Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2017-2018 SiFive
  4 * For SiFive's PWM IP block documentation please refer Chapter 14 of
  5 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
  6 *
  7 * Limitations:
  8 * - When changing both duty cycle and period, we cannot prevent in
  9 *   software that the output might produce a period with mixed
 10 *   settings (new period length and old duty cycle).
 11 * - The hardware cannot generate a 100% duty cycle.
 12 * - The hardware generates only inverted output.
 13 */
 14#include <linux/clk.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/platform_device.h>
 18#include <linux/pwm.h>
 19#include <linux/slab.h>
 20#include <linux/bitfield.h>
 21
 22/* Register offsets */
 23#define PWM_SIFIVE_PWMCFG		0x0
 24#define PWM_SIFIVE_PWMCOUNT		0x8
 25#define PWM_SIFIVE_PWMS			0x10
 26#define PWM_SIFIVE_PWMCMP0		0x20
 27
 28/* PWMCFG fields */
 29#define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
 30#define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
 31#define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
 32#define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
 33#define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
 34#define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
 35#define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
 36#define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
 37#define PWM_SIFIVE_PWMCFG_IP		BIT(28)
 38
 39/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
 40#define PWM_SIFIVE_SIZE_PWMCMP		4
 41#define PWM_SIFIVE_CMPWIDTH		16
 42#define PWM_SIFIVE_DEFAULT_PERIOD	10000000
 43
 44struct pwm_sifive_ddata {
 45	struct pwm_chip	chip;
 46	struct mutex lock; /* lock to protect user_count */
 47	struct notifier_block notifier;
 48	struct clk *clk;
 49	void __iomem *regs;
 50	unsigned int real_period;
 51	unsigned int approx_period;
 52	int user_count;
 53};
 54
 55static inline
 56struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
 57{
 58	return container_of(c, struct pwm_sifive_ddata, chip);
 59}
 60
 61static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
 62{
 63	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 64
 65	mutex_lock(&ddata->lock);
 66	ddata->user_count++;
 67	mutex_unlock(&ddata->lock);
 68
 69	return 0;
 70}
 71
 72static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
 73{
 74	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 75
 76	mutex_lock(&ddata->lock);
 77	ddata->user_count--;
 78	mutex_unlock(&ddata->lock);
 79}
 80
 81static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
 82				    unsigned long rate)
 83{
 84	unsigned long long num;
 85	unsigned long scale_pow;
 86	int scale;
 87	u32 val;
 88	/*
 89	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
 90	 * period length is using pwmscale which provides the number of bits the
 91	 * counter is shifted before being feed to the comparators. A period
 92	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
 93	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
 94	 */
 95	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
 96	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
 97
 98	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
 99	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102	/* As scale <= 15 the shift operation cannot overflow. */
103	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104	ddata->real_period = div64_ul(num, rate);
105	dev_dbg(ddata->chip.dev,
106		"New real_period = %u ns\n", ddata->real_period);
107}
108
109static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110				 struct pwm_state *state)
111{
112	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113	u32 duty, val;
114
115	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116		     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117
118	state->enabled = duty > 0;
119
120	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122		state->enabled = false;
123
124	state->period = ddata->real_period;
125	state->duty_cycle =
126		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127	state->polarity = PWM_POLARITY_INVERSED;
128}
129
130static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131{
132	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133	int ret;
134
135	if (enable) {
136		ret = clk_enable(ddata->clk);
137		if (ret) {
138			dev_err(ddata->chip.dev, "Enable clk failed\n");
139			return ret;
140		}
141	}
142
143	if (!enable)
144		clk_disable(ddata->clk);
145
146	return 0;
147}
148
149static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
150			    const struct pwm_state *state)
151{
152	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
153	struct pwm_state cur_state;
154	unsigned int duty_cycle;
155	unsigned long long num;
156	bool enabled;
157	int ret = 0;
158	u32 frac;
159
160	if (state->polarity != PWM_POLARITY_INVERSED)
161		return -EINVAL;
162
163	ret = clk_enable(ddata->clk);
164	if (ret) {
165		dev_err(ddata->chip.dev, "Enable clk failed\n");
166		return ret;
167	}
168
169	mutex_lock(&ddata->lock);
170	cur_state = pwm->state;
171	enabled = cur_state.enabled;
172
173	duty_cycle = state->duty_cycle;
174	if (!state->enabled)
175		duty_cycle = 0;
176
177	/*
178	 * The problem of output producing mixed setting as mentioned at top,
179	 * occurs here. To minimize the window for this problem, we are
180	 * calculating the register values first and then writing them
181	 * consecutively
182	 */
183	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
184	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
185	/* The hardware cannot generate a 100% duty cycle */
186	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
187
188	if (state->period != ddata->approx_period) {
189		if (ddata->user_count != 1) {
190			ret = -EBUSY;
191			goto exit;
192		}
193		ddata->approx_period = state->period;
194		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
195	}
196
197	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
198	       pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
199
200	if (state->enabled != enabled)
201		pwm_sifive_enable(chip, state->enabled);
202
203exit:
204	clk_disable(ddata->clk);
205	mutex_unlock(&ddata->lock);
206	return ret;
207}
208
209static const struct pwm_ops pwm_sifive_ops = {
210	.request = pwm_sifive_request,
211	.free = pwm_sifive_free,
212	.get_state = pwm_sifive_get_state,
213	.apply = pwm_sifive_apply,
214	.owner = THIS_MODULE,
215};
216
217static int pwm_sifive_clock_notifier(struct notifier_block *nb,
218				     unsigned long event, void *data)
219{
220	struct clk_notifier_data *ndata = data;
221	struct pwm_sifive_ddata *ddata =
222		container_of(nb, struct pwm_sifive_ddata, notifier);
223
224	if (event == POST_RATE_CHANGE)
225		pwm_sifive_update_clock(ddata, ndata->new_rate);
226
227	return NOTIFY_OK;
228}
229
230static int pwm_sifive_probe(struct platform_device *pdev)
231{
232	struct device *dev = &pdev->dev;
233	struct pwm_sifive_ddata *ddata;
234	struct pwm_chip *chip;
235	struct resource *res;
236	int ret;
237
238	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
239	if (!ddata)
240		return -ENOMEM;
241
242	mutex_init(&ddata->lock);
243	chip = &ddata->chip;
244	chip->dev = dev;
245	chip->ops = &pwm_sifive_ops;
246	chip->of_xlate = of_pwm_xlate_with_flags;
247	chip->of_pwm_n_cells = 3;
248	chip->base = -1;
249	chip->npwm = 4;
250
251	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
252	ddata->regs = devm_ioremap_resource(dev, res);
253	if (IS_ERR(ddata->regs))
254		return PTR_ERR(ddata->regs);
255
256	ddata->clk = devm_clk_get(dev, NULL);
257	if (IS_ERR(ddata->clk)) {
258		if (PTR_ERR(ddata->clk) != -EPROBE_DEFER)
259			dev_err(dev, "Unable to find controller clock\n");
260		return PTR_ERR(ddata->clk);
261	}
262
263	ret = clk_prepare_enable(ddata->clk);
264	if (ret) {
265		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
266		return ret;
267	}
268
269	/* Watch for changes to underlying clock frequency */
270	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
271	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
272	if (ret) {
273		dev_err(dev, "failed to register clock notifier: %d\n", ret);
274		goto disable_clk;
275	}
276
277	ret = pwmchip_add(chip);
278	if (ret < 0) {
279		dev_err(dev, "cannot register PWM: %d\n", ret);
280		goto unregister_clk;
281	}
282
283	platform_set_drvdata(pdev, ddata);
284	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
285
286	return 0;
287
288unregister_clk:
289	clk_notifier_unregister(ddata->clk, &ddata->notifier);
290disable_clk:
291	clk_disable_unprepare(ddata->clk);
292
293	return ret;
294}
295
296static int pwm_sifive_remove(struct platform_device *dev)
297{
298	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
299	bool is_enabled = false;
300	struct pwm_device *pwm;
301	int ret, ch;
302
303	for (ch = 0; ch < ddata->chip.npwm; ch++) {
304		pwm = &ddata->chip.pwms[ch];
305		if (pwm->state.enabled) {
306			is_enabled = true;
307			break;
308		}
309	}
310	if (is_enabled)
311		clk_disable(ddata->clk);
312
313	clk_disable_unprepare(ddata->clk);
314	ret = pwmchip_remove(&ddata->chip);
315	clk_notifier_unregister(ddata->clk, &ddata->notifier);
316
317	return ret;
318}
319
320static const struct of_device_id pwm_sifive_of_match[] = {
321	{ .compatible = "sifive,pwm0" },
322	{},
323};
324MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
325
326static struct platform_driver pwm_sifive_driver = {
327	.probe = pwm_sifive_probe,
328	.remove = pwm_sifive_remove,
329	.driver = {
330		.name = "pwm-sifive",
331		.of_match_table = pwm_sifive_of_match,
332	},
333};
334module_platform_driver(pwm_sifive_driver);
335
336MODULE_DESCRIPTION("SiFive PWM driver");
337MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2017-2018 SiFive
  4 * For SiFive's PWM IP block documentation please refer Chapter 14 of
  5 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
  6 *
  7 * Limitations:
  8 * - When changing both duty cycle and period, we cannot prevent in
  9 *   software that the output might produce a period with mixed
 10 *   settings (new period length and old duty cycle).
 11 * - The hardware cannot generate a 100% duty cycle.
 12 * - The hardware generates only inverted output.
 13 */
 14#include <linux/clk.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/platform_device.h>
 18#include <linux/pwm.h>
 19#include <linux/slab.h>
 20#include <linux/bitfield.h>
 21
 22/* Register offsets */
 23#define PWM_SIFIVE_PWMCFG		0x0
 24#define PWM_SIFIVE_PWMCOUNT		0x8
 25#define PWM_SIFIVE_PWMS			0x10
 26#define PWM_SIFIVE_PWMCMP0		0x20
 27
 28/* PWMCFG fields */
 29#define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
 30#define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
 31#define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
 32#define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
 33#define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
 34#define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
 35#define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
 36#define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
 37#define PWM_SIFIVE_PWMCFG_IP		BIT(28)
 38
 39/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
 40#define PWM_SIFIVE_SIZE_PWMCMP		4
 41#define PWM_SIFIVE_CMPWIDTH		16
 42#define PWM_SIFIVE_DEFAULT_PERIOD	10000000
 43
 44struct pwm_sifive_ddata {
 45	struct pwm_chip	chip;
 46	struct mutex lock; /* lock to protect user_count */
 47	struct notifier_block notifier;
 48	struct clk *clk;
 49	void __iomem *regs;
 50	unsigned int real_period;
 51	unsigned int approx_period;
 52	int user_count;
 53};
 54
 55static inline
 56struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
 57{
 58	return container_of(c, struct pwm_sifive_ddata, chip);
 59}
 60
 61static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
 62{
 63	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 64
 65	mutex_lock(&ddata->lock);
 66	ddata->user_count++;
 67	mutex_unlock(&ddata->lock);
 68
 69	return 0;
 70}
 71
 72static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
 73{
 74	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
 75
 76	mutex_lock(&ddata->lock);
 77	ddata->user_count--;
 78	mutex_unlock(&ddata->lock);
 79}
 80
 81static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
 82				    unsigned long rate)
 83{
 84	unsigned long long num;
 85	unsigned long scale_pow;
 86	int scale;
 87	u32 val;
 88	/*
 89	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
 90	 * period length is using pwmscale which provides the number of bits the
 91	 * counter is shifted before being feed to the comparators. A period
 92	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
 93	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
 94	 */
 95	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
 96	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
 97
 98	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
 99	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
100	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
101
102	/* As scale <= 15 the shift operation cannot overflow. */
103	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
104	ddata->real_period = div64_ul(num, rate);
105	dev_dbg(ddata->chip.dev,
106		"New real_period = %u ns\n", ddata->real_period);
107}
108
109static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
110				 struct pwm_state *state)
111{
112	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
113	u32 duty, val;
114
115	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
116		     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
117
118	state->enabled = duty > 0;
119
120	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
121	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
122		state->enabled = false;
123
124	state->period = ddata->real_period;
125	state->duty_cycle =
126		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
127	state->polarity = PWM_POLARITY_INVERSED;
128}
129
130static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
131{
132	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
133	int ret;
134
135	if (enable) {
136		ret = clk_enable(ddata->clk);
137		if (ret) {
138			dev_err(ddata->chip.dev, "Enable clk failed\n");
139			return ret;
140		}
141	}
142
143	if (!enable)
144		clk_disable(ddata->clk);
145
146	return 0;
147}
148
149static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
150			    const struct pwm_state *state)
151{
152	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
153	struct pwm_state cur_state;
154	unsigned int duty_cycle;
155	unsigned long long num;
156	bool enabled;
157	int ret = 0;
158	u32 frac;
159
160	if (state->polarity != PWM_POLARITY_INVERSED)
161		return -EINVAL;
162
163	ret = clk_enable(ddata->clk);
164	if (ret) {
165		dev_err(ddata->chip.dev, "Enable clk failed\n");
166		return ret;
167	}
168
169	mutex_lock(&ddata->lock);
170	cur_state = pwm->state;
171	enabled = cur_state.enabled;
172
173	duty_cycle = state->duty_cycle;
174	if (!state->enabled)
175		duty_cycle = 0;
176
177	/*
178	 * The problem of output producing mixed setting as mentioned at top,
179	 * occurs here. To minimize the window for this problem, we are
180	 * calculating the register values first and then writing them
181	 * consecutively
182	 */
183	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
184	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
185	/* The hardware cannot generate a 100% duty cycle */
186	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
187
188	if (state->period != ddata->approx_period) {
189		if (ddata->user_count != 1) {
190			ret = -EBUSY;
191			goto exit;
192		}
193		ddata->approx_period = state->period;
194		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
195	}
196
197	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
198	       pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
199
200	if (state->enabled != enabled)
201		pwm_sifive_enable(chip, state->enabled);
202
203exit:
204	clk_disable(ddata->clk);
205	mutex_unlock(&ddata->lock);
206	return ret;
207}
208
209static const struct pwm_ops pwm_sifive_ops = {
210	.request = pwm_sifive_request,
211	.free = pwm_sifive_free,
212	.get_state = pwm_sifive_get_state,
213	.apply = pwm_sifive_apply,
214	.owner = THIS_MODULE,
215};
216
217static int pwm_sifive_clock_notifier(struct notifier_block *nb,
218				     unsigned long event, void *data)
219{
220	struct clk_notifier_data *ndata = data;
221	struct pwm_sifive_ddata *ddata =
222		container_of(nb, struct pwm_sifive_ddata, notifier);
223
224	if (event == POST_RATE_CHANGE)
225		pwm_sifive_update_clock(ddata, ndata->new_rate);
226
227	return NOTIFY_OK;
228}
229
230static int pwm_sifive_probe(struct platform_device *pdev)
231{
232	struct device *dev = &pdev->dev;
233	struct pwm_sifive_ddata *ddata;
234	struct pwm_chip *chip;
 
235	int ret;
236
237	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
238	if (!ddata)
239		return -ENOMEM;
240
241	mutex_init(&ddata->lock);
242	chip = &ddata->chip;
243	chip->dev = dev;
244	chip->ops = &pwm_sifive_ops;
 
 
 
245	chip->npwm = 4;
246
247	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
 
248	if (IS_ERR(ddata->regs))
249		return PTR_ERR(ddata->regs);
250
251	ddata->clk = devm_clk_get(dev, NULL);
252	if (IS_ERR(ddata->clk))
253		return dev_err_probe(dev, PTR_ERR(ddata->clk),
254				     "Unable to find controller clock\n");
 
 
255
256	ret = clk_prepare_enable(ddata->clk);
257	if (ret) {
258		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
259		return ret;
260	}
261
262	/* Watch for changes to underlying clock frequency */
263	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
264	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
265	if (ret) {
266		dev_err(dev, "failed to register clock notifier: %d\n", ret);
267		goto disable_clk;
268	}
269
270	ret = pwmchip_add(chip);
271	if (ret < 0) {
272		dev_err(dev, "cannot register PWM: %d\n", ret);
273		goto unregister_clk;
274	}
275
276	platform_set_drvdata(pdev, ddata);
277	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
278
279	return 0;
280
281unregister_clk:
282	clk_notifier_unregister(ddata->clk, &ddata->notifier);
283disable_clk:
284	clk_disable_unprepare(ddata->clk);
285
286	return ret;
287}
288
289static int pwm_sifive_remove(struct platform_device *dev)
290{
291	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
292	bool is_enabled = false;
293	struct pwm_device *pwm;
294	int ret, ch;
295
296	for (ch = 0; ch < ddata->chip.npwm; ch++) {
297		pwm = &ddata->chip.pwms[ch];
298		if (pwm->state.enabled) {
299			is_enabled = true;
300			break;
301		}
302	}
303	if (is_enabled)
304		clk_disable(ddata->clk);
305
306	clk_disable_unprepare(ddata->clk);
307	ret = pwmchip_remove(&ddata->chip);
308	clk_notifier_unregister(ddata->clk, &ddata->notifier);
309
310	return ret;
311}
312
313static const struct of_device_id pwm_sifive_of_match[] = {
314	{ .compatible = "sifive,pwm0" },
315	{},
316};
317MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
318
319static struct platform_driver pwm_sifive_driver = {
320	.probe = pwm_sifive_probe,
321	.remove = pwm_sifive_remove,
322	.driver = {
323		.name = "pwm-sifive",
324		.of_match_table = pwm_sifive_of_match,
325	},
326};
327module_platform_driver(pwm_sifive_driver);
328
329MODULE_DESCRIPTION("SiFive PWM driver");
330MODULE_LICENSE("GPL v2");