Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/module.h>
  16#include <linux/cpu.h>
  17#include <linux/uaccess.h>
  18#include <linux/seq_file.h>
  19#include <linux/proc_fs.h>
  20#include <linux/debugfs.h>
  21#include <asm/cacheflush.h>
  22#include <asm/tlbflush.h>
  23#include <asm/page.h>
  24#include <linux/memcontrol.h>
  25
  26#define CREATE_TRACE_POINTS
  27#include <trace/events/kmem.h>
  28
  29#include "internal.h"
  30
  31#include "slab.h"
  32
  33enum slab_state slab_state;
  34LIST_HEAD(slab_caches);
  35DEFINE_MUTEX(slab_mutex);
  36struct kmem_cache *kmem_cache;
  37
  38#ifdef CONFIG_HARDENED_USERCOPY
  39bool usercopy_fallback __ro_after_init =
  40		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
  41module_param(usercopy_fallback, bool, 0400);
  42MODULE_PARM_DESC(usercopy_fallback,
  43		"WARN instead of reject usercopy whitelist violations");
  44#endif
  45
  46static LIST_HEAD(slab_caches_to_rcu_destroy);
  47static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  48static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  49		    slab_caches_to_rcu_destroy_workfn);
  50
  51/*
  52 * Set of flags that will prevent slab merging
  53 */
  54#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  55		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  56		SLAB_FAILSLAB | SLAB_KASAN)
  57
  58#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  59			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  60
  61/*
  62 * Merge control. If this is set then no merging of slab caches will occur.
  63 */
  64static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  65
  66static int __init setup_slab_nomerge(char *str)
  67{
  68	slab_nomerge = true;
  69	return 1;
  70}
  71
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  74#endif
  75
  76__setup("slab_nomerge", setup_slab_nomerge);
  77
  78/*
  79 * Determine the size of a slab object
  80 */
  81unsigned int kmem_cache_size(struct kmem_cache *s)
  82{
  83	return s->object_size;
  84}
  85EXPORT_SYMBOL(kmem_cache_size);
  86
  87#ifdef CONFIG_DEBUG_VM
  88static int kmem_cache_sanity_check(const char *name, unsigned int size)
  89{
 
 
  90	if (!name || in_interrupt() || size < sizeof(void *) ||
  91		size > KMALLOC_MAX_SIZE) {
  92		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  93		return -EINVAL;
  94	}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  97	return 0;
  98}
  99#else
 100static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 101{
 102	return 0;
 103}
 104#endif
 105
 106void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 
 107{
 108	size_t i;
 109
 110	for (i = 0; i < nr; i++) {
 111		if (s)
 112			kmem_cache_free(s, p[i]);
 113		else
 114			kfree(p[i]);
 115	}
 116}
 117
 118int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 119								void **p)
 120{
 121	size_t i;
 122
 123	for (i = 0; i < nr; i++) {
 124		void *x = p[i] = kmem_cache_alloc(s, flags);
 125		if (!x) {
 126			__kmem_cache_free_bulk(s, i, p);
 127			return 0;
 128		}
 
 
 129	}
 130	return i;
 
 
 
 
 131}
 
 132
 133/*
 134 * Figure out what the alignment of the objects will be given a set of
 135 * flags, a user specified alignment and the size of the objects.
 136 */
 137static unsigned int calculate_alignment(slab_flags_t flags,
 138		unsigned int align, unsigned int size)
 139{
 140	/*
 141	 * If the user wants hardware cache aligned objects then follow that
 142	 * suggestion if the object is sufficiently large.
 143	 *
 144	 * The hardware cache alignment cannot override the specified
 145	 * alignment though. If that is greater then use it.
 146	 */
 147	if (flags & SLAB_HWCACHE_ALIGN) {
 148		unsigned int ralign;
 149
 150		ralign = cache_line_size();
 151		while (size <= ralign / 2)
 152			ralign /= 2;
 153		align = max(align, ralign);
 154	}
 155
 156	if (align < ARCH_SLAB_MINALIGN)
 157		align = ARCH_SLAB_MINALIGN;
 158
 159	return ALIGN(align, sizeof(void *));
 160}
 161
 162/*
 163 * Find a mergeable slab cache
 164 */
 165int slab_unmergeable(struct kmem_cache *s)
 166{
 167	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 168		return 1;
 169
 170	if (s->ctor)
 171		return 1;
 172
 173	if (s->usersize)
 174		return 1;
 175
 176	/*
 177	 * We may have set a slab to be unmergeable during bootstrap.
 178	 */
 179	if (s->refcount < 0)
 180		return 1;
 181
 182	return 0;
 183}
 184
 185struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 186		slab_flags_t flags, const char *name, void (*ctor)(void *))
 187{
 188	struct kmem_cache *s;
 189
 190	if (slab_nomerge)
 191		return NULL;
 192
 193	if (ctor)
 194		return NULL;
 195
 196	size = ALIGN(size, sizeof(void *));
 197	align = calculate_alignment(flags, align, size);
 198	size = ALIGN(size, align);
 199	flags = kmem_cache_flags(size, flags, name, NULL);
 200
 201	if (flags & SLAB_NEVER_MERGE)
 202		return NULL;
 203
 204	list_for_each_entry_reverse(s, &slab_caches, list) {
 205		if (slab_unmergeable(s))
 206			continue;
 207
 208		if (size > s->size)
 209			continue;
 210
 211		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 212			continue;
 213		/*
 214		 * Check if alignment is compatible.
 215		 * Courtesy of Adrian Drzewiecki
 216		 */
 217		if ((s->size & ~(align - 1)) != s->size)
 218			continue;
 219
 220		if (s->size - size >= sizeof(void *))
 221			continue;
 222
 223		if (IS_ENABLED(CONFIG_SLAB) && align &&
 224			(align > s->align || s->align % align))
 225			continue;
 226
 227		return s;
 228	}
 229	return NULL;
 230}
 231
 232static struct kmem_cache *create_cache(const char *name,
 233		unsigned int object_size, unsigned int align,
 234		slab_flags_t flags, unsigned int useroffset,
 235		unsigned int usersize, void (*ctor)(void *),
 236		struct kmem_cache *root_cache)
 237{
 238	struct kmem_cache *s;
 239	int err;
 240
 241	if (WARN_ON(useroffset + usersize > object_size))
 242		useroffset = usersize = 0;
 243
 244	err = -ENOMEM;
 245	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 246	if (!s)
 247		goto out;
 248
 249	s->name = name;
 250	s->size = s->object_size = object_size;
 
 251	s->align = align;
 252	s->ctor = ctor;
 253	s->useroffset = useroffset;
 254	s->usersize = usersize;
 
 
 255
 256	err = __kmem_cache_create(s, flags);
 257	if (err)
 258		goto out_free_cache;
 259
 260	s->refcount = 1;
 261	list_add(&s->list, &slab_caches);
 
 262out:
 263	if (err)
 264		return ERR_PTR(err);
 265	return s;
 266
 267out_free_cache:
 268	kmem_cache_free(kmem_cache, s);
 
 269	goto out;
 270}
 271
 272/**
 273 * kmem_cache_create_usercopy - Create a cache with a region suitable
 274 * for copying to userspace
 275 * @name: A string which is used in /proc/slabinfo to identify this cache.
 276 * @size: The size of objects to be created in this cache.
 277 * @align: The required alignment for the objects.
 278 * @flags: SLAB flags
 279 * @useroffset: Usercopy region offset
 280 * @usersize: Usercopy region size
 281 * @ctor: A constructor for the objects.
 282 *
 
 283 * Cannot be called within a interrupt, but can be interrupted.
 284 * The @ctor is run when new pages are allocated by the cache.
 285 *
 286 * The flags are
 287 *
 288 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 289 * to catch references to uninitialised memory.
 290 *
 291 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 292 * for buffer overruns.
 293 *
 294 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 295 * cacheline.  This can be beneficial if you're counting cycles as closely
 296 * as davem.
 297 *
 298 * Return: a pointer to the cache on success, NULL on failure.
 299 */
 300struct kmem_cache *
 301kmem_cache_create_usercopy(const char *name,
 302		  unsigned int size, unsigned int align,
 303		  slab_flags_t flags,
 304		  unsigned int useroffset, unsigned int usersize,
 305		  void (*ctor)(void *))
 306{
 307	struct kmem_cache *s = NULL;
 308	const char *cache_name;
 309	int err;
 310
 311	get_online_cpus();
 312	get_online_mems();
 313
 314	mutex_lock(&slab_mutex);
 315
 316	err = kmem_cache_sanity_check(name, size);
 317	if (err) {
 318		goto out_unlock;
 319	}
 320
 321	/* Refuse requests with allocator specific flags */
 322	if (flags & ~SLAB_FLAGS_PERMITTED) {
 323		err = -EINVAL;
 324		goto out_unlock;
 325	}
 326
 327	/*
 328	 * Some allocators will constraint the set of valid flags to a subset
 329	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 330	 * case, and we'll just provide them with a sanitized version of the
 331	 * passed flags.
 332	 */
 333	flags &= CACHE_CREATE_MASK;
 334
 335	/* Fail closed on bad usersize of useroffset values. */
 336	if (WARN_ON(!usersize && useroffset) ||
 337	    WARN_ON(size < usersize || size - usersize < useroffset))
 338		usersize = useroffset = 0;
 339
 340	if (!usersize)
 341		s = __kmem_cache_alias(name, size, align, flags, ctor);
 342	if (s)
 343		goto out_unlock;
 344
 345	cache_name = kstrdup_const(name, GFP_KERNEL);
 346	if (!cache_name) {
 347		err = -ENOMEM;
 348		goto out_unlock;
 349	}
 350
 351	s = create_cache(cache_name, size,
 352			 calculate_alignment(flags, align, size),
 353			 flags, useroffset, usersize, ctor, NULL);
 354	if (IS_ERR(s)) {
 355		err = PTR_ERR(s);
 356		kfree_const(cache_name);
 357	}
 358
 359out_unlock:
 360	mutex_unlock(&slab_mutex);
 361
 362	put_online_mems();
 363	put_online_cpus();
 364
 365	if (err) {
 366		if (flags & SLAB_PANIC)
 367			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 368				name, err);
 369		else {
 370			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 371				name, err);
 372			dump_stack();
 373		}
 374		return NULL;
 375	}
 376	return s;
 377}
 378EXPORT_SYMBOL(kmem_cache_create_usercopy);
 379
 380/**
 381 * kmem_cache_create - Create a cache.
 382 * @name: A string which is used in /proc/slabinfo to identify this cache.
 383 * @size: The size of objects to be created in this cache.
 384 * @align: The required alignment for the objects.
 385 * @flags: SLAB flags
 386 * @ctor: A constructor for the objects.
 387 *
 388 * Cannot be called within a interrupt, but can be interrupted.
 389 * The @ctor is run when new pages are allocated by the cache.
 390 *
 391 * The flags are
 392 *
 393 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 394 * to catch references to uninitialised memory.
 395 *
 396 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 397 * for buffer overruns.
 398 *
 399 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 400 * cacheline.  This can be beneficial if you're counting cycles as closely
 401 * as davem.
 402 *
 403 * Return: a pointer to the cache on success, NULL on failure.
 
 
 404 */
 405struct kmem_cache *
 406kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 407		slab_flags_t flags, void (*ctor)(void *))
 408{
 409	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 410					  ctor);
 411}
 412EXPORT_SYMBOL(kmem_cache_create);
 413
 414static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 415{
 416	LIST_HEAD(to_destroy);
 417	struct kmem_cache *s, *s2;
 418
 419	/*
 420	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 421	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 422	 * through RCU and the associated kmem_cache are dereferenced
 423	 * while freeing the pages, so the kmem_caches should be freed only
 424	 * after the pending RCU operations are finished.  As rcu_barrier()
 425	 * is a pretty slow operation, we batch all pending destructions
 426	 * asynchronously.
 427	 */
 428	mutex_lock(&slab_mutex);
 429	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 430	mutex_unlock(&slab_mutex);
 431
 432	if (list_empty(&to_destroy))
 433		return;
 434
 435	rcu_barrier();
 
 
 436
 437	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 438#ifdef SLAB_SUPPORTS_SYSFS
 439		sysfs_slab_release(s);
 440#else
 441		slab_kmem_cache_release(s);
 442#endif
 
 443	}
 
 
 
 
 
 
 444}
 445
 446static int shutdown_cache(struct kmem_cache *s)
 447{
 448	/* free asan quarantined objects */
 449	kasan_cache_shutdown(s);
 450
 451	if (__kmem_cache_shutdown(s) != 0)
 452		return -EBUSY;
 
 453
 454	list_del(&s->list);
 
 
 455
 456	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 457#ifdef SLAB_SUPPORTS_SYSFS
 458		sysfs_slab_unlink(s);
 459#endif
 460		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 461		schedule_work(&slab_caches_to_rcu_destroy_work);
 462	} else {
 463#ifdef SLAB_SUPPORTS_SYSFS
 464		sysfs_slab_unlink(s);
 465		sysfs_slab_release(s);
 466#else
 467		slab_kmem_cache_release(s);
 468#endif
 469	}
 470
 471	return 0;
 472}
 
 473
 474void slab_kmem_cache_release(struct kmem_cache *s)
 475{
 476	__kmem_cache_release(s);
 477	kfree_const(s->name);
 478	kmem_cache_free(kmem_cache, s);
 479}
 480
 481void kmem_cache_destroy(struct kmem_cache *s)
 482{
 483	int err;
 484
 485	if (unlikely(!s))
 486		return;
 487
 488	get_online_cpus();
 489	get_online_mems();
 490
 491	mutex_lock(&slab_mutex);
 492
 493	s->refcount--;
 494	if (s->refcount)
 495		goto out_unlock;
 496
 497	err = shutdown_cache(s);
 498	if (err) {
 499		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 500		       s->name);
 
 
 
 
 
 
 
 501		dump_stack();
 
 502	}
 503out_unlock:
 504	mutex_unlock(&slab_mutex);
 505
 506	put_online_mems();
 507	put_online_cpus();
 508}
 509EXPORT_SYMBOL(kmem_cache_destroy);
 510
 511/**
 512 * kmem_cache_shrink - Shrink a cache.
 513 * @cachep: The cache to shrink.
 514 *
 515 * Releases as many slabs as possible for a cache.
 516 * To help debugging, a zero exit status indicates all slabs were released.
 517 *
 518 * Return: %0 if all slabs were released, non-zero otherwise
 519 */
 520int kmem_cache_shrink(struct kmem_cache *cachep)
 521{
 522	int ret;
 523
 524	get_online_cpus();
 525	get_online_mems();
 526	kasan_cache_shrink(cachep);
 527	ret = __kmem_cache_shrink(cachep);
 528	put_online_mems();
 529	put_online_cpus();
 530	return ret;
 531}
 532EXPORT_SYMBOL(kmem_cache_shrink);
 533
 534bool slab_is_available(void)
 535{
 536	return slab_state >= UP;
 537}
 538
 539#ifndef CONFIG_SLOB
 540/* Create a cache during boot when no slab services are available yet */
 541void __init create_boot_cache(struct kmem_cache *s, const char *name,
 542		unsigned int size, slab_flags_t flags,
 543		unsigned int useroffset, unsigned int usersize)
 544{
 545	int err;
 546	unsigned int align = ARCH_KMALLOC_MINALIGN;
 547
 548	s->name = name;
 549	s->size = s->object_size = size;
 550
 551	/*
 552	 * For power of two sizes, guarantee natural alignment for kmalloc
 553	 * caches, regardless of SL*B debugging options.
 554	 */
 555	if (is_power_of_2(size))
 556		align = max(align, size);
 557	s->align = calculate_alignment(flags, align, size);
 558
 559	s->useroffset = useroffset;
 560	s->usersize = usersize;
 561
 562	err = __kmem_cache_create(s, flags);
 563
 564	if (err)
 565		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 566					name, size, err);
 567
 568	s->refcount = -1;	/* Exempt from merging for now */
 569}
 570
 571struct kmem_cache *__init create_kmalloc_cache(const char *name,
 572		unsigned int size, slab_flags_t flags,
 573		unsigned int useroffset, unsigned int usersize)
 574{
 575	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 576
 577	if (!s)
 578		panic("Out of memory when creating slab %s\n", name);
 579
 580	create_boot_cache(s, name, size, flags, useroffset, usersize);
 581	list_add(&s->list, &slab_caches);
 582	s->refcount = 1;
 583	return s;
 584}
 585
 586struct kmem_cache *
 587kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 588{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 589EXPORT_SYMBOL(kmalloc_caches);
 590
 
 
 
 
 
 591/*
 592 * Conversion table for small slabs sizes / 8 to the index in the
 593 * kmalloc array. This is necessary for slabs < 192 since we have non power
 594 * of two cache sizes there. The size of larger slabs can be determined using
 595 * fls.
 596 */
 597static u8 size_index[24] __ro_after_init = {
 598	3,	/* 8 */
 599	4,	/* 16 */
 600	5,	/* 24 */
 601	5,	/* 32 */
 602	6,	/* 40 */
 603	6,	/* 48 */
 604	6,	/* 56 */
 605	6,	/* 64 */
 606	1,	/* 72 */
 607	1,	/* 80 */
 608	1,	/* 88 */
 609	1,	/* 96 */
 610	7,	/* 104 */
 611	7,	/* 112 */
 612	7,	/* 120 */
 613	7,	/* 128 */
 614	2,	/* 136 */
 615	2,	/* 144 */
 616	2,	/* 152 */
 617	2,	/* 160 */
 618	2,	/* 168 */
 619	2,	/* 176 */
 620	2,	/* 184 */
 621	2	/* 192 */
 622};
 623
 624static inline unsigned int size_index_elem(unsigned int bytes)
 625{
 626	return (bytes - 1) / 8;
 627}
 628
 629/*
 630 * Find the kmem_cache structure that serves a given size of
 631 * allocation
 632 */
 633struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 634{
 635	unsigned int index;
 
 
 
 
 
 636
 637	if (size <= 192) {
 638		if (!size)
 639			return ZERO_SIZE_PTR;
 640
 641		index = size_index[size_index_elem(size)];
 642	} else {
 643		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 644			return NULL;
 645		index = fls(size - 1);
 646	}
 647
 648	return kmalloc_caches[kmalloc_type(flags)][index];
 649}
 650
 651#ifdef CONFIG_ZONE_DMA
 652#define INIT_KMALLOC_INFO(__size, __short_size)			\
 653{								\
 654	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 655	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 656	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
 657	.size = __size,						\
 658}
 659#else
 660#define INIT_KMALLOC_INFO(__size, __short_size)			\
 661{								\
 662	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 663	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
 664	.size = __size,						\
 665}
 666#endif
 667
 668/*
 669 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 670 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 671 * kmalloc-67108864.
 672 */
 673const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 674	INIT_KMALLOC_INFO(0, 0),
 675	INIT_KMALLOC_INFO(96, 96),
 676	INIT_KMALLOC_INFO(192, 192),
 677	INIT_KMALLOC_INFO(8, 8),
 678	INIT_KMALLOC_INFO(16, 16),
 679	INIT_KMALLOC_INFO(32, 32),
 680	INIT_KMALLOC_INFO(64, 64),
 681	INIT_KMALLOC_INFO(128, 128),
 682	INIT_KMALLOC_INFO(256, 256),
 683	INIT_KMALLOC_INFO(512, 512),
 684	INIT_KMALLOC_INFO(1024, 1k),
 685	INIT_KMALLOC_INFO(2048, 2k),
 686	INIT_KMALLOC_INFO(4096, 4k),
 687	INIT_KMALLOC_INFO(8192, 8k),
 688	INIT_KMALLOC_INFO(16384, 16k),
 689	INIT_KMALLOC_INFO(32768, 32k),
 690	INIT_KMALLOC_INFO(65536, 64k),
 691	INIT_KMALLOC_INFO(131072, 128k),
 692	INIT_KMALLOC_INFO(262144, 256k),
 693	INIT_KMALLOC_INFO(524288, 512k),
 694	INIT_KMALLOC_INFO(1048576, 1M),
 695	INIT_KMALLOC_INFO(2097152, 2M),
 696	INIT_KMALLOC_INFO(4194304, 4M),
 697	INIT_KMALLOC_INFO(8388608, 8M),
 698	INIT_KMALLOC_INFO(16777216, 16M),
 699	INIT_KMALLOC_INFO(33554432, 32M),
 700	INIT_KMALLOC_INFO(67108864, 64M)
 701};
 702
 703/*
 704 * Patch up the size_index table if we have strange large alignment
 705 * requirements for the kmalloc array. This is only the case for
 706 * MIPS it seems. The standard arches will not generate any code here.
 707 *
 708 * Largest permitted alignment is 256 bytes due to the way we
 709 * handle the index determination for the smaller caches.
 710 *
 711 * Make sure that nothing crazy happens if someone starts tinkering
 712 * around with ARCH_KMALLOC_MINALIGN
 713 */
 714void __init setup_kmalloc_cache_index_table(void)
 715{
 716	unsigned int i;
 717
 
 
 
 
 
 
 
 
 
 
 
 718	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 719		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 720
 721	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 722		unsigned int elem = size_index_elem(i);
 723
 724		if (elem >= ARRAY_SIZE(size_index))
 725			break;
 726		size_index[elem] = KMALLOC_SHIFT_LOW;
 727	}
 728
 729	if (KMALLOC_MIN_SIZE >= 64) {
 730		/*
 731		 * The 96 byte size cache is not used if the alignment
 732		 * is 64 byte.
 733		 */
 734		for (i = 64 + 8; i <= 96; i += 8)
 735			size_index[size_index_elem(i)] = 7;
 736
 737	}
 738
 739	if (KMALLOC_MIN_SIZE >= 128) {
 740		/*
 741		 * The 192 byte sized cache is not used if the alignment
 742		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 743		 * instead.
 744		 */
 745		for (i = 128 + 8; i <= 192; i += 8)
 746			size_index[size_index_elem(i)] = 8;
 747	}
 748}
 749
 750static void __init
 751new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 752{
 753	if (type == KMALLOC_RECLAIM)
 754		flags |= SLAB_RECLAIM_ACCOUNT;
 755
 756	kmalloc_caches[type][idx] = create_kmalloc_cache(
 757					kmalloc_info[idx].name[type],
 758					kmalloc_info[idx].size, flags, 0,
 759					kmalloc_info[idx].size);
 760}
 761
 762/*
 763 * Create the kmalloc array. Some of the regular kmalloc arrays
 764 * may already have been created because they were needed to
 765 * enable allocations for slab creation.
 766 */
 767void __init create_kmalloc_caches(slab_flags_t flags)
 768{
 769	int i;
 770	enum kmalloc_cache_type type;
 771
 772	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 773		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 774			if (!kmalloc_caches[type][i])
 775				new_kmalloc_cache(i, type, flags);
 776
 777			/*
 778			 * Caches that are not of the two-to-the-power-of size.
 779			 * These have to be created immediately after the
 780			 * earlier power of two caches
 781			 */
 782			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 783					!kmalloc_caches[type][1])
 784				new_kmalloc_cache(1, type, flags);
 785			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 786					!kmalloc_caches[type][2])
 787				new_kmalloc_cache(2, type, flags);
 788		}
 789	}
 790
 791	/* Kmalloc array is now usable */
 792	slab_state = UP;
 793
 794#ifdef CONFIG_ZONE_DMA
 795	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 796		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 
 797
 798		if (s) {
 799			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
 800				kmalloc_info[i].name[KMALLOC_DMA],
 801				kmalloc_info[i].size,
 802				SLAB_CACHE_DMA | flags, 0,
 803				kmalloc_info[i].size);
 804		}
 805	}
 806#endif
 807}
 808#endif /* !CONFIG_SLOB */
 809
 810gfp_t kmalloc_fix_flags(gfp_t flags)
 811{
 812	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
 813
 814	flags &= ~GFP_SLAB_BUG_MASK;
 815	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
 816			invalid_mask, &invalid_mask, flags, &flags);
 817	dump_stack();
 818
 819	return flags;
 820}
 821
 822/*
 823 * To avoid unnecessary overhead, we pass through large allocation requests
 824 * directly to the page allocator. We use __GFP_COMP, because we will need to
 825 * know the allocation order to free the pages properly in kfree.
 826 */
 827void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 828{
 829	void *ret = NULL;
 830	struct page *page;
 831
 832	if (unlikely(flags & GFP_SLAB_BUG_MASK))
 833		flags = kmalloc_fix_flags(flags);
 
 834
 835	flags |= __GFP_COMP;
 836	page = alloc_pages(flags, order);
 837	if (likely(page)) {
 838		ret = page_address(page);
 839		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
 840				    PAGE_SIZE << order);
 
 
 
 841	}
 842	ret = kasan_kmalloc_large(ret, size, flags);
 843	/* As ret might get tagged, call kmemleak hook after KASAN. */
 844	kmemleak_alloc(ret, size, 1, flags);
 845	return ret;
 846}
 847EXPORT_SYMBOL(kmalloc_order);
 848
 849#ifdef CONFIG_TRACING
 850void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 851{
 852	void *ret = kmalloc_order(size, flags, order);
 853	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 854	return ret;
 855}
 856EXPORT_SYMBOL(kmalloc_order_trace);
 857#endif
 858
 859#ifdef CONFIG_SLAB_FREELIST_RANDOM
 860/* Randomize a generic freelist */
 861static void freelist_randomize(struct rnd_state *state, unsigned int *list,
 862			       unsigned int count)
 863{
 864	unsigned int rand;
 865	unsigned int i;
 866
 867	for (i = 0; i < count; i++)
 868		list[i] = i;
 869
 870	/* Fisher-Yates shuffle */
 871	for (i = count - 1; i > 0; i--) {
 872		rand = prandom_u32_state(state);
 873		rand %= (i + 1);
 874		swap(list[i], list[rand]);
 875	}
 876}
 877
 878/* Create a random sequence per cache */
 879int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 880				    gfp_t gfp)
 881{
 882	struct rnd_state state;
 883
 884	if (count < 2 || cachep->random_seq)
 885		return 0;
 886
 887	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
 888	if (!cachep->random_seq)
 889		return -ENOMEM;
 890
 891	/* Get best entropy at this stage of boot */
 892	prandom_seed_state(&state, get_random_long());
 893
 894	freelist_randomize(&state, cachep->random_seq, count);
 895	return 0;
 896}
 897
 898/* Destroy the per-cache random freelist sequence */
 899void cache_random_seq_destroy(struct kmem_cache *cachep)
 900{
 901	kfree(cachep->random_seq);
 902	cachep->random_seq = NULL;
 903}
 904#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 905
 906#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 907#ifdef CONFIG_SLAB
 908#define SLABINFO_RIGHTS (0600)
 909#else
 910#define SLABINFO_RIGHTS (0400)
 911#endif
 912
 913static void print_slabinfo_header(struct seq_file *m)
 914{
 915	/*
 916	 * Output format version, so at least we can change it
 917	 * without _too_ many complaints.
 918	 */
 919#ifdef CONFIG_DEBUG_SLAB
 920	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
 921#else
 922	seq_puts(m, "slabinfo - version: 2.1\n");
 923#endif
 924	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
 
 925	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 926	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 927#ifdef CONFIG_DEBUG_SLAB
 928	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
 
 929	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
 930#endif
 931	seq_putc(m, '\n');
 932}
 933
 934void *slab_start(struct seq_file *m, loff_t *pos)
 935{
 
 
 936	mutex_lock(&slab_mutex);
 
 
 
 937	return seq_list_start(&slab_caches, *pos);
 938}
 939
 940void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 941{
 942	return seq_list_next(p, &slab_caches, pos);
 943}
 944
 945void slab_stop(struct seq_file *m, void *p)
 946{
 947	mutex_unlock(&slab_mutex);
 948}
 949
 950static void cache_show(struct kmem_cache *s, struct seq_file *m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951{
 952	struct slabinfo sinfo;
 953
 954	memset(&sinfo, 0, sizeof(sinfo));
 955	get_slabinfo(s, &sinfo);
 956
 
 
 957	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
 958		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 959		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 960
 961	seq_printf(m, " : tunables %4u %4u %4u",
 962		   sinfo.limit, sinfo.batchcount, sinfo.shared);
 963	seq_printf(m, " : slabdata %6lu %6lu %6lu",
 964		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
 965	slabinfo_show_stats(m, s);
 966	seq_putc(m, '\n');
 967}
 968
 969static int slab_show(struct seq_file *m, void *p)
 970{
 971	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 972
 973	if (p == slab_caches.next)
 974		print_slabinfo_header(m);
 975	cache_show(s, m);
 976	return 0;
 977}
 978
 979void dump_unreclaimable_slab(void)
 980{
 981	struct kmem_cache *s, *s2;
 982	struct slabinfo sinfo;
 983
 984	/*
 985	 * Here acquiring slab_mutex is risky since we don't prefer to get
 986	 * sleep in oom path. But, without mutex hold, it may introduce a
 987	 * risk of crash.
 988	 * Use mutex_trylock to protect the list traverse, dump nothing
 989	 * without acquiring the mutex.
 990	 */
 991	if (!mutex_trylock(&slab_mutex)) {
 992		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
 993		return;
 994	}
 995
 996	pr_info("Unreclaimable slab info:\n");
 997	pr_info("Name                      Used          Total\n");
 998
 999	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1000		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1001			continue;
1002
1003		get_slabinfo(s, &sinfo);
1004
1005		if (sinfo.num_objs > 0)
1006			pr_info("%-17s %10luKB %10luKB\n", s->name,
1007				(sinfo.active_objs * s->size) / 1024,
1008				(sinfo.num_objs * s->size) / 1024);
1009	}
1010	mutex_unlock(&slab_mutex);
1011}
1012
1013#if defined(CONFIG_MEMCG_KMEM)
1014int memcg_slab_show(struct seq_file *m, void *p)
1015{
1016	/*
1017	 * Deprecated.
1018	 * Please, take a look at tools/cgroup/slabinfo.py .
1019	 */
1020	return 0;
1021}
1022#endif
1023
1024/*
1025 * slabinfo_op - iterator that generates /proc/slabinfo
1026 *
1027 * Output layout:
1028 * cache-name
1029 * num-active-objs
1030 * total-objs
1031 * object size
1032 * num-active-slabs
1033 * total-slabs
1034 * num-pages-per-slab
1035 * + further values on SMP and with statistics enabled
1036 */
1037static const struct seq_operations slabinfo_op = {
1038	.start = slab_start,
1039	.next = slab_next,
1040	.stop = slab_stop,
1041	.show = slab_show,
1042};
1043
1044static int slabinfo_open(struct inode *inode, struct file *file)
1045{
1046	return seq_open(file, &slabinfo_op);
1047}
1048
1049static const struct proc_ops slabinfo_proc_ops = {
1050	.proc_flags	= PROC_ENTRY_PERMANENT,
1051	.proc_open	= slabinfo_open,
1052	.proc_read	= seq_read,
1053	.proc_write	= slabinfo_write,
1054	.proc_lseek	= seq_lseek,
1055	.proc_release	= seq_release,
1056};
1057
1058static int __init slab_proc_init(void)
1059{
1060	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 
1061	return 0;
1062}
1063module_init(slab_proc_init);
1064
1065#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1066
1067static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1068					   gfp_t flags)
1069{
1070	void *ret;
1071	size_t ks;
1072
1073	ks = ksize(p);
1074
1075	if (ks >= new_size) {
1076		p = kasan_krealloc((void *)p, new_size, flags);
1077		return (void *)p;
1078	}
1079
1080	ret = kmalloc_track_caller(new_size, flags);
1081	if (ret && p)
1082		memcpy(ret, p, ks);
1083
1084	return ret;
1085}
1086
1087/**
1088 * krealloc - reallocate memory. The contents will remain unchanged.
1089 * @p: object to reallocate memory for.
1090 * @new_size: how many bytes of memory are required.
1091 * @flags: the type of memory to allocate.
1092 *
1093 * The contents of the object pointed to are preserved up to the
1094 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1095 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1096 * %NULL pointer, the object pointed to is freed.
1097 *
1098 * Return: pointer to the allocated memory or %NULL in case of error
1099 */
1100void *krealloc(const void *p, size_t new_size, gfp_t flags)
1101{
1102	void *ret;
1103
1104	if (unlikely(!new_size)) {
1105		kfree(p);
1106		return ZERO_SIZE_PTR;
1107	}
1108
1109	ret = __do_krealloc(p, new_size, flags);
1110	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1111		kfree(p);
1112
1113	return ret;
1114}
1115EXPORT_SYMBOL(krealloc);
1116
1117/**
1118 * kfree_sensitive - Clear sensitive information in memory before freeing
1119 * @p: object to free memory of
1120 *
1121 * The memory of the object @p points to is zeroed before freed.
1122 * If @p is %NULL, kfree_sensitive() does nothing.
1123 *
1124 * Note: this function zeroes the whole allocated buffer which can be a good
1125 * deal bigger than the requested buffer size passed to kmalloc(). So be
1126 * careful when using this function in performance sensitive code.
1127 */
1128void kfree_sensitive(const void *p)
1129{
1130	size_t ks;
1131	void *mem = (void *)p;
1132
1133	ks = ksize(mem);
1134	if (ks)
1135		memzero_explicit(mem, ks);
1136	kfree(mem);
1137}
1138EXPORT_SYMBOL(kfree_sensitive);
1139
1140/**
1141 * ksize - get the actual amount of memory allocated for a given object
1142 * @objp: Pointer to the object
1143 *
1144 * kmalloc may internally round up allocations and return more memory
1145 * than requested. ksize() can be used to determine the actual amount of
1146 * memory allocated. The caller may use this additional memory, even though
1147 * a smaller amount of memory was initially specified with the kmalloc call.
1148 * The caller must guarantee that objp points to a valid object previously
1149 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1150 * must not be freed during the duration of the call.
1151 *
1152 * Return: size of the actual memory used by @objp in bytes
1153 */
1154size_t ksize(const void *objp)
1155{
1156	size_t size;
1157
1158	/*
1159	 * We need to check that the pointed to object is valid, and only then
1160	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1161	 * generate a more useful report at the time ksize() is called (rather
1162	 * than later where behaviour is undefined due to potential
1163	 * use-after-free or double-free).
1164	 *
1165	 * If the pointed to memory is invalid we return 0, to avoid users of
1166	 * ksize() writing to and potentially corrupting the memory region.
1167	 *
1168	 * We want to perform the check before __ksize(), to avoid potentially
1169	 * crashing in __ksize() due to accessing invalid metadata.
1170	 */
1171	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1172		return 0;
1173
1174	size = __ksize(objp);
1175	/*
1176	 * We assume that ksize callers could use whole allocated area,
1177	 * so we need to unpoison this area.
1178	 */
1179	kasan_unpoison_shadow(objp, size);
1180	return size;
1181}
1182EXPORT_SYMBOL(ksize);
1183
1184/* Tracepoints definitions. */
1185EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1186EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1187EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1188EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1189EXPORT_TRACEPOINT_SYMBOL(kfree);
1190EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1191
1192int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1193{
1194	if (__should_failslab(s, gfpflags))
1195		return -ENOMEM;
1196	return 0;
1197}
1198ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
v3.15
 
  1/*
  2 * Slab allocator functions that are independent of the allocator strategy
  3 *
  4 * (C) 2012 Christoph Lameter <cl@linux.com>
  5 */
  6#include <linux/slab.h>
  7
  8#include <linux/mm.h>
  9#include <linux/poison.h>
 10#include <linux/interrupt.h>
 11#include <linux/memory.h>
 
 12#include <linux/compiler.h>
 13#include <linux/module.h>
 14#include <linux/cpu.h>
 15#include <linux/uaccess.h>
 16#include <linux/seq_file.h>
 17#include <linux/proc_fs.h>
 
 18#include <asm/cacheflush.h>
 19#include <asm/tlbflush.h>
 20#include <asm/page.h>
 21#include <linux/memcontrol.h>
 
 
 22#include <trace/events/kmem.h>
 23
 
 
 24#include "slab.h"
 25
 26enum slab_state slab_state;
 27LIST_HEAD(slab_caches);
 28DEFINE_MUTEX(slab_mutex);
 29struct kmem_cache *kmem_cache;
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31#ifdef CONFIG_DEBUG_VM
 32static int kmem_cache_sanity_check(const char *name, size_t size)
 33{
 34	struct kmem_cache *s = NULL;
 35
 36	if (!name || in_interrupt() || size < sizeof(void *) ||
 37		size > KMALLOC_MAX_SIZE) {
 38		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
 39		return -EINVAL;
 40	}
 41
 42	list_for_each_entry(s, &slab_caches, list) {
 43		char tmp;
 44		int res;
 45
 46		/*
 47		 * This happens when the module gets unloaded and doesn't
 48		 * destroy its slab cache and no-one else reuses the vmalloc
 49		 * area of the module.  Print a warning.
 50		 */
 51		res = probe_kernel_address(s->name, tmp);
 52		if (res) {
 53			pr_err("Slab cache with size %d has lost its name\n",
 54			       s->object_size);
 55			continue;
 56		}
 57
 58#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
 59		if (!strcmp(s->name, name)) {
 60			pr_err("%s (%s): Cache name already exists.\n",
 61			       __func__, name);
 62			dump_stack();
 63			s = NULL;
 64			return -EINVAL;
 65		}
 66#endif
 67	}
 68
 69	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
 70	return 0;
 71}
 72#else
 73static inline int kmem_cache_sanity_check(const char *name, size_t size)
 74{
 75	return 0;
 76}
 77#endif
 78
 79#ifdef CONFIG_MEMCG_KMEM
 80int memcg_update_all_caches(int num_memcgs)
 81{
 82	struct kmem_cache *s;
 83	int ret = 0;
 84	mutex_lock(&slab_mutex);
 
 
 
 
 
 
 85
 86	list_for_each_entry(s, &slab_caches, list) {
 87		if (!is_root_cache(s))
 88			continue;
 
 89
 90		ret = memcg_update_cache_size(s, num_memcgs);
 91		/*
 92		 * See comment in memcontrol.c, memcg_update_cache_size:
 93		 * Instead of freeing the memory, we'll just leave the caches
 94		 * up to this point in an updated state.
 95		 */
 96		if (ret)
 97			goto out;
 98	}
 99
100	memcg_update_array_size(num_memcgs);
101out:
102	mutex_unlock(&slab_mutex);
103	return ret;
104}
105#endif
106
107/*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
111unsigned long calculate_alignment(unsigned long flags,
112		unsigned long align, unsigned long size)
113{
114	/*
115	 * If the user wants hardware cache aligned objects then follow that
116	 * suggestion if the object is sufficiently large.
117	 *
118	 * The hardware cache alignment cannot override the specified
119	 * alignment though. If that is greater then use it.
120	 */
121	if (flags & SLAB_HWCACHE_ALIGN) {
122		unsigned long ralign = cache_line_size();
 
 
123		while (size <= ralign / 2)
124			ralign /= 2;
125		align = max(align, ralign);
126	}
127
128	if (align < ARCH_SLAB_MINALIGN)
129		align = ARCH_SLAB_MINALIGN;
130
131	return ALIGN(align, sizeof(void *));
132}
133
134static struct kmem_cache *
135do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136		     unsigned long flags, void (*ctor)(void *),
137		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138{
139	struct kmem_cache *s;
140	int err;
141
 
 
 
142	err = -ENOMEM;
143	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144	if (!s)
145		goto out;
146
147	s->name = name;
148	s->object_size = object_size;
149	s->size = size;
150	s->align = align;
151	s->ctor = ctor;
152
153	err = memcg_alloc_cache_params(memcg, s, root_cache);
154	if (err)
155		goto out_free_cache;
156
157	err = __kmem_cache_create(s, flags);
158	if (err)
159		goto out_free_cache;
160
161	s->refcount = 1;
162	list_add(&s->list, &slab_caches);
163	memcg_register_cache(s);
164out:
165	if (err)
166		return ERR_PTR(err);
167	return s;
168
169out_free_cache:
170	memcg_free_cache_params(s);
171	kfree(s);
172	goto out;
173}
174
175/*
176 * kmem_cache_create - Create a cache.
 
177 * @name: A string which is used in /proc/slabinfo to identify this cache.
178 * @size: The size of objects to be created in this cache.
179 * @align: The required alignment for the objects.
180 * @flags: SLAB flags
 
 
181 * @ctor: A constructor for the objects.
182 *
183 * Returns a ptr to the cache on success, NULL on failure.
184 * Cannot be called within a interrupt, but can be interrupted.
185 * The @ctor is run when new pages are allocated by the cache.
186 *
187 * The flags are
188 *
189 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
190 * to catch references to uninitialised memory.
191 *
192 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
193 * for buffer overruns.
194 *
195 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
196 * cacheline.  This can be beneficial if you're counting cycles as closely
197 * as davem.
 
 
198 */
199struct kmem_cache *
200kmem_cache_create(const char *name, size_t size, size_t align,
201		  unsigned long flags, void (*ctor)(void *))
 
 
 
202{
203	struct kmem_cache *s;
204	char *cache_name;
205	int err;
206
207	get_online_cpus();
 
 
208	mutex_lock(&slab_mutex);
209
210	err = kmem_cache_sanity_check(name, size);
211	if (err)
 
 
 
 
 
 
212		goto out_unlock;
 
213
214	/*
215	 * Some allocators will constraint the set of valid flags to a subset
216	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
217	 * case, and we'll just provide them with a sanitized version of the
218	 * passed flags.
219	 */
220	flags &= CACHE_CREATE_MASK;
221
222	s = __kmem_cache_alias(name, size, align, flags, ctor);
 
 
 
 
 
 
223	if (s)
224		goto out_unlock;
225
226	cache_name = kstrdup(name, GFP_KERNEL);
227	if (!cache_name) {
228		err = -ENOMEM;
229		goto out_unlock;
230	}
231
232	s = do_kmem_cache_create(cache_name, size, size,
233				 calculate_alignment(flags, align, size),
234				 flags, ctor, NULL, NULL);
235	if (IS_ERR(s)) {
236		err = PTR_ERR(s);
237		kfree(cache_name);
238	}
239
240out_unlock:
241	mutex_unlock(&slab_mutex);
 
 
242	put_online_cpus();
243
244	if (err) {
245		if (flags & SLAB_PANIC)
246			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
247				name, err);
248		else {
249			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
250				name, err);
251			dump_stack();
252		}
253		return NULL;
254	}
255	return s;
256}
257EXPORT_SYMBOL(kmem_cache_create);
258
259#ifdef CONFIG_MEMCG_KMEM
260/*
261 * kmem_cache_create_memcg - Create a cache for a memory cgroup.
262 * @memcg: The memory cgroup the new cache is for.
263 * @root_cache: The parent of the new cache.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264 *
265 * This function attempts to create a kmem cache that will serve allocation
266 * requests going from @memcg to @root_cache. The new cache inherits properties
267 * from its parent.
268 */
269void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 
 
270{
271	struct kmem_cache *s;
272	char *cache_name;
 
 
273
274	get_online_cpus();
275	mutex_lock(&slab_mutex);
 
 
276
277	/*
278	 * Since per-memcg caches are created asynchronously on first
279	 * allocation (see memcg_kmem_get_cache()), several threads can try to
280	 * create the same cache, but only one of them may succeed.
 
 
 
 
281	 */
282	if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
283		goto out_unlock;
 
 
 
 
284
285	cache_name = memcg_create_cache_name(memcg, root_cache);
286	if (!cache_name)
287		goto out_unlock;
288
289	s = do_kmem_cache_create(cache_name, root_cache->object_size,
290				 root_cache->size, root_cache->align,
291				 root_cache->flags, root_cache->ctor,
292				 memcg, root_cache);
293	if (IS_ERR(s)) {
294		kfree(cache_name);
295		goto out_unlock;
296	}
297
298	s->allocflags |= __GFP_KMEMCG;
299
300out_unlock:
301	mutex_unlock(&slab_mutex);
302	put_online_cpus();
303}
304
305static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
306{
307	int rc;
 
308
309	if (!s->memcg_params ||
310	    !s->memcg_params->is_root_cache)
311		return 0;
312
313	mutex_unlock(&slab_mutex);
314	rc = __kmem_cache_destroy_memcg_children(s);
315	mutex_lock(&slab_mutex);
316
317	return rc;
318}
 
 
 
 
 
 
 
 
319#else
320static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
321{
 
 
322	return 0;
323}
324#endif /* CONFIG_MEMCG_KMEM */
325
326void slab_kmem_cache_release(struct kmem_cache *s)
327{
328	kfree(s->name);
 
329	kmem_cache_free(kmem_cache, s);
330}
331
332void kmem_cache_destroy(struct kmem_cache *s)
333{
 
 
 
 
 
334	get_online_cpus();
 
 
335	mutex_lock(&slab_mutex);
336
337	s->refcount--;
338	if (s->refcount)
339		goto out_unlock;
340
341	if (kmem_cache_destroy_memcg_children(s) != 0)
342		goto out_unlock;
343
344	list_del(&s->list);
345	memcg_unregister_cache(s);
346
347	if (__kmem_cache_shutdown(s) != 0) {
348		list_add(&s->list, &slab_caches);
349		memcg_register_cache(s);
350		printk(KERN_ERR "kmem_cache_destroy %s: "
351		       "Slab cache still has objects\n", s->name);
352		dump_stack();
353		goto out_unlock;
354	}
 
 
355
356	mutex_unlock(&slab_mutex);
357	if (s->flags & SLAB_DESTROY_BY_RCU)
358		rcu_barrier();
 
359
360	memcg_free_cache_params(s);
361#ifdef SLAB_SUPPORTS_SYSFS
362	sysfs_slab_remove(s);
363#else
364	slab_kmem_cache_release(s);
365#endif
366	goto out_put_cpus;
 
 
 
 
 
367
368out_unlock:
369	mutex_unlock(&slab_mutex);
370out_put_cpus:
 
 
371	put_online_cpus();
 
372}
373EXPORT_SYMBOL(kmem_cache_destroy);
374
375int slab_is_available(void)
376{
377	return slab_state >= UP;
378}
379
380#ifndef CONFIG_SLOB
381/* Create a cache during boot when no slab services are available yet */
382void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
383		unsigned long flags)
 
384{
385	int err;
 
386
387	s->name = name;
388	s->size = s->object_size = size;
389	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 
 
 
 
 
 
 
 
 
 
 
390	err = __kmem_cache_create(s, flags);
391
392	if (err)
393		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
394					name, size, err);
395
396	s->refcount = -1;	/* Exempt from merging for now */
397}
398
399struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
400				unsigned long flags)
 
401{
402	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
403
404	if (!s)
405		panic("Out of memory when creating slab %s\n", name);
406
407	create_boot_cache(s, name, size, flags);
408	list_add(&s->list, &slab_caches);
409	s->refcount = 1;
410	return s;
411}
412
413struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 
 
414EXPORT_SYMBOL(kmalloc_caches);
415
416#ifdef CONFIG_ZONE_DMA
417struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
418EXPORT_SYMBOL(kmalloc_dma_caches);
419#endif
420
421/*
422 * Conversion table for small slabs sizes / 8 to the index in the
423 * kmalloc array. This is necessary for slabs < 192 since we have non power
424 * of two cache sizes there. The size of larger slabs can be determined using
425 * fls.
426 */
427static s8 size_index[24] = {
428	3,	/* 8 */
429	4,	/* 16 */
430	5,	/* 24 */
431	5,	/* 32 */
432	6,	/* 40 */
433	6,	/* 48 */
434	6,	/* 56 */
435	6,	/* 64 */
436	1,	/* 72 */
437	1,	/* 80 */
438	1,	/* 88 */
439	1,	/* 96 */
440	7,	/* 104 */
441	7,	/* 112 */
442	7,	/* 120 */
443	7,	/* 128 */
444	2,	/* 136 */
445	2,	/* 144 */
446	2,	/* 152 */
447	2,	/* 160 */
448	2,	/* 168 */
449	2,	/* 176 */
450	2,	/* 184 */
451	2	/* 192 */
452};
453
454static inline int size_index_elem(size_t bytes)
455{
456	return (bytes - 1) / 8;
457}
458
459/*
460 * Find the kmem_cache structure that serves a given size of
461 * allocation
462 */
463struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
464{
465	int index;
466
467	if (unlikely(size > KMALLOC_MAX_SIZE)) {
468		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
469		return NULL;
470	}
471
472	if (size <= 192) {
473		if (!size)
474			return ZERO_SIZE_PTR;
475
476		index = size_index[size_index_elem(size)];
477	} else
 
 
478		index = fls(size - 1);
 
 
 
 
479
480#ifdef CONFIG_ZONE_DMA
481	if (unlikely((flags & GFP_DMA)))
482		return kmalloc_dma_caches[index];
 
 
 
 
 
 
 
 
 
 
 
 
 
483
484#endif
485	return kmalloc_caches[index];
486}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
488/*
489 * Create the kmalloc array. Some of the regular kmalloc arrays
490 * may already have been created because they were needed to
491 * enable allocations for slab creation.
 
 
 
 
 
 
492 */
493void __init create_kmalloc_caches(unsigned long flags)
494{
495	int i;
496
497	/*
498	 * Patch up the size_index table if we have strange large alignment
499	 * requirements for the kmalloc array. This is only the case for
500	 * MIPS it seems. The standard arches will not generate any code here.
501	 *
502	 * Largest permitted alignment is 256 bytes due to the way we
503	 * handle the index determination for the smaller caches.
504	 *
505	 * Make sure that nothing crazy happens if someone starts tinkering
506	 * around with ARCH_KMALLOC_MINALIGN
507	 */
508	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
509		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
510
511	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
512		int elem = size_index_elem(i);
513
514		if (elem >= ARRAY_SIZE(size_index))
515			break;
516		size_index[elem] = KMALLOC_SHIFT_LOW;
517	}
518
519	if (KMALLOC_MIN_SIZE >= 64) {
520		/*
521		 * The 96 byte size cache is not used if the alignment
522		 * is 64 byte.
523		 */
524		for (i = 64 + 8; i <= 96; i += 8)
525			size_index[size_index_elem(i)] = 7;
526
527	}
528
529	if (KMALLOC_MIN_SIZE >= 128) {
530		/*
531		 * The 192 byte sized cache is not used if the alignment
532		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
533		 * instead.
534		 */
535		for (i = 128 + 8; i <= 192; i += 8)
536			size_index[size_index_elem(i)] = 8;
537	}
538	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
539		if (!kmalloc_caches[i]) {
540			kmalloc_caches[i] = create_kmalloc_cache(NULL,
541							1 << i, flags);
542		}
 
 
 
 
 
 
 
 
543
544		/*
545		 * Caches that are not of the two-to-the-power-of size.
546		 * These have to be created immediately after the
547		 * earlier power of two caches
548		 */
549		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
550			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
 
 
551
552		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
553			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554	}
555
556	/* Kmalloc array is now usable */
557	slab_state = UP;
558
 
559	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
560		struct kmem_cache *s = kmalloc_caches[i];
561		char *n;
562
563		if (s) {
564			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
565
566			BUG_ON(!n);
567			s->name = n;
 
568		}
569	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571#ifdef CONFIG_ZONE_DMA
572	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
573		struct kmem_cache *s = kmalloc_caches[i];
574
575		if (s) {
576			int size = kmalloc_size(i);
577			char *n = kasprintf(GFP_NOWAIT,
578				 "dma-kmalloc-%d", size);
579
580			BUG_ON(!n);
581			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
582				size, SLAB_CACHE_DMA | flags);
583		}
584	}
585#endif
 
 
 
586}
587#endif /* !CONFIG_SLOB */
588
589#ifdef CONFIG_TRACING
590void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
591{
592	void *ret = kmalloc_order(size, flags, order);
593	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
594	return ret;
595}
596EXPORT_SYMBOL(kmalloc_order_trace);
597#endif
598
599#ifdef CONFIG_SLABINFO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
601#ifdef CONFIG_SLAB
602#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
603#else
604#define SLABINFO_RIGHTS S_IRUSR
605#endif
606
607void print_slabinfo_header(struct seq_file *m)
608{
609	/*
610	 * Output format version, so at least we can change it
611	 * without _too_ many complaints.
612	 */
613#ifdef CONFIG_DEBUG_SLAB
614	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
615#else
616	seq_puts(m, "slabinfo - version: 2.1\n");
617#endif
618	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
619		 "<objperslab> <pagesperslab>");
620	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
621	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
622#ifdef CONFIG_DEBUG_SLAB
623	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
624		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
625	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
626#endif
627	seq_putc(m, '\n');
628}
629
630static void *s_start(struct seq_file *m, loff_t *pos)
631{
632	loff_t n = *pos;
633
634	mutex_lock(&slab_mutex);
635	if (!n)
636		print_slabinfo_header(m);
637
638	return seq_list_start(&slab_caches, *pos);
639}
640
641void *slab_next(struct seq_file *m, void *p, loff_t *pos)
642{
643	return seq_list_next(p, &slab_caches, pos);
644}
645
646void slab_stop(struct seq_file *m, void *p)
647{
648	mutex_unlock(&slab_mutex);
649}
650
651static void
652memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
653{
654	struct kmem_cache *c;
655	struct slabinfo sinfo;
656	int i;
657
658	if (!is_root_cache(s))
659		return;
660
661	for_each_memcg_cache_index(i) {
662		c = cache_from_memcg_idx(s, i);
663		if (!c)
664			continue;
665
666		memset(&sinfo, 0, sizeof(sinfo));
667		get_slabinfo(c, &sinfo);
668
669		info->active_slabs += sinfo.active_slabs;
670		info->num_slabs += sinfo.num_slabs;
671		info->shared_avail += sinfo.shared_avail;
672		info->active_objs += sinfo.active_objs;
673		info->num_objs += sinfo.num_objs;
674	}
675}
676
677int cache_show(struct kmem_cache *s, struct seq_file *m)
678{
679	struct slabinfo sinfo;
680
681	memset(&sinfo, 0, sizeof(sinfo));
682	get_slabinfo(s, &sinfo);
683
684	memcg_accumulate_slabinfo(s, &sinfo);
685
686	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
687		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
688		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
689
690	seq_printf(m, " : tunables %4u %4u %4u",
691		   sinfo.limit, sinfo.batchcount, sinfo.shared);
692	seq_printf(m, " : slabdata %6lu %6lu %6lu",
693		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
694	slabinfo_show_stats(m, s);
695	seq_putc(m, '\n');
 
 
 
 
 
 
 
 
 
696	return 0;
697}
698
699static int s_show(struct seq_file *m, void *p)
700{
701	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
702
703	if (!is_root_cache(s))
704		return 0;
705	return cache_show(s, m);
 
 
 
 
 
706}
 
707
708/*
709 * slabinfo_op - iterator that generates /proc/slabinfo
710 *
711 * Output layout:
712 * cache-name
713 * num-active-objs
714 * total-objs
715 * object size
716 * num-active-slabs
717 * total-slabs
718 * num-pages-per-slab
719 * + further values on SMP and with statistics enabled
720 */
721static const struct seq_operations slabinfo_op = {
722	.start = s_start,
723	.next = slab_next,
724	.stop = slab_stop,
725	.show = s_show,
726};
727
728static int slabinfo_open(struct inode *inode, struct file *file)
729{
730	return seq_open(file, &slabinfo_op);
731}
732
733static const struct file_operations proc_slabinfo_operations = {
734	.open		= slabinfo_open,
735	.read		= seq_read,
736	.write          = slabinfo_write,
737	.llseek		= seq_lseek,
738	.release	= seq_release,
 
739};
740
741static int __init slab_proc_init(void)
742{
743	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
744						&proc_slabinfo_operations);
745	return 0;
746}
747module_init(slab_proc_init);
748#endif /* CONFIG_SLABINFO */