Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2
 
   3#include "misc.h"
   4#include "ctree.h"
   5#include "block-group.h"
   6#include "space-info.h"
   7#include "disk-io.h"
   8#include "free-space-cache.h"
   9#include "free-space-tree.h"
  10#include "volumes.h"
  11#include "transaction.h"
  12#include "ref-verify.h"
  13#include "sysfs.h"
  14#include "tree-log.h"
  15#include "delalloc-space.h"
  16#include "discard.h"
  17#include "raid56.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  18
  19/*
  20 * Return target flags in extended format or 0 if restripe for this chunk_type
  21 * is not in progress
  22 *
  23 * Should be called with balance_lock held
  24 */
  25static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  26{
  27	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  28	u64 target = 0;
  29
  30	if (!bctl)
  31		return 0;
  32
  33	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  34	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  35		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  36	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  37		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  38		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  39	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  40		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  41		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  42	}
  43
  44	return target;
  45}
  46
  47/*
  48 * @flags: available profiles in extended format (see ctree.h)
  49 *
  50 * Return reduced profile in chunk format.  If profile changing is in progress
  51 * (either running or paused) picks the target profile (if it's already
  52 * available), otherwise falls back to plain reducing.
  53 */
  54static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  55{
  56	u64 num_devices = fs_info->fs_devices->rw_devices;
  57	u64 target;
  58	u64 raid_type;
  59	u64 allowed = 0;
  60
  61	/*
  62	 * See if restripe for this chunk_type is in progress, if so try to
  63	 * reduce to the target profile
  64	 */
  65	spin_lock(&fs_info->balance_lock);
  66	target = get_restripe_target(fs_info, flags);
  67	if (target) {
  68		spin_unlock(&fs_info->balance_lock);
  69		return extended_to_chunk(target);
  70	}
  71	spin_unlock(&fs_info->balance_lock);
  72
  73	/* First, mask out the RAID levels which aren't possible */
  74	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  75		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  76			allowed |= btrfs_raid_array[raid_type].bg_flag;
  77	}
  78	allowed &= flags;
  79
  80	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
  81		allowed = BTRFS_BLOCK_GROUP_RAID6;
  82	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
  83		allowed = BTRFS_BLOCK_GROUP_RAID5;
  84	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
  85		allowed = BTRFS_BLOCK_GROUP_RAID10;
  86	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
  87		allowed = BTRFS_BLOCK_GROUP_RAID1;
  88	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
  89		allowed = BTRFS_BLOCK_GROUP_RAID0;
  90
  91	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
  92
  93	return extended_to_chunk(flags | allowed);
  94}
  95
  96u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
  97{
  98	unsigned seq;
  99	u64 flags;
 100
 101	do {
 102		flags = orig_flags;
 103		seq = read_seqbegin(&fs_info->profiles_lock);
 104
 105		if (flags & BTRFS_BLOCK_GROUP_DATA)
 106			flags |= fs_info->avail_data_alloc_bits;
 107		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 108			flags |= fs_info->avail_system_alloc_bits;
 109		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 110			flags |= fs_info->avail_metadata_alloc_bits;
 111	} while (read_seqretry(&fs_info->profiles_lock, seq));
 112
 113	return btrfs_reduce_alloc_profile(fs_info, flags);
 114}
 115
 116void btrfs_get_block_group(struct btrfs_block_group *cache)
 117{
 118	refcount_inc(&cache->refs);
 119}
 120
 121void btrfs_put_block_group(struct btrfs_block_group *cache)
 122{
 123	if (refcount_dec_and_test(&cache->refs)) {
 124		WARN_ON(cache->pinned > 0);
 125		WARN_ON(cache->reserved > 0);
 
 
 
 
 
 
 
 
 
 126
 127		/*
 128		 * A block_group shouldn't be on the discard_list anymore.
 129		 * Remove the block_group from the discard_list to prevent us
 130		 * from causing a panic due to NULL pointer dereference.
 131		 */
 132		if (WARN_ON(!list_empty(&cache->discard_list)))
 133			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 134						  cache);
 135
 136		/*
 137		 * If not empty, someone is still holding mutex of
 138		 * full_stripe_lock, which can only be released by caller.
 139		 * And it will definitely cause use-after-free when caller
 140		 * tries to release full stripe lock.
 141		 *
 142		 * No better way to resolve, but only to warn.
 143		 */
 144		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 145		kfree(cache->free_space_ctl);
 
 146		kfree(cache);
 147	}
 148}
 149
 150/*
 151 * This adds the block group to the fs_info rb tree for the block group cache
 152 */
 153static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 154				       struct btrfs_block_group *block_group)
 155{
 156	struct rb_node **p;
 157	struct rb_node *parent = NULL;
 158	struct btrfs_block_group *cache;
 
 159
 160	ASSERT(block_group->length != 0);
 161
 162	spin_lock(&info->block_group_cache_lock);
 163	p = &info->block_group_cache_tree.rb_node;
 164
 165	while (*p) {
 166		parent = *p;
 167		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 168		if (block_group->start < cache->start) {
 169			p = &(*p)->rb_left;
 170		} else if (block_group->start > cache->start) {
 171			p = &(*p)->rb_right;
 
 172		} else {
 173			spin_unlock(&info->block_group_cache_lock);
 174			return -EEXIST;
 175		}
 176	}
 177
 178	rb_link_node(&block_group->cache_node, parent, p);
 179	rb_insert_color(&block_group->cache_node,
 180			&info->block_group_cache_tree);
 181
 182	if (info->first_logical_byte > block_group->start)
 183		info->first_logical_byte = block_group->start;
 184
 185	spin_unlock(&info->block_group_cache_lock);
 186
 187	return 0;
 188}
 189
 190/*
 191 * This will return the block group at or after bytenr if contains is 0, else
 192 * it will return the block group that contains the bytenr
 193 */
 194static struct btrfs_block_group *block_group_cache_tree_search(
 195		struct btrfs_fs_info *info, u64 bytenr, int contains)
 196{
 197	struct btrfs_block_group *cache, *ret = NULL;
 198	struct rb_node *n;
 199	u64 end, start;
 200
 201	spin_lock(&info->block_group_cache_lock);
 202	n = info->block_group_cache_tree.rb_node;
 203
 204	while (n) {
 205		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 206		end = cache->start + cache->length - 1;
 207		start = cache->start;
 208
 209		if (bytenr < start) {
 210			if (!contains && (!ret || start < ret->start))
 211				ret = cache;
 212			n = n->rb_left;
 213		} else if (bytenr > start) {
 214			if (contains && bytenr <= end) {
 215				ret = cache;
 216				break;
 217			}
 218			n = n->rb_right;
 219		} else {
 220			ret = cache;
 221			break;
 222		}
 223	}
 224	if (ret) {
 225		btrfs_get_block_group(ret);
 226		if (bytenr == 0 && info->first_logical_byte > ret->start)
 227			info->first_logical_byte = ret->start;
 228	}
 229	spin_unlock(&info->block_group_cache_lock);
 230
 231	return ret;
 232}
 233
 234/*
 235 * Return the block group that starts at or after bytenr
 236 */
 237struct btrfs_block_group *btrfs_lookup_first_block_group(
 238		struct btrfs_fs_info *info, u64 bytenr)
 239{
 240	return block_group_cache_tree_search(info, bytenr, 0);
 241}
 242
 243/*
 244 * Return the block group that contains the given bytenr
 245 */
 246struct btrfs_block_group *btrfs_lookup_block_group(
 247		struct btrfs_fs_info *info, u64 bytenr)
 248{
 249	return block_group_cache_tree_search(info, bytenr, 1);
 250}
 251
 252struct btrfs_block_group *btrfs_next_block_group(
 253		struct btrfs_block_group *cache)
 254{
 255	struct btrfs_fs_info *fs_info = cache->fs_info;
 256	struct rb_node *node;
 257
 258	spin_lock(&fs_info->block_group_cache_lock);
 259
 260	/* If our block group was removed, we need a full search. */
 261	if (RB_EMPTY_NODE(&cache->cache_node)) {
 262		const u64 next_bytenr = cache->start + cache->length;
 263
 264		spin_unlock(&fs_info->block_group_cache_lock);
 265		btrfs_put_block_group(cache);
 266		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
 267	}
 268	node = rb_next(&cache->cache_node);
 269	btrfs_put_block_group(cache);
 270	if (node) {
 271		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 272		btrfs_get_block_group(cache);
 273	} else
 274		cache = NULL;
 275	spin_unlock(&fs_info->block_group_cache_lock);
 276	return cache;
 277}
 278
 279bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280{
 281	struct btrfs_block_group *bg;
 282	bool ret = true;
 283
 284	bg = btrfs_lookup_block_group(fs_info, bytenr);
 285	if (!bg)
 286		return false;
 287
 288	spin_lock(&bg->lock);
 289	if (bg->ro)
 290		ret = false;
 291	else
 292		atomic_inc(&bg->nocow_writers);
 293	spin_unlock(&bg->lock);
 294
 295	/* No put on block group, done by btrfs_dec_nocow_writers */
 296	if (!ret)
 297		btrfs_put_block_group(bg);
 
 
 298
 299	return ret;
 
 300}
 301
 302void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 303{
 304	struct btrfs_block_group *bg;
 305
 306	bg = btrfs_lookup_block_group(fs_info, bytenr);
 307	ASSERT(bg);
 308	if (atomic_dec_and_test(&bg->nocow_writers))
 309		wake_up_var(&bg->nocow_writers);
 310	/*
 311	 * Once for our lookup and once for the lookup done by a previous call
 312	 * to btrfs_inc_nocow_writers()
 313	 */
 314	btrfs_put_block_group(bg);
 315	btrfs_put_block_group(bg);
 316}
 317
 318void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 319{
 320	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 321}
 322
 323void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 324					const u64 start)
 325{
 326	struct btrfs_block_group *bg;
 327
 328	bg = btrfs_lookup_block_group(fs_info, start);
 329	ASSERT(bg);
 330	if (atomic_dec_and_test(&bg->reservations))
 331		wake_up_var(&bg->reservations);
 332	btrfs_put_block_group(bg);
 333}
 334
 335void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 336{
 337	struct btrfs_space_info *space_info = bg->space_info;
 338
 339	ASSERT(bg->ro);
 340
 341	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 342		return;
 343
 344	/*
 345	 * Our block group is read only but before we set it to read only,
 346	 * some task might have had allocated an extent from it already, but it
 347	 * has not yet created a respective ordered extent (and added it to a
 348	 * root's list of ordered extents).
 349	 * Therefore wait for any task currently allocating extents, since the
 350	 * block group's reservations counter is incremented while a read lock
 351	 * on the groups' semaphore is held and decremented after releasing
 352	 * the read access on that semaphore and creating the ordered extent.
 353	 */
 354	down_write(&space_info->groups_sem);
 355	up_write(&space_info->groups_sem);
 356
 357	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 358}
 359
 360struct btrfs_caching_control *btrfs_get_caching_control(
 361		struct btrfs_block_group *cache)
 362{
 363	struct btrfs_caching_control *ctl;
 364
 365	spin_lock(&cache->lock);
 366	if (!cache->caching_ctl) {
 367		spin_unlock(&cache->lock);
 368		return NULL;
 369	}
 370
 371	ctl = cache->caching_ctl;
 372	refcount_inc(&ctl->count);
 373	spin_unlock(&cache->lock);
 374	return ctl;
 375}
 376
 377void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 378{
 379	if (refcount_dec_and_test(&ctl->count))
 380		kfree(ctl);
 381}
 382
 383/*
 384 * When we wait for progress in the block group caching, its because our
 385 * allocation attempt failed at least once.  So, we must sleep and let some
 386 * progress happen before we try again.
 387 *
 388 * This function will sleep at least once waiting for new free space to show
 389 * up, and then it will check the block group free space numbers for our min
 390 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 391 * a free extent of a given size, but this is a good start.
 392 *
 393 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 394 * any of the information in this block group.
 395 */
 396void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 397					   u64 num_bytes)
 398{
 399	struct btrfs_caching_control *caching_ctl;
 400
 401	caching_ctl = btrfs_get_caching_control(cache);
 402	if (!caching_ctl)
 403		return;
 404
 405	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 406		   (cache->free_space_ctl->free_space >= num_bytes));
 407
 408	btrfs_put_caching_control(caching_ctl);
 409}
 410
 411int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 
 
 
 
 
 
 
 412{
 413	struct btrfs_caching_control *caching_ctl;
 414	int ret = 0;
 415
 416	caching_ctl = btrfs_get_caching_control(cache);
 417	if (!caching_ctl)
 418		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 419
 420	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 421	if (cache->cached == BTRFS_CACHE_ERROR)
 422		ret = -EIO;
 423	btrfs_put_caching_control(caching_ctl);
 424	return ret;
 425}
 426
 427#ifdef CONFIG_BTRFS_DEBUG
 428static void fragment_free_space(struct btrfs_block_group *block_group)
 429{
 430	struct btrfs_fs_info *fs_info = block_group->fs_info;
 431	u64 start = block_group->start;
 432	u64 len = block_group->length;
 433	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 434		fs_info->nodesize : fs_info->sectorsize;
 435	u64 step = chunk << 1;
 436
 437	while (len > chunk) {
 438		btrfs_remove_free_space(block_group, start, chunk);
 439		start += step;
 440		if (len < step)
 441			len = 0;
 442		else
 443			len -= step;
 444	}
 445}
 446#endif
 447
 448/*
 449 * This is only called by btrfs_cache_block_group, since we could have freed
 450 * extents we need to check the pinned_extents for any extents that can't be
 451 * used yet since their free space will be released as soon as the transaction
 452 * commits.
 453 */
 454u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
 455{
 456	struct btrfs_fs_info *info = block_group->fs_info;
 457	u64 extent_start, extent_end, size, total_added = 0;
 458	int ret;
 459
 460	while (start < end) {
 461		ret = find_first_extent_bit(&info->excluded_extents, start,
 462					    &extent_start, &extent_end,
 463					    EXTENT_DIRTY | EXTENT_UPTODATE,
 464					    NULL);
 465		if (ret)
 466			break;
 467
 468		if (extent_start <= start) {
 469			start = extent_end + 1;
 470		} else if (extent_start > start && extent_start < end) {
 471			size = extent_start - start;
 472			total_added += size;
 473			ret = btrfs_add_free_space_async_trimmed(block_group,
 474								 start, size);
 475			BUG_ON(ret); /* -ENOMEM or logic error */
 476			start = extent_end + 1;
 477		} else {
 478			break;
 479		}
 480	}
 481
 482	if (start < end) {
 483		size = end - start;
 484		total_added += size;
 485		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 486							 size);
 487		BUG_ON(ret); /* -ENOMEM or logic error */
 488	}
 489
 490	return total_added;
 491}
 492
 493static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 494{
 495	struct btrfs_block_group *block_group = caching_ctl->block_group;
 496	struct btrfs_fs_info *fs_info = block_group->fs_info;
 497	struct btrfs_root *extent_root = fs_info->extent_root;
 498	struct btrfs_path *path;
 499	struct extent_buffer *leaf;
 500	struct btrfs_key key;
 501	u64 total_found = 0;
 502	u64 last = 0;
 503	u32 nritems;
 504	int ret;
 505	bool wakeup = true;
 506
 507	path = btrfs_alloc_path();
 508	if (!path)
 509		return -ENOMEM;
 510
 511	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 
 512
 513#ifdef CONFIG_BTRFS_DEBUG
 514	/*
 515	 * If we're fragmenting we don't want to make anybody think we can
 516	 * allocate from this block group until we've had a chance to fragment
 517	 * the free space.
 518	 */
 519	if (btrfs_should_fragment_free_space(block_group))
 520		wakeup = false;
 521#endif
 522	/*
 523	 * We don't want to deadlock with somebody trying to allocate a new
 524	 * extent for the extent root while also trying to search the extent
 525	 * root to add free space.  So we skip locking and search the commit
 526	 * root, since its read-only
 527	 */
 528	path->skip_locking = 1;
 529	path->search_commit_root = 1;
 530	path->reada = READA_FORWARD;
 531
 532	key.objectid = last;
 533	key.offset = 0;
 534	key.type = BTRFS_EXTENT_ITEM_KEY;
 535
 536next:
 537	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 538	if (ret < 0)
 539		goto out;
 540
 541	leaf = path->nodes[0];
 542	nritems = btrfs_header_nritems(leaf);
 543
 544	while (1) {
 545		if (btrfs_fs_closing(fs_info) > 1) {
 546			last = (u64)-1;
 547			break;
 548		}
 549
 550		if (path->slots[0] < nritems) {
 551			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 552		} else {
 553			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 554			if (ret)
 555				break;
 556
 557			if (need_resched() ||
 558			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 559				if (wakeup)
 560					caching_ctl->progress = last;
 561				btrfs_release_path(path);
 562				up_read(&fs_info->commit_root_sem);
 563				mutex_unlock(&caching_ctl->mutex);
 564				cond_resched();
 565				mutex_lock(&caching_ctl->mutex);
 566				down_read(&fs_info->commit_root_sem);
 567				goto next;
 568			}
 569
 570			ret = btrfs_next_leaf(extent_root, path);
 571			if (ret < 0)
 572				goto out;
 573			if (ret)
 574				break;
 575			leaf = path->nodes[0];
 576			nritems = btrfs_header_nritems(leaf);
 577			continue;
 578		}
 579
 580		if (key.objectid < last) {
 581			key.objectid = last;
 582			key.offset = 0;
 583			key.type = BTRFS_EXTENT_ITEM_KEY;
 584
 585			if (wakeup)
 586				caching_ctl->progress = last;
 587			btrfs_release_path(path);
 588			goto next;
 589		}
 590
 591		if (key.objectid < block_group->start) {
 592			path->slots[0]++;
 593			continue;
 594		}
 595
 596		if (key.objectid >= block_group->start + block_group->length)
 597			break;
 598
 599		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 600		    key.type == BTRFS_METADATA_ITEM_KEY) {
 601			total_found += add_new_free_space(block_group, last,
 602							  key.objectid);
 603			if (key.type == BTRFS_METADATA_ITEM_KEY)
 604				last = key.objectid +
 605					fs_info->nodesize;
 606			else
 607				last = key.objectid + key.offset;
 608
 609			if (total_found > CACHING_CTL_WAKE_UP) {
 610				total_found = 0;
 611				if (wakeup)
 612					wake_up(&caching_ctl->wait);
 613			}
 614		}
 615		path->slots[0]++;
 616	}
 617	ret = 0;
 618
 619	total_found += add_new_free_space(block_group, last,
 620				block_group->start + block_group->length);
 621	caching_ctl->progress = (u64)-1;
 622
 623out:
 624	btrfs_free_path(path);
 625	return ret;
 626}
 627
 628static noinline void caching_thread(struct btrfs_work *work)
 629{
 630	struct btrfs_block_group *block_group;
 631	struct btrfs_fs_info *fs_info;
 632	struct btrfs_caching_control *caching_ctl;
 633	int ret;
 634
 635	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 636	block_group = caching_ctl->block_group;
 637	fs_info = block_group->fs_info;
 638
 639	mutex_lock(&caching_ctl->mutex);
 640	down_read(&fs_info->commit_root_sem);
 641
 642	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643		ret = load_free_space_tree(caching_ctl);
 644	else
 645		ret = load_extent_tree_free(caching_ctl);
 646
 647	spin_lock(&block_group->lock);
 648	block_group->caching_ctl = NULL;
 649	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 650	spin_unlock(&block_group->lock);
 651
 652#ifdef CONFIG_BTRFS_DEBUG
 653	if (btrfs_should_fragment_free_space(block_group)) {
 654		u64 bytes_used;
 655
 656		spin_lock(&block_group->space_info->lock);
 657		spin_lock(&block_group->lock);
 658		bytes_used = block_group->length - block_group->used;
 659		block_group->space_info->bytes_used += bytes_used >> 1;
 660		spin_unlock(&block_group->lock);
 661		spin_unlock(&block_group->space_info->lock);
 662		fragment_free_space(block_group);
 663	}
 664#endif
 665
 666	caching_ctl->progress = (u64)-1;
 667
 668	up_read(&fs_info->commit_root_sem);
 669	btrfs_free_excluded_extents(block_group);
 670	mutex_unlock(&caching_ctl->mutex);
 671
 672	wake_up(&caching_ctl->wait);
 673
 674	btrfs_put_caching_control(caching_ctl);
 675	btrfs_put_block_group(block_group);
 676}
 677
 678int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
 679{
 680	DEFINE_WAIT(wait);
 681	struct btrfs_fs_info *fs_info = cache->fs_info;
 682	struct btrfs_caching_control *caching_ctl;
 683	int ret = 0;
 684
 
 
 
 
 685	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 686	if (!caching_ctl)
 687		return -ENOMEM;
 688
 689	INIT_LIST_HEAD(&caching_ctl->list);
 690	mutex_init(&caching_ctl->mutex);
 691	init_waitqueue_head(&caching_ctl->wait);
 692	caching_ctl->block_group = cache;
 693	caching_ctl->progress = cache->start;
 694	refcount_set(&caching_ctl->count, 1);
 695	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
 696
 697	spin_lock(&cache->lock);
 698	/*
 699	 * This should be a rare occasion, but this could happen I think in the
 700	 * case where one thread starts to load the space cache info, and then
 701	 * some other thread starts a transaction commit which tries to do an
 702	 * allocation while the other thread is still loading the space cache
 703	 * info.  The previous loop should have kept us from choosing this block
 704	 * group, but if we've moved to the state where we will wait on caching
 705	 * block groups we need to first check if we're doing a fast load here,
 706	 * so we can wait for it to finish, otherwise we could end up allocating
 707	 * from a block group who's cache gets evicted for one reason or
 708	 * another.
 709	 */
 710	while (cache->cached == BTRFS_CACHE_FAST) {
 711		struct btrfs_caching_control *ctl;
 712
 713		ctl = cache->caching_ctl;
 714		refcount_inc(&ctl->count);
 715		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 716		spin_unlock(&cache->lock);
 717
 718		schedule();
 719
 720		finish_wait(&ctl->wait, &wait);
 721		btrfs_put_caching_control(ctl);
 722		spin_lock(&cache->lock);
 723	}
 724
 725	if (cache->cached != BTRFS_CACHE_NO) {
 726		spin_unlock(&cache->lock);
 727		kfree(caching_ctl);
 728		return 0;
 
 
 
 
 
 729	}
 730	WARN_ON(cache->caching_ctl);
 731	cache->caching_ctl = caching_ctl;
 732	cache->cached = BTRFS_CACHE_FAST;
 733	spin_unlock(&cache->lock);
 734
 735	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 736		mutex_lock(&caching_ctl->mutex);
 737		ret = load_free_space_cache(cache);
 738
 739		spin_lock(&cache->lock);
 740		if (ret == 1) {
 741			cache->caching_ctl = NULL;
 742			cache->cached = BTRFS_CACHE_FINISHED;
 743			cache->last_byte_to_unpin = (u64)-1;
 744			caching_ctl->progress = (u64)-1;
 745		} else {
 746			if (load_cache_only) {
 747				cache->caching_ctl = NULL;
 748				cache->cached = BTRFS_CACHE_NO;
 749			} else {
 750				cache->cached = BTRFS_CACHE_STARTED;
 751				cache->has_caching_ctl = 1;
 752			}
 753		}
 754		spin_unlock(&cache->lock);
 755#ifdef CONFIG_BTRFS_DEBUG
 756		if (ret == 1 &&
 757		    btrfs_should_fragment_free_space(cache)) {
 758			u64 bytes_used;
 759
 760			spin_lock(&cache->space_info->lock);
 761			spin_lock(&cache->lock);
 762			bytes_used = cache->length - cache->used;
 763			cache->space_info->bytes_used += bytes_used >> 1;
 764			spin_unlock(&cache->lock);
 765			spin_unlock(&cache->space_info->lock);
 766			fragment_free_space(cache);
 767		}
 768#endif
 769		mutex_unlock(&caching_ctl->mutex);
 770
 771		wake_up(&caching_ctl->wait);
 772		if (ret == 1) {
 773			btrfs_put_caching_control(caching_ctl);
 774			btrfs_free_excluded_extents(cache);
 775			return 0;
 776		}
 777	} else {
 778		/*
 779		 * We're either using the free space tree or no caching at all.
 780		 * Set cached to the appropriate value and wakeup any waiters.
 781		 */
 782		spin_lock(&cache->lock);
 783		if (load_cache_only) {
 784			cache->caching_ctl = NULL;
 785			cache->cached = BTRFS_CACHE_NO;
 786		} else {
 787			cache->cached = BTRFS_CACHE_STARTED;
 788			cache->has_caching_ctl = 1;
 789		}
 790		spin_unlock(&cache->lock);
 791		wake_up(&caching_ctl->wait);
 792	}
 793
 794	if (load_cache_only) {
 795		btrfs_put_caching_control(caching_ctl);
 796		return 0;
 797	}
 798
 799	down_write(&fs_info->commit_root_sem);
 800	refcount_inc(&caching_ctl->count);
 801	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 802	up_write(&fs_info->commit_root_sem);
 803
 804	btrfs_get_block_group(cache);
 805
 806	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 
 
 
 
 
 807
 808	return ret;
 809}
 810
 811static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 812{
 813	u64 extra_flags = chunk_to_extended(flags) &
 814				BTRFS_EXTENDED_PROFILE_MASK;
 815
 816	write_seqlock(&fs_info->profiles_lock);
 817	if (flags & BTRFS_BLOCK_GROUP_DATA)
 818		fs_info->avail_data_alloc_bits &= ~extra_flags;
 819	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 820		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 821	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 822		fs_info->avail_system_alloc_bits &= ~extra_flags;
 823	write_sequnlock(&fs_info->profiles_lock);
 824}
 825
 826/*
 827 * Clear incompat bits for the following feature(s):
 828 *
 829 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 830 *            in the whole filesystem
 831 *
 832 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 833 */
 834static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 835{
 836	bool found_raid56 = false;
 837	bool found_raid1c34 = false;
 838
 839	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
 840	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
 841	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
 842		struct list_head *head = &fs_info->space_info;
 843		struct btrfs_space_info *sinfo;
 844
 845		list_for_each_entry_rcu(sinfo, head, list) {
 846			down_read(&sinfo->groups_sem);
 847			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
 848				found_raid56 = true;
 849			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
 850				found_raid56 = true;
 851			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
 852				found_raid1c34 = true;
 853			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
 854				found_raid1c34 = true;
 855			up_read(&sinfo->groups_sem);
 856		}
 857		if (!found_raid56)
 858			btrfs_clear_fs_incompat(fs_info, RAID56);
 859		if (!found_raid1c34)
 860			btrfs_clear_fs_incompat(fs_info, RAID1C34);
 861	}
 862}
 863
 864static int remove_block_group_item(struct btrfs_trans_handle *trans,
 865				   struct btrfs_path *path,
 866				   struct btrfs_block_group *block_group)
 867{
 868	struct btrfs_fs_info *fs_info = trans->fs_info;
 869	struct btrfs_root *root;
 870	struct btrfs_key key;
 871	int ret;
 872
 873	root = fs_info->extent_root;
 874	key.objectid = block_group->start;
 875	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 876	key.offset = block_group->length;
 877
 878	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 879	if (ret > 0)
 880		ret = -ENOENT;
 881	if (ret < 0)
 882		return ret;
 883
 884	ret = btrfs_del_item(trans, root, path);
 885	return ret;
 886}
 887
 888int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 889			     u64 group_start, struct extent_map *em)
 890{
 891	struct btrfs_fs_info *fs_info = trans->fs_info;
 892	struct btrfs_path *path;
 893	struct btrfs_block_group *block_group;
 894	struct btrfs_free_cluster *cluster;
 895	struct btrfs_root *tree_root = fs_info->tree_root;
 896	struct btrfs_key key;
 897	struct inode *inode;
 898	struct kobject *kobj = NULL;
 899	int ret;
 900	int index;
 901	int factor;
 902	struct btrfs_caching_control *caching_ctl = NULL;
 903	bool remove_em;
 904	bool remove_rsv = false;
 905
 906	block_group = btrfs_lookup_block_group(fs_info, group_start);
 907	BUG_ON(!block_group);
 908	BUG_ON(!block_group->ro);
 909
 910	trace_btrfs_remove_block_group(block_group);
 911	/*
 912	 * Free the reserved super bytes from this block group before
 913	 * remove it.
 914	 */
 915	btrfs_free_excluded_extents(block_group);
 916	btrfs_free_ref_tree_range(fs_info, block_group->start,
 917				  block_group->length);
 918
 919	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 920	factor = btrfs_bg_type_to_factor(block_group->flags);
 921
 922	/* make sure this block group isn't part of an allocation cluster */
 923	cluster = &fs_info->data_alloc_cluster;
 924	spin_lock(&cluster->refill_lock);
 925	btrfs_return_cluster_to_free_space(block_group, cluster);
 926	spin_unlock(&cluster->refill_lock);
 927
 928	/*
 929	 * make sure this block group isn't part of a metadata
 930	 * allocation cluster
 931	 */
 932	cluster = &fs_info->meta_alloc_cluster;
 933	spin_lock(&cluster->refill_lock);
 934	btrfs_return_cluster_to_free_space(block_group, cluster);
 935	spin_unlock(&cluster->refill_lock);
 936
 
 
 
 937	path = btrfs_alloc_path();
 938	if (!path) {
 939		ret = -ENOMEM;
 940		goto out;
 941	}
 942
 943	/*
 944	 * get the inode first so any iput calls done for the io_list
 945	 * aren't the final iput (no unlinks allowed now)
 946	 */
 947	inode = lookup_free_space_inode(block_group, path);
 948
 949	mutex_lock(&trans->transaction->cache_write_mutex);
 950	/*
 951	 * Make sure our free space cache IO is done before removing the
 952	 * free space inode
 953	 */
 954	spin_lock(&trans->transaction->dirty_bgs_lock);
 955	if (!list_empty(&block_group->io_list)) {
 956		list_del_init(&block_group->io_list);
 957
 958		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
 959
 960		spin_unlock(&trans->transaction->dirty_bgs_lock);
 961		btrfs_wait_cache_io(trans, block_group, path);
 962		btrfs_put_block_group(block_group);
 963		spin_lock(&trans->transaction->dirty_bgs_lock);
 964	}
 965
 966	if (!list_empty(&block_group->dirty_list)) {
 967		list_del_init(&block_group->dirty_list);
 968		remove_rsv = true;
 969		btrfs_put_block_group(block_group);
 970	}
 971	spin_unlock(&trans->transaction->dirty_bgs_lock);
 972	mutex_unlock(&trans->transaction->cache_write_mutex);
 973
 974	if (!IS_ERR(inode)) {
 975		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 976		if (ret) {
 977			btrfs_add_delayed_iput(inode);
 978			goto out;
 979		}
 980		clear_nlink(inode);
 981		/* One for the block groups ref */
 982		spin_lock(&block_group->lock);
 983		if (block_group->iref) {
 984			block_group->iref = 0;
 985			block_group->inode = NULL;
 986			spin_unlock(&block_group->lock);
 987			iput(inode);
 988		} else {
 989			spin_unlock(&block_group->lock);
 990		}
 991		/* One for our lookup ref */
 992		btrfs_add_delayed_iput(inode);
 993	}
 994
 995	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 996	key.type = 0;
 997	key.offset = block_group->start;
 998
 999	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1000	if (ret < 0)
1001		goto out;
1002	if (ret > 0)
1003		btrfs_release_path(path);
1004	if (ret == 0) {
1005		ret = btrfs_del_item(trans, tree_root, path);
1006		if (ret)
1007			goto out;
1008		btrfs_release_path(path);
1009	}
1010
1011	spin_lock(&fs_info->block_group_cache_lock);
1012	rb_erase(&block_group->cache_node,
1013		 &fs_info->block_group_cache_tree);
1014	RB_CLEAR_NODE(&block_group->cache_node);
1015
1016	/* Once for the block groups rbtree */
1017	btrfs_put_block_group(block_group);
1018
1019	if (fs_info->first_logical_byte == block_group->start)
1020		fs_info->first_logical_byte = (u64)-1;
1021	spin_unlock(&fs_info->block_group_cache_lock);
1022
1023	down_write(&block_group->space_info->groups_sem);
1024	/*
1025	 * we must use list_del_init so people can check to see if they
1026	 * are still on the list after taking the semaphore
1027	 */
1028	list_del_init(&block_group->list);
1029	if (list_empty(&block_group->space_info->block_groups[index])) {
1030		kobj = block_group->space_info->block_group_kobjs[index];
1031		block_group->space_info->block_group_kobjs[index] = NULL;
1032		clear_avail_alloc_bits(fs_info, block_group->flags);
1033	}
1034	up_write(&block_group->space_info->groups_sem);
1035	clear_incompat_bg_bits(fs_info, block_group->flags);
1036	if (kobj) {
1037		kobject_del(kobj);
1038		kobject_put(kobj);
1039	}
1040
1041	if (block_group->has_caching_ctl)
1042		caching_ctl = btrfs_get_caching_control(block_group);
1043	if (block_group->cached == BTRFS_CACHE_STARTED)
1044		btrfs_wait_block_group_cache_done(block_group);
1045	if (block_group->has_caching_ctl) {
1046		down_write(&fs_info->commit_root_sem);
1047		if (!caching_ctl) {
1048			struct btrfs_caching_control *ctl;
1049
1050			list_for_each_entry(ctl,
1051				    &fs_info->caching_block_groups, list)
1052				if (ctl->block_group == block_group) {
1053					caching_ctl = ctl;
1054					refcount_inc(&caching_ctl->count);
1055					break;
1056				}
1057		}
1058		if (caching_ctl)
1059			list_del_init(&caching_ctl->list);
1060		up_write(&fs_info->commit_root_sem);
1061		if (caching_ctl) {
1062			/* Once for the caching bgs list and once for us. */
1063			btrfs_put_caching_control(caching_ctl);
1064			btrfs_put_caching_control(caching_ctl);
1065		}
1066	}
 
 
 
 
 
 
 
 
 
1067
1068	spin_lock(&trans->transaction->dirty_bgs_lock);
1069	WARN_ON(!list_empty(&block_group->dirty_list));
1070	WARN_ON(!list_empty(&block_group->io_list));
1071	spin_unlock(&trans->transaction->dirty_bgs_lock);
1072
1073	btrfs_remove_free_space_cache(block_group);
1074
1075	spin_lock(&block_group->space_info->lock);
1076	list_del_init(&block_group->ro_list);
1077
1078	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1079		WARN_ON(block_group->space_info->total_bytes
1080			< block_group->length);
1081		WARN_ON(block_group->space_info->bytes_readonly
1082			< block_group->length);
 
 
1083		WARN_ON(block_group->space_info->disk_total
1084			< block_group->length * factor);
 
 
 
 
1085	}
1086	block_group->space_info->total_bytes -= block_group->length;
1087	block_group->space_info->bytes_readonly -= block_group->length;
 
 
 
 
 
1088	block_group->space_info->disk_total -= block_group->length * factor;
1089
1090	spin_unlock(&block_group->space_info->lock);
1091
1092	/*
1093	 * Remove the free space for the block group from the free space tree
1094	 * and the block group's item from the extent tree before marking the
1095	 * block group as removed. This is to prevent races with tasks that
1096	 * freeze and unfreeze a block group, this task and another task
1097	 * allocating a new block group - the unfreeze task ends up removing
1098	 * the block group's extent map before the task calling this function
1099	 * deletes the block group item from the extent tree, allowing for
1100	 * another task to attempt to create another block group with the same
1101	 * item key (and failing with -EEXIST and a transaction abort).
1102	 */
1103	ret = remove_block_group_free_space(trans, block_group);
1104	if (ret)
1105		goto out;
1106
1107	ret = remove_block_group_item(trans, path, block_group);
1108	if (ret < 0)
1109		goto out;
1110
1111	spin_lock(&block_group->lock);
1112	block_group->removed = 1;
 
1113	/*
1114	 * At this point trimming or scrub can't start on this block group,
1115	 * because we removed the block group from the rbtree
1116	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1117	 * even if someone already got this block group before we removed it
1118	 * from the rbtree, they have already incremented block_group->frozen -
1119	 * if they didn't, for the trimming case they won't find any free space
1120	 * entries because we already removed them all when we called
1121	 * btrfs_remove_free_space_cache().
1122	 *
1123	 * And we must not remove the extent map from the fs_info->mapping_tree
1124	 * to prevent the same logical address range and physical device space
1125	 * ranges from being reused for a new block group. This is needed to
1126	 * avoid races with trimming and scrub.
1127	 *
1128	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1129	 * completely transactionless, so while it is trimming a range the
1130	 * currently running transaction might finish and a new one start,
1131	 * allowing for new block groups to be created that can reuse the same
1132	 * physical device locations unless we take this special care.
1133	 *
1134	 * There may also be an implicit trim operation if the file system
1135	 * is mounted with -odiscard. The same protections must remain
1136	 * in place until the extents have been discarded completely when
1137	 * the transaction commit has completed.
1138	 */
1139	remove_em = (atomic_read(&block_group->frozen) == 0);
1140	spin_unlock(&block_group->lock);
1141
1142	if (remove_em) {
1143		struct extent_map_tree *em_tree;
1144
1145		em_tree = &fs_info->mapping_tree;
1146		write_lock(&em_tree->lock);
1147		remove_extent_mapping(em_tree, em);
1148		write_unlock(&em_tree->lock);
1149		/* once for the tree */
1150		free_extent_map(em);
1151	}
1152
1153out:
1154	/* Once for the lookup reference */
1155	btrfs_put_block_group(block_group);
1156	if (remove_rsv)
1157		btrfs_delayed_refs_rsv_release(fs_info, 1);
1158	btrfs_free_path(path);
1159	return ret;
1160}
1161
1162struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1163		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1164{
 
1165	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1166	struct extent_map *em;
1167	struct map_lookup *map;
1168	unsigned int num_items;
1169
1170	read_lock(&em_tree->lock);
1171	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1172	read_unlock(&em_tree->lock);
1173	ASSERT(em && em->start == chunk_offset);
1174
1175	/*
1176	 * We need to reserve 3 + N units from the metadata space info in order
1177	 * to remove a block group (done at btrfs_remove_chunk() and at
1178	 * btrfs_remove_block_group()), which are used for:
1179	 *
1180	 * 1 unit for adding the free space inode's orphan (located in the tree
1181	 * of tree roots).
1182	 * 1 unit for deleting the block group item (located in the extent
1183	 * tree).
1184	 * 1 unit for deleting the free space item (located in tree of tree
1185	 * roots).
1186	 * N units for deleting N device extent items corresponding to each
1187	 * stripe (located in the device tree).
1188	 *
1189	 * In order to remove a block group we also need to reserve units in the
1190	 * system space info in order to update the chunk tree (update one or
1191	 * more device items and remove one chunk item), but this is done at
1192	 * btrfs_remove_chunk() through a call to check_system_chunk().
1193	 */
1194	map = em->map_lookup;
1195	num_items = 3 + map->num_stripes;
1196	free_extent_map(em);
1197
1198	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1199							   num_items);
1200}
1201
1202/*
1203 * Mark block group @cache read-only, so later write won't happen to block
1204 * group @cache.
1205 *
1206 * If @force is not set, this function will only mark the block group readonly
1207 * if we have enough free space (1M) in other metadata/system block groups.
1208 * If @force is not set, this function will mark the block group readonly
1209 * without checking free space.
1210 *
1211 * NOTE: This function doesn't care if other block groups can contain all the
1212 * data in this block group. That check should be done by relocation routine,
1213 * not this function.
1214 */
1215static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1216{
1217	struct btrfs_space_info *sinfo = cache->space_info;
1218	u64 num_bytes;
1219	int ret = -ENOSPC;
1220
1221	spin_lock(&sinfo->lock);
1222	spin_lock(&cache->lock);
1223
 
 
 
 
 
1224	if (cache->ro) {
1225		cache->ro++;
1226		ret = 0;
1227		goto out;
1228	}
1229
1230	num_bytes = cache->length - cache->reserved - cache->pinned -
1231		    cache->bytes_super - cache->used;
1232
1233	/*
1234	 * Data never overcommits, even in mixed mode, so do just the straight
1235	 * check of left over space in how much we have allocated.
1236	 */
1237	if (force) {
1238		ret = 0;
1239	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1240		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1241
1242		/*
1243		 * Here we make sure if we mark this bg RO, we still have enough
1244		 * free space as buffer.
1245		 */
1246		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1247			ret = 0;
1248	} else {
1249		/*
1250		 * We overcommit metadata, so we need to do the
1251		 * btrfs_can_overcommit check here, and we need to pass in
1252		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1253		 * leeway to allow us to mark this block group as read only.
1254		 */
1255		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1256					 BTRFS_RESERVE_NO_FLUSH))
1257			ret = 0;
1258	}
1259
1260	if (!ret) {
1261		sinfo->bytes_readonly += num_bytes;
 
 
 
 
 
 
1262		cache->ro++;
1263		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1264	}
1265out:
1266	spin_unlock(&cache->lock);
1267	spin_unlock(&sinfo->lock);
1268	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1269		btrfs_info(cache->fs_info,
1270			"unable to make block group %llu ro", cache->start);
1271		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1272	}
1273	return ret;
1274}
1275
1276static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1277				 struct btrfs_block_group *bg)
1278{
1279	struct btrfs_fs_info *fs_info = bg->fs_info;
1280	struct btrfs_transaction *prev_trans = NULL;
1281	const u64 start = bg->start;
1282	const u64 end = start + bg->length - 1;
1283	int ret;
1284
1285	spin_lock(&fs_info->trans_lock);
1286	if (trans->transaction->list.prev != &fs_info->trans_list) {
1287		prev_trans = list_last_entry(&trans->transaction->list,
1288					     struct btrfs_transaction, list);
1289		refcount_inc(&prev_trans->use_count);
1290	}
1291	spin_unlock(&fs_info->trans_lock);
1292
1293	/*
1294	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1295	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1296	 * task might be running finish_extent_commit() for the previous
1297	 * transaction N - 1, and have seen a range belonging to the block
1298	 * group in pinned_extents before we were able to clear the whole block
1299	 * group range from pinned_extents. This means that task can lookup for
1300	 * the block group after we unpinned it from pinned_extents and removed
1301	 * it, leading to a BUG_ON() at unpin_extent_range().
1302	 */
1303	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1304	if (prev_trans) {
1305		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1306					EXTENT_DIRTY);
1307		if (ret)
1308			goto out;
1309	}
1310
1311	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1312				EXTENT_DIRTY);
1313out:
1314	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1315	if (prev_trans)
1316		btrfs_put_transaction(prev_trans);
1317
1318	return ret == 0;
1319}
1320
1321/*
1322 * Process the unused_bgs list and remove any that don't have any allocated
1323 * space inside of them.
1324 */
1325void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1326{
1327	struct btrfs_block_group *block_group;
1328	struct btrfs_space_info *space_info;
1329	struct btrfs_trans_handle *trans;
1330	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1331	int ret = 0;
1332
1333	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1334		return;
1335
 
 
 
 
 
 
 
 
 
 
1336	spin_lock(&fs_info->unused_bgs_lock);
1337	while (!list_empty(&fs_info->unused_bgs)) {
1338		int trimming;
1339
1340		block_group = list_first_entry(&fs_info->unused_bgs,
1341					       struct btrfs_block_group,
1342					       bg_list);
1343		list_del_init(&block_group->bg_list);
1344
1345		space_info = block_group->space_info;
1346
1347		if (ret || btrfs_mixed_space_info(space_info)) {
1348			btrfs_put_block_group(block_group);
1349			continue;
1350		}
1351		spin_unlock(&fs_info->unused_bgs_lock);
1352
1353		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1354
1355		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1356
1357		/* Don't want to race with allocators so take the groups_sem */
1358		down_write(&space_info->groups_sem);
1359
1360		/*
1361		 * Async discard moves the final block group discard to be prior
1362		 * to the unused_bgs code path.  Therefore, if it's not fully
1363		 * trimmed, punt it back to the async discard lists.
1364		 */
1365		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1366		    !btrfs_is_free_space_trimmed(block_group)) {
1367			trace_btrfs_skip_unused_block_group(block_group);
1368			up_write(&space_info->groups_sem);
1369			/* Requeue if we failed because of async discard */
1370			btrfs_discard_queue_work(&fs_info->discard_ctl,
1371						 block_group);
1372			goto next;
1373		}
1374
1375		spin_lock(&block_group->lock);
1376		if (block_group->reserved || block_group->pinned ||
1377		    block_group->used || block_group->ro ||
1378		    list_is_singular(&block_group->list)) {
1379			/*
1380			 * We want to bail if we made new allocations or have
1381			 * outstanding allocations in this block group.  We do
1382			 * the ro check in case balance is currently acting on
1383			 * this block group.
1384			 */
1385			trace_btrfs_skip_unused_block_group(block_group);
1386			spin_unlock(&block_group->lock);
1387			up_write(&space_info->groups_sem);
1388			goto next;
1389		}
1390		spin_unlock(&block_group->lock);
1391
1392		/* We don't want to force the issue, only flip if it's ok. */
1393		ret = inc_block_group_ro(block_group, 0);
1394		up_write(&space_info->groups_sem);
1395		if (ret < 0) {
1396			ret = 0;
1397			goto next;
1398		}
1399
 
 
 
 
 
 
 
 
1400		/*
1401		 * Want to do this before we do anything else so we can recover
1402		 * properly if we fail to join the transaction.
1403		 */
1404		trans = btrfs_start_trans_remove_block_group(fs_info,
1405						     block_group->start);
1406		if (IS_ERR(trans)) {
1407			btrfs_dec_block_group_ro(block_group);
1408			ret = PTR_ERR(trans);
1409			goto next;
1410		}
1411
1412		/*
1413		 * We could have pending pinned extents for this block group,
1414		 * just delete them, we don't care about them anymore.
1415		 */
1416		if (!clean_pinned_extents(trans, block_group)) {
1417			btrfs_dec_block_group_ro(block_group);
1418			goto end_trans;
1419		}
1420
1421		/*
1422		 * At this point, the block_group is read only and should fail
1423		 * new allocations.  However, btrfs_finish_extent_commit() can
1424		 * cause this block_group to be placed back on the discard
1425		 * lists because now the block_group isn't fully discarded.
1426		 * Bail here and try again later after discarding everything.
1427		 */
1428		spin_lock(&fs_info->discard_ctl.lock);
1429		if (!list_empty(&block_group->discard_list)) {
1430			spin_unlock(&fs_info->discard_ctl.lock);
1431			btrfs_dec_block_group_ro(block_group);
1432			btrfs_discard_queue_work(&fs_info->discard_ctl,
1433						 block_group);
1434			goto end_trans;
1435		}
1436		spin_unlock(&fs_info->discard_ctl.lock);
1437
1438		/* Reset pinned so btrfs_put_block_group doesn't complain */
1439		spin_lock(&space_info->lock);
1440		spin_lock(&block_group->lock);
1441
1442		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1443						     -block_group->pinned);
1444		space_info->bytes_readonly += block_group->pinned;
1445		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1446				   -block_group->pinned,
1447				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1448		block_group->pinned = 0;
1449
1450		spin_unlock(&block_group->lock);
1451		spin_unlock(&space_info->lock);
1452
1453		/*
1454		 * The normal path here is an unused block group is passed here,
1455		 * then trimming is handled in the transaction commit path.
1456		 * Async discard interposes before this to do the trimming
1457		 * before coming down the unused block group path as trimming
1458		 * will no longer be done later in the transaction commit path.
1459		 */
1460		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1461			goto flip_async;
1462
1463		/* DISCARD can flip during remount */
1464		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
 
 
 
 
1465
1466		/* Implicit trim during transaction commit. */
1467		if (trimming)
1468			btrfs_freeze_block_group(block_group);
1469
1470		/*
1471		 * Btrfs_remove_chunk will abort the transaction if things go
1472		 * horribly wrong.
1473		 */
1474		ret = btrfs_remove_chunk(trans, block_group->start);
1475
1476		if (ret) {
1477			if (trimming)
1478				btrfs_unfreeze_block_group(block_group);
1479			goto end_trans;
1480		}
1481
1482		/*
1483		 * If we're not mounted with -odiscard, we can just forget
1484		 * about this block group. Otherwise we'll need to wait
1485		 * until transaction commit to do the actual discard.
1486		 */
1487		if (trimming) {
1488			spin_lock(&fs_info->unused_bgs_lock);
1489			/*
1490			 * A concurrent scrub might have added us to the list
1491			 * fs_info->unused_bgs, so use a list_move operation
1492			 * to add the block group to the deleted_bgs list.
1493			 */
1494			list_move(&block_group->bg_list,
1495				  &trans->transaction->deleted_bgs);
1496			spin_unlock(&fs_info->unused_bgs_lock);
1497			btrfs_get_block_group(block_group);
1498		}
1499end_trans:
1500		btrfs_end_transaction(trans);
1501next:
1502		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1503		btrfs_put_block_group(block_group);
1504		spin_lock(&fs_info->unused_bgs_lock);
1505	}
1506	spin_unlock(&fs_info->unused_bgs_lock);
 
1507	return;
1508
1509flip_async:
1510	btrfs_end_transaction(trans);
1511	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1512	btrfs_put_block_group(block_group);
1513	btrfs_discard_punt_unused_bgs_list(fs_info);
1514}
1515
1516void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1517{
1518	struct btrfs_fs_info *fs_info = bg->fs_info;
1519
1520	spin_lock(&fs_info->unused_bgs_lock);
1521	if (list_empty(&bg->bg_list)) {
1522		btrfs_get_block_group(bg);
1523		trace_btrfs_add_unused_block_group(bg);
1524		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1525	}
1526	spin_unlock(&fs_info->unused_bgs_lock);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1530			   struct btrfs_path *path)
1531{
1532	struct extent_map_tree *em_tree;
1533	struct extent_map *em;
1534	struct btrfs_block_group_item bg;
1535	struct extent_buffer *leaf;
1536	int slot;
1537	u64 flags;
1538	int ret = 0;
1539
1540	slot = path->slots[0];
1541	leaf = path->nodes[0];
1542
1543	em_tree = &fs_info->mapping_tree;
1544	read_lock(&em_tree->lock);
1545	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1546	read_unlock(&em_tree->lock);
1547	if (!em) {
1548		btrfs_err(fs_info,
1549			  "logical %llu len %llu found bg but no related chunk",
1550			  key->objectid, key->offset);
1551		return -ENOENT;
1552	}
1553
1554	if (em->start != key->objectid || em->len != key->offset) {
1555		btrfs_err(fs_info,
1556			"block group %llu len %llu mismatch with chunk %llu len %llu",
1557			key->objectid, key->offset, em->start, em->len);
1558		ret = -EUCLEAN;
1559		goto out_free_em;
1560	}
1561
1562	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1563			   sizeof(bg));
1564	flags = btrfs_stack_block_group_flags(&bg) &
1565		BTRFS_BLOCK_GROUP_TYPE_MASK;
1566
1567	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1568		btrfs_err(fs_info,
1569"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1570			  key->objectid, key->offset, flags,
1571			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1572		ret = -EUCLEAN;
1573	}
1574
1575out_free_em:
1576	free_extent_map(em);
1577	return ret;
1578}
1579
1580static int find_first_block_group(struct btrfs_fs_info *fs_info,
1581				  struct btrfs_path *path,
1582				  struct btrfs_key *key)
1583{
1584	struct btrfs_root *root = fs_info->extent_root;
1585	int ret;
1586	struct btrfs_key found_key;
1587	struct extent_buffer *leaf;
1588	int slot;
1589
1590	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1591	if (ret < 0)
1592		return ret;
1593
1594	while (1) {
1595		slot = path->slots[0];
1596		leaf = path->nodes[0];
1597		if (slot >= btrfs_header_nritems(leaf)) {
1598			ret = btrfs_next_leaf(root, path);
1599			if (ret == 0)
1600				continue;
1601			if (ret < 0)
1602				goto out;
1603			break;
1604		}
1605		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1606
 
1607		if (found_key.objectid >= key->objectid &&
1608		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1609			ret = read_bg_from_eb(fs_info, &found_key, path);
1610			break;
1611		}
1612
1613		path->slots[0]++;
1614	}
1615out:
1616	return ret;
1617}
1618
1619static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1620{
1621	u64 extra_flags = chunk_to_extended(flags) &
1622				BTRFS_EXTENDED_PROFILE_MASK;
1623
1624	write_seqlock(&fs_info->profiles_lock);
1625	if (flags & BTRFS_BLOCK_GROUP_DATA)
1626		fs_info->avail_data_alloc_bits |= extra_flags;
1627	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1628		fs_info->avail_metadata_alloc_bits |= extra_flags;
1629	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1630		fs_info->avail_system_alloc_bits |= extra_flags;
1631	write_sequnlock(&fs_info->profiles_lock);
1632}
1633
1634/**
1635 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
 
 
1636 * @chunk_start:   logical address of block group
 
1637 * @physical:	   physical address to map to logical addresses
1638 * @logical:	   return array of logical addresses which map to @physical
1639 * @naddrs:	   length of @logical
1640 * @stripe_len:    size of IO stripe for the given block group
1641 *
1642 * Maps a particular @physical disk address to a list of @logical addresses.
1643 * Used primarily to exclude those portions of a block group that contain super
1644 * block copies.
1645 */
1646EXPORT_FOR_TESTS
1647int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1648		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
 
1649{
1650	struct extent_map *em;
1651	struct map_lookup *map;
1652	u64 *buf;
1653	u64 bytenr;
1654	u64 data_stripe_length;
1655	u64 io_stripe_size;
1656	int i, nr = 0;
1657	int ret = 0;
1658
1659	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1660	if (IS_ERR(em))
1661		return -EIO;
1662
1663	map = em->map_lookup;
1664	data_stripe_length = em->orig_block_len;
1665	io_stripe_size = map->stripe_len;
 
1666
1667	/* For RAID5/6 adjust to a full IO stripe length */
1668	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1669		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1670
1671	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1672	if (!buf) {
1673		ret = -ENOMEM;
1674		goto out;
1675	}
1676
1677	for (i = 0; i < map->num_stripes; i++) {
1678		bool already_inserted = false;
1679		u64 stripe_nr;
 
1680		int j;
1681
1682		if (!in_range(physical, map->stripes[i].physical,
1683			      data_stripe_length))
1684			continue;
1685
 
 
 
1686		stripe_nr = physical - map->stripes[i].physical;
1687		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1688
1689		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 
1690			stripe_nr = stripe_nr * map->num_stripes + i;
1691			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1692		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1693			stripe_nr = stripe_nr * map->num_stripes + i;
1694		}
1695		/*
1696		 * The remaining case would be for RAID56, multiply by
1697		 * nr_data_stripes().  Alternatively, just use rmap_len below
1698		 * instead of map->stripe_len
1699		 */
1700
1701		bytenr = chunk_start + stripe_nr * io_stripe_size;
1702
1703		/* Ensure we don't add duplicate addresses */
1704		for (j = 0; j < nr; j++) {
1705			if (buf[j] == bytenr) {
1706				already_inserted = true;
1707				break;
1708			}
1709		}
1710
1711		if (!already_inserted)
1712			buf[nr++] = bytenr;
1713	}
1714
1715	*logical = buf;
1716	*naddrs = nr;
1717	*stripe_len = io_stripe_size;
1718out:
1719	free_extent_map(em);
1720	return ret;
1721}
1722
1723static int exclude_super_stripes(struct btrfs_block_group *cache)
1724{
1725	struct btrfs_fs_info *fs_info = cache->fs_info;
 
1726	u64 bytenr;
1727	u64 *logical;
1728	int stripe_len;
1729	int i, nr, ret;
1730
1731	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1732		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1733		cache->bytes_super += stripe_len;
1734		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1735						stripe_len);
1736		if (ret)
1737			return ret;
1738	}
1739
1740	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1741		bytenr = btrfs_sb_offset(i);
1742		ret = btrfs_rmap_block(fs_info, cache->start,
1743				       bytenr, &logical, &nr, &stripe_len);
1744		if (ret)
1745			return ret;
1746
 
 
 
 
 
 
 
 
1747		while (nr--) {
1748			u64 len = min_t(u64, stripe_len,
1749				cache->start + cache->length - logical[nr]);
1750
1751			cache->bytes_super += len;
1752			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1753							len);
1754			if (ret) {
1755				kfree(logical);
1756				return ret;
1757			}
1758		}
1759
1760		kfree(logical);
1761	}
1762	return 0;
1763}
1764
1765static void link_block_group(struct btrfs_block_group *cache)
1766{
1767	struct btrfs_space_info *space_info = cache->space_info;
1768	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1769	bool first = false;
1770
1771	down_write(&space_info->groups_sem);
1772	if (list_empty(&space_info->block_groups[index]))
1773		first = true;
1774	list_add_tail(&cache->list, &space_info->block_groups[index]);
1775	up_write(&space_info->groups_sem);
1776
1777	if (first)
1778		btrfs_sysfs_add_block_group_type(cache);
1779}
1780
1781static struct btrfs_block_group *btrfs_create_block_group_cache(
1782		struct btrfs_fs_info *fs_info, u64 start)
1783{
1784	struct btrfs_block_group *cache;
1785
1786	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1787	if (!cache)
1788		return NULL;
1789
1790	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1791					GFP_NOFS);
1792	if (!cache->free_space_ctl) {
1793		kfree(cache);
1794		return NULL;
1795	}
1796
1797	cache->start = start;
1798
1799	cache->fs_info = fs_info;
1800	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1801
1802	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1803
1804	refcount_set(&cache->refs, 1);
1805	spin_lock_init(&cache->lock);
1806	init_rwsem(&cache->data_rwsem);
1807	INIT_LIST_HEAD(&cache->list);
1808	INIT_LIST_HEAD(&cache->cluster_list);
1809	INIT_LIST_HEAD(&cache->bg_list);
1810	INIT_LIST_HEAD(&cache->ro_list);
1811	INIT_LIST_HEAD(&cache->discard_list);
1812	INIT_LIST_HEAD(&cache->dirty_list);
1813	INIT_LIST_HEAD(&cache->io_list);
1814	btrfs_init_free_space_ctl(cache);
 
1815	atomic_set(&cache->frozen, 0);
1816	mutex_init(&cache->free_space_lock);
1817	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
 
1818
1819	return cache;
1820}
1821
1822/*
1823 * Iterate all chunks and verify that each of them has the corresponding block
1824 * group
1825 */
1826static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1827{
1828	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1829	struct extent_map *em;
1830	struct btrfs_block_group *bg;
1831	u64 start = 0;
1832	int ret = 0;
1833
1834	while (1) {
1835		read_lock(&map_tree->lock);
1836		/*
1837		 * lookup_extent_mapping will return the first extent map
1838		 * intersecting the range, so setting @len to 1 is enough to
1839		 * get the first chunk.
1840		 */
1841		em = lookup_extent_mapping(map_tree, start, 1);
1842		read_unlock(&map_tree->lock);
1843		if (!em)
1844			break;
1845
1846		bg = btrfs_lookup_block_group(fs_info, em->start);
1847		if (!bg) {
1848			btrfs_err(fs_info,
1849	"chunk start=%llu len=%llu doesn't have corresponding block group",
1850				     em->start, em->len);
1851			ret = -EUCLEAN;
1852			free_extent_map(em);
1853			break;
1854		}
1855		if (bg->start != em->start || bg->length != em->len ||
1856		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1857		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1858			btrfs_err(fs_info,
1859"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1860				em->start, em->len,
1861				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1862				bg->start, bg->length,
1863				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1864			ret = -EUCLEAN;
1865			free_extent_map(em);
1866			btrfs_put_block_group(bg);
1867			break;
1868		}
1869		start = em->start + em->len;
1870		free_extent_map(em);
1871		btrfs_put_block_group(bg);
1872	}
1873	return ret;
1874}
1875
1876static int read_block_group_item(struct btrfs_block_group *cache,
1877				 struct btrfs_path *path,
1878				 const struct btrfs_key *key)
1879{
1880	struct extent_buffer *leaf = path->nodes[0];
1881	struct btrfs_block_group_item bgi;
1882	int slot = path->slots[0];
1883
1884	cache->length = key->offset;
1885
1886	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1887			   sizeof(bgi));
1888	cache->used = btrfs_stack_block_group_used(&bgi);
1889	cache->flags = btrfs_stack_block_group_flags(&bgi);
1890
1891	return 0;
1892}
1893
1894static int read_one_block_group(struct btrfs_fs_info *info,
1895				struct btrfs_path *path,
1896				const struct btrfs_key *key,
1897				int need_clear)
1898{
1899	struct btrfs_block_group *cache;
1900	struct btrfs_space_info *space_info;
1901	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1902	int ret;
1903
1904	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1905
1906	cache = btrfs_create_block_group_cache(info, key->objectid);
1907	if (!cache)
1908		return -ENOMEM;
1909
1910	ret = read_block_group_item(cache, path, key);
1911	if (ret < 0)
1912		goto error;
 
 
1913
1914	set_free_space_tree_thresholds(cache);
1915
1916	if (need_clear) {
1917		/*
1918		 * When we mount with old space cache, we need to
1919		 * set BTRFS_DC_CLEAR and set dirty flag.
1920		 *
1921		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1922		 *    truncate the old free space cache inode and
1923		 *    setup a new one.
1924		 * b) Setting 'dirty flag' makes sure that we flush
1925		 *    the new space cache info onto disk.
1926		 */
1927		if (btrfs_test_opt(info, SPACE_CACHE))
1928			cache->disk_cache_state = BTRFS_DC_CLEAR;
1929	}
1930	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1931	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1932			btrfs_err(info,
1933"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1934				  cache->start);
1935			ret = -EINVAL;
1936			goto error;
1937	}
1938
 
 
 
 
 
 
 
1939	/*
1940	 * We need to exclude the super stripes now so that the space info has
1941	 * super bytes accounted for, otherwise we'll think we have more space
1942	 * than we actually do.
1943	 */
1944	ret = exclude_super_stripes(cache);
1945	if (ret) {
1946		/* We may have excluded something, so call this just in case. */
1947		btrfs_free_excluded_extents(cache);
1948		goto error;
1949	}
1950
1951	/*
1952	 * Check for two cases, either we are full, and therefore don't need
1953	 * to bother with the caching work since we won't find any space, or we
1954	 * are empty, and we can just add all the space in and be done with it.
1955	 * This saves us _a_lot_ of time, particularly in the full case.
 
 
 
 
 
 
1956	 */
1957	if (cache->length == cache->used) {
1958		cache->last_byte_to_unpin = (u64)-1;
 
 
 
1959		cache->cached = BTRFS_CACHE_FINISHED;
1960		btrfs_free_excluded_extents(cache);
1961	} else if (cache->used == 0) {
1962		cache->last_byte_to_unpin = (u64)-1;
1963		cache->cached = BTRFS_CACHE_FINISHED;
1964		add_new_free_space(cache, cache->start,
1965				   cache->start + cache->length);
1966		btrfs_free_excluded_extents(cache);
1967	}
1968
1969	ret = btrfs_add_block_group_cache(info, cache);
1970	if (ret) {
1971		btrfs_remove_free_space_cache(cache);
1972		goto error;
1973	}
1974	trace_btrfs_add_block_group(info, cache, 0);
1975	btrfs_update_space_info(info, cache->flags, cache->length,
1976				cache->used, cache->bytes_super, &space_info);
1977
1978	cache->space_info = space_info;
1979
1980	link_block_group(cache);
1981
1982	set_avail_alloc_bits(info, cache->flags);
1983	if (btrfs_chunk_readonly(info, cache->start)) {
 
 
 
 
 
 
 
 
1984		inc_block_group_ro(cache, 1);
1985	} else if (cache->used == 0) {
1986		ASSERT(list_empty(&cache->bg_list));
1987		if (btrfs_test_opt(info, DISCARD_ASYNC))
1988			btrfs_discard_queue_work(&info->discard_ctl, cache);
1989		else
1990			btrfs_mark_bg_unused(cache);
1991	}
 
1992	return 0;
1993error:
1994	btrfs_put_block_group(cache);
1995	return ret;
1996}
1997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998int btrfs_read_block_groups(struct btrfs_fs_info *info)
1999{
 
2000	struct btrfs_path *path;
2001	int ret;
2002	struct btrfs_block_group *cache;
2003	struct btrfs_space_info *space_info;
2004	struct btrfs_key key;
2005	int need_clear = 0;
2006	u64 cache_gen;
2007
 
 
 
 
 
 
 
 
 
 
 
 
2008	key.objectid = 0;
2009	key.offset = 0;
2010	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2011	path = btrfs_alloc_path();
2012	if (!path)
2013		return -ENOMEM;
2014
2015	cache_gen = btrfs_super_cache_generation(info->super_copy);
2016	if (btrfs_test_opt(info, SPACE_CACHE) &&
2017	    btrfs_super_generation(info->super_copy) != cache_gen)
2018		need_clear = 1;
2019	if (btrfs_test_opt(info, CLEAR_CACHE))
2020		need_clear = 1;
2021
2022	while (1) {
 
 
 
 
2023		ret = find_first_block_group(info, path, &key);
2024		if (ret > 0)
2025			break;
2026		if (ret != 0)
2027			goto error;
2028
2029		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2030		ret = read_one_block_group(info, path, &key, need_clear);
 
 
 
 
 
 
 
2031		if (ret < 0)
2032			goto error;
2033		key.objectid += key.offset;
2034		key.offset = 0;
2035		btrfs_release_path(path);
2036	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2037
2038	rcu_read_lock();
2039	list_for_each_entry_rcu(space_info, &info->space_info, list) {
2040		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2041		      (BTRFS_BLOCK_GROUP_RAID10 |
2042		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2043		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2044		       BTRFS_BLOCK_GROUP_DUP)))
2045			continue;
2046		/*
2047		 * Avoid allocating from un-mirrored block group if there are
2048		 * mirrored block groups.
2049		 */
2050		list_for_each_entry(cache,
2051				&space_info->block_groups[BTRFS_RAID_RAID0],
2052				list)
2053			inc_block_group_ro(cache, 1);
2054		list_for_each_entry(cache,
2055				&space_info->block_groups[BTRFS_RAID_SINGLE],
2056				list)
2057			inc_block_group_ro(cache, 1);
2058	}
2059	rcu_read_unlock();
2060
2061	btrfs_init_global_block_rsv(info);
2062	ret = check_chunk_block_group_mappings(info);
2063error:
2064	btrfs_free_path(path);
 
 
 
 
 
 
 
 
2065	return ret;
2066}
2067
 
 
 
 
 
 
 
2068static int insert_block_group_item(struct btrfs_trans_handle *trans,
2069				   struct btrfs_block_group *block_group)
2070{
2071	struct btrfs_fs_info *fs_info = trans->fs_info;
2072	struct btrfs_block_group_item bgi;
2073	struct btrfs_root *root;
2074	struct btrfs_key key;
2075
2076	spin_lock(&block_group->lock);
2077	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2078	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2079				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2080	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2081	key.objectid = block_group->start;
2082	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2083	key.offset = block_group->length;
2084	spin_unlock(&block_group->lock);
2085
2086	root = fs_info->extent_root;
2087	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2088}
2089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2091{
2092	struct btrfs_fs_info *fs_info = trans->fs_info;
2093	struct btrfs_block_group *block_group;
2094	int ret = 0;
2095
2096	if (!trans->can_flush_pending_bgs)
2097		return;
2098
2099	while (!list_empty(&trans->new_bgs)) {
 
 
2100		block_group = list_first_entry(&trans->new_bgs,
2101					       struct btrfs_block_group,
2102					       bg_list);
2103		if (ret)
2104			goto next;
2105
 
 
2106		ret = insert_block_group_item(trans, block_group);
2107		if (ret)
2108			btrfs_abort_transaction(trans, ret);
2109		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2110					block_group->length);
 
 
 
 
 
 
 
 
2111		if (ret)
2112			btrfs_abort_transaction(trans, ret);
2113		add_block_group_free_space(trans, block_group);
 
 
 
 
 
 
 
 
 
 
2114		/* Already aborted the transaction if it failed. */
2115next:
2116		btrfs_delayed_refs_rsv_release(fs_info, 1);
2117		list_del_init(&block_group->bg_list);
2118	}
2119	btrfs_trans_release_chunk_metadata(trans);
2120}
2121
2122int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2123			   u64 type, u64 chunk_offset, u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124{
2125	struct btrfs_fs_info *fs_info = trans->fs_info;
2126	struct btrfs_block_group *cache;
2127	int ret;
2128
2129	btrfs_set_log_full_commit(trans);
2130
2131	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2132	if (!cache)
2133		return -ENOMEM;
2134
2135	cache->length = size;
2136	set_free_space_tree_thresholds(cache);
2137	cache->used = bytes_used;
2138	cache->flags = type;
2139	cache->last_byte_to_unpin = (u64)-1;
2140	cache->cached = BTRFS_CACHE_FINISHED;
2141	cache->needs_free_space = 1;
 
 
 
 
 
 
 
 
 
 
2142	ret = exclude_super_stripes(cache);
2143	if (ret) {
2144		/* We may have excluded something, so call this just in case */
2145		btrfs_free_excluded_extents(cache);
2146		btrfs_put_block_group(cache);
2147		return ret;
2148	}
2149
2150	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2151
2152	btrfs_free_excluded_extents(cache);
2153
2154#ifdef CONFIG_BTRFS_DEBUG
2155	if (btrfs_should_fragment_free_space(cache)) {
2156		u64 new_bytes_used = size - bytes_used;
2157
2158		bytes_used += new_bytes_used >> 1;
2159		fragment_free_space(cache);
2160	}
2161#endif
2162	/*
2163	 * Ensure the corresponding space_info object is created and
2164	 * assigned to our block group. We want our bg to be added to the rbtree
2165	 * with its ->space_info set.
2166	 */
2167	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2168	ASSERT(cache->space_info);
2169
2170	ret = btrfs_add_block_group_cache(fs_info, cache);
2171	if (ret) {
2172		btrfs_remove_free_space_cache(cache);
2173		btrfs_put_block_group(cache);
2174		return ret;
2175	}
2176
2177	/*
2178	 * Now that our block group has its ->space_info set and is inserted in
2179	 * the rbtree, update the space info's counters.
2180	 */
2181	trace_btrfs_add_block_group(fs_info, cache, 1);
2182	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2183				cache->bytes_super, &cache->space_info);
2184	btrfs_update_global_block_rsv(fs_info);
2185
2186	link_block_group(cache);
 
 
 
 
 
 
 
2187
2188	list_add_tail(&cache->bg_list, &trans->new_bgs);
2189	trans->delayed_ref_updates++;
2190	btrfs_update_delayed_refs_rsv(trans);
2191
2192	set_avail_alloc_bits(fs_info, type);
2193	return 0;
2194}
2195
2196/*
2197 * Mark one block group RO, can be called several times for the same block
2198 * group.
2199 *
2200 * @cache:		the destination block group
2201 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2202 * 			ensure we still have some free space after marking this
2203 * 			block group RO.
2204 */
2205int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2206			     bool do_chunk_alloc)
2207{
2208	struct btrfs_fs_info *fs_info = cache->fs_info;
2209	struct btrfs_trans_handle *trans;
 
2210	u64 alloc_flags;
2211	int ret;
2212
2213again:
2214	trans = btrfs_join_transaction(fs_info->extent_root);
2215	if (IS_ERR(trans))
2216		return PTR_ERR(trans);
2217
2218	/*
2219	 * we're not allowed to set block groups readonly after the dirty
2220	 * block groups cache has started writing.  If it already started,
2221	 * back off and let this transaction commit
2222	 */
2223	mutex_lock(&fs_info->ro_block_group_mutex);
2224	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2225		u64 transid = trans->transid;
2226
2227		mutex_unlock(&fs_info->ro_block_group_mutex);
2228		btrfs_end_transaction(trans);
2229
2230		ret = btrfs_wait_for_commit(fs_info, transid);
2231		if (ret)
2232			return ret;
2233		goto again;
2234	}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236	if (do_chunk_alloc) {
2237		/*
2238		 * If we are changing raid levels, try to allocate a
2239		 * corresponding block group with the new raid level.
2240		 */
2241		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2242		if (alloc_flags != cache->flags) {
2243			ret = btrfs_chunk_alloc(trans, alloc_flags,
2244						CHUNK_ALLOC_FORCE);
2245			/*
2246			 * ENOSPC is allowed here, we may have enough space
2247			 * already allocated at the new raid level to carry on
2248			 */
2249			if (ret == -ENOSPC)
2250				ret = 0;
2251			if (ret < 0)
2252				goto out;
2253		}
2254	}
2255
2256	ret = inc_block_group_ro(cache, 0);
2257	if (!do_chunk_alloc)
2258		goto unlock_out;
2259	if (!ret)
2260		goto out;
2261	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2262	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2263	if (ret < 0)
2264		goto out;
 
 
 
 
 
 
 
 
2265	ret = inc_block_group_ro(cache, 0);
 
 
2266out:
2267	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2268		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2269		mutex_lock(&fs_info->chunk_mutex);
2270		check_system_chunk(trans, alloc_flags);
2271		mutex_unlock(&fs_info->chunk_mutex);
2272	}
2273unlock_out:
2274	mutex_unlock(&fs_info->ro_block_group_mutex);
2275
2276	btrfs_end_transaction(trans);
2277	return ret;
2278}
2279
2280void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2281{
2282	struct btrfs_space_info *sinfo = cache->space_info;
2283	u64 num_bytes;
2284
2285	BUG_ON(!cache->ro);
2286
2287	spin_lock(&sinfo->lock);
2288	spin_lock(&cache->lock);
2289	if (!--cache->ro) {
 
 
 
 
 
 
 
 
2290		num_bytes = cache->length - cache->reserved -
2291			    cache->pinned - cache->bytes_super - cache->used;
 
2292		sinfo->bytes_readonly -= num_bytes;
2293		list_del_init(&cache->ro_list);
2294	}
2295	spin_unlock(&cache->lock);
2296	spin_unlock(&sinfo->lock);
2297}
2298
2299static int update_block_group_item(struct btrfs_trans_handle *trans,
2300				   struct btrfs_path *path,
2301				   struct btrfs_block_group *cache)
2302{
2303	struct btrfs_fs_info *fs_info = trans->fs_info;
2304	int ret;
2305	struct btrfs_root *root = fs_info->extent_root;
2306	unsigned long bi;
2307	struct extent_buffer *leaf;
2308	struct btrfs_block_group_item bgi;
2309	struct btrfs_key key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310
2311	key.objectid = cache->start;
2312	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2313	key.offset = cache->length;
2314
2315	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2316	if (ret) {
2317		if (ret > 0)
2318			ret = -ENOENT;
2319		goto fail;
2320	}
2321
2322	leaf = path->nodes[0];
2323	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2324	btrfs_set_stack_block_group_used(&bgi, cache->used);
2325	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2326			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2327	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2328	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2329	btrfs_mark_buffer_dirty(leaf);
2330fail:
2331	btrfs_release_path(path);
 
 
 
 
 
 
2332	return ret;
2333
2334}
2335
2336static int cache_save_setup(struct btrfs_block_group *block_group,
2337			    struct btrfs_trans_handle *trans,
2338			    struct btrfs_path *path)
2339{
2340	struct btrfs_fs_info *fs_info = block_group->fs_info;
2341	struct btrfs_root *root = fs_info->tree_root;
2342	struct inode *inode = NULL;
2343	struct extent_changeset *data_reserved = NULL;
2344	u64 alloc_hint = 0;
2345	int dcs = BTRFS_DC_ERROR;
2346	u64 num_pages = 0;
2347	int retries = 0;
2348	int ret = 0;
2349
 
 
 
2350	/*
2351	 * If this block group is smaller than 100 megs don't bother caching the
2352	 * block group.
2353	 */
2354	if (block_group->length < (100 * SZ_1M)) {
2355		spin_lock(&block_group->lock);
2356		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2357		spin_unlock(&block_group->lock);
2358		return 0;
2359	}
2360
2361	if (TRANS_ABORTED(trans))
2362		return 0;
2363again:
2364	inode = lookup_free_space_inode(block_group, path);
2365	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2366		ret = PTR_ERR(inode);
2367		btrfs_release_path(path);
2368		goto out;
2369	}
2370
2371	if (IS_ERR(inode)) {
2372		BUG_ON(retries);
2373		retries++;
2374
2375		if (block_group->ro)
2376			goto out_free;
2377
2378		ret = create_free_space_inode(trans, block_group, path);
2379		if (ret)
2380			goto out_free;
2381		goto again;
2382	}
2383
2384	/*
2385	 * We want to set the generation to 0, that way if anything goes wrong
2386	 * from here on out we know not to trust this cache when we load up next
2387	 * time.
2388	 */
2389	BTRFS_I(inode)->generation = 0;
2390	ret = btrfs_update_inode(trans, root, inode);
2391	if (ret) {
2392		/*
2393		 * So theoretically we could recover from this, simply set the
2394		 * super cache generation to 0 so we know to invalidate the
2395		 * cache, but then we'd have to keep track of the block groups
2396		 * that fail this way so we know we _have_ to reset this cache
2397		 * before the next commit or risk reading stale cache.  So to
2398		 * limit our exposure to horrible edge cases lets just abort the
2399		 * transaction, this only happens in really bad situations
2400		 * anyway.
2401		 */
2402		btrfs_abort_transaction(trans, ret);
2403		goto out_put;
2404	}
2405	WARN_ON(ret);
2406
2407	/* We've already setup this transaction, go ahead and exit */
2408	if (block_group->cache_generation == trans->transid &&
2409	    i_size_read(inode)) {
2410		dcs = BTRFS_DC_SETUP;
2411		goto out_put;
2412	}
2413
2414	if (i_size_read(inode) > 0) {
2415		ret = btrfs_check_trunc_cache_free_space(fs_info,
2416					&fs_info->global_block_rsv);
2417		if (ret)
2418			goto out_put;
2419
2420		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2421		if (ret)
2422			goto out_put;
2423	}
2424
2425	spin_lock(&block_group->lock);
2426	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2427	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2428		/*
2429		 * don't bother trying to write stuff out _if_
2430		 * a) we're not cached,
2431		 * b) we're with nospace_cache mount option,
2432		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2433		 */
2434		dcs = BTRFS_DC_WRITTEN;
2435		spin_unlock(&block_group->lock);
2436		goto out_put;
2437	}
2438	spin_unlock(&block_group->lock);
2439
2440	/*
2441	 * We hit an ENOSPC when setting up the cache in this transaction, just
2442	 * skip doing the setup, we've already cleared the cache so we're safe.
2443	 */
2444	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2445		ret = -ENOSPC;
2446		goto out_put;
2447	}
2448
2449	/*
2450	 * Try to preallocate enough space based on how big the block group is.
2451	 * Keep in mind this has to include any pinned space which could end up
2452	 * taking up quite a bit since it's not folded into the other space
2453	 * cache.
2454	 */
2455	num_pages = div_u64(block_group->length, SZ_256M);
2456	if (!num_pages)
2457		num_pages = 1;
2458
2459	num_pages *= 16;
2460	num_pages *= PAGE_SIZE;
2461
2462	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2463					  num_pages);
2464	if (ret)
2465		goto out_put;
2466
2467	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2468					      num_pages, num_pages,
2469					      &alloc_hint);
2470	/*
2471	 * Our cache requires contiguous chunks so that we don't modify a bunch
2472	 * of metadata or split extents when writing the cache out, which means
2473	 * we can enospc if we are heavily fragmented in addition to just normal
2474	 * out of space conditions.  So if we hit this just skip setting up any
2475	 * other block groups for this transaction, maybe we'll unpin enough
2476	 * space the next time around.
2477	 */
2478	if (!ret)
2479		dcs = BTRFS_DC_SETUP;
2480	else if (ret == -ENOSPC)
2481		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2482
2483out_put:
2484	iput(inode);
2485out_free:
2486	btrfs_release_path(path);
2487out:
2488	spin_lock(&block_group->lock);
2489	if (!ret && dcs == BTRFS_DC_SETUP)
2490		block_group->cache_generation = trans->transid;
2491	block_group->disk_cache_state = dcs;
2492	spin_unlock(&block_group->lock);
2493
2494	extent_changeset_free(data_reserved);
2495	return ret;
2496}
2497
2498int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2499{
2500	struct btrfs_fs_info *fs_info = trans->fs_info;
2501	struct btrfs_block_group *cache, *tmp;
2502	struct btrfs_transaction *cur_trans = trans->transaction;
2503	struct btrfs_path *path;
2504
2505	if (list_empty(&cur_trans->dirty_bgs) ||
2506	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2507		return 0;
2508
2509	path = btrfs_alloc_path();
2510	if (!path)
2511		return -ENOMEM;
2512
2513	/* Could add new block groups, use _safe just in case */
2514	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2515				 dirty_list) {
2516		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2517			cache_save_setup(cache, trans, path);
2518	}
2519
2520	btrfs_free_path(path);
2521	return 0;
2522}
2523
2524/*
2525 * Transaction commit does final block group cache writeback during a critical
2526 * section where nothing is allowed to change the FS.  This is required in
2527 * order for the cache to actually match the block group, but can introduce a
2528 * lot of latency into the commit.
2529 *
2530 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2531 * There's a chance we'll have to redo some of it if the block group changes
2532 * again during the commit, but it greatly reduces the commit latency by
2533 * getting rid of the easy block groups while we're still allowing others to
2534 * join the commit.
2535 */
2536int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2537{
2538	struct btrfs_fs_info *fs_info = trans->fs_info;
2539	struct btrfs_block_group *cache;
2540	struct btrfs_transaction *cur_trans = trans->transaction;
2541	int ret = 0;
2542	int should_put;
2543	struct btrfs_path *path = NULL;
2544	LIST_HEAD(dirty);
2545	struct list_head *io = &cur_trans->io_bgs;
2546	int num_started = 0;
2547	int loops = 0;
2548
2549	spin_lock(&cur_trans->dirty_bgs_lock);
2550	if (list_empty(&cur_trans->dirty_bgs)) {
2551		spin_unlock(&cur_trans->dirty_bgs_lock);
2552		return 0;
2553	}
2554	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2555	spin_unlock(&cur_trans->dirty_bgs_lock);
2556
2557again:
2558	/* Make sure all the block groups on our dirty list actually exist */
2559	btrfs_create_pending_block_groups(trans);
2560
2561	if (!path) {
2562		path = btrfs_alloc_path();
2563		if (!path)
2564			return -ENOMEM;
 
 
2565	}
2566
2567	/*
2568	 * cache_write_mutex is here only to save us from balance or automatic
2569	 * removal of empty block groups deleting this block group while we are
2570	 * writing out the cache
2571	 */
2572	mutex_lock(&trans->transaction->cache_write_mutex);
2573	while (!list_empty(&dirty)) {
2574		bool drop_reserve = true;
2575
2576		cache = list_first_entry(&dirty, struct btrfs_block_group,
2577					 dirty_list);
2578		/*
2579		 * This can happen if something re-dirties a block group that
2580		 * is already under IO.  Just wait for it to finish and then do
2581		 * it all again
2582		 */
2583		if (!list_empty(&cache->io_list)) {
2584			list_del_init(&cache->io_list);
2585			btrfs_wait_cache_io(trans, cache, path);
2586			btrfs_put_block_group(cache);
2587		}
2588
2589
2590		/*
2591		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2592		 * it should update the cache_state.  Don't delete until after
2593		 * we wait.
2594		 *
2595		 * Since we're not running in the commit critical section
2596		 * we need the dirty_bgs_lock to protect from update_block_group
2597		 */
2598		spin_lock(&cur_trans->dirty_bgs_lock);
2599		list_del_init(&cache->dirty_list);
2600		spin_unlock(&cur_trans->dirty_bgs_lock);
2601
2602		should_put = 1;
2603
2604		cache_save_setup(cache, trans, path);
2605
2606		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2607			cache->io_ctl.inode = NULL;
2608			ret = btrfs_write_out_cache(trans, cache, path);
2609			if (ret == 0 && cache->io_ctl.inode) {
2610				num_started++;
2611				should_put = 0;
2612
2613				/*
2614				 * The cache_write_mutex is protecting the
2615				 * io_list, also refer to the definition of
2616				 * btrfs_transaction::io_bgs for more details
2617				 */
2618				list_add_tail(&cache->io_list, io);
2619			} else {
2620				/*
2621				 * If we failed to write the cache, the
2622				 * generation will be bad and life goes on
2623				 */
2624				ret = 0;
2625			}
2626		}
2627		if (!ret) {
2628			ret = update_block_group_item(trans, path, cache);
2629			/*
2630			 * Our block group might still be attached to the list
2631			 * of new block groups in the transaction handle of some
2632			 * other task (struct btrfs_trans_handle->new_bgs). This
2633			 * means its block group item isn't yet in the extent
2634			 * tree. If this happens ignore the error, as we will
2635			 * try again later in the critical section of the
2636			 * transaction commit.
2637			 */
2638			if (ret == -ENOENT) {
2639				ret = 0;
2640				spin_lock(&cur_trans->dirty_bgs_lock);
2641				if (list_empty(&cache->dirty_list)) {
2642					list_add_tail(&cache->dirty_list,
2643						      &cur_trans->dirty_bgs);
2644					btrfs_get_block_group(cache);
2645					drop_reserve = false;
2646				}
2647				spin_unlock(&cur_trans->dirty_bgs_lock);
2648			} else if (ret) {
2649				btrfs_abort_transaction(trans, ret);
2650			}
2651		}
2652
2653		/* If it's not on the io list, we need to put the block group */
2654		if (should_put)
2655			btrfs_put_block_group(cache);
2656		if (drop_reserve)
2657			btrfs_delayed_refs_rsv_release(fs_info, 1);
2658
2659		if (ret)
2660			break;
2661
2662		/*
2663		 * Avoid blocking other tasks for too long. It might even save
2664		 * us from writing caches for block groups that are going to be
2665		 * removed.
2666		 */
2667		mutex_unlock(&trans->transaction->cache_write_mutex);
 
 
2668		mutex_lock(&trans->transaction->cache_write_mutex);
2669	}
2670	mutex_unlock(&trans->transaction->cache_write_mutex);
2671
2672	/*
2673	 * Go through delayed refs for all the stuff we've just kicked off
2674	 * and then loop back (just once)
2675	 */
2676	ret = btrfs_run_delayed_refs(trans, 0);
 
2677	if (!ret && loops == 0) {
2678		loops++;
2679		spin_lock(&cur_trans->dirty_bgs_lock);
2680		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2681		/*
2682		 * dirty_bgs_lock protects us from concurrent block group
2683		 * deletes too (not just cache_write_mutex).
2684		 */
2685		if (!list_empty(&dirty)) {
2686			spin_unlock(&cur_trans->dirty_bgs_lock);
2687			goto again;
2688		}
2689		spin_unlock(&cur_trans->dirty_bgs_lock);
2690	} else if (ret < 0) {
 
 
 
 
 
2691		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2692	}
2693
2694	btrfs_free_path(path);
2695	return ret;
2696}
2697
2698int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2699{
2700	struct btrfs_fs_info *fs_info = trans->fs_info;
2701	struct btrfs_block_group *cache;
2702	struct btrfs_transaction *cur_trans = trans->transaction;
2703	int ret = 0;
2704	int should_put;
2705	struct btrfs_path *path;
2706	struct list_head *io = &cur_trans->io_bgs;
2707	int num_started = 0;
2708
2709	path = btrfs_alloc_path();
2710	if (!path)
2711		return -ENOMEM;
2712
2713	/*
2714	 * Even though we are in the critical section of the transaction commit,
2715	 * we can still have concurrent tasks adding elements to this
2716	 * transaction's list of dirty block groups. These tasks correspond to
2717	 * endio free space workers started when writeback finishes for a
2718	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2719	 * allocate new block groups as a result of COWing nodes of the root
2720	 * tree when updating the free space inode. The writeback for the space
2721	 * caches is triggered by an earlier call to
2722	 * btrfs_start_dirty_block_groups() and iterations of the following
2723	 * loop.
2724	 * Also we want to do the cache_save_setup first and then run the
2725	 * delayed refs to make sure we have the best chance at doing this all
2726	 * in one shot.
2727	 */
2728	spin_lock(&cur_trans->dirty_bgs_lock);
2729	while (!list_empty(&cur_trans->dirty_bgs)) {
2730		cache = list_first_entry(&cur_trans->dirty_bgs,
2731					 struct btrfs_block_group,
2732					 dirty_list);
2733
2734		/*
2735		 * This can happen if cache_save_setup re-dirties a block group
2736		 * that is already under IO.  Just wait for it to finish and
2737		 * then do it all again
2738		 */
2739		if (!list_empty(&cache->io_list)) {
2740			spin_unlock(&cur_trans->dirty_bgs_lock);
2741			list_del_init(&cache->io_list);
2742			btrfs_wait_cache_io(trans, cache, path);
2743			btrfs_put_block_group(cache);
2744			spin_lock(&cur_trans->dirty_bgs_lock);
2745		}
2746
2747		/*
2748		 * Don't remove from the dirty list until after we've waited on
2749		 * any pending IO
2750		 */
2751		list_del_init(&cache->dirty_list);
2752		spin_unlock(&cur_trans->dirty_bgs_lock);
2753		should_put = 1;
2754
2755		cache_save_setup(cache, trans, path);
2756
2757		if (!ret)
2758			ret = btrfs_run_delayed_refs(trans,
2759						     (unsigned long) -1);
2760
2761		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2762			cache->io_ctl.inode = NULL;
2763			ret = btrfs_write_out_cache(trans, cache, path);
2764			if (ret == 0 && cache->io_ctl.inode) {
2765				num_started++;
2766				should_put = 0;
2767				list_add_tail(&cache->io_list, io);
2768			} else {
2769				/*
2770				 * If we failed to write the cache, the
2771				 * generation will be bad and life goes on
2772				 */
2773				ret = 0;
2774			}
2775		}
2776		if (!ret) {
2777			ret = update_block_group_item(trans, path, cache);
2778			/*
2779			 * One of the free space endio workers might have
2780			 * created a new block group while updating a free space
2781			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2782			 * and hasn't released its transaction handle yet, in
2783			 * which case the new block group is still attached to
2784			 * its transaction handle and its creation has not
2785			 * finished yet (no block group item in the extent tree
2786			 * yet, etc). If this is the case, wait for all free
2787			 * space endio workers to finish and retry. This is a
2788			 * a very rare case so no need for a more efficient and
2789			 * complex approach.
2790			 */
2791			if (ret == -ENOENT) {
2792				wait_event(cur_trans->writer_wait,
2793				   atomic_read(&cur_trans->num_writers) == 1);
2794				ret = update_block_group_item(trans, path, cache);
2795			}
2796			if (ret)
2797				btrfs_abort_transaction(trans, ret);
2798		}
2799
2800		/* If its not on the io list, we need to put the block group */
2801		if (should_put)
2802			btrfs_put_block_group(cache);
2803		btrfs_delayed_refs_rsv_release(fs_info, 1);
2804		spin_lock(&cur_trans->dirty_bgs_lock);
2805	}
2806	spin_unlock(&cur_trans->dirty_bgs_lock);
2807
2808	/*
2809	 * Refer to the definition of io_bgs member for details why it's safe
2810	 * to use it without any locking
2811	 */
2812	while (!list_empty(io)) {
2813		cache = list_first_entry(io, struct btrfs_block_group,
2814					 io_list);
2815		list_del_init(&cache->io_list);
2816		btrfs_wait_cache_io(trans, cache, path);
2817		btrfs_put_block_group(cache);
2818	}
2819
2820	btrfs_free_path(path);
2821	return ret;
2822}
2823
2824int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2825			     u64 bytenr, u64 num_bytes, int alloc)
2826{
2827	struct btrfs_fs_info *info = trans->fs_info;
2828	struct btrfs_block_group *cache = NULL;
2829	u64 total = num_bytes;
2830	u64 old_val;
2831	u64 byte_in_group;
2832	int factor;
2833	int ret = 0;
2834
2835	/* Block accounting for super block */
2836	spin_lock(&info->delalloc_root_lock);
2837	old_val = btrfs_super_bytes_used(info->super_copy);
2838	if (alloc)
2839		old_val += num_bytes;
2840	else
2841		old_val -= num_bytes;
2842	btrfs_set_super_bytes_used(info->super_copy, old_val);
2843	spin_unlock(&info->delalloc_root_lock);
2844
2845	while (total) {
 
 
2846		cache = btrfs_lookup_block_group(info, bytenr);
2847		if (!cache) {
2848			ret = -ENOENT;
2849			break;
2850		}
2851		factor = btrfs_bg_type_to_factor(cache->flags);
2852
2853		/*
2854		 * If this block group has free space cache written out, we
2855		 * need to make sure to load it if we are removing space.  This
2856		 * is because we need the unpinning stage to actually add the
2857		 * space back to the block group, otherwise we will leak space.
2858		 */
2859		if (!alloc && !btrfs_block_group_done(cache))
2860			btrfs_cache_block_group(cache, 1);
2861
2862		byte_in_group = bytenr - cache->start;
2863		WARN_ON(byte_in_group > cache->length);
2864
2865		spin_lock(&cache->space_info->lock);
2866		spin_lock(&cache->lock);
2867
2868		if (btrfs_test_opt(info, SPACE_CACHE) &&
2869		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2870			cache->disk_cache_state = BTRFS_DC_CLEAR;
2871
2872		old_val = cache->used;
2873		num_bytes = min(total, cache->length - byte_in_group);
2874		if (alloc) {
2875			old_val += num_bytes;
2876			cache->used = old_val;
2877			cache->reserved -= num_bytes;
2878			cache->space_info->bytes_reserved -= num_bytes;
2879			cache->space_info->bytes_used += num_bytes;
2880			cache->space_info->disk_used += num_bytes * factor;
2881			spin_unlock(&cache->lock);
2882			spin_unlock(&cache->space_info->lock);
2883		} else {
2884			old_val -= num_bytes;
2885			cache->used = old_val;
2886			cache->pinned += num_bytes;
2887			btrfs_space_info_update_bytes_pinned(info,
2888					cache->space_info, num_bytes);
2889			cache->space_info->bytes_used -= num_bytes;
2890			cache->space_info->disk_used -= num_bytes * factor;
 
 
2891			spin_unlock(&cache->lock);
2892			spin_unlock(&cache->space_info->lock);
2893
2894			percpu_counter_add_batch(
2895					&cache->space_info->total_bytes_pinned,
2896					num_bytes,
2897					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2898			set_extent_dirty(&trans->transaction->pinned_extents,
2899					 bytenr, bytenr + num_bytes - 1,
2900					 GFP_NOFS | __GFP_NOFAIL);
2901		}
2902
2903		spin_lock(&trans->transaction->dirty_bgs_lock);
2904		if (list_empty(&cache->dirty_list)) {
2905			list_add_tail(&cache->dirty_list,
2906				      &trans->transaction->dirty_bgs);
2907			trans->delayed_ref_updates++;
2908			btrfs_get_block_group(cache);
2909		}
2910		spin_unlock(&trans->transaction->dirty_bgs_lock);
2911
2912		/*
2913		 * No longer have used bytes in this block group, queue it for
2914		 * deletion. We do this after adding the block group to the
2915		 * dirty list to avoid races between cleaner kthread and space
2916		 * cache writeout.
2917		 */
2918		if (!alloc && old_val == 0) {
2919			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2920				btrfs_mark_bg_unused(cache);
 
 
2921		}
2922
2923		btrfs_put_block_group(cache);
2924		total -= num_bytes;
2925		bytenr += num_bytes;
2926	}
2927
2928	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2929	btrfs_update_delayed_refs_rsv(trans);
2930	return ret;
2931}
2932
2933/**
2934 * btrfs_add_reserved_bytes - update the block_group and space info counters
 
2935 * @cache:	The cache we are manipulating
2936 * @ram_bytes:  The number of bytes of file content, and will be same to
2937 *              @num_bytes except for the compress path.
2938 * @num_bytes:	The number of bytes in question
2939 * @delalloc:   The blocks are allocated for the delalloc write
2940 *
2941 * This is called by the allocator when it reserves space. If this is a
2942 * reservation and the block group has become read only we cannot make the
2943 * reservation and return -EAGAIN, otherwise this function always succeeds.
2944 */
2945int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2946			     u64 ram_bytes, u64 num_bytes, int delalloc)
2947{
2948	struct btrfs_space_info *space_info = cache->space_info;
2949	int ret = 0;
2950
2951	spin_lock(&space_info->lock);
2952	spin_lock(&cache->lock);
2953	if (cache->ro) {
2954		ret = -EAGAIN;
2955	} else {
2956		cache->reserved += num_bytes;
2957		space_info->bytes_reserved += num_bytes;
2958		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2959					      space_info->flags, num_bytes, 1);
2960		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2961						      space_info, -ram_bytes);
2962		if (delalloc)
2963			cache->delalloc_bytes += num_bytes;
 
 
 
 
 
 
 
2964	}
2965	spin_unlock(&cache->lock);
2966	spin_unlock(&space_info->lock);
2967	return ret;
2968}
2969
2970/**
2971 * btrfs_free_reserved_bytes - update the block_group and space info counters
 
2972 * @cache:      The cache we are manipulating
2973 * @num_bytes:  The number of bytes in question
2974 * @delalloc:   The blocks are allocated for the delalloc write
2975 *
2976 * This is called by somebody who is freeing space that was never actually used
2977 * on disk.  For example if you reserve some space for a new leaf in transaction
2978 * A and before transaction A commits you free that leaf, you call this with
2979 * reserve set to 0 in order to clear the reservation.
2980 */
2981void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2982			       u64 num_bytes, int delalloc)
2983{
2984	struct btrfs_space_info *space_info = cache->space_info;
2985
2986	spin_lock(&space_info->lock);
2987	spin_lock(&cache->lock);
2988	if (cache->ro)
2989		space_info->bytes_readonly += num_bytes;
2990	cache->reserved -= num_bytes;
2991	space_info->bytes_reserved -= num_bytes;
2992	space_info->max_extent_size = 0;
2993
2994	if (delalloc)
2995		cache->delalloc_bytes -= num_bytes;
2996	spin_unlock(&cache->lock);
 
 
2997	spin_unlock(&space_info->lock);
2998}
2999
3000static void force_metadata_allocation(struct btrfs_fs_info *info)
3001{
3002	struct list_head *head = &info->space_info;
3003	struct btrfs_space_info *found;
3004
3005	rcu_read_lock();
3006	list_for_each_entry_rcu(found, head, list) {
3007		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3008			found->force_alloc = CHUNK_ALLOC_FORCE;
3009	}
3010	rcu_read_unlock();
3011}
3012
3013static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3014			      struct btrfs_space_info *sinfo, int force)
3015{
3016	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3017	u64 thresh;
3018
3019	if (force == CHUNK_ALLOC_FORCE)
3020		return 1;
3021
3022	/*
3023	 * in limited mode, we want to have some free space up to
3024	 * about 1% of the FS size.
3025	 */
3026	if (force == CHUNK_ALLOC_LIMITED) {
3027		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3028		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3029
3030		if (sinfo->total_bytes - bytes_used < thresh)
3031			return 1;
3032	}
3033
3034	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3035		return 0;
3036	return 1;
3037}
3038
3039int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3040{
3041	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3042
3043	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3044}
3045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046/*
3047 * If force is CHUNK_ALLOC_FORCE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048 *    - return 1 if it successfully allocates a chunk,
3049 *    - return errors including -ENOSPC otherwise.
3050 * If force is NOT CHUNK_ALLOC_FORCE:
3051 *    - return 0 if it doesn't need to allocate a new chunk,
3052 *    - return 1 if it successfully allocates a chunk,
3053 *    - return errors including -ENOSPC otherwise.
3054 */
3055int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3056		      enum btrfs_chunk_alloc_enum force)
3057{
3058	struct btrfs_fs_info *fs_info = trans->fs_info;
3059	struct btrfs_space_info *space_info;
 
3060	bool wait_for_alloc = false;
3061	bool should_alloc = false;
 
3062	int ret = 0;
3063
 
 
 
 
 
3064	/* Don't re-enter if we're already allocating a chunk */
3065	if (trans->allocating_chunk)
3066		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3067
3068	space_info = btrfs_find_space_info(fs_info, flags);
3069	ASSERT(space_info);
3070
3071	do {
3072		spin_lock(&space_info->lock);
3073		if (force < space_info->force_alloc)
3074			force = space_info->force_alloc;
3075		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3076		if (space_info->full) {
3077			/* No more free physical space */
3078			if (should_alloc)
3079				ret = -ENOSPC;
3080			else
3081				ret = 0;
3082			spin_unlock(&space_info->lock);
3083			return ret;
3084		} else if (!should_alloc) {
3085			spin_unlock(&space_info->lock);
3086			return 0;
3087		} else if (space_info->chunk_alloc) {
3088			/*
3089			 * Someone is already allocating, so we need to block
3090			 * until this someone is finished and then loop to
3091			 * recheck if we should continue with our allocation
3092			 * attempt.
3093			 */
3094			wait_for_alloc = true;
 
3095			spin_unlock(&space_info->lock);
3096			mutex_lock(&fs_info->chunk_mutex);
3097			mutex_unlock(&fs_info->chunk_mutex);
3098		} else {
3099			/* Proceed with allocation */
3100			space_info->chunk_alloc = 1;
3101			wait_for_alloc = false;
3102			spin_unlock(&space_info->lock);
3103		}
3104
3105		cond_resched();
3106	} while (wait_for_alloc);
3107
3108	mutex_lock(&fs_info->chunk_mutex);
3109	trans->allocating_chunk = true;
3110
3111	/*
3112	 * If we have mixed data/metadata chunks we want to make sure we keep
3113	 * allocating mixed chunks instead of individual chunks.
3114	 */
3115	if (btrfs_mixed_space_info(space_info))
3116		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3117
3118	/*
3119	 * if we're doing a data chunk, go ahead and make sure that
3120	 * we keep a reasonable number of metadata chunks allocated in the
3121	 * FS as well.
3122	 */
3123	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3124		fs_info->data_chunk_allocations++;
3125		if (!(fs_info->data_chunk_allocations %
3126		      fs_info->metadata_ratio))
3127			force_metadata_allocation(fs_info);
3128	}
3129
3130	/*
3131	 * Check if we have enough space in SYSTEM chunk because we may need
3132	 * to update devices.
3133	 */
3134	check_system_chunk(trans, flags);
3135
3136	ret = btrfs_alloc_chunk(trans, flags);
3137	trans->allocating_chunk = false;
3138
 
 
 
 
 
 
 
 
 
 
 
 
 
3139	spin_lock(&space_info->lock);
3140	if (ret < 0) {
3141		if (ret == -ENOSPC)
3142			space_info->full = 1;
3143		else
3144			goto out;
3145	} else {
3146		ret = 1;
3147		space_info->max_extent_size = 0;
3148	}
3149
3150	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3151out:
3152	space_info->chunk_alloc = 0;
3153	spin_unlock(&space_info->lock);
3154	mutex_unlock(&fs_info->chunk_mutex);
3155	/*
3156	 * When we allocate a new chunk we reserve space in the chunk block
3157	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3158	 * add new nodes/leafs to it if we end up needing to do it when
3159	 * inserting the chunk item and updating device items as part of the
3160	 * second phase of chunk allocation, performed by
3161	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3162	 * large number of new block groups to create in our transaction
3163	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3164	 * in extreme cases - like having a single transaction create many new
3165	 * block groups when starting to write out the free space caches of all
3166	 * the block groups that were made dirty during the lifetime of the
3167	 * transaction.
3168	 */
3169	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3170		btrfs_create_pending_block_groups(trans);
3171
3172	return ret;
3173}
3174
3175static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3176{
3177	u64 num_dev;
3178
3179	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3180	if (!num_dev)
3181		num_dev = fs_info->fs_devices->rw_devices;
3182
3183	return num_dev;
3184}
3185
3186/*
3187 * Reserve space in the system space for allocating or removing a chunk
3188 */
3189void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3190{
3191	struct btrfs_fs_info *fs_info = trans->fs_info;
3192	struct btrfs_space_info *info;
3193	u64 left;
3194	u64 thresh;
3195	int ret = 0;
3196	u64 num_devs;
3197
3198	/*
3199	 * Needed because we can end up allocating a system chunk and for an
3200	 * atomic and race free space reservation in the chunk block reserve.
3201	 */
3202	lockdep_assert_held(&fs_info->chunk_mutex);
3203
3204	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3205	spin_lock(&info->lock);
3206	left = info->total_bytes - btrfs_space_info_used(info, true);
3207	spin_unlock(&info->lock);
3208
3209	num_devs = get_profile_num_devs(fs_info, type);
3210
3211	/* num_devs device items to update and 1 chunk item to add or remove */
3212	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3213		btrfs_calc_insert_metadata_size(fs_info, 1);
3214
3215	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3216		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3217			   left, thresh, type);
3218		btrfs_dump_space_info(fs_info, info, 0, 0);
3219	}
3220
3221	if (left < thresh) {
3222		u64 flags = btrfs_system_alloc_profile(fs_info);
 
3223
3224		/*
3225		 * Ignore failure to create system chunk. We might end up not
3226		 * needing it, as we might not need to COW all nodes/leafs from
3227		 * the paths we visit in the chunk tree (they were already COWed
3228		 * or created in the current transaction for example).
3229		 */
3230		ret = btrfs_alloc_chunk(trans, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3231	}
3232
3233	if (!ret) {
3234		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3235					  &fs_info->chunk_block_rsv,
3236					  thresh, BTRFS_RESERVE_NO_FLUSH);
3237		if (!ret)
3238			trans->chunk_bytes_reserved += thresh;
3239	}
3240}
3241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3242void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3243{
3244	struct btrfs_block_group *block_group;
3245	u64 last = 0;
3246
3247	while (1) {
3248		struct inode *inode;
 
 
 
 
 
3249
3250		block_group = btrfs_lookup_first_block_group(info, last);
3251		while (block_group) {
3252			btrfs_wait_block_group_cache_done(block_group);
3253			spin_lock(&block_group->lock);
3254			if (block_group->iref)
3255				break;
3256			spin_unlock(&block_group->lock);
3257			block_group = btrfs_next_block_group(block_group);
3258		}
3259		if (!block_group) {
3260			if (last == 0)
3261				break;
3262			last = 0;
3263			continue;
3264		}
3265
3266		inode = block_group->inode;
3267		block_group->iref = 0;
3268		block_group->inode = NULL;
3269		spin_unlock(&block_group->lock);
3270		ASSERT(block_group->io_ctl.inode == NULL);
3271		iput(inode);
3272		last = block_group->start + block_group->length;
3273		btrfs_put_block_group(block_group);
3274	}
3275}
3276
3277/*
3278 * Must be called only after stopping all workers, since we could have block
3279 * group caching kthreads running, and therefore they could race with us if we
3280 * freed the block groups before stopping them.
3281 */
3282int btrfs_free_block_groups(struct btrfs_fs_info *info)
3283{
3284	struct btrfs_block_group *block_group;
3285	struct btrfs_space_info *space_info;
3286	struct btrfs_caching_control *caching_ctl;
3287	struct rb_node *n;
3288
3289	down_write(&info->commit_root_sem);
3290	while (!list_empty(&info->caching_block_groups)) {
3291		caching_ctl = list_entry(info->caching_block_groups.next,
3292					 struct btrfs_caching_control, list);
3293		list_del(&caching_ctl->list);
3294		btrfs_put_caching_control(caching_ctl);
3295	}
3296	up_write(&info->commit_root_sem);
3297
3298	spin_lock(&info->unused_bgs_lock);
3299	while (!list_empty(&info->unused_bgs)) {
3300		block_group = list_first_entry(&info->unused_bgs,
3301					       struct btrfs_block_group,
3302					       bg_list);
3303		list_del_init(&block_group->bg_list);
3304		btrfs_put_block_group(block_group);
3305	}
 
 
 
 
 
 
 
 
3306	spin_unlock(&info->unused_bgs_lock);
3307
3308	spin_lock(&info->block_group_cache_lock);
3309	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
 
 
 
 
 
 
 
 
 
 
3310		block_group = rb_entry(n, struct btrfs_block_group,
3311				       cache_node);
3312		rb_erase(&block_group->cache_node,
3313			 &info->block_group_cache_tree);
3314		RB_CLEAR_NODE(&block_group->cache_node);
3315		spin_unlock(&info->block_group_cache_lock);
3316
3317		down_write(&block_group->space_info->groups_sem);
3318		list_del(&block_group->list);
3319		up_write(&block_group->space_info->groups_sem);
3320
3321		/*
3322		 * We haven't cached this block group, which means we could
3323		 * possibly have excluded extents on this block group.
3324		 */
3325		if (block_group->cached == BTRFS_CACHE_NO ||
3326		    block_group->cached == BTRFS_CACHE_ERROR)
3327			btrfs_free_excluded_extents(block_group);
3328
3329		btrfs_remove_free_space_cache(block_group);
3330		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3331		ASSERT(list_empty(&block_group->dirty_list));
3332		ASSERT(list_empty(&block_group->io_list));
3333		ASSERT(list_empty(&block_group->bg_list));
3334		ASSERT(refcount_read(&block_group->refs) == 1);
 
3335		btrfs_put_block_group(block_group);
3336
3337		spin_lock(&info->block_group_cache_lock);
3338	}
3339	spin_unlock(&info->block_group_cache_lock);
3340
3341	/*
3342	 * Now that all the block groups are freed, go through and free all the
3343	 * space_info structs.  This is only called during the final stages of
3344	 * unmount, and so we know nobody is using them.  We call
3345	 * synchronize_rcu() once before we start, just to be on the safe side.
3346	 */
3347	synchronize_rcu();
3348
3349	btrfs_release_global_block_rsv(info);
3350
3351	while (!list_empty(&info->space_info)) {
3352		space_info = list_entry(info->space_info.next,
3353					struct btrfs_space_info,
3354					list);
3355
3356		/*
3357		 * Do not hide this behind enospc_debug, this is actually
3358		 * important and indicates a real bug if this happens.
3359		 */
3360		if (WARN_ON(space_info->bytes_pinned > 0 ||
3361			    space_info->bytes_reserved > 0 ||
3362			    space_info->bytes_may_use > 0))
3363			btrfs_dump_space_info(info, space_info, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3364		WARN_ON(space_info->reclaim_size > 0);
3365		list_del(&space_info->list);
3366		btrfs_sysfs_remove_space_info(space_info);
3367	}
3368	return 0;
3369}
3370
3371void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3372{
3373	atomic_inc(&cache->frozen);
3374}
3375
3376void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3377{
3378	struct btrfs_fs_info *fs_info = block_group->fs_info;
3379	struct extent_map_tree *em_tree;
3380	struct extent_map *em;
3381	bool cleanup;
3382
3383	spin_lock(&block_group->lock);
3384	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3385		   block_group->removed);
3386	spin_unlock(&block_group->lock);
3387
3388	if (cleanup) {
3389		em_tree = &fs_info->mapping_tree;
3390		write_lock(&em_tree->lock);
3391		em = lookup_extent_mapping(em_tree, block_group->start,
3392					   1);
3393		BUG_ON(!em); /* logic error, can't happen */
3394		remove_extent_mapping(em_tree, em);
3395		write_unlock(&em_tree->lock);
3396
3397		/* once for us and once for the tree */
3398		free_extent_map(em);
3399		free_extent_map(em);
3400
3401		/*
3402		 * We may have left one free space entry and other possible
3403		 * tasks trimming this block group have left 1 entry each one.
3404		 * Free them if any.
3405		 */
3406		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3407	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/list_sort.h>
   4#include "misc.h"
   5#include "ctree.h"
   6#include "block-group.h"
   7#include "space-info.h"
   8#include "disk-io.h"
   9#include "free-space-cache.h"
  10#include "free-space-tree.h"
  11#include "volumes.h"
  12#include "transaction.h"
  13#include "ref-verify.h"
  14#include "sysfs.h"
  15#include "tree-log.h"
  16#include "delalloc-space.h"
  17#include "discard.h"
  18#include "raid56.h"
  19#include "zoned.h"
  20#include "fs.h"
  21#include "accessors.h"
  22#include "extent-tree.h"
  23
  24#ifdef CONFIG_BTRFS_DEBUG
  25int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
  26{
  27	struct btrfs_fs_info *fs_info = block_group->fs_info;
  28
  29	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
  30		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
  31	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
  32		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
  33}
  34#endif
  35
  36/*
  37 * Return target flags in extended format or 0 if restripe for this chunk_type
  38 * is not in progress
  39 *
  40 * Should be called with balance_lock held
  41 */
  42static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  43{
  44	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  45	u64 target = 0;
  46
  47	if (!bctl)
  48		return 0;
  49
  50	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  51	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  52		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  53	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  54		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  55		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  56	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  57		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  58		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  59	}
  60
  61	return target;
  62}
  63
  64/*
  65 * @flags: available profiles in extended format (see ctree.h)
  66 *
  67 * Return reduced profile in chunk format.  If profile changing is in progress
  68 * (either running or paused) picks the target profile (if it's already
  69 * available), otherwise falls back to plain reducing.
  70 */
  71static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  72{
  73	u64 num_devices = fs_info->fs_devices->rw_devices;
  74	u64 target;
  75	u64 raid_type;
  76	u64 allowed = 0;
  77
  78	/*
  79	 * See if restripe for this chunk_type is in progress, if so try to
  80	 * reduce to the target profile
  81	 */
  82	spin_lock(&fs_info->balance_lock);
  83	target = get_restripe_target(fs_info, flags);
  84	if (target) {
  85		spin_unlock(&fs_info->balance_lock);
  86		return extended_to_chunk(target);
  87	}
  88	spin_unlock(&fs_info->balance_lock);
  89
  90	/* First, mask out the RAID levels which aren't possible */
  91	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  92		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  93			allowed |= btrfs_raid_array[raid_type].bg_flag;
  94	}
  95	allowed &= flags;
  96
  97	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
  98		allowed = BTRFS_BLOCK_GROUP_RAID6;
  99	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 100		allowed = BTRFS_BLOCK_GROUP_RAID5;
 101	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 102		allowed = BTRFS_BLOCK_GROUP_RAID10;
 103	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 104		allowed = BTRFS_BLOCK_GROUP_RAID1;
 105	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 106		allowed = BTRFS_BLOCK_GROUP_RAID0;
 107
 108	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 109
 110	return extended_to_chunk(flags | allowed);
 111}
 112
 113u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
 114{
 115	unsigned seq;
 116	u64 flags;
 117
 118	do {
 119		flags = orig_flags;
 120		seq = read_seqbegin(&fs_info->profiles_lock);
 121
 122		if (flags & BTRFS_BLOCK_GROUP_DATA)
 123			flags |= fs_info->avail_data_alloc_bits;
 124		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 125			flags |= fs_info->avail_system_alloc_bits;
 126		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 127			flags |= fs_info->avail_metadata_alloc_bits;
 128	} while (read_seqretry(&fs_info->profiles_lock, seq));
 129
 130	return btrfs_reduce_alloc_profile(fs_info, flags);
 131}
 132
 133void btrfs_get_block_group(struct btrfs_block_group *cache)
 134{
 135	refcount_inc(&cache->refs);
 136}
 137
 138void btrfs_put_block_group(struct btrfs_block_group *cache)
 139{
 140	if (refcount_dec_and_test(&cache->refs)) {
 141		WARN_ON(cache->pinned > 0);
 142		/*
 143		 * If there was a failure to cleanup a log tree, very likely due
 144		 * to an IO failure on a writeback attempt of one or more of its
 145		 * extent buffers, we could not do proper (and cheap) unaccounting
 146		 * of their reserved space, so don't warn on reserved > 0 in that
 147		 * case.
 148		 */
 149		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
 150		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
 151			WARN_ON(cache->reserved > 0);
 152
 153		/*
 154		 * A block_group shouldn't be on the discard_list anymore.
 155		 * Remove the block_group from the discard_list to prevent us
 156		 * from causing a panic due to NULL pointer dereference.
 157		 */
 158		if (WARN_ON(!list_empty(&cache->discard_list)))
 159			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 160						  cache);
 161
 162		/*
 163		 * If not empty, someone is still holding mutex of
 164		 * full_stripe_lock, which can only be released by caller.
 165		 * And it will definitely cause use-after-free when caller
 166		 * tries to release full stripe lock.
 167		 *
 168		 * No better way to resolve, but only to warn.
 169		 */
 170		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 171		kfree(cache->free_space_ctl);
 172		kfree(cache->physical_map);
 173		kfree(cache);
 174	}
 175}
 176
 177/*
 178 * This adds the block group to the fs_info rb tree for the block group cache
 179 */
 180static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 181				       struct btrfs_block_group *block_group)
 182{
 183	struct rb_node **p;
 184	struct rb_node *parent = NULL;
 185	struct btrfs_block_group *cache;
 186	bool leftmost = true;
 187
 188	ASSERT(block_group->length != 0);
 189
 190	write_lock(&info->block_group_cache_lock);
 191	p = &info->block_group_cache_tree.rb_root.rb_node;
 192
 193	while (*p) {
 194		parent = *p;
 195		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 196		if (block_group->start < cache->start) {
 197			p = &(*p)->rb_left;
 198		} else if (block_group->start > cache->start) {
 199			p = &(*p)->rb_right;
 200			leftmost = false;
 201		} else {
 202			write_unlock(&info->block_group_cache_lock);
 203			return -EEXIST;
 204		}
 205	}
 206
 207	rb_link_node(&block_group->cache_node, parent, p);
 208	rb_insert_color_cached(&block_group->cache_node,
 209			       &info->block_group_cache_tree, leftmost);
 210
 211	write_unlock(&info->block_group_cache_lock);
 
 
 
 212
 213	return 0;
 214}
 215
 216/*
 217 * This will return the block group at or after bytenr if contains is 0, else
 218 * it will return the block group that contains the bytenr
 219 */
 220static struct btrfs_block_group *block_group_cache_tree_search(
 221		struct btrfs_fs_info *info, u64 bytenr, int contains)
 222{
 223	struct btrfs_block_group *cache, *ret = NULL;
 224	struct rb_node *n;
 225	u64 end, start;
 226
 227	read_lock(&info->block_group_cache_lock);
 228	n = info->block_group_cache_tree.rb_root.rb_node;
 229
 230	while (n) {
 231		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 232		end = cache->start + cache->length - 1;
 233		start = cache->start;
 234
 235		if (bytenr < start) {
 236			if (!contains && (!ret || start < ret->start))
 237				ret = cache;
 238			n = n->rb_left;
 239		} else if (bytenr > start) {
 240			if (contains && bytenr <= end) {
 241				ret = cache;
 242				break;
 243			}
 244			n = n->rb_right;
 245		} else {
 246			ret = cache;
 247			break;
 248		}
 249	}
 250	if (ret)
 251		btrfs_get_block_group(ret);
 252	read_unlock(&info->block_group_cache_lock);
 
 
 
 253
 254	return ret;
 255}
 256
 257/*
 258 * Return the block group that starts at or after bytenr
 259 */
 260struct btrfs_block_group *btrfs_lookup_first_block_group(
 261		struct btrfs_fs_info *info, u64 bytenr)
 262{
 263	return block_group_cache_tree_search(info, bytenr, 0);
 264}
 265
 266/*
 267 * Return the block group that contains the given bytenr
 268 */
 269struct btrfs_block_group *btrfs_lookup_block_group(
 270		struct btrfs_fs_info *info, u64 bytenr)
 271{
 272	return block_group_cache_tree_search(info, bytenr, 1);
 273}
 274
 275struct btrfs_block_group *btrfs_next_block_group(
 276		struct btrfs_block_group *cache)
 277{
 278	struct btrfs_fs_info *fs_info = cache->fs_info;
 279	struct rb_node *node;
 280
 281	read_lock(&fs_info->block_group_cache_lock);
 282
 283	/* If our block group was removed, we need a full search. */
 284	if (RB_EMPTY_NODE(&cache->cache_node)) {
 285		const u64 next_bytenr = cache->start + cache->length;
 286
 287		read_unlock(&fs_info->block_group_cache_lock);
 288		btrfs_put_block_group(cache);
 289		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
 290	}
 291	node = rb_next(&cache->cache_node);
 292	btrfs_put_block_group(cache);
 293	if (node) {
 294		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 295		btrfs_get_block_group(cache);
 296	} else
 297		cache = NULL;
 298	read_unlock(&fs_info->block_group_cache_lock);
 299	return cache;
 300}
 301
 302/*
 303 * Check if we can do a NOCOW write for a given extent.
 304 *
 305 * @fs_info:       The filesystem information object.
 306 * @bytenr:        Logical start address of the extent.
 307 *
 308 * Check if we can do a NOCOW write for the given extent, and increments the
 309 * number of NOCOW writers in the block group that contains the extent, as long
 310 * as the block group exists and it's currently not in read-only mode.
 311 *
 312 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
 313 *          is responsible for calling btrfs_dec_nocow_writers() later.
 314 *
 315 *          Or NULL if we can not do a NOCOW write
 316 */
 317struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
 318						  u64 bytenr)
 319{
 320	struct btrfs_block_group *bg;
 321	bool can_nocow = true;
 322
 323	bg = btrfs_lookup_block_group(fs_info, bytenr);
 324	if (!bg)
 325		return NULL;
 326
 327	spin_lock(&bg->lock);
 328	if (bg->ro)
 329		can_nocow = false;
 330	else
 331		atomic_inc(&bg->nocow_writers);
 332	spin_unlock(&bg->lock);
 333
 334	if (!can_nocow) {
 
 335		btrfs_put_block_group(bg);
 336		return NULL;
 337	}
 338
 339	/* No put on block group, done by btrfs_dec_nocow_writers(). */
 340	return bg;
 341}
 342
 343/*
 344 * Decrement the number of NOCOW writers in a block group.
 345 *
 346 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
 347 * and on the block group returned by that call. Typically this is called after
 348 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
 349 * relocation.
 350 *
 351 * After this call, the caller should not use the block group anymore. It it wants
 352 * to use it, then it should get a reference on it before calling this function.
 353 */
 354void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
 355{
 
 
 
 
 356	if (atomic_dec_and_test(&bg->nocow_writers))
 357		wake_up_var(&bg->nocow_writers);
 358
 359	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
 
 
 
 360	btrfs_put_block_group(bg);
 361}
 362
 363void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 364{
 365	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 366}
 367
 368void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 369					const u64 start)
 370{
 371	struct btrfs_block_group *bg;
 372
 373	bg = btrfs_lookup_block_group(fs_info, start);
 374	ASSERT(bg);
 375	if (atomic_dec_and_test(&bg->reservations))
 376		wake_up_var(&bg->reservations);
 377	btrfs_put_block_group(bg);
 378}
 379
 380void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 381{
 382	struct btrfs_space_info *space_info = bg->space_info;
 383
 384	ASSERT(bg->ro);
 385
 386	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 387		return;
 388
 389	/*
 390	 * Our block group is read only but before we set it to read only,
 391	 * some task might have had allocated an extent from it already, but it
 392	 * has not yet created a respective ordered extent (and added it to a
 393	 * root's list of ordered extents).
 394	 * Therefore wait for any task currently allocating extents, since the
 395	 * block group's reservations counter is incremented while a read lock
 396	 * on the groups' semaphore is held and decremented after releasing
 397	 * the read access on that semaphore and creating the ordered extent.
 398	 */
 399	down_write(&space_info->groups_sem);
 400	up_write(&space_info->groups_sem);
 401
 402	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 403}
 404
 405struct btrfs_caching_control *btrfs_get_caching_control(
 406		struct btrfs_block_group *cache)
 407{
 408	struct btrfs_caching_control *ctl;
 409
 410	spin_lock(&cache->lock);
 411	if (!cache->caching_ctl) {
 412		spin_unlock(&cache->lock);
 413		return NULL;
 414	}
 415
 416	ctl = cache->caching_ctl;
 417	refcount_inc(&ctl->count);
 418	spin_unlock(&cache->lock);
 419	return ctl;
 420}
 421
 422void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 423{
 424	if (refcount_dec_and_test(&ctl->count))
 425		kfree(ctl);
 426}
 427
 428/*
 429 * When we wait for progress in the block group caching, its because our
 430 * allocation attempt failed at least once.  So, we must sleep and let some
 431 * progress happen before we try again.
 432 *
 433 * This function will sleep at least once waiting for new free space to show
 434 * up, and then it will check the block group free space numbers for our min
 435 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 436 * a free extent of a given size, but this is a good start.
 437 *
 438 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 439 * any of the information in this block group.
 440 */
 441void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 442					   u64 num_bytes)
 443{
 444	struct btrfs_caching_control *caching_ctl;
 445
 446	caching_ctl = btrfs_get_caching_control(cache);
 447	if (!caching_ctl)
 448		return;
 449
 450	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 451		   (cache->free_space_ctl->free_space >= num_bytes));
 452
 453	btrfs_put_caching_control(caching_ctl);
 454}
 455
 456static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
 457				       struct btrfs_caching_control *caching_ctl)
 458{
 459	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 460	return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
 461}
 462
 463static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 464{
 465	struct btrfs_caching_control *caching_ctl;
 466	int ret;
 467
 468	caching_ctl = btrfs_get_caching_control(cache);
 469	if (!caching_ctl)
 470		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 471	ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 
 
 
 472	btrfs_put_caching_control(caching_ctl);
 473	return ret;
 474}
 475
 476#ifdef CONFIG_BTRFS_DEBUG
 477static void fragment_free_space(struct btrfs_block_group *block_group)
 478{
 479	struct btrfs_fs_info *fs_info = block_group->fs_info;
 480	u64 start = block_group->start;
 481	u64 len = block_group->length;
 482	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 483		fs_info->nodesize : fs_info->sectorsize;
 484	u64 step = chunk << 1;
 485
 486	while (len > chunk) {
 487		btrfs_remove_free_space(block_group, start, chunk);
 488		start += step;
 489		if (len < step)
 490			len = 0;
 491		else
 492			len -= step;
 493	}
 494}
 495#endif
 496
 497/*
 498 * This is only called by btrfs_cache_block_group, since we could have freed
 499 * extents we need to check the pinned_extents for any extents that can't be
 500 * used yet since their free space will be released as soon as the transaction
 501 * commits.
 502 */
 503u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
 504{
 505	struct btrfs_fs_info *info = block_group->fs_info;
 506	u64 extent_start, extent_end, size, total_added = 0;
 507	int ret;
 508
 509	while (start < end) {
 510		ret = find_first_extent_bit(&info->excluded_extents, start,
 511					    &extent_start, &extent_end,
 512					    EXTENT_DIRTY | EXTENT_UPTODATE,
 513					    NULL);
 514		if (ret)
 515			break;
 516
 517		if (extent_start <= start) {
 518			start = extent_end + 1;
 519		} else if (extent_start > start && extent_start < end) {
 520			size = extent_start - start;
 521			total_added += size;
 522			ret = btrfs_add_free_space_async_trimmed(block_group,
 523								 start, size);
 524			BUG_ON(ret); /* -ENOMEM or logic error */
 525			start = extent_end + 1;
 526		} else {
 527			break;
 528		}
 529	}
 530
 531	if (start < end) {
 532		size = end - start;
 533		total_added += size;
 534		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 535							 size);
 536		BUG_ON(ret); /* -ENOMEM or logic error */
 537	}
 538
 539	return total_added;
 540}
 541
 542static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 543{
 544	struct btrfs_block_group *block_group = caching_ctl->block_group;
 545	struct btrfs_fs_info *fs_info = block_group->fs_info;
 546	struct btrfs_root *extent_root;
 547	struct btrfs_path *path;
 548	struct extent_buffer *leaf;
 549	struct btrfs_key key;
 550	u64 total_found = 0;
 551	u64 last = 0;
 552	u32 nritems;
 553	int ret;
 554	bool wakeup = true;
 555
 556	path = btrfs_alloc_path();
 557	if (!path)
 558		return -ENOMEM;
 559
 560	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 561	extent_root = btrfs_extent_root(fs_info, last);
 562
 563#ifdef CONFIG_BTRFS_DEBUG
 564	/*
 565	 * If we're fragmenting we don't want to make anybody think we can
 566	 * allocate from this block group until we've had a chance to fragment
 567	 * the free space.
 568	 */
 569	if (btrfs_should_fragment_free_space(block_group))
 570		wakeup = false;
 571#endif
 572	/*
 573	 * We don't want to deadlock with somebody trying to allocate a new
 574	 * extent for the extent root while also trying to search the extent
 575	 * root to add free space.  So we skip locking and search the commit
 576	 * root, since its read-only
 577	 */
 578	path->skip_locking = 1;
 579	path->search_commit_root = 1;
 580	path->reada = READA_FORWARD;
 581
 582	key.objectid = last;
 583	key.offset = 0;
 584	key.type = BTRFS_EXTENT_ITEM_KEY;
 585
 586next:
 587	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 588	if (ret < 0)
 589		goto out;
 590
 591	leaf = path->nodes[0];
 592	nritems = btrfs_header_nritems(leaf);
 593
 594	while (1) {
 595		if (btrfs_fs_closing(fs_info) > 1) {
 596			last = (u64)-1;
 597			break;
 598		}
 599
 600		if (path->slots[0] < nritems) {
 601			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 602		} else {
 603			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 604			if (ret)
 605				break;
 606
 607			if (need_resched() ||
 608			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 
 
 609				btrfs_release_path(path);
 610				up_read(&fs_info->commit_root_sem);
 611				mutex_unlock(&caching_ctl->mutex);
 612				cond_resched();
 613				mutex_lock(&caching_ctl->mutex);
 614				down_read(&fs_info->commit_root_sem);
 615				goto next;
 616			}
 617
 618			ret = btrfs_next_leaf(extent_root, path);
 619			if (ret < 0)
 620				goto out;
 621			if (ret)
 622				break;
 623			leaf = path->nodes[0];
 624			nritems = btrfs_header_nritems(leaf);
 625			continue;
 626		}
 627
 628		if (key.objectid < last) {
 629			key.objectid = last;
 630			key.offset = 0;
 631			key.type = BTRFS_EXTENT_ITEM_KEY;
 
 
 
 632			btrfs_release_path(path);
 633			goto next;
 634		}
 635
 636		if (key.objectid < block_group->start) {
 637			path->slots[0]++;
 638			continue;
 639		}
 640
 641		if (key.objectid >= block_group->start + block_group->length)
 642			break;
 643
 644		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 645		    key.type == BTRFS_METADATA_ITEM_KEY) {
 646			total_found += add_new_free_space(block_group, last,
 647							  key.objectid);
 648			if (key.type == BTRFS_METADATA_ITEM_KEY)
 649				last = key.objectid +
 650					fs_info->nodesize;
 651			else
 652				last = key.objectid + key.offset;
 653
 654			if (total_found > CACHING_CTL_WAKE_UP) {
 655				total_found = 0;
 656				if (wakeup)
 657					wake_up(&caching_ctl->wait);
 658			}
 659		}
 660		path->slots[0]++;
 661	}
 662	ret = 0;
 663
 664	total_found += add_new_free_space(block_group, last,
 665				block_group->start + block_group->length);
 
 666
 667out:
 668	btrfs_free_path(path);
 669	return ret;
 670}
 671
 672static noinline void caching_thread(struct btrfs_work *work)
 673{
 674	struct btrfs_block_group *block_group;
 675	struct btrfs_fs_info *fs_info;
 676	struct btrfs_caching_control *caching_ctl;
 677	int ret;
 678
 679	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 680	block_group = caching_ctl->block_group;
 681	fs_info = block_group->fs_info;
 682
 683	mutex_lock(&caching_ctl->mutex);
 684	down_read(&fs_info->commit_root_sem);
 685
 686	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 687		ret = load_free_space_cache(block_group);
 688		if (ret == 1) {
 689			ret = 0;
 690			goto done;
 691		}
 692
 693		/*
 694		 * We failed to load the space cache, set ourselves to
 695		 * CACHE_STARTED and carry on.
 696		 */
 697		spin_lock(&block_group->lock);
 698		block_group->cached = BTRFS_CACHE_STARTED;
 699		spin_unlock(&block_group->lock);
 700		wake_up(&caching_ctl->wait);
 701	}
 702
 703	/*
 704	 * If we are in the transaction that populated the free space tree we
 705	 * can't actually cache from the free space tree as our commit root and
 706	 * real root are the same, so we could change the contents of the blocks
 707	 * while caching.  Instead do the slow caching in this case, and after
 708	 * the transaction has committed we will be safe.
 709	 */
 710	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 711	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
 712		ret = load_free_space_tree(caching_ctl);
 713	else
 714		ret = load_extent_tree_free(caching_ctl);
 715done:
 716	spin_lock(&block_group->lock);
 717	block_group->caching_ctl = NULL;
 718	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 719	spin_unlock(&block_group->lock);
 720
 721#ifdef CONFIG_BTRFS_DEBUG
 722	if (btrfs_should_fragment_free_space(block_group)) {
 723		u64 bytes_used;
 724
 725		spin_lock(&block_group->space_info->lock);
 726		spin_lock(&block_group->lock);
 727		bytes_used = block_group->length - block_group->used;
 728		block_group->space_info->bytes_used += bytes_used >> 1;
 729		spin_unlock(&block_group->lock);
 730		spin_unlock(&block_group->space_info->lock);
 731		fragment_free_space(block_group);
 732	}
 733#endif
 734
 
 
 735	up_read(&fs_info->commit_root_sem);
 736	btrfs_free_excluded_extents(block_group);
 737	mutex_unlock(&caching_ctl->mutex);
 738
 739	wake_up(&caching_ctl->wait);
 740
 741	btrfs_put_caching_control(caching_ctl);
 742	btrfs_put_block_group(block_group);
 743}
 744
 745int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
 746{
 
 747	struct btrfs_fs_info *fs_info = cache->fs_info;
 748	struct btrfs_caching_control *caching_ctl = NULL;
 749	int ret = 0;
 750
 751	/* Allocator for zoned filesystems does not use the cache at all */
 752	if (btrfs_is_zoned(fs_info))
 753		return 0;
 754
 755	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 756	if (!caching_ctl)
 757		return -ENOMEM;
 758
 759	INIT_LIST_HEAD(&caching_ctl->list);
 760	mutex_init(&caching_ctl->mutex);
 761	init_waitqueue_head(&caching_ctl->wait);
 762	caching_ctl->block_group = cache;
 763	refcount_set(&caching_ctl->count, 2);
 
 764	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
 765
 766	spin_lock(&cache->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767	if (cache->cached != BTRFS_CACHE_NO) {
 
 768		kfree(caching_ctl);
 769
 770		caching_ctl = cache->caching_ctl;
 771		if (caching_ctl)
 772			refcount_inc(&caching_ctl->count);
 773		spin_unlock(&cache->lock);
 774		goto out;
 775	}
 776	WARN_ON(cache->caching_ctl);
 777	cache->caching_ctl = caching_ctl;
 778	cache->cached = BTRFS_CACHE_STARTED;
 779	spin_unlock(&cache->lock);
 780
 781	write_lock(&fs_info->block_group_cache_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782	refcount_inc(&caching_ctl->count);
 783	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 784	write_unlock(&fs_info->block_group_cache_lock);
 785
 786	btrfs_get_block_group(cache);
 787
 788	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 789out:
 790	if (wait && caching_ctl)
 791		ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
 792	if (caching_ctl)
 793		btrfs_put_caching_control(caching_ctl);
 794
 795	return ret;
 796}
 797
 798static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 799{
 800	u64 extra_flags = chunk_to_extended(flags) &
 801				BTRFS_EXTENDED_PROFILE_MASK;
 802
 803	write_seqlock(&fs_info->profiles_lock);
 804	if (flags & BTRFS_BLOCK_GROUP_DATA)
 805		fs_info->avail_data_alloc_bits &= ~extra_flags;
 806	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 807		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 808	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 809		fs_info->avail_system_alloc_bits &= ~extra_flags;
 810	write_sequnlock(&fs_info->profiles_lock);
 811}
 812
 813/*
 814 * Clear incompat bits for the following feature(s):
 815 *
 816 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 817 *            in the whole filesystem
 818 *
 819 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 820 */
 821static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 822{
 823	bool found_raid56 = false;
 824	bool found_raid1c34 = false;
 825
 826	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
 827	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
 828	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
 829		struct list_head *head = &fs_info->space_info;
 830		struct btrfs_space_info *sinfo;
 831
 832		list_for_each_entry_rcu(sinfo, head, list) {
 833			down_read(&sinfo->groups_sem);
 834			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
 835				found_raid56 = true;
 836			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
 837				found_raid56 = true;
 838			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
 839				found_raid1c34 = true;
 840			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
 841				found_raid1c34 = true;
 842			up_read(&sinfo->groups_sem);
 843		}
 844		if (!found_raid56)
 845			btrfs_clear_fs_incompat(fs_info, RAID56);
 846		if (!found_raid1c34)
 847			btrfs_clear_fs_incompat(fs_info, RAID1C34);
 848	}
 849}
 850
 851static int remove_block_group_item(struct btrfs_trans_handle *trans,
 852				   struct btrfs_path *path,
 853				   struct btrfs_block_group *block_group)
 854{
 855	struct btrfs_fs_info *fs_info = trans->fs_info;
 856	struct btrfs_root *root;
 857	struct btrfs_key key;
 858	int ret;
 859
 860	root = btrfs_block_group_root(fs_info);
 861	key.objectid = block_group->start;
 862	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 863	key.offset = block_group->length;
 864
 865	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 866	if (ret > 0)
 867		ret = -ENOENT;
 868	if (ret < 0)
 869		return ret;
 870
 871	ret = btrfs_del_item(trans, root, path);
 872	return ret;
 873}
 874
 875int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 876			     u64 group_start, struct extent_map *em)
 877{
 878	struct btrfs_fs_info *fs_info = trans->fs_info;
 879	struct btrfs_path *path;
 880	struct btrfs_block_group *block_group;
 881	struct btrfs_free_cluster *cluster;
 
 
 882	struct inode *inode;
 883	struct kobject *kobj = NULL;
 884	int ret;
 885	int index;
 886	int factor;
 887	struct btrfs_caching_control *caching_ctl = NULL;
 888	bool remove_em;
 889	bool remove_rsv = false;
 890
 891	block_group = btrfs_lookup_block_group(fs_info, group_start);
 892	BUG_ON(!block_group);
 893	BUG_ON(!block_group->ro);
 894
 895	trace_btrfs_remove_block_group(block_group);
 896	/*
 897	 * Free the reserved super bytes from this block group before
 898	 * remove it.
 899	 */
 900	btrfs_free_excluded_extents(block_group);
 901	btrfs_free_ref_tree_range(fs_info, block_group->start,
 902				  block_group->length);
 903
 904	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 905	factor = btrfs_bg_type_to_factor(block_group->flags);
 906
 907	/* make sure this block group isn't part of an allocation cluster */
 908	cluster = &fs_info->data_alloc_cluster;
 909	spin_lock(&cluster->refill_lock);
 910	btrfs_return_cluster_to_free_space(block_group, cluster);
 911	spin_unlock(&cluster->refill_lock);
 912
 913	/*
 914	 * make sure this block group isn't part of a metadata
 915	 * allocation cluster
 916	 */
 917	cluster = &fs_info->meta_alloc_cluster;
 918	spin_lock(&cluster->refill_lock);
 919	btrfs_return_cluster_to_free_space(block_group, cluster);
 920	spin_unlock(&cluster->refill_lock);
 921
 922	btrfs_clear_treelog_bg(block_group);
 923	btrfs_clear_data_reloc_bg(block_group);
 924
 925	path = btrfs_alloc_path();
 926	if (!path) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	/*
 932	 * get the inode first so any iput calls done for the io_list
 933	 * aren't the final iput (no unlinks allowed now)
 934	 */
 935	inode = lookup_free_space_inode(block_group, path);
 936
 937	mutex_lock(&trans->transaction->cache_write_mutex);
 938	/*
 939	 * Make sure our free space cache IO is done before removing the
 940	 * free space inode
 941	 */
 942	spin_lock(&trans->transaction->dirty_bgs_lock);
 943	if (!list_empty(&block_group->io_list)) {
 944		list_del_init(&block_group->io_list);
 945
 946		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
 947
 948		spin_unlock(&trans->transaction->dirty_bgs_lock);
 949		btrfs_wait_cache_io(trans, block_group, path);
 950		btrfs_put_block_group(block_group);
 951		spin_lock(&trans->transaction->dirty_bgs_lock);
 952	}
 953
 954	if (!list_empty(&block_group->dirty_list)) {
 955		list_del_init(&block_group->dirty_list);
 956		remove_rsv = true;
 957		btrfs_put_block_group(block_group);
 958	}
 959	spin_unlock(&trans->transaction->dirty_bgs_lock);
 960	mutex_unlock(&trans->transaction->cache_write_mutex);
 961
 962	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
 963	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964		goto out;
 
 
 
 
 
 
 
 
 965
 966	write_lock(&fs_info->block_group_cache_lock);
 967	rb_erase_cached(&block_group->cache_node,
 968			&fs_info->block_group_cache_tree);
 969	RB_CLEAR_NODE(&block_group->cache_node);
 970
 971	/* Once for the block groups rbtree */
 972	btrfs_put_block_group(block_group);
 973
 974	write_unlock(&fs_info->block_group_cache_lock);
 
 
 975
 976	down_write(&block_group->space_info->groups_sem);
 977	/*
 978	 * we must use list_del_init so people can check to see if they
 979	 * are still on the list after taking the semaphore
 980	 */
 981	list_del_init(&block_group->list);
 982	if (list_empty(&block_group->space_info->block_groups[index])) {
 983		kobj = block_group->space_info->block_group_kobjs[index];
 984		block_group->space_info->block_group_kobjs[index] = NULL;
 985		clear_avail_alloc_bits(fs_info, block_group->flags);
 986	}
 987	up_write(&block_group->space_info->groups_sem);
 988	clear_incompat_bg_bits(fs_info, block_group->flags);
 989	if (kobj) {
 990		kobject_del(kobj);
 991		kobject_put(kobj);
 992	}
 993
 
 
 994	if (block_group->cached == BTRFS_CACHE_STARTED)
 995		btrfs_wait_block_group_cache_done(block_group);
 996
 997	write_lock(&fs_info->block_group_cache_lock);
 998	caching_ctl = btrfs_get_caching_control(block_group);
 999	if (!caching_ctl) {
1000		struct btrfs_caching_control *ctl;
1001
1002		list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1003			if (ctl->block_group == block_group) {
1004				caching_ctl = ctl;
1005				refcount_inc(&caching_ctl->count);
1006				break;
1007			}
 
 
 
 
 
 
 
 
1008		}
1009	}
1010	if (caching_ctl)
1011		list_del_init(&caching_ctl->list);
1012	write_unlock(&fs_info->block_group_cache_lock);
1013
1014	if (caching_ctl) {
1015		/* Once for the caching bgs list and once for us. */
1016		btrfs_put_caching_control(caching_ctl);
1017		btrfs_put_caching_control(caching_ctl);
1018	}
1019
1020	spin_lock(&trans->transaction->dirty_bgs_lock);
1021	WARN_ON(!list_empty(&block_group->dirty_list));
1022	WARN_ON(!list_empty(&block_group->io_list));
1023	spin_unlock(&trans->transaction->dirty_bgs_lock);
1024
1025	btrfs_remove_free_space_cache(block_group);
1026
1027	spin_lock(&block_group->space_info->lock);
1028	list_del_init(&block_group->ro_list);
1029
1030	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1031		WARN_ON(block_group->space_info->total_bytes
1032			< block_group->length);
1033		WARN_ON(block_group->space_info->bytes_readonly
1034			< block_group->length - block_group->zone_unusable);
1035		WARN_ON(block_group->space_info->bytes_zone_unusable
1036			< block_group->zone_unusable);
1037		WARN_ON(block_group->space_info->disk_total
1038			< block_group->length * factor);
1039		WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1040				 &block_group->runtime_flags) &&
1041			block_group->space_info->active_total_bytes
1042			< block_group->length);
1043	}
1044	block_group->space_info->total_bytes -= block_group->length;
1045	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1046		block_group->space_info->active_total_bytes -= block_group->length;
1047	block_group->space_info->bytes_readonly -=
1048		(block_group->length - block_group->zone_unusable);
1049	block_group->space_info->bytes_zone_unusable -=
1050		block_group->zone_unusable;
1051	block_group->space_info->disk_total -= block_group->length * factor;
1052
1053	spin_unlock(&block_group->space_info->lock);
1054
1055	/*
1056	 * Remove the free space for the block group from the free space tree
1057	 * and the block group's item from the extent tree before marking the
1058	 * block group as removed. This is to prevent races with tasks that
1059	 * freeze and unfreeze a block group, this task and another task
1060	 * allocating a new block group - the unfreeze task ends up removing
1061	 * the block group's extent map before the task calling this function
1062	 * deletes the block group item from the extent tree, allowing for
1063	 * another task to attempt to create another block group with the same
1064	 * item key (and failing with -EEXIST and a transaction abort).
1065	 */
1066	ret = remove_block_group_free_space(trans, block_group);
1067	if (ret)
1068		goto out;
1069
1070	ret = remove_block_group_item(trans, path, block_group);
1071	if (ret < 0)
1072		goto out;
1073
1074	spin_lock(&block_group->lock);
1075	set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1076
1077	/*
1078	 * At this point trimming or scrub can't start on this block group,
1079	 * because we removed the block group from the rbtree
1080	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1081	 * even if someone already got this block group before we removed it
1082	 * from the rbtree, they have already incremented block_group->frozen -
1083	 * if they didn't, for the trimming case they won't find any free space
1084	 * entries because we already removed them all when we called
1085	 * btrfs_remove_free_space_cache().
1086	 *
1087	 * And we must not remove the extent map from the fs_info->mapping_tree
1088	 * to prevent the same logical address range and physical device space
1089	 * ranges from being reused for a new block group. This is needed to
1090	 * avoid races with trimming and scrub.
1091	 *
1092	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1093	 * completely transactionless, so while it is trimming a range the
1094	 * currently running transaction might finish and a new one start,
1095	 * allowing for new block groups to be created that can reuse the same
1096	 * physical device locations unless we take this special care.
1097	 *
1098	 * There may also be an implicit trim operation if the file system
1099	 * is mounted with -odiscard. The same protections must remain
1100	 * in place until the extents have been discarded completely when
1101	 * the transaction commit has completed.
1102	 */
1103	remove_em = (atomic_read(&block_group->frozen) == 0);
1104	spin_unlock(&block_group->lock);
1105
1106	if (remove_em) {
1107		struct extent_map_tree *em_tree;
1108
1109		em_tree = &fs_info->mapping_tree;
1110		write_lock(&em_tree->lock);
1111		remove_extent_mapping(em_tree, em);
1112		write_unlock(&em_tree->lock);
1113		/* once for the tree */
1114		free_extent_map(em);
1115	}
1116
1117out:
1118	/* Once for the lookup reference */
1119	btrfs_put_block_group(block_group);
1120	if (remove_rsv)
1121		btrfs_delayed_refs_rsv_release(fs_info, 1);
1122	btrfs_free_path(path);
1123	return ret;
1124}
1125
1126struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1127		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1128{
1129	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1130	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1131	struct extent_map *em;
1132	struct map_lookup *map;
1133	unsigned int num_items;
1134
1135	read_lock(&em_tree->lock);
1136	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1137	read_unlock(&em_tree->lock);
1138	ASSERT(em && em->start == chunk_offset);
1139
1140	/*
1141	 * We need to reserve 3 + N units from the metadata space info in order
1142	 * to remove a block group (done at btrfs_remove_chunk() and at
1143	 * btrfs_remove_block_group()), which are used for:
1144	 *
1145	 * 1 unit for adding the free space inode's orphan (located in the tree
1146	 * of tree roots).
1147	 * 1 unit for deleting the block group item (located in the extent
1148	 * tree).
1149	 * 1 unit for deleting the free space item (located in tree of tree
1150	 * roots).
1151	 * N units for deleting N device extent items corresponding to each
1152	 * stripe (located in the device tree).
1153	 *
1154	 * In order to remove a block group we also need to reserve units in the
1155	 * system space info in order to update the chunk tree (update one or
1156	 * more device items and remove one chunk item), but this is done at
1157	 * btrfs_remove_chunk() through a call to check_system_chunk().
1158	 */
1159	map = em->map_lookup;
1160	num_items = 3 + map->num_stripes;
1161	free_extent_map(em);
1162
1163	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
 
1164}
1165
1166/*
1167 * Mark block group @cache read-only, so later write won't happen to block
1168 * group @cache.
1169 *
1170 * If @force is not set, this function will only mark the block group readonly
1171 * if we have enough free space (1M) in other metadata/system block groups.
1172 * If @force is not set, this function will mark the block group readonly
1173 * without checking free space.
1174 *
1175 * NOTE: This function doesn't care if other block groups can contain all the
1176 * data in this block group. That check should be done by relocation routine,
1177 * not this function.
1178 */
1179static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1180{
1181	struct btrfs_space_info *sinfo = cache->space_info;
1182	u64 num_bytes;
1183	int ret = -ENOSPC;
1184
1185	spin_lock(&sinfo->lock);
1186	spin_lock(&cache->lock);
1187
1188	if (cache->swap_extents) {
1189		ret = -ETXTBSY;
1190		goto out;
1191	}
1192
1193	if (cache->ro) {
1194		cache->ro++;
1195		ret = 0;
1196		goto out;
1197	}
1198
1199	num_bytes = cache->length - cache->reserved - cache->pinned -
1200		    cache->bytes_super - cache->zone_unusable - cache->used;
1201
1202	/*
1203	 * Data never overcommits, even in mixed mode, so do just the straight
1204	 * check of left over space in how much we have allocated.
1205	 */
1206	if (force) {
1207		ret = 0;
1208	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1209		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1210
1211		/*
1212		 * Here we make sure if we mark this bg RO, we still have enough
1213		 * free space as buffer.
1214		 */
1215		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1216			ret = 0;
1217	} else {
1218		/*
1219		 * We overcommit metadata, so we need to do the
1220		 * btrfs_can_overcommit check here, and we need to pass in
1221		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1222		 * leeway to allow us to mark this block group as read only.
1223		 */
1224		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1225					 BTRFS_RESERVE_NO_FLUSH))
1226			ret = 0;
1227	}
1228
1229	if (!ret) {
1230		sinfo->bytes_readonly += num_bytes;
1231		if (btrfs_is_zoned(cache->fs_info)) {
1232			/* Migrate zone_unusable bytes to readonly */
1233			sinfo->bytes_readonly += cache->zone_unusable;
1234			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1235			cache->zone_unusable = 0;
1236		}
1237		cache->ro++;
1238		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1239	}
1240out:
1241	spin_unlock(&cache->lock);
1242	spin_unlock(&sinfo->lock);
1243	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1244		btrfs_info(cache->fs_info,
1245			"unable to make block group %llu ro", cache->start);
1246		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1247	}
1248	return ret;
1249}
1250
1251static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1252				 struct btrfs_block_group *bg)
1253{
1254	struct btrfs_fs_info *fs_info = bg->fs_info;
1255	struct btrfs_transaction *prev_trans = NULL;
1256	const u64 start = bg->start;
1257	const u64 end = start + bg->length - 1;
1258	int ret;
1259
1260	spin_lock(&fs_info->trans_lock);
1261	if (trans->transaction->list.prev != &fs_info->trans_list) {
1262		prev_trans = list_last_entry(&trans->transaction->list,
1263					     struct btrfs_transaction, list);
1264		refcount_inc(&prev_trans->use_count);
1265	}
1266	spin_unlock(&fs_info->trans_lock);
1267
1268	/*
1269	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1270	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1271	 * task might be running finish_extent_commit() for the previous
1272	 * transaction N - 1, and have seen a range belonging to the block
1273	 * group in pinned_extents before we were able to clear the whole block
1274	 * group range from pinned_extents. This means that task can lookup for
1275	 * the block group after we unpinned it from pinned_extents and removed
1276	 * it, leading to a BUG_ON() at unpin_extent_range().
1277	 */
1278	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1279	if (prev_trans) {
1280		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1281					EXTENT_DIRTY);
1282		if (ret)
1283			goto out;
1284	}
1285
1286	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1287				EXTENT_DIRTY);
1288out:
1289	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1290	if (prev_trans)
1291		btrfs_put_transaction(prev_trans);
1292
1293	return ret == 0;
1294}
1295
1296/*
1297 * Process the unused_bgs list and remove any that don't have any allocated
1298 * space inside of them.
1299 */
1300void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1301{
1302	struct btrfs_block_group *block_group;
1303	struct btrfs_space_info *space_info;
1304	struct btrfs_trans_handle *trans;
1305	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1306	int ret = 0;
1307
1308	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1309		return;
1310
1311	if (btrfs_fs_closing(fs_info))
1312		return;
1313
1314	/*
1315	 * Long running balances can keep us blocked here for eternity, so
1316	 * simply skip deletion if we're unable to get the mutex.
1317	 */
1318	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1319		return;
1320
1321	spin_lock(&fs_info->unused_bgs_lock);
1322	while (!list_empty(&fs_info->unused_bgs)) {
1323		int trimming;
1324
1325		block_group = list_first_entry(&fs_info->unused_bgs,
1326					       struct btrfs_block_group,
1327					       bg_list);
1328		list_del_init(&block_group->bg_list);
1329
1330		space_info = block_group->space_info;
1331
1332		if (ret || btrfs_mixed_space_info(space_info)) {
1333			btrfs_put_block_group(block_group);
1334			continue;
1335		}
1336		spin_unlock(&fs_info->unused_bgs_lock);
1337
1338		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1339
 
 
1340		/* Don't want to race with allocators so take the groups_sem */
1341		down_write(&space_info->groups_sem);
1342
1343		/*
1344		 * Async discard moves the final block group discard to be prior
1345		 * to the unused_bgs code path.  Therefore, if it's not fully
1346		 * trimmed, punt it back to the async discard lists.
1347		 */
1348		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1349		    !btrfs_is_free_space_trimmed(block_group)) {
1350			trace_btrfs_skip_unused_block_group(block_group);
1351			up_write(&space_info->groups_sem);
1352			/* Requeue if we failed because of async discard */
1353			btrfs_discard_queue_work(&fs_info->discard_ctl,
1354						 block_group);
1355			goto next;
1356		}
1357
1358		spin_lock(&block_group->lock);
1359		if (block_group->reserved || block_group->pinned ||
1360		    block_group->used || block_group->ro ||
1361		    list_is_singular(&block_group->list)) {
1362			/*
1363			 * We want to bail if we made new allocations or have
1364			 * outstanding allocations in this block group.  We do
1365			 * the ro check in case balance is currently acting on
1366			 * this block group.
1367			 */
1368			trace_btrfs_skip_unused_block_group(block_group);
1369			spin_unlock(&block_group->lock);
1370			up_write(&space_info->groups_sem);
1371			goto next;
1372		}
1373		spin_unlock(&block_group->lock);
1374
1375		/* We don't want to force the issue, only flip if it's ok. */
1376		ret = inc_block_group_ro(block_group, 0);
1377		up_write(&space_info->groups_sem);
1378		if (ret < 0) {
1379			ret = 0;
1380			goto next;
1381		}
1382
1383		ret = btrfs_zone_finish(block_group);
1384		if (ret < 0) {
1385			btrfs_dec_block_group_ro(block_group);
1386			if (ret == -EAGAIN)
1387				ret = 0;
1388			goto next;
1389		}
1390
1391		/*
1392		 * Want to do this before we do anything else so we can recover
1393		 * properly if we fail to join the transaction.
1394		 */
1395		trans = btrfs_start_trans_remove_block_group(fs_info,
1396						     block_group->start);
1397		if (IS_ERR(trans)) {
1398			btrfs_dec_block_group_ro(block_group);
1399			ret = PTR_ERR(trans);
1400			goto next;
1401		}
1402
1403		/*
1404		 * We could have pending pinned extents for this block group,
1405		 * just delete them, we don't care about them anymore.
1406		 */
1407		if (!clean_pinned_extents(trans, block_group)) {
1408			btrfs_dec_block_group_ro(block_group);
1409			goto end_trans;
1410		}
1411
1412		/*
1413		 * At this point, the block_group is read only and should fail
1414		 * new allocations.  However, btrfs_finish_extent_commit() can
1415		 * cause this block_group to be placed back on the discard
1416		 * lists because now the block_group isn't fully discarded.
1417		 * Bail here and try again later after discarding everything.
1418		 */
1419		spin_lock(&fs_info->discard_ctl.lock);
1420		if (!list_empty(&block_group->discard_list)) {
1421			spin_unlock(&fs_info->discard_ctl.lock);
1422			btrfs_dec_block_group_ro(block_group);
1423			btrfs_discard_queue_work(&fs_info->discard_ctl,
1424						 block_group);
1425			goto end_trans;
1426		}
1427		spin_unlock(&fs_info->discard_ctl.lock);
1428
1429		/* Reset pinned so btrfs_put_block_group doesn't complain */
1430		spin_lock(&space_info->lock);
1431		spin_lock(&block_group->lock);
1432
1433		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1434						     -block_group->pinned);
1435		space_info->bytes_readonly += block_group->pinned;
 
 
 
1436		block_group->pinned = 0;
1437
1438		spin_unlock(&block_group->lock);
1439		spin_unlock(&space_info->lock);
1440
1441		/*
1442		 * The normal path here is an unused block group is passed here,
1443		 * then trimming is handled in the transaction commit path.
1444		 * Async discard interposes before this to do the trimming
1445		 * before coming down the unused block group path as trimming
1446		 * will no longer be done later in the transaction commit path.
1447		 */
1448		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1449			goto flip_async;
1450
1451		/*
1452		 * DISCARD can flip during remount. On zoned filesystems, we
1453		 * need to reset sequential-required zones.
1454		 */
1455		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1456				btrfs_is_zoned(fs_info);
1457
1458		/* Implicit trim during transaction commit. */
1459		if (trimming)
1460			btrfs_freeze_block_group(block_group);
1461
1462		/*
1463		 * Btrfs_remove_chunk will abort the transaction if things go
1464		 * horribly wrong.
1465		 */
1466		ret = btrfs_remove_chunk(trans, block_group->start);
1467
1468		if (ret) {
1469			if (trimming)
1470				btrfs_unfreeze_block_group(block_group);
1471			goto end_trans;
1472		}
1473
1474		/*
1475		 * If we're not mounted with -odiscard, we can just forget
1476		 * about this block group. Otherwise we'll need to wait
1477		 * until transaction commit to do the actual discard.
1478		 */
1479		if (trimming) {
1480			spin_lock(&fs_info->unused_bgs_lock);
1481			/*
1482			 * A concurrent scrub might have added us to the list
1483			 * fs_info->unused_bgs, so use a list_move operation
1484			 * to add the block group to the deleted_bgs list.
1485			 */
1486			list_move(&block_group->bg_list,
1487				  &trans->transaction->deleted_bgs);
1488			spin_unlock(&fs_info->unused_bgs_lock);
1489			btrfs_get_block_group(block_group);
1490		}
1491end_trans:
1492		btrfs_end_transaction(trans);
1493next:
 
1494		btrfs_put_block_group(block_group);
1495		spin_lock(&fs_info->unused_bgs_lock);
1496	}
1497	spin_unlock(&fs_info->unused_bgs_lock);
1498	mutex_unlock(&fs_info->reclaim_bgs_lock);
1499	return;
1500
1501flip_async:
1502	btrfs_end_transaction(trans);
1503	mutex_unlock(&fs_info->reclaim_bgs_lock);
1504	btrfs_put_block_group(block_group);
1505	btrfs_discard_punt_unused_bgs_list(fs_info);
1506}
1507
1508void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1509{
1510	struct btrfs_fs_info *fs_info = bg->fs_info;
1511
1512	spin_lock(&fs_info->unused_bgs_lock);
1513	if (list_empty(&bg->bg_list)) {
1514		btrfs_get_block_group(bg);
1515		trace_btrfs_add_unused_block_group(bg);
1516		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1517	}
1518	spin_unlock(&fs_info->unused_bgs_lock);
1519}
1520
1521/*
1522 * We want block groups with a low number of used bytes to be in the beginning
1523 * of the list, so they will get reclaimed first.
1524 */
1525static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1526			   const struct list_head *b)
1527{
1528	const struct btrfs_block_group *bg1, *bg2;
1529
1530	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1531	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1532
1533	return bg1->used > bg2->used;
1534}
1535
1536static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1537{
1538	if (btrfs_is_zoned(fs_info))
1539		return btrfs_zoned_should_reclaim(fs_info);
1540	return true;
1541}
1542
1543static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1544{
1545	const struct btrfs_space_info *space_info = bg->space_info;
1546	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1547	const u64 new_val = bg->used;
1548	const u64 old_val = new_val + bytes_freed;
1549	u64 thresh;
1550
1551	if (reclaim_thresh == 0)
1552		return false;
1553
1554	thresh = mult_perc(bg->length, reclaim_thresh);
1555
1556	/*
1557	 * If we were below the threshold before don't reclaim, we are likely a
1558	 * brand new block group and we don't want to relocate new block groups.
1559	 */
1560	if (old_val < thresh)
1561		return false;
1562	if (new_val >= thresh)
1563		return false;
1564	return true;
1565}
1566
1567void btrfs_reclaim_bgs_work(struct work_struct *work)
1568{
1569	struct btrfs_fs_info *fs_info =
1570		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1571	struct btrfs_block_group *bg;
1572	struct btrfs_space_info *space_info;
1573
1574	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1575		return;
1576
1577	if (btrfs_fs_closing(fs_info))
1578		return;
1579
1580	if (!btrfs_should_reclaim(fs_info))
1581		return;
1582
1583	sb_start_write(fs_info->sb);
1584
1585	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1586		sb_end_write(fs_info->sb);
1587		return;
1588	}
1589
1590	/*
1591	 * Long running balances can keep us blocked here for eternity, so
1592	 * simply skip reclaim if we're unable to get the mutex.
1593	 */
1594	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1595		btrfs_exclop_finish(fs_info);
1596		sb_end_write(fs_info->sb);
1597		return;
1598	}
1599
1600	spin_lock(&fs_info->unused_bgs_lock);
1601	/*
1602	 * Sort happens under lock because we can't simply splice it and sort.
1603	 * The block groups might still be in use and reachable via bg_list,
1604	 * and their presence in the reclaim_bgs list must be preserved.
1605	 */
1606	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1607	while (!list_empty(&fs_info->reclaim_bgs)) {
1608		u64 zone_unusable;
1609		int ret = 0;
1610
1611		bg = list_first_entry(&fs_info->reclaim_bgs,
1612				      struct btrfs_block_group,
1613				      bg_list);
1614		list_del_init(&bg->bg_list);
1615
1616		space_info = bg->space_info;
1617		spin_unlock(&fs_info->unused_bgs_lock);
1618
1619		/* Don't race with allocators so take the groups_sem */
1620		down_write(&space_info->groups_sem);
1621
1622		spin_lock(&bg->lock);
1623		if (bg->reserved || bg->pinned || bg->ro) {
1624			/*
1625			 * We want to bail if we made new allocations or have
1626			 * outstanding allocations in this block group.  We do
1627			 * the ro check in case balance is currently acting on
1628			 * this block group.
1629			 */
1630			spin_unlock(&bg->lock);
1631			up_write(&space_info->groups_sem);
1632			goto next;
1633		}
1634		if (bg->used == 0) {
1635			/*
1636			 * It is possible that we trigger relocation on a block
1637			 * group as its extents are deleted and it first goes
1638			 * below the threshold, then shortly after goes empty.
1639			 *
1640			 * In this case, relocating it does delete it, but has
1641			 * some overhead in relocation specific metadata, looking
1642			 * for the non-existent extents and running some extra
1643			 * transactions, which we can avoid by using one of the
1644			 * other mechanisms for dealing with empty block groups.
1645			 */
1646			if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1647				btrfs_mark_bg_unused(bg);
1648			spin_unlock(&bg->lock);
1649			up_write(&space_info->groups_sem);
1650			goto next;
1651
1652		}
1653		/*
1654		 * The block group might no longer meet the reclaim condition by
1655		 * the time we get around to reclaiming it, so to avoid
1656		 * reclaiming overly full block_groups, skip reclaiming them.
1657		 *
1658		 * Since the decision making process also depends on the amount
1659		 * being freed, pass in a fake giant value to skip that extra
1660		 * check, which is more meaningful when adding to the list in
1661		 * the first place.
1662		 */
1663		if (!should_reclaim_block_group(bg, bg->length)) {
1664			spin_unlock(&bg->lock);
1665			up_write(&space_info->groups_sem);
1666			goto next;
1667		}
1668		spin_unlock(&bg->lock);
1669
1670		/* Get out fast, in case we're unmounting the filesystem */
1671		if (btrfs_fs_closing(fs_info)) {
1672			up_write(&space_info->groups_sem);
1673			goto next;
1674		}
1675
1676		/*
1677		 * Cache the zone_unusable value before turning the block group
1678		 * to read only. As soon as the blog group is read only it's
1679		 * zone_unusable value gets moved to the block group's read-only
1680		 * bytes and isn't available for calculations anymore.
1681		 */
1682		zone_unusable = bg->zone_unusable;
1683		ret = inc_block_group_ro(bg, 0);
1684		up_write(&space_info->groups_sem);
1685		if (ret < 0)
1686			goto next;
1687
1688		btrfs_info(fs_info,
1689			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1690				bg->start, div_u64(bg->used * 100, bg->length),
1691				div64_u64(zone_unusable * 100, bg->length));
1692		trace_btrfs_reclaim_block_group(bg);
1693		ret = btrfs_relocate_chunk(fs_info, bg->start);
1694		if (ret) {
1695			btrfs_dec_block_group_ro(bg);
1696			btrfs_err(fs_info, "error relocating chunk %llu",
1697				  bg->start);
1698		}
1699
1700next:
1701		btrfs_put_block_group(bg);
1702		spin_lock(&fs_info->unused_bgs_lock);
1703	}
1704	spin_unlock(&fs_info->unused_bgs_lock);
1705	mutex_unlock(&fs_info->reclaim_bgs_lock);
1706	btrfs_exclop_finish(fs_info);
1707	sb_end_write(fs_info->sb);
1708}
1709
1710void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1711{
1712	spin_lock(&fs_info->unused_bgs_lock);
1713	if (!list_empty(&fs_info->reclaim_bgs))
1714		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1715	spin_unlock(&fs_info->unused_bgs_lock);
1716}
1717
1718void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1719{
1720	struct btrfs_fs_info *fs_info = bg->fs_info;
1721
1722	spin_lock(&fs_info->unused_bgs_lock);
1723	if (list_empty(&bg->bg_list)) {
1724		btrfs_get_block_group(bg);
1725		trace_btrfs_add_reclaim_block_group(bg);
1726		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1727	}
1728	spin_unlock(&fs_info->unused_bgs_lock);
1729}
1730
1731static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1732			   struct btrfs_path *path)
1733{
1734	struct extent_map_tree *em_tree;
1735	struct extent_map *em;
1736	struct btrfs_block_group_item bg;
1737	struct extent_buffer *leaf;
1738	int slot;
1739	u64 flags;
1740	int ret = 0;
1741
1742	slot = path->slots[0];
1743	leaf = path->nodes[0];
1744
1745	em_tree = &fs_info->mapping_tree;
1746	read_lock(&em_tree->lock);
1747	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1748	read_unlock(&em_tree->lock);
1749	if (!em) {
1750		btrfs_err(fs_info,
1751			  "logical %llu len %llu found bg but no related chunk",
1752			  key->objectid, key->offset);
1753		return -ENOENT;
1754	}
1755
1756	if (em->start != key->objectid || em->len != key->offset) {
1757		btrfs_err(fs_info,
1758			"block group %llu len %llu mismatch with chunk %llu len %llu",
1759			key->objectid, key->offset, em->start, em->len);
1760		ret = -EUCLEAN;
1761		goto out_free_em;
1762	}
1763
1764	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1765			   sizeof(bg));
1766	flags = btrfs_stack_block_group_flags(&bg) &
1767		BTRFS_BLOCK_GROUP_TYPE_MASK;
1768
1769	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1770		btrfs_err(fs_info,
1771"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1772			  key->objectid, key->offset, flags,
1773			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1774		ret = -EUCLEAN;
1775	}
1776
1777out_free_em:
1778	free_extent_map(em);
1779	return ret;
1780}
1781
1782static int find_first_block_group(struct btrfs_fs_info *fs_info,
1783				  struct btrfs_path *path,
1784				  struct btrfs_key *key)
1785{
1786	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1787	int ret;
1788	struct btrfs_key found_key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789
1790	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1791		if (found_key.objectid >= key->objectid &&
1792		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1793			return read_bg_from_eb(fs_info, &found_key, path);
 
1794		}
 
 
1795	}
 
1796	return ret;
1797}
1798
1799static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1800{
1801	u64 extra_flags = chunk_to_extended(flags) &
1802				BTRFS_EXTENDED_PROFILE_MASK;
1803
1804	write_seqlock(&fs_info->profiles_lock);
1805	if (flags & BTRFS_BLOCK_GROUP_DATA)
1806		fs_info->avail_data_alloc_bits |= extra_flags;
1807	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1808		fs_info->avail_metadata_alloc_bits |= extra_flags;
1809	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1810		fs_info->avail_system_alloc_bits |= extra_flags;
1811	write_sequnlock(&fs_info->profiles_lock);
1812}
1813
1814/*
1815 * Map a physical disk address to a list of logical addresses.
1816 *
1817 * @fs_info:       the filesystem
1818 * @chunk_start:   logical address of block group
1819 * @bdev:	   physical device to resolve, can be NULL to indicate any device
1820 * @physical:	   physical address to map to logical addresses
1821 * @logical:	   return array of logical addresses which map to @physical
1822 * @naddrs:	   length of @logical
1823 * @stripe_len:    size of IO stripe for the given block group
1824 *
1825 * Maps a particular @physical disk address to a list of @logical addresses.
1826 * Used primarily to exclude those portions of a block group that contain super
1827 * block copies.
1828 */
 
1829int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1830		     struct block_device *bdev, u64 physical, u64 **logical,
1831		     int *naddrs, int *stripe_len)
1832{
1833	struct extent_map *em;
1834	struct map_lookup *map;
1835	u64 *buf;
1836	u64 bytenr;
1837	u64 data_stripe_length;
1838	u64 io_stripe_size;
1839	int i, nr = 0;
1840	int ret = 0;
1841
1842	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1843	if (IS_ERR(em))
1844		return -EIO;
1845
1846	map = em->map_lookup;
1847	data_stripe_length = em->orig_block_len;
1848	io_stripe_size = map->stripe_len;
1849	chunk_start = em->start;
1850
1851	/* For RAID5/6 adjust to a full IO stripe length */
1852	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1853		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1854
1855	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1856	if (!buf) {
1857		ret = -ENOMEM;
1858		goto out;
1859	}
1860
1861	for (i = 0; i < map->num_stripes; i++) {
1862		bool already_inserted = false;
1863		u64 stripe_nr;
1864		u64 offset;
1865		int j;
1866
1867		if (!in_range(physical, map->stripes[i].physical,
1868			      data_stripe_length))
1869			continue;
1870
1871		if (bdev && map->stripes[i].dev->bdev != bdev)
1872			continue;
1873
1874		stripe_nr = physical - map->stripes[i].physical;
1875		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1876
1877		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1878				 BTRFS_BLOCK_GROUP_RAID10)) {
1879			stripe_nr = stripe_nr * map->num_stripes + i;
1880			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
 
 
1881		}
1882		/*
1883		 * The remaining case would be for RAID56, multiply by
1884		 * nr_data_stripes().  Alternatively, just use rmap_len below
1885		 * instead of map->stripe_len
1886		 */
1887
1888		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1889
1890		/* Ensure we don't add duplicate addresses */
1891		for (j = 0; j < nr; j++) {
1892			if (buf[j] == bytenr) {
1893				already_inserted = true;
1894				break;
1895			}
1896		}
1897
1898		if (!already_inserted)
1899			buf[nr++] = bytenr;
1900	}
1901
1902	*logical = buf;
1903	*naddrs = nr;
1904	*stripe_len = io_stripe_size;
1905out:
1906	free_extent_map(em);
1907	return ret;
1908}
1909
1910static int exclude_super_stripes(struct btrfs_block_group *cache)
1911{
1912	struct btrfs_fs_info *fs_info = cache->fs_info;
1913	const bool zoned = btrfs_is_zoned(fs_info);
1914	u64 bytenr;
1915	u64 *logical;
1916	int stripe_len;
1917	int i, nr, ret;
1918
1919	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1920		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1921		cache->bytes_super += stripe_len;
1922		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1923						stripe_len);
1924		if (ret)
1925			return ret;
1926	}
1927
1928	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1929		bytenr = btrfs_sb_offset(i);
1930		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1931				       bytenr, &logical, &nr, &stripe_len);
1932		if (ret)
1933			return ret;
1934
1935		/* Shouldn't have super stripes in sequential zones */
1936		if (zoned && nr) {
1937			btrfs_err(fs_info,
1938			"zoned: block group %llu must not contain super block",
1939				  cache->start);
1940			return -EUCLEAN;
1941		}
1942
1943		while (nr--) {
1944			u64 len = min_t(u64, stripe_len,
1945				cache->start + cache->length - logical[nr]);
1946
1947			cache->bytes_super += len;
1948			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1949							len);
1950			if (ret) {
1951				kfree(logical);
1952				return ret;
1953			}
1954		}
1955
1956		kfree(logical);
1957	}
1958	return 0;
1959}
1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961static struct btrfs_block_group *btrfs_create_block_group_cache(
1962		struct btrfs_fs_info *fs_info, u64 start)
1963{
1964	struct btrfs_block_group *cache;
1965
1966	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1967	if (!cache)
1968		return NULL;
1969
1970	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1971					GFP_NOFS);
1972	if (!cache->free_space_ctl) {
1973		kfree(cache);
1974		return NULL;
1975	}
1976
1977	cache->start = start;
1978
1979	cache->fs_info = fs_info;
1980	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1981
1982	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1983
1984	refcount_set(&cache->refs, 1);
1985	spin_lock_init(&cache->lock);
1986	init_rwsem(&cache->data_rwsem);
1987	INIT_LIST_HEAD(&cache->list);
1988	INIT_LIST_HEAD(&cache->cluster_list);
1989	INIT_LIST_HEAD(&cache->bg_list);
1990	INIT_LIST_HEAD(&cache->ro_list);
1991	INIT_LIST_HEAD(&cache->discard_list);
1992	INIT_LIST_HEAD(&cache->dirty_list);
1993	INIT_LIST_HEAD(&cache->io_list);
1994	INIT_LIST_HEAD(&cache->active_bg_list);
1995	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1996	atomic_set(&cache->frozen, 0);
1997	mutex_init(&cache->free_space_lock);
1998	cache->full_stripe_locks_root.root = RB_ROOT;
1999	mutex_init(&cache->full_stripe_locks_root.lock);
2000
2001	return cache;
2002}
2003
2004/*
2005 * Iterate all chunks and verify that each of them has the corresponding block
2006 * group
2007 */
2008static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2009{
2010	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2011	struct extent_map *em;
2012	struct btrfs_block_group *bg;
2013	u64 start = 0;
2014	int ret = 0;
2015
2016	while (1) {
2017		read_lock(&map_tree->lock);
2018		/*
2019		 * lookup_extent_mapping will return the first extent map
2020		 * intersecting the range, so setting @len to 1 is enough to
2021		 * get the first chunk.
2022		 */
2023		em = lookup_extent_mapping(map_tree, start, 1);
2024		read_unlock(&map_tree->lock);
2025		if (!em)
2026			break;
2027
2028		bg = btrfs_lookup_block_group(fs_info, em->start);
2029		if (!bg) {
2030			btrfs_err(fs_info,
2031	"chunk start=%llu len=%llu doesn't have corresponding block group",
2032				     em->start, em->len);
2033			ret = -EUCLEAN;
2034			free_extent_map(em);
2035			break;
2036		}
2037		if (bg->start != em->start || bg->length != em->len ||
2038		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2039		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2040			btrfs_err(fs_info,
2041"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2042				em->start, em->len,
2043				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2044				bg->start, bg->length,
2045				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2046			ret = -EUCLEAN;
2047			free_extent_map(em);
2048			btrfs_put_block_group(bg);
2049			break;
2050		}
2051		start = em->start + em->len;
2052		free_extent_map(em);
2053		btrfs_put_block_group(bg);
2054	}
2055	return ret;
2056}
2057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058static int read_one_block_group(struct btrfs_fs_info *info,
2059				struct btrfs_block_group_item *bgi,
2060				const struct btrfs_key *key,
2061				int need_clear)
2062{
2063	struct btrfs_block_group *cache;
 
2064	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2065	int ret;
2066
2067	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2068
2069	cache = btrfs_create_block_group_cache(info, key->objectid);
2070	if (!cache)
2071		return -ENOMEM;
2072
2073	cache->length = key->offset;
2074	cache->used = btrfs_stack_block_group_used(bgi);
2075	cache->commit_used = cache->used;
2076	cache->flags = btrfs_stack_block_group_flags(bgi);
2077	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2078
2079	set_free_space_tree_thresholds(cache);
2080
2081	if (need_clear) {
2082		/*
2083		 * When we mount with old space cache, we need to
2084		 * set BTRFS_DC_CLEAR and set dirty flag.
2085		 *
2086		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2087		 *    truncate the old free space cache inode and
2088		 *    setup a new one.
2089		 * b) Setting 'dirty flag' makes sure that we flush
2090		 *    the new space cache info onto disk.
2091		 */
2092		if (btrfs_test_opt(info, SPACE_CACHE))
2093			cache->disk_cache_state = BTRFS_DC_CLEAR;
2094	}
2095	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2096	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2097			btrfs_err(info,
2098"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2099				  cache->start);
2100			ret = -EINVAL;
2101			goto error;
2102	}
2103
2104	ret = btrfs_load_block_group_zone_info(cache, false);
2105	if (ret) {
2106		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2107			  cache->start);
2108		goto error;
2109	}
2110
2111	/*
2112	 * We need to exclude the super stripes now so that the space info has
2113	 * super bytes accounted for, otherwise we'll think we have more space
2114	 * than we actually do.
2115	 */
2116	ret = exclude_super_stripes(cache);
2117	if (ret) {
2118		/* We may have excluded something, so call this just in case. */
2119		btrfs_free_excluded_extents(cache);
2120		goto error;
2121	}
2122
2123	/*
2124	 * For zoned filesystem, space after the allocation offset is the only
2125	 * free space for a block group. So, we don't need any caching work.
2126	 * btrfs_calc_zone_unusable() will set the amount of free space and
2127	 * zone_unusable space.
2128	 *
2129	 * For regular filesystem, check for two cases, either we are full, and
2130	 * therefore don't need to bother with the caching work since we won't
2131	 * find any space, or we are empty, and we can just add all the space
2132	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2133	 * in the full case.
2134	 */
2135	if (btrfs_is_zoned(info)) {
2136		btrfs_calc_zone_unusable(cache);
2137		/* Should not have any excluded extents. Just in case, though. */
2138		btrfs_free_excluded_extents(cache);
2139	} else if (cache->length == cache->used) {
2140		cache->cached = BTRFS_CACHE_FINISHED;
2141		btrfs_free_excluded_extents(cache);
2142	} else if (cache->used == 0) {
 
2143		cache->cached = BTRFS_CACHE_FINISHED;
2144		add_new_free_space(cache, cache->start,
2145				   cache->start + cache->length);
2146		btrfs_free_excluded_extents(cache);
2147	}
2148
2149	ret = btrfs_add_block_group_cache(info, cache);
2150	if (ret) {
2151		btrfs_remove_free_space_cache(cache);
2152		goto error;
2153	}
2154	trace_btrfs_add_block_group(info, cache, 0);
2155	btrfs_add_bg_to_space_info(info, cache);
 
 
 
 
 
2156
2157	set_avail_alloc_bits(info, cache->flags);
2158	if (btrfs_chunk_writeable(info, cache->start)) {
2159		if (cache->used == 0) {
2160			ASSERT(list_empty(&cache->bg_list));
2161			if (btrfs_test_opt(info, DISCARD_ASYNC))
2162				btrfs_discard_queue_work(&info->discard_ctl, cache);
2163			else
2164				btrfs_mark_bg_unused(cache);
2165		}
2166	} else {
2167		inc_block_group_ro(cache, 1);
 
 
 
 
 
 
2168	}
2169
2170	return 0;
2171error:
2172	btrfs_put_block_group(cache);
2173	return ret;
2174}
2175
2176static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2177{
2178	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2179	struct rb_node *node;
2180	int ret = 0;
2181
2182	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2183		struct extent_map *em;
2184		struct map_lookup *map;
2185		struct btrfs_block_group *bg;
2186
2187		em = rb_entry(node, struct extent_map, rb_node);
2188		map = em->map_lookup;
2189		bg = btrfs_create_block_group_cache(fs_info, em->start);
2190		if (!bg) {
2191			ret = -ENOMEM;
2192			break;
2193		}
2194
2195		/* Fill dummy cache as FULL */
2196		bg->length = em->len;
2197		bg->flags = map->type;
2198		bg->cached = BTRFS_CACHE_FINISHED;
2199		bg->used = em->len;
2200		bg->flags = map->type;
2201		ret = btrfs_add_block_group_cache(fs_info, bg);
2202		/*
2203		 * We may have some valid block group cache added already, in
2204		 * that case we skip to the next one.
2205		 */
2206		if (ret == -EEXIST) {
2207			ret = 0;
2208			btrfs_put_block_group(bg);
2209			continue;
2210		}
2211
2212		if (ret) {
2213			btrfs_remove_free_space_cache(bg);
2214			btrfs_put_block_group(bg);
2215			break;
2216		}
2217
2218		btrfs_add_bg_to_space_info(fs_info, bg);
2219
2220		set_avail_alloc_bits(fs_info, bg->flags);
2221	}
2222	if (!ret)
2223		btrfs_init_global_block_rsv(fs_info);
2224	return ret;
2225}
2226
2227int btrfs_read_block_groups(struct btrfs_fs_info *info)
2228{
2229	struct btrfs_root *root = btrfs_block_group_root(info);
2230	struct btrfs_path *path;
2231	int ret;
2232	struct btrfs_block_group *cache;
2233	struct btrfs_space_info *space_info;
2234	struct btrfs_key key;
2235	int need_clear = 0;
2236	u64 cache_gen;
2237
2238	/*
2239	 * Either no extent root (with ibadroots rescue option) or we have
2240	 * unsupported RO options. The fs can never be mounted read-write, so no
2241	 * need to waste time searching block group items.
2242	 *
2243	 * This also allows new extent tree related changes to be RO compat,
2244	 * no need for a full incompat flag.
2245	 */
2246	if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2247		      ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2248		return fill_dummy_bgs(info);
2249
2250	key.objectid = 0;
2251	key.offset = 0;
2252	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2253	path = btrfs_alloc_path();
2254	if (!path)
2255		return -ENOMEM;
2256
2257	cache_gen = btrfs_super_cache_generation(info->super_copy);
2258	if (btrfs_test_opt(info, SPACE_CACHE) &&
2259	    btrfs_super_generation(info->super_copy) != cache_gen)
2260		need_clear = 1;
2261	if (btrfs_test_opt(info, CLEAR_CACHE))
2262		need_clear = 1;
2263
2264	while (1) {
2265		struct btrfs_block_group_item bgi;
2266		struct extent_buffer *leaf;
2267		int slot;
2268
2269		ret = find_first_block_group(info, path, &key);
2270		if (ret > 0)
2271			break;
2272		if (ret != 0)
2273			goto error;
2274
2275		leaf = path->nodes[0];
2276		slot = path->slots[0];
2277
2278		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2279				   sizeof(bgi));
2280
2281		btrfs_item_key_to_cpu(leaf, &key, slot);
2282		btrfs_release_path(path);
2283		ret = read_one_block_group(info, &bgi, &key, need_clear);
2284		if (ret < 0)
2285			goto error;
2286		key.objectid += key.offset;
2287		key.offset = 0;
 
2288	}
2289	btrfs_release_path(path);
2290
2291	list_for_each_entry(space_info, &info->space_info, list) {
2292		int i;
2293
2294		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2295			if (list_empty(&space_info->block_groups[i]))
2296				continue;
2297			cache = list_first_entry(&space_info->block_groups[i],
2298						 struct btrfs_block_group,
2299						 list);
2300			btrfs_sysfs_add_block_group_type(cache);
2301		}
2302
 
 
2303		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2304		      (BTRFS_BLOCK_GROUP_RAID10 |
2305		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2306		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2307		       BTRFS_BLOCK_GROUP_DUP)))
2308			continue;
2309		/*
2310		 * Avoid allocating from un-mirrored block group if there are
2311		 * mirrored block groups.
2312		 */
2313		list_for_each_entry(cache,
2314				&space_info->block_groups[BTRFS_RAID_RAID0],
2315				list)
2316			inc_block_group_ro(cache, 1);
2317		list_for_each_entry(cache,
2318				&space_info->block_groups[BTRFS_RAID_SINGLE],
2319				list)
2320			inc_block_group_ro(cache, 1);
2321	}
 
2322
2323	btrfs_init_global_block_rsv(info);
2324	ret = check_chunk_block_group_mappings(info);
2325error:
2326	btrfs_free_path(path);
2327	/*
2328	 * We've hit some error while reading the extent tree, and have
2329	 * rescue=ibadroots mount option.
2330	 * Try to fill the tree using dummy block groups so that the user can
2331	 * continue to mount and grab their data.
2332	 */
2333	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2334		ret = fill_dummy_bgs(info);
2335	return ret;
2336}
2337
2338/*
2339 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2340 * allocation.
2341 *
2342 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2343 * phases.
2344 */
2345static int insert_block_group_item(struct btrfs_trans_handle *trans,
2346				   struct btrfs_block_group *block_group)
2347{
2348	struct btrfs_fs_info *fs_info = trans->fs_info;
2349	struct btrfs_block_group_item bgi;
2350	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2351	struct btrfs_key key;
2352
2353	spin_lock(&block_group->lock);
2354	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2355	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2356						   block_group->global_root_id);
2357	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2358	key.objectid = block_group->start;
2359	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2360	key.offset = block_group->length;
2361	spin_unlock(&block_group->lock);
2362
 
2363	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2364}
2365
2366static int insert_dev_extent(struct btrfs_trans_handle *trans,
2367			    struct btrfs_device *device, u64 chunk_offset,
2368			    u64 start, u64 num_bytes)
2369{
2370	struct btrfs_fs_info *fs_info = device->fs_info;
2371	struct btrfs_root *root = fs_info->dev_root;
2372	struct btrfs_path *path;
2373	struct btrfs_dev_extent *extent;
2374	struct extent_buffer *leaf;
2375	struct btrfs_key key;
2376	int ret;
2377
2378	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2379	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2380	path = btrfs_alloc_path();
2381	if (!path)
2382		return -ENOMEM;
2383
2384	key.objectid = device->devid;
2385	key.type = BTRFS_DEV_EXTENT_KEY;
2386	key.offset = start;
2387	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2388	if (ret)
2389		goto out;
2390
2391	leaf = path->nodes[0];
2392	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2393	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2394	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2395					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2396	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2397
2398	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2399	btrfs_mark_buffer_dirty(leaf);
2400out:
2401	btrfs_free_path(path);
2402	return ret;
2403}
2404
2405/*
2406 * This function belongs to phase 2.
2407 *
2408 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2409 * phases.
2410 */
2411static int insert_dev_extents(struct btrfs_trans_handle *trans,
2412				   u64 chunk_offset, u64 chunk_size)
2413{
2414	struct btrfs_fs_info *fs_info = trans->fs_info;
2415	struct btrfs_device *device;
2416	struct extent_map *em;
2417	struct map_lookup *map;
2418	u64 dev_offset;
2419	u64 stripe_size;
2420	int i;
2421	int ret = 0;
2422
2423	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2424	if (IS_ERR(em))
2425		return PTR_ERR(em);
2426
2427	map = em->map_lookup;
2428	stripe_size = em->orig_block_len;
2429
2430	/*
2431	 * Take the device list mutex to prevent races with the final phase of
2432	 * a device replace operation that replaces the device object associated
2433	 * with the map's stripes, because the device object's id can change
2434	 * at any time during that final phase of the device replace operation
2435	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2436	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2437	 * resulting in persisting a device extent item with such ID.
2438	 */
2439	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2440	for (i = 0; i < map->num_stripes; i++) {
2441		device = map->stripes[i].dev;
2442		dev_offset = map->stripes[i].physical;
2443
2444		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2445				       stripe_size);
2446		if (ret)
2447			break;
2448	}
2449	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450
2451	free_extent_map(em);
2452	return ret;
2453}
2454
2455/*
2456 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2457 * chunk allocation.
2458 *
2459 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2460 * phases.
2461 */
2462void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2463{
2464	struct btrfs_fs_info *fs_info = trans->fs_info;
2465	struct btrfs_block_group *block_group;
2466	int ret = 0;
2467
 
 
 
2468	while (!list_empty(&trans->new_bgs)) {
2469		int index;
2470
2471		block_group = list_first_entry(&trans->new_bgs,
2472					       struct btrfs_block_group,
2473					       bg_list);
2474		if (ret)
2475			goto next;
2476
2477		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2478
2479		ret = insert_block_group_item(trans, block_group);
2480		if (ret)
2481			btrfs_abort_transaction(trans, ret);
2482		if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2483			      &block_group->runtime_flags)) {
2484			mutex_lock(&fs_info->chunk_mutex);
2485			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2486			mutex_unlock(&fs_info->chunk_mutex);
2487			if (ret)
2488				btrfs_abort_transaction(trans, ret);
2489		}
2490		ret = insert_dev_extents(trans, block_group->start,
2491					 block_group->length);
2492		if (ret)
2493			btrfs_abort_transaction(trans, ret);
2494		add_block_group_free_space(trans, block_group);
2495
2496		/*
2497		 * If we restriped during balance, we may have added a new raid
2498		 * type, so now add the sysfs entries when it is safe to do so.
2499		 * We don't have to worry about locking here as it's handled in
2500		 * btrfs_sysfs_add_block_group_type.
2501		 */
2502		if (block_group->space_info->block_group_kobjs[index] == NULL)
2503			btrfs_sysfs_add_block_group_type(block_group);
2504
2505		/* Already aborted the transaction if it failed. */
2506next:
2507		btrfs_delayed_refs_rsv_release(fs_info, 1);
2508		list_del_init(&block_group->bg_list);
2509	}
2510	btrfs_trans_release_chunk_metadata(trans);
2511}
2512
2513/*
2514 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2515 * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2516 */
2517static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2518{
2519	u64 div = SZ_1G;
2520	u64 index;
2521
2522	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2523		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2524
2525	/* If we have a smaller fs index based on 128MiB. */
2526	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2527		div = SZ_128M;
2528
2529	offset = div64_u64(offset, div);
2530	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2531	return index;
2532}
2533
2534struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2535						 u64 bytes_used, u64 type,
2536						 u64 chunk_offset, u64 size)
2537{
2538	struct btrfs_fs_info *fs_info = trans->fs_info;
2539	struct btrfs_block_group *cache;
2540	int ret;
2541
2542	btrfs_set_log_full_commit(trans);
2543
2544	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2545	if (!cache)
2546		return ERR_PTR(-ENOMEM);
2547
2548	cache->length = size;
2549	set_free_space_tree_thresholds(cache);
2550	cache->used = bytes_used;
2551	cache->flags = type;
 
2552	cache->cached = BTRFS_CACHE_FINISHED;
2553	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2554
2555	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2556		set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2557
2558	ret = btrfs_load_block_group_zone_info(cache, true);
2559	if (ret) {
2560		btrfs_put_block_group(cache);
2561		return ERR_PTR(ret);
2562	}
2563
2564	ret = exclude_super_stripes(cache);
2565	if (ret) {
2566		/* We may have excluded something, so call this just in case */
2567		btrfs_free_excluded_extents(cache);
2568		btrfs_put_block_group(cache);
2569		return ERR_PTR(ret);
2570	}
2571
2572	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2573
2574	btrfs_free_excluded_extents(cache);
2575
 
 
 
 
 
 
 
 
2576	/*
2577	 * Ensure the corresponding space_info object is created and
2578	 * assigned to our block group. We want our bg to be added to the rbtree
2579	 * with its ->space_info set.
2580	 */
2581	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2582	ASSERT(cache->space_info);
2583
2584	ret = btrfs_add_block_group_cache(fs_info, cache);
2585	if (ret) {
2586		btrfs_remove_free_space_cache(cache);
2587		btrfs_put_block_group(cache);
2588		return ERR_PTR(ret);
2589	}
2590
2591	/*
2592	 * Now that our block group has its ->space_info set and is inserted in
2593	 * the rbtree, update the space info's counters.
2594	 */
2595	trace_btrfs_add_block_group(fs_info, cache, 1);
2596	btrfs_add_bg_to_space_info(fs_info, cache);
 
2597	btrfs_update_global_block_rsv(fs_info);
2598
2599#ifdef CONFIG_BTRFS_DEBUG
2600	if (btrfs_should_fragment_free_space(cache)) {
2601		u64 new_bytes_used = size - bytes_used;
2602
2603		cache->space_info->bytes_used += new_bytes_used >> 1;
2604		fragment_free_space(cache);
2605	}
2606#endif
2607
2608	list_add_tail(&cache->bg_list, &trans->new_bgs);
2609	trans->delayed_ref_updates++;
2610	btrfs_update_delayed_refs_rsv(trans);
2611
2612	set_avail_alloc_bits(fs_info, type);
2613	return cache;
2614}
2615
2616/*
2617 * Mark one block group RO, can be called several times for the same block
2618 * group.
2619 *
2620 * @cache:		the destination block group
2621 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2622 * 			ensure we still have some free space after marking this
2623 * 			block group RO.
2624 */
2625int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2626			     bool do_chunk_alloc)
2627{
2628	struct btrfs_fs_info *fs_info = cache->fs_info;
2629	struct btrfs_trans_handle *trans;
2630	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2631	u64 alloc_flags;
2632	int ret;
2633	bool dirty_bg_running;
 
 
 
 
2634
2635	/*
2636	 * This can only happen when we are doing read-only scrub on read-only
2637	 * mount.
2638	 * In that case we should not start a new transaction on read-only fs.
2639	 * Thus here we skip all chunk allocations.
2640	 */
2641	if (sb_rdonly(fs_info->sb)) {
2642		mutex_lock(&fs_info->ro_block_group_mutex);
2643		ret = inc_block_group_ro(cache, 0);
2644		mutex_unlock(&fs_info->ro_block_group_mutex);
2645		return ret;
 
 
 
 
 
2646	}
2647
2648	do {
2649		trans = btrfs_join_transaction(root);
2650		if (IS_ERR(trans))
2651			return PTR_ERR(trans);
2652
2653		dirty_bg_running = false;
2654
2655		/*
2656		 * We're not allowed to set block groups readonly after the dirty
2657		 * block group cache has started writing.  If it already started,
2658		 * back off and let this transaction commit.
2659		 */
2660		mutex_lock(&fs_info->ro_block_group_mutex);
2661		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2662			u64 transid = trans->transid;
2663
2664			mutex_unlock(&fs_info->ro_block_group_mutex);
2665			btrfs_end_transaction(trans);
2666
2667			ret = btrfs_wait_for_commit(fs_info, transid);
2668			if (ret)
2669				return ret;
2670			dirty_bg_running = true;
2671		}
2672	} while (dirty_bg_running);
2673
2674	if (do_chunk_alloc) {
2675		/*
2676		 * If we are changing raid levels, try to allocate a
2677		 * corresponding block group with the new raid level.
2678		 */
2679		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2680		if (alloc_flags != cache->flags) {
2681			ret = btrfs_chunk_alloc(trans, alloc_flags,
2682						CHUNK_ALLOC_FORCE);
2683			/*
2684			 * ENOSPC is allowed here, we may have enough space
2685			 * already allocated at the new raid level to carry on
2686			 */
2687			if (ret == -ENOSPC)
2688				ret = 0;
2689			if (ret < 0)
2690				goto out;
2691		}
2692	}
2693
2694	ret = inc_block_group_ro(cache, 0);
2695	if (!do_chunk_alloc || ret == -ETXTBSY)
2696		goto unlock_out;
2697	if (!ret)
2698		goto out;
2699	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2700	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2701	if (ret < 0)
2702		goto out;
2703	/*
2704	 * We have allocated a new chunk. We also need to activate that chunk to
2705	 * grant metadata tickets for zoned filesystem.
2706	 */
2707	ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2708	if (ret < 0)
2709		goto out;
2710
2711	ret = inc_block_group_ro(cache, 0);
2712	if (ret == -ETXTBSY)
2713		goto unlock_out;
2714out:
2715	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2716		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2717		mutex_lock(&fs_info->chunk_mutex);
2718		check_system_chunk(trans, alloc_flags);
2719		mutex_unlock(&fs_info->chunk_mutex);
2720	}
2721unlock_out:
2722	mutex_unlock(&fs_info->ro_block_group_mutex);
2723
2724	btrfs_end_transaction(trans);
2725	return ret;
2726}
2727
2728void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2729{
2730	struct btrfs_space_info *sinfo = cache->space_info;
2731	u64 num_bytes;
2732
2733	BUG_ON(!cache->ro);
2734
2735	spin_lock(&sinfo->lock);
2736	spin_lock(&cache->lock);
2737	if (!--cache->ro) {
2738		if (btrfs_is_zoned(cache->fs_info)) {
2739			/* Migrate zone_unusable bytes back */
2740			cache->zone_unusable =
2741				(cache->alloc_offset - cache->used) +
2742				(cache->length - cache->zone_capacity);
2743			sinfo->bytes_zone_unusable += cache->zone_unusable;
2744			sinfo->bytes_readonly -= cache->zone_unusable;
2745		}
2746		num_bytes = cache->length - cache->reserved -
2747			    cache->pinned - cache->bytes_super -
2748			    cache->zone_unusable - cache->used;
2749		sinfo->bytes_readonly -= num_bytes;
2750		list_del_init(&cache->ro_list);
2751	}
2752	spin_unlock(&cache->lock);
2753	spin_unlock(&sinfo->lock);
2754}
2755
2756static int update_block_group_item(struct btrfs_trans_handle *trans,
2757				   struct btrfs_path *path,
2758				   struct btrfs_block_group *cache)
2759{
2760	struct btrfs_fs_info *fs_info = trans->fs_info;
2761	int ret;
2762	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2763	unsigned long bi;
2764	struct extent_buffer *leaf;
2765	struct btrfs_block_group_item bgi;
2766	struct btrfs_key key;
2767	u64 old_commit_used;
2768	u64 used;
2769
2770	/*
2771	 * Block group items update can be triggered out of commit transaction
2772	 * critical section, thus we need a consistent view of used bytes.
2773	 * We cannot use cache->used directly outside of the spin lock, as it
2774	 * may be changed.
2775	 */
2776	spin_lock(&cache->lock);
2777	old_commit_used = cache->commit_used;
2778	used = cache->used;
2779	/* No change in used bytes, can safely skip it. */
2780	if (cache->commit_used == used) {
2781		spin_unlock(&cache->lock);
2782		return 0;
2783	}
2784	cache->commit_used = used;
2785	spin_unlock(&cache->lock);
2786
2787	key.objectid = cache->start;
2788	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2789	key.offset = cache->length;
2790
2791	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2792	if (ret) {
2793		if (ret > 0)
2794			ret = -ENOENT;
2795		goto fail;
2796	}
2797
2798	leaf = path->nodes[0];
2799	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2800	btrfs_set_stack_block_group_used(&bgi, used);
2801	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2802						   cache->global_root_id);
2803	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2804	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2805	btrfs_mark_buffer_dirty(leaf);
2806fail:
2807	btrfs_release_path(path);
2808	/* We didn't update the block group item, need to revert @commit_used. */
2809	if (ret < 0) {
2810		spin_lock(&cache->lock);
2811		cache->commit_used = old_commit_used;
2812		spin_unlock(&cache->lock);
2813	}
2814	return ret;
2815
2816}
2817
2818static int cache_save_setup(struct btrfs_block_group *block_group,
2819			    struct btrfs_trans_handle *trans,
2820			    struct btrfs_path *path)
2821{
2822	struct btrfs_fs_info *fs_info = block_group->fs_info;
2823	struct btrfs_root *root = fs_info->tree_root;
2824	struct inode *inode = NULL;
2825	struct extent_changeset *data_reserved = NULL;
2826	u64 alloc_hint = 0;
2827	int dcs = BTRFS_DC_ERROR;
2828	u64 cache_size = 0;
2829	int retries = 0;
2830	int ret = 0;
2831
2832	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2833		return 0;
2834
2835	/*
2836	 * If this block group is smaller than 100 megs don't bother caching the
2837	 * block group.
2838	 */
2839	if (block_group->length < (100 * SZ_1M)) {
2840		spin_lock(&block_group->lock);
2841		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2842		spin_unlock(&block_group->lock);
2843		return 0;
2844	}
2845
2846	if (TRANS_ABORTED(trans))
2847		return 0;
2848again:
2849	inode = lookup_free_space_inode(block_group, path);
2850	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2851		ret = PTR_ERR(inode);
2852		btrfs_release_path(path);
2853		goto out;
2854	}
2855
2856	if (IS_ERR(inode)) {
2857		BUG_ON(retries);
2858		retries++;
2859
2860		if (block_group->ro)
2861			goto out_free;
2862
2863		ret = create_free_space_inode(trans, block_group, path);
2864		if (ret)
2865			goto out_free;
2866		goto again;
2867	}
2868
2869	/*
2870	 * We want to set the generation to 0, that way if anything goes wrong
2871	 * from here on out we know not to trust this cache when we load up next
2872	 * time.
2873	 */
2874	BTRFS_I(inode)->generation = 0;
2875	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2876	if (ret) {
2877		/*
2878		 * So theoretically we could recover from this, simply set the
2879		 * super cache generation to 0 so we know to invalidate the
2880		 * cache, but then we'd have to keep track of the block groups
2881		 * that fail this way so we know we _have_ to reset this cache
2882		 * before the next commit or risk reading stale cache.  So to
2883		 * limit our exposure to horrible edge cases lets just abort the
2884		 * transaction, this only happens in really bad situations
2885		 * anyway.
2886		 */
2887		btrfs_abort_transaction(trans, ret);
2888		goto out_put;
2889	}
2890	WARN_ON(ret);
2891
2892	/* We've already setup this transaction, go ahead and exit */
2893	if (block_group->cache_generation == trans->transid &&
2894	    i_size_read(inode)) {
2895		dcs = BTRFS_DC_SETUP;
2896		goto out_put;
2897	}
2898
2899	if (i_size_read(inode) > 0) {
2900		ret = btrfs_check_trunc_cache_free_space(fs_info,
2901					&fs_info->global_block_rsv);
2902		if (ret)
2903			goto out_put;
2904
2905		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2906		if (ret)
2907			goto out_put;
2908	}
2909
2910	spin_lock(&block_group->lock);
2911	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2912	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2913		/*
2914		 * don't bother trying to write stuff out _if_
2915		 * a) we're not cached,
2916		 * b) we're with nospace_cache mount option,
2917		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2918		 */
2919		dcs = BTRFS_DC_WRITTEN;
2920		spin_unlock(&block_group->lock);
2921		goto out_put;
2922	}
2923	spin_unlock(&block_group->lock);
2924
2925	/*
2926	 * We hit an ENOSPC when setting up the cache in this transaction, just
2927	 * skip doing the setup, we've already cleared the cache so we're safe.
2928	 */
2929	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2930		ret = -ENOSPC;
2931		goto out_put;
2932	}
2933
2934	/*
2935	 * Try to preallocate enough space based on how big the block group is.
2936	 * Keep in mind this has to include any pinned space which could end up
2937	 * taking up quite a bit since it's not folded into the other space
2938	 * cache.
2939	 */
2940	cache_size = div_u64(block_group->length, SZ_256M);
2941	if (!cache_size)
2942		cache_size = 1;
2943
2944	cache_size *= 16;
2945	cache_size *= fs_info->sectorsize;
2946
2947	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2948					  cache_size, false);
2949	if (ret)
2950		goto out_put;
2951
2952	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2953					      cache_size, cache_size,
2954					      &alloc_hint);
2955	/*
2956	 * Our cache requires contiguous chunks so that we don't modify a bunch
2957	 * of metadata or split extents when writing the cache out, which means
2958	 * we can enospc if we are heavily fragmented in addition to just normal
2959	 * out of space conditions.  So if we hit this just skip setting up any
2960	 * other block groups for this transaction, maybe we'll unpin enough
2961	 * space the next time around.
2962	 */
2963	if (!ret)
2964		dcs = BTRFS_DC_SETUP;
2965	else if (ret == -ENOSPC)
2966		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2967
2968out_put:
2969	iput(inode);
2970out_free:
2971	btrfs_release_path(path);
2972out:
2973	spin_lock(&block_group->lock);
2974	if (!ret && dcs == BTRFS_DC_SETUP)
2975		block_group->cache_generation = trans->transid;
2976	block_group->disk_cache_state = dcs;
2977	spin_unlock(&block_group->lock);
2978
2979	extent_changeset_free(data_reserved);
2980	return ret;
2981}
2982
2983int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2984{
2985	struct btrfs_fs_info *fs_info = trans->fs_info;
2986	struct btrfs_block_group *cache, *tmp;
2987	struct btrfs_transaction *cur_trans = trans->transaction;
2988	struct btrfs_path *path;
2989
2990	if (list_empty(&cur_trans->dirty_bgs) ||
2991	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2992		return 0;
2993
2994	path = btrfs_alloc_path();
2995	if (!path)
2996		return -ENOMEM;
2997
2998	/* Could add new block groups, use _safe just in case */
2999	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3000				 dirty_list) {
3001		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3002			cache_save_setup(cache, trans, path);
3003	}
3004
3005	btrfs_free_path(path);
3006	return 0;
3007}
3008
3009/*
3010 * Transaction commit does final block group cache writeback during a critical
3011 * section where nothing is allowed to change the FS.  This is required in
3012 * order for the cache to actually match the block group, but can introduce a
3013 * lot of latency into the commit.
3014 *
3015 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3016 * There's a chance we'll have to redo some of it if the block group changes
3017 * again during the commit, but it greatly reduces the commit latency by
3018 * getting rid of the easy block groups while we're still allowing others to
3019 * join the commit.
3020 */
3021int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3022{
3023	struct btrfs_fs_info *fs_info = trans->fs_info;
3024	struct btrfs_block_group *cache;
3025	struct btrfs_transaction *cur_trans = trans->transaction;
3026	int ret = 0;
3027	int should_put;
3028	struct btrfs_path *path = NULL;
3029	LIST_HEAD(dirty);
3030	struct list_head *io = &cur_trans->io_bgs;
 
3031	int loops = 0;
3032
3033	spin_lock(&cur_trans->dirty_bgs_lock);
3034	if (list_empty(&cur_trans->dirty_bgs)) {
3035		spin_unlock(&cur_trans->dirty_bgs_lock);
3036		return 0;
3037	}
3038	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3039	spin_unlock(&cur_trans->dirty_bgs_lock);
3040
3041again:
3042	/* Make sure all the block groups on our dirty list actually exist */
3043	btrfs_create_pending_block_groups(trans);
3044
3045	if (!path) {
3046		path = btrfs_alloc_path();
3047		if (!path) {
3048			ret = -ENOMEM;
3049			goto out;
3050		}
3051	}
3052
3053	/*
3054	 * cache_write_mutex is here only to save us from balance or automatic
3055	 * removal of empty block groups deleting this block group while we are
3056	 * writing out the cache
3057	 */
3058	mutex_lock(&trans->transaction->cache_write_mutex);
3059	while (!list_empty(&dirty)) {
3060		bool drop_reserve = true;
3061
3062		cache = list_first_entry(&dirty, struct btrfs_block_group,
3063					 dirty_list);
3064		/*
3065		 * This can happen if something re-dirties a block group that
3066		 * is already under IO.  Just wait for it to finish and then do
3067		 * it all again
3068		 */
3069		if (!list_empty(&cache->io_list)) {
3070			list_del_init(&cache->io_list);
3071			btrfs_wait_cache_io(trans, cache, path);
3072			btrfs_put_block_group(cache);
3073		}
3074
3075
3076		/*
3077		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3078		 * it should update the cache_state.  Don't delete until after
3079		 * we wait.
3080		 *
3081		 * Since we're not running in the commit critical section
3082		 * we need the dirty_bgs_lock to protect from update_block_group
3083		 */
3084		spin_lock(&cur_trans->dirty_bgs_lock);
3085		list_del_init(&cache->dirty_list);
3086		spin_unlock(&cur_trans->dirty_bgs_lock);
3087
3088		should_put = 1;
3089
3090		cache_save_setup(cache, trans, path);
3091
3092		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3093			cache->io_ctl.inode = NULL;
3094			ret = btrfs_write_out_cache(trans, cache, path);
3095			if (ret == 0 && cache->io_ctl.inode) {
 
3096				should_put = 0;
3097
3098				/*
3099				 * The cache_write_mutex is protecting the
3100				 * io_list, also refer to the definition of
3101				 * btrfs_transaction::io_bgs for more details
3102				 */
3103				list_add_tail(&cache->io_list, io);
3104			} else {
3105				/*
3106				 * If we failed to write the cache, the
3107				 * generation will be bad and life goes on
3108				 */
3109				ret = 0;
3110			}
3111		}
3112		if (!ret) {
3113			ret = update_block_group_item(trans, path, cache);
3114			/*
3115			 * Our block group might still be attached to the list
3116			 * of new block groups in the transaction handle of some
3117			 * other task (struct btrfs_trans_handle->new_bgs). This
3118			 * means its block group item isn't yet in the extent
3119			 * tree. If this happens ignore the error, as we will
3120			 * try again later in the critical section of the
3121			 * transaction commit.
3122			 */
3123			if (ret == -ENOENT) {
3124				ret = 0;
3125				spin_lock(&cur_trans->dirty_bgs_lock);
3126				if (list_empty(&cache->dirty_list)) {
3127					list_add_tail(&cache->dirty_list,
3128						      &cur_trans->dirty_bgs);
3129					btrfs_get_block_group(cache);
3130					drop_reserve = false;
3131				}
3132				spin_unlock(&cur_trans->dirty_bgs_lock);
3133			} else if (ret) {
3134				btrfs_abort_transaction(trans, ret);
3135			}
3136		}
3137
3138		/* If it's not on the io list, we need to put the block group */
3139		if (should_put)
3140			btrfs_put_block_group(cache);
3141		if (drop_reserve)
3142			btrfs_delayed_refs_rsv_release(fs_info, 1);
 
 
 
 
3143		/*
3144		 * Avoid blocking other tasks for too long. It might even save
3145		 * us from writing caches for block groups that are going to be
3146		 * removed.
3147		 */
3148		mutex_unlock(&trans->transaction->cache_write_mutex);
3149		if (ret)
3150			goto out;
3151		mutex_lock(&trans->transaction->cache_write_mutex);
3152	}
3153	mutex_unlock(&trans->transaction->cache_write_mutex);
3154
3155	/*
3156	 * Go through delayed refs for all the stuff we've just kicked off
3157	 * and then loop back (just once)
3158	 */
3159	if (!ret)
3160		ret = btrfs_run_delayed_refs(trans, 0);
3161	if (!ret && loops == 0) {
3162		loops++;
3163		spin_lock(&cur_trans->dirty_bgs_lock);
3164		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3165		/*
3166		 * dirty_bgs_lock protects us from concurrent block group
3167		 * deletes too (not just cache_write_mutex).
3168		 */
3169		if (!list_empty(&dirty)) {
3170			spin_unlock(&cur_trans->dirty_bgs_lock);
3171			goto again;
3172		}
3173		spin_unlock(&cur_trans->dirty_bgs_lock);
3174	}
3175out:
3176	if (ret < 0) {
3177		spin_lock(&cur_trans->dirty_bgs_lock);
3178		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3179		spin_unlock(&cur_trans->dirty_bgs_lock);
3180		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3181	}
3182
3183	btrfs_free_path(path);
3184	return ret;
3185}
3186
3187int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3188{
3189	struct btrfs_fs_info *fs_info = trans->fs_info;
3190	struct btrfs_block_group *cache;
3191	struct btrfs_transaction *cur_trans = trans->transaction;
3192	int ret = 0;
3193	int should_put;
3194	struct btrfs_path *path;
3195	struct list_head *io = &cur_trans->io_bgs;
 
3196
3197	path = btrfs_alloc_path();
3198	if (!path)
3199		return -ENOMEM;
3200
3201	/*
3202	 * Even though we are in the critical section of the transaction commit,
3203	 * we can still have concurrent tasks adding elements to this
3204	 * transaction's list of dirty block groups. These tasks correspond to
3205	 * endio free space workers started when writeback finishes for a
3206	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3207	 * allocate new block groups as a result of COWing nodes of the root
3208	 * tree when updating the free space inode. The writeback for the space
3209	 * caches is triggered by an earlier call to
3210	 * btrfs_start_dirty_block_groups() and iterations of the following
3211	 * loop.
3212	 * Also we want to do the cache_save_setup first and then run the
3213	 * delayed refs to make sure we have the best chance at doing this all
3214	 * in one shot.
3215	 */
3216	spin_lock(&cur_trans->dirty_bgs_lock);
3217	while (!list_empty(&cur_trans->dirty_bgs)) {
3218		cache = list_first_entry(&cur_trans->dirty_bgs,
3219					 struct btrfs_block_group,
3220					 dirty_list);
3221
3222		/*
3223		 * This can happen if cache_save_setup re-dirties a block group
3224		 * that is already under IO.  Just wait for it to finish and
3225		 * then do it all again
3226		 */
3227		if (!list_empty(&cache->io_list)) {
3228			spin_unlock(&cur_trans->dirty_bgs_lock);
3229			list_del_init(&cache->io_list);
3230			btrfs_wait_cache_io(trans, cache, path);
3231			btrfs_put_block_group(cache);
3232			spin_lock(&cur_trans->dirty_bgs_lock);
3233		}
3234
3235		/*
3236		 * Don't remove from the dirty list until after we've waited on
3237		 * any pending IO
3238		 */
3239		list_del_init(&cache->dirty_list);
3240		spin_unlock(&cur_trans->dirty_bgs_lock);
3241		should_put = 1;
3242
3243		cache_save_setup(cache, trans, path);
3244
3245		if (!ret)
3246			ret = btrfs_run_delayed_refs(trans,
3247						     (unsigned long) -1);
3248
3249		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3250			cache->io_ctl.inode = NULL;
3251			ret = btrfs_write_out_cache(trans, cache, path);
3252			if (ret == 0 && cache->io_ctl.inode) {
 
3253				should_put = 0;
3254				list_add_tail(&cache->io_list, io);
3255			} else {
3256				/*
3257				 * If we failed to write the cache, the
3258				 * generation will be bad and life goes on
3259				 */
3260				ret = 0;
3261			}
3262		}
3263		if (!ret) {
3264			ret = update_block_group_item(trans, path, cache);
3265			/*
3266			 * One of the free space endio workers might have
3267			 * created a new block group while updating a free space
3268			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3269			 * and hasn't released its transaction handle yet, in
3270			 * which case the new block group is still attached to
3271			 * its transaction handle and its creation has not
3272			 * finished yet (no block group item in the extent tree
3273			 * yet, etc). If this is the case, wait for all free
3274			 * space endio workers to finish and retry. This is a
3275			 * very rare case so no need for a more efficient and
3276			 * complex approach.
3277			 */
3278			if (ret == -ENOENT) {
3279				wait_event(cur_trans->writer_wait,
3280				   atomic_read(&cur_trans->num_writers) == 1);
3281				ret = update_block_group_item(trans, path, cache);
3282			}
3283			if (ret)
3284				btrfs_abort_transaction(trans, ret);
3285		}
3286
3287		/* If its not on the io list, we need to put the block group */
3288		if (should_put)
3289			btrfs_put_block_group(cache);
3290		btrfs_delayed_refs_rsv_release(fs_info, 1);
3291		spin_lock(&cur_trans->dirty_bgs_lock);
3292	}
3293	spin_unlock(&cur_trans->dirty_bgs_lock);
3294
3295	/*
3296	 * Refer to the definition of io_bgs member for details why it's safe
3297	 * to use it without any locking
3298	 */
3299	while (!list_empty(io)) {
3300		cache = list_first_entry(io, struct btrfs_block_group,
3301					 io_list);
3302		list_del_init(&cache->io_list);
3303		btrfs_wait_cache_io(trans, cache, path);
3304		btrfs_put_block_group(cache);
3305	}
3306
3307	btrfs_free_path(path);
3308	return ret;
3309}
3310
3311int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3312			     u64 bytenr, u64 num_bytes, bool alloc)
3313{
3314	struct btrfs_fs_info *info = trans->fs_info;
3315	struct btrfs_block_group *cache = NULL;
3316	u64 total = num_bytes;
3317	u64 old_val;
3318	u64 byte_in_group;
3319	int factor;
3320	int ret = 0;
3321
3322	/* Block accounting for super block */
3323	spin_lock(&info->delalloc_root_lock);
3324	old_val = btrfs_super_bytes_used(info->super_copy);
3325	if (alloc)
3326		old_val += num_bytes;
3327	else
3328		old_val -= num_bytes;
3329	btrfs_set_super_bytes_used(info->super_copy, old_val);
3330	spin_unlock(&info->delalloc_root_lock);
3331
3332	while (total) {
3333		bool reclaim;
3334
3335		cache = btrfs_lookup_block_group(info, bytenr);
3336		if (!cache) {
3337			ret = -ENOENT;
3338			break;
3339		}
3340		factor = btrfs_bg_type_to_factor(cache->flags);
3341
3342		/*
3343		 * If this block group has free space cache written out, we
3344		 * need to make sure to load it if we are removing space.  This
3345		 * is because we need the unpinning stage to actually add the
3346		 * space back to the block group, otherwise we will leak space.
3347		 */
3348		if (!alloc && !btrfs_block_group_done(cache))
3349			btrfs_cache_block_group(cache, true);
3350
3351		byte_in_group = bytenr - cache->start;
3352		WARN_ON(byte_in_group > cache->length);
3353
3354		spin_lock(&cache->space_info->lock);
3355		spin_lock(&cache->lock);
3356
3357		if (btrfs_test_opt(info, SPACE_CACHE) &&
3358		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3359			cache->disk_cache_state = BTRFS_DC_CLEAR;
3360
3361		old_val = cache->used;
3362		num_bytes = min(total, cache->length - byte_in_group);
3363		if (alloc) {
3364			old_val += num_bytes;
3365			cache->used = old_val;
3366			cache->reserved -= num_bytes;
3367			cache->space_info->bytes_reserved -= num_bytes;
3368			cache->space_info->bytes_used += num_bytes;
3369			cache->space_info->disk_used += num_bytes * factor;
3370			spin_unlock(&cache->lock);
3371			spin_unlock(&cache->space_info->lock);
3372		} else {
3373			old_val -= num_bytes;
3374			cache->used = old_val;
3375			cache->pinned += num_bytes;
3376			btrfs_space_info_update_bytes_pinned(info,
3377					cache->space_info, num_bytes);
3378			cache->space_info->bytes_used -= num_bytes;
3379			cache->space_info->disk_used -= num_bytes * factor;
3380
3381			reclaim = should_reclaim_block_group(cache, num_bytes);
3382			spin_unlock(&cache->lock);
3383			spin_unlock(&cache->space_info->lock);
3384
 
 
 
 
3385			set_extent_dirty(&trans->transaction->pinned_extents,
3386					 bytenr, bytenr + num_bytes - 1,
3387					 GFP_NOFS | __GFP_NOFAIL);
3388		}
3389
3390		spin_lock(&trans->transaction->dirty_bgs_lock);
3391		if (list_empty(&cache->dirty_list)) {
3392			list_add_tail(&cache->dirty_list,
3393				      &trans->transaction->dirty_bgs);
3394			trans->delayed_ref_updates++;
3395			btrfs_get_block_group(cache);
3396		}
3397		spin_unlock(&trans->transaction->dirty_bgs_lock);
3398
3399		/*
3400		 * No longer have used bytes in this block group, queue it for
3401		 * deletion. We do this after adding the block group to the
3402		 * dirty list to avoid races between cleaner kthread and space
3403		 * cache writeout.
3404		 */
3405		if (!alloc && old_val == 0) {
3406			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3407				btrfs_mark_bg_unused(cache);
3408		} else if (!alloc && reclaim) {
3409			btrfs_mark_bg_to_reclaim(cache);
3410		}
3411
3412		btrfs_put_block_group(cache);
3413		total -= num_bytes;
3414		bytenr += num_bytes;
3415	}
3416
3417	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3418	btrfs_update_delayed_refs_rsv(trans);
3419	return ret;
3420}
3421
3422/*
3423 * Update the block_group and space info counters.
3424 *
3425 * @cache:	The cache we are manipulating
3426 * @ram_bytes:  The number of bytes of file content, and will be same to
3427 *              @num_bytes except for the compress path.
3428 * @num_bytes:	The number of bytes in question
3429 * @delalloc:   The blocks are allocated for the delalloc write
3430 *
3431 * This is called by the allocator when it reserves space. If this is a
3432 * reservation and the block group has become read only we cannot make the
3433 * reservation and return -EAGAIN, otherwise this function always succeeds.
3434 */
3435int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3436			     u64 ram_bytes, u64 num_bytes, int delalloc)
3437{
3438	struct btrfs_space_info *space_info = cache->space_info;
3439	int ret = 0;
3440
3441	spin_lock(&space_info->lock);
3442	spin_lock(&cache->lock);
3443	if (cache->ro) {
3444		ret = -EAGAIN;
3445	} else {
3446		cache->reserved += num_bytes;
3447		space_info->bytes_reserved += num_bytes;
3448		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3449					      space_info->flags, num_bytes, 1);
3450		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3451						      space_info, -ram_bytes);
3452		if (delalloc)
3453			cache->delalloc_bytes += num_bytes;
3454
3455		/*
3456		 * Compression can use less space than we reserved, so wake
3457		 * tickets if that happens
3458		 */
3459		if (num_bytes < ram_bytes)
3460			btrfs_try_granting_tickets(cache->fs_info, space_info);
3461	}
3462	spin_unlock(&cache->lock);
3463	spin_unlock(&space_info->lock);
3464	return ret;
3465}
3466
3467/*
3468 * Update the block_group and space info counters.
3469 *
3470 * @cache:      The cache we are manipulating
3471 * @num_bytes:  The number of bytes in question
3472 * @delalloc:   The blocks are allocated for the delalloc write
3473 *
3474 * This is called by somebody who is freeing space that was never actually used
3475 * on disk.  For example if you reserve some space for a new leaf in transaction
3476 * A and before transaction A commits you free that leaf, you call this with
3477 * reserve set to 0 in order to clear the reservation.
3478 */
3479void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3480			       u64 num_bytes, int delalloc)
3481{
3482	struct btrfs_space_info *space_info = cache->space_info;
3483
3484	spin_lock(&space_info->lock);
3485	spin_lock(&cache->lock);
3486	if (cache->ro)
3487		space_info->bytes_readonly += num_bytes;
3488	cache->reserved -= num_bytes;
3489	space_info->bytes_reserved -= num_bytes;
3490	space_info->max_extent_size = 0;
3491
3492	if (delalloc)
3493		cache->delalloc_bytes -= num_bytes;
3494	spin_unlock(&cache->lock);
3495
3496	btrfs_try_granting_tickets(cache->fs_info, space_info);
3497	spin_unlock(&space_info->lock);
3498}
3499
3500static void force_metadata_allocation(struct btrfs_fs_info *info)
3501{
3502	struct list_head *head = &info->space_info;
3503	struct btrfs_space_info *found;
3504
3505	list_for_each_entry(found, head, list) {
 
3506		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3507			found->force_alloc = CHUNK_ALLOC_FORCE;
3508	}
 
3509}
3510
3511static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3512			      struct btrfs_space_info *sinfo, int force)
3513{
3514	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3515	u64 thresh;
3516
3517	if (force == CHUNK_ALLOC_FORCE)
3518		return 1;
3519
3520	/*
3521	 * in limited mode, we want to have some free space up to
3522	 * about 1% of the FS size.
3523	 */
3524	if (force == CHUNK_ALLOC_LIMITED) {
3525		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3526		thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3527
3528		if (sinfo->total_bytes - bytes_used < thresh)
3529			return 1;
3530	}
3531
3532	if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3533		return 0;
3534	return 1;
3535}
3536
3537int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3538{
3539	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3540
3541	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3542}
3543
3544static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3545{
3546	struct btrfs_block_group *bg;
3547	int ret;
3548
3549	/*
3550	 * Check if we have enough space in the system space info because we
3551	 * will need to update device items in the chunk btree and insert a new
3552	 * chunk item in the chunk btree as well. This will allocate a new
3553	 * system block group if needed.
3554	 */
3555	check_system_chunk(trans, flags);
3556
3557	bg = btrfs_create_chunk(trans, flags);
3558	if (IS_ERR(bg)) {
3559		ret = PTR_ERR(bg);
3560		goto out;
3561	}
3562
3563	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3564	/*
3565	 * Normally we are not expected to fail with -ENOSPC here, since we have
3566	 * previously reserved space in the system space_info and allocated one
3567	 * new system chunk if necessary. However there are three exceptions:
3568	 *
3569	 * 1) We may have enough free space in the system space_info but all the
3570	 *    existing system block groups have a profile which can not be used
3571	 *    for extent allocation.
3572	 *
3573	 *    This happens when mounting in degraded mode. For example we have a
3574	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3575	 *    using the other device in degraded mode. If we then allocate a chunk,
3576	 *    we may have enough free space in the existing system space_info, but
3577	 *    none of the block groups can be used for extent allocation since they
3578	 *    have a RAID1 profile, and because we are in degraded mode with a
3579	 *    single device, we are forced to allocate a new system chunk with a
3580	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3581	 *    block groups and check if they have a usable profile and enough space
3582	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3583	 *    try again after forcing allocation of a new system chunk. Like this
3584	 *    we avoid paying the cost of that search in normal circumstances, when
3585	 *    we were not mounted in degraded mode;
3586	 *
3587	 * 2) We had enough free space info the system space_info, and one suitable
3588	 *    block group to allocate from when we called check_system_chunk()
3589	 *    above. However right after we called it, the only system block group
3590	 *    with enough free space got turned into RO mode by a running scrub,
3591	 *    and in this case we have to allocate a new one and retry. We only
3592	 *    need do this allocate and retry once, since we have a transaction
3593	 *    handle and scrub uses the commit root to search for block groups;
3594	 *
3595	 * 3) We had one system block group with enough free space when we called
3596	 *    check_system_chunk(), but after that, right before we tried to
3597	 *    allocate the last extent buffer we needed, a discard operation came
3598	 *    in and it temporarily removed the last free space entry from the
3599	 *    block group (discard removes a free space entry, discards it, and
3600	 *    then adds back the entry to the block group cache).
3601	 */
3602	if (ret == -ENOSPC) {
3603		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3604		struct btrfs_block_group *sys_bg;
3605
3606		sys_bg = btrfs_create_chunk(trans, sys_flags);
3607		if (IS_ERR(sys_bg)) {
3608			ret = PTR_ERR(sys_bg);
3609			btrfs_abort_transaction(trans, ret);
3610			goto out;
3611		}
3612
3613		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3614		if (ret) {
3615			btrfs_abort_transaction(trans, ret);
3616			goto out;
3617		}
3618
3619		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3620		if (ret) {
3621			btrfs_abort_transaction(trans, ret);
3622			goto out;
3623		}
3624	} else if (ret) {
3625		btrfs_abort_transaction(trans, ret);
3626		goto out;
3627	}
3628out:
3629	btrfs_trans_release_chunk_metadata(trans);
3630
3631	if (ret)
3632		return ERR_PTR(ret);
3633
3634	btrfs_get_block_group(bg);
3635	return bg;
3636}
3637
3638/*
3639 * Chunk allocation is done in 2 phases:
3640 *
3641 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3642 *    the chunk, the chunk mapping, create its block group and add the items
3643 *    that belong in the chunk btree to it - more specifically, we need to
3644 *    update device items in the chunk btree and add a new chunk item to it.
3645 *
3646 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3647 *    group item to the extent btree and the device extent items to the devices
3648 *    btree.
3649 *
3650 * This is done to prevent deadlocks. For example when COWing a node from the
3651 * extent btree we are holding a write lock on the node's parent and if we
3652 * trigger chunk allocation and attempted to insert the new block group item
3653 * in the extent btree right way, we could deadlock because the path for the
3654 * insertion can include that parent node. At first glance it seems impossible
3655 * to trigger chunk allocation after starting a transaction since tasks should
3656 * reserve enough transaction units (metadata space), however while that is true
3657 * most of the time, chunk allocation may still be triggered for several reasons:
3658 *
3659 * 1) When reserving metadata, we check if there is enough free space in the
3660 *    metadata space_info and therefore don't trigger allocation of a new chunk.
3661 *    However later when the task actually tries to COW an extent buffer from
3662 *    the extent btree or from the device btree for example, it is forced to
3663 *    allocate a new block group (chunk) because the only one that had enough
3664 *    free space was just turned to RO mode by a running scrub for example (or
3665 *    device replace, block group reclaim thread, etc), so we can not use it
3666 *    for allocating an extent and end up being forced to allocate a new one;
3667 *
3668 * 2) Because we only check that the metadata space_info has enough free bytes,
3669 *    we end up not allocating a new metadata chunk in that case. However if
3670 *    the filesystem was mounted in degraded mode, none of the existing block
3671 *    groups might be suitable for extent allocation due to their incompatible
3672 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3673 *    use a RAID1 profile, in degraded mode using a single device). In this case
3674 *    when the task attempts to COW some extent buffer of the extent btree for
3675 *    example, it will trigger allocation of a new metadata block group with a
3676 *    suitable profile (SINGLE profile in the example of the degraded mount of
3677 *    the RAID1 filesystem);
3678 *
3679 * 3) The task has reserved enough transaction units / metadata space, but when
3680 *    it attempts to COW an extent buffer from the extent or device btree for
3681 *    example, it does not find any free extent in any metadata block group,
3682 *    therefore forced to try to allocate a new metadata block group.
3683 *    This is because some other task allocated all available extents in the
3684 *    meanwhile - this typically happens with tasks that don't reserve space
3685 *    properly, either intentionally or as a bug. One example where this is
3686 *    done intentionally is fsync, as it does not reserve any transaction units
3687 *    and ends up allocating a variable number of metadata extents for log
3688 *    tree extent buffers;
3689 *
3690 * 4) The task has reserved enough transaction units / metadata space, but right
3691 *    before it tries to allocate the last extent buffer it needs, a discard
3692 *    operation comes in and, temporarily, removes the last free space entry from
3693 *    the only metadata block group that had free space (discard starts by
3694 *    removing a free space entry from a block group, then does the discard
3695 *    operation and, once it's done, it adds back the free space entry to the
3696 *    block group).
3697 *
3698 * We also need this 2 phases setup when adding a device to a filesystem with
3699 * a seed device - we must create new metadata and system chunks without adding
3700 * any of the block group items to the chunk, extent and device btrees. If we
3701 * did not do it this way, we would get ENOSPC when attempting to update those
3702 * btrees, since all the chunks from the seed device are read-only.
3703 *
3704 * Phase 1 does the updates and insertions to the chunk btree because if we had
3705 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3706 * parallel, we risk having too many system chunks allocated by many tasks if
3707 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3708 * extreme case this leads to exhaustion of the system chunk array in the
3709 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3710 * and with RAID filesystems (so we have more device items in the chunk btree).
3711 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3712 * the system chunk array due to concurrent allocations") provides more details.
3713 *
3714 * Allocation of system chunks does not happen through this function. A task that
3715 * needs to update the chunk btree (the only btree that uses system chunks), must
3716 * preallocate chunk space by calling either check_system_chunk() or
3717 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3718 * metadata chunk or when removing a chunk, while the later is used before doing
3719 * a modification to the chunk btree - use cases for the later are adding,
3720 * removing and resizing a device as well as relocation of a system chunk.
3721 * See the comment below for more details.
3722 *
3723 * The reservation of system space, done through check_system_chunk(), as well
3724 * as all the updates and insertions into the chunk btree must be done while
3725 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3726 * an extent buffer from the chunks btree we never trigger allocation of a new
3727 * system chunk, which would result in a deadlock (trying to lock twice an
3728 * extent buffer of the chunk btree, first time before triggering the chunk
3729 * allocation and the second time during chunk allocation while attempting to
3730 * update the chunks btree). The system chunk array is also updated while holding
3731 * that mutex. The same logic applies to removing chunks - we must reserve system
3732 * space, update the chunk btree and the system chunk array in the superblock
3733 * while holding fs_info->chunk_mutex.
3734 *
3735 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3736 *
3737 * If @force is CHUNK_ALLOC_FORCE:
3738 *    - return 1 if it successfully allocates a chunk,
3739 *    - return errors including -ENOSPC otherwise.
3740 * If @force is NOT CHUNK_ALLOC_FORCE:
3741 *    - return 0 if it doesn't need to allocate a new chunk,
3742 *    - return 1 if it successfully allocates a chunk,
3743 *    - return errors including -ENOSPC otherwise.
3744 */
3745int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3746		      enum btrfs_chunk_alloc_enum force)
3747{
3748	struct btrfs_fs_info *fs_info = trans->fs_info;
3749	struct btrfs_space_info *space_info;
3750	struct btrfs_block_group *ret_bg;
3751	bool wait_for_alloc = false;
3752	bool should_alloc = false;
3753	bool from_extent_allocation = false;
3754	int ret = 0;
3755
3756	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3757		from_extent_allocation = true;
3758		force = CHUNK_ALLOC_FORCE;
3759	}
3760
3761	/* Don't re-enter if we're already allocating a chunk */
3762	if (trans->allocating_chunk)
3763		return -ENOSPC;
3764	/*
3765	 * Allocation of system chunks can not happen through this path, as we
3766	 * could end up in a deadlock if we are allocating a data or metadata
3767	 * chunk and there is another task modifying the chunk btree.
3768	 *
3769	 * This is because while we are holding the chunk mutex, we will attempt
3770	 * to add the new chunk item to the chunk btree or update an existing
3771	 * device item in the chunk btree, while the other task that is modifying
3772	 * the chunk btree is attempting to COW an extent buffer while holding a
3773	 * lock on it and on its parent - if the COW operation triggers a system
3774	 * chunk allocation, then we can deadlock because we are holding the
3775	 * chunk mutex and we may need to access that extent buffer or its parent
3776	 * in order to add the chunk item or update a device item.
3777	 *
3778	 * Tasks that want to modify the chunk tree should reserve system space
3779	 * before updating the chunk btree, by calling either
3780	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3781	 * It's possible that after a task reserves the space, it still ends up
3782	 * here - this happens in the cases described above at do_chunk_alloc().
3783	 * The task will have to either retry or fail.
3784	 */
3785	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3786		return -ENOSPC;
3787
3788	space_info = btrfs_find_space_info(fs_info, flags);
3789	ASSERT(space_info);
3790
3791	do {
3792		spin_lock(&space_info->lock);
3793		if (force < space_info->force_alloc)
3794			force = space_info->force_alloc;
3795		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3796		if (space_info->full) {
3797			/* No more free physical space */
3798			if (should_alloc)
3799				ret = -ENOSPC;
3800			else
3801				ret = 0;
3802			spin_unlock(&space_info->lock);
3803			return ret;
3804		} else if (!should_alloc) {
3805			spin_unlock(&space_info->lock);
3806			return 0;
3807		} else if (space_info->chunk_alloc) {
3808			/*
3809			 * Someone is already allocating, so we need to block
3810			 * until this someone is finished and then loop to
3811			 * recheck if we should continue with our allocation
3812			 * attempt.
3813			 */
3814			wait_for_alloc = true;
3815			force = CHUNK_ALLOC_NO_FORCE;
3816			spin_unlock(&space_info->lock);
3817			mutex_lock(&fs_info->chunk_mutex);
3818			mutex_unlock(&fs_info->chunk_mutex);
3819		} else {
3820			/* Proceed with allocation */
3821			space_info->chunk_alloc = 1;
3822			wait_for_alloc = false;
3823			spin_unlock(&space_info->lock);
3824		}
3825
3826		cond_resched();
3827	} while (wait_for_alloc);
3828
3829	mutex_lock(&fs_info->chunk_mutex);
3830	trans->allocating_chunk = true;
3831
3832	/*
3833	 * If we have mixed data/metadata chunks we want to make sure we keep
3834	 * allocating mixed chunks instead of individual chunks.
3835	 */
3836	if (btrfs_mixed_space_info(space_info))
3837		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3838
3839	/*
3840	 * if we're doing a data chunk, go ahead and make sure that
3841	 * we keep a reasonable number of metadata chunks allocated in the
3842	 * FS as well.
3843	 */
3844	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3845		fs_info->data_chunk_allocations++;
3846		if (!(fs_info->data_chunk_allocations %
3847		      fs_info->metadata_ratio))
3848			force_metadata_allocation(fs_info);
3849	}
3850
3851	ret_bg = do_chunk_alloc(trans, flags);
 
 
 
 
 
 
3852	trans->allocating_chunk = false;
3853
3854	if (IS_ERR(ret_bg)) {
3855		ret = PTR_ERR(ret_bg);
3856	} else if (from_extent_allocation) {
3857		/*
3858		 * New block group is likely to be used soon. Try to activate
3859		 * it now. Failure is OK for now.
3860		 */
3861		btrfs_zone_activate(ret_bg);
3862	}
3863
3864	if (!ret)
3865		btrfs_put_block_group(ret_bg);
3866
3867	spin_lock(&space_info->lock);
3868	if (ret < 0) {
3869		if (ret == -ENOSPC)
3870			space_info->full = 1;
3871		else
3872			goto out;
3873	} else {
3874		ret = 1;
3875		space_info->max_extent_size = 0;
3876	}
3877
3878	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879out:
3880	space_info->chunk_alloc = 0;
3881	spin_unlock(&space_info->lock);
3882	mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3883
3884	return ret;
3885}
3886
3887static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3888{
3889	u64 num_dev;
3890
3891	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3892	if (!num_dev)
3893		num_dev = fs_info->fs_devices->rw_devices;
3894
3895	return num_dev;
3896}
3897
3898static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3899				u64 bytes,
3900				u64 type)
 
3901{
3902	struct btrfs_fs_info *fs_info = trans->fs_info;
3903	struct btrfs_space_info *info;
3904	u64 left;
 
3905	int ret = 0;
 
3906
3907	/*
3908	 * Needed because we can end up allocating a system chunk and for an
3909	 * atomic and race free space reservation in the chunk block reserve.
3910	 */
3911	lockdep_assert_held(&fs_info->chunk_mutex);
3912
3913	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3914	spin_lock(&info->lock);
3915	left = info->total_bytes - btrfs_space_info_used(info, true);
3916	spin_unlock(&info->lock);
3917
3918	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 
 
 
 
 
 
3919		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3920			   left, bytes, type);
3921		btrfs_dump_space_info(fs_info, info, 0, 0);
3922	}
3923
3924	if (left < bytes) {
3925		u64 flags = btrfs_system_alloc_profile(fs_info);
3926		struct btrfs_block_group *bg;
3927
3928		/*
3929		 * Ignore failure to create system chunk. We might end up not
3930		 * needing it, as we might not need to COW all nodes/leafs from
3931		 * the paths we visit in the chunk tree (they were already COWed
3932		 * or created in the current transaction for example).
3933		 */
3934		bg = btrfs_create_chunk(trans, flags);
3935		if (IS_ERR(bg)) {
3936			ret = PTR_ERR(bg);
3937		} else {
3938			/*
3939			 * We have a new chunk. We also need to activate it for
3940			 * zoned filesystem.
3941			 */
3942			ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3943			if (ret < 0)
3944				return;
3945
3946			/*
3947			 * If we fail to add the chunk item here, we end up
3948			 * trying again at phase 2 of chunk allocation, at
3949			 * btrfs_create_pending_block_groups(). So ignore
3950			 * any error here. An ENOSPC here could happen, due to
3951			 * the cases described at do_chunk_alloc() - the system
3952			 * block group we just created was just turned into RO
3953			 * mode by a scrub for example, or a running discard
3954			 * temporarily removed its free space entries, etc.
3955			 */
3956			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3957		}
3958	}
3959
3960	if (!ret) {
3961		ret = btrfs_block_rsv_add(fs_info,
3962					  &fs_info->chunk_block_rsv,
3963					  bytes, BTRFS_RESERVE_NO_FLUSH);
3964		if (!ret)
3965			trans->chunk_bytes_reserved += bytes;
3966	}
3967}
3968
3969/*
3970 * Reserve space in the system space for allocating or removing a chunk.
3971 * The caller must be holding fs_info->chunk_mutex.
3972 */
3973void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3974{
3975	struct btrfs_fs_info *fs_info = trans->fs_info;
3976	const u64 num_devs = get_profile_num_devs(fs_info, type);
3977	u64 bytes;
3978
3979	/* num_devs device items to update and 1 chunk item to add or remove. */
3980	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3981		btrfs_calc_insert_metadata_size(fs_info, 1);
3982
3983	reserve_chunk_space(trans, bytes, type);
3984}
3985
3986/*
3987 * Reserve space in the system space, if needed, for doing a modification to the
3988 * chunk btree.
3989 *
3990 * @trans:		A transaction handle.
3991 * @is_item_insertion:	Indicate if the modification is for inserting a new item
3992 *			in the chunk btree or if it's for the deletion or update
3993 *			of an existing item.
3994 *
3995 * This is used in a context where we need to update the chunk btree outside
3996 * block group allocation and removal, to avoid a deadlock with a concurrent
3997 * task that is allocating a metadata or data block group and therefore needs to
3998 * update the chunk btree while holding the chunk mutex. After the update to the
3999 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4000 *
4001 */
4002void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4003				  bool is_item_insertion)
4004{
4005	struct btrfs_fs_info *fs_info = trans->fs_info;
4006	u64 bytes;
4007
4008	if (is_item_insertion)
4009		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4010	else
4011		bytes = btrfs_calc_metadata_size(fs_info, 1);
4012
4013	mutex_lock(&fs_info->chunk_mutex);
4014	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4015	mutex_unlock(&fs_info->chunk_mutex);
4016}
4017
4018void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4019{
4020	struct btrfs_block_group *block_group;
 
4021
4022	block_group = btrfs_lookup_first_block_group(info, 0);
4023	while (block_group) {
4024		btrfs_wait_block_group_cache_done(block_group);
4025		spin_lock(&block_group->lock);
4026		if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4027				       &block_group->runtime_flags)) {
4028			struct inode *inode = block_group->inode;
4029
4030			block_group->inode = NULL;
 
 
 
 
 
4031			spin_unlock(&block_group->lock);
 
 
 
 
 
 
 
 
4032
4033			ASSERT(block_group->io_ctl.inode == NULL);
4034			iput(inode);
4035		} else {
4036			spin_unlock(&block_group->lock);
4037		}
4038		block_group = btrfs_next_block_group(block_group);
 
 
4039	}
4040}
4041
4042/*
4043 * Must be called only after stopping all workers, since we could have block
4044 * group caching kthreads running, and therefore they could race with us if we
4045 * freed the block groups before stopping them.
4046 */
4047int btrfs_free_block_groups(struct btrfs_fs_info *info)
4048{
4049	struct btrfs_block_group *block_group;
4050	struct btrfs_space_info *space_info;
4051	struct btrfs_caching_control *caching_ctl;
4052	struct rb_node *n;
4053
4054	write_lock(&info->block_group_cache_lock);
4055	while (!list_empty(&info->caching_block_groups)) {
4056		caching_ctl = list_entry(info->caching_block_groups.next,
4057					 struct btrfs_caching_control, list);
4058		list_del(&caching_ctl->list);
4059		btrfs_put_caching_control(caching_ctl);
4060	}
4061	write_unlock(&info->block_group_cache_lock);
4062
4063	spin_lock(&info->unused_bgs_lock);
4064	while (!list_empty(&info->unused_bgs)) {
4065		block_group = list_first_entry(&info->unused_bgs,
4066					       struct btrfs_block_group,
4067					       bg_list);
4068		list_del_init(&block_group->bg_list);
4069		btrfs_put_block_group(block_group);
4070	}
4071
4072	while (!list_empty(&info->reclaim_bgs)) {
4073		block_group = list_first_entry(&info->reclaim_bgs,
4074					       struct btrfs_block_group,
4075					       bg_list);
4076		list_del_init(&block_group->bg_list);
4077		btrfs_put_block_group(block_group);
4078	}
4079	spin_unlock(&info->unused_bgs_lock);
4080
4081	spin_lock(&info->zone_active_bgs_lock);
4082	while (!list_empty(&info->zone_active_bgs)) {
4083		block_group = list_first_entry(&info->zone_active_bgs,
4084					       struct btrfs_block_group,
4085					       active_bg_list);
4086		list_del_init(&block_group->active_bg_list);
4087		btrfs_put_block_group(block_group);
4088	}
4089	spin_unlock(&info->zone_active_bgs_lock);
4090
4091	write_lock(&info->block_group_cache_lock);
4092	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4093		block_group = rb_entry(n, struct btrfs_block_group,
4094				       cache_node);
4095		rb_erase_cached(&block_group->cache_node,
4096				&info->block_group_cache_tree);
4097		RB_CLEAR_NODE(&block_group->cache_node);
4098		write_unlock(&info->block_group_cache_lock);
4099
4100		down_write(&block_group->space_info->groups_sem);
4101		list_del(&block_group->list);
4102		up_write(&block_group->space_info->groups_sem);
4103
4104		/*
4105		 * We haven't cached this block group, which means we could
4106		 * possibly have excluded extents on this block group.
4107		 */
4108		if (block_group->cached == BTRFS_CACHE_NO ||
4109		    block_group->cached == BTRFS_CACHE_ERROR)
4110			btrfs_free_excluded_extents(block_group);
4111
4112		btrfs_remove_free_space_cache(block_group);
4113		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4114		ASSERT(list_empty(&block_group->dirty_list));
4115		ASSERT(list_empty(&block_group->io_list));
4116		ASSERT(list_empty(&block_group->bg_list));
4117		ASSERT(refcount_read(&block_group->refs) == 1);
4118		ASSERT(block_group->swap_extents == 0);
4119		btrfs_put_block_group(block_group);
4120
4121		write_lock(&info->block_group_cache_lock);
4122	}
4123	write_unlock(&info->block_group_cache_lock);
 
 
 
 
 
 
 
 
4124
4125	btrfs_release_global_block_rsv(info);
4126
4127	while (!list_empty(&info->space_info)) {
4128		space_info = list_entry(info->space_info.next,
4129					struct btrfs_space_info,
4130					list);
4131
4132		/*
4133		 * Do not hide this behind enospc_debug, this is actually
4134		 * important and indicates a real bug if this happens.
4135		 */
4136		if (WARN_ON(space_info->bytes_pinned > 0 ||
 
4137			    space_info->bytes_may_use > 0))
4138			btrfs_dump_space_info(info, space_info, 0, 0);
4139
4140		/*
4141		 * If there was a failure to cleanup a log tree, very likely due
4142		 * to an IO failure on a writeback attempt of one or more of its
4143		 * extent buffers, we could not do proper (and cheap) unaccounting
4144		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4145		 * that case.
4146		 */
4147		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4148		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4149			if (WARN_ON(space_info->bytes_reserved > 0))
4150				btrfs_dump_space_info(info, space_info, 0, 0);
4151		}
4152
4153		WARN_ON(space_info->reclaim_size > 0);
4154		list_del(&space_info->list);
4155		btrfs_sysfs_remove_space_info(space_info);
4156	}
4157	return 0;
4158}
4159
4160void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4161{
4162	atomic_inc(&cache->frozen);
4163}
4164
4165void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4166{
4167	struct btrfs_fs_info *fs_info = block_group->fs_info;
4168	struct extent_map_tree *em_tree;
4169	struct extent_map *em;
4170	bool cleanup;
4171
4172	spin_lock(&block_group->lock);
4173	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4174		   test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4175	spin_unlock(&block_group->lock);
4176
4177	if (cleanup) {
4178		em_tree = &fs_info->mapping_tree;
4179		write_lock(&em_tree->lock);
4180		em = lookup_extent_mapping(em_tree, block_group->start,
4181					   1);
4182		BUG_ON(!em); /* logic error, can't happen */
4183		remove_extent_mapping(em_tree, em);
4184		write_unlock(&em_tree->lock);
4185
4186		/* once for us and once for the tree */
4187		free_extent_map(em);
4188		free_extent_map(em);
4189
4190		/*
4191		 * We may have left one free space entry and other possible
4192		 * tasks trimming this block group have left 1 entry each one.
4193		 * Free them if any.
4194		 */
4195		btrfs_remove_free_space_cache(block_group);
4196	}
4197}
4198
4199bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4200{
4201	bool ret = true;
4202
4203	spin_lock(&bg->lock);
4204	if (bg->ro)
4205		ret = false;
4206	else
4207		bg->swap_extents++;
4208	spin_unlock(&bg->lock);
4209
4210	return ret;
4211}
4212
4213void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4214{
4215	spin_lock(&bg->lock);
4216	ASSERT(!bg->ro);
4217	ASSERT(bg->swap_extents >= amount);
4218	bg->swap_extents -= amount;
4219	spin_unlock(&bg->lock);
4220}