Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "block-group.h"
   6#include "space-info.h"
   7#include "disk-io.h"
   8#include "free-space-cache.h"
   9#include "free-space-tree.h"
  10#include "volumes.h"
  11#include "transaction.h"
  12#include "ref-verify.h"
  13#include "sysfs.h"
  14#include "tree-log.h"
  15#include "delalloc-space.h"
  16#include "discard.h"
  17#include "raid56.h"
  18
  19/*
  20 * Return target flags in extended format or 0 if restripe for this chunk_type
  21 * is not in progress
  22 *
  23 * Should be called with balance_lock held
  24 */
  25static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  26{
  27	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  28	u64 target = 0;
  29
  30	if (!bctl)
  31		return 0;
  32
  33	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  34	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  35		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  36	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  37		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  38		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  39	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  40		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  41		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  42	}
  43
  44	return target;
  45}
  46
  47/*
  48 * @flags: available profiles in extended format (see ctree.h)
  49 *
  50 * Return reduced profile in chunk format.  If profile changing is in progress
  51 * (either running or paused) picks the target profile (if it's already
  52 * available), otherwise falls back to plain reducing.
  53 */
  54static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  55{
  56	u64 num_devices = fs_info->fs_devices->rw_devices;
  57	u64 target;
  58	u64 raid_type;
  59	u64 allowed = 0;
  60
  61	/*
  62	 * See if restripe for this chunk_type is in progress, if so try to
  63	 * reduce to the target profile
  64	 */
  65	spin_lock(&fs_info->balance_lock);
  66	target = get_restripe_target(fs_info, flags);
  67	if (target) {
  68		spin_unlock(&fs_info->balance_lock);
  69		return extended_to_chunk(target);
  70	}
  71	spin_unlock(&fs_info->balance_lock);
  72
  73	/* First, mask out the RAID levels which aren't possible */
  74	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  75		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  76			allowed |= btrfs_raid_array[raid_type].bg_flag;
  77	}
  78	allowed &= flags;
  79
  80	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
  81		allowed = BTRFS_BLOCK_GROUP_RAID6;
  82	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
  83		allowed = BTRFS_BLOCK_GROUP_RAID5;
  84	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
  85		allowed = BTRFS_BLOCK_GROUP_RAID10;
  86	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
  87		allowed = BTRFS_BLOCK_GROUP_RAID1;
  88	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
  89		allowed = BTRFS_BLOCK_GROUP_RAID0;
  90
  91	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
  92
  93	return extended_to_chunk(flags | allowed);
  94}
  95
  96u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
  97{
  98	unsigned seq;
  99	u64 flags;
 100
 101	do {
 102		flags = orig_flags;
 103		seq = read_seqbegin(&fs_info->profiles_lock);
 104
 105		if (flags & BTRFS_BLOCK_GROUP_DATA)
 106			flags |= fs_info->avail_data_alloc_bits;
 107		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 108			flags |= fs_info->avail_system_alloc_bits;
 109		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 110			flags |= fs_info->avail_metadata_alloc_bits;
 111	} while (read_seqretry(&fs_info->profiles_lock, seq));
 112
 113	return btrfs_reduce_alloc_profile(fs_info, flags);
 114}
 115
 116void btrfs_get_block_group(struct btrfs_block_group *cache)
 117{
 118	refcount_inc(&cache->refs);
 119}
 120
 121void btrfs_put_block_group(struct btrfs_block_group *cache)
 122{
 123	if (refcount_dec_and_test(&cache->refs)) {
 124		WARN_ON(cache->pinned > 0);
 125		WARN_ON(cache->reserved > 0);
 126
 127		/*
 128		 * A block_group shouldn't be on the discard_list anymore.
 129		 * Remove the block_group from the discard_list to prevent us
 130		 * from causing a panic due to NULL pointer dereference.
 131		 */
 132		if (WARN_ON(!list_empty(&cache->discard_list)))
 133			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 134						  cache);
 135
 136		/*
 137		 * If not empty, someone is still holding mutex of
 138		 * full_stripe_lock, which can only be released by caller.
 139		 * And it will definitely cause use-after-free when caller
 140		 * tries to release full stripe lock.
 141		 *
 142		 * No better way to resolve, but only to warn.
 143		 */
 144		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 145		kfree(cache->free_space_ctl);
 146		kfree(cache);
 147	}
 148}
 149
 150/*
 151 * This adds the block group to the fs_info rb tree for the block group cache
 152 */
 153static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 154				       struct btrfs_block_group *block_group)
 155{
 156	struct rb_node **p;
 157	struct rb_node *parent = NULL;
 158	struct btrfs_block_group *cache;
 159
 160	ASSERT(block_group->length != 0);
 161
 162	spin_lock(&info->block_group_cache_lock);
 163	p = &info->block_group_cache_tree.rb_node;
 164
 165	while (*p) {
 166		parent = *p;
 167		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 168		if (block_group->start < cache->start) {
 169			p = &(*p)->rb_left;
 170		} else if (block_group->start > cache->start) {
 171			p = &(*p)->rb_right;
 172		} else {
 173			spin_unlock(&info->block_group_cache_lock);
 174			return -EEXIST;
 175		}
 176	}
 177
 178	rb_link_node(&block_group->cache_node, parent, p);
 179	rb_insert_color(&block_group->cache_node,
 180			&info->block_group_cache_tree);
 181
 182	if (info->first_logical_byte > block_group->start)
 183		info->first_logical_byte = block_group->start;
 184
 185	spin_unlock(&info->block_group_cache_lock);
 186
 187	return 0;
 188}
 189
 190/*
 191 * This will return the block group at or after bytenr if contains is 0, else
 192 * it will return the block group that contains the bytenr
 193 */
 194static struct btrfs_block_group *block_group_cache_tree_search(
 195		struct btrfs_fs_info *info, u64 bytenr, int contains)
 196{
 197	struct btrfs_block_group *cache, *ret = NULL;
 198	struct rb_node *n;
 199	u64 end, start;
 200
 201	spin_lock(&info->block_group_cache_lock);
 202	n = info->block_group_cache_tree.rb_node;
 203
 204	while (n) {
 205		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 206		end = cache->start + cache->length - 1;
 207		start = cache->start;
 208
 209		if (bytenr < start) {
 210			if (!contains && (!ret || start < ret->start))
 211				ret = cache;
 212			n = n->rb_left;
 213		} else if (bytenr > start) {
 214			if (contains && bytenr <= end) {
 215				ret = cache;
 216				break;
 217			}
 218			n = n->rb_right;
 219		} else {
 220			ret = cache;
 221			break;
 222		}
 223	}
 224	if (ret) {
 225		btrfs_get_block_group(ret);
 226		if (bytenr == 0 && info->first_logical_byte > ret->start)
 227			info->first_logical_byte = ret->start;
 228	}
 229	spin_unlock(&info->block_group_cache_lock);
 230
 231	return ret;
 232}
 233
 234/*
 235 * Return the block group that starts at or after bytenr
 236 */
 237struct btrfs_block_group *btrfs_lookup_first_block_group(
 238		struct btrfs_fs_info *info, u64 bytenr)
 239{
 240	return block_group_cache_tree_search(info, bytenr, 0);
 241}
 242
 243/*
 244 * Return the block group that contains the given bytenr
 245 */
 246struct btrfs_block_group *btrfs_lookup_block_group(
 247		struct btrfs_fs_info *info, u64 bytenr)
 248{
 249	return block_group_cache_tree_search(info, bytenr, 1);
 250}
 251
 252struct btrfs_block_group *btrfs_next_block_group(
 253		struct btrfs_block_group *cache)
 254{
 255	struct btrfs_fs_info *fs_info = cache->fs_info;
 256	struct rb_node *node;
 257
 258	spin_lock(&fs_info->block_group_cache_lock);
 259
 260	/* If our block group was removed, we need a full search. */
 261	if (RB_EMPTY_NODE(&cache->cache_node)) {
 262		const u64 next_bytenr = cache->start + cache->length;
 263
 264		spin_unlock(&fs_info->block_group_cache_lock);
 265		btrfs_put_block_group(cache);
 266		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
 267	}
 268	node = rb_next(&cache->cache_node);
 269	btrfs_put_block_group(cache);
 270	if (node) {
 271		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 272		btrfs_get_block_group(cache);
 273	} else
 274		cache = NULL;
 275	spin_unlock(&fs_info->block_group_cache_lock);
 276	return cache;
 277}
 278
 279bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 280{
 281	struct btrfs_block_group *bg;
 282	bool ret = true;
 283
 284	bg = btrfs_lookup_block_group(fs_info, bytenr);
 285	if (!bg)
 286		return false;
 287
 288	spin_lock(&bg->lock);
 289	if (bg->ro)
 290		ret = false;
 291	else
 292		atomic_inc(&bg->nocow_writers);
 293	spin_unlock(&bg->lock);
 294
 295	/* No put on block group, done by btrfs_dec_nocow_writers */
 296	if (!ret)
 297		btrfs_put_block_group(bg);
 298
 299	return ret;
 300}
 301
 302void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 303{
 304	struct btrfs_block_group *bg;
 305
 306	bg = btrfs_lookup_block_group(fs_info, bytenr);
 307	ASSERT(bg);
 308	if (atomic_dec_and_test(&bg->nocow_writers))
 309		wake_up_var(&bg->nocow_writers);
 310	/*
 311	 * Once for our lookup and once for the lookup done by a previous call
 312	 * to btrfs_inc_nocow_writers()
 313	 */
 314	btrfs_put_block_group(bg);
 315	btrfs_put_block_group(bg);
 316}
 317
 318void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 319{
 320	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 321}
 322
 323void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 324					const u64 start)
 325{
 326	struct btrfs_block_group *bg;
 327
 328	bg = btrfs_lookup_block_group(fs_info, start);
 329	ASSERT(bg);
 330	if (atomic_dec_and_test(&bg->reservations))
 331		wake_up_var(&bg->reservations);
 332	btrfs_put_block_group(bg);
 333}
 334
 335void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 336{
 337	struct btrfs_space_info *space_info = bg->space_info;
 338
 339	ASSERT(bg->ro);
 340
 341	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 342		return;
 343
 344	/*
 345	 * Our block group is read only but before we set it to read only,
 346	 * some task might have had allocated an extent from it already, but it
 347	 * has not yet created a respective ordered extent (and added it to a
 348	 * root's list of ordered extents).
 349	 * Therefore wait for any task currently allocating extents, since the
 350	 * block group's reservations counter is incremented while a read lock
 351	 * on the groups' semaphore is held and decremented after releasing
 352	 * the read access on that semaphore and creating the ordered extent.
 353	 */
 354	down_write(&space_info->groups_sem);
 355	up_write(&space_info->groups_sem);
 356
 357	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 358}
 359
 360struct btrfs_caching_control *btrfs_get_caching_control(
 361		struct btrfs_block_group *cache)
 362{
 363	struct btrfs_caching_control *ctl;
 364
 365	spin_lock(&cache->lock);
 366	if (!cache->caching_ctl) {
 367		spin_unlock(&cache->lock);
 368		return NULL;
 369	}
 370
 371	ctl = cache->caching_ctl;
 372	refcount_inc(&ctl->count);
 373	spin_unlock(&cache->lock);
 374	return ctl;
 375}
 376
 377void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 378{
 379	if (refcount_dec_and_test(&ctl->count))
 380		kfree(ctl);
 381}
 382
 383/*
 384 * When we wait for progress in the block group caching, its because our
 385 * allocation attempt failed at least once.  So, we must sleep and let some
 386 * progress happen before we try again.
 387 *
 388 * This function will sleep at least once waiting for new free space to show
 389 * up, and then it will check the block group free space numbers for our min
 390 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 391 * a free extent of a given size, but this is a good start.
 392 *
 393 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 394 * any of the information in this block group.
 395 */
 396void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 397					   u64 num_bytes)
 398{
 399	struct btrfs_caching_control *caching_ctl;
 400
 401	caching_ctl = btrfs_get_caching_control(cache);
 402	if (!caching_ctl)
 403		return;
 404
 405	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 406		   (cache->free_space_ctl->free_space >= num_bytes));
 407
 408	btrfs_put_caching_control(caching_ctl);
 409}
 410
 411int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 412{
 413	struct btrfs_caching_control *caching_ctl;
 414	int ret = 0;
 415
 416	caching_ctl = btrfs_get_caching_control(cache);
 417	if (!caching_ctl)
 418		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 419
 420	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 421	if (cache->cached == BTRFS_CACHE_ERROR)
 422		ret = -EIO;
 423	btrfs_put_caching_control(caching_ctl);
 424	return ret;
 425}
 426
 427#ifdef CONFIG_BTRFS_DEBUG
 428static void fragment_free_space(struct btrfs_block_group *block_group)
 429{
 430	struct btrfs_fs_info *fs_info = block_group->fs_info;
 431	u64 start = block_group->start;
 432	u64 len = block_group->length;
 433	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 434		fs_info->nodesize : fs_info->sectorsize;
 435	u64 step = chunk << 1;
 436
 437	while (len > chunk) {
 438		btrfs_remove_free_space(block_group, start, chunk);
 439		start += step;
 440		if (len < step)
 441			len = 0;
 442		else
 443			len -= step;
 444	}
 445}
 446#endif
 447
 448/*
 449 * This is only called by btrfs_cache_block_group, since we could have freed
 450 * extents we need to check the pinned_extents for any extents that can't be
 451 * used yet since their free space will be released as soon as the transaction
 452 * commits.
 453 */
 454u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
 455{
 456	struct btrfs_fs_info *info = block_group->fs_info;
 457	u64 extent_start, extent_end, size, total_added = 0;
 458	int ret;
 459
 460	while (start < end) {
 461		ret = find_first_extent_bit(&info->excluded_extents, start,
 462					    &extent_start, &extent_end,
 463					    EXTENT_DIRTY | EXTENT_UPTODATE,
 464					    NULL);
 465		if (ret)
 466			break;
 467
 468		if (extent_start <= start) {
 469			start = extent_end + 1;
 470		} else if (extent_start > start && extent_start < end) {
 471			size = extent_start - start;
 472			total_added += size;
 473			ret = btrfs_add_free_space_async_trimmed(block_group,
 474								 start, size);
 475			BUG_ON(ret); /* -ENOMEM or logic error */
 476			start = extent_end + 1;
 477		} else {
 478			break;
 479		}
 480	}
 481
 482	if (start < end) {
 483		size = end - start;
 484		total_added += size;
 485		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 486							 size);
 487		BUG_ON(ret); /* -ENOMEM or logic error */
 488	}
 489
 490	return total_added;
 491}
 492
 493static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 494{
 495	struct btrfs_block_group *block_group = caching_ctl->block_group;
 496	struct btrfs_fs_info *fs_info = block_group->fs_info;
 497	struct btrfs_root *extent_root = fs_info->extent_root;
 498	struct btrfs_path *path;
 499	struct extent_buffer *leaf;
 500	struct btrfs_key key;
 501	u64 total_found = 0;
 502	u64 last = 0;
 503	u32 nritems;
 504	int ret;
 505	bool wakeup = true;
 506
 507	path = btrfs_alloc_path();
 508	if (!path)
 509		return -ENOMEM;
 510
 511	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 512
 513#ifdef CONFIG_BTRFS_DEBUG
 514	/*
 515	 * If we're fragmenting we don't want to make anybody think we can
 516	 * allocate from this block group until we've had a chance to fragment
 517	 * the free space.
 518	 */
 519	if (btrfs_should_fragment_free_space(block_group))
 520		wakeup = false;
 521#endif
 522	/*
 523	 * We don't want to deadlock with somebody trying to allocate a new
 524	 * extent for the extent root while also trying to search the extent
 525	 * root to add free space.  So we skip locking and search the commit
 526	 * root, since its read-only
 527	 */
 528	path->skip_locking = 1;
 529	path->search_commit_root = 1;
 530	path->reada = READA_FORWARD;
 531
 532	key.objectid = last;
 533	key.offset = 0;
 534	key.type = BTRFS_EXTENT_ITEM_KEY;
 535
 536next:
 537	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 538	if (ret < 0)
 539		goto out;
 540
 541	leaf = path->nodes[0];
 542	nritems = btrfs_header_nritems(leaf);
 543
 544	while (1) {
 545		if (btrfs_fs_closing(fs_info) > 1) {
 546			last = (u64)-1;
 547			break;
 548		}
 549
 550		if (path->slots[0] < nritems) {
 551			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 552		} else {
 553			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 554			if (ret)
 555				break;
 556
 557			if (need_resched() ||
 558			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 559				if (wakeup)
 560					caching_ctl->progress = last;
 561				btrfs_release_path(path);
 562				up_read(&fs_info->commit_root_sem);
 563				mutex_unlock(&caching_ctl->mutex);
 564				cond_resched();
 565				mutex_lock(&caching_ctl->mutex);
 566				down_read(&fs_info->commit_root_sem);
 567				goto next;
 568			}
 569
 570			ret = btrfs_next_leaf(extent_root, path);
 571			if (ret < 0)
 572				goto out;
 573			if (ret)
 574				break;
 575			leaf = path->nodes[0];
 576			nritems = btrfs_header_nritems(leaf);
 577			continue;
 578		}
 579
 580		if (key.objectid < last) {
 581			key.objectid = last;
 582			key.offset = 0;
 583			key.type = BTRFS_EXTENT_ITEM_KEY;
 584
 585			if (wakeup)
 586				caching_ctl->progress = last;
 587			btrfs_release_path(path);
 588			goto next;
 589		}
 590
 591		if (key.objectid < block_group->start) {
 592			path->slots[0]++;
 593			continue;
 594		}
 595
 596		if (key.objectid >= block_group->start + block_group->length)
 597			break;
 598
 599		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 600		    key.type == BTRFS_METADATA_ITEM_KEY) {
 601			total_found += add_new_free_space(block_group, last,
 602							  key.objectid);
 603			if (key.type == BTRFS_METADATA_ITEM_KEY)
 604				last = key.objectid +
 605					fs_info->nodesize;
 606			else
 607				last = key.objectid + key.offset;
 608
 609			if (total_found > CACHING_CTL_WAKE_UP) {
 610				total_found = 0;
 611				if (wakeup)
 612					wake_up(&caching_ctl->wait);
 613			}
 614		}
 615		path->slots[0]++;
 616	}
 617	ret = 0;
 618
 619	total_found += add_new_free_space(block_group, last,
 620				block_group->start + block_group->length);
 621	caching_ctl->progress = (u64)-1;
 622
 623out:
 624	btrfs_free_path(path);
 625	return ret;
 626}
 627
 628static noinline void caching_thread(struct btrfs_work *work)
 629{
 630	struct btrfs_block_group *block_group;
 631	struct btrfs_fs_info *fs_info;
 632	struct btrfs_caching_control *caching_ctl;
 633	int ret;
 634
 635	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 636	block_group = caching_ctl->block_group;
 637	fs_info = block_group->fs_info;
 638
 639	mutex_lock(&caching_ctl->mutex);
 640	down_read(&fs_info->commit_root_sem);
 641
 642	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 643		ret = load_free_space_tree(caching_ctl);
 644	else
 645		ret = load_extent_tree_free(caching_ctl);
 646
 647	spin_lock(&block_group->lock);
 648	block_group->caching_ctl = NULL;
 649	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 650	spin_unlock(&block_group->lock);
 651
 652#ifdef CONFIG_BTRFS_DEBUG
 653	if (btrfs_should_fragment_free_space(block_group)) {
 654		u64 bytes_used;
 655
 656		spin_lock(&block_group->space_info->lock);
 657		spin_lock(&block_group->lock);
 658		bytes_used = block_group->length - block_group->used;
 659		block_group->space_info->bytes_used += bytes_used >> 1;
 660		spin_unlock(&block_group->lock);
 661		spin_unlock(&block_group->space_info->lock);
 662		fragment_free_space(block_group);
 663	}
 664#endif
 665
 666	caching_ctl->progress = (u64)-1;
 667
 668	up_read(&fs_info->commit_root_sem);
 669	btrfs_free_excluded_extents(block_group);
 670	mutex_unlock(&caching_ctl->mutex);
 671
 672	wake_up(&caching_ctl->wait);
 673
 674	btrfs_put_caching_control(caching_ctl);
 675	btrfs_put_block_group(block_group);
 676}
 677
 678int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
 679{
 680	DEFINE_WAIT(wait);
 681	struct btrfs_fs_info *fs_info = cache->fs_info;
 682	struct btrfs_caching_control *caching_ctl;
 683	int ret = 0;
 684
 685	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 686	if (!caching_ctl)
 687		return -ENOMEM;
 688
 689	INIT_LIST_HEAD(&caching_ctl->list);
 690	mutex_init(&caching_ctl->mutex);
 691	init_waitqueue_head(&caching_ctl->wait);
 692	caching_ctl->block_group = cache;
 693	caching_ctl->progress = cache->start;
 694	refcount_set(&caching_ctl->count, 1);
 695	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
 696
 697	spin_lock(&cache->lock);
 698	/*
 699	 * This should be a rare occasion, but this could happen I think in the
 700	 * case where one thread starts to load the space cache info, and then
 701	 * some other thread starts a transaction commit which tries to do an
 702	 * allocation while the other thread is still loading the space cache
 703	 * info.  The previous loop should have kept us from choosing this block
 704	 * group, but if we've moved to the state where we will wait on caching
 705	 * block groups we need to first check if we're doing a fast load here,
 706	 * so we can wait for it to finish, otherwise we could end up allocating
 707	 * from a block group who's cache gets evicted for one reason or
 708	 * another.
 709	 */
 710	while (cache->cached == BTRFS_CACHE_FAST) {
 711		struct btrfs_caching_control *ctl;
 712
 713		ctl = cache->caching_ctl;
 714		refcount_inc(&ctl->count);
 715		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 716		spin_unlock(&cache->lock);
 717
 718		schedule();
 719
 720		finish_wait(&ctl->wait, &wait);
 721		btrfs_put_caching_control(ctl);
 722		spin_lock(&cache->lock);
 723	}
 724
 725	if (cache->cached != BTRFS_CACHE_NO) {
 726		spin_unlock(&cache->lock);
 727		kfree(caching_ctl);
 728		return 0;
 729	}
 730	WARN_ON(cache->caching_ctl);
 731	cache->caching_ctl = caching_ctl;
 732	cache->cached = BTRFS_CACHE_FAST;
 733	spin_unlock(&cache->lock);
 734
 735	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 736		mutex_lock(&caching_ctl->mutex);
 737		ret = load_free_space_cache(cache);
 738
 739		spin_lock(&cache->lock);
 740		if (ret == 1) {
 741			cache->caching_ctl = NULL;
 742			cache->cached = BTRFS_CACHE_FINISHED;
 743			cache->last_byte_to_unpin = (u64)-1;
 744			caching_ctl->progress = (u64)-1;
 745		} else {
 746			if (load_cache_only) {
 747				cache->caching_ctl = NULL;
 748				cache->cached = BTRFS_CACHE_NO;
 749			} else {
 750				cache->cached = BTRFS_CACHE_STARTED;
 751				cache->has_caching_ctl = 1;
 752			}
 753		}
 754		spin_unlock(&cache->lock);
 755#ifdef CONFIG_BTRFS_DEBUG
 756		if (ret == 1 &&
 757		    btrfs_should_fragment_free_space(cache)) {
 758			u64 bytes_used;
 759
 760			spin_lock(&cache->space_info->lock);
 761			spin_lock(&cache->lock);
 762			bytes_used = cache->length - cache->used;
 763			cache->space_info->bytes_used += bytes_used >> 1;
 764			spin_unlock(&cache->lock);
 765			spin_unlock(&cache->space_info->lock);
 766			fragment_free_space(cache);
 767		}
 768#endif
 769		mutex_unlock(&caching_ctl->mutex);
 770
 771		wake_up(&caching_ctl->wait);
 772		if (ret == 1) {
 773			btrfs_put_caching_control(caching_ctl);
 774			btrfs_free_excluded_extents(cache);
 775			return 0;
 776		}
 777	} else {
 778		/*
 779		 * We're either using the free space tree or no caching at all.
 780		 * Set cached to the appropriate value and wakeup any waiters.
 781		 */
 782		spin_lock(&cache->lock);
 783		if (load_cache_only) {
 784			cache->caching_ctl = NULL;
 785			cache->cached = BTRFS_CACHE_NO;
 786		} else {
 787			cache->cached = BTRFS_CACHE_STARTED;
 788			cache->has_caching_ctl = 1;
 789		}
 790		spin_unlock(&cache->lock);
 791		wake_up(&caching_ctl->wait);
 792	}
 793
 794	if (load_cache_only) {
 795		btrfs_put_caching_control(caching_ctl);
 796		return 0;
 797	}
 798
 799	down_write(&fs_info->commit_root_sem);
 800	refcount_inc(&caching_ctl->count);
 801	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 802	up_write(&fs_info->commit_root_sem);
 803
 804	btrfs_get_block_group(cache);
 805
 806	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 807
 808	return ret;
 809}
 810
 811static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 812{
 813	u64 extra_flags = chunk_to_extended(flags) &
 814				BTRFS_EXTENDED_PROFILE_MASK;
 815
 816	write_seqlock(&fs_info->profiles_lock);
 817	if (flags & BTRFS_BLOCK_GROUP_DATA)
 818		fs_info->avail_data_alloc_bits &= ~extra_flags;
 819	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 820		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 821	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 822		fs_info->avail_system_alloc_bits &= ~extra_flags;
 823	write_sequnlock(&fs_info->profiles_lock);
 824}
 825
 826/*
 827 * Clear incompat bits for the following feature(s):
 828 *
 829 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 830 *            in the whole filesystem
 831 *
 832 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 833 */
 834static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 835{
 836	bool found_raid56 = false;
 837	bool found_raid1c34 = false;
 838
 839	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
 840	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
 841	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
 842		struct list_head *head = &fs_info->space_info;
 843		struct btrfs_space_info *sinfo;
 844
 845		list_for_each_entry_rcu(sinfo, head, list) {
 846			down_read(&sinfo->groups_sem);
 847			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
 848				found_raid56 = true;
 849			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
 850				found_raid56 = true;
 851			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
 852				found_raid1c34 = true;
 853			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
 854				found_raid1c34 = true;
 855			up_read(&sinfo->groups_sem);
 856		}
 857		if (!found_raid56)
 858			btrfs_clear_fs_incompat(fs_info, RAID56);
 859		if (!found_raid1c34)
 860			btrfs_clear_fs_incompat(fs_info, RAID1C34);
 861	}
 862}
 863
 864static int remove_block_group_item(struct btrfs_trans_handle *trans,
 865				   struct btrfs_path *path,
 866				   struct btrfs_block_group *block_group)
 867{
 868	struct btrfs_fs_info *fs_info = trans->fs_info;
 869	struct btrfs_root *root;
 870	struct btrfs_key key;
 871	int ret;
 872
 873	root = fs_info->extent_root;
 874	key.objectid = block_group->start;
 875	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 876	key.offset = block_group->length;
 877
 878	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 879	if (ret > 0)
 880		ret = -ENOENT;
 881	if (ret < 0)
 882		return ret;
 883
 884	ret = btrfs_del_item(trans, root, path);
 885	return ret;
 886}
 887
 888int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 889			     u64 group_start, struct extent_map *em)
 890{
 891	struct btrfs_fs_info *fs_info = trans->fs_info;
 892	struct btrfs_path *path;
 893	struct btrfs_block_group *block_group;
 894	struct btrfs_free_cluster *cluster;
 895	struct btrfs_root *tree_root = fs_info->tree_root;
 896	struct btrfs_key key;
 897	struct inode *inode;
 898	struct kobject *kobj = NULL;
 899	int ret;
 900	int index;
 901	int factor;
 902	struct btrfs_caching_control *caching_ctl = NULL;
 903	bool remove_em;
 904	bool remove_rsv = false;
 905
 906	block_group = btrfs_lookup_block_group(fs_info, group_start);
 907	BUG_ON(!block_group);
 908	BUG_ON(!block_group->ro);
 909
 910	trace_btrfs_remove_block_group(block_group);
 911	/*
 912	 * Free the reserved super bytes from this block group before
 913	 * remove it.
 914	 */
 915	btrfs_free_excluded_extents(block_group);
 916	btrfs_free_ref_tree_range(fs_info, block_group->start,
 917				  block_group->length);
 918
 919	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 920	factor = btrfs_bg_type_to_factor(block_group->flags);
 921
 922	/* make sure this block group isn't part of an allocation cluster */
 923	cluster = &fs_info->data_alloc_cluster;
 924	spin_lock(&cluster->refill_lock);
 925	btrfs_return_cluster_to_free_space(block_group, cluster);
 926	spin_unlock(&cluster->refill_lock);
 927
 928	/*
 929	 * make sure this block group isn't part of a metadata
 930	 * allocation cluster
 931	 */
 932	cluster = &fs_info->meta_alloc_cluster;
 933	spin_lock(&cluster->refill_lock);
 934	btrfs_return_cluster_to_free_space(block_group, cluster);
 935	spin_unlock(&cluster->refill_lock);
 936
 937	path = btrfs_alloc_path();
 938	if (!path) {
 939		ret = -ENOMEM;
 940		goto out;
 941	}
 942
 943	/*
 944	 * get the inode first so any iput calls done for the io_list
 945	 * aren't the final iput (no unlinks allowed now)
 946	 */
 947	inode = lookup_free_space_inode(block_group, path);
 948
 949	mutex_lock(&trans->transaction->cache_write_mutex);
 950	/*
 951	 * Make sure our free space cache IO is done before removing the
 952	 * free space inode
 953	 */
 954	spin_lock(&trans->transaction->dirty_bgs_lock);
 955	if (!list_empty(&block_group->io_list)) {
 956		list_del_init(&block_group->io_list);
 957
 958		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
 959
 960		spin_unlock(&trans->transaction->dirty_bgs_lock);
 961		btrfs_wait_cache_io(trans, block_group, path);
 962		btrfs_put_block_group(block_group);
 963		spin_lock(&trans->transaction->dirty_bgs_lock);
 964	}
 965
 966	if (!list_empty(&block_group->dirty_list)) {
 967		list_del_init(&block_group->dirty_list);
 968		remove_rsv = true;
 969		btrfs_put_block_group(block_group);
 970	}
 971	spin_unlock(&trans->transaction->dirty_bgs_lock);
 972	mutex_unlock(&trans->transaction->cache_write_mutex);
 973
 974	if (!IS_ERR(inode)) {
 975		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 976		if (ret) {
 977			btrfs_add_delayed_iput(inode);
 978			goto out;
 979		}
 980		clear_nlink(inode);
 981		/* One for the block groups ref */
 982		spin_lock(&block_group->lock);
 983		if (block_group->iref) {
 984			block_group->iref = 0;
 985			block_group->inode = NULL;
 986			spin_unlock(&block_group->lock);
 987			iput(inode);
 988		} else {
 989			spin_unlock(&block_group->lock);
 990		}
 991		/* One for our lookup ref */
 992		btrfs_add_delayed_iput(inode);
 993	}
 994
 995	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 996	key.type = 0;
 997	key.offset = block_group->start;
 998
 999	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1000	if (ret < 0)
1001		goto out;
1002	if (ret > 0)
1003		btrfs_release_path(path);
1004	if (ret == 0) {
1005		ret = btrfs_del_item(trans, tree_root, path);
1006		if (ret)
1007			goto out;
1008		btrfs_release_path(path);
1009	}
1010
1011	spin_lock(&fs_info->block_group_cache_lock);
1012	rb_erase(&block_group->cache_node,
1013		 &fs_info->block_group_cache_tree);
1014	RB_CLEAR_NODE(&block_group->cache_node);
1015
1016	/* Once for the block groups rbtree */
1017	btrfs_put_block_group(block_group);
1018
1019	if (fs_info->first_logical_byte == block_group->start)
1020		fs_info->first_logical_byte = (u64)-1;
1021	spin_unlock(&fs_info->block_group_cache_lock);
1022
1023	down_write(&block_group->space_info->groups_sem);
1024	/*
1025	 * we must use list_del_init so people can check to see if they
1026	 * are still on the list after taking the semaphore
1027	 */
1028	list_del_init(&block_group->list);
1029	if (list_empty(&block_group->space_info->block_groups[index])) {
1030		kobj = block_group->space_info->block_group_kobjs[index];
1031		block_group->space_info->block_group_kobjs[index] = NULL;
1032		clear_avail_alloc_bits(fs_info, block_group->flags);
1033	}
1034	up_write(&block_group->space_info->groups_sem);
1035	clear_incompat_bg_bits(fs_info, block_group->flags);
1036	if (kobj) {
1037		kobject_del(kobj);
1038		kobject_put(kobj);
1039	}
1040
1041	if (block_group->has_caching_ctl)
1042		caching_ctl = btrfs_get_caching_control(block_group);
1043	if (block_group->cached == BTRFS_CACHE_STARTED)
1044		btrfs_wait_block_group_cache_done(block_group);
1045	if (block_group->has_caching_ctl) {
1046		down_write(&fs_info->commit_root_sem);
1047		if (!caching_ctl) {
1048			struct btrfs_caching_control *ctl;
1049
1050			list_for_each_entry(ctl,
1051				    &fs_info->caching_block_groups, list)
1052				if (ctl->block_group == block_group) {
1053					caching_ctl = ctl;
1054					refcount_inc(&caching_ctl->count);
1055					break;
1056				}
1057		}
1058		if (caching_ctl)
1059			list_del_init(&caching_ctl->list);
1060		up_write(&fs_info->commit_root_sem);
1061		if (caching_ctl) {
1062			/* Once for the caching bgs list and once for us. */
1063			btrfs_put_caching_control(caching_ctl);
1064			btrfs_put_caching_control(caching_ctl);
1065		}
1066	}
1067
1068	spin_lock(&trans->transaction->dirty_bgs_lock);
1069	WARN_ON(!list_empty(&block_group->dirty_list));
1070	WARN_ON(!list_empty(&block_group->io_list));
1071	spin_unlock(&trans->transaction->dirty_bgs_lock);
1072
1073	btrfs_remove_free_space_cache(block_group);
1074
1075	spin_lock(&block_group->space_info->lock);
1076	list_del_init(&block_group->ro_list);
1077
1078	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1079		WARN_ON(block_group->space_info->total_bytes
1080			< block_group->length);
1081		WARN_ON(block_group->space_info->bytes_readonly
1082			< block_group->length);
1083		WARN_ON(block_group->space_info->disk_total
1084			< block_group->length * factor);
1085	}
1086	block_group->space_info->total_bytes -= block_group->length;
1087	block_group->space_info->bytes_readonly -= block_group->length;
1088	block_group->space_info->disk_total -= block_group->length * factor;
1089
1090	spin_unlock(&block_group->space_info->lock);
1091
1092	/*
1093	 * Remove the free space for the block group from the free space tree
1094	 * and the block group's item from the extent tree before marking the
1095	 * block group as removed. This is to prevent races with tasks that
1096	 * freeze and unfreeze a block group, this task and another task
1097	 * allocating a new block group - the unfreeze task ends up removing
1098	 * the block group's extent map before the task calling this function
1099	 * deletes the block group item from the extent tree, allowing for
1100	 * another task to attempt to create another block group with the same
1101	 * item key (and failing with -EEXIST and a transaction abort).
1102	 */
1103	ret = remove_block_group_free_space(trans, block_group);
1104	if (ret)
1105		goto out;
1106
1107	ret = remove_block_group_item(trans, path, block_group);
1108	if (ret < 0)
1109		goto out;
1110
1111	spin_lock(&block_group->lock);
1112	block_group->removed = 1;
1113	/*
1114	 * At this point trimming or scrub can't start on this block group,
1115	 * because we removed the block group from the rbtree
1116	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1117	 * even if someone already got this block group before we removed it
1118	 * from the rbtree, they have already incremented block_group->frozen -
1119	 * if they didn't, for the trimming case they won't find any free space
1120	 * entries because we already removed them all when we called
1121	 * btrfs_remove_free_space_cache().
1122	 *
1123	 * And we must not remove the extent map from the fs_info->mapping_tree
1124	 * to prevent the same logical address range and physical device space
1125	 * ranges from being reused for a new block group. This is needed to
1126	 * avoid races with trimming and scrub.
1127	 *
1128	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1129	 * completely transactionless, so while it is trimming a range the
1130	 * currently running transaction might finish and a new one start,
1131	 * allowing for new block groups to be created that can reuse the same
1132	 * physical device locations unless we take this special care.
1133	 *
1134	 * There may also be an implicit trim operation if the file system
1135	 * is mounted with -odiscard. The same protections must remain
1136	 * in place until the extents have been discarded completely when
1137	 * the transaction commit has completed.
1138	 */
1139	remove_em = (atomic_read(&block_group->frozen) == 0);
1140	spin_unlock(&block_group->lock);
1141
1142	if (remove_em) {
1143		struct extent_map_tree *em_tree;
1144
1145		em_tree = &fs_info->mapping_tree;
1146		write_lock(&em_tree->lock);
1147		remove_extent_mapping(em_tree, em);
1148		write_unlock(&em_tree->lock);
1149		/* once for the tree */
1150		free_extent_map(em);
1151	}
1152
1153out:
1154	/* Once for the lookup reference */
1155	btrfs_put_block_group(block_group);
1156	if (remove_rsv)
1157		btrfs_delayed_refs_rsv_release(fs_info, 1);
1158	btrfs_free_path(path);
1159	return ret;
1160}
1161
1162struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1163		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1164{
1165	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1166	struct extent_map *em;
1167	struct map_lookup *map;
1168	unsigned int num_items;
1169
1170	read_lock(&em_tree->lock);
1171	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1172	read_unlock(&em_tree->lock);
1173	ASSERT(em && em->start == chunk_offset);
1174
1175	/*
1176	 * We need to reserve 3 + N units from the metadata space info in order
1177	 * to remove a block group (done at btrfs_remove_chunk() and at
1178	 * btrfs_remove_block_group()), which are used for:
1179	 *
1180	 * 1 unit for adding the free space inode's orphan (located in the tree
1181	 * of tree roots).
1182	 * 1 unit for deleting the block group item (located in the extent
1183	 * tree).
1184	 * 1 unit for deleting the free space item (located in tree of tree
1185	 * roots).
1186	 * N units for deleting N device extent items corresponding to each
1187	 * stripe (located in the device tree).
1188	 *
1189	 * In order to remove a block group we also need to reserve units in the
1190	 * system space info in order to update the chunk tree (update one or
1191	 * more device items and remove one chunk item), but this is done at
1192	 * btrfs_remove_chunk() through a call to check_system_chunk().
1193	 */
1194	map = em->map_lookup;
1195	num_items = 3 + map->num_stripes;
1196	free_extent_map(em);
1197
1198	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1199							   num_items);
1200}
1201
1202/*
1203 * Mark block group @cache read-only, so later write won't happen to block
1204 * group @cache.
1205 *
1206 * If @force is not set, this function will only mark the block group readonly
1207 * if we have enough free space (1M) in other metadata/system block groups.
1208 * If @force is not set, this function will mark the block group readonly
1209 * without checking free space.
1210 *
1211 * NOTE: This function doesn't care if other block groups can contain all the
1212 * data in this block group. That check should be done by relocation routine,
1213 * not this function.
1214 */
1215static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1216{
1217	struct btrfs_space_info *sinfo = cache->space_info;
1218	u64 num_bytes;
1219	int ret = -ENOSPC;
1220
1221	spin_lock(&sinfo->lock);
1222	spin_lock(&cache->lock);
1223
1224	if (cache->ro) {
1225		cache->ro++;
1226		ret = 0;
1227		goto out;
1228	}
1229
1230	num_bytes = cache->length - cache->reserved - cache->pinned -
1231		    cache->bytes_super - cache->used;
1232
1233	/*
1234	 * Data never overcommits, even in mixed mode, so do just the straight
1235	 * check of left over space in how much we have allocated.
1236	 */
1237	if (force) {
1238		ret = 0;
1239	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1240		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1241
1242		/*
1243		 * Here we make sure if we mark this bg RO, we still have enough
1244		 * free space as buffer.
1245		 */
1246		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1247			ret = 0;
1248	} else {
1249		/*
1250		 * We overcommit metadata, so we need to do the
1251		 * btrfs_can_overcommit check here, and we need to pass in
1252		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1253		 * leeway to allow us to mark this block group as read only.
1254		 */
1255		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1256					 BTRFS_RESERVE_NO_FLUSH))
1257			ret = 0;
1258	}
1259
1260	if (!ret) {
1261		sinfo->bytes_readonly += num_bytes;
1262		cache->ro++;
1263		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1264	}
1265out:
1266	spin_unlock(&cache->lock);
1267	spin_unlock(&sinfo->lock);
1268	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1269		btrfs_info(cache->fs_info,
1270			"unable to make block group %llu ro", cache->start);
1271		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1272	}
1273	return ret;
1274}
1275
1276static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1277				 struct btrfs_block_group *bg)
1278{
1279	struct btrfs_fs_info *fs_info = bg->fs_info;
1280	struct btrfs_transaction *prev_trans = NULL;
1281	const u64 start = bg->start;
1282	const u64 end = start + bg->length - 1;
1283	int ret;
1284
1285	spin_lock(&fs_info->trans_lock);
1286	if (trans->transaction->list.prev != &fs_info->trans_list) {
1287		prev_trans = list_last_entry(&trans->transaction->list,
1288					     struct btrfs_transaction, list);
1289		refcount_inc(&prev_trans->use_count);
1290	}
1291	spin_unlock(&fs_info->trans_lock);
1292
1293	/*
1294	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1295	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1296	 * task might be running finish_extent_commit() for the previous
1297	 * transaction N - 1, and have seen a range belonging to the block
1298	 * group in pinned_extents before we were able to clear the whole block
1299	 * group range from pinned_extents. This means that task can lookup for
1300	 * the block group after we unpinned it from pinned_extents and removed
1301	 * it, leading to a BUG_ON() at unpin_extent_range().
1302	 */
1303	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1304	if (prev_trans) {
1305		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1306					EXTENT_DIRTY);
1307		if (ret)
1308			goto out;
1309	}
1310
1311	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1312				EXTENT_DIRTY);
1313out:
1314	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1315	if (prev_trans)
1316		btrfs_put_transaction(prev_trans);
1317
1318	return ret == 0;
1319}
1320
1321/*
1322 * Process the unused_bgs list and remove any that don't have any allocated
1323 * space inside of them.
1324 */
1325void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1326{
1327	struct btrfs_block_group *block_group;
1328	struct btrfs_space_info *space_info;
1329	struct btrfs_trans_handle *trans;
1330	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1331	int ret = 0;
1332
1333	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1334		return;
1335
1336	spin_lock(&fs_info->unused_bgs_lock);
1337	while (!list_empty(&fs_info->unused_bgs)) {
1338		int trimming;
1339
1340		block_group = list_first_entry(&fs_info->unused_bgs,
1341					       struct btrfs_block_group,
1342					       bg_list);
1343		list_del_init(&block_group->bg_list);
1344
1345		space_info = block_group->space_info;
1346
1347		if (ret || btrfs_mixed_space_info(space_info)) {
1348			btrfs_put_block_group(block_group);
1349			continue;
1350		}
1351		spin_unlock(&fs_info->unused_bgs_lock);
1352
1353		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1354
1355		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1356
1357		/* Don't want to race with allocators so take the groups_sem */
1358		down_write(&space_info->groups_sem);
1359
1360		/*
1361		 * Async discard moves the final block group discard to be prior
1362		 * to the unused_bgs code path.  Therefore, if it's not fully
1363		 * trimmed, punt it back to the async discard lists.
1364		 */
1365		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1366		    !btrfs_is_free_space_trimmed(block_group)) {
1367			trace_btrfs_skip_unused_block_group(block_group);
1368			up_write(&space_info->groups_sem);
1369			/* Requeue if we failed because of async discard */
1370			btrfs_discard_queue_work(&fs_info->discard_ctl,
1371						 block_group);
1372			goto next;
1373		}
1374
1375		spin_lock(&block_group->lock);
1376		if (block_group->reserved || block_group->pinned ||
1377		    block_group->used || block_group->ro ||
1378		    list_is_singular(&block_group->list)) {
1379			/*
1380			 * We want to bail if we made new allocations or have
1381			 * outstanding allocations in this block group.  We do
1382			 * the ro check in case balance is currently acting on
1383			 * this block group.
1384			 */
1385			trace_btrfs_skip_unused_block_group(block_group);
1386			spin_unlock(&block_group->lock);
1387			up_write(&space_info->groups_sem);
1388			goto next;
1389		}
1390		spin_unlock(&block_group->lock);
1391
1392		/* We don't want to force the issue, only flip if it's ok. */
1393		ret = inc_block_group_ro(block_group, 0);
1394		up_write(&space_info->groups_sem);
1395		if (ret < 0) {
1396			ret = 0;
1397			goto next;
1398		}
1399
1400		/*
1401		 * Want to do this before we do anything else so we can recover
1402		 * properly if we fail to join the transaction.
1403		 */
1404		trans = btrfs_start_trans_remove_block_group(fs_info,
1405						     block_group->start);
1406		if (IS_ERR(trans)) {
1407			btrfs_dec_block_group_ro(block_group);
1408			ret = PTR_ERR(trans);
1409			goto next;
1410		}
1411
1412		/*
1413		 * We could have pending pinned extents for this block group,
1414		 * just delete them, we don't care about them anymore.
1415		 */
1416		if (!clean_pinned_extents(trans, block_group)) {
1417			btrfs_dec_block_group_ro(block_group);
1418			goto end_trans;
1419		}
1420
1421		/*
1422		 * At this point, the block_group is read only and should fail
1423		 * new allocations.  However, btrfs_finish_extent_commit() can
1424		 * cause this block_group to be placed back on the discard
1425		 * lists because now the block_group isn't fully discarded.
1426		 * Bail here and try again later after discarding everything.
1427		 */
1428		spin_lock(&fs_info->discard_ctl.lock);
1429		if (!list_empty(&block_group->discard_list)) {
1430			spin_unlock(&fs_info->discard_ctl.lock);
1431			btrfs_dec_block_group_ro(block_group);
1432			btrfs_discard_queue_work(&fs_info->discard_ctl,
1433						 block_group);
1434			goto end_trans;
1435		}
1436		spin_unlock(&fs_info->discard_ctl.lock);
1437
1438		/* Reset pinned so btrfs_put_block_group doesn't complain */
1439		spin_lock(&space_info->lock);
1440		spin_lock(&block_group->lock);
1441
1442		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1443						     -block_group->pinned);
1444		space_info->bytes_readonly += block_group->pinned;
1445		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1446				   -block_group->pinned,
1447				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1448		block_group->pinned = 0;
1449
1450		spin_unlock(&block_group->lock);
1451		spin_unlock(&space_info->lock);
1452
1453		/*
1454		 * The normal path here is an unused block group is passed here,
1455		 * then trimming is handled in the transaction commit path.
1456		 * Async discard interposes before this to do the trimming
1457		 * before coming down the unused block group path as trimming
1458		 * will no longer be done later in the transaction commit path.
1459		 */
1460		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1461			goto flip_async;
1462
1463		/* DISCARD can flip during remount */
1464		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1465
1466		/* Implicit trim during transaction commit. */
1467		if (trimming)
1468			btrfs_freeze_block_group(block_group);
1469
1470		/*
1471		 * Btrfs_remove_chunk will abort the transaction if things go
1472		 * horribly wrong.
1473		 */
1474		ret = btrfs_remove_chunk(trans, block_group->start);
1475
1476		if (ret) {
1477			if (trimming)
1478				btrfs_unfreeze_block_group(block_group);
1479			goto end_trans;
1480		}
1481
1482		/*
1483		 * If we're not mounted with -odiscard, we can just forget
1484		 * about this block group. Otherwise we'll need to wait
1485		 * until transaction commit to do the actual discard.
1486		 */
1487		if (trimming) {
1488			spin_lock(&fs_info->unused_bgs_lock);
1489			/*
1490			 * A concurrent scrub might have added us to the list
1491			 * fs_info->unused_bgs, so use a list_move operation
1492			 * to add the block group to the deleted_bgs list.
1493			 */
1494			list_move(&block_group->bg_list,
1495				  &trans->transaction->deleted_bgs);
1496			spin_unlock(&fs_info->unused_bgs_lock);
1497			btrfs_get_block_group(block_group);
1498		}
1499end_trans:
1500		btrfs_end_transaction(trans);
1501next:
1502		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1503		btrfs_put_block_group(block_group);
1504		spin_lock(&fs_info->unused_bgs_lock);
1505	}
1506	spin_unlock(&fs_info->unused_bgs_lock);
1507	return;
1508
1509flip_async:
1510	btrfs_end_transaction(trans);
1511	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1512	btrfs_put_block_group(block_group);
1513	btrfs_discard_punt_unused_bgs_list(fs_info);
1514}
1515
1516void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1517{
1518	struct btrfs_fs_info *fs_info = bg->fs_info;
1519
1520	spin_lock(&fs_info->unused_bgs_lock);
1521	if (list_empty(&bg->bg_list)) {
1522		btrfs_get_block_group(bg);
1523		trace_btrfs_add_unused_block_group(bg);
1524		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1525	}
1526	spin_unlock(&fs_info->unused_bgs_lock);
1527}
1528
1529static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1530			   struct btrfs_path *path)
1531{
1532	struct extent_map_tree *em_tree;
1533	struct extent_map *em;
1534	struct btrfs_block_group_item bg;
1535	struct extent_buffer *leaf;
1536	int slot;
1537	u64 flags;
1538	int ret = 0;
1539
1540	slot = path->slots[0];
1541	leaf = path->nodes[0];
1542
1543	em_tree = &fs_info->mapping_tree;
1544	read_lock(&em_tree->lock);
1545	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1546	read_unlock(&em_tree->lock);
1547	if (!em) {
1548		btrfs_err(fs_info,
1549			  "logical %llu len %llu found bg but no related chunk",
1550			  key->objectid, key->offset);
1551		return -ENOENT;
1552	}
1553
1554	if (em->start != key->objectid || em->len != key->offset) {
1555		btrfs_err(fs_info,
1556			"block group %llu len %llu mismatch with chunk %llu len %llu",
1557			key->objectid, key->offset, em->start, em->len);
1558		ret = -EUCLEAN;
1559		goto out_free_em;
1560	}
1561
1562	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1563			   sizeof(bg));
1564	flags = btrfs_stack_block_group_flags(&bg) &
1565		BTRFS_BLOCK_GROUP_TYPE_MASK;
1566
1567	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1568		btrfs_err(fs_info,
1569"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1570			  key->objectid, key->offset, flags,
1571			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1572		ret = -EUCLEAN;
1573	}
1574
1575out_free_em:
1576	free_extent_map(em);
1577	return ret;
1578}
1579
1580static int find_first_block_group(struct btrfs_fs_info *fs_info,
1581				  struct btrfs_path *path,
1582				  struct btrfs_key *key)
1583{
1584	struct btrfs_root *root = fs_info->extent_root;
1585	int ret;
1586	struct btrfs_key found_key;
1587	struct extent_buffer *leaf;
1588	int slot;
1589
1590	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1591	if (ret < 0)
1592		return ret;
1593
1594	while (1) {
1595		slot = path->slots[0];
1596		leaf = path->nodes[0];
1597		if (slot >= btrfs_header_nritems(leaf)) {
1598			ret = btrfs_next_leaf(root, path);
1599			if (ret == 0)
1600				continue;
1601			if (ret < 0)
1602				goto out;
1603			break;
1604		}
1605		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1606
1607		if (found_key.objectid >= key->objectid &&
1608		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1609			ret = read_bg_from_eb(fs_info, &found_key, path);
1610			break;
1611		}
1612
1613		path->slots[0]++;
1614	}
1615out:
1616	return ret;
1617}
1618
1619static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1620{
1621	u64 extra_flags = chunk_to_extended(flags) &
1622				BTRFS_EXTENDED_PROFILE_MASK;
1623
1624	write_seqlock(&fs_info->profiles_lock);
1625	if (flags & BTRFS_BLOCK_GROUP_DATA)
1626		fs_info->avail_data_alloc_bits |= extra_flags;
1627	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1628		fs_info->avail_metadata_alloc_bits |= extra_flags;
1629	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1630		fs_info->avail_system_alloc_bits |= extra_flags;
1631	write_sequnlock(&fs_info->profiles_lock);
1632}
1633
1634/**
1635 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1636 * @chunk_start:   logical address of block group
1637 * @physical:	   physical address to map to logical addresses
1638 * @logical:	   return array of logical addresses which map to @physical
1639 * @naddrs:	   length of @logical
1640 * @stripe_len:    size of IO stripe for the given block group
1641 *
1642 * Maps a particular @physical disk address to a list of @logical addresses.
1643 * Used primarily to exclude those portions of a block group that contain super
1644 * block copies.
1645 */
1646EXPORT_FOR_TESTS
1647int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1648		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1649{
1650	struct extent_map *em;
1651	struct map_lookup *map;
1652	u64 *buf;
1653	u64 bytenr;
1654	u64 data_stripe_length;
1655	u64 io_stripe_size;
1656	int i, nr = 0;
1657	int ret = 0;
1658
1659	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1660	if (IS_ERR(em))
1661		return -EIO;
1662
1663	map = em->map_lookup;
1664	data_stripe_length = em->orig_block_len;
1665	io_stripe_size = map->stripe_len;
1666
1667	/* For RAID5/6 adjust to a full IO stripe length */
1668	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1669		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1670
1671	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1672	if (!buf) {
1673		ret = -ENOMEM;
1674		goto out;
1675	}
1676
1677	for (i = 0; i < map->num_stripes; i++) {
1678		bool already_inserted = false;
1679		u64 stripe_nr;
1680		int j;
1681
1682		if (!in_range(physical, map->stripes[i].physical,
1683			      data_stripe_length))
1684			continue;
1685
1686		stripe_nr = physical - map->stripes[i].physical;
1687		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1688
1689		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1690			stripe_nr = stripe_nr * map->num_stripes + i;
1691			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1692		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1693			stripe_nr = stripe_nr * map->num_stripes + i;
1694		}
1695		/*
1696		 * The remaining case would be for RAID56, multiply by
1697		 * nr_data_stripes().  Alternatively, just use rmap_len below
1698		 * instead of map->stripe_len
1699		 */
1700
1701		bytenr = chunk_start + stripe_nr * io_stripe_size;
1702
1703		/* Ensure we don't add duplicate addresses */
1704		for (j = 0; j < nr; j++) {
1705			if (buf[j] == bytenr) {
1706				already_inserted = true;
1707				break;
1708			}
1709		}
1710
1711		if (!already_inserted)
1712			buf[nr++] = bytenr;
1713	}
1714
1715	*logical = buf;
1716	*naddrs = nr;
1717	*stripe_len = io_stripe_size;
1718out:
1719	free_extent_map(em);
1720	return ret;
1721}
1722
1723static int exclude_super_stripes(struct btrfs_block_group *cache)
1724{
1725	struct btrfs_fs_info *fs_info = cache->fs_info;
1726	u64 bytenr;
1727	u64 *logical;
1728	int stripe_len;
1729	int i, nr, ret;
1730
1731	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1732		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1733		cache->bytes_super += stripe_len;
1734		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1735						stripe_len);
1736		if (ret)
1737			return ret;
1738	}
1739
1740	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1741		bytenr = btrfs_sb_offset(i);
1742		ret = btrfs_rmap_block(fs_info, cache->start,
1743				       bytenr, &logical, &nr, &stripe_len);
1744		if (ret)
1745			return ret;
1746
1747		while (nr--) {
1748			u64 len = min_t(u64, stripe_len,
1749				cache->start + cache->length - logical[nr]);
1750
1751			cache->bytes_super += len;
1752			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1753							len);
1754			if (ret) {
1755				kfree(logical);
1756				return ret;
1757			}
1758		}
1759
1760		kfree(logical);
1761	}
1762	return 0;
1763}
1764
1765static void link_block_group(struct btrfs_block_group *cache)
1766{
1767	struct btrfs_space_info *space_info = cache->space_info;
1768	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1769	bool first = false;
1770
1771	down_write(&space_info->groups_sem);
1772	if (list_empty(&space_info->block_groups[index]))
1773		first = true;
1774	list_add_tail(&cache->list, &space_info->block_groups[index]);
1775	up_write(&space_info->groups_sem);
1776
1777	if (first)
1778		btrfs_sysfs_add_block_group_type(cache);
1779}
1780
1781static struct btrfs_block_group *btrfs_create_block_group_cache(
1782		struct btrfs_fs_info *fs_info, u64 start)
1783{
1784	struct btrfs_block_group *cache;
1785
1786	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1787	if (!cache)
1788		return NULL;
1789
1790	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1791					GFP_NOFS);
1792	if (!cache->free_space_ctl) {
1793		kfree(cache);
1794		return NULL;
1795	}
1796
1797	cache->start = start;
1798
1799	cache->fs_info = fs_info;
1800	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1801
1802	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1803
1804	refcount_set(&cache->refs, 1);
1805	spin_lock_init(&cache->lock);
1806	init_rwsem(&cache->data_rwsem);
1807	INIT_LIST_HEAD(&cache->list);
1808	INIT_LIST_HEAD(&cache->cluster_list);
1809	INIT_LIST_HEAD(&cache->bg_list);
1810	INIT_LIST_HEAD(&cache->ro_list);
1811	INIT_LIST_HEAD(&cache->discard_list);
1812	INIT_LIST_HEAD(&cache->dirty_list);
1813	INIT_LIST_HEAD(&cache->io_list);
1814	btrfs_init_free_space_ctl(cache);
1815	atomic_set(&cache->frozen, 0);
1816	mutex_init(&cache->free_space_lock);
1817	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1818
1819	return cache;
1820}
1821
1822/*
1823 * Iterate all chunks and verify that each of them has the corresponding block
1824 * group
1825 */
1826static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1827{
1828	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1829	struct extent_map *em;
1830	struct btrfs_block_group *bg;
1831	u64 start = 0;
1832	int ret = 0;
1833
1834	while (1) {
1835		read_lock(&map_tree->lock);
1836		/*
1837		 * lookup_extent_mapping will return the first extent map
1838		 * intersecting the range, so setting @len to 1 is enough to
1839		 * get the first chunk.
1840		 */
1841		em = lookup_extent_mapping(map_tree, start, 1);
1842		read_unlock(&map_tree->lock);
1843		if (!em)
1844			break;
1845
1846		bg = btrfs_lookup_block_group(fs_info, em->start);
1847		if (!bg) {
1848			btrfs_err(fs_info,
1849	"chunk start=%llu len=%llu doesn't have corresponding block group",
1850				     em->start, em->len);
1851			ret = -EUCLEAN;
1852			free_extent_map(em);
1853			break;
1854		}
1855		if (bg->start != em->start || bg->length != em->len ||
1856		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1857		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1858			btrfs_err(fs_info,
1859"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1860				em->start, em->len,
1861				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1862				bg->start, bg->length,
1863				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1864			ret = -EUCLEAN;
1865			free_extent_map(em);
1866			btrfs_put_block_group(bg);
1867			break;
1868		}
1869		start = em->start + em->len;
1870		free_extent_map(em);
1871		btrfs_put_block_group(bg);
1872	}
1873	return ret;
1874}
1875
1876static int read_block_group_item(struct btrfs_block_group *cache,
1877				 struct btrfs_path *path,
1878				 const struct btrfs_key *key)
1879{
1880	struct extent_buffer *leaf = path->nodes[0];
1881	struct btrfs_block_group_item bgi;
1882	int slot = path->slots[0];
1883
1884	cache->length = key->offset;
1885
1886	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1887			   sizeof(bgi));
1888	cache->used = btrfs_stack_block_group_used(&bgi);
1889	cache->flags = btrfs_stack_block_group_flags(&bgi);
1890
1891	return 0;
1892}
1893
1894static int read_one_block_group(struct btrfs_fs_info *info,
1895				struct btrfs_path *path,
1896				const struct btrfs_key *key,
1897				int need_clear)
1898{
1899	struct btrfs_block_group *cache;
1900	struct btrfs_space_info *space_info;
1901	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1902	int ret;
1903
1904	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1905
1906	cache = btrfs_create_block_group_cache(info, key->objectid);
1907	if (!cache)
1908		return -ENOMEM;
1909
1910	ret = read_block_group_item(cache, path, key);
1911	if (ret < 0)
1912		goto error;
1913
1914	set_free_space_tree_thresholds(cache);
1915
1916	if (need_clear) {
1917		/*
1918		 * When we mount with old space cache, we need to
1919		 * set BTRFS_DC_CLEAR and set dirty flag.
1920		 *
1921		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1922		 *    truncate the old free space cache inode and
1923		 *    setup a new one.
1924		 * b) Setting 'dirty flag' makes sure that we flush
1925		 *    the new space cache info onto disk.
1926		 */
1927		if (btrfs_test_opt(info, SPACE_CACHE))
1928			cache->disk_cache_state = BTRFS_DC_CLEAR;
1929	}
1930	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1931	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1932			btrfs_err(info,
1933"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1934				  cache->start);
1935			ret = -EINVAL;
1936			goto error;
1937	}
1938
1939	/*
1940	 * We need to exclude the super stripes now so that the space info has
1941	 * super bytes accounted for, otherwise we'll think we have more space
1942	 * than we actually do.
1943	 */
1944	ret = exclude_super_stripes(cache);
1945	if (ret) {
1946		/* We may have excluded something, so call this just in case. */
1947		btrfs_free_excluded_extents(cache);
1948		goto error;
1949	}
1950
1951	/*
1952	 * Check for two cases, either we are full, and therefore don't need
1953	 * to bother with the caching work since we won't find any space, or we
1954	 * are empty, and we can just add all the space in and be done with it.
1955	 * This saves us _a_lot_ of time, particularly in the full case.
1956	 */
1957	if (cache->length == cache->used) {
1958		cache->last_byte_to_unpin = (u64)-1;
1959		cache->cached = BTRFS_CACHE_FINISHED;
1960		btrfs_free_excluded_extents(cache);
1961	} else if (cache->used == 0) {
1962		cache->last_byte_to_unpin = (u64)-1;
1963		cache->cached = BTRFS_CACHE_FINISHED;
1964		add_new_free_space(cache, cache->start,
1965				   cache->start + cache->length);
1966		btrfs_free_excluded_extents(cache);
1967	}
1968
1969	ret = btrfs_add_block_group_cache(info, cache);
1970	if (ret) {
1971		btrfs_remove_free_space_cache(cache);
1972		goto error;
1973	}
1974	trace_btrfs_add_block_group(info, cache, 0);
1975	btrfs_update_space_info(info, cache->flags, cache->length,
1976				cache->used, cache->bytes_super, &space_info);
1977
1978	cache->space_info = space_info;
1979
1980	link_block_group(cache);
1981
1982	set_avail_alloc_bits(info, cache->flags);
1983	if (btrfs_chunk_readonly(info, cache->start)) {
1984		inc_block_group_ro(cache, 1);
1985	} else if (cache->used == 0) {
1986		ASSERT(list_empty(&cache->bg_list));
1987		if (btrfs_test_opt(info, DISCARD_ASYNC))
1988			btrfs_discard_queue_work(&info->discard_ctl, cache);
1989		else
1990			btrfs_mark_bg_unused(cache);
1991	}
1992	return 0;
1993error:
1994	btrfs_put_block_group(cache);
1995	return ret;
1996}
1997
1998int btrfs_read_block_groups(struct btrfs_fs_info *info)
1999{
2000	struct btrfs_path *path;
2001	int ret;
2002	struct btrfs_block_group *cache;
2003	struct btrfs_space_info *space_info;
2004	struct btrfs_key key;
2005	int need_clear = 0;
2006	u64 cache_gen;
2007
2008	key.objectid = 0;
2009	key.offset = 0;
2010	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2011	path = btrfs_alloc_path();
2012	if (!path)
2013		return -ENOMEM;
2014
2015	cache_gen = btrfs_super_cache_generation(info->super_copy);
2016	if (btrfs_test_opt(info, SPACE_CACHE) &&
2017	    btrfs_super_generation(info->super_copy) != cache_gen)
2018		need_clear = 1;
2019	if (btrfs_test_opt(info, CLEAR_CACHE))
2020		need_clear = 1;
2021
2022	while (1) {
2023		ret = find_first_block_group(info, path, &key);
2024		if (ret > 0)
2025			break;
2026		if (ret != 0)
2027			goto error;
2028
2029		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2030		ret = read_one_block_group(info, path, &key, need_clear);
2031		if (ret < 0)
2032			goto error;
2033		key.objectid += key.offset;
2034		key.offset = 0;
2035		btrfs_release_path(path);
2036	}
2037
2038	rcu_read_lock();
2039	list_for_each_entry_rcu(space_info, &info->space_info, list) {
2040		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2041		      (BTRFS_BLOCK_GROUP_RAID10 |
2042		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2043		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2044		       BTRFS_BLOCK_GROUP_DUP)))
2045			continue;
2046		/*
2047		 * Avoid allocating from un-mirrored block group if there are
2048		 * mirrored block groups.
2049		 */
2050		list_for_each_entry(cache,
2051				&space_info->block_groups[BTRFS_RAID_RAID0],
2052				list)
2053			inc_block_group_ro(cache, 1);
2054		list_for_each_entry(cache,
2055				&space_info->block_groups[BTRFS_RAID_SINGLE],
2056				list)
2057			inc_block_group_ro(cache, 1);
2058	}
2059	rcu_read_unlock();
2060
2061	btrfs_init_global_block_rsv(info);
2062	ret = check_chunk_block_group_mappings(info);
2063error:
2064	btrfs_free_path(path);
2065	return ret;
2066}
2067
2068static int insert_block_group_item(struct btrfs_trans_handle *trans,
2069				   struct btrfs_block_group *block_group)
2070{
2071	struct btrfs_fs_info *fs_info = trans->fs_info;
2072	struct btrfs_block_group_item bgi;
2073	struct btrfs_root *root;
2074	struct btrfs_key key;
2075
2076	spin_lock(&block_group->lock);
2077	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2078	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2079				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2080	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2081	key.objectid = block_group->start;
2082	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2083	key.offset = block_group->length;
2084	spin_unlock(&block_group->lock);
2085
2086	root = fs_info->extent_root;
2087	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2088}
2089
2090void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2091{
2092	struct btrfs_fs_info *fs_info = trans->fs_info;
2093	struct btrfs_block_group *block_group;
2094	int ret = 0;
2095
2096	if (!trans->can_flush_pending_bgs)
2097		return;
2098
2099	while (!list_empty(&trans->new_bgs)) {
2100		block_group = list_first_entry(&trans->new_bgs,
2101					       struct btrfs_block_group,
2102					       bg_list);
2103		if (ret)
2104			goto next;
2105
2106		ret = insert_block_group_item(trans, block_group);
2107		if (ret)
2108			btrfs_abort_transaction(trans, ret);
2109		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2110					block_group->length);
2111		if (ret)
2112			btrfs_abort_transaction(trans, ret);
2113		add_block_group_free_space(trans, block_group);
2114		/* Already aborted the transaction if it failed. */
2115next:
2116		btrfs_delayed_refs_rsv_release(fs_info, 1);
2117		list_del_init(&block_group->bg_list);
2118	}
2119	btrfs_trans_release_chunk_metadata(trans);
2120}
2121
2122int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2123			   u64 type, u64 chunk_offset, u64 size)
2124{
2125	struct btrfs_fs_info *fs_info = trans->fs_info;
2126	struct btrfs_block_group *cache;
2127	int ret;
2128
2129	btrfs_set_log_full_commit(trans);
2130
2131	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2132	if (!cache)
2133		return -ENOMEM;
2134
2135	cache->length = size;
2136	set_free_space_tree_thresholds(cache);
2137	cache->used = bytes_used;
2138	cache->flags = type;
2139	cache->last_byte_to_unpin = (u64)-1;
2140	cache->cached = BTRFS_CACHE_FINISHED;
2141	cache->needs_free_space = 1;
2142	ret = exclude_super_stripes(cache);
2143	if (ret) {
2144		/* We may have excluded something, so call this just in case */
2145		btrfs_free_excluded_extents(cache);
2146		btrfs_put_block_group(cache);
2147		return ret;
2148	}
2149
2150	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2151
2152	btrfs_free_excluded_extents(cache);
2153
2154#ifdef CONFIG_BTRFS_DEBUG
2155	if (btrfs_should_fragment_free_space(cache)) {
2156		u64 new_bytes_used = size - bytes_used;
2157
2158		bytes_used += new_bytes_used >> 1;
2159		fragment_free_space(cache);
2160	}
2161#endif
2162	/*
2163	 * Ensure the corresponding space_info object is created and
2164	 * assigned to our block group. We want our bg to be added to the rbtree
2165	 * with its ->space_info set.
2166	 */
2167	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2168	ASSERT(cache->space_info);
2169
2170	ret = btrfs_add_block_group_cache(fs_info, cache);
2171	if (ret) {
2172		btrfs_remove_free_space_cache(cache);
2173		btrfs_put_block_group(cache);
2174		return ret;
2175	}
2176
2177	/*
2178	 * Now that our block group has its ->space_info set and is inserted in
2179	 * the rbtree, update the space info's counters.
2180	 */
2181	trace_btrfs_add_block_group(fs_info, cache, 1);
2182	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2183				cache->bytes_super, &cache->space_info);
2184	btrfs_update_global_block_rsv(fs_info);
2185
2186	link_block_group(cache);
2187
2188	list_add_tail(&cache->bg_list, &trans->new_bgs);
2189	trans->delayed_ref_updates++;
2190	btrfs_update_delayed_refs_rsv(trans);
2191
2192	set_avail_alloc_bits(fs_info, type);
2193	return 0;
2194}
2195
2196/*
2197 * Mark one block group RO, can be called several times for the same block
2198 * group.
2199 *
2200 * @cache:		the destination block group
2201 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2202 * 			ensure we still have some free space after marking this
2203 * 			block group RO.
2204 */
2205int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2206			     bool do_chunk_alloc)
2207{
2208	struct btrfs_fs_info *fs_info = cache->fs_info;
2209	struct btrfs_trans_handle *trans;
2210	u64 alloc_flags;
2211	int ret;
2212
2213again:
2214	trans = btrfs_join_transaction(fs_info->extent_root);
2215	if (IS_ERR(trans))
2216		return PTR_ERR(trans);
2217
2218	/*
2219	 * we're not allowed to set block groups readonly after the dirty
2220	 * block groups cache has started writing.  If it already started,
2221	 * back off and let this transaction commit
2222	 */
2223	mutex_lock(&fs_info->ro_block_group_mutex);
2224	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2225		u64 transid = trans->transid;
2226
2227		mutex_unlock(&fs_info->ro_block_group_mutex);
2228		btrfs_end_transaction(trans);
2229
2230		ret = btrfs_wait_for_commit(fs_info, transid);
2231		if (ret)
2232			return ret;
2233		goto again;
2234	}
2235
2236	if (do_chunk_alloc) {
2237		/*
2238		 * If we are changing raid levels, try to allocate a
2239		 * corresponding block group with the new raid level.
2240		 */
2241		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2242		if (alloc_flags != cache->flags) {
2243			ret = btrfs_chunk_alloc(trans, alloc_flags,
2244						CHUNK_ALLOC_FORCE);
2245			/*
2246			 * ENOSPC is allowed here, we may have enough space
2247			 * already allocated at the new raid level to carry on
2248			 */
2249			if (ret == -ENOSPC)
2250				ret = 0;
2251			if (ret < 0)
2252				goto out;
2253		}
2254	}
2255
2256	ret = inc_block_group_ro(cache, 0);
2257	if (!do_chunk_alloc)
2258		goto unlock_out;
2259	if (!ret)
2260		goto out;
2261	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2262	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2263	if (ret < 0)
2264		goto out;
2265	ret = inc_block_group_ro(cache, 0);
2266out:
2267	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2268		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2269		mutex_lock(&fs_info->chunk_mutex);
2270		check_system_chunk(trans, alloc_flags);
2271		mutex_unlock(&fs_info->chunk_mutex);
2272	}
2273unlock_out:
2274	mutex_unlock(&fs_info->ro_block_group_mutex);
2275
2276	btrfs_end_transaction(trans);
2277	return ret;
2278}
2279
2280void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2281{
2282	struct btrfs_space_info *sinfo = cache->space_info;
2283	u64 num_bytes;
2284
2285	BUG_ON(!cache->ro);
2286
2287	spin_lock(&sinfo->lock);
2288	spin_lock(&cache->lock);
2289	if (!--cache->ro) {
2290		num_bytes = cache->length - cache->reserved -
2291			    cache->pinned - cache->bytes_super - cache->used;
2292		sinfo->bytes_readonly -= num_bytes;
2293		list_del_init(&cache->ro_list);
2294	}
2295	spin_unlock(&cache->lock);
2296	spin_unlock(&sinfo->lock);
2297}
2298
2299static int update_block_group_item(struct btrfs_trans_handle *trans,
2300				   struct btrfs_path *path,
2301				   struct btrfs_block_group *cache)
2302{
2303	struct btrfs_fs_info *fs_info = trans->fs_info;
2304	int ret;
2305	struct btrfs_root *root = fs_info->extent_root;
2306	unsigned long bi;
2307	struct extent_buffer *leaf;
2308	struct btrfs_block_group_item bgi;
2309	struct btrfs_key key;
2310
2311	key.objectid = cache->start;
2312	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2313	key.offset = cache->length;
2314
2315	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2316	if (ret) {
2317		if (ret > 0)
2318			ret = -ENOENT;
2319		goto fail;
2320	}
2321
2322	leaf = path->nodes[0];
2323	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2324	btrfs_set_stack_block_group_used(&bgi, cache->used);
2325	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2326			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2327	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2328	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2329	btrfs_mark_buffer_dirty(leaf);
2330fail:
2331	btrfs_release_path(path);
2332	return ret;
2333
2334}
2335
2336static int cache_save_setup(struct btrfs_block_group *block_group,
2337			    struct btrfs_trans_handle *trans,
2338			    struct btrfs_path *path)
2339{
2340	struct btrfs_fs_info *fs_info = block_group->fs_info;
2341	struct btrfs_root *root = fs_info->tree_root;
2342	struct inode *inode = NULL;
2343	struct extent_changeset *data_reserved = NULL;
2344	u64 alloc_hint = 0;
2345	int dcs = BTRFS_DC_ERROR;
2346	u64 num_pages = 0;
2347	int retries = 0;
2348	int ret = 0;
2349
2350	/*
2351	 * If this block group is smaller than 100 megs don't bother caching the
2352	 * block group.
2353	 */
2354	if (block_group->length < (100 * SZ_1M)) {
2355		spin_lock(&block_group->lock);
2356		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2357		spin_unlock(&block_group->lock);
2358		return 0;
2359	}
2360
2361	if (TRANS_ABORTED(trans))
2362		return 0;
2363again:
2364	inode = lookup_free_space_inode(block_group, path);
2365	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2366		ret = PTR_ERR(inode);
2367		btrfs_release_path(path);
2368		goto out;
2369	}
2370
2371	if (IS_ERR(inode)) {
2372		BUG_ON(retries);
2373		retries++;
2374
2375		if (block_group->ro)
2376			goto out_free;
2377
2378		ret = create_free_space_inode(trans, block_group, path);
2379		if (ret)
2380			goto out_free;
2381		goto again;
2382	}
2383
2384	/*
2385	 * We want to set the generation to 0, that way if anything goes wrong
2386	 * from here on out we know not to trust this cache when we load up next
2387	 * time.
2388	 */
2389	BTRFS_I(inode)->generation = 0;
2390	ret = btrfs_update_inode(trans, root, inode);
2391	if (ret) {
2392		/*
2393		 * So theoretically we could recover from this, simply set the
2394		 * super cache generation to 0 so we know to invalidate the
2395		 * cache, but then we'd have to keep track of the block groups
2396		 * that fail this way so we know we _have_ to reset this cache
2397		 * before the next commit or risk reading stale cache.  So to
2398		 * limit our exposure to horrible edge cases lets just abort the
2399		 * transaction, this only happens in really bad situations
2400		 * anyway.
2401		 */
2402		btrfs_abort_transaction(trans, ret);
2403		goto out_put;
2404	}
2405	WARN_ON(ret);
2406
2407	/* We've already setup this transaction, go ahead and exit */
2408	if (block_group->cache_generation == trans->transid &&
2409	    i_size_read(inode)) {
2410		dcs = BTRFS_DC_SETUP;
2411		goto out_put;
2412	}
2413
2414	if (i_size_read(inode) > 0) {
2415		ret = btrfs_check_trunc_cache_free_space(fs_info,
2416					&fs_info->global_block_rsv);
2417		if (ret)
2418			goto out_put;
2419
2420		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2421		if (ret)
2422			goto out_put;
2423	}
2424
2425	spin_lock(&block_group->lock);
2426	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2427	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2428		/*
2429		 * don't bother trying to write stuff out _if_
2430		 * a) we're not cached,
2431		 * b) we're with nospace_cache mount option,
2432		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2433		 */
2434		dcs = BTRFS_DC_WRITTEN;
2435		spin_unlock(&block_group->lock);
2436		goto out_put;
2437	}
2438	spin_unlock(&block_group->lock);
2439
2440	/*
2441	 * We hit an ENOSPC when setting up the cache in this transaction, just
2442	 * skip doing the setup, we've already cleared the cache so we're safe.
2443	 */
2444	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2445		ret = -ENOSPC;
2446		goto out_put;
2447	}
2448
2449	/*
2450	 * Try to preallocate enough space based on how big the block group is.
2451	 * Keep in mind this has to include any pinned space which could end up
2452	 * taking up quite a bit since it's not folded into the other space
2453	 * cache.
2454	 */
2455	num_pages = div_u64(block_group->length, SZ_256M);
2456	if (!num_pages)
2457		num_pages = 1;
2458
2459	num_pages *= 16;
2460	num_pages *= PAGE_SIZE;
2461
2462	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2463					  num_pages);
2464	if (ret)
2465		goto out_put;
2466
2467	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2468					      num_pages, num_pages,
2469					      &alloc_hint);
2470	/*
2471	 * Our cache requires contiguous chunks so that we don't modify a bunch
2472	 * of metadata or split extents when writing the cache out, which means
2473	 * we can enospc if we are heavily fragmented in addition to just normal
2474	 * out of space conditions.  So if we hit this just skip setting up any
2475	 * other block groups for this transaction, maybe we'll unpin enough
2476	 * space the next time around.
2477	 */
2478	if (!ret)
2479		dcs = BTRFS_DC_SETUP;
2480	else if (ret == -ENOSPC)
2481		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2482
2483out_put:
2484	iput(inode);
2485out_free:
2486	btrfs_release_path(path);
2487out:
2488	spin_lock(&block_group->lock);
2489	if (!ret && dcs == BTRFS_DC_SETUP)
2490		block_group->cache_generation = trans->transid;
2491	block_group->disk_cache_state = dcs;
2492	spin_unlock(&block_group->lock);
2493
2494	extent_changeset_free(data_reserved);
2495	return ret;
2496}
2497
2498int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2499{
2500	struct btrfs_fs_info *fs_info = trans->fs_info;
2501	struct btrfs_block_group *cache, *tmp;
2502	struct btrfs_transaction *cur_trans = trans->transaction;
2503	struct btrfs_path *path;
2504
2505	if (list_empty(&cur_trans->dirty_bgs) ||
2506	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2507		return 0;
2508
2509	path = btrfs_alloc_path();
2510	if (!path)
2511		return -ENOMEM;
2512
2513	/* Could add new block groups, use _safe just in case */
2514	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2515				 dirty_list) {
2516		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2517			cache_save_setup(cache, trans, path);
2518	}
2519
2520	btrfs_free_path(path);
2521	return 0;
2522}
2523
2524/*
2525 * Transaction commit does final block group cache writeback during a critical
2526 * section where nothing is allowed to change the FS.  This is required in
2527 * order for the cache to actually match the block group, but can introduce a
2528 * lot of latency into the commit.
2529 *
2530 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2531 * There's a chance we'll have to redo some of it if the block group changes
2532 * again during the commit, but it greatly reduces the commit latency by
2533 * getting rid of the easy block groups while we're still allowing others to
2534 * join the commit.
2535 */
2536int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2537{
2538	struct btrfs_fs_info *fs_info = trans->fs_info;
2539	struct btrfs_block_group *cache;
2540	struct btrfs_transaction *cur_trans = trans->transaction;
2541	int ret = 0;
2542	int should_put;
2543	struct btrfs_path *path = NULL;
2544	LIST_HEAD(dirty);
2545	struct list_head *io = &cur_trans->io_bgs;
2546	int num_started = 0;
2547	int loops = 0;
2548
2549	spin_lock(&cur_trans->dirty_bgs_lock);
2550	if (list_empty(&cur_trans->dirty_bgs)) {
2551		spin_unlock(&cur_trans->dirty_bgs_lock);
2552		return 0;
2553	}
2554	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2555	spin_unlock(&cur_trans->dirty_bgs_lock);
2556
2557again:
2558	/* Make sure all the block groups on our dirty list actually exist */
2559	btrfs_create_pending_block_groups(trans);
2560
2561	if (!path) {
2562		path = btrfs_alloc_path();
2563		if (!path)
2564			return -ENOMEM;
2565	}
2566
2567	/*
2568	 * cache_write_mutex is here only to save us from balance or automatic
2569	 * removal of empty block groups deleting this block group while we are
2570	 * writing out the cache
2571	 */
2572	mutex_lock(&trans->transaction->cache_write_mutex);
2573	while (!list_empty(&dirty)) {
2574		bool drop_reserve = true;
2575
2576		cache = list_first_entry(&dirty, struct btrfs_block_group,
2577					 dirty_list);
2578		/*
2579		 * This can happen if something re-dirties a block group that
2580		 * is already under IO.  Just wait for it to finish and then do
2581		 * it all again
2582		 */
2583		if (!list_empty(&cache->io_list)) {
2584			list_del_init(&cache->io_list);
2585			btrfs_wait_cache_io(trans, cache, path);
2586			btrfs_put_block_group(cache);
2587		}
2588
2589
2590		/*
2591		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2592		 * it should update the cache_state.  Don't delete until after
2593		 * we wait.
2594		 *
2595		 * Since we're not running in the commit critical section
2596		 * we need the dirty_bgs_lock to protect from update_block_group
2597		 */
2598		spin_lock(&cur_trans->dirty_bgs_lock);
2599		list_del_init(&cache->dirty_list);
2600		spin_unlock(&cur_trans->dirty_bgs_lock);
2601
2602		should_put = 1;
2603
2604		cache_save_setup(cache, trans, path);
2605
2606		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2607			cache->io_ctl.inode = NULL;
2608			ret = btrfs_write_out_cache(trans, cache, path);
2609			if (ret == 0 && cache->io_ctl.inode) {
2610				num_started++;
2611				should_put = 0;
2612
2613				/*
2614				 * The cache_write_mutex is protecting the
2615				 * io_list, also refer to the definition of
2616				 * btrfs_transaction::io_bgs for more details
2617				 */
2618				list_add_tail(&cache->io_list, io);
2619			} else {
2620				/*
2621				 * If we failed to write the cache, the
2622				 * generation will be bad and life goes on
2623				 */
2624				ret = 0;
2625			}
2626		}
2627		if (!ret) {
2628			ret = update_block_group_item(trans, path, cache);
2629			/*
2630			 * Our block group might still be attached to the list
2631			 * of new block groups in the transaction handle of some
2632			 * other task (struct btrfs_trans_handle->new_bgs). This
2633			 * means its block group item isn't yet in the extent
2634			 * tree. If this happens ignore the error, as we will
2635			 * try again later in the critical section of the
2636			 * transaction commit.
2637			 */
2638			if (ret == -ENOENT) {
2639				ret = 0;
2640				spin_lock(&cur_trans->dirty_bgs_lock);
2641				if (list_empty(&cache->dirty_list)) {
2642					list_add_tail(&cache->dirty_list,
2643						      &cur_trans->dirty_bgs);
2644					btrfs_get_block_group(cache);
2645					drop_reserve = false;
2646				}
2647				spin_unlock(&cur_trans->dirty_bgs_lock);
2648			} else if (ret) {
2649				btrfs_abort_transaction(trans, ret);
2650			}
2651		}
2652
2653		/* If it's not on the io list, we need to put the block group */
2654		if (should_put)
2655			btrfs_put_block_group(cache);
2656		if (drop_reserve)
2657			btrfs_delayed_refs_rsv_release(fs_info, 1);
2658
2659		if (ret)
2660			break;
2661
2662		/*
2663		 * Avoid blocking other tasks for too long. It might even save
2664		 * us from writing caches for block groups that are going to be
2665		 * removed.
2666		 */
2667		mutex_unlock(&trans->transaction->cache_write_mutex);
2668		mutex_lock(&trans->transaction->cache_write_mutex);
2669	}
2670	mutex_unlock(&trans->transaction->cache_write_mutex);
2671
2672	/*
2673	 * Go through delayed refs for all the stuff we've just kicked off
2674	 * and then loop back (just once)
2675	 */
2676	ret = btrfs_run_delayed_refs(trans, 0);
2677	if (!ret && loops == 0) {
2678		loops++;
2679		spin_lock(&cur_trans->dirty_bgs_lock);
2680		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2681		/*
2682		 * dirty_bgs_lock protects us from concurrent block group
2683		 * deletes too (not just cache_write_mutex).
2684		 */
2685		if (!list_empty(&dirty)) {
2686			spin_unlock(&cur_trans->dirty_bgs_lock);
2687			goto again;
2688		}
2689		spin_unlock(&cur_trans->dirty_bgs_lock);
2690	} else if (ret < 0) {
2691		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2692	}
2693
2694	btrfs_free_path(path);
2695	return ret;
2696}
2697
2698int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2699{
2700	struct btrfs_fs_info *fs_info = trans->fs_info;
2701	struct btrfs_block_group *cache;
2702	struct btrfs_transaction *cur_trans = trans->transaction;
2703	int ret = 0;
2704	int should_put;
2705	struct btrfs_path *path;
2706	struct list_head *io = &cur_trans->io_bgs;
2707	int num_started = 0;
2708
2709	path = btrfs_alloc_path();
2710	if (!path)
2711		return -ENOMEM;
2712
2713	/*
2714	 * Even though we are in the critical section of the transaction commit,
2715	 * we can still have concurrent tasks adding elements to this
2716	 * transaction's list of dirty block groups. These tasks correspond to
2717	 * endio free space workers started when writeback finishes for a
2718	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2719	 * allocate new block groups as a result of COWing nodes of the root
2720	 * tree when updating the free space inode. The writeback for the space
2721	 * caches is triggered by an earlier call to
2722	 * btrfs_start_dirty_block_groups() and iterations of the following
2723	 * loop.
2724	 * Also we want to do the cache_save_setup first and then run the
2725	 * delayed refs to make sure we have the best chance at doing this all
2726	 * in one shot.
2727	 */
2728	spin_lock(&cur_trans->dirty_bgs_lock);
2729	while (!list_empty(&cur_trans->dirty_bgs)) {
2730		cache = list_first_entry(&cur_trans->dirty_bgs,
2731					 struct btrfs_block_group,
2732					 dirty_list);
2733
2734		/*
2735		 * This can happen if cache_save_setup re-dirties a block group
2736		 * that is already under IO.  Just wait for it to finish and
2737		 * then do it all again
2738		 */
2739		if (!list_empty(&cache->io_list)) {
2740			spin_unlock(&cur_trans->dirty_bgs_lock);
2741			list_del_init(&cache->io_list);
2742			btrfs_wait_cache_io(trans, cache, path);
2743			btrfs_put_block_group(cache);
2744			spin_lock(&cur_trans->dirty_bgs_lock);
2745		}
2746
2747		/*
2748		 * Don't remove from the dirty list until after we've waited on
2749		 * any pending IO
2750		 */
2751		list_del_init(&cache->dirty_list);
2752		spin_unlock(&cur_trans->dirty_bgs_lock);
2753		should_put = 1;
2754
2755		cache_save_setup(cache, trans, path);
2756
2757		if (!ret)
2758			ret = btrfs_run_delayed_refs(trans,
2759						     (unsigned long) -1);
2760
2761		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2762			cache->io_ctl.inode = NULL;
2763			ret = btrfs_write_out_cache(trans, cache, path);
2764			if (ret == 0 && cache->io_ctl.inode) {
2765				num_started++;
2766				should_put = 0;
2767				list_add_tail(&cache->io_list, io);
2768			} else {
2769				/*
2770				 * If we failed to write the cache, the
2771				 * generation will be bad and life goes on
2772				 */
2773				ret = 0;
2774			}
2775		}
2776		if (!ret) {
2777			ret = update_block_group_item(trans, path, cache);
2778			/*
2779			 * One of the free space endio workers might have
2780			 * created a new block group while updating a free space
2781			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2782			 * and hasn't released its transaction handle yet, in
2783			 * which case the new block group is still attached to
2784			 * its transaction handle and its creation has not
2785			 * finished yet (no block group item in the extent tree
2786			 * yet, etc). If this is the case, wait for all free
2787			 * space endio workers to finish and retry. This is a
2788			 * a very rare case so no need for a more efficient and
2789			 * complex approach.
2790			 */
2791			if (ret == -ENOENT) {
2792				wait_event(cur_trans->writer_wait,
2793				   atomic_read(&cur_trans->num_writers) == 1);
2794				ret = update_block_group_item(trans, path, cache);
2795			}
2796			if (ret)
2797				btrfs_abort_transaction(trans, ret);
2798		}
2799
2800		/* If its not on the io list, we need to put the block group */
2801		if (should_put)
2802			btrfs_put_block_group(cache);
2803		btrfs_delayed_refs_rsv_release(fs_info, 1);
2804		spin_lock(&cur_trans->dirty_bgs_lock);
2805	}
2806	spin_unlock(&cur_trans->dirty_bgs_lock);
2807
2808	/*
2809	 * Refer to the definition of io_bgs member for details why it's safe
2810	 * to use it without any locking
2811	 */
2812	while (!list_empty(io)) {
2813		cache = list_first_entry(io, struct btrfs_block_group,
2814					 io_list);
2815		list_del_init(&cache->io_list);
2816		btrfs_wait_cache_io(trans, cache, path);
2817		btrfs_put_block_group(cache);
2818	}
2819
2820	btrfs_free_path(path);
2821	return ret;
2822}
2823
2824int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2825			     u64 bytenr, u64 num_bytes, int alloc)
2826{
2827	struct btrfs_fs_info *info = trans->fs_info;
2828	struct btrfs_block_group *cache = NULL;
2829	u64 total = num_bytes;
2830	u64 old_val;
2831	u64 byte_in_group;
2832	int factor;
2833	int ret = 0;
2834
2835	/* Block accounting for super block */
2836	spin_lock(&info->delalloc_root_lock);
2837	old_val = btrfs_super_bytes_used(info->super_copy);
2838	if (alloc)
2839		old_val += num_bytes;
2840	else
2841		old_val -= num_bytes;
2842	btrfs_set_super_bytes_used(info->super_copy, old_val);
2843	spin_unlock(&info->delalloc_root_lock);
2844
2845	while (total) {
2846		cache = btrfs_lookup_block_group(info, bytenr);
2847		if (!cache) {
2848			ret = -ENOENT;
2849			break;
2850		}
2851		factor = btrfs_bg_type_to_factor(cache->flags);
2852
2853		/*
2854		 * If this block group has free space cache written out, we
2855		 * need to make sure to load it if we are removing space.  This
2856		 * is because we need the unpinning stage to actually add the
2857		 * space back to the block group, otherwise we will leak space.
2858		 */
2859		if (!alloc && !btrfs_block_group_done(cache))
2860			btrfs_cache_block_group(cache, 1);
2861
2862		byte_in_group = bytenr - cache->start;
2863		WARN_ON(byte_in_group > cache->length);
2864
2865		spin_lock(&cache->space_info->lock);
2866		spin_lock(&cache->lock);
2867
2868		if (btrfs_test_opt(info, SPACE_CACHE) &&
2869		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2870			cache->disk_cache_state = BTRFS_DC_CLEAR;
2871
2872		old_val = cache->used;
2873		num_bytes = min(total, cache->length - byte_in_group);
2874		if (alloc) {
2875			old_val += num_bytes;
2876			cache->used = old_val;
2877			cache->reserved -= num_bytes;
2878			cache->space_info->bytes_reserved -= num_bytes;
2879			cache->space_info->bytes_used += num_bytes;
2880			cache->space_info->disk_used += num_bytes * factor;
2881			spin_unlock(&cache->lock);
2882			spin_unlock(&cache->space_info->lock);
2883		} else {
2884			old_val -= num_bytes;
2885			cache->used = old_val;
2886			cache->pinned += num_bytes;
2887			btrfs_space_info_update_bytes_pinned(info,
2888					cache->space_info, num_bytes);
2889			cache->space_info->bytes_used -= num_bytes;
2890			cache->space_info->disk_used -= num_bytes * factor;
2891			spin_unlock(&cache->lock);
2892			spin_unlock(&cache->space_info->lock);
2893
2894			percpu_counter_add_batch(
2895					&cache->space_info->total_bytes_pinned,
2896					num_bytes,
2897					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2898			set_extent_dirty(&trans->transaction->pinned_extents,
2899					 bytenr, bytenr + num_bytes - 1,
2900					 GFP_NOFS | __GFP_NOFAIL);
2901		}
2902
2903		spin_lock(&trans->transaction->dirty_bgs_lock);
2904		if (list_empty(&cache->dirty_list)) {
2905			list_add_tail(&cache->dirty_list,
2906				      &trans->transaction->dirty_bgs);
2907			trans->delayed_ref_updates++;
2908			btrfs_get_block_group(cache);
2909		}
2910		spin_unlock(&trans->transaction->dirty_bgs_lock);
2911
2912		/*
2913		 * No longer have used bytes in this block group, queue it for
2914		 * deletion. We do this after adding the block group to the
2915		 * dirty list to avoid races between cleaner kthread and space
2916		 * cache writeout.
2917		 */
2918		if (!alloc && old_val == 0) {
2919			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2920				btrfs_mark_bg_unused(cache);
2921		}
2922
2923		btrfs_put_block_group(cache);
2924		total -= num_bytes;
2925		bytenr += num_bytes;
2926	}
2927
2928	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2929	btrfs_update_delayed_refs_rsv(trans);
2930	return ret;
2931}
2932
2933/**
2934 * btrfs_add_reserved_bytes - update the block_group and space info counters
2935 * @cache:	The cache we are manipulating
2936 * @ram_bytes:  The number of bytes of file content, and will be same to
2937 *              @num_bytes except for the compress path.
2938 * @num_bytes:	The number of bytes in question
2939 * @delalloc:   The blocks are allocated for the delalloc write
2940 *
2941 * This is called by the allocator when it reserves space. If this is a
2942 * reservation and the block group has become read only we cannot make the
2943 * reservation and return -EAGAIN, otherwise this function always succeeds.
2944 */
2945int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2946			     u64 ram_bytes, u64 num_bytes, int delalloc)
2947{
2948	struct btrfs_space_info *space_info = cache->space_info;
2949	int ret = 0;
2950
2951	spin_lock(&space_info->lock);
2952	spin_lock(&cache->lock);
2953	if (cache->ro) {
2954		ret = -EAGAIN;
2955	} else {
2956		cache->reserved += num_bytes;
2957		space_info->bytes_reserved += num_bytes;
2958		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2959					      space_info->flags, num_bytes, 1);
2960		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2961						      space_info, -ram_bytes);
2962		if (delalloc)
2963			cache->delalloc_bytes += num_bytes;
2964	}
2965	spin_unlock(&cache->lock);
2966	spin_unlock(&space_info->lock);
2967	return ret;
2968}
2969
2970/**
2971 * btrfs_free_reserved_bytes - update the block_group and space info counters
2972 * @cache:      The cache we are manipulating
2973 * @num_bytes:  The number of bytes in question
2974 * @delalloc:   The blocks are allocated for the delalloc write
2975 *
2976 * This is called by somebody who is freeing space that was never actually used
2977 * on disk.  For example if you reserve some space for a new leaf in transaction
2978 * A and before transaction A commits you free that leaf, you call this with
2979 * reserve set to 0 in order to clear the reservation.
2980 */
2981void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2982			       u64 num_bytes, int delalloc)
2983{
2984	struct btrfs_space_info *space_info = cache->space_info;
2985
2986	spin_lock(&space_info->lock);
2987	spin_lock(&cache->lock);
2988	if (cache->ro)
2989		space_info->bytes_readonly += num_bytes;
2990	cache->reserved -= num_bytes;
2991	space_info->bytes_reserved -= num_bytes;
2992	space_info->max_extent_size = 0;
2993
2994	if (delalloc)
2995		cache->delalloc_bytes -= num_bytes;
2996	spin_unlock(&cache->lock);
2997	spin_unlock(&space_info->lock);
2998}
2999
3000static void force_metadata_allocation(struct btrfs_fs_info *info)
3001{
3002	struct list_head *head = &info->space_info;
3003	struct btrfs_space_info *found;
3004
3005	rcu_read_lock();
3006	list_for_each_entry_rcu(found, head, list) {
3007		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3008			found->force_alloc = CHUNK_ALLOC_FORCE;
3009	}
3010	rcu_read_unlock();
3011}
3012
3013static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3014			      struct btrfs_space_info *sinfo, int force)
3015{
3016	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3017	u64 thresh;
3018
3019	if (force == CHUNK_ALLOC_FORCE)
3020		return 1;
3021
3022	/*
3023	 * in limited mode, we want to have some free space up to
3024	 * about 1% of the FS size.
3025	 */
3026	if (force == CHUNK_ALLOC_LIMITED) {
3027		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3028		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3029
3030		if (sinfo->total_bytes - bytes_used < thresh)
3031			return 1;
3032	}
3033
3034	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3035		return 0;
3036	return 1;
3037}
3038
3039int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3040{
3041	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3042
3043	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3044}
3045
3046/*
3047 * If force is CHUNK_ALLOC_FORCE:
3048 *    - return 1 if it successfully allocates a chunk,
3049 *    - return errors including -ENOSPC otherwise.
3050 * If force is NOT CHUNK_ALLOC_FORCE:
3051 *    - return 0 if it doesn't need to allocate a new chunk,
3052 *    - return 1 if it successfully allocates a chunk,
3053 *    - return errors including -ENOSPC otherwise.
3054 */
3055int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3056		      enum btrfs_chunk_alloc_enum force)
3057{
3058	struct btrfs_fs_info *fs_info = trans->fs_info;
3059	struct btrfs_space_info *space_info;
3060	bool wait_for_alloc = false;
3061	bool should_alloc = false;
3062	int ret = 0;
3063
3064	/* Don't re-enter if we're already allocating a chunk */
3065	if (trans->allocating_chunk)
3066		return -ENOSPC;
3067
3068	space_info = btrfs_find_space_info(fs_info, flags);
3069	ASSERT(space_info);
3070
3071	do {
3072		spin_lock(&space_info->lock);
3073		if (force < space_info->force_alloc)
3074			force = space_info->force_alloc;
3075		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3076		if (space_info->full) {
3077			/* No more free physical space */
3078			if (should_alloc)
3079				ret = -ENOSPC;
3080			else
3081				ret = 0;
3082			spin_unlock(&space_info->lock);
3083			return ret;
3084		} else if (!should_alloc) {
3085			spin_unlock(&space_info->lock);
3086			return 0;
3087		} else if (space_info->chunk_alloc) {
3088			/*
3089			 * Someone is already allocating, so we need to block
3090			 * until this someone is finished and then loop to
3091			 * recheck if we should continue with our allocation
3092			 * attempt.
3093			 */
3094			wait_for_alloc = true;
3095			spin_unlock(&space_info->lock);
3096			mutex_lock(&fs_info->chunk_mutex);
3097			mutex_unlock(&fs_info->chunk_mutex);
3098		} else {
3099			/* Proceed with allocation */
3100			space_info->chunk_alloc = 1;
3101			wait_for_alloc = false;
3102			spin_unlock(&space_info->lock);
3103		}
3104
3105		cond_resched();
3106	} while (wait_for_alloc);
3107
3108	mutex_lock(&fs_info->chunk_mutex);
3109	trans->allocating_chunk = true;
3110
3111	/*
3112	 * If we have mixed data/metadata chunks we want to make sure we keep
3113	 * allocating mixed chunks instead of individual chunks.
3114	 */
3115	if (btrfs_mixed_space_info(space_info))
3116		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3117
3118	/*
3119	 * if we're doing a data chunk, go ahead and make sure that
3120	 * we keep a reasonable number of metadata chunks allocated in the
3121	 * FS as well.
3122	 */
3123	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3124		fs_info->data_chunk_allocations++;
3125		if (!(fs_info->data_chunk_allocations %
3126		      fs_info->metadata_ratio))
3127			force_metadata_allocation(fs_info);
3128	}
3129
3130	/*
3131	 * Check if we have enough space in SYSTEM chunk because we may need
3132	 * to update devices.
3133	 */
3134	check_system_chunk(trans, flags);
3135
3136	ret = btrfs_alloc_chunk(trans, flags);
3137	trans->allocating_chunk = false;
3138
3139	spin_lock(&space_info->lock);
3140	if (ret < 0) {
3141		if (ret == -ENOSPC)
3142			space_info->full = 1;
3143		else
3144			goto out;
3145	} else {
3146		ret = 1;
3147		space_info->max_extent_size = 0;
3148	}
3149
3150	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3151out:
3152	space_info->chunk_alloc = 0;
3153	spin_unlock(&space_info->lock);
3154	mutex_unlock(&fs_info->chunk_mutex);
3155	/*
3156	 * When we allocate a new chunk we reserve space in the chunk block
3157	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3158	 * add new nodes/leafs to it if we end up needing to do it when
3159	 * inserting the chunk item and updating device items as part of the
3160	 * second phase of chunk allocation, performed by
3161	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3162	 * large number of new block groups to create in our transaction
3163	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3164	 * in extreme cases - like having a single transaction create many new
3165	 * block groups when starting to write out the free space caches of all
3166	 * the block groups that were made dirty during the lifetime of the
3167	 * transaction.
3168	 */
3169	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3170		btrfs_create_pending_block_groups(trans);
3171
3172	return ret;
3173}
3174
3175static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3176{
3177	u64 num_dev;
3178
3179	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3180	if (!num_dev)
3181		num_dev = fs_info->fs_devices->rw_devices;
3182
3183	return num_dev;
3184}
3185
3186/*
3187 * Reserve space in the system space for allocating or removing a chunk
3188 */
3189void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3190{
3191	struct btrfs_fs_info *fs_info = trans->fs_info;
3192	struct btrfs_space_info *info;
3193	u64 left;
3194	u64 thresh;
3195	int ret = 0;
3196	u64 num_devs;
3197
3198	/*
3199	 * Needed because we can end up allocating a system chunk and for an
3200	 * atomic and race free space reservation in the chunk block reserve.
3201	 */
3202	lockdep_assert_held(&fs_info->chunk_mutex);
3203
3204	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3205	spin_lock(&info->lock);
3206	left = info->total_bytes - btrfs_space_info_used(info, true);
3207	spin_unlock(&info->lock);
3208
3209	num_devs = get_profile_num_devs(fs_info, type);
3210
3211	/* num_devs device items to update and 1 chunk item to add or remove */
3212	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3213		btrfs_calc_insert_metadata_size(fs_info, 1);
3214
3215	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3216		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3217			   left, thresh, type);
3218		btrfs_dump_space_info(fs_info, info, 0, 0);
3219	}
3220
3221	if (left < thresh) {
3222		u64 flags = btrfs_system_alloc_profile(fs_info);
3223
3224		/*
3225		 * Ignore failure to create system chunk. We might end up not
3226		 * needing it, as we might not need to COW all nodes/leafs from
3227		 * the paths we visit in the chunk tree (they were already COWed
3228		 * or created in the current transaction for example).
3229		 */
3230		ret = btrfs_alloc_chunk(trans, flags);
3231	}
3232
3233	if (!ret) {
3234		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3235					  &fs_info->chunk_block_rsv,
3236					  thresh, BTRFS_RESERVE_NO_FLUSH);
3237		if (!ret)
3238			trans->chunk_bytes_reserved += thresh;
3239	}
3240}
3241
3242void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3243{
3244	struct btrfs_block_group *block_group;
3245	u64 last = 0;
3246
3247	while (1) {
3248		struct inode *inode;
3249
3250		block_group = btrfs_lookup_first_block_group(info, last);
3251		while (block_group) {
3252			btrfs_wait_block_group_cache_done(block_group);
3253			spin_lock(&block_group->lock);
3254			if (block_group->iref)
3255				break;
3256			spin_unlock(&block_group->lock);
3257			block_group = btrfs_next_block_group(block_group);
3258		}
3259		if (!block_group) {
3260			if (last == 0)
3261				break;
3262			last = 0;
3263			continue;
3264		}
3265
3266		inode = block_group->inode;
3267		block_group->iref = 0;
3268		block_group->inode = NULL;
3269		spin_unlock(&block_group->lock);
3270		ASSERT(block_group->io_ctl.inode == NULL);
3271		iput(inode);
3272		last = block_group->start + block_group->length;
3273		btrfs_put_block_group(block_group);
3274	}
3275}
3276
3277/*
3278 * Must be called only after stopping all workers, since we could have block
3279 * group caching kthreads running, and therefore they could race with us if we
3280 * freed the block groups before stopping them.
3281 */
3282int btrfs_free_block_groups(struct btrfs_fs_info *info)
3283{
3284	struct btrfs_block_group *block_group;
3285	struct btrfs_space_info *space_info;
3286	struct btrfs_caching_control *caching_ctl;
3287	struct rb_node *n;
3288
3289	down_write(&info->commit_root_sem);
3290	while (!list_empty(&info->caching_block_groups)) {
3291		caching_ctl = list_entry(info->caching_block_groups.next,
3292					 struct btrfs_caching_control, list);
3293		list_del(&caching_ctl->list);
3294		btrfs_put_caching_control(caching_ctl);
3295	}
3296	up_write(&info->commit_root_sem);
3297
3298	spin_lock(&info->unused_bgs_lock);
3299	while (!list_empty(&info->unused_bgs)) {
3300		block_group = list_first_entry(&info->unused_bgs,
3301					       struct btrfs_block_group,
3302					       bg_list);
3303		list_del_init(&block_group->bg_list);
3304		btrfs_put_block_group(block_group);
3305	}
3306	spin_unlock(&info->unused_bgs_lock);
3307
3308	spin_lock(&info->block_group_cache_lock);
3309	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3310		block_group = rb_entry(n, struct btrfs_block_group,
3311				       cache_node);
3312		rb_erase(&block_group->cache_node,
3313			 &info->block_group_cache_tree);
3314		RB_CLEAR_NODE(&block_group->cache_node);
3315		spin_unlock(&info->block_group_cache_lock);
3316
3317		down_write(&block_group->space_info->groups_sem);
3318		list_del(&block_group->list);
3319		up_write(&block_group->space_info->groups_sem);
3320
3321		/*
3322		 * We haven't cached this block group, which means we could
3323		 * possibly have excluded extents on this block group.
3324		 */
3325		if (block_group->cached == BTRFS_CACHE_NO ||
3326		    block_group->cached == BTRFS_CACHE_ERROR)
3327			btrfs_free_excluded_extents(block_group);
3328
3329		btrfs_remove_free_space_cache(block_group);
3330		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3331		ASSERT(list_empty(&block_group->dirty_list));
3332		ASSERT(list_empty(&block_group->io_list));
3333		ASSERT(list_empty(&block_group->bg_list));
3334		ASSERT(refcount_read(&block_group->refs) == 1);
3335		btrfs_put_block_group(block_group);
3336
3337		spin_lock(&info->block_group_cache_lock);
3338	}
3339	spin_unlock(&info->block_group_cache_lock);
3340
3341	/*
3342	 * Now that all the block groups are freed, go through and free all the
3343	 * space_info structs.  This is only called during the final stages of
3344	 * unmount, and so we know nobody is using them.  We call
3345	 * synchronize_rcu() once before we start, just to be on the safe side.
3346	 */
3347	synchronize_rcu();
3348
3349	btrfs_release_global_block_rsv(info);
3350
3351	while (!list_empty(&info->space_info)) {
3352		space_info = list_entry(info->space_info.next,
3353					struct btrfs_space_info,
3354					list);
3355
3356		/*
3357		 * Do not hide this behind enospc_debug, this is actually
3358		 * important and indicates a real bug if this happens.
3359		 */
3360		if (WARN_ON(space_info->bytes_pinned > 0 ||
3361			    space_info->bytes_reserved > 0 ||
3362			    space_info->bytes_may_use > 0))
3363			btrfs_dump_space_info(info, space_info, 0, 0);
3364		WARN_ON(space_info->reclaim_size > 0);
3365		list_del(&space_info->list);
3366		btrfs_sysfs_remove_space_info(space_info);
3367	}
3368	return 0;
3369}
3370
3371void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3372{
3373	atomic_inc(&cache->frozen);
3374}
3375
3376void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3377{
3378	struct btrfs_fs_info *fs_info = block_group->fs_info;
3379	struct extent_map_tree *em_tree;
3380	struct extent_map *em;
3381	bool cleanup;
3382
3383	spin_lock(&block_group->lock);
3384	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3385		   block_group->removed);
3386	spin_unlock(&block_group->lock);
3387
3388	if (cleanup) {
3389		em_tree = &fs_info->mapping_tree;
3390		write_lock(&em_tree->lock);
3391		em = lookup_extent_mapping(em_tree, block_group->start,
3392					   1);
3393		BUG_ON(!em); /* logic error, can't happen */
3394		remove_extent_mapping(em_tree, em);
3395		write_unlock(&em_tree->lock);
3396
3397		/* once for us and once for the tree */
3398		free_extent_map(em);
3399		free_extent_map(em);
3400
3401		/*
3402		 * We may have left one free space entry and other possible
3403		 * tasks trimming this block group have left 1 entry each one.
3404		 * Free them if any.
3405		 */
3406		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3407	}
3408}