Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2017-2018 SiFive
4 * For SiFive's PWM IP block documentation please refer Chapter 14 of
5 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6 *
7 * Limitations:
8 * - When changing both duty cycle and period, we cannot prevent in
9 * software that the output might produce a period with mixed
10 * settings (new period length and old duty cycle).
11 * - The hardware cannot generate a 100% duty cycle.
12 * - The hardware generates only inverted output.
13 */
14#include <linux/clk.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/platform_device.h>
18#include <linux/pwm.h>
19#include <linux/slab.h>
20#include <linux/bitfield.h>
21
22/* Register offsets */
23#define PWM_SIFIVE_PWMCFG 0x0
24#define PWM_SIFIVE_PWMCOUNT 0x8
25#define PWM_SIFIVE_PWMS 0x10
26#define PWM_SIFIVE_PWMCMP0 0x20
27
28/* PWMCFG fields */
29#define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0)
30#define PWM_SIFIVE_PWMCFG_STICKY BIT(8)
31#define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9)
32#define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10)
33#define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12)
34#define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13)
35#define PWM_SIFIVE_PWMCFG_CENTER BIT(16)
36#define PWM_SIFIVE_PWMCFG_GANG BIT(24)
37#define PWM_SIFIVE_PWMCFG_IP BIT(28)
38
39/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
40#define PWM_SIFIVE_SIZE_PWMCMP 4
41#define PWM_SIFIVE_CMPWIDTH 16
42#define PWM_SIFIVE_DEFAULT_PERIOD 10000000
43
44struct pwm_sifive_ddata {
45 struct pwm_chip chip;
46 struct mutex lock; /* lock to protect user_count */
47 struct notifier_block notifier;
48 struct clk *clk;
49 void __iomem *regs;
50 unsigned int real_period;
51 unsigned int approx_period;
52 int user_count;
53};
54
55static inline
56struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
57{
58 return container_of(c, struct pwm_sifive_ddata, chip);
59}
60
61static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
62{
63 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
64
65 mutex_lock(&ddata->lock);
66 ddata->user_count++;
67 mutex_unlock(&ddata->lock);
68
69 return 0;
70}
71
72static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
73{
74 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
75
76 mutex_lock(&ddata->lock);
77 ddata->user_count--;
78 mutex_unlock(&ddata->lock);
79}
80
81static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
82 unsigned long rate)
83{
84 unsigned long long num;
85 unsigned long scale_pow;
86 int scale;
87 u32 val;
88 /*
89 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
90 * period length is using pwmscale which provides the number of bits the
91 * counter is shifted before being feed to the comparators. A period
92 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
93 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
94 */
95 scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
96 scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
97
98 val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
99 FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100 writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102 /* As scale <= 15 the shift operation cannot overflow. */
103 num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104 ddata->real_period = div64_ul(num, rate);
105 dev_dbg(ddata->chip.dev,
106 "New real_period = %u ns\n", ddata->real_period);
107}
108
109static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110 struct pwm_state *state)
111{
112 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113 u32 duty, val;
114
115 duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116 pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117
118 state->enabled = duty > 0;
119
120 val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121 if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122 state->enabled = false;
123
124 state->period = ddata->real_period;
125 state->duty_cycle =
126 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127 state->polarity = PWM_POLARITY_INVERSED;
128}
129
130static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131{
132 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133 int ret;
134
135 if (enable) {
136 ret = clk_enable(ddata->clk);
137 if (ret) {
138 dev_err(ddata->chip.dev, "Enable clk failed\n");
139 return ret;
140 }
141 }
142
143 if (!enable)
144 clk_disable(ddata->clk);
145
146 return 0;
147}
148
149static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
150 const struct pwm_state *state)
151{
152 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
153 struct pwm_state cur_state;
154 unsigned int duty_cycle;
155 unsigned long long num;
156 bool enabled;
157 int ret = 0;
158 u32 frac;
159
160 if (state->polarity != PWM_POLARITY_INVERSED)
161 return -EINVAL;
162
163 ret = clk_enable(ddata->clk);
164 if (ret) {
165 dev_err(ddata->chip.dev, "Enable clk failed\n");
166 return ret;
167 }
168
169 mutex_lock(&ddata->lock);
170 cur_state = pwm->state;
171 enabled = cur_state.enabled;
172
173 duty_cycle = state->duty_cycle;
174 if (!state->enabled)
175 duty_cycle = 0;
176
177 /*
178 * The problem of output producing mixed setting as mentioned at top,
179 * occurs here. To minimize the window for this problem, we are
180 * calculating the register values first and then writing them
181 * consecutively
182 */
183 num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
184 frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
185 /* The hardware cannot generate a 100% duty cycle */
186 frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
187
188 if (state->period != ddata->approx_period) {
189 if (ddata->user_count != 1) {
190 ret = -EBUSY;
191 goto exit;
192 }
193 ddata->approx_period = state->period;
194 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
195 }
196
197 writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
198 pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
199
200 if (state->enabled != enabled)
201 pwm_sifive_enable(chip, state->enabled);
202
203exit:
204 clk_disable(ddata->clk);
205 mutex_unlock(&ddata->lock);
206 return ret;
207}
208
209static const struct pwm_ops pwm_sifive_ops = {
210 .request = pwm_sifive_request,
211 .free = pwm_sifive_free,
212 .get_state = pwm_sifive_get_state,
213 .apply = pwm_sifive_apply,
214 .owner = THIS_MODULE,
215};
216
217static int pwm_sifive_clock_notifier(struct notifier_block *nb,
218 unsigned long event, void *data)
219{
220 struct clk_notifier_data *ndata = data;
221 struct pwm_sifive_ddata *ddata =
222 container_of(nb, struct pwm_sifive_ddata, notifier);
223
224 if (event == POST_RATE_CHANGE)
225 pwm_sifive_update_clock(ddata, ndata->new_rate);
226
227 return NOTIFY_OK;
228}
229
230static int pwm_sifive_probe(struct platform_device *pdev)
231{
232 struct device *dev = &pdev->dev;
233 struct pwm_sifive_ddata *ddata;
234 struct pwm_chip *chip;
235 struct resource *res;
236 int ret;
237
238 ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
239 if (!ddata)
240 return -ENOMEM;
241
242 mutex_init(&ddata->lock);
243 chip = &ddata->chip;
244 chip->dev = dev;
245 chip->ops = &pwm_sifive_ops;
246 chip->of_xlate = of_pwm_xlate_with_flags;
247 chip->of_pwm_n_cells = 3;
248 chip->base = -1;
249 chip->npwm = 4;
250
251 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
252 ddata->regs = devm_ioremap_resource(dev, res);
253 if (IS_ERR(ddata->regs))
254 return PTR_ERR(ddata->regs);
255
256 ddata->clk = devm_clk_get(dev, NULL);
257 if (IS_ERR(ddata->clk)) {
258 if (PTR_ERR(ddata->clk) != -EPROBE_DEFER)
259 dev_err(dev, "Unable to find controller clock\n");
260 return PTR_ERR(ddata->clk);
261 }
262
263 ret = clk_prepare_enable(ddata->clk);
264 if (ret) {
265 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
266 return ret;
267 }
268
269 /* Watch for changes to underlying clock frequency */
270 ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
271 ret = clk_notifier_register(ddata->clk, &ddata->notifier);
272 if (ret) {
273 dev_err(dev, "failed to register clock notifier: %d\n", ret);
274 goto disable_clk;
275 }
276
277 ret = pwmchip_add(chip);
278 if (ret < 0) {
279 dev_err(dev, "cannot register PWM: %d\n", ret);
280 goto unregister_clk;
281 }
282
283 platform_set_drvdata(pdev, ddata);
284 dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
285
286 return 0;
287
288unregister_clk:
289 clk_notifier_unregister(ddata->clk, &ddata->notifier);
290disable_clk:
291 clk_disable_unprepare(ddata->clk);
292
293 return ret;
294}
295
296static int pwm_sifive_remove(struct platform_device *dev)
297{
298 struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
299 bool is_enabled = false;
300 struct pwm_device *pwm;
301 int ret, ch;
302
303 for (ch = 0; ch < ddata->chip.npwm; ch++) {
304 pwm = &ddata->chip.pwms[ch];
305 if (pwm->state.enabled) {
306 is_enabled = true;
307 break;
308 }
309 }
310 if (is_enabled)
311 clk_disable(ddata->clk);
312
313 clk_disable_unprepare(ddata->clk);
314 ret = pwmchip_remove(&ddata->chip);
315 clk_notifier_unregister(ddata->clk, &ddata->notifier);
316
317 return ret;
318}
319
320static const struct of_device_id pwm_sifive_of_match[] = {
321 { .compatible = "sifive,pwm0" },
322 {},
323};
324MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
325
326static struct platform_driver pwm_sifive_driver = {
327 .probe = pwm_sifive_probe,
328 .remove = pwm_sifive_remove,
329 .driver = {
330 .name = "pwm-sifive",
331 .of_match_table = pwm_sifive_of_match,
332 },
333};
334module_platform_driver(pwm_sifive_driver);
335
336MODULE_DESCRIPTION("SiFive PWM driver");
337MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2017-2018 SiFive
4 * For SiFive's PWM IP block documentation please refer Chapter 14 of
5 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6 *
7 * Limitations:
8 * - When changing both duty cycle and period, we cannot prevent in
9 * software that the output might produce a period with mixed
10 * settings (new period length and old duty cycle).
11 * - The hardware cannot generate a 100% duty cycle.
12 * - The hardware generates only inverted output.
13 */
14#include <linux/clk.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/platform_device.h>
18#include <linux/pwm.h>
19#include <linux/slab.h>
20#include <linux/bitfield.h>
21
22/* Register offsets */
23#define PWM_SIFIVE_PWMCFG 0x0
24#define PWM_SIFIVE_PWMCOUNT 0x8
25#define PWM_SIFIVE_PWMS 0x10
26#define PWM_SIFIVE_PWMCMP(i) (0x20 + 4 * (i))
27
28/* PWMCFG fields */
29#define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0)
30#define PWM_SIFIVE_PWMCFG_STICKY BIT(8)
31#define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9)
32#define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10)
33#define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12)
34#define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13)
35#define PWM_SIFIVE_PWMCFG_CENTER BIT(16)
36#define PWM_SIFIVE_PWMCFG_GANG BIT(24)
37#define PWM_SIFIVE_PWMCFG_IP BIT(28)
38
39#define PWM_SIFIVE_CMPWIDTH 16
40#define PWM_SIFIVE_DEFAULT_PERIOD 10000000
41
42struct pwm_sifive_ddata {
43 struct pwm_chip chip;
44 struct mutex lock; /* lock to protect user_count and approx_period */
45 struct notifier_block notifier;
46 struct clk *clk;
47 void __iomem *regs;
48 unsigned int real_period;
49 unsigned int approx_period;
50 int user_count;
51};
52
53static inline
54struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55{
56 return container_of(c, struct pwm_sifive_ddata, chip);
57}
58
59static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60{
61 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62
63 mutex_lock(&ddata->lock);
64 ddata->user_count++;
65 mutex_unlock(&ddata->lock);
66
67 return 0;
68}
69
70static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71{
72 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73
74 mutex_lock(&ddata->lock);
75 ddata->user_count--;
76 mutex_unlock(&ddata->lock);
77}
78
79/* Called holding ddata->lock */
80static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
81 unsigned long rate)
82{
83 unsigned long long num;
84 unsigned long scale_pow;
85 int scale;
86 u32 val;
87 /*
88 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
89 * period length is using pwmscale which provides the number of bits the
90 * counter is shifted before being feed to the comparators. A period
91 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
92 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
93 */
94 scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
95 scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
96
97 val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
98 FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
99 writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
100
101 /* As scale <= 15 the shift operation cannot overflow. */
102 num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
103 ddata->real_period = div64_ul(num, rate);
104 dev_dbg(ddata->chip.dev,
105 "New real_period = %u ns\n", ddata->real_period);
106}
107
108static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
109 struct pwm_state *state)
110{
111 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
112 u32 duty, val;
113
114 duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
115
116 state->enabled = duty > 0;
117
118 val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
119 if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
120 state->enabled = false;
121
122 state->period = ddata->real_period;
123 state->duty_cycle =
124 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
125 state->polarity = PWM_POLARITY_INVERSED;
126
127 return 0;
128}
129
130static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
131 const struct pwm_state *state)
132{
133 struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
134 struct pwm_state cur_state;
135 unsigned int duty_cycle;
136 unsigned long long num;
137 bool enabled;
138 int ret = 0;
139 u32 frac;
140
141 if (state->polarity != PWM_POLARITY_INVERSED)
142 return -EINVAL;
143
144 cur_state = pwm->state;
145 enabled = cur_state.enabled;
146
147 duty_cycle = state->duty_cycle;
148 if (!state->enabled)
149 duty_cycle = 0;
150
151 /*
152 * The problem of output producing mixed setting as mentioned at top,
153 * occurs here. To minimize the window for this problem, we are
154 * calculating the register values first and then writing them
155 * consecutively
156 */
157 num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
158 frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
159 /* The hardware cannot generate a 100% duty cycle */
160 frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
161
162 mutex_lock(&ddata->lock);
163 if (state->period != ddata->approx_period) {
164 if (ddata->user_count != 1) {
165 mutex_unlock(&ddata->lock);
166 return -EBUSY;
167 }
168 ddata->approx_period = state->period;
169 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
170 }
171 mutex_unlock(&ddata->lock);
172
173 /*
174 * If the PWM is enabled the clk is already on. So only enable it
175 * conditionally to have it on exactly once afterwards independent of
176 * the PWM state.
177 */
178 if (!enabled) {
179 ret = clk_enable(ddata->clk);
180 if (ret) {
181 dev_err(ddata->chip.dev, "Enable clk failed\n");
182 return ret;
183 }
184 }
185
186 writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
187
188 if (!state->enabled)
189 clk_disable(ddata->clk);
190
191 return 0;
192}
193
194static const struct pwm_ops pwm_sifive_ops = {
195 .request = pwm_sifive_request,
196 .free = pwm_sifive_free,
197 .get_state = pwm_sifive_get_state,
198 .apply = pwm_sifive_apply,
199 .owner = THIS_MODULE,
200};
201
202static int pwm_sifive_clock_notifier(struct notifier_block *nb,
203 unsigned long event, void *data)
204{
205 struct clk_notifier_data *ndata = data;
206 struct pwm_sifive_ddata *ddata =
207 container_of(nb, struct pwm_sifive_ddata, notifier);
208
209 if (event == POST_RATE_CHANGE) {
210 mutex_lock(&ddata->lock);
211 pwm_sifive_update_clock(ddata, ndata->new_rate);
212 mutex_unlock(&ddata->lock);
213 }
214
215 return NOTIFY_OK;
216}
217
218static int pwm_sifive_probe(struct platform_device *pdev)
219{
220 struct device *dev = &pdev->dev;
221 struct pwm_sifive_ddata *ddata;
222 struct pwm_chip *chip;
223 int ret;
224 u32 val;
225 unsigned int enabled_pwms = 0, enabled_clks = 1;
226
227 ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
228 if (!ddata)
229 return -ENOMEM;
230
231 mutex_init(&ddata->lock);
232 chip = &ddata->chip;
233 chip->dev = dev;
234 chip->ops = &pwm_sifive_ops;
235 chip->npwm = 4;
236
237 ddata->regs = devm_platform_ioremap_resource(pdev, 0);
238 if (IS_ERR(ddata->regs))
239 return PTR_ERR(ddata->regs);
240
241 ddata->clk = devm_clk_get(dev, NULL);
242 if (IS_ERR(ddata->clk))
243 return dev_err_probe(dev, PTR_ERR(ddata->clk),
244 "Unable to find controller clock\n");
245
246 ret = clk_prepare_enable(ddata->clk);
247 if (ret) {
248 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
249 return ret;
250 }
251
252 val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
253 if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
254 unsigned int i;
255
256 for (i = 0; i < chip->npwm; ++i) {
257 val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
258 if (val > 0)
259 ++enabled_pwms;
260 }
261 }
262
263 /* The clk should be on once for each running PWM. */
264 if (enabled_pwms) {
265 while (enabled_clks < enabled_pwms) {
266 /* This is not expected to fail as the clk is already on */
267 ret = clk_enable(ddata->clk);
268 if (unlikely(ret)) {
269 dev_err_probe(dev, ret, "Failed to enable clk\n");
270 goto disable_clk;
271 }
272 ++enabled_clks;
273 }
274 } else {
275 clk_disable(ddata->clk);
276 enabled_clks = 0;
277 }
278
279 /* Watch for changes to underlying clock frequency */
280 ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
281 ret = clk_notifier_register(ddata->clk, &ddata->notifier);
282 if (ret) {
283 dev_err(dev, "failed to register clock notifier: %d\n", ret);
284 goto disable_clk;
285 }
286
287 ret = pwmchip_add(chip);
288 if (ret < 0) {
289 dev_err(dev, "cannot register PWM: %d\n", ret);
290 goto unregister_clk;
291 }
292
293 platform_set_drvdata(pdev, ddata);
294 dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
295
296 return 0;
297
298unregister_clk:
299 clk_notifier_unregister(ddata->clk, &ddata->notifier);
300disable_clk:
301 while (enabled_clks) {
302 clk_disable(ddata->clk);
303 --enabled_clks;
304 }
305 clk_unprepare(ddata->clk);
306
307 return ret;
308}
309
310static int pwm_sifive_remove(struct platform_device *dev)
311{
312 struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
313 struct pwm_device *pwm;
314 int ch;
315
316 pwmchip_remove(&ddata->chip);
317 clk_notifier_unregister(ddata->clk, &ddata->notifier);
318
319 for (ch = 0; ch < ddata->chip.npwm; ch++) {
320 pwm = &ddata->chip.pwms[ch];
321 if (pwm->state.enabled)
322 clk_disable(ddata->clk);
323 }
324
325 clk_unprepare(ddata->clk);
326
327 return 0;
328}
329
330static const struct of_device_id pwm_sifive_of_match[] = {
331 { .compatible = "sifive,pwm0" },
332 {},
333};
334MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
335
336static struct platform_driver pwm_sifive_driver = {
337 .probe = pwm_sifive_probe,
338 .remove = pwm_sifive_remove,
339 .driver = {
340 .name = "pwm-sifive",
341 .of_match_table = pwm_sifive_of_match,
342 },
343};
344module_platform_driver(pwm_sifive_driver);
345
346MODULE_DESCRIPTION("SiFive PWM driver");
347MODULE_LICENSE("GPL v2");