Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Alauda-based card readers
4 *
5 * Current development and maintenance by:
6 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 *
8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 *
10 * Alauda implements a vendor-specific command set to access two media reader
11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12 * which are accepted by these devices.
13 *
14 * The driver was developed through reverse-engineering, with the help of the
15 * sddr09 driver which has many similarities, and with some help from the
16 * (very old) vendor-supplied GPL sma03 driver.
17 *
18 * For protocol info, see http://alauda.sourceforge.net
19 */
20
21#include <linux/module.h>
22#include <linux/slab.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_device.h>
27
28#include "usb.h"
29#include "transport.h"
30#include "protocol.h"
31#include "debug.h"
32#include "scsiglue.h"
33
34#define DRV_NAME "ums-alauda"
35
36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38MODULE_LICENSE("GPL");
39MODULE_IMPORT_NS(USB_STORAGE);
40
41/*
42 * Status bytes
43 */
44#define ALAUDA_STATUS_ERROR 0x01
45#define ALAUDA_STATUS_READY 0x40
46
47/*
48 * Control opcodes (for request field)
49 */
50#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
51#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
52#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
53#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
54#define ALAUDA_GET_XD_MEDIA_SIG 0x86
55#define ALAUDA_GET_SM_MEDIA_SIG 0x96
56
57/*
58 * Bulk command identity (byte 0)
59 */
60#define ALAUDA_BULK_CMD 0x40
61
62/*
63 * Bulk opcodes (byte 1)
64 */
65#define ALAUDA_BULK_GET_REDU_DATA 0x85
66#define ALAUDA_BULK_READ_BLOCK 0x94
67#define ALAUDA_BULK_ERASE_BLOCK 0xa3
68#define ALAUDA_BULK_WRITE_BLOCK 0xb4
69#define ALAUDA_BULK_GET_STATUS2 0xb7
70#define ALAUDA_BULK_RESET_MEDIA 0xe0
71
72/*
73 * Port to operate on (byte 8)
74 */
75#define ALAUDA_PORT_XD 0x00
76#define ALAUDA_PORT_SM 0x01
77
78/*
79 * LBA and PBA are unsigned ints. Special values.
80 */
81#define UNDEF 0xffff
82#define SPARE 0xfffe
83#define UNUSABLE 0xfffd
84
85struct alauda_media_info {
86 unsigned long capacity; /* total media size in bytes */
87 unsigned int pagesize; /* page size in bytes */
88 unsigned int blocksize; /* number of pages per block */
89 unsigned int uzonesize; /* number of usable blocks per zone */
90 unsigned int zonesize; /* number of blocks per zone */
91 unsigned int blockmask; /* mask to get page from address */
92
93 unsigned char pageshift;
94 unsigned char blockshift;
95 unsigned char zoneshift;
96
97 u16 **lba_to_pba; /* logical to physical block map */
98 u16 **pba_to_lba; /* physical to logical block map */
99};
100
101struct alauda_info {
102 struct alauda_media_info port[2];
103 int wr_ep; /* endpoint to write data out of */
104
105 unsigned char sense_key;
106 unsigned long sense_asc; /* additional sense code */
107 unsigned long sense_ascq; /* additional sense code qualifier */
108};
109
110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111#define LSB_of(s) ((s)&0xFF)
112#define MSB_of(s) ((s)>>8)
113
114#define MEDIA_PORT(us) us->srb->device->lun
115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116
117#define PBA_LO(pba) ((pba & 0xF) << 5)
118#define PBA_HI(pba) (pba >> 3)
119#define PBA_ZONE(pba) (pba >> 11)
120
121static int init_alauda(struct us_data *us);
122
123
124/*
125 * The table of devices
126 */
127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 vendorName, productName, useProtocol, useTransport, \
129 initFunction, flags) \
130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131 .driver_info = (flags) }
132
133static struct usb_device_id alauda_usb_ids[] = {
134# include "unusual_alauda.h"
135 { } /* Terminating entry */
136};
137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138
139#undef UNUSUAL_DEV
140
141/*
142 * The flags table
143 */
144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 vendor_name, product_name, use_protocol, use_transport, \
146 init_function, Flags) \
147{ \
148 .vendorName = vendor_name, \
149 .productName = product_name, \
150 .useProtocol = use_protocol, \
151 .useTransport = use_transport, \
152 .initFunction = init_function, \
153}
154
155static struct us_unusual_dev alauda_unusual_dev_list[] = {
156# include "unusual_alauda.h"
157 { } /* Terminating entry */
158};
159
160#undef UNUSUAL_DEV
161
162
163/*
164 * Media handling
165 */
166
167struct alauda_card_info {
168 unsigned char id; /* id byte */
169 unsigned char chipshift; /* 1<<cs bytes total capacity */
170 unsigned char pageshift; /* 1<<ps bytes in a page */
171 unsigned char blockshift; /* 1<<bs pages per block */
172 unsigned char zoneshift; /* 1<<zs blocks per zone */
173};
174
175static struct alauda_card_info alauda_card_ids[] = {
176 /* NAND flash */
177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
179 { 0xec, 20, 8, 4, 8}, /* 1 MB */
180 { 0x64, 21, 8, 4, 9}, /* 2 MB */
181 { 0xea, 21, 8, 4, 9}, /* 2 MB */
182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
186 { 0x73, 24, 9, 5, 10}, /* 16 MB */
187 { 0x75, 25, 9, 5, 10}, /* 32 MB */
188 { 0x76, 26, 9, 5, 10}, /* 64 MB */
189 { 0x79, 27, 9, 5, 10}, /* 128 MB */
190 { 0x71, 28, 9, 5, 10}, /* 256 MB */
191
192 /* MASK ROM */
193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
196 { 0x57, 24, 9, 4, 11}, /* 16 MB */
197 { 0x58, 25, 9, 4, 12}, /* 32 MB */
198 { 0,}
199};
200
201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202{
203 int i;
204
205 for (i = 0; alauda_card_ids[i].id != 0; i++)
206 if (alauda_card_ids[i].id == id)
207 return &(alauda_card_ids[i]);
208 return NULL;
209}
210
211/*
212 * ECC computation.
213 */
214
215static unsigned char parity[256];
216static unsigned char ecc2[256];
217
218static void nand_init_ecc(void)
219{
220 int i, j, a;
221
222 parity[0] = 0;
223 for (i = 1; i < 256; i++)
224 parity[i] = (parity[i&(i-1)] ^ 1);
225
226 for (i = 0; i < 256; i++) {
227 a = 0;
228 for (j = 0; j < 8; j++) {
229 if (i & (1<<j)) {
230 if ((j & 1) == 0)
231 a ^= 0x04;
232 if ((j & 2) == 0)
233 a ^= 0x10;
234 if ((j & 4) == 0)
235 a ^= 0x40;
236 }
237 }
238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 }
240}
241
242/* compute 3-byte ecc on 256 bytes */
243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244{
245 int i, j, a;
246 unsigned char par = 0, bit, bits[8] = {0};
247
248 /* collect 16 checksum bits */
249 for (i = 0; i < 256; i++) {
250 par ^= data[i];
251 bit = parity[data[i]];
252 for (j = 0; j < 8; j++)
253 if ((i & (1<<j)) == 0)
254 bits[j] ^= bit;
255 }
256
257 /* put 4+4+4 = 12 bits in the ecc */
258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260
261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263
264 ecc[2] = ecc2[par];
265}
266
267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268{
269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270}
271
272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273{
274 memcpy(data, ecc, 3);
275}
276
277/*
278 * Alauda driver
279 */
280
281/*
282 * Forget our PBA <---> LBA mappings for a particular port
283 */
284static void alauda_free_maps (struct alauda_media_info *media_info)
285{
286 unsigned int shift = media_info->zoneshift
287 + media_info->blockshift + media_info->pageshift;
288 unsigned int num_zones = media_info->capacity >> shift;
289 unsigned int i;
290
291 if (media_info->lba_to_pba != NULL)
292 for (i = 0; i < num_zones; i++) {
293 kfree(media_info->lba_to_pba[i]);
294 media_info->lba_to_pba[i] = NULL;
295 }
296
297 if (media_info->pba_to_lba != NULL)
298 for (i = 0; i < num_zones; i++) {
299 kfree(media_info->pba_to_lba[i]);
300 media_info->pba_to_lba[i] = NULL;
301 }
302}
303
304/*
305 * Returns 2 bytes of status data
306 * The first byte describes media status, and second byte describes door status
307 */
308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309{
310 int rc;
311 unsigned char command;
312
313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 command = ALAUDA_GET_XD_MEDIA_STATUS;
315 else
316 command = ALAUDA_GET_SM_MEDIA_STATUS;
317
318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 command, 0xc0, 0, 1, data, 2);
320
321 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
322
323 return rc;
324}
325
326/*
327 * Clears the "media was changed" bit so that we know when it changes again
328 * in the future.
329 */
330static int alauda_ack_media(struct us_data *us)
331{
332 unsigned char command;
333
334 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
335 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
336 else
337 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
338
339 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
340 command, 0x40, 0, 1, NULL, 0);
341}
342
343/*
344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
345 * and some other details.
346 */
347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
348{
349 unsigned char command;
350
351 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
352 command = ALAUDA_GET_XD_MEDIA_SIG;
353 else
354 command = ALAUDA_GET_SM_MEDIA_SIG;
355
356 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
357 command, 0xc0, 0, 0, data, 4);
358}
359
360/*
361 * Resets the media status (but not the whole device?)
362 */
363static int alauda_reset_media(struct us_data *us)
364{
365 unsigned char *command = us->iobuf;
366
367 memset(command, 0, 9);
368 command[0] = ALAUDA_BULK_CMD;
369 command[1] = ALAUDA_BULK_RESET_MEDIA;
370 command[8] = MEDIA_PORT(us);
371
372 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
373 command, 9, NULL);
374}
375
376/*
377 * Examines the media and deduces capacity, etc.
378 */
379static int alauda_init_media(struct us_data *us)
380{
381 unsigned char *data = us->iobuf;
382 int ready = 0;
383 struct alauda_card_info *media_info;
384 unsigned int num_zones;
385
386 while (ready == 0) {
387 msleep(20);
388
389 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
390 return USB_STOR_TRANSPORT_ERROR;
391
392 if (data[0] & 0x10)
393 ready = 1;
394 }
395
396 usb_stor_dbg(us, "We are ready for action!\n");
397
398 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
399 return USB_STOR_TRANSPORT_ERROR;
400
401 msleep(10);
402
403 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
404 return USB_STOR_TRANSPORT_ERROR;
405
406 if (data[0] != 0x14) {
407 usb_stor_dbg(us, "Media not ready after ack\n");
408 return USB_STOR_TRANSPORT_ERROR;
409 }
410
411 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
412 return USB_STOR_TRANSPORT_ERROR;
413
414 usb_stor_dbg(us, "Media signature: %4ph\n", data);
415 media_info = alauda_card_find_id(data[1]);
416 if (media_info == NULL) {
417 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
418 data);
419 return USB_STOR_TRANSPORT_ERROR;
420 }
421
422 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
423 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
424 MEDIA_INFO(us).capacity >> 20);
425
426 MEDIA_INFO(us).pageshift = media_info->pageshift;
427 MEDIA_INFO(us).blockshift = media_info->blockshift;
428 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
429
430 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
431 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
432 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
433
434 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
435 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
436
437 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
438 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
439 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441
442 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
443 return USB_STOR_TRANSPORT_ERROR;
444
445 return USB_STOR_TRANSPORT_GOOD;
446}
447
448/*
449 * Examines the media status and does the right thing when the media has gone,
450 * appeared, or changed.
451 */
452static int alauda_check_media(struct us_data *us)
453{
454 struct alauda_info *info = (struct alauda_info *) us->extra;
455 unsigned char status[2];
456
457 alauda_get_media_status(us, status);
458
459 /* Check for no media or door open */
460 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
461 || ((status[1] & 0x01) == 0)) {
462 usb_stor_dbg(us, "No media, or door open\n");
463 alauda_free_maps(&MEDIA_INFO(us));
464 info->sense_key = 0x02;
465 info->sense_asc = 0x3A;
466 info->sense_ascq = 0x00;
467 return USB_STOR_TRANSPORT_FAILED;
468 }
469
470 /* Check for media change */
471 if (status[0] & 0x08) {
472 usb_stor_dbg(us, "Media change detected\n");
473 alauda_free_maps(&MEDIA_INFO(us));
474 alauda_init_media(us);
475
476 info->sense_key = UNIT_ATTENTION;
477 info->sense_asc = 0x28;
478 info->sense_ascq = 0x00;
479 return USB_STOR_TRANSPORT_FAILED;
480 }
481
482 return USB_STOR_TRANSPORT_GOOD;
483}
484
485/*
486 * Checks the status from the 2nd status register
487 * Returns 3 bytes of status data, only the first is known
488 */
489static int alauda_check_status2(struct us_data *us)
490{
491 int rc;
492 unsigned char command[] = {
493 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
494 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
495 };
496 unsigned char data[3];
497
498 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
499 command, 9, NULL);
500 if (rc != USB_STOR_XFER_GOOD)
501 return rc;
502
503 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
504 data, 3, NULL);
505 if (rc != USB_STOR_XFER_GOOD)
506 return rc;
507
508 usb_stor_dbg(us, "%3ph\n", data);
509 if (data[0] & ALAUDA_STATUS_ERROR)
510 return USB_STOR_XFER_ERROR;
511
512 return USB_STOR_XFER_GOOD;
513}
514
515/*
516 * Gets the redundancy data for the first page of a PBA
517 * Returns 16 bytes.
518 */
519static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
520{
521 int rc;
522 unsigned char command[] = {
523 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
524 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
525 };
526
527 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
528 command, 9, NULL);
529 if (rc != USB_STOR_XFER_GOOD)
530 return rc;
531
532 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
533 data, 16, NULL);
534}
535
536/*
537 * Finds the first unused PBA in a zone
538 * Returns the absolute PBA of an unused PBA, or 0 if none found.
539 */
540static u16 alauda_find_unused_pba(struct alauda_media_info *info,
541 unsigned int zone)
542{
543 u16 *pba_to_lba = info->pba_to_lba[zone];
544 unsigned int i;
545
546 for (i = 0; i < info->zonesize; i++)
547 if (pba_to_lba[i] == UNDEF)
548 return (zone << info->zoneshift) + i;
549
550 return 0;
551}
552
553/*
554 * Reads the redundancy data for all PBA's in a zone
555 * Produces lba <--> pba mappings
556 */
557static int alauda_read_map(struct us_data *us, unsigned int zone)
558{
559 unsigned char *data = us->iobuf;
560 int result;
561 int i, j;
562 unsigned int zonesize = MEDIA_INFO(us).zonesize;
563 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
564 unsigned int lba_offset, lba_real, blocknum;
565 unsigned int zone_base_lba = zone * uzonesize;
566 unsigned int zone_base_pba = zone * zonesize;
567 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
568 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
569 if (lba_to_pba == NULL || pba_to_lba == NULL) {
570 result = USB_STOR_TRANSPORT_ERROR;
571 goto error;
572 }
573
574 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
575
576 /* 1024 PBA's per zone */
577 for (i = 0; i < zonesize; i++)
578 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
579
580 for (i = 0; i < zonesize; i++) {
581 blocknum = zone_base_pba + i;
582
583 result = alauda_get_redu_data(us, blocknum, data);
584 if (result != USB_STOR_XFER_GOOD) {
585 result = USB_STOR_TRANSPORT_ERROR;
586 goto error;
587 }
588
589 /* special PBAs have control field 0^16 */
590 for (j = 0; j < 16; j++)
591 if (data[j] != 0)
592 goto nonz;
593 pba_to_lba[i] = UNUSABLE;
594 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
595 continue;
596
597 nonz:
598 /* unwritten PBAs have control field FF^16 */
599 for (j = 0; j < 16; j++)
600 if (data[j] != 0xff)
601 goto nonff;
602 continue;
603
604 nonff:
605 /* normal PBAs start with six FFs */
606 if (j < 6) {
607 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
608 blocknum,
609 data[0], data[1], data[2], data[3],
610 data[4], data[5]);
611 pba_to_lba[i] = UNUSABLE;
612 continue;
613 }
614
615 if ((data[6] >> 4) != 0x01) {
616 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
617 blocknum, data[6], data[7],
618 data[11], data[12]);
619 pba_to_lba[i] = UNUSABLE;
620 continue;
621 }
622
623 /* check even parity */
624 if (parity[data[6] ^ data[7]]) {
625 printk(KERN_WARNING
626 "alauda_read_map: Bad parity in LBA for block %d"
627 " (%02X %02X)\n", i, data[6], data[7]);
628 pba_to_lba[i] = UNUSABLE;
629 continue;
630 }
631
632 lba_offset = short_pack(data[7], data[6]);
633 lba_offset = (lba_offset & 0x07FF) >> 1;
634 lba_real = lba_offset + zone_base_lba;
635
636 /*
637 * Every 1024 physical blocks ("zone"), the LBA numbers
638 * go back to zero, but are within a higher block of LBA's.
639 * Also, there is a maximum of 1000 LBA's per zone.
640 * In other words, in PBA 1024-2047 you will find LBA 0-999
641 * which are really LBA 1000-1999. This allows for 24 bad
642 * or special physical blocks per zone.
643 */
644
645 if (lba_offset >= uzonesize) {
646 printk(KERN_WARNING
647 "alauda_read_map: Bad low LBA %d for block %d\n",
648 lba_real, blocknum);
649 continue;
650 }
651
652 if (lba_to_pba[lba_offset] != UNDEF) {
653 printk(KERN_WARNING
654 "alauda_read_map: "
655 "LBA %d seen for PBA %d and %d\n",
656 lba_real, lba_to_pba[lba_offset], blocknum);
657 continue;
658 }
659
660 pba_to_lba[i] = lba_real;
661 lba_to_pba[lba_offset] = blocknum;
662 continue;
663 }
664
665 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
666 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
667 result = 0;
668 goto out;
669
670error:
671 kfree(lba_to_pba);
672 kfree(pba_to_lba);
673out:
674 return result;
675}
676
677/*
678 * Checks to see whether we have already mapped a certain zone
679 * If we haven't, the map is generated
680 */
681static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
682{
683 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
684 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
685 alauda_read_map(us, zone);
686}
687
688/*
689 * Erases an entire block
690 */
691static int alauda_erase_block(struct us_data *us, u16 pba)
692{
693 int rc;
694 unsigned char command[] = {
695 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
696 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
697 };
698 unsigned char buf[2];
699
700 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
701
702 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
703 command, 9, NULL);
704 if (rc != USB_STOR_XFER_GOOD)
705 return rc;
706
707 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
708 buf, 2, NULL);
709 if (rc != USB_STOR_XFER_GOOD)
710 return rc;
711
712 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
713 return rc;
714}
715
716/*
717 * Reads data from a certain offset page inside a PBA, including interleaved
718 * redundancy data. Returns (pagesize+64)*pages bytes in data.
719 */
720static int alauda_read_block_raw(struct us_data *us, u16 pba,
721 unsigned int page, unsigned int pages, unsigned char *data)
722{
723 int rc;
724 unsigned char command[] = {
725 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
726 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
727 };
728
729 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
730
731 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
732 command, 9, NULL);
733 if (rc != USB_STOR_XFER_GOOD)
734 return rc;
735
736 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
738}
739
740/*
741 * Reads data from a certain offset page inside a PBA, excluding redundancy
742 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
743 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
744 * trailing bytes outside this function.
745 */
746static int alauda_read_block(struct us_data *us, u16 pba,
747 unsigned int page, unsigned int pages, unsigned char *data)
748{
749 int i, rc;
750 unsigned int pagesize = MEDIA_INFO(us).pagesize;
751
752 rc = alauda_read_block_raw(us, pba, page, pages, data);
753 if (rc != USB_STOR_XFER_GOOD)
754 return rc;
755
756 /* Cut out the redundancy data */
757 for (i = 0; i < pages; i++) {
758 int dest_offset = i * pagesize;
759 int src_offset = i * (pagesize + 64);
760 memmove(data + dest_offset, data + src_offset, pagesize);
761 }
762
763 return rc;
764}
765
766/*
767 * Writes an entire block of data and checks status after write.
768 * Redundancy data must be already included in data. Data should be
769 * (pagesize+64)*blocksize bytes in length.
770 */
771static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
772{
773 int rc;
774 struct alauda_info *info = (struct alauda_info *) us->extra;
775 unsigned char command[] = {
776 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
777 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
778 };
779
780 usb_stor_dbg(us, "pba %d\n", pba);
781
782 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
783 command, 9, NULL);
784 if (rc != USB_STOR_XFER_GOOD)
785 return rc;
786
787 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
788 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
789 NULL);
790 if (rc != USB_STOR_XFER_GOOD)
791 return rc;
792
793 return alauda_check_status2(us);
794}
795
796/*
797 * Write some data to a specific LBA.
798 */
799static int alauda_write_lba(struct us_data *us, u16 lba,
800 unsigned int page, unsigned int pages,
801 unsigned char *ptr, unsigned char *blockbuffer)
802{
803 u16 pba, lbap, new_pba;
804 unsigned char *bptr, *cptr, *xptr;
805 unsigned char ecc[3];
806 int i, result;
807 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
808 unsigned int zonesize = MEDIA_INFO(us).zonesize;
809 unsigned int pagesize = MEDIA_INFO(us).pagesize;
810 unsigned int blocksize = MEDIA_INFO(us).blocksize;
811 unsigned int lba_offset = lba % uzonesize;
812 unsigned int new_pba_offset;
813 unsigned int zone = lba / uzonesize;
814
815 alauda_ensure_map_for_zone(us, zone);
816
817 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
818 if (pba == 1) {
819 /*
820 * Maybe it is impossible to write to PBA 1.
821 * Fake success, but don't do anything.
822 */
823 printk(KERN_WARNING
824 "alauda_write_lba: avoid writing to pba 1\n");
825 return USB_STOR_TRANSPORT_GOOD;
826 }
827
828 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
829 if (!new_pba) {
830 printk(KERN_WARNING
831 "alauda_write_lba: Out of unused blocks\n");
832 return USB_STOR_TRANSPORT_ERROR;
833 }
834
835 /* read old contents */
836 if (pba != UNDEF) {
837 result = alauda_read_block_raw(us, pba, 0,
838 blocksize, blockbuffer);
839 if (result != USB_STOR_XFER_GOOD)
840 return result;
841 } else {
842 memset(blockbuffer, 0, blocksize * (pagesize + 64));
843 }
844
845 lbap = (lba_offset << 1) | 0x1000;
846 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
847 lbap ^= 1;
848
849 /* check old contents and fill lba */
850 for (i = 0; i < blocksize; i++) {
851 bptr = blockbuffer + (i * (pagesize + 64));
852 cptr = bptr + pagesize;
853 nand_compute_ecc(bptr, ecc);
854 if (!nand_compare_ecc(cptr+13, ecc)) {
855 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
856 i, pba);
857 nand_store_ecc(cptr+13, ecc);
858 }
859 nand_compute_ecc(bptr + (pagesize / 2), ecc);
860 if (!nand_compare_ecc(cptr+8, ecc)) {
861 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
862 i, pba);
863 nand_store_ecc(cptr+8, ecc);
864 }
865 cptr[6] = cptr[11] = MSB_of(lbap);
866 cptr[7] = cptr[12] = LSB_of(lbap);
867 }
868
869 /* copy in new stuff and compute ECC */
870 xptr = ptr;
871 for (i = page; i < page+pages; i++) {
872 bptr = blockbuffer + (i * (pagesize + 64));
873 cptr = bptr + pagesize;
874 memcpy(bptr, xptr, pagesize);
875 xptr += pagesize;
876 nand_compute_ecc(bptr, ecc);
877 nand_store_ecc(cptr+13, ecc);
878 nand_compute_ecc(bptr + (pagesize / 2), ecc);
879 nand_store_ecc(cptr+8, ecc);
880 }
881
882 result = alauda_write_block(us, new_pba, blockbuffer);
883 if (result != USB_STOR_XFER_GOOD)
884 return result;
885
886 new_pba_offset = new_pba - (zone * zonesize);
887 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
888 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
889 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
890
891 if (pba != UNDEF) {
892 unsigned int pba_offset = pba - (zone * zonesize);
893 result = alauda_erase_block(us, pba);
894 if (result != USB_STOR_XFER_GOOD)
895 return result;
896 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
897 }
898
899 return USB_STOR_TRANSPORT_GOOD;
900}
901
902/*
903 * Read data from a specific sector address
904 */
905static int alauda_read_data(struct us_data *us, unsigned long address,
906 unsigned int sectors)
907{
908 unsigned char *buffer;
909 u16 lba, max_lba;
910 unsigned int page, len, offset;
911 unsigned int blockshift = MEDIA_INFO(us).blockshift;
912 unsigned int pageshift = MEDIA_INFO(us).pageshift;
913 unsigned int blocksize = MEDIA_INFO(us).blocksize;
914 unsigned int pagesize = MEDIA_INFO(us).pagesize;
915 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
916 struct scatterlist *sg;
917 int result;
918
919 /*
920 * Since we only read in one block at a time, we have to create
921 * a bounce buffer and move the data a piece at a time between the
922 * bounce buffer and the actual transfer buffer.
923 * We make this buffer big enough to hold temporary redundancy data,
924 * which we use when reading the data blocks.
925 */
926
927 len = min(sectors, blocksize) * (pagesize + 64);
928 buffer = kmalloc(len, GFP_NOIO);
929 if (!buffer)
930 return USB_STOR_TRANSPORT_ERROR;
931
932 /* Figure out the initial LBA and page */
933 lba = address >> blockshift;
934 page = (address & MEDIA_INFO(us).blockmask);
935 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
936
937 result = USB_STOR_TRANSPORT_GOOD;
938 offset = 0;
939 sg = NULL;
940
941 while (sectors > 0) {
942 unsigned int zone = lba / uzonesize; /* integer division */
943 unsigned int lba_offset = lba - (zone * uzonesize);
944 unsigned int pages;
945 u16 pba;
946 alauda_ensure_map_for_zone(us, zone);
947
948 /* Not overflowing capacity? */
949 if (lba >= max_lba) {
950 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
951 lba, max_lba);
952 result = USB_STOR_TRANSPORT_ERROR;
953 break;
954 }
955
956 /* Find number of pages we can read in this block */
957 pages = min(sectors, blocksize - page);
958 len = pages << pageshift;
959
960 /* Find where this lba lives on disk */
961 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
962
963 if (pba == UNDEF) { /* this lba was never written */
964 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
965 pages, lba, page);
966
967 /*
968 * This is not really an error. It just means
969 * that the block has never been written.
970 * Instead of returning USB_STOR_TRANSPORT_ERROR
971 * it is better to return all zero data.
972 */
973
974 memset(buffer, 0, len);
975 } else {
976 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
977 pages, pba, lba, page);
978
979 result = alauda_read_block(us, pba, page, pages, buffer);
980 if (result != USB_STOR_TRANSPORT_GOOD)
981 break;
982 }
983
984 /* Store the data in the transfer buffer */
985 usb_stor_access_xfer_buf(buffer, len, us->srb,
986 &sg, &offset, TO_XFER_BUF);
987
988 page = 0;
989 lba++;
990 sectors -= pages;
991 }
992
993 kfree(buffer);
994 return result;
995}
996
997/*
998 * Write data to a specific sector address
999 */
1000static int alauda_write_data(struct us_data *us, unsigned long address,
1001 unsigned int sectors)
1002{
1003 unsigned char *buffer, *blockbuffer;
1004 unsigned int page, len, offset;
1005 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1006 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1007 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1008 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1009 struct scatterlist *sg;
1010 u16 lba, max_lba;
1011 int result;
1012
1013 /*
1014 * Since we don't write the user data directly to the device,
1015 * we have to create a bounce buffer and move the data a piece
1016 * at a time between the bounce buffer and the actual transfer buffer.
1017 */
1018
1019 len = min(sectors, blocksize) * pagesize;
1020 buffer = kmalloc(len, GFP_NOIO);
1021 if (!buffer)
1022 return USB_STOR_TRANSPORT_ERROR;
1023
1024 /*
1025 * We also need a temporary block buffer, where we read in the old data,
1026 * overwrite parts with the new data, and manipulate the redundancy data
1027 */
1028 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1029 if (!blockbuffer) {
1030 kfree(buffer);
1031 return USB_STOR_TRANSPORT_ERROR;
1032 }
1033
1034 /* Figure out the initial LBA and page */
1035 lba = address >> blockshift;
1036 page = (address & MEDIA_INFO(us).blockmask);
1037 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1038
1039 result = USB_STOR_TRANSPORT_GOOD;
1040 offset = 0;
1041 sg = NULL;
1042
1043 while (sectors > 0) {
1044 /* Write as many sectors as possible in this block */
1045 unsigned int pages = min(sectors, blocksize - page);
1046 len = pages << pageshift;
1047
1048 /* Not overflowing capacity? */
1049 if (lba >= max_lba) {
1050 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1051 lba, max_lba);
1052 result = USB_STOR_TRANSPORT_ERROR;
1053 break;
1054 }
1055
1056 /* Get the data from the transfer buffer */
1057 usb_stor_access_xfer_buf(buffer, len, us->srb,
1058 &sg, &offset, FROM_XFER_BUF);
1059
1060 result = alauda_write_lba(us, lba, page, pages, buffer,
1061 blockbuffer);
1062 if (result != USB_STOR_TRANSPORT_GOOD)
1063 break;
1064
1065 page = 0;
1066 lba++;
1067 sectors -= pages;
1068 }
1069
1070 kfree(buffer);
1071 kfree(blockbuffer);
1072 return result;
1073}
1074
1075/*
1076 * Our interface with the rest of the world
1077 */
1078
1079static void alauda_info_destructor(void *extra)
1080{
1081 struct alauda_info *info = (struct alauda_info *) extra;
1082 int port;
1083
1084 if (!info)
1085 return;
1086
1087 for (port = 0; port < 2; port++) {
1088 struct alauda_media_info *media_info = &info->port[port];
1089
1090 alauda_free_maps(media_info);
1091 kfree(media_info->lba_to_pba);
1092 kfree(media_info->pba_to_lba);
1093 }
1094}
1095
1096/*
1097 * Initialize alauda_info struct and find the data-write endpoint
1098 */
1099static int init_alauda(struct us_data *us)
1100{
1101 struct alauda_info *info;
1102 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1103 nand_init_ecc();
1104
1105 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1106 if (!us->extra)
1107 return USB_STOR_TRANSPORT_ERROR;
1108
1109 info = (struct alauda_info *) us->extra;
1110 us->extra_destructor = alauda_info_destructor;
1111
1112 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1113 altsetting->endpoint[0].desc.bEndpointAddress
1114 & USB_ENDPOINT_NUMBER_MASK);
1115
1116 return USB_STOR_TRANSPORT_GOOD;
1117}
1118
1119static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1120{
1121 int rc;
1122 struct alauda_info *info = (struct alauda_info *) us->extra;
1123 unsigned char *ptr = us->iobuf;
1124 static unsigned char inquiry_response[36] = {
1125 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1126 };
1127
1128 if (srb->cmnd[0] == INQUIRY) {
1129 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1130 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1131 fill_inquiry_response(us, ptr, 36);
1132 return USB_STOR_TRANSPORT_GOOD;
1133 }
1134
1135 if (srb->cmnd[0] == TEST_UNIT_READY) {
1136 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1137 return alauda_check_media(us);
1138 }
1139
1140 if (srb->cmnd[0] == READ_CAPACITY) {
1141 unsigned int num_zones;
1142 unsigned long capacity;
1143
1144 rc = alauda_check_media(us);
1145 if (rc != USB_STOR_TRANSPORT_GOOD)
1146 return rc;
1147
1148 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1149 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1150
1151 capacity = num_zones * MEDIA_INFO(us).uzonesize
1152 * MEDIA_INFO(us).blocksize;
1153
1154 /* Report capacity and page size */
1155 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1156 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1157
1158 usb_stor_set_xfer_buf(ptr, 8, srb);
1159 return USB_STOR_TRANSPORT_GOOD;
1160 }
1161
1162 if (srb->cmnd[0] == READ_10) {
1163 unsigned int page, pages;
1164
1165 rc = alauda_check_media(us);
1166 if (rc != USB_STOR_TRANSPORT_GOOD)
1167 return rc;
1168
1169 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1170 page <<= 16;
1171 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1172 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1173
1174 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1175
1176 return alauda_read_data(us, page, pages);
1177 }
1178
1179 if (srb->cmnd[0] == WRITE_10) {
1180 unsigned int page, pages;
1181
1182 rc = alauda_check_media(us);
1183 if (rc != USB_STOR_TRANSPORT_GOOD)
1184 return rc;
1185
1186 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1187 page <<= 16;
1188 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1189 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1190
1191 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1192
1193 return alauda_write_data(us, page, pages);
1194 }
1195
1196 if (srb->cmnd[0] == REQUEST_SENSE) {
1197 usb_stor_dbg(us, "REQUEST_SENSE\n");
1198
1199 memset(ptr, 0, 18);
1200 ptr[0] = 0xF0;
1201 ptr[2] = info->sense_key;
1202 ptr[7] = 11;
1203 ptr[12] = info->sense_asc;
1204 ptr[13] = info->sense_ascq;
1205 usb_stor_set_xfer_buf(ptr, 18, srb);
1206
1207 return USB_STOR_TRANSPORT_GOOD;
1208 }
1209
1210 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1211 /*
1212 * sure. whatever. not like we can stop the user from popping
1213 * the media out of the device (no locking doors, etc)
1214 */
1215 return USB_STOR_TRANSPORT_GOOD;
1216 }
1217
1218 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1219 srb->cmnd[0], srb->cmnd[0]);
1220 info->sense_key = 0x05;
1221 info->sense_asc = 0x20;
1222 info->sense_ascq = 0x00;
1223 return USB_STOR_TRANSPORT_FAILED;
1224}
1225
1226static struct scsi_host_template alauda_host_template;
1227
1228static int alauda_probe(struct usb_interface *intf,
1229 const struct usb_device_id *id)
1230{
1231 struct us_data *us;
1232 int result;
1233
1234 result = usb_stor_probe1(&us, intf, id,
1235 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1236 &alauda_host_template);
1237 if (result)
1238 return result;
1239
1240 us->transport_name = "Alauda Control/Bulk";
1241 us->transport = alauda_transport;
1242 us->transport_reset = usb_stor_Bulk_reset;
1243 us->max_lun = 1;
1244
1245 result = usb_stor_probe2(us);
1246 return result;
1247}
1248
1249static struct usb_driver alauda_driver = {
1250 .name = DRV_NAME,
1251 .probe = alauda_probe,
1252 .disconnect = usb_stor_disconnect,
1253 .suspend = usb_stor_suspend,
1254 .resume = usb_stor_resume,
1255 .reset_resume = usb_stor_reset_resume,
1256 .pre_reset = usb_stor_pre_reset,
1257 .post_reset = usb_stor_post_reset,
1258 .id_table = alauda_usb_ids,
1259 .soft_unbind = 1,
1260 .no_dynamic_id = 1,
1261};
1262
1263module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Alauda-based card readers
4 *
5 * Current development and maintenance by:
6 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 *
8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 *
10 * Alauda implements a vendor-specific command set to access two media reader
11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12 * which are accepted by these devices.
13 *
14 * The driver was developed through reverse-engineering, with the help of the
15 * sddr09 driver which has many similarities, and with some help from the
16 * (very old) vendor-supplied GPL sma03 driver.
17 *
18 * For protocol info, see http://alauda.sourceforge.net
19 */
20
21#include <linux/module.h>
22#include <linux/slab.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_device.h>
27
28#include "usb.h"
29#include "transport.h"
30#include "protocol.h"
31#include "debug.h"
32#include "scsiglue.h"
33
34#define DRV_NAME "ums-alauda"
35
36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38MODULE_LICENSE("GPL");
39MODULE_IMPORT_NS(USB_STORAGE);
40
41/*
42 * Status bytes
43 */
44#define ALAUDA_STATUS_ERROR 0x01
45#define ALAUDA_STATUS_READY 0x40
46
47/*
48 * Control opcodes (for request field)
49 */
50#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
51#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
52#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
53#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
54#define ALAUDA_GET_XD_MEDIA_SIG 0x86
55#define ALAUDA_GET_SM_MEDIA_SIG 0x96
56
57/*
58 * Bulk command identity (byte 0)
59 */
60#define ALAUDA_BULK_CMD 0x40
61
62/*
63 * Bulk opcodes (byte 1)
64 */
65#define ALAUDA_BULK_GET_REDU_DATA 0x85
66#define ALAUDA_BULK_READ_BLOCK 0x94
67#define ALAUDA_BULK_ERASE_BLOCK 0xa3
68#define ALAUDA_BULK_WRITE_BLOCK 0xb4
69#define ALAUDA_BULK_GET_STATUS2 0xb7
70#define ALAUDA_BULK_RESET_MEDIA 0xe0
71
72/*
73 * Port to operate on (byte 8)
74 */
75#define ALAUDA_PORT_XD 0x00
76#define ALAUDA_PORT_SM 0x01
77
78/*
79 * LBA and PBA are unsigned ints. Special values.
80 */
81#define UNDEF 0xffff
82#define SPARE 0xfffe
83#define UNUSABLE 0xfffd
84
85struct alauda_media_info {
86 unsigned long capacity; /* total media size in bytes */
87 unsigned int pagesize; /* page size in bytes */
88 unsigned int blocksize; /* number of pages per block */
89 unsigned int uzonesize; /* number of usable blocks per zone */
90 unsigned int zonesize; /* number of blocks per zone */
91 unsigned int blockmask; /* mask to get page from address */
92
93 unsigned char pageshift;
94 unsigned char blockshift;
95 unsigned char zoneshift;
96
97 u16 **lba_to_pba; /* logical to physical block map */
98 u16 **pba_to_lba; /* physical to logical block map */
99};
100
101struct alauda_info {
102 struct alauda_media_info port[2];
103 int wr_ep; /* endpoint to write data out of */
104
105 unsigned char sense_key;
106 unsigned long sense_asc; /* additional sense code */
107 unsigned long sense_ascq; /* additional sense code qualifier */
108};
109
110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111#define LSB_of(s) ((s)&0xFF)
112#define MSB_of(s) ((s)>>8)
113
114#define MEDIA_PORT(us) us->srb->device->lun
115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116
117#define PBA_LO(pba) ((pba & 0xF) << 5)
118#define PBA_HI(pba) (pba >> 3)
119#define PBA_ZONE(pba) (pba >> 11)
120
121static int init_alauda(struct us_data *us);
122
123
124/*
125 * The table of devices
126 */
127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 vendorName, productName, useProtocol, useTransport, \
129 initFunction, flags) \
130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131 .driver_info = (flags) }
132
133static struct usb_device_id alauda_usb_ids[] = {
134# include "unusual_alauda.h"
135 { } /* Terminating entry */
136};
137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138
139#undef UNUSUAL_DEV
140
141/*
142 * The flags table
143 */
144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 vendor_name, product_name, use_protocol, use_transport, \
146 init_function, Flags) \
147{ \
148 .vendorName = vendor_name, \
149 .productName = product_name, \
150 .useProtocol = use_protocol, \
151 .useTransport = use_transport, \
152 .initFunction = init_function, \
153}
154
155static struct us_unusual_dev alauda_unusual_dev_list[] = {
156# include "unusual_alauda.h"
157 { } /* Terminating entry */
158};
159
160#undef UNUSUAL_DEV
161
162
163/*
164 * Media handling
165 */
166
167struct alauda_card_info {
168 unsigned char id; /* id byte */
169 unsigned char chipshift; /* 1<<cs bytes total capacity */
170 unsigned char pageshift; /* 1<<ps bytes in a page */
171 unsigned char blockshift; /* 1<<bs pages per block */
172 unsigned char zoneshift; /* 1<<zs blocks per zone */
173};
174
175static struct alauda_card_info alauda_card_ids[] = {
176 /* NAND flash */
177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
179 { 0xec, 20, 8, 4, 8}, /* 1 MB */
180 { 0x64, 21, 8, 4, 9}, /* 2 MB */
181 { 0xea, 21, 8, 4, 9}, /* 2 MB */
182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
186 { 0x73, 24, 9, 5, 10}, /* 16 MB */
187 { 0x75, 25, 9, 5, 10}, /* 32 MB */
188 { 0x76, 26, 9, 5, 10}, /* 64 MB */
189 { 0x79, 27, 9, 5, 10}, /* 128 MB */
190 { 0x71, 28, 9, 5, 10}, /* 256 MB */
191
192 /* MASK ROM */
193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
196 { 0x57, 24, 9, 4, 11}, /* 16 MB */
197 { 0x58, 25, 9, 4, 12}, /* 32 MB */
198 { 0,}
199};
200
201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202{
203 int i;
204
205 for (i = 0; alauda_card_ids[i].id != 0; i++)
206 if (alauda_card_ids[i].id == id)
207 return &(alauda_card_ids[i]);
208 return NULL;
209}
210
211/*
212 * ECC computation.
213 */
214
215static unsigned char parity[256];
216static unsigned char ecc2[256];
217
218static void nand_init_ecc(void)
219{
220 int i, j, a;
221
222 parity[0] = 0;
223 for (i = 1; i < 256; i++)
224 parity[i] = (parity[i&(i-1)] ^ 1);
225
226 for (i = 0; i < 256; i++) {
227 a = 0;
228 for (j = 0; j < 8; j++) {
229 if (i & (1<<j)) {
230 if ((j & 1) == 0)
231 a ^= 0x04;
232 if ((j & 2) == 0)
233 a ^= 0x10;
234 if ((j & 4) == 0)
235 a ^= 0x40;
236 }
237 }
238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 }
240}
241
242/* compute 3-byte ecc on 256 bytes */
243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244{
245 int i, j, a;
246 unsigned char par = 0, bit, bits[8] = {0};
247
248 /* collect 16 checksum bits */
249 for (i = 0; i < 256; i++) {
250 par ^= data[i];
251 bit = parity[data[i]];
252 for (j = 0; j < 8; j++)
253 if ((i & (1<<j)) == 0)
254 bits[j] ^= bit;
255 }
256
257 /* put 4+4+4 = 12 bits in the ecc */
258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260
261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263
264 ecc[2] = ecc2[par];
265}
266
267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268{
269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270}
271
272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273{
274 memcpy(data, ecc, 3);
275}
276
277/*
278 * Alauda driver
279 */
280
281/*
282 * Forget our PBA <---> LBA mappings for a particular port
283 */
284static void alauda_free_maps (struct alauda_media_info *media_info)
285{
286 unsigned int shift = media_info->zoneshift
287 + media_info->blockshift + media_info->pageshift;
288 unsigned int num_zones = media_info->capacity >> shift;
289 unsigned int i;
290
291 if (media_info->lba_to_pba != NULL)
292 for (i = 0; i < num_zones; i++) {
293 kfree(media_info->lba_to_pba[i]);
294 media_info->lba_to_pba[i] = NULL;
295 }
296
297 if (media_info->pba_to_lba != NULL)
298 for (i = 0; i < num_zones; i++) {
299 kfree(media_info->pba_to_lba[i]);
300 media_info->pba_to_lba[i] = NULL;
301 }
302}
303
304/*
305 * Returns 2 bytes of status data
306 * The first byte describes media status, and second byte describes door status
307 */
308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309{
310 int rc;
311 unsigned char command;
312
313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 command = ALAUDA_GET_XD_MEDIA_STATUS;
315 else
316 command = ALAUDA_GET_SM_MEDIA_STATUS;
317
318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 command, 0xc0, 0, 1, data, 2);
320
321 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
322
323 return rc;
324}
325
326/*
327 * Clears the "media was changed" bit so that we know when it changes again
328 * in the future.
329 */
330static int alauda_ack_media(struct us_data *us)
331{
332 unsigned char command;
333
334 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
335 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
336 else
337 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
338
339 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
340 command, 0x40, 0, 1, NULL, 0);
341}
342
343/*
344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
345 * and some other details.
346 */
347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
348{
349 unsigned char command;
350
351 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
352 command = ALAUDA_GET_XD_MEDIA_SIG;
353 else
354 command = ALAUDA_GET_SM_MEDIA_SIG;
355
356 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
357 command, 0xc0, 0, 0, data, 4);
358}
359
360/*
361 * Resets the media status (but not the whole device?)
362 */
363static int alauda_reset_media(struct us_data *us)
364{
365 unsigned char *command = us->iobuf;
366
367 memset(command, 0, 9);
368 command[0] = ALAUDA_BULK_CMD;
369 command[1] = ALAUDA_BULK_RESET_MEDIA;
370 command[8] = MEDIA_PORT(us);
371
372 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
373 command, 9, NULL);
374}
375
376/*
377 * Examines the media and deduces capacity, etc.
378 */
379static int alauda_init_media(struct us_data *us)
380{
381 unsigned char *data = us->iobuf;
382 int ready = 0;
383 struct alauda_card_info *media_info;
384 unsigned int num_zones;
385
386 while (ready == 0) {
387 msleep(20);
388
389 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
390 return USB_STOR_TRANSPORT_ERROR;
391
392 if (data[0] & 0x10)
393 ready = 1;
394 }
395
396 usb_stor_dbg(us, "We are ready for action!\n");
397
398 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
399 return USB_STOR_TRANSPORT_ERROR;
400
401 msleep(10);
402
403 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
404 return USB_STOR_TRANSPORT_ERROR;
405
406 if (data[0] != 0x14) {
407 usb_stor_dbg(us, "Media not ready after ack\n");
408 return USB_STOR_TRANSPORT_ERROR;
409 }
410
411 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
412 return USB_STOR_TRANSPORT_ERROR;
413
414 usb_stor_dbg(us, "Media signature: %4ph\n", data);
415 media_info = alauda_card_find_id(data[1]);
416 if (media_info == NULL) {
417 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
418 data);
419 return USB_STOR_TRANSPORT_ERROR;
420 }
421
422 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
423 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
424 MEDIA_INFO(us).capacity >> 20);
425
426 MEDIA_INFO(us).pageshift = media_info->pageshift;
427 MEDIA_INFO(us).blockshift = media_info->blockshift;
428 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
429
430 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
431 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
432 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
433
434 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
435 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
436
437 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
438 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
439 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441 if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
442 return USB_STOR_TRANSPORT_ERROR;
443
444 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
445 return USB_STOR_TRANSPORT_ERROR;
446
447 return USB_STOR_TRANSPORT_GOOD;
448}
449
450/*
451 * Examines the media status and does the right thing when the media has gone,
452 * appeared, or changed.
453 */
454static int alauda_check_media(struct us_data *us)
455{
456 struct alauda_info *info = (struct alauda_info *) us->extra;
457 unsigned char status[2];
458
459 alauda_get_media_status(us, status);
460
461 /* Check for no media or door open */
462 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
463 || ((status[1] & 0x01) == 0)) {
464 usb_stor_dbg(us, "No media, or door open\n");
465 alauda_free_maps(&MEDIA_INFO(us));
466 info->sense_key = 0x02;
467 info->sense_asc = 0x3A;
468 info->sense_ascq = 0x00;
469 return USB_STOR_TRANSPORT_FAILED;
470 }
471
472 /* Check for media change */
473 if (status[0] & 0x08) {
474 usb_stor_dbg(us, "Media change detected\n");
475 alauda_free_maps(&MEDIA_INFO(us));
476 alauda_init_media(us);
477
478 info->sense_key = UNIT_ATTENTION;
479 info->sense_asc = 0x28;
480 info->sense_ascq = 0x00;
481 return USB_STOR_TRANSPORT_FAILED;
482 }
483
484 return USB_STOR_TRANSPORT_GOOD;
485}
486
487/*
488 * Checks the status from the 2nd status register
489 * Returns 3 bytes of status data, only the first is known
490 */
491static int alauda_check_status2(struct us_data *us)
492{
493 int rc;
494 unsigned char command[] = {
495 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
496 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
497 };
498 unsigned char data[3];
499
500 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
501 command, 9, NULL);
502 if (rc != USB_STOR_XFER_GOOD)
503 return rc;
504
505 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
506 data, 3, NULL);
507 if (rc != USB_STOR_XFER_GOOD)
508 return rc;
509
510 usb_stor_dbg(us, "%3ph\n", data);
511 if (data[0] & ALAUDA_STATUS_ERROR)
512 return USB_STOR_XFER_ERROR;
513
514 return USB_STOR_XFER_GOOD;
515}
516
517/*
518 * Gets the redundancy data for the first page of a PBA
519 * Returns 16 bytes.
520 */
521static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
522{
523 int rc;
524 unsigned char command[] = {
525 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
526 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
527 };
528
529 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
530 command, 9, NULL);
531 if (rc != USB_STOR_XFER_GOOD)
532 return rc;
533
534 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
535 data, 16, NULL);
536}
537
538/*
539 * Finds the first unused PBA in a zone
540 * Returns the absolute PBA of an unused PBA, or 0 if none found.
541 */
542static u16 alauda_find_unused_pba(struct alauda_media_info *info,
543 unsigned int zone)
544{
545 u16 *pba_to_lba = info->pba_to_lba[zone];
546 unsigned int i;
547
548 for (i = 0; i < info->zonesize; i++)
549 if (pba_to_lba[i] == UNDEF)
550 return (zone << info->zoneshift) + i;
551
552 return 0;
553}
554
555/*
556 * Reads the redundancy data for all PBA's in a zone
557 * Produces lba <--> pba mappings
558 */
559static int alauda_read_map(struct us_data *us, unsigned int zone)
560{
561 unsigned char *data = us->iobuf;
562 int result;
563 int i, j;
564 unsigned int zonesize = MEDIA_INFO(us).zonesize;
565 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
566 unsigned int lba_offset, lba_real, blocknum;
567 unsigned int zone_base_lba = zone * uzonesize;
568 unsigned int zone_base_pba = zone * zonesize;
569 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
570 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
571 if (lba_to_pba == NULL || pba_to_lba == NULL) {
572 result = USB_STOR_TRANSPORT_ERROR;
573 goto error;
574 }
575
576 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
577
578 /* 1024 PBA's per zone */
579 for (i = 0; i < zonesize; i++)
580 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
581
582 for (i = 0; i < zonesize; i++) {
583 blocknum = zone_base_pba + i;
584
585 result = alauda_get_redu_data(us, blocknum, data);
586 if (result != USB_STOR_XFER_GOOD) {
587 result = USB_STOR_TRANSPORT_ERROR;
588 goto error;
589 }
590
591 /* special PBAs have control field 0^16 */
592 for (j = 0; j < 16; j++)
593 if (data[j] != 0)
594 goto nonz;
595 pba_to_lba[i] = UNUSABLE;
596 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
597 continue;
598
599 nonz:
600 /* unwritten PBAs have control field FF^16 */
601 for (j = 0; j < 16; j++)
602 if (data[j] != 0xff)
603 goto nonff;
604 continue;
605
606 nonff:
607 /* normal PBAs start with six FFs */
608 if (j < 6) {
609 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
610 blocknum,
611 data[0], data[1], data[2], data[3],
612 data[4], data[5]);
613 pba_to_lba[i] = UNUSABLE;
614 continue;
615 }
616
617 if ((data[6] >> 4) != 0x01) {
618 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
619 blocknum, data[6], data[7],
620 data[11], data[12]);
621 pba_to_lba[i] = UNUSABLE;
622 continue;
623 }
624
625 /* check even parity */
626 if (parity[data[6] ^ data[7]]) {
627 printk(KERN_WARNING
628 "alauda_read_map: Bad parity in LBA for block %d"
629 " (%02X %02X)\n", i, data[6], data[7]);
630 pba_to_lba[i] = UNUSABLE;
631 continue;
632 }
633
634 lba_offset = short_pack(data[7], data[6]);
635 lba_offset = (lba_offset & 0x07FF) >> 1;
636 lba_real = lba_offset + zone_base_lba;
637
638 /*
639 * Every 1024 physical blocks ("zone"), the LBA numbers
640 * go back to zero, but are within a higher block of LBA's.
641 * Also, there is a maximum of 1000 LBA's per zone.
642 * In other words, in PBA 1024-2047 you will find LBA 0-999
643 * which are really LBA 1000-1999. This allows for 24 bad
644 * or special physical blocks per zone.
645 */
646
647 if (lba_offset >= uzonesize) {
648 printk(KERN_WARNING
649 "alauda_read_map: Bad low LBA %d for block %d\n",
650 lba_real, blocknum);
651 continue;
652 }
653
654 if (lba_to_pba[lba_offset] != UNDEF) {
655 printk(KERN_WARNING
656 "alauda_read_map: "
657 "LBA %d seen for PBA %d and %d\n",
658 lba_real, lba_to_pba[lba_offset], blocknum);
659 continue;
660 }
661
662 pba_to_lba[i] = lba_real;
663 lba_to_pba[lba_offset] = blocknum;
664 continue;
665 }
666
667 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
668 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
669 result = 0;
670 goto out;
671
672error:
673 kfree(lba_to_pba);
674 kfree(pba_to_lba);
675out:
676 return result;
677}
678
679/*
680 * Checks to see whether we have already mapped a certain zone
681 * If we haven't, the map is generated
682 */
683static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
684{
685 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
686 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
687 alauda_read_map(us, zone);
688}
689
690/*
691 * Erases an entire block
692 */
693static int alauda_erase_block(struct us_data *us, u16 pba)
694{
695 int rc;
696 unsigned char command[] = {
697 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
698 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
699 };
700 unsigned char buf[2];
701
702 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
703
704 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
705 command, 9, NULL);
706 if (rc != USB_STOR_XFER_GOOD)
707 return rc;
708
709 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
710 buf, 2, NULL);
711 if (rc != USB_STOR_XFER_GOOD)
712 return rc;
713
714 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
715 return rc;
716}
717
718/*
719 * Reads data from a certain offset page inside a PBA, including interleaved
720 * redundancy data. Returns (pagesize+64)*pages bytes in data.
721 */
722static int alauda_read_block_raw(struct us_data *us, u16 pba,
723 unsigned int page, unsigned int pages, unsigned char *data)
724{
725 int rc;
726 unsigned char command[] = {
727 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
728 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
729 };
730
731 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
732
733 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
734 command, 9, NULL);
735 if (rc != USB_STOR_XFER_GOOD)
736 return rc;
737
738 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
739 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
740}
741
742/*
743 * Reads data from a certain offset page inside a PBA, excluding redundancy
744 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
745 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
746 * trailing bytes outside this function.
747 */
748static int alauda_read_block(struct us_data *us, u16 pba,
749 unsigned int page, unsigned int pages, unsigned char *data)
750{
751 int i, rc;
752 unsigned int pagesize = MEDIA_INFO(us).pagesize;
753
754 rc = alauda_read_block_raw(us, pba, page, pages, data);
755 if (rc != USB_STOR_XFER_GOOD)
756 return rc;
757
758 /* Cut out the redundancy data */
759 for (i = 0; i < pages; i++) {
760 int dest_offset = i * pagesize;
761 int src_offset = i * (pagesize + 64);
762 memmove(data + dest_offset, data + src_offset, pagesize);
763 }
764
765 return rc;
766}
767
768/*
769 * Writes an entire block of data and checks status after write.
770 * Redundancy data must be already included in data. Data should be
771 * (pagesize+64)*blocksize bytes in length.
772 */
773static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
774{
775 int rc;
776 struct alauda_info *info = (struct alauda_info *) us->extra;
777 unsigned char command[] = {
778 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
779 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
780 };
781
782 usb_stor_dbg(us, "pba %d\n", pba);
783
784 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
785 command, 9, NULL);
786 if (rc != USB_STOR_XFER_GOOD)
787 return rc;
788
789 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
790 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
791 NULL);
792 if (rc != USB_STOR_XFER_GOOD)
793 return rc;
794
795 return alauda_check_status2(us);
796}
797
798/*
799 * Write some data to a specific LBA.
800 */
801static int alauda_write_lba(struct us_data *us, u16 lba,
802 unsigned int page, unsigned int pages,
803 unsigned char *ptr, unsigned char *blockbuffer)
804{
805 u16 pba, lbap, new_pba;
806 unsigned char *bptr, *cptr, *xptr;
807 unsigned char ecc[3];
808 int i, result;
809 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
810 unsigned int zonesize = MEDIA_INFO(us).zonesize;
811 unsigned int pagesize = MEDIA_INFO(us).pagesize;
812 unsigned int blocksize = MEDIA_INFO(us).blocksize;
813 unsigned int lba_offset = lba % uzonesize;
814 unsigned int new_pba_offset;
815 unsigned int zone = lba / uzonesize;
816
817 alauda_ensure_map_for_zone(us, zone);
818
819 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
820 if (pba == 1) {
821 /*
822 * Maybe it is impossible to write to PBA 1.
823 * Fake success, but don't do anything.
824 */
825 printk(KERN_WARNING
826 "alauda_write_lba: avoid writing to pba 1\n");
827 return USB_STOR_TRANSPORT_GOOD;
828 }
829
830 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
831 if (!new_pba) {
832 printk(KERN_WARNING
833 "alauda_write_lba: Out of unused blocks\n");
834 return USB_STOR_TRANSPORT_ERROR;
835 }
836
837 /* read old contents */
838 if (pba != UNDEF) {
839 result = alauda_read_block_raw(us, pba, 0,
840 blocksize, blockbuffer);
841 if (result != USB_STOR_XFER_GOOD)
842 return result;
843 } else {
844 memset(blockbuffer, 0, blocksize * (pagesize + 64));
845 }
846
847 lbap = (lba_offset << 1) | 0x1000;
848 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
849 lbap ^= 1;
850
851 /* check old contents and fill lba */
852 for (i = 0; i < blocksize; i++) {
853 bptr = blockbuffer + (i * (pagesize + 64));
854 cptr = bptr + pagesize;
855 nand_compute_ecc(bptr, ecc);
856 if (!nand_compare_ecc(cptr+13, ecc)) {
857 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
858 i, pba);
859 nand_store_ecc(cptr+13, ecc);
860 }
861 nand_compute_ecc(bptr + (pagesize / 2), ecc);
862 if (!nand_compare_ecc(cptr+8, ecc)) {
863 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
864 i, pba);
865 nand_store_ecc(cptr+8, ecc);
866 }
867 cptr[6] = cptr[11] = MSB_of(lbap);
868 cptr[7] = cptr[12] = LSB_of(lbap);
869 }
870
871 /* copy in new stuff and compute ECC */
872 xptr = ptr;
873 for (i = page; i < page+pages; i++) {
874 bptr = blockbuffer + (i * (pagesize + 64));
875 cptr = bptr + pagesize;
876 memcpy(bptr, xptr, pagesize);
877 xptr += pagesize;
878 nand_compute_ecc(bptr, ecc);
879 nand_store_ecc(cptr+13, ecc);
880 nand_compute_ecc(bptr + (pagesize / 2), ecc);
881 nand_store_ecc(cptr+8, ecc);
882 }
883
884 result = alauda_write_block(us, new_pba, blockbuffer);
885 if (result != USB_STOR_XFER_GOOD)
886 return result;
887
888 new_pba_offset = new_pba - (zone * zonesize);
889 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
890 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
891 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
892
893 if (pba != UNDEF) {
894 unsigned int pba_offset = pba - (zone * zonesize);
895 result = alauda_erase_block(us, pba);
896 if (result != USB_STOR_XFER_GOOD)
897 return result;
898 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
899 }
900
901 return USB_STOR_TRANSPORT_GOOD;
902}
903
904/*
905 * Read data from a specific sector address
906 */
907static int alauda_read_data(struct us_data *us, unsigned long address,
908 unsigned int sectors)
909{
910 unsigned char *buffer;
911 u16 lba, max_lba;
912 unsigned int page, len, offset;
913 unsigned int blockshift = MEDIA_INFO(us).blockshift;
914 unsigned int pageshift = MEDIA_INFO(us).pageshift;
915 unsigned int blocksize = MEDIA_INFO(us).blocksize;
916 unsigned int pagesize = MEDIA_INFO(us).pagesize;
917 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
918 struct scatterlist *sg;
919 int result;
920
921 /*
922 * Since we only read in one block at a time, we have to create
923 * a bounce buffer and move the data a piece at a time between the
924 * bounce buffer and the actual transfer buffer.
925 * We make this buffer big enough to hold temporary redundancy data,
926 * which we use when reading the data blocks.
927 */
928
929 len = min(sectors, blocksize) * (pagesize + 64);
930 buffer = kmalloc(len, GFP_NOIO);
931 if (!buffer)
932 return USB_STOR_TRANSPORT_ERROR;
933
934 /* Figure out the initial LBA and page */
935 lba = address >> blockshift;
936 page = (address & MEDIA_INFO(us).blockmask);
937 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
938
939 result = USB_STOR_TRANSPORT_GOOD;
940 offset = 0;
941 sg = NULL;
942
943 while (sectors > 0) {
944 unsigned int zone = lba / uzonesize; /* integer division */
945 unsigned int lba_offset = lba - (zone * uzonesize);
946 unsigned int pages;
947 u16 pba;
948 alauda_ensure_map_for_zone(us, zone);
949
950 /* Not overflowing capacity? */
951 if (lba >= max_lba) {
952 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
953 lba, max_lba);
954 result = USB_STOR_TRANSPORT_ERROR;
955 break;
956 }
957
958 /* Find number of pages we can read in this block */
959 pages = min(sectors, blocksize - page);
960 len = pages << pageshift;
961
962 /* Find where this lba lives on disk */
963 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
964
965 if (pba == UNDEF) { /* this lba was never written */
966 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
967 pages, lba, page);
968
969 /*
970 * This is not really an error. It just means
971 * that the block has never been written.
972 * Instead of returning USB_STOR_TRANSPORT_ERROR
973 * it is better to return all zero data.
974 */
975
976 memset(buffer, 0, len);
977 } else {
978 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
979 pages, pba, lba, page);
980
981 result = alauda_read_block(us, pba, page, pages, buffer);
982 if (result != USB_STOR_TRANSPORT_GOOD)
983 break;
984 }
985
986 /* Store the data in the transfer buffer */
987 usb_stor_access_xfer_buf(buffer, len, us->srb,
988 &sg, &offset, TO_XFER_BUF);
989
990 page = 0;
991 lba++;
992 sectors -= pages;
993 }
994
995 kfree(buffer);
996 return result;
997}
998
999/*
1000 * Write data to a specific sector address
1001 */
1002static int alauda_write_data(struct us_data *us, unsigned long address,
1003 unsigned int sectors)
1004{
1005 unsigned char *buffer, *blockbuffer;
1006 unsigned int page, len, offset;
1007 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1008 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1009 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1010 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1011 struct scatterlist *sg;
1012 u16 lba, max_lba;
1013 int result;
1014
1015 /*
1016 * Since we don't write the user data directly to the device,
1017 * we have to create a bounce buffer and move the data a piece
1018 * at a time between the bounce buffer and the actual transfer buffer.
1019 */
1020
1021 len = min(sectors, blocksize) * pagesize;
1022 buffer = kmalloc(len, GFP_NOIO);
1023 if (!buffer)
1024 return USB_STOR_TRANSPORT_ERROR;
1025
1026 /*
1027 * We also need a temporary block buffer, where we read in the old data,
1028 * overwrite parts with the new data, and manipulate the redundancy data
1029 */
1030 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1031 if (!blockbuffer) {
1032 kfree(buffer);
1033 return USB_STOR_TRANSPORT_ERROR;
1034 }
1035
1036 /* Figure out the initial LBA and page */
1037 lba = address >> blockshift;
1038 page = (address & MEDIA_INFO(us).blockmask);
1039 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1040
1041 result = USB_STOR_TRANSPORT_GOOD;
1042 offset = 0;
1043 sg = NULL;
1044
1045 while (sectors > 0) {
1046 /* Write as many sectors as possible in this block */
1047 unsigned int pages = min(sectors, blocksize - page);
1048 len = pages << pageshift;
1049
1050 /* Not overflowing capacity? */
1051 if (lba >= max_lba) {
1052 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1053 lba, max_lba);
1054 result = USB_STOR_TRANSPORT_ERROR;
1055 break;
1056 }
1057
1058 /* Get the data from the transfer buffer */
1059 usb_stor_access_xfer_buf(buffer, len, us->srb,
1060 &sg, &offset, FROM_XFER_BUF);
1061
1062 result = alauda_write_lba(us, lba, page, pages, buffer,
1063 blockbuffer);
1064 if (result != USB_STOR_TRANSPORT_GOOD)
1065 break;
1066
1067 page = 0;
1068 lba++;
1069 sectors -= pages;
1070 }
1071
1072 kfree(buffer);
1073 kfree(blockbuffer);
1074 return result;
1075}
1076
1077/*
1078 * Our interface with the rest of the world
1079 */
1080
1081static void alauda_info_destructor(void *extra)
1082{
1083 struct alauda_info *info = (struct alauda_info *) extra;
1084 int port;
1085
1086 if (!info)
1087 return;
1088
1089 for (port = 0; port < 2; port++) {
1090 struct alauda_media_info *media_info = &info->port[port];
1091
1092 alauda_free_maps(media_info);
1093 kfree(media_info->lba_to_pba);
1094 kfree(media_info->pba_to_lba);
1095 }
1096}
1097
1098/*
1099 * Initialize alauda_info struct and find the data-write endpoint
1100 */
1101static int init_alauda(struct us_data *us)
1102{
1103 struct alauda_info *info;
1104 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1105 nand_init_ecc();
1106
1107 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1108 if (!us->extra)
1109 return -ENOMEM;
1110
1111 info = (struct alauda_info *) us->extra;
1112 us->extra_destructor = alauda_info_destructor;
1113
1114 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1115 altsetting->endpoint[0].desc.bEndpointAddress
1116 & USB_ENDPOINT_NUMBER_MASK);
1117
1118 return 0;
1119}
1120
1121static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1122{
1123 int rc;
1124 struct alauda_info *info = (struct alauda_info *) us->extra;
1125 unsigned char *ptr = us->iobuf;
1126 static unsigned char inquiry_response[36] = {
1127 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1128 };
1129
1130 if (srb->cmnd[0] == INQUIRY) {
1131 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1132 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1133 fill_inquiry_response(us, ptr, 36);
1134 return USB_STOR_TRANSPORT_GOOD;
1135 }
1136
1137 if (srb->cmnd[0] == TEST_UNIT_READY) {
1138 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1139 return alauda_check_media(us);
1140 }
1141
1142 if (srb->cmnd[0] == READ_CAPACITY) {
1143 unsigned int num_zones;
1144 unsigned long capacity;
1145
1146 rc = alauda_check_media(us);
1147 if (rc != USB_STOR_TRANSPORT_GOOD)
1148 return rc;
1149
1150 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1151 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1152
1153 capacity = num_zones * MEDIA_INFO(us).uzonesize
1154 * MEDIA_INFO(us).blocksize;
1155
1156 /* Report capacity and page size */
1157 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1158 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1159
1160 usb_stor_set_xfer_buf(ptr, 8, srb);
1161 return USB_STOR_TRANSPORT_GOOD;
1162 }
1163
1164 if (srb->cmnd[0] == READ_10) {
1165 unsigned int page, pages;
1166
1167 rc = alauda_check_media(us);
1168 if (rc != USB_STOR_TRANSPORT_GOOD)
1169 return rc;
1170
1171 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1172 page <<= 16;
1173 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1174 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1175
1176 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1177
1178 return alauda_read_data(us, page, pages);
1179 }
1180
1181 if (srb->cmnd[0] == WRITE_10) {
1182 unsigned int page, pages;
1183
1184 rc = alauda_check_media(us);
1185 if (rc != USB_STOR_TRANSPORT_GOOD)
1186 return rc;
1187
1188 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1189 page <<= 16;
1190 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1191 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1192
1193 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1194
1195 return alauda_write_data(us, page, pages);
1196 }
1197
1198 if (srb->cmnd[0] == REQUEST_SENSE) {
1199 usb_stor_dbg(us, "REQUEST_SENSE\n");
1200
1201 memset(ptr, 0, 18);
1202 ptr[0] = 0xF0;
1203 ptr[2] = info->sense_key;
1204 ptr[7] = 11;
1205 ptr[12] = info->sense_asc;
1206 ptr[13] = info->sense_ascq;
1207 usb_stor_set_xfer_buf(ptr, 18, srb);
1208
1209 return USB_STOR_TRANSPORT_GOOD;
1210 }
1211
1212 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1213 /*
1214 * sure. whatever. not like we can stop the user from popping
1215 * the media out of the device (no locking doors, etc)
1216 */
1217 return USB_STOR_TRANSPORT_GOOD;
1218 }
1219
1220 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1221 srb->cmnd[0], srb->cmnd[0]);
1222 info->sense_key = 0x05;
1223 info->sense_asc = 0x20;
1224 info->sense_ascq = 0x00;
1225 return USB_STOR_TRANSPORT_FAILED;
1226}
1227
1228static struct scsi_host_template alauda_host_template;
1229
1230static int alauda_probe(struct usb_interface *intf,
1231 const struct usb_device_id *id)
1232{
1233 struct us_data *us;
1234 int result;
1235
1236 result = usb_stor_probe1(&us, intf, id,
1237 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1238 &alauda_host_template);
1239 if (result)
1240 return result;
1241
1242 us->transport_name = "Alauda Control/Bulk";
1243 us->transport = alauda_transport;
1244 us->transport_reset = usb_stor_Bulk_reset;
1245 us->max_lun = 1;
1246
1247 result = usb_stor_probe2(us);
1248 return result;
1249}
1250
1251static struct usb_driver alauda_driver = {
1252 .name = DRV_NAME,
1253 .probe = alauda_probe,
1254 .disconnect = usb_stor_disconnect,
1255 .suspend = usb_stor_suspend,
1256 .resume = usb_stor_resume,
1257 .reset_resume = usb_stor_reset_resume,
1258 .pre_reset = usb_stor_pre_reset,
1259 .post_reset = usb_stor_post_reset,
1260 .id_table = alauda_usb_ids,
1261 .soft_unbind = 1,
1262 .no_dynamic_id = 1,
1263};
1264
1265module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);