Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Alauda-based card readers
4 *
5 * Current development and maintenance by:
6 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 *
8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 *
10 * Alauda implements a vendor-specific command set to access two media reader
11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12 * which are accepted by these devices.
13 *
14 * The driver was developed through reverse-engineering, with the help of the
15 * sddr09 driver which has many similarities, and with some help from the
16 * (very old) vendor-supplied GPL sma03 driver.
17 *
18 * For protocol info, see http://alauda.sourceforge.net
19 */
20
21#include <linux/module.h>
22#include <linux/slab.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_device.h>
27
28#include "usb.h"
29#include "transport.h"
30#include "protocol.h"
31#include "debug.h"
32#include "scsiglue.h"
33
34#define DRV_NAME "ums-alauda"
35
36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38MODULE_LICENSE("GPL");
39MODULE_IMPORT_NS(USB_STORAGE);
40
41/*
42 * Status bytes
43 */
44#define ALAUDA_STATUS_ERROR 0x01
45#define ALAUDA_STATUS_READY 0x40
46
47/*
48 * Control opcodes (for request field)
49 */
50#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
51#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
52#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
53#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
54#define ALAUDA_GET_XD_MEDIA_SIG 0x86
55#define ALAUDA_GET_SM_MEDIA_SIG 0x96
56
57/*
58 * Bulk command identity (byte 0)
59 */
60#define ALAUDA_BULK_CMD 0x40
61
62/*
63 * Bulk opcodes (byte 1)
64 */
65#define ALAUDA_BULK_GET_REDU_DATA 0x85
66#define ALAUDA_BULK_READ_BLOCK 0x94
67#define ALAUDA_BULK_ERASE_BLOCK 0xa3
68#define ALAUDA_BULK_WRITE_BLOCK 0xb4
69#define ALAUDA_BULK_GET_STATUS2 0xb7
70#define ALAUDA_BULK_RESET_MEDIA 0xe0
71
72/*
73 * Port to operate on (byte 8)
74 */
75#define ALAUDA_PORT_XD 0x00
76#define ALAUDA_PORT_SM 0x01
77
78/*
79 * LBA and PBA are unsigned ints. Special values.
80 */
81#define UNDEF 0xffff
82#define SPARE 0xfffe
83#define UNUSABLE 0xfffd
84
85struct alauda_media_info {
86 unsigned long capacity; /* total media size in bytes */
87 unsigned int pagesize; /* page size in bytes */
88 unsigned int blocksize; /* number of pages per block */
89 unsigned int uzonesize; /* number of usable blocks per zone */
90 unsigned int zonesize; /* number of blocks per zone */
91 unsigned int blockmask; /* mask to get page from address */
92
93 unsigned char pageshift;
94 unsigned char blockshift;
95 unsigned char zoneshift;
96
97 u16 **lba_to_pba; /* logical to physical block map */
98 u16 **pba_to_lba; /* physical to logical block map */
99};
100
101struct alauda_info {
102 struct alauda_media_info port[2];
103 int wr_ep; /* endpoint to write data out of */
104
105 unsigned char sense_key;
106 unsigned long sense_asc; /* additional sense code */
107 unsigned long sense_ascq; /* additional sense code qualifier */
108};
109
110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111#define LSB_of(s) ((s)&0xFF)
112#define MSB_of(s) ((s)>>8)
113
114#define MEDIA_PORT(us) us->srb->device->lun
115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116
117#define PBA_LO(pba) ((pba & 0xF) << 5)
118#define PBA_HI(pba) (pba >> 3)
119#define PBA_ZONE(pba) (pba >> 11)
120
121static int init_alauda(struct us_data *us);
122
123
124/*
125 * The table of devices
126 */
127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 vendorName, productName, useProtocol, useTransport, \
129 initFunction, flags) \
130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131 .driver_info = (flags) }
132
133static struct usb_device_id alauda_usb_ids[] = {
134# include "unusual_alauda.h"
135 { } /* Terminating entry */
136};
137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138
139#undef UNUSUAL_DEV
140
141/*
142 * The flags table
143 */
144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 vendor_name, product_name, use_protocol, use_transport, \
146 init_function, Flags) \
147{ \
148 .vendorName = vendor_name, \
149 .productName = product_name, \
150 .useProtocol = use_protocol, \
151 .useTransport = use_transport, \
152 .initFunction = init_function, \
153}
154
155static struct us_unusual_dev alauda_unusual_dev_list[] = {
156# include "unusual_alauda.h"
157 { } /* Terminating entry */
158};
159
160#undef UNUSUAL_DEV
161
162
163/*
164 * Media handling
165 */
166
167struct alauda_card_info {
168 unsigned char id; /* id byte */
169 unsigned char chipshift; /* 1<<cs bytes total capacity */
170 unsigned char pageshift; /* 1<<ps bytes in a page */
171 unsigned char blockshift; /* 1<<bs pages per block */
172 unsigned char zoneshift; /* 1<<zs blocks per zone */
173};
174
175static struct alauda_card_info alauda_card_ids[] = {
176 /* NAND flash */
177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
179 { 0xec, 20, 8, 4, 8}, /* 1 MB */
180 { 0x64, 21, 8, 4, 9}, /* 2 MB */
181 { 0xea, 21, 8, 4, 9}, /* 2 MB */
182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
186 { 0x73, 24, 9, 5, 10}, /* 16 MB */
187 { 0x75, 25, 9, 5, 10}, /* 32 MB */
188 { 0x76, 26, 9, 5, 10}, /* 64 MB */
189 { 0x79, 27, 9, 5, 10}, /* 128 MB */
190 { 0x71, 28, 9, 5, 10}, /* 256 MB */
191
192 /* MASK ROM */
193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
196 { 0x57, 24, 9, 4, 11}, /* 16 MB */
197 { 0x58, 25, 9, 4, 12}, /* 32 MB */
198 { 0,}
199};
200
201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202{
203 int i;
204
205 for (i = 0; alauda_card_ids[i].id != 0; i++)
206 if (alauda_card_ids[i].id == id)
207 return &(alauda_card_ids[i]);
208 return NULL;
209}
210
211/*
212 * ECC computation.
213 */
214
215static unsigned char parity[256];
216static unsigned char ecc2[256];
217
218static void nand_init_ecc(void)
219{
220 int i, j, a;
221
222 parity[0] = 0;
223 for (i = 1; i < 256; i++)
224 parity[i] = (parity[i&(i-1)] ^ 1);
225
226 for (i = 0; i < 256; i++) {
227 a = 0;
228 for (j = 0; j < 8; j++) {
229 if (i & (1<<j)) {
230 if ((j & 1) == 0)
231 a ^= 0x04;
232 if ((j & 2) == 0)
233 a ^= 0x10;
234 if ((j & 4) == 0)
235 a ^= 0x40;
236 }
237 }
238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 }
240}
241
242/* compute 3-byte ecc on 256 bytes */
243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244{
245 int i, j, a;
246 unsigned char par = 0, bit, bits[8] = {0};
247
248 /* collect 16 checksum bits */
249 for (i = 0; i < 256; i++) {
250 par ^= data[i];
251 bit = parity[data[i]];
252 for (j = 0; j < 8; j++)
253 if ((i & (1<<j)) == 0)
254 bits[j] ^= bit;
255 }
256
257 /* put 4+4+4 = 12 bits in the ecc */
258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260
261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263
264 ecc[2] = ecc2[par];
265}
266
267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268{
269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270}
271
272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273{
274 memcpy(data, ecc, 3);
275}
276
277/*
278 * Alauda driver
279 */
280
281/*
282 * Forget our PBA <---> LBA mappings for a particular port
283 */
284static void alauda_free_maps (struct alauda_media_info *media_info)
285{
286 unsigned int shift = media_info->zoneshift
287 + media_info->blockshift + media_info->pageshift;
288 unsigned int num_zones = media_info->capacity >> shift;
289 unsigned int i;
290
291 if (media_info->lba_to_pba != NULL)
292 for (i = 0; i < num_zones; i++) {
293 kfree(media_info->lba_to_pba[i]);
294 media_info->lba_to_pba[i] = NULL;
295 }
296
297 if (media_info->pba_to_lba != NULL)
298 for (i = 0; i < num_zones; i++) {
299 kfree(media_info->pba_to_lba[i]);
300 media_info->pba_to_lba[i] = NULL;
301 }
302}
303
304/*
305 * Returns 2 bytes of status data
306 * The first byte describes media status, and second byte describes door status
307 */
308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309{
310 int rc;
311 unsigned char command;
312
313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 command = ALAUDA_GET_XD_MEDIA_STATUS;
315 else
316 command = ALAUDA_GET_SM_MEDIA_STATUS;
317
318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 command, 0xc0, 0, 1, data, 2);
320
321 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
322
323 return rc;
324}
325
326/*
327 * Clears the "media was changed" bit so that we know when it changes again
328 * in the future.
329 */
330static int alauda_ack_media(struct us_data *us)
331{
332 unsigned char command;
333
334 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
335 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
336 else
337 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
338
339 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
340 command, 0x40, 0, 1, NULL, 0);
341}
342
343/*
344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
345 * and some other details.
346 */
347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
348{
349 unsigned char command;
350
351 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
352 command = ALAUDA_GET_XD_MEDIA_SIG;
353 else
354 command = ALAUDA_GET_SM_MEDIA_SIG;
355
356 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
357 command, 0xc0, 0, 0, data, 4);
358}
359
360/*
361 * Resets the media status (but not the whole device?)
362 */
363static int alauda_reset_media(struct us_data *us)
364{
365 unsigned char *command = us->iobuf;
366
367 memset(command, 0, 9);
368 command[0] = ALAUDA_BULK_CMD;
369 command[1] = ALAUDA_BULK_RESET_MEDIA;
370 command[8] = MEDIA_PORT(us);
371
372 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
373 command, 9, NULL);
374}
375
376/*
377 * Examines the media and deduces capacity, etc.
378 */
379static int alauda_init_media(struct us_data *us)
380{
381 unsigned char *data = us->iobuf;
382 int ready = 0;
383 struct alauda_card_info *media_info;
384 unsigned int num_zones;
385
386 while (ready == 0) {
387 msleep(20);
388
389 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
390 return USB_STOR_TRANSPORT_ERROR;
391
392 if (data[0] & 0x10)
393 ready = 1;
394 }
395
396 usb_stor_dbg(us, "We are ready for action!\n");
397
398 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
399 return USB_STOR_TRANSPORT_ERROR;
400
401 msleep(10);
402
403 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
404 return USB_STOR_TRANSPORT_ERROR;
405
406 if (data[0] != 0x14) {
407 usb_stor_dbg(us, "Media not ready after ack\n");
408 return USB_STOR_TRANSPORT_ERROR;
409 }
410
411 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
412 return USB_STOR_TRANSPORT_ERROR;
413
414 usb_stor_dbg(us, "Media signature: %4ph\n", data);
415 media_info = alauda_card_find_id(data[1]);
416 if (media_info == NULL) {
417 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
418 data);
419 return USB_STOR_TRANSPORT_ERROR;
420 }
421
422 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
423 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
424 MEDIA_INFO(us).capacity >> 20);
425
426 MEDIA_INFO(us).pageshift = media_info->pageshift;
427 MEDIA_INFO(us).blockshift = media_info->blockshift;
428 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
429
430 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
431 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
432 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
433
434 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
435 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
436
437 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
438 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
439 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441
442 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
443 return USB_STOR_TRANSPORT_ERROR;
444
445 return USB_STOR_TRANSPORT_GOOD;
446}
447
448/*
449 * Examines the media status and does the right thing when the media has gone,
450 * appeared, or changed.
451 */
452static int alauda_check_media(struct us_data *us)
453{
454 struct alauda_info *info = (struct alauda_info *) us->extra;
455 unsigned char status[2];
456
457 alauda_get_media_status(us, status);
458
459 /* Check for no media or door open */
460 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
461 || ((status[1] & 0x01) == 0)) {
462 usb_stor_dbg(us, "No media, or door open\n");
463 alauda_free_maps(&MEDIA_INFO(us));
464 info->sense_key = 0x02;
465 info->sense_asc = 0x3A;
466 info->sense_ascq = 0x00;
467 return USB_STOR_TRANSPORT_FAILED;
468 }
469
470 /* Check for media change */
471 if (status[0] & 0x08) {
472 usb_stor_dbg(us, "Media change detected\n");
473 alauda_free_maps(&MEDIA_INFO(us));
474 alauda_init_media(us);
475
476 info->sense_key = UNIT_ATTENTION;
477 info->sense_asc = 0x28;
478 info->sense_ascq = 0x00;
479 return USB_STOR_TRANSPORT_FAILED;
480 }
481
482 return USB_STOR_TRANSPORT_GOOD;
483}
484
485/*
486 * Checks the status from the 2nd status register
487 * Returns 3 bytes of status data, only the first is known
488 */
489static int alauda_check_status2(struct us_data *us)
490{
491 int rc;
492 unsigned char command[] = {
493 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
494 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
495 };
496 unsigned char data[3];
497
498 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
499 command, 9, NULL);
500 if (rc != USB_STOR_XFER_GOOD)
501 return rc;
502
503 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
504 data, 3, NULL);
505 if (rc != USB_STOR_XFER_GOOD)
506 return rc;
507
508 usb_stor_dbg(us, "%3ph\n", data);
509 if (data[0] & ALAUDA_STATUS_ERROR)
510 return USB_STOR_XFER_ERROR;
511
512 return USB_STOR_XFER_GOOD;
513}
514
515/*
516 * Gets the redundancy data for the first page of a PBA
517 * Returns 16 bytes.
518 */
519static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
520{
521 int rc;
522 unsigned char command[] = {
523 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
524 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
525 };
526
527 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
528 command, 9, NULL);
529 if (rc != USB_STOR_XFER_GOOD)
530 return rc;
531
532 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
533 data, 16, NULL);
534}
535
536/*
537 * Finds the first unused PBA in a zone
538 * Returns the absolute PBA of an unused PBA, or 0 if none found.
539 */
540static u16 alauda_find_unused_pba(struct alauda_media_info *info,
541 unsigned int zone)
542{
543 u16 *pba_to_lba = info->pba_to_lba[zone];
544 unsigned int i;
545
546 for (i = 0; i < info->zonesize; i++)
547 if (pba_to_lba[i] == UNDEF)
548 return (zone << info->zoneshift) + i;
549
550 return 0;
551}
552
553/*
554 * Reads the redundancy data for all PBA's in a zone
555 * Produces lba <--> pba mappings
556 */
557static int alauda_read_map(struct us_data *us, unsigned int zone)
558{
559 unsigned char *data = us->iobuf;
560 int result;
561 int i, j;
562 unsigned int zonesize = MEDIA_INFO(us).zonesize;
563 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
564 unsigned int lba_offset, lba_real, blocknum;
565 unsigned int zone_base_lba = zone * uzonesize;
566 unsigned int zone_base_pba = zone * zonesize;
567 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
568 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
569 if (lba_to_pba == NULL || pba_to_lba == NULL) {
570 result = USB_STOR_TRANSPORT_ERROR;
571 goto error;
572 }
573
574 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
575
576 /* 1024 PBA's per zone */
577 for (i = 0; i < zonesize; i++)
578 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
579
580 for (i = 0; i < zonesize; i++) {
581 blocknum = zone_base_pba + i;
582
583 result = alauda_get_redu_data(us, blocknum, data);
584 if (result != USB_STOR_XFER_GOOD) {
585 result = USB_STOR_TRANSPORT_ERROR;
586 goto error;
587 }
588
589 /* special PBAs have control field 0^16 */
590 for (j = 0; j < 16; j++)
591 if (data[j] != 0)
592 goto nonz;
593 pba_to_lba[i] = UNUSABLE;
594 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
595 continue;
596
597 nonz:
598 /* unwritten PBAs have control field FF^16 */
599 for (j = 0; j < 16; j++)
600 if (data[j] != 0xff)
601 goto nonff;
602 continue;
603
604 nonff:
605 /* normal PBAs start with six FFs */
606 if (j < 6) {
607 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
608 blocknum,
609 data[0], data[1], data[2], data[3],
610 data[4], data[5]);
611 pba_to_lba[i] = UNUSABLE;
612 continue;
613 }
614
615 if ((data[6] >> 4) != 0x01) {
616 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
617 blocknum, data[6], data[7],
618 data[11], data[12]);
619 pba_to_lba[i] = UNUSABLE;
620 continue;
621 }
622
623 /* check even parity */
624 if (parity[data[6] ^ data[7]]) {
625 printk(KERN_WARNING
626 "alauda_read_map: Bad parity in LBA for block %d"
627 " (%02X %02X)\n", i, data[6], data[7]);
628 pba_to_lba[i] = UNUSABLE;
629 continue;
630 }
631
632 lba_offset = short_pack(data[7], data[6]);
633 lba_offset = (lba_offset & 0x07FF) >> 1;
634 lba_real = lba_offset + zone_base_lba;
635
636 /*
637 * Every 1024 physical blocks ("zone"), the LBA numbers
638 * go back to zero, but are within a higher block of LBA's.
639 * Also, there is a maximum of 1000 LBA's per zone.
640 * In other words, in PBA 1024-2047 you will find LBA 0-999
641 * which are really LBA 1000-1999. This allows for 24 bad
642 * or special physical blocks per zone.
643 */
644
645 if (lba_offset >= uzonesize) {
646 printk(KERN_WARNING
647 "alauda_read_map: Bad low LBA %d for block %d\n",
648 lba_real, blocknum);
649 continue;
650 }
651
652 if (lba_to_pba[lba_offset] != UNDEF) {
653 printk(KERN_WARNING
654 "alauda_read_map: "
655 "LBA %d seen for PBA %d and %d\n",
656 lba_real, lba_to_pba[lba_offset], blocknum);
657 continue;
658 }
659
660 pba_to_lba[i] = lba_real;
661 lba_to_pba[lba_offset] = blocknum;
662 continue;
663 }
664
665 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
666 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
667 result = 0;
668 goto out;
669
670error:
671 kfree(lba_to_pba);
672 kfree(pba_to_lba);
673out:
674 return result;
675}
676
677/*
678 * Checks to see whether we have already mapped a certain zone
679 * If we haven't, the map is generated
680 */
681static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
682{
683 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
684 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
685 alauda_read_map(us, zone);
686}
687
688/*
689 * Erases an entire block
690 */
691static int alauda_erase_block(struct us_data *us, u16 pba)
692{
693 int rc;
694 unsigned char command[] = {
695 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
696 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
697 };
698 unsigned char buf[2];
699
700 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
701
702 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
703 command, 9, NULL);
704 if (rc != USB_STOR_XFER_GOOD)
705 return rc;
706
707 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
708 buf, 2, NULL);
709 if (rc != USB_STOR_XFER_GOOD)
710 return rc;
711
712 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
713 return rc;
714}
715
716/*
717 * Reads data from a certain offset page inside a PBA, including interleaved
718 * redundancy data. Returns (pagesize+64)*pages bytes in data.
719 */
720static int alauda_read_block_raw(struct us_data *us, u16 pba,
721 unsigned int page, unsigned int pages, unsigned char *data)
722{
723 int rc;
724 unsigned char command[] = {
725 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
726 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
727 };
728
729 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
730
731 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
732 command, 9, NULL);
733 if (rc != USB_STOR_XFER_GOOD)
734 return rc;
735
736 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
738}
739
740/*
741 * Reads data from a certain offset page inside a PBA, excluding redundancy
742 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
743 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
744 * trailing bytes outside this function.
745 */
746static int alauda_read_block(struct us_data *us, u16 pba,
747 unsigned int page, unsigned int pages, unsigned char *data)
748{
749 int i, rc;
750 unsigned int pagesize = MEDIA_INFO(us).pagesize;
751
752 rc = alauda_read_block_raw(us, pba, page, pages, data);
753 if (rc != USB_STOR_XFER_GOOD)
754 return rc;
755
756 /* Cut out the redundancy data */
757 for (i = 0; i < pages; i++) {
758 int dest_offset = i * pagesize;
759 int src_offset = i * (pagesize + 64);
760 memmove(data + dest_offset, data + src_offset, pagesize);
761 }
762
763 return rc;
764}
765
766/*
767 * Writes an entire block of data and checks status after write.
768 * Redundancy data must be already included in data. Data should be
769 * (pagesize+64)*blocksize bytes in length.
770 */
771static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
772{
773 int rc;
774 struct alauda_info *info = (struct alauda_info *) us->extra;
775 unsigned char command[] = {
776 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
777 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
778 };
779
780 usb_stor_dbg(us, "pba %d\n", pba);
781
782 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
783 command, 9, NULL);
784 if (rc != USB_STOR_XFER_GOOD)
785 return rc;
786
787 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
788 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
789 NULL);
790 if (rc != USB_STOR_XFER_GOOD)
791 return rc;
792
793 return alauda_check_status2(us);
794}
795
796/*
797 * Write some data to a specific LBA.
798 */
799static int alauda_write_lba(struct us_data *us, u16 lba,
800 unsigned int page, unsigned int pages,
801 unsigned char *ptr, unsigned char *blockbuffer)
802{
803 u16 pba, lbap, new_pba;
804 unsigned char *bptr, *cptr, *xptr;
805 unsigned char ecc[3];
806 int i, result;
807 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
808 unsigned int zonesize = MEDIA_INFO(us).zonesize;
809 unsigned int pagesize = MEDIA_INFO(us).pagesize;
810 unsigned int blocksize = MEDIA_INFO(us).blocksize;
811 unsigned int lba_offset = lba % uzonesize;
812 unsigned int new_pba_offset;
813 unsigned int zone = lba / uzonesize;
814
815 alauda_ensure_map_for_zone(us, zone);
816
817 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
818 if (pba == 1) {
819 /*
820 * Maybe it is impossible to write to PBA 1.
821 * Fake success, but don't do anything.
822 */
823 printk(KERN_WARNING
824 "alauda_write_lba: avoid writing to pba 1\n");
825 return USB_STOR_TRANSPORT_GOOD;
826 }
827
828 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
829 if (!new_pba) {
830 printk(KERN_WARNING
831 "alauda_write_lba: Out of unused blocks\n");
832 return USB_STOR_TRANSPORT_ERROR;
833 }
834
835 /* read old contents */
836 if (pba != UNDEF) {
837 result = alauda_read_block_raw(us, pba, 0,
838 blocksize, blockbuffer);
839 if (result != USB_STOR_XFER_GOOD)
840 return result;
841 } else {
842 memset(blockbuffer, 0, blocksize * (pagesize + 64));
843 }
844
845 lbap = (lba_offset << 1) | 0x1000;
846 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
847 lbap ^= 1;
848
849 /* check old contents and fill lba */
850 for (i = 0; i < blocksize; i++) {
851 bptr = blockbuffer + (i * (pagesize + 64));
852 cptr = bptr + pagesize;
853 nand_compute_ecc(bptr, ecc);
854 if (!nand_compare_ecc(cptr+13, ecc)) {
855 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
856 i, pba);
857 nand_store_ecc(cptr+13, ecc);
858 }
859 nand_compute_ecc(bptr + (pagesize / 2), ecc);
860 if (!nand_compare_ecc(cptr+8, ecc)) {
861 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
862 i, pba);
863 nand_store_ecc(cptr+8, ecc);
864 }
865 cptr[6] = cptr[11] = MSB_of(lbap);
866 cptr[7] = cptr[12] = LSB_of(lbap);
867 }
868
869 /* copy in new stuff and compute ECC */
870 xptr = ptr;
871 for (i = page; i < page+pages; i++) {
872 bptr = blockbuffer + (i * (pagesize + 64));
873 cptr = bptr + pagesize;
874 memcpy(bptr, xptr, pagesize);
875 xptr += pagesize;
876 nand_compute_ecc(bptr, ecc);
877 nand_store_ecc(cptr+13, ecc);
878 nand_compute_ecc(bptr + (pagesize / 2), ecc);
879 nand_store_ecc(cptr+8, ecc);
880 }
881
882 result = alauda_write_block(us, new_pba, blockbuffer);
883 if (result != USB_STOR_XFER_GOOD)
884 return result;
885
886 new_pba_offset = new_pba - (zone * zonesize);
887 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
888 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
889 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
890
891 if (pba != UNDEF) {
892 unsigned int pba_offset = pba - (zone * zonesize);
893 result = alauda_erase_block(us, pba);
894 if (result != USB_STOR_XFER_GOOD)
895 return result;
896 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
897 }
898
899 return USB_STOR_TRANSPORT_GOOD;
900}
901
902/*
903 * Read data from a specific sector address
904 */
905static int alauda_read_data(struct us_data *us, unsigned long address,
906 unsigned int sectors)
907{
908 unsigned char *buffer;
909 u16 lba, max_lba;
910 unsigned int page, len, offset;
911 unsigned int blockshift = MEDIA_INFO(us).blockshift;
912 unsigned int pageshift = MEDIA_INFO(us).pageshift;
913 unsigned int blocksize = MEDIA_INFO(us).blocksize;
914 unsigned int pagesize = MEDIA_INFO(us).pagesize;
915 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
916 struct scatterlist *sg;
917 int result;
918
919 /*
920 * Since we only read in one block at a time, we have to create
921 * a bounce buffer and move the data a piece at a time between the
922 * bounce buffer and the actual transfer buffer.
923 * We make this buffer big enough to hold temporary redundancy data,
924 * which we use when reading the data blocks.
925 */
926
927 len = min(sectors, blocksize) * (pagesize + 64);
928 buffer = kmalloc(len, GFP_NOIO);
929 if (!buffer)
930 return USB_STOR_TRANSPORT_ERROR;
931
932 /* Figure out the initial LBA and page */
933 lba = address >> blockshift;
934 page = (address & MEDIA_INFO(us).blockmask);
935 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
936
937 result = USB_STOR_TRANSPORT_GOOD;
938 offset = 0;
939 sg = NULL;
940
941 while (sectors > 0) {
942 unsigned int zone = lba / uzonesize; /* integer division */
943 unsigned int lba_offset = lba - (zone * uzonesize);
944 unsigned int pages;
945 u16 pba;
946 alauda_ensure_map_for_zone(us, zone);
947
948 /* Not overflowing capacity? */
949 if (lba >= max_lba) {
950 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
951 lba, max_lba);
952 result = USB_STOR_TRANSPORT_ERROR;
953 break;
954 }
955
956 /* Find number of pages we can read in this block */
957 pages = min(sectors, blocksize - page);
958 len = pages << pageshift;
959
960 /* Find where this lba lives on disk */
961 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
962
963 if (pba == UNDEF) { /* this lba was never written */
964 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
965 pages, lba, page);
966
967 /*
968 * This is not really an error. It just means
969 * that the block has never been written.
970 * Instead of returning USB_STOR_TRANSPORT_ERROR
971 * it is better to return all zero data.
972 */
973
974 memset(buffer, 0, len);
975 } else {
976 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
977 pages, pba, lba, page);
978
979 result = alauda_read_block(us, pba, page, pages, buffer);
980 if (result != USB_STOR_TRANSPORT_GOOD)
981 break;
982 }
983
984 /* Store the data in the transfer buffer */
985 usb_stor_access_xfer_buf(buffer, len, us->srb,
986 &sg, &offset, TO_XFER_BUF);
987
988 page = 0;
989 lba++;
990 sectors -= pages;
991 }
992
993 kfree(buffer);
994 return result;
995}
996
997/*
998 * Write data to a specific sector address
999 */
1000static int alauda_write_data(struct us_data *us, unsigned long address,
1001 unsigned int sectors)
1002{
1003 unsigned char *buffer, *blockbuffer;
1004 unsigned int page, len, offset;
1005 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1006 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1007 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1008 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1009 struct scatterlist *sg;
1010 u16 lba, max_lba;
1011 int result;
1012
1013 /*
1014 * Since we don't write the user data directly to the device,
1015 * we have to create a bounce buffer and move the data a piece
1016 * at a time between the bounce buffer and the actual transfer buffer.
1017 */
1018
1019 len = min(sectors, blocksize) * pagesize;
1020 buffer = kmalloc(len, GFP_NOIO);
1021 if (!buffer)
1022 return USB_STOR_TRANSPORT_ERROR;
1023
1024 /*
1025 * We also need a temporary block buffer, where we read in the old data,
1026 * overwrite parts with the new data, and manipulate the redundancy data
1027 */
1028 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1029 if (!blockbuffer) {
1030 kfree(buffer);
1031 return USB_STOR_TRANSPORT_ERROR;
1032 }
1033
1034 /* Figure out the initial LBA and page */
1035 lba = address >> blockshift;
1036 page = (address & MEDIA_INFO(us).blockmask);
1037 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1038
1039 result = USB_STOR_TRANSPORT_GOOD;
1040 offset = 0;
1041 sg = NULL;
1042
1043 while (sectors > 0) {
1044 /* Write as many sectors as possible in this block */
1045 unsigned int pages = min(sectors, blocksize - page);
1046 len = pages << pageshift;
1047
1048 /* Not overflowing capacity? */
1049 if (lba >= max_lba) {
1050 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1051 lba, max_lba);
1052 result = USB_STOR_TRANSPORT_ERROR;
1053 break;
1054 }
1055
1056 /* Get the data from the transfer buffer */
1057 usb_stor_access_xfer_buf(buffer, len, us->srb,
1058 &sg, &offset, FROM_XFER_BUF);
1059
1060 result = alauda_write_lba(us, lba, page, pages, buffer,
1061 blockbuffer);
1062 if (result != USB_STOR_TRANSPORT_GOOD)
1063 break;
1064
1065 page = 0;
1066 lba++;
1067 sectors -= pages;
1068 }
1069
1070 kfree(buffer);
1071 kfree(blockbuffer);
1072 return result;
1073}
1074
1075/*
1076 * Our interface with the rest of the world
1077 */
1078
1079static void alauda_info_destructor(void *extra)
1080{
1081 struct alauda_info *info = (struct alauda_info *) extra;
1082 int port;
1083
1084 if (!info)
1085 return;
1086
1087 for (port = 0; port < 2; port++) {
1088 struct alauda_media_info *media_info = &info->port[port];
1089
1090 alauda_free_maps(media_info);
1091 kfree(media_info->lba_to_pba);
1092 kfree(media_info->pba_to_lba);
1093 }
1094}
1095
1096/*
1097 * Initialize alauda_info struct and find the data-write endpoint
1098 */
1099static int init_alauda(struct us_data *us)
1100{
1101 struct alauda_info *info;
1102 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1103 nand_init_ecc();
1104
1105 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1106 if (!us->extra)
1107 return USB_STOR_TRANSPORT_ERROR;
1108
1109 info = (struct alauda_info *) us->extra;
1110 us->extra_destructor = alauda_info_destructor;
1111
1112 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1113 altsetting->endpoint[0].desc.bEndpointAddress
1114 & USB_ENDPOINT_NUMBER_MASK);
1115
1116 return USB_STOR_TRANSPORT_GOOD;
1117}
1118
1119static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1120{
1121 int rc;
1122 struct alauda_info *info = (struct alauda_info *) us->extra;
1123 unsigned char *ptr = us->iobuf;
1124 static unsigned char inquiry_response[36] = {
1125 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1126 };
1127
1128 if (srb->cmnd[0] == INQUIRY) {
1129 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1130 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1131 fill_inquiry_response(us, ptr, 36);
1132 return USB_STOR_TRANSPORT_GOOD;
1133 }
1134
1135 if (srb->cmnd[0] == TEST_UNIT_READY) {
1136 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1137 return alauda_check_media(us);
1138 }
1139
1140 if (srb->cmnd[0] == READ_CAPACITY) {
1141 unsigned int num_zones;
1142 unsigned long capacity;
1143
1144 rc = alauda_check_media(us);
1145 if (rc != USB_STOR_TRANSPORT_GOOD)
1146 return rc;
1147
1148 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1149 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1150
1151 capacity = num_zones * MEDIA_INFO(us).uzonesize
1152 * MEDIA_INFO(us).blocksize;
1153
1154 /* Report capacity and page size */
1155 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1156 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1157
1158 usb_stor_set_xfer_buf(ptr, 8, srb);
1159 return USB_STOR_TRANSPORT_GOOD;
1160 }
1161
1162 if (srb->cmnd[0] == READ_10) {
1163 unsigned int page, pages;
1164
1165 rc = alauda_check_media(us);
1166 if (rc != USB_STOR_TRANSPORT_GOOD)
1167 return rc;
1168
1169 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1170 page <<= 16;
1171 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1172 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1173
1174 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1175
1176 return alauda_read_data(us, page, pages);
1177 }
1178
1179 if (srb->cmnd[0] == WRITE_10) {
1180 unsigned int page, pages;
1181
1182 rc = alauda_check_media(us);
1183 if (rc != USB_STOR_TRANSPORT_GOOD)
1184 return rc;
1185
1186 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1187 page <<= 16;
1188 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1189 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1190
1191 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1192
1193 return alauda_write_data(us, page, pages);
1194 }
1195
1196 if (srb->cmnd[0] == REQUEST_SENSE) {
1197 usb_stor_dbg(us, "REQUEST_SENSE\n");
1198
1199 memset(ptr, 0, 18);
1200 ptr[0] = 0xF0;
1201 ptr[2] = info->sense_key;
1202 ptr[7] = 11;
1203 ptr[12] = info->sense_asc;
1204 ptr[13] = info->sense_ascq;
1205 usb_stor_set_xfer_buf(ptr, 18, srb);
1206
1207 return USB_STOR_TRANSPORT_GOOD;
1208 }
1209
1210 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1211 /*
1212 * sure. whatever. not like we can stop the user from popping
1213 * the media out of the device (no locking doors, etc)
1214 */
1215 return USB_STOR_TRANSPORT_GOOD;
1216 }
1217
1218 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1219 srb->cmnd[0], srb->cmnd[0]);
1220 info->sense_key = 0x05;
1221 info->sense_asc = 0x20;
1222 info->sense_ascq = 0x00;
1223 return USB_STOR_TRANSPORT_FAILED;
1224}
1225
1226static struct scsi_host_template alauda_host_template;
1227
1228static int alauda_probe(struct usb_interface *intf,
1229 const struct usb_device_id *id)
1230{
1231 struct us_data *us;
1232 int result;
1233
1234 result = usb_stor_probe1(&us, intf, id,
1235 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1236 &alauda_host_template);
1237 if (result)
1238 return result;
1239
1240 us->transport_name = "Alauda Control/Bulk";
1241 us->transport = alauda_transport;
1242 us->transport_reset = usb_stor_Bulk_reset;
1243 us->max_lun = 1;
1244
1245 result = usb_stor_probe2(us);
1246 return result;
1247}
1248
1249static struct usb_driver alauda_driver = {
1250 .name = DRV_NAME,
1251 .probe = alauda_probe,
1252 .disconnect = usb_stor_disconnect,
1253 .suspend = usb_stor_suspend,
1254 .resume = usb_stor_resume,
1255 .reset_resume = usb_stor_reset_resume,
1256 .pre_reset = usb_stor_pre_reset,
1257 .post_reset = usb_stor_post_reset,
1258 .id_table = alauda_usb_ids,
1259 .soft_unbind = 1,
1260 .no_dynamic_id = 1,
1261};
1262
1263module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1/*
2 * Driver for Alauda-based card readers
3 *
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
6 *
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8 *
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
12 *
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
16 *
17 * For protocol info, see http://alauda.sourceforge.net
18 *
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/module.h>
35#include <linux/slab.h>
36
37#include <scsi/scsi.h>
38#include <scsi/scsi_cmnd.h>
39#include <scsi/scsi_device.h>
40
41#include "usb.h"
42#include "transport.h"
43#include "protocol.h"
44#include "debug.h"
45#include "scsiglue.h"
46
47#define DRV_NAME "ums-alauda"
48
49MODULE_DESCRIPTION("Driver for Alauda-based card readers");
50MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
51MODULE_LICENSE("GPL");
52
53/*
54 * Status bytes
55 */
56#define ALAUDA_STATUS_ERROR 0x01
57#define ALAUDA_STATUS_READY 0x40
58
59/*
60 * Control opcodes (for request field)
61 */
62#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
63#define ALAUDA_GET_SM_MEDIA_STATUS 0x98
64#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
65#define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
66#define ALAUDA_GET_XD_MEDIA_SIG 0x86
67#define ALAUDA_GET_SM_MEDIA_SIG 0x96
68
69/*
70 * Bulk command identity (byte 0)
71 */
72#define ALAUDA_BULK_CMD 0x40
73
74/*
75 * Bulk opcodes (byte 1)
76 */
77#define ALAUDA_BULK_GET_REDU_DATA 0x85
78#define ALAUDA_BULK_READ_BLOCK 0x94
79#define ALAUDA_BULK_ERASE_BLOCK 0xa3
80#define ALAUDA_BULK_WRITE_BLOCK 0xb4
81#define ALAUDA_BULK_GET_STATUS2 0xb7
82#define ALAUDA_BULK_RESET_MEDIA 0xe0
83
84/*
85 * Port to operate on (byte 8)
86 */
87#define ALAUDA_PORT_XD 0x00
88#define ALAUDA_PORT_SM 0x01
89
90/*
91 * LBA and PBA are unsigned ints. Special values.
92 */
93#define UNDEF 0xffff
94#define SPARE 0xfffe
95#define UNUSABLE 0xfffd
96
97struct alauda_media_info {
98 unsigned long capacity; /* total media size in bytes */
99 unsigned int pagesize; /* page size in bytes */
100 unsigned int blocksize; /* number of pages per block */
101 unsigned int uzonesize; /* number of usable blocks per zone */
102 unsigned int zonesize; /* number of blocks per zone */
103 unsigned int blockmask; /* mask to get page from address */
104
105 unsigned char pageshift;
106 unsigned char blockshift;
107 unsigned char zoneshift;
108
109 u16 **lba_to_pba; /* logical to physical block map */
110 u16 **pba_to_lba; /* physical to logical block map */
111};
112
113struct alauda_info {
114 struct alauda_media_info port[2];
115 int wr_ep; /* endpoint to write data out of */
116
117 unsigned char sense_key;
118 unsigned long sense_asc; /* additional sense code */
119 unsigned long sense_ascq; /* additional sense code qualifier */
120};
121
122#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
123#define LSB_of(s) ((s)&0xFF)
124#define MSB_of(s) ((s)>>8)
125
126#define MEDIA_PORT(us) us->srb->device->lun
127#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
128
129#define PBA_LO(pba) ((pba & 0xF) << 5)
130#define PBA_HI(pba) (pba >> 3)
131#define PBA_ZONE(pba) (pba >> 11)
132
133static int init_alauda(struct us_data *us);
134
135
136/*
137 * The table of devices
138 */
139#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
140 vendorName, productName, useProtocol, useTransport, \
141 initFunction, flags) \
142{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
143 .driver_info = (flags) }
144
145static struct usb_device_id alauda_usb_ids[] = {
146# include "unusual_alauda.h"
147 { } /* Terminating entry */
148};
149MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
150
151#undef UNUSUAL_DEV
152
153/*
154 * The flags table
155 */
156#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
157 vendor_name, product_name, use_protocol, use_transport, \
158 init_function, Flags) \
159{ \
160 .vendorName = vendor_name, \
161 .productName = product_name, \
162 .useProtocol = use_protocol, \
163 .useTransport = use_transport, \
164 .initFunction = init_function, \
165}
166
167static struct us_unusual_dev alauda_unusual_dev_list[] = {
168# include "unusual_alauda.h"
169 { } /* Terminating entry */
170};
171
172#undef UNUSUAL_DEV
173
174
175/*
176 * Media handling
177 */
178
179struct alauda_card_info {
180 unsigned char id; /* id byte */
181 unsigned char chipshift; /* 1<<cs bytes total capacity */
182 unsigned char pageshift; /* 1<<ps bytes in a page */
183 unsigned char blockshift; /* 1<<bs pages per block */
184 unsigned char zoneshift; /* 1<<zs blocks per zone */
185};
186
187static struct alauda_card_info alauda_card_ids[] = {
188 /* NAND flash */
189 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
190 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
191 { 0xec, 20, 8, 4, 8}, /* 1 MB */
192 { 0x64, 21, 8, 4, 9}, /* 2 MB */
193 { 0xea, 21, 8, 4, 9}, /* 2 MB */
194 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
195 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
196 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
197 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
198 { 0x73, 24, 9, 5, 10}, /* 16 MB */
199 { 0x75, 25, 9, 5, 10}, /* 32 MB */
200 { 0x76, 26, 9, 5, 10}, /* 64 MB */
201 { 0x79, 27, 9, 5, 10}, /* 128 MB */
202 { 0x71, 28, 9, 5, 10}, /* 256 MB */
203
204 /* MASK ROM */
205 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
206 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
207 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
208 { 0x57, 24, 9, 4, 11}, /* 16 MB */
209 { 0x58, 25, 9, 4, 12}, /* 32 MB */
210 { 0,}
211};
212
213static struct alauda_card_info *alauda_card_find_id(unsigned char id)
214{
215 int i;
216
217 for (i = 0; alauda_card_ids[i].id != 0; i++)
218 if (alauda_card_ids[i].id == id)
219 return &(alauda_card_ids[i]);
220 return NULL;
221}
222
223/*
224 * ECC computation.
225 */
226
227static unsigned char parity[256];
228static unsigned char ecc2[256];
229
230static void nand_init_ecc(void)
231{
232 int i, j, a;
233
234 parity[0] = 0;
235 for (i = 1; i < 256; i++)
236 parity[i] = (parity[i&(i-1)] ^ 1);
237
238 for (i = 0; i < 256; i++) {
239 a = 0;
240 for (j = 0; j < 8; j++) {
241 if (i & (1<<j)) {
242 if ((j & 1) == 0)
243 a ^= 0x04;
244 if ((j & 2) == 0)
245 a ^= 0x10;
246 if ((j & 4) == 0)
247 a ^= 0x40;
248 }
249 }
250 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
251 }
252}
253
254/* compute 3-byte ecc on 256 bytes */
255static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
256{
257 int i, j, a;
258 unsigned char par = 0, bit, bits[8] = {0};
259
260 /* collect 16 checksum bits */
261 for (i = 0; i < 256; i++) {
262 par ^= data[i];
263 bit = parity[data[i]];
264 for (j = 0; j < 8; j++)
265 if ((i & (1<<j)) == 0)
266 bits[j] ^= bit;
267 }
268
269 /* put 4+4+4 = 12 bits in the ecc */
270 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
271 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
272
273 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
274 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
275
276 ecc[2] = ecc2[par];
277}
278
279static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
280{
281 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
282}
283
284static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
285{
286 memcpy(data, ecc, 3);
287}
288
289/*
290 * Alauda driver
291 */
292
293/*
294 * Forget our PBA <---> LBA mappings for a particular port
295 */
296static void alauda_free_maps (struct alauda_media_info *media_info)
297{
298 unsigned int shift = media_info->zoneshift
299 + media_info->blockshift + media_info->pageshift;
300 unsigned int num_zones = media_info->capacity >> shift;
301 unsigned int i;
302
303 if (media_info->lba_to_pba != NULL)
304 for (i = 0; i < num_zones; i++) {
305 kfree(media_info->lba_to_pba[i]);
306 media_info->lba_to_pba[i] = NULL;
307 }
308
309 if (media_info->pba_to_lba != NULL)
310 for (i = 0; i < num_zones; i++) {
311 kfree(media_info->pba_to_lba[i]);
312 media_info->pba_to_lba[i] = NULL;
313 }
314}
315
316/*
317 * Returns 2 bytes of status data
318 * The first byte describes media status, and second byte describes door status
319 */
320static int alauda_get_media_status(struct us_data *us, unsigned char *data)
321{
322 int rc;
323 unsigned char command;
324
325 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
326 command = ALAUDA_GET_XD_MEDIA_STATUS;
327 else
328 command = ALAUDA_GET_SM_MEDIA_STATUS;
329
330 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
331 command, 0xc0, 0, 1, data, 2);
332
333 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
334
335 return rc;
336}
337
338/*
339 * Clears the "media was changed" bit so that we know when it changes again
340 * in the future.
341 */
342static int alauda_ack_media(struct us_data *us)
343{
344 unsigned char command;
345
346 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
347 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
348 else
349 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
350
351 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
352 command, 0x40, 0, 1, NULL, 0);
353}
354
355/*
356 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
357 * and some other details.
358 */
359static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
360{
361 unsigned char command;
362
363 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
364 command = ALAUDA_GET_XD_MEDIA_SIG;
365 else
366 command = ALAUDA_GET_SM_MEDIA_SIG;
367
368 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
369 command, 0xc0, 0, 0, data, 4);
370}
371
372/*
373 * Resets the media status (but not the whole device?)
374 */
375static int alauda_reset_media(struct us_data *us)
376{
377 unsigned char *command = us->iobuf;
378
379 memset(command, 0, 9);
380 command[0] = ALAUDA_BULK_CMD;
381 command[1] = ALAUDA_BULK_RESET_MEDIA;
382 command[8] = MEDIA_PORT(us);
383
384 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
385 command, 9, NULL);
386}
387
388/*
389 * Examines the media and deduces capacity, etc.
390 */
391static int alauda_init_media(struct us_data *us)
392{
393 unsigned char *data = us->iobuf;
394 int ready = 0;
395 struct alauda_card_info *media_info;
396 unsigned int num_zones;
397
398 while (ready == 0) {
399 msleep(20);
400
401 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
402 return USB_STOR_TRANSPORT_ERROR;
403
404 if (data[0] & 0x10)
405 ready = 1;
406 }
407
408 usb_stor_dbg(us, "We are ready for action!\n");
409
410 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
411 return USB_STOR_TRANSPORT_ERROR;
412
413 msleep(10);
414
415 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
416 return USB_STOR_TRANSPORT_ERROR;
417
418 if (data[0] != 0x14) {
419 usb_stor_dbg(us, "Media not ready after ack\n");
420 return USB_STOR_TRANSPORT_ERROR;
421 }
422
423 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
424 return USB_STOR_TRANSPORT_ERROR;
425
426 usb_stor_dbg(us, "Media signature: %4ph\n", data);
427 media_info = alauda_card_find_id(data[1]);
428 if (media_info == NULL) {
429 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
430 data);
431 return USB_STOR_TRANSPORT_ERROR;
432 }
433
434 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
436 MEDIA_INFO(us).capacity >> 20);
437
438 MEDIA_INFO(us).pageshift = media_info->pageshift;
439 MEDIA_INFO(us).blockshift = media_info->blockshift;
440 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441
442 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445
446 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448
449 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453
454 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 return USB_STOR_TRANSPORT_ERROR;
456
457 return USB_STOR_TRANSPORT_GOOD;
458}
459
460/*
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
463 */
464static int alauda_check_media(struct us_data *us)
465{
466 struct alauda_info *info = (struct alauda_info *) us->extra;
467 unsigned char status[2];
468 int rc;
469
470 rc = alauda_get_media_status(us, status);
471
472 /* Check for no media or door open */
473 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 || ((status[1] & 0x01) == 0)) {
475 usb_stor_dbg(us, "No media, or door open\n");
476 alauda_free_maps(&MEDIA_INFO(us));
477 info->sense_key = 0x02;
478 info->sense_asc = 0x3A;
479 info->sense_ascq = 0x00;
480 return USB_STOR_TRANSPORT_FAILED;
481 }
482
483 /* Check for media change */
484 if (status[0] & 0x08) {
485 usb_stor_dbg(us, "Media change detected\n");
486 alauda_free_maps(&MEDIA_INFO(us));
487 alauda_init_media(us);
488
489 info->sense_key = UNIT_ATTENTION;
490 info->sense_asc = 0x28;
491 info->sense_ascq = 0x00;
492 return USB_STOR_TRANSPORT_FAILED;
493 }
494
495 return USB_STOR_TRANSPORT_GOOD;
496}
497
498/*
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
501 */
502static int alauda_check_status2(struct us_data *us)
503{
504 int rc;
505 unsigned char command[] = {
506 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508 };
509 unsigned char data[3];
510
511 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 command, 9, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
515
516 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 data, 3, NULL);
518 if (rc != USB_STOR_XFER_GOOD)
519 return rc;
520
521 usb_stor_dbg(us, "%3ph\n", data);
522 if (data[0] & ALAUDA_STATUS_ERROR)
523 return USB_STOR_XFER_ERROR;
524
525 return USB_STOR_XFER_GOOD;
526}
527
528/*
529 * Gets the redundancy data for the first page of a PBA
530 * Returns 16 bytes.
531 */
532static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533{
534 int rc;
535 unsigned char command[] = {
536 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538 };
539
540 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 command, 9, NULL);
542 if (rc != USB_STOR_XFER_GOOD)
543 return rc;
544
545 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 data, 16, NULL);
547}
548
549/*
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
552 */
553static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 unsigned int zone)
555{
556 u16 *pba_to_lba = info->pba_to_lba[zone];
557 unsigned int i;
558
559 for (i = 0; i < info->zonesize; i++)
560 if (pba_to_lba[i] == UNDEF)
561 return (zone << info->zoneshift) + i;
562
563 return 0;
564}
565
566/*
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
569 */
570static int alauda_read_map(struct us_data *us, unsigned int zone)
571{
572 unsigned char *data = us->iobuf;
573 int result;
574 int i, j;
575 unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 unsigned int lba_offset, lba_real, blocknum;
578 unsigned int zone_base_lba = zone * uzonesize;
579 unsigned int zone_base_pba = zone * zonesize;
580 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 result = USB_STOR_TRANSPORT_ERROR;
584 goto error;
585 }
586
587 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
588
589 /* 1024 PBA's per zone */
590 for (i = 0; i < zonesize; i++)
591 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592
593 for (i = 0; i < zonesize; i++) {
594 blocknum = zone_base_pba + i;
595
596 result = alauda_get_redu_data(us, blocknum, data);
597 if (result != USB_STOR_XFER_GOOD) {
598 result = USB_STOR_TRANSPORT_ERROR;
599 goto error;
600 }
601
602 /* special PBAs have control field 0^16 */
603 for (j = 0; j < 16; j++)
604 if (data[j] != 0)
605 goto nonz;
606 pba_to_lba[i] = UNUSABLE;
607 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
608 continue;
609
610 nonz:
611 /* unwritten PBAs have control field FF^16 */
612 for (j = 0; j < 16; j++)
613 if (data[j] != 0xff)
614 goto nonff;
615 continue;
616
617 nonff:
618 /* normal PBAs start with six FFs */
619 if (j < 6) {
620 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
621 blocknum,
622 data[0], data[1], data[2], data[3],
623 data[4], data[5]);
624 pba_to_lba[i] = UNUSABLE;
625 continue;
626 }
627
628 if ((data[6] >> 4) != 0x01) {
629 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
630 blocknum, data[6], data[7],
631 data[11], data[12]);
632 pba_to_lba[i] = UNUSABLE;
633 continue;
634 }
635
636 /* check even parity */
637 if (parity[data[6] ^ data[7]]) {
638 printk(KERN_WARNING
639 "alauda_read_map: Bad parity in LBA for block %d"
640 " (%02X %02X)\n", i, data[6], data[7]);
641 pba_to_lba[i] = UNUSABLE;
642 continue;
643 }
644
645 lba_offset = short_pack(data[7], data[6]);
646 lba_offset = (lba_offset & 0x07FF) >> 1;
647 lba_real = lba_offset + zone_base_lba;
648
649 /*
650 * Every 1024 physical blocks ("zone"), the LBA numbers
651 * go back to zero, but are within a higher block of LBA's.
652 * Also, there is a maximum of 1000 LBA's per zone.
653 * In other words, in PBA 1024-2047 you will find LBA 0-999
654 * which are really LBA 1000-1999. This allows for 24 bad
655 * or special physical blocks per zone.
656 */
657
658 if (lba_offset >= uzonesize) {
659 printk(KERN_WARNING
660 "alauda_read_map: Bad low LBA %d for block %d\n",
661 lba_real, blocknum);
662 continue;
663 }
664
665 if (lba_to_pba[lba_offset] != UNDEF) {
666 printk(KERN_WARNING
667 "alauda_read_map: "
668 "LBA %d seen for PBA %d and %d\n",
669 lba_real, lba_to_pba[lba_offset], blocknum);
670 continue;
671 }
672
673 pba_to_lba[i] = lba_real;
674 lba_to_pba[lba_offset] = blocknum;
675 continue;
676 }
677
678 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
679 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
680 result = 0;
681 goto out;
682
683error:
684 kfree(lba_to_pba);
685 kfree(pba_to_lba);
686out:
687 return result;
688}
689
690/*
691 * Checks to see whether we have already mapped a certain zone
692 * If we haven't, the map is generated
693 */
694static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
695{
696 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
697 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
698 alauda_read_map(us, zone);
699}
700
701/*
702 * Erases an entire block
703 */
704static int alauda_erase_block(struct us_data *us, u16 pba)
705{
706 int rc;
707 unsigned char command[] = {
708 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
709 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
710 };
711 unsigned char buf[2];
712
713 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
714
715 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
716 command, 9, NULL);
717 if (rc != USB_STOR_XFER_GOOD)
718 return rc;
719
720 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
721 buf, 2, NULL);
722 if (rc != USB_STOR_XFER_GOOD)
723 return rc;
724
725 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
726 return rc;
727}
728
729/*
730 * Reads data from a certain offset page inside a PBA, including interleaved
731 * redundancy data. Returns (pagesize+64)*pages bytes in data.
732 */
733static int alauda_read_block_raw(struct us_data *us, u16 pba,
734 unsigned int page, unsigned int pages, unsigned char *data)
735{
736 int rc;
737 unsigned char command[] = {
738 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
739 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
740 };
741
742 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
743
744 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
745 command, 9, NULL);
746 if (rc != USB_STOR_XFER_GOOD)
747 return rc;
748
749 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
750 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
751}
752
753/*
754 * Reads data from a certain offset page inside a PBA, excluding redundancy
755 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
756 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
757 * trailing bytes outside this function.
758 */
759static int alauda_read_block(struct us_data *us, u16 pba,
760 unsigned int page, unsigned int pages, unsigned char *data)
761{
762 int i, rc;
763 unsigned int pagesize = MEDIA_INFO(us).pagesize;
764
765 rc = alauda_read_block_raw(us, pba, page, pages, data);
766 if (rc != USB_STOR_XFER_GOOD)
767 return rc;
768
769 /* Cut out the redundancy data */
770 for (i = 0; i < pages; i++) {
771 int dest_offset = i * pagesize;
772 int src_offset = i * (pagesize + 64);
773 memmove(data + dest_offset, data + src_offset, pagesize);
774 }
775
776 return rc;
777}
778
779/*
780 * Writes an entire block of data and checks status after write.
781 * Redundancy data must be already included in data. Data should be
782 * (pagesize+64)*blocksize bytes in length.
783 */
784static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
785{
786 int rc;
787 struct alauda_info *info = (struct alauda_info *) us->extra;
788 unsigned char command[] = {
789 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
790 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
791 };
792
793 usb_stor_dbg(us, "pba %d\n", pba);
794
795 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
796 command, 9, NULL);
797 if (rc != USB_STOR_XFER_GOOD)
798 return rc;
799
800 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
801 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
802 NULL);
803 if (rc != USB_STOR_XFER_GOOD)
804 return rc;
805
806 return alauda_check_status2(us);
807}
808
809/*
810 * Write some data to a specific LBA.
811 */
812static int alauda_write_lba(struct us_data *us, u16 lba,
813 unsigned int page, unsigned int pages,
814 unsigned char *ptr, unsigned char *blockbuffer)
815{
816 u16 pba, lbap, new_pba;
817 unsigned char *bptr, *cptr, *xptr;
818 unsigned char ecc[3];
819 int i, result;
820 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
821 unsigned int zonesize = MEDIA_INFO(us).zonesize;
822 unsigned int pagesize = MEDIA_INFO(us).pagesize;
823 unsigned int blocksize = MEDIA_INFO(us).blocksize;
824 unsigned int lba_offset = lba % uzonesize;
825 unsigned int new_pba_offset;
826 unsigned int zone = lba / uzonesize;
827
828 alauda_ensure_map_for_zone(us, zone);
829
830 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
831 if (pba == 1) {
832 /* Maybe it is impossible to write to PBA 1.
833 Fake success, but don't do anything. */
834 printk(KERN_WARNING
835 "alauda_write_lba: avoid writing to pba 1\n");
836 return USB_STOR_TRANSPORT_GOOD;
837 }
838
839 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
840 if (!new_pba) {
841 printk(KERN_WARNING
842 "alauda_write_lba: Out of unused blocks\n");
843 return USB_STOR_TRANSPORT_ERROR;
844 }
845
846 /* read old contents */
847 if (pba != UNDEF) {
848 result = alauda_read_block_raw(us, pba, 0,
849 blocksize, blockbuffer);
850 if (result != USB_STOR_XFER_GOOD)
851 return result;
852 } else {
853 memset(blockbuffer, 0, blocksize * (pagesize + 64));
854 }
855
856 lbap = (lba_offset << 1) | 0x1000;
857 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
858 lbap ^= 1;
859
860 /* check old contents and fill lba */
861 for (i = 0; i < blocksize; i++) {
862 bptr = blockbuffer + (i * (pagesize + 64));
863 cptr = bptr + pagesize;
864 nand_compute_ecc(bptr, ecc);
865 if (!nand_compare_ecc(cptr+13, ecc)) {
866 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
867 i, pba);
868 nand_store_ecc(cptr+13, ecc);
869 }
870 nand_compute_ecc(bptr + (pagesize / 2), ecc);
871 if (!nand_compare_ecc(cptr+8, ecc)) {
872 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
873 i, pba);
874 nand_store_ecc(cptr+8, ecc);
875 }
876 cptr[6] = cptr[11] = MSB_of(lbap);
877 cptr[7] = cptr[12] = LSB_of(lbap);
878 }
879
880 /* copy in new stuff and compute ECC */
881 xptr = ptr;
882 for (i = page; i < page+pages; i++) {
883 bptr = blockbuffer + (i * (pagesize + 64));
884 cptr = bptr + pagesize;
885 memcpy(bptr, xptr, pagesize);
886 xptr += pagesize;
887 nand_compute_ecc(bptr, ecc);
888 nand_store_ecc(cptr+13, ecc);
889 nand_compute_ecc(bptr + (pagesize / 2), ecc);
890 nand_store_ecc(cptr+8, ecc);
891 }
892
893 result = alauda_write_block(us, new_pba, blockbuffer);
894 if (result != USB_STOR_XFER_GOOD)
895 return result;
896
897 new_pba_offset = new_pba - (zone * zonesize);
898 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
899 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
900 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
901
902 if (pba != UNDEF) {
903 unsigned int pba_offset = pba - (zone * zonesize);
904 result = alauda_erase_block(us, pba);
905 if (result != USB_STOR_XFER_GOOD)
906 return result;
907 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
908 }
909
910 return USB_STOR_TRANSPORT_GOOD;
911}
912
913/*
914 * Read data from a specific sector address
915 */
916static int alauda_read_data(struct us_data *us, unsigned long address,
917 unsigned int sectors)
918{
919 unsigned char *buffer;
920 u16 lba, max_lba;
921 unsigned int page, len, offset;
922 unsigned int blockshift = MEDIA_INFO(us).blockshift;
923 unsigned int pageshift = MEDIA_INFO(us).pageshift;
924 unsigned int blocksize = MEDIA_INFO(us).blocksize;
925 unsigned int pagesize = MEDIA_INFO(us).pagesize;
926 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
927 struct scatterlist *sg;
928 int result;
929
930 /*
931 * Since we only read in one block at a time, we have to create
932 * a bounce buffer and move the data a piece at a time between the
933 * bounce buffer and the actual transfer buffer.
934 * We make this buffer big enough to hold temporary redundancy data,
935 * which we use when reading the data blocks.
936 */
937
938 len = min(sectors, blocksize) * (pagesize + 64);
939 buffer = kmalloc(len, GFP_NOIO);
940 if (buffer == NULL) {
941 printk(KERN_WARNING "alauda_read_data: Out of memory\n");
942 return USB_STOR_TRANSPORT_ERROR;
943 }
944
945 /* Figure out the initial LBA and page */
946 lba = address >> blockshift;
947 page = (address & MEDIA_INFO(us).blockmask);
948 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
949
950 result = USB_STOR_TRANSPORT_GOOD;
951 offset = 0;
952 sg = NULL;
953
954 while (sectors > 0) {
955 unsigned int zone = lba / uzonesize; /* integer division */
956 unsigned int lba_offset = lba - (zone * uzonesize);
957 unsigned int pages;
958 u16 pba;
959 alauda_ensure_map_for_zone(us, zone);
960
961 /* Not overflowing capacity? */
962 if (lba >= max_lba) {
963 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
964 lba, max_lba);
965 result = USB_STOR_TRANSPORT_ERROR;
966 break;
967 }
968
969 /* Find number of pages we can read in this block */
970 pages = min(sectors, blocksize - page);
971 len = pages << pageshift;
972
973 /* Find where this lba lives on disk */
974 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
975
976 if (pba == UNDEF) { /* this lba was never written */
977 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
978 pages, lba, page);
979
980 /* This is not really an error. It just means
981 that the block has never been written.
982 Instead of returning USB_STOR_TRANSPORT_ERROR
983 it is better to return all zero data. */
984
985 memset(buffer, 0, len);
986 } else {
987 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
988 pages, pba, lba, page);
989
990 result = alauda_read_block(us, pba, page, pages, buffer);
991 if (result != USB_STOR_TRANSPORT_GOOD)
992 break;
993 }
994
995 /* Store the data in the transfer buffer */
996 usb_stor_access_xfer_buf(buffer, len, us->srb,
997 &sg, &offset, TO_XFER_BUF);
998
999 page = 0;
1000 lba++;
1001 sectors -= pages;
1002 }
1003
1004 kfree(buffer);
1005 return result;
1006}
1007
1008/*
1009 * Write data to a specific sector address
1010 */
1011static int alauda_write_data(struct us_data *us, unsigned long address,
1012 unsigned int sectors)
1013{
1014 unsigned char *buffer, *blockbuffer;
1015 unsigned int page, len, offset;
1016 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1017 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1018 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1019 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1020 struct scatterlist *sg;
1021 u16 lba, max_lba;
1022 int result;
1023
1024 /*
1025 * Since we don't write the user data directly to the device,
1026 * we have to create a bounce buffer and move the data a piece
1027 * at a time between the bounce buffer and the actual transfer buffer.
1028 */
1029
1030 len = min(sectors, blocksize) * pagesize;
1031 buffer = kmalloc(len, GFP_NOIO);
1032 if (buffer == NULL) {
1033 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1034 return USB_STOR_TRANSPORT_ERROR;
1035 }
1036
1037 /*
1038 * We also need a temporary block buffer, where we read in the old data,
1039 * overwrite parts with the new data, and manipulate the redundancy data
1040 */
1041 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1042 if (blockbuffer == NULL) {
1043 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1044 kfree(buffer);
1045 return USB_STOR_TRANSPORT_ERROR;
1046 }
1047
1048 /* Figure out the initial LBA and page */
1049 lba = address >> blockshift;
1050 page = (address & MEDIA_INFO(us).blockmask);
1051 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1052
1053 result = USB_STOR_TRANSPORT_GOOD;
1054 offset = 0;
1055 sg = NULL;
1056
1057 while (sectors > 0) {
1058 /* Write as many sectors as possible in this block */
1059 unsigned int pages = min(sectors, blocksize - page);
1060 len = pages << pageshift;
1061
1062 /* Not overflowing capacity? */
1063 if (lba >= max_lba) {
1064 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1065 lba, max_lba);
1066 result = USB_STOR_TRANSPORT_ERROR;
1067 break;
1068 }
1069
1070 /* Get the data from the transfer buffer */
1071 usb_stor_access_xfer_buf(buffer, len, us->srb,
1072 &sg, &offset, FROM_XFER_BUF);
1073
1074 result = alauda_write_lba(us, lba, page, pages, buffer,
1075 blockbuffer);
1076 if (result != USB_STOR_TRANSPORT_GOOD)
1077 break;
1078
1079 page = 0;
1080 lba++;
1081 sectors -= pages;
1082 }
1083
1084 kfree(buffer);
1085 kfree(blockbuffer);
1086 return result;
1087}
1088
1089/*
1090 * Our interface with the rest of the world
1091 */
1092
1093static void alauda_info_destructor(void *extra)
1094{
1095 struct alauda_info *info = (struct alauda_info *) extra;
1096 int port;
1097
1098 if (!info)
1099 return;
1100
1101 for (port = 0; port < 2; port++) {
1102 struct alauda_media_info *media_info = &info->port[port];
1103
1104 alauda_free_maps(media_info);
1105 kfree(media_info->lba_to_pba);
1106 kfree(media_info->pba_to_lba);
1107 }
1108}
1109
1110/*
1111 * Initialize alauda_info struct and find the data-write endpoint
1112 */
1113static int init_alauda(struct us_data *us)
1114{
1115 struct alauda_info *info;
1116 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1117 nand_init_ecc();
1118
1119 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1120 if (!us->extra)
1121 return USB_STOR_TRANSPORT_ERROR;
1122
1123 info = (struct alauda_info *) us->extra;
1124 us->extra_destructor = alauda_info_destructor;
1125
1126 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1127 altsetting->endpoint[0].desc.bEndpointAddress
1128 & USB_ENDPOINT_NUMBER_MASK);
1129
1130 return USB_STOR_TRANSPORT_GOOD;
1131}
1132
1133static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1134{
1135 int rc;
1136 struct alauda_info *info = (struct alauda_info *) us->extra;
1137 unsigned char *ptr = us->iobuf;
1138 static unsigned char inquiry_response[36] = {
1139 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1140 };
1141
1142 if (srb->cmnd[0] == INQUIRY) {
1143 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1144 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1145 fill_inquiry_response(us, ptr, 36);
1146 return USB_STOR_TRANSPORT_GOOD;
1147 }
1148
1149 if (srb->cmnd[0] == TEST_UNIT_READY) {
1150 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1151 return alauda_check_media(us);
1152 }
1153
1154 if (srb->cmnd[0] == READ_CAPACITY) {
1155 unsigned int num_zones;
1156 unsigned long capacity;
1157
1158 rc = alauda_check_media(us);
1159 if (rc != USB_STOR_TRANSPORT_GOOD)
1160 return rc;
1161
1162 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1163 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1164
1165 capacity = num_zones * MEDIA_INFO(us).uzonesize
1166 * MEDIA_INFO(us).blocksize;
1167
1168 /* Report capacity and page size */
1169 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1170 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1171
1172 usb_stor_set_xfer_buf(ptr, 8, srb);
1173 return USB_STOR_TRANSPORT_GOOD;
1174 }
1175
1176 if (srb->cmnd[0] == READ_10) {
1177 unsigned int page, pages;
1178
1179 rc = alauda_check_media(us);
1180 if (rc != USB_STOR_TRANSPORT_GOOD)
1181 return rc;
1182
1183 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1184 page <<= 16;
1185 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1186 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1187
1188 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1189
1190 return alauda_read_data(us, page, pages);
1191 }
1192
1193 if (srb->cmnd[0] == WRITE_10) {
1194 unsigned int page, pages;
1195
1196 rc = alauda_check_media(us);
1197 if (rc != USB_STOR_TRANSPORT_GOOD)
1198 return rc;
1199
1200 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1201 page <<= 16;
1202 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1203 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1204
1205 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1206
1207 return alauda_write_data(us, page, pages);
1208 }
1209
1210 if (srb->cmnd[0] == REQUEST_SENSE) {
1211 usb_stor_dbg(us, "REQUEST_SENSE\n");
1212
1213 memset(ptr, 0, 18);
1214 ptr[0] = 0xF0;
1215 ptr[2] = info->sense_key;
1216 ptr[7] = 11;
1217 ptr[12] = info->sense_asc;
1218 ptr[13] = info->sense_ascq;
1219 usb_stor_set_xfer_buf(ptr, 18, srb);
1220
1221 return USB_STOR_TRANSPORT_GOOD;
1222 }
1223
1224 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1225 /* sure. whatever. not like we can stop the user from popping
1226 the media out of the device (no locking doors, etc) */
1227 return USB_STOR_TRANSPORT_GOOD;
1228 }
1229
1230 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1231 srb->cmnd[0], srb->cmnd[0]);
1232 info->sense_key = 0x05;
1233 info->sense_asc = 0x20;
1234 info->sense_ascq = 0x00;
1235 return USB_STOR_TRANSPORT_FAILED;
1236}
1237
1238static struct scsi_host_template alauda_host_template;
1239
1240static int alauda_probe(struct usb_interface *intf,
1241 const struct usb_device_id *id)
1242{
1243 struct us_data *us;
1244 int result;
1245
1246 result = usb_stor_probe1(&us, intf, id,
1247 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1248 &alauda_host_template);
1249 if (result)
1250 return result;
1251
1252 us->transport_name = "Alauda Control/Bulk";
1253 us->transport = alauda_transport;
1254 us->transport_reset = usb_stor_Bulk_reset;
1255 us->max_lun = 1;
1256
1257 result = usb_stor_probe2(us);
1258 return result;
1259}
1260
1261static struct usb_driver alauda_driver = {
1262 .name = DRV_NAME,
1263 .probe = alauda_probe,
1264 .disconnect = usb_stor_disconnect,
1265 .suspend = usb_stor_suspend,
1266 .resume = usb_stor_resume,
1267 .reset_resume = usb_stor_reset_resume,
1268 .pre_reset = usb_stor_pre_reset,
1269 .post_reset = usb_stor_post_reset,
1270 .id_table = alauda_usb_ids,
1271 .soft_unbind = 1,
1272 .no_dynamic_id = 1,
1273};
1274
1275module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);