 96; i += 8)
 853			size_index[size_index_elem(i)] = 7;
 854
 855	}
 856
 857	if (KMALLOC_MIN_SIZE >= 128) {
 858		/*
 859		 * The 192 byte sized cache is not used if the alignment
 860		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 861		 * instead.
 862		 */
 863		for (i = 128 + 8; i <= 192; i += 8)
 864			size_index[size_index_elem(i)] = 8;
 865	}
 866}
 867
 868static void __init
 869new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 870{
 871	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 872		flags |= SLAB_RECLAIM_ACCOUNT;
 873	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 874		if (mem_cgroup_kmem_disabled()) {
 875			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 876			return;
 877		}
 878		flags |= SLAB_ACCOUNT;
 879	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 880		flags |= SLAB_CACHE_DMA;
 881	}
 882
 883	kmalloc_caches[type][idx] = create_kmalloc_cache(
 884					kmalloc_info[idx].name[type],
 885					kmalloc_info[idx].size, flags, 0,
 886					kmalloc_info[idx].size);
 887
 888	/*
 889	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 890	 * KMALLOC_NORMAL caches.
 891	 */
 892	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 893		kmalloc_caches[type][idx]->refcount = -1;
 894}
 895
 896/*
 897 * Create the kmalloc array. Some of the regular kmalloc arrays
 898 * may already have been created because they were needed to
 899 * enable allocations for slab creation.
 900 */
 901void __init create_kmalloc_caches(slab_flags_t flags)
 902{
 903	int i;
 904	enum kmalloc_cache_type type;
 905
 906	/*
 907	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 908	 */
 909	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 910		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 911			if (!kmalloc_caches[type][i])
 912				new_kmalloc_cache(i, type, flags);
 913
 914			/*
 915			 * Caches that are not of the two-to-the-power-of size.
 916			 * These have to be created immediately after the
 917			 * earlier power of two caches
 918			 */
 919			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 920					!kmalloc_caches[type][1])
 921				new_kmalloc_cache(1, type, flags);
 922			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 923					!kmalloc_caches[type][2])
 924				new_kmalloc_cache(2, type, flags);
 925		}
 926	}
 927
 928	/* Kmalloc array is now usable */
 929	slab_state = UP;
 930}
 931
 932void free_large_kmalloc(struct folio *folio, void *object)
 933{
 934	unsigned int order = folio_order(folio);
 935
 936	if (WARN_ON_ONCE(order == 0))
 937		pr_warn_once("object pointer: 0x%p\n", object);
 938
 939	kmemleak_free(object);
 940	kasan_kfree_large(object);
 941	kmsan_kfree_large(object);
 942
 943	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
 944			      -(PAGE_SIZE << order));
 945	__free_pages(folio_page(folio, 0), order);
 946}
 947
 948static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
 949static __always_inline
 950void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
 951{
 952	struct kmem_cache *s;
 953	void *ret;
 954
 955	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 956		ret = __kmalloc_large_node(size, flags, node);
 957		trace_kmalloc(caller, ret, size,
 958			      PAGE_SIZE << get_order(size), flags, node);
 959		return ret;
 960	}
 961
 962	s = kmalloc_slab(size, flags);
 963
 964	if (unlikely(ZERO_OR_NULL_PTR(s)))
 965		return s;
 966
 967	ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
 968	ret = kasan_kmalloc(s, ret, size, flags);
 969	trace_kmalloc(caller, ret, size, s->size, flags, node);
 970	return ret;
 971}
 972
 973void *__kmalloc_node(size_t size, gfp_t flags, int node)
 974{
 975	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 976}
 977EXPORT_SYMBOL(__kmalloc_node);
 978
 979void *__kmalloc(size_t size, gfp_t flags)
 980{
 981	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
 982}
 983EXPORT_SYMBOL(__kmalloc);
 984
 985void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
 986				  int node, unsigned long caller)
 987{
 988	return __do_kmalloc_node(size, flags, node, caller);
 989}
 990EXPORT_SYMBOL(__kmalloc_node_track_caller);
 991
 992/**
 993 * kfree - free previously allocated memory
 994 * @object: pointer returned by kmalloc.
 995 *
 996 * If @object is NULL, no operation is performed.
 997 *
 998 * Don't free memory not originally allocated by kmalloc()
 999 * or you will run into trouble.
1000 */
1001void kfree(const void *object)
1002{
1003	struct folio *folio;
1004	struct slab *slab;
1005	struct kmem_cache *s;
1006
1007	trace_kfree(_RET_IP_, object);
1008
1009	if (unlikely(ZERO_OR_NULL_PTR(object)))
1010		return;
1011
1012	folio = virt_to_folio(object);
1013	if (unlikely(!folio_test_slab(folio))) {
1014		free_large_kmalloc(folio, (void *)object);
1015		return;
1016	}
1017
1018	slab = folio_slab(folio);
1019	s = slab->slab_cache;
1020	__kmem_cache_free(s, (void *)object, _RET_IP_);
1021}
1022EXPORT_SYMBOL(kfree);
1023
1024/**
1025 * __ksize -- Report full size of underlying allocation
1026 * @object: pointer to the object
1027 *
1028 * This should only be used internally to query the true size of allocations.
1029 * It is not meant to be a way to discover the usable size of an allocation
1030 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1031 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1032 * and/or FORTIFY_SOURCE.
1033 *
1034 * Return: size of the actual memory used by @object in bytes
1035 */
1036size_t __ksize(const void *object)
1037{
1038	struct folio *folio;
1039
1040	if (unlikely(object == ZERO_SIZE_PTR))
1041		return 0;
1042
1043	folio = virt_to_folio(object);
1044
1045	if (unlikely(!folio_test_slab(folio))) {
1046		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1047			return 0;
1048		if (WARN_ON(object != folio_address(folio)))
1049			return 0;
1050		return folio_size(folio);
1051	}
1052
1053#ifdef CONFIG_SLUB_DEBUG
1054	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1055#endif
1056
1057	return slab_ksize(folio_slab(folio)->slab_cache);
1058}
1059
1060void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1061{
1062	void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1063					    size, _RET_IP_);
1064
1065	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1066
1067	ret = kasan_kmalloc(s, ret, size, gfpflags);
1068	return ret;
1069}
1070EXPORT_SYMBOL(kmalloc_trace);
1071
1072void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1073			 int node, size_t size)
1074{
1075	void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1076
1077	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1078
1079	ret = kasan_kmalloc(s, ret, size, gfpflags);
1080	return ret;
1081}
1082EXPORT_SYMBOL(kmalloc_node_trace);
1083#endif /* !CONFIG_SLOB */
1084
1085gfp_t kmalloc_fix_flags(gfp_t flags)
1086{
1087	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1088
1089	flags &= ~GFP_SLAB_BUG_MASK;
1090	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1091			invalid_mask, &invalid_mask, flags, &flags);
1092	dump_stack();
1093
1094	return flags;
1095}
1096
1097/*
1098 * To avoid unnecessary overhead, we pass through large allocation requests
1099 * directly to the page allocator. We use __GFP_COMP, because we will need to
1100 * know the allocation order to free the pages properly in kfree.
1101 */
1102
1103static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1104{
 
1105	struct page *page;
1106	void *ptr = NULL;
1107	unsigned int order = get_order(size);
1108
1109	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1110		flags = kmalloc_fix_flags(flags);
1111
1112	flags |= __GFP_COMP;
1113	page = alloc_pages_node(node, flags, order);
1114	if (page) {
1115		ptr = page_address(page);
1116		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1117				      PAGE_SIZE << order);
1118	}
1119
1120	ptr = kasan_kmalloc_large(ptr, size, flags);
1121	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1122	kmemleak_alloc(ptr, size, 1, flags);
1123	kmsan_kmalloc_large(ptr, size, flags);
1124
1125	return ptr;
1126}
1127
1128void *kmalloc_large(size_t size, gfp_t flags)
1129{
1130	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1131
1132	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1133		      flags, NUMA_NO_NODE);
1134	return ret;
1135}
1136EXPORT_SYMBOL(kmalloc_large);
1137
1138void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 
1139{
1140	void *ret = __kmalloc_large_node(size, flags, node);
1141
1142	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1143		      flags, node);
1144	return ret;
1145}
1146EXPORT_SYMBOL(kmalloc_large_node);
 
1147
1148#ifdef CONFIG_SLAB_FREELIST_RANDOM
1149/* Randomize a generic freelist */
1150static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1151			       unsigned int count)
1152{
1153	unsigned int rand;
1154	unsigned int i;
1155
1156	for (i = 0; i < count; i++)
1157		list[i] = i;
1158
1159	/* Fisher-Yates shuffle */
1160	for (i = count - 1; i > 0; i--) {
1161		rand = prandom_u32_state(state);
1162		rand %= (i + 1);
1163		swap(list[i], list[rand]);
1164	}
1165}
1166
1167/* Create a random sequence per cache */
1168int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1169				    gfp_t gfp)
1170{
1171	struct rnd_state state;
1172
1173	if (count < 2 || cachep->random_seq)
1174		return 0;
1175
1176	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1177	if (!cachep->random_seq)
1178		return -ENOMEM;
1179
1180	/* Get best entropy at this stage of boot */
1181	prandom_seed_state(&state, get_random_long());
1182
1183	freelist_randomize(&state, cachep->random_seq, count);
1184	return 0;
1185}
1186
1187/* Destroy the per-cache random freelist sequence */
1188void cache_random_seq_destroy(struct kmem_cache *cachep)
1189{
1190	kfree(cachep->random_seq);
1191	cachep->random_seq = NULL;
1192}
1193#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1194
1195#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1196#ifdef CONFIG_SLAB
1197#define SLABINFO_RIGHTS (0600)
1198#else
1199#define SLABINFO_RIGHTS (0400)
1200#endif
1201
1202static void print_slabinfo_header(struct seq_file *m)
1203{
1204	/*
1205	 * Output format version, so at least we can change it
1206	 * without _too_ many complaints.
1207	 */
1208#ifdef CONFIG_DEBUG_SLAB
1209	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1210#else
1211	seq_puts(m, "slabinfo - version: 2.1\n");
1212#endif
1213	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1214	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1215	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1216#ifdef CONFIG_DEBUG_SLAB
1217	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1218	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1219#endif
1220	seq_putc(m, '\n');
1221}
1222
1223static void *slab_start(struct seq_file *m, loff_t *pos)
1224{
1225	mutex_lock(&slab_mutex);
1226	return seq_list_start(&slab_caches, *pos);
1227}
1228
1229static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1230{
1231	return seq_list_next(p, &slab_caches, pos);
1232}
1233
1234static void slab_stop(struct seq_file *m, void *p)
1235{
1236	mutex_unlock(&slab_mutex);
1237}
1238
1239static void cache_show(struct kmem_cache *s, struct seq_file *m)
1240{
1241	struct slabinfo sinfo;
1242
1243	memset(&sinfo, 0, sizeof(sinfo));
1244	get_slabinfo(s, &sinfo);
1245
1246	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1247		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1248		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1249
1250	seq_printf(m, " : tunables %4u %4u %4u",
1251		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1252	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1253		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1254	slabinfo_show_stats(m, s);
1255	seq_putc(m, '\n');
1256}
1257
1258static int slab_show(struct seq_file *m, void *p)
1259{
1260	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1261
1262	if (p == slab_caches.next)
1263		print_slabinfo_header(m);
1264	cache_show(s, m);
1265	return 0;
1266}
1267
1268void dump_unreclaimable_slab(void)
1269{
1270	struct kmem_cache *s;
1271	struct slabinfo sinfo;
1272
1273	/*
1274	 * Here acquiring slab_mutex is risky since we don't prefer to get
1275	 * sleep in oom path. But, without mutex hold, it may introduce a
1276	 * risk of crash.
1277	 * Use mutex_trylock to protect the list traverse, dump nothing
1278	 * without acquiring the mutex.
1279	 */
1280	if (!mutex_trylock(&slab_mutex)) {
1281		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1282		return;
1283	}
1284
1285	pr_info("Unreclaimable slab info:\n");
1286	pr_info("Name                      Used          Total\n");
1287
1288	list_for_each_entry(s, &slab_caches, list) {
1289		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1290			continue;
1291
1292		get_slabinfo(s, &sinfo);
1293
1294		if (sinfo.num_objs > 0)
1295			pr_info("%-17s %10luKB %10luKB\n", s->name,
1296				(sinfo.active_objs * s->size) / 1024,
1297				(sinfo.num_objs * s->size) / 1024);
1298	}
1299	mutex_unlock(&slab_mutex);
1300}
1301
 
 
 
 
 
 
 
 
 
 
 
1302/*
1303 * slabinfo_op - iterator that generates /proc/slabinfo
1304 *
1305 * Output layout:
1306 * cache-name
1307 * num-active-objs
1308 * total-objs
1309 * object size
1310 * num-active-slabs
1311 * total-slabs
1312 * num-pages-per-slab
1313 * + further values on SMP and with statistics enabled
1314 */
1315static const struct seq_operations slabinfo_op = {
1316	.start = slab_start,
1317	.next = slab_next,
1318	.stop = slab_stop,
1319	.show = slab_show,
1320};
1321
1322static int slabinfo_open(struct inode *inode, struct file *file)
1323{
1324	return seq_open(file, &slabinfo_op);
1325}
1326
1327static const struct proc_ops slabinfo_proc_ops = {
1328	.proc_flags	= PROC_ENTRY_PERMANENT,
1329	.proc_open	= slabinfo_open,
1330	.proc_read	= seq_read,
1331	.proc_write	= slabinfo_write,
1332	.proc_lseek	= seq_lseek,
1333	.proc_release	= seq_release,
1334};
1335
1336static int __init slab_proc_init(void)
1337{
1338	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1339	return 0;
1340}
1341module_init(slab_proc_init);
1342
1343#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1344
1345static __always_inline __realloc_size(2) void *
1346__do_krealloc(const void *p, size_t new_size, gfp_t flags)
1347{
1348	void *ret;
1349	size_t ks;
1350
1351	/* Check for double-free before calling ksize. */
1352	if (likely(!ZERO_OR_NULL_PTR(p))) {
1353		if (!kasan_check_byte(p))
1354			return NULL;
1355		ks = ksize(p);
1356	} else
1357		ks = 0;
1358
1359	/* If the object still fits, repoison it precisely. */
1360	if (ks >= new_size) {
1361		p = kasan_krealloc((void *)p, new_size, flags);
1362		return (void *)p;
1363	}
1364
1365	ret = kmalloc_track_caller(new_size, flags);
1366	if (ret && p) {
1367		/* Disable KASAN checks as the object's redzone is accessed. */
1368		kasan_disable_current();
1369		memcpy(ret, kasan_reset_tag(p), ks);
1370		kasan_enable_current();
1371	}
1372
1373	return ret;
1374}
1375
1376/**
1377 * krealloc - reallocate memory. The contents will remain unchanged.
1378 * @p: object to reallocate memory for.
1379 * @new_size: how many bytes of memory are required.
1380 * @flags: the type of memory to allocate.
1381 *
1382 * The contents of the object pointed to are preserved up to the
1383 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1384 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1385 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1386 *
1387 * Return: pointer to the allocated memory or %NULL in case of error
1388 */
1389void *krealloc(const void *p, size_t new_size, gfp_t flags)
1390{
1391	void *ret;
1392
1393	if (unlikely(!new_size)) {
1394		kfree(p);
1395		return ZERO_SIZE_PTR;
1396	}
1397
1398	ret = __do_krealloc(p, new_size, flags);
1399	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1400		kfree(p);
1401
1402	return ret;
1403}
1404EXPORT_SYMBOL(krealloc);
1405
1406/**
1407 * kfree_sensitive - Clear sensitive information in memory before freeing
1408 * @p: object to free memory of
1409 *
1410 * The memory of the object @p points to is zeroed before freed.
1411 * If @p is %NULL, kfree_sensitive() does nothing.
1412 *
1413 * Note: this function zeroes the whole allocated buffer which can be a good
1414 * deal bigger than the requested buffer size passed to kmalloc(). So be
1415 * careful when using this function in performance sensitive code.
1416 */
1417void kfree_sensitive(const void *p)
1418{
1419	size_t ks;
1420	void *mem = (void *)p;
1421
1422	ks = ksize(mem);
1423	if (ks) {
1424		kasan_unpoison_range(mem, ks);
1425		memzero_explicit(mem, ks);
1426	}
1427	kfree(mem);
1428}
1429EXPORT_SYMBOL(kfree_sensitive);
1430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431size_t ksize(const void *objp)
1432{
 
 
1433	/*
1434	 * We need to first check that the pointer to the object is valid.
1435	 * The KASAN report printed from ksize() is more useful, then when
1436	 * it's printed later when the behaviour could be undefined due to
1437	 * a potential use-after-free or double-free.
 
1438	 *
1439	 * We use kasan_check_byte(), which is supported for the hardware
1440	 * tag-based KASAN mode, unlike kasan_check_read/write().
1441	 *
1442	 * If the pointed to memory is invalid, we return 0 to avoid users of
1443	 * ksize() writing to and potentially corrupting the memory region.
1444	 *
1445	 * We want to perform the check before __ksize(), to avoid potentially
1446	 * crashing in __ksize() due to accessing invalid metadata.
1447	 */
1448	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1449		return 0;
1450
1451	return kfence_ksize(objp) ?: __ksize(objp);
 
 
 
 
 
 
1452}
1453EXPORT_SYMBOL(ksize);
1454
1455/* Tracepoints definitions. */
1456EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1457EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 
 
1458EXPORT_TRACEPOINT_SYMBOL(kfree);
1459EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1460
1461int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1462{
1463	if (__should_failslab(s, gfpflags))
1464		return -ENOMEM;
1465	return 0;
1466}
1467ALLOW_ERROR_INJECTION(should_failslab, ERRNO);