Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23	struct module		*owner;
  24	struct device		dev;
  25	int			stride;
  26	int			word_size;
  27	int			id;
  28	struct kref		refcnt;
  29	size_t			size;
  30	bool			read_only;
  31	bool			root_only;
  32	int			flags;
  33	enum nvmem_type		type;
  34	struct bin_attribute	eeprom;
  35	struct device		*base_dev;
  36	struct list_head	cells;
 
 
  37	nvmem_reg_read_t	reg_read;
  38	nvmem_reg_write_t	reg_write;
 
  39	struct gpio_desc	*wp_gpio;
  40	void *priv;
  41};
  42
  43#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  44
  45#define FLAG_COMPAT		BIT(0)
  46
  47struct nvmem_cell {
  48	const char		*name;
  49	int			offset;
  50	int			bytes;
  51	int			bit_offset;
  52	int			nbits;
  53	struct device_node	*np;
  54	struct nvmem_device	*nvmem;
  55	struct list_head	node;
  56};
  57
 
 
 
 
 
  58static DEFINE_MUTEX(nvmem_mutex);
  59static DEFINE_IDA(nvmem_ida);
  60
  61static DEFINE_MUTEX(nvmem_cell_mutex);
  62static LIST_HEAD(nvmem_cell_tables);
  63
  64static DEFINE_MUTEX(nvmem_lookup_mutex);
  65static LIST_HEAD(nvmem_lookup_list);
  66
  67static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  68
  69static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  70			  void *val, size_t bytes)
  71{
  72	if (nvmem->reg_read)
  73		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  74
  75	return -EINVAL;
  76}
  77
  78static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  79			   void *val, size_t bytes)
  80{
  81	int ret;
  82
  83	if (nvmem->reg_write) {
  84		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  85		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  86		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  87		return ret;
  88	}
  89
  90	return -EINVAL;
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93#ifdef CONFIG_NVMEM_SYSFS
  94static const char * const nvmem_type_str[] = {
  95	[NVMEM_TYPE_UNKNOWN] = "Unknown",
  96	[NVMEM_TYPE_EEPROM] = "EEPROM",
  97	[NVMEM_TYPE_OTP] = "OTP",
  98	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 
  99};
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102static struct lock_class_key eeprom_lock_key;
 103#endif
 104
 105static ssize_t type_show(struct device *dev,
 106			 struct device_attribute *attr, char *buf)
 107{
 108	struct nvmem_device *nvmem = to_nvmem_device(dev);
 109
 110	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 111}
 112
 113static DEVICE_ATTR_RO(type);
 114
 115static struct attribute *nvmem_attrs[] = {
 116	&dev_attr_type.attr,
 117	NULL,
 118};
 119
 120static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 121				   struct bin_attribute *attr, char *buf,
 122				   loff_t pos, size_t count)
 123{
 124	struct device *dev;
 125	struct nvmem_device *nvmem;
 126	int rc;
 127
 128	if (attr->private)
 129		dev = attr->private;
 130	else
 131		dev = container_of(kobj, struct device, kobj);
 132	nvmem = to_nvmem_device(dev);
 133
 134	/* Stop the user from reading */
 135	if (pos >= nvmem->size)
 136		return 0;
 137
 138	if (!IS_ALIGNED(pos, nvmem->stride))
 139		return -EINVAL;
 140
 141	if (count < nvmem->word_size)
 142		return -EINVAL;
 143
 144	if (pos + count > nvmem->size)
 145		count = nvmem->size - pos;
 146
 147	count = round_down(count, nvmem->word_size);
 148
 149	if (!nvmem->reg_read)
 150		return -EPERM;
 151
 152	rc = nvmem_reg_read(nvmem, pos, buf, count);
 153
 154	if (rc)
 155		return rc;
 156
 157	return count;
 158}
 159
 160static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 161				    struct bin_attribute *attr, char *buf,
 162				    loff_t pos, size_t count)
 163{
 164	struct device *dev;
 165	struct nvmem_device *nvmem;
 166	int rc;
 167
 168	if (attr->private)
 169		dev = attr->private;
 170	else
 171		dev = container_of(kobj, struct device, kobj);
 172	nvmem = to_nvmem_device(dev);
 173
 174	/* Stop the user from writing */
 175	if (pos >= nvmem->size)
 176		return -EFBIG;
 177
 178	if (!IS_ALIGNED(pos, nvmem->stride))
 179		return -EINVAL;
 180
 181	if (count < nvmem->word_size)
 182		return -EINVAL;
 183
 184	if (pos + count > nvmem->size)
 185		count = nvmem->size - pos;
 186
 187	count = round_down(count, nvmem->word_size);
 188
 189	if (!nvmem->reg_write)
 190		return -EPERM;
 191
 192	rc = nvmem_reg_write(nvmem, pos, buf, count);
 193
 194	if (rc)
 195		return rc;
 196
 197	return count;
 198}
 199
 200static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 201{
 202	umode_t mode = 0400;
 203
 204	if (!nvmem->root_only)
 205		mode |= 0044;
 206
 207	if (!nvmem->read_only)
 208		mode |= 0200;
 209
 210	if (!nvmem->reg_write)
 211		mode &= ~0200;
 212
 213	if (!nvmem->reg_read)
 214		mode &= ~0444;
 215
 216	return mode;
 217}
 218
 219static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 220					 struct bin_attribute *attr, int i)
 221{
 222	struct device *dev = container_of(kobj, struct device, kobj);
 223	struct nvmem_device *nvmem = to_nvmem_device(dev);
 224
 
 
 225	return nvmem_bin_attr_get_umode(nvmem);
 226}
 227
 228/* default read/write permissions */
 229static struct bin_attribute bin_attr_rw_nvmem = {
 230	.attr	= {
 231		.name	= "nvmem",
 232		.mode	= 0644,
 233	},
 234	.read	= bin_attr_nvmem_read,
 235	.write	= bin_attr_nvmem_write,
 236};
 237
 238static struct bin_attribute *nvmem_bin_attributes[] = {
 239	&bin_attr_rw_nvmem,
 240	NULL,
 241};
 242
 243static const struct attribute_group nvmem_bin_group = {
 244	.bin_attrs	= nvmem_bin_attributes,
 245	.attrs		= nvmem_attrs,
 246	.is_bin_visible = nvmem_bin_attr_is_visible,
 247};
 248
 249static const struct attribute_group *nvmem_dev_groups[] = {
 250	&nvmem_bin_group,
 251	NULL,
 252};
 253
 254static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 255	.attr	= {
 256		.name	= "eeprom",
 257	},
 258	.read	= bin_attr_nvmem_read,
 259	.write	= bin_attr_nvmem_write,
 260};
 261
 262/*
 263 * nvmem_setup_compat() - Create an additional binary entry in
 264 * drivers sys directory, to be backwards compatible with the older
 265 * drivers/misc/eeprom drivers.
 266 */
 267static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 268				    const struct nvmem_config *config)
 269{
 270	int rval;
 271
 272	if (!config->compat)
 273		return 0;
 274
 275	if (!config->base_dev)
 276		return -EINVAL;
 277
 
 
 
 278	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 279	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 280	nvmem->eeprom.size = nvmem->size;
 281#ifdef CONFIG_DEBUG_LOCK_ALLOC
 282	nvmem->eeprom.attr.key = &eeprom_lock_key;
 283#endif
 284	nvmem->eeprom.private = &nvmem->dev;
 285	nvmem->base_dev = config->base_dev;
 286
 287	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 288	if (rval) {
 289		dev_err(&nvmem->dev,
 290			"Failed to create eeprom binary file %d\n", rval);
 291		return rval;
 292	}
 293
 294	nvmem->flags |= FLAG_COMPAT;
 295
 296	return 0;
 297}
 298
 299static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 300			      const struct nvmem_config *config)
 301{
 302	if (config->compat)
 303		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 304}
 305
 306#else /* CONFIG_NVMEM_SYSFS */
 307
 308static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 309				    const struct nvmem_config *config)
 310{
 311	return -ENOSYS;
 312}
 313static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 314				      const struct nvmem_config *config)
 315{
 316}
 317
 318#endif /* CONFIG_NVMEM_SYSFS */
 319
 320static void nvmem_release(struct device *dev)
 321{
 322	struct nvmem_device *nvmem = to_nvmem_device(dev);
 323
 324	ida_simple_remove(&nvmem_ida, nvmem->id);
 325	gpiod_put(nvmem->wp_gpio);
 326	kfree(nvmem);
 327}
 328
 329static const struct device_type nvmem_provider_type = {
 330	.release	= nvmem_release,
 331};
 332
 333static struct bus_type nvmem_bus_type = {
 334	.name		= "nvmem",
 335};
 336
 337static void nvmem_cell_drop(struct nvmem_cell *cell)
 338{
 339	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 340	mutex_lock(&nvmem_mutex);
 341	list_del(&cell->node);
 342	mutex_unlock(&nvmem_mutex);
 343	of_node_put(cell->np);
 344	kfree_const(cell->name);
 345	kfree(cell);
 346}
 347
 348static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 349{
 350	struct nvmem_cell *cell, *p;
 351
 352	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 353		nvmem_cell_drop(cell);
 354}
 355
 356static void nvmem_cell_add(struct nvmem_cell *cell)
 357{
 358	mutex_lock(&nvmem_mutex);
 359	list_add_tail(&cell->node, &cell->nvmem->cells);
 360	mutex_unlock(&nvmem_mutex);
 361	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 362}
 363
 364static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
 365				   const struct nvmem_cell_info *info,
 366				   struct nvmem_cell *cell)
 367{
 368	cell->nvmem = nvmem;
 369	cell->offset = info->offset;
 370	cell->bytes = info->bytes;
 371	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 372	if (!cell->name)
 373		return -ENOMEM;
 374
 375	cell->bit_offset = info->bit_offset;
 376	cell->nbits = info->nbits;
 
 377
 378	if (cell->nbits)
 379		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 380					   BITS_PER_BYTE);
 381
 382	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 383		dev_err(&nvmem->dev,
 384			"cell %s unaligned to nvmem stride %d\n",
 385			cell->name, nvmem->stride);
 386		return -EINVAL;
 387	}
 388
 389	return 0;
 390}
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392/**
 393 * nvmem_add_cells() - Add cell information to an nvmem device
 394 *
 395 * @nvmem: nvmem device to add cells to.
 396 * @info: nvmem cell info to add to the device
 397 * @ncells: number of cells in info
 398 *
 399 * Return: 0 or negative error code on failure.
 400 */
 401static int nvmem_add_cells(struct nvmem_device *nvmem,
 402		    const struct nvmem_cell_info *info,
 403		    int ncells)
 404{
 405	struct nvmem_cell **cells;
 406	int i, rval;
 407
 408	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 409	if (!cells)
 410		return -ENOMEM;
 411
 412	for (i = 0; i < ncells; i++) {
 413		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 414		if (!cells[i]) {
 415			rval = -ENOMEM;
 416			goto err;
 417		}
 418
 419		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
 420		if (rval) {
 421			kfree(cells[i]);
 422			goto err;
 423		}
 424
 425		nvmem_cell_add(cells[i]);
 426	}
 427
 428	/* remove tmp array */
 429	kfree(cells);
 430
 431	return 0;
 432err:
 433	while (i--)
 434		nvmem_cell_drop(cells[i]);
 435
 436	kfree(cells);
 437
 438	return rval;
 439}
 440
 441/**
 442 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 443 *
 444 * @nb: notifier block to be called on nvmem events.
 445 *
 446 * Return: 0 on success, negative error number on failure.
 447 */
 448int nvmem_register_notifier(struct notifier_block *nb)
 449{
 450	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 451}
 452EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 453
 454/**
 455 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 456 *
 457 * @nb: notifier block to be unregistered.
 458 *
 459 * Return: 0 on success, negative error number on failure.
 460 */
 461int nvmem_unregister_notifier(struct notifier_block *nb)
 462{
 463	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 464}
 465EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 466
 467static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 468{
 469	const struct nvmem_cell_info *info;
 470	struct nvmem_cell_table *table;
 471	struct nvmem_cell *cell;
 472	int rval = 0, i;
 473
 474	mutex_lock(&nvmem_cell_mutex);
 475	list_for_each_entry(table, &nvmem_cell_tables, node) {
 476		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 477			for (i = 0; i < table->ncells; i++) {
 478				info = &table->cells[i];
 479
 480				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 481				if (!cell) {
 482					rval = -ENOMEM;
 483					goto out;
 484				}
 485
 486				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
 487								     info,
 488								     cell);
 489				if (rval) {
 490					kfree(cell);
 491					goto out;
 492				}
 493
 494				nvmem_cell_add(cell);
 495			}
 496		}
 497	}
 498
 499out:
 500	mutex_unlock(&nvmem_cell_mutex);
 501	return rval;
 502}
 503
 504static struct nvmem_cell *
 505nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
 506{
 507	struct nvmem_cell *iter, *cell = NULL;
 508
 509	mutex_lock(&nvmem_mutex);
 510	list_for_each_entry(iter, &nvmem->cells, node) {
 511		if (strcmp(cell_id, iter->name) == 0) {
 512			cell = iter;
 513			break;
 514		}
 515	}
 516	mutex_unlock(&nvmem_mutex);
 517
 518	return cell;
 519}
 520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 522{
 523	struct device_node *parent, *child;
 524	struct device *dev = &nvmem->dev;
 525	struct nvmem_cell *cell;
 526	const __be32 *addr;
 527	int len;
 528
 529	parent = dev->of_node;
 530
 531	for_each_child_of_node(parent, child) {
 532		addr = of_get_property(child, "reg", &len);
 533		if (!addr || (len < 2 * sizeof(u32))) {
 
 
 534			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 
 535			return -EINVAL;
 536		}
 537
 538		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 539		if (!cell)
 
 540			return -ENOMEM;
 
 541
 542		cell->nvmem = nvmem;
 543		cell->np = of_node_get(child);
 544		cell->offset = be32_to_cpup(addr++);
 545		cell->bytes = be32_to_cpup(addr);
 546		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 547
 548		addr = of_get_property(child, "bits", &len);
 549		if (addr && len == (2 * sizeof(u32))) {
 550			cell->bit_offset = be32_to_cpup(addr++);
 551			cell->nbits = be32_to_cpup(addr);
 552		}
 553
 554		if (cell->nbits)
 555			cell->bytes = DIV_ROUND_UP(
 556					cell->nbits + cell->bit_offset,
 557					BITS_PER_BYTE);
 558
 559		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 560			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 561				cell->name, nvmem->stride);
 562			/* Cells already added will be freed later. */
 563			kfree_const(cell->name);
 564			kfree(cell);
 
 565			return -EINVAL;
 566		}
 567
 568		nvmem_cell_add(cell);
 
 569	}
 570
 571	return 0;
 572}
 573
 574/**
 575 * nvmem_register() - Register a nvmem device for given nvmem_config.
 576 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 577 *
 578 * @config: nvmem device configuration with which nvmem device is created.
 579 *
 580 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 581 * on success.
 582 */
 583
 584struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 585{
 586	struct nvmem_device *nvmem;
 587	int rval;
 588
 589	if (!config->dev)
 590		return ERR_PTR(-EINVAL);
 591
 592	if (!config->reg_read && !config->reg_write)
 593		return ERR_PTR(-EINVAL);
 594
 595	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 596	if (!nvmem)
 597		return ERR_PTR(-ENOMEM);
 598
 599	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
 600	if (rval < 0) {
 601		kfree(nvmem);
 602		return ERR_PTR(rval);
 603	}
 604
 605	if (config->wp_gpio)
 606		nvmem->wp_gpio = config->wp_gpio;
 607	else
 
 
 
 
 
 
 608		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 609						    GPIOD_OUT_HIGH);
 610	if (IS_ERR(nvmem->wp_gpio)) {
 611		ida_simple_remove(&nvmem_ida, nvmem->id);
 612		rval = PTR_ERR(nvmem->wp_gpio);
 613		kfree(nvmem);
 614		return ERR_PTR(rval);
 615	}
 616
 617	kref_init(&nvmem->refcnt);
 618	INIT_LIST_HEAD(&nvmem->cells);
 619
 620	nvmem->id = rval;
 621	nvmem->owner = config->owner;
 622	if (!nvmem->owner && config->dev->driver)
 623		nvmem->owner = config->dev->driver->owner;
 624	nvmem->stride = config->stride ?: 1;
 625	nvmem->word_size = config->word_size ?: 1;
 626	nvmem->size = config->size;
 627	nvmem->dev.type = &nvmem_provider_type;
 628	nvmem->dev.bus = &nvmem_bus_type;
 629	nvmem->dev.parent = config->dev;
 630	nvmem->root_only = config->root_only;
 631	nvmem->priv = config->priv;
 632	nvmem->type = config->type;
 633	nvmem->reg_read = config->reg_read;
 634	nvmem->reg_write = config->reg_write;
 635	if (!config->no_of_node)
 
 
 
 
 
 636		nvmem->dev.of_node = config->dev->of_node;
 637
 638	switch (config->id) {
 639	case NVMEM_DEVID_NONE:
 640		dev_set_name(&nvmem->dev, "%s", config->name);
 641		break;
 642	case NVMEM_DEVID_AUTO:
 643		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 644		break;
 645	default:
 646		dev_set_name(&nvmem->dev, "%s%d",
 647			     config->name ? : "nvmem",
 648			     config->name ? config->id : nvmem->id);
 649		break;
 650	}
 651
 
 
 
 652	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 653			   config->read_only || !nvmem->reg_write;
 654
 655#ifdef CONFIG_NVMEM_SYSFS
 656	nvmem->dev.groups = nvmem_dev_groups;
 657#endif
 658
 659	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 660
 661	rval = device_register(&nvmem->dev);
 662	if (rval)
 663		goto err_put_device;
 664
 665	if (config->compat) {
 666		rval = nvmem_sysfs_setup_compat(nvmem, config);
 667		if (rval)
 668			goto err_device_del;
 669	}
 670
 671	if (config->cells) {
 672		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 673		if (rval)
 674			goto err_teardown_compat;
 675	}
 676
 677	rval = nvmem_add_cells_from_table(nvmem);
 678	if (rval)
 679		goto err_remove_cells;
 680
 681	rval = nvmem_add_cells_from_of(nvmem);
 682	if (rval)
 683		goto err_remove_cells;
 684
 
 
 
 
 
 
 685	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 686
 687	return nvmem;
 688
 689err_remove_cells:
 690	nvmem_device_remove_all_cells(nvmem);
 691err_teardown_compat:
 692	if (config->compat)
 693		nvmem_sysfs_remove_compat(nvmem, config);
 694err_device_del:
 695	device_del(&nvmem->dev);
 696err_put_device:
 697	put_device(&nvmem->dev);
 698
 699	return ERR_PTR(rval);
 700}
 701EXPORT_SYMBOL_GPL(nvmem_register);
 702
 703static void nvmem_device_release(struct kref *kref)
 704{
 705	struct nvmem_device *nvmem;
 706
 707	nvmem = container_of(kref, struct nvmem_device, refcnt);
 708
 709	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 710
 711	if (nvmem->flags & FLAG_COMPAT)
 712		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 713
 714	nvmem_device_remove_all_cells(nvmem);
 715	device_unregister(&nvmem->dev);
 716}
 717
 718/**
 719 * nvmem_unregister() - Unregister previously registered nvmem device
 720 *
 721 * @nvmem: Pointer to previously registered nvmem device.
 722 */
 723void nvmem_unregister(struct nvmem_device *nvmem)
 724{
 725	kref_put(&nvmem->refcnt, nvmem_device_release);
 
 726}
 727EXPORT_SYMBOL_GPL(nvmem_unregister);
 728
 729static void devm_nvmem_release(struct device *dev, void *res)
 730{
 731	nvmem_unregister(*(struct nvmem_device **)res);
 732}
 733
 734/**
 735 * devm_nvmem_register() - Register a managed nvmem device for given
 736 * nvmem_config.
 737 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 738 *
 739 * @dev: Device that uses the nvmem device.
 740 * @config: nvmem device configuration with which nvmem device is created.
 741 *
 742 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 743 * on success.
 744 */
 745struct nvmem_device *devm_nvmem_register(struct device *dev,
 746					 const struct nvmem_config *config)
 747{
 748	struct nvmem_device **ptr, *nvmem;
 749
 750	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
 751	if (!ptr)
 752		return ERR_PTR(-ENOMEM);
 753
 754	nvmem = nvmem_register(config);
 
 
 755
 756	if (!IS_ERR(nvmem)) {
 757		*ptr = nvmem;
 758		devres_add(dev, ptr);
 759	} else {
 760		devres_free(ptr);
 761	}
 762
 763	return nvmem;
 764}
 765EXPORT_SYMBOL_GPL(devm_nvmem_register);
 766
 767static int devm_nvmem_match(struct device *dev, void *res, void *data)
 768{
 769	struct nvmem_device **r = res;
 770
 771	return *r == data;
 772}
 773
 774/**
 775 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
 776 * device.
 777 *
 778 * @dev: Device that uses the nvmem device.
 779 * @nvmem: Pointer to previously registered nvmem device.
 780 *
 781 * Return: Will be negative on error or zero on success.
 782 */
 783int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
 784{
 785	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
 786}
 787EXPORT_SYMBOL(devm_nvmem_unregister);
 788
 789static struct nvmem_device *__nvmem_device_get(void *data,
 790			int (*match)(struct device *dev, const void *data))
 791{
 792	struct nvmem_device *nvmem = NULL;
 793	struct device *dev;
 794
 795	mutex_lock(&nvmem_mutex);
 796	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 797	if (dev)
 798		nvmem = to_nvmem_device(dev);
 799	mutex_unlock(&nvmem_mutex);
 800	if (!nvmem)
 801		return ERR_PTR(-EPROBE_DEFER);
 802
 803	if (!try_module_get(nvmem->owner)) {
 804		dev_err(&nvmem->dev,
 805			"could not increase module refcount for cell %s\n",
 806			nvmem_dev_name(nvmem));
 807
 808		put_device(&nvmem->dev);
 809		return ERR_PTR(-EINVAL);
 810	}
 811
 812	kref_get(&nvmem->refcnt);
 813
 814	return nvmem;
 815}
 816
 817static void __nvmem_device_put(struct nvmem_device *nvmem)
 818{
 819	put_device(&nvmem->dev);
 820	module_put(nvmem->owner);
 821	kref_put(&nvmem->refcnt, nvmem_device_release);
 822}
 823
 824#if IS_ENABLED(CONFIG_OF)
 825/**
 826 * of_nvmem_device_get() - Get nvmem device from a given id
 827 *
 828 * @np: Device tree node that uses the nvmem device.
 829 * @id: nvmem name from nvmem-names property.
 830 *
 831 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 832 * on success.
 833 */
 834struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
 835{
 836
 837	struct device_node *nvmem_np;
 
 838	int index = 0;
 839
 840	if (id)
 841		index = of_property_match_string(np, "nvmem-names", id);
 842
 843	nvmem_np = of_parse_phandle(np, "nvmem", index);
 844	if (!nvmem_np)
 845		return ERR_PTR(-ENOENT);
 846
 847	return __nvmem_device_get(nvmem_np, device_match_of_node);
 
 
 848}
 849EXPORT_SYMBOL_GPL(of_nvmem_device_get);
 850#endif
 851
 852/**
 853 * nvmem_device_get() - Get nvmem device from a given id
 854 *
 855 * @dev: Device that uses the nvmem device.
 856 * @dev_name: name of the requested nvmem device.
 857 *
 858 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 859 * on success.
 860 */
 861struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
 862{
 863	if (dev->of_node) { /* try dt first */
 864		struct nvmem_device *nvmem;
 865
 866		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
 867
 868		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
 869			return nvmem;
 870
 871	}
 872
 873	return __nvmem_device_get((void *)dev_name, device_match_name);
 874}
 875EXPORT_SYMBOL_GPL(nvmem_device_get);
 876
 877/**
 878 * nvmem_device_find() - Find nvmem device with matching function
 879 *
 880 * @data: Data to pass to match function
 881 * @match: Callback function to check device
 882 *
 883 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 884 * on success.
 885 */
 886struct nvmem_device *nvmem_device_find(void *data,
 887			int (*match)(struct device *dev, const void *data))
 888{
 889	return __nvmem_device_get(data, match);
 890}
 891EXPORT_SYMBOL_GPL(nvmem_device_find);
 892
 893static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
 894{
 895	struct nvmem_device **nvmem = res;
 896
 897	if (WARN_ON(!nvmem || !*nvmem))
 898		return 0;
 899
 900	return *nvmem == data;
 901}
 902
 903static void devm_nvmem_device_release(struct device *dev, void *res)
 904{
 905	nvmem_device_put(*(struct nvmem_device **)res);
 906}
 907
 908/**
 909 * devm_nvmem_device_put() - put alredy got nvmem device
 910 *
 911 * @dev: Device that uses the nvmem device.
 912 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
 913 * that needs to be released.
 914 */
 915void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
 916{
 917	int ret;
 918
 919	ret = devres_release(dev, devm_nvmem_device_release,
 920			     devm_nvmem_device_match, nvmem);
 921
 922	WARN_ON(ret);
 923}
 924EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
 925
 926/**
 927 * nvmem_device_put() - put alredy got nvmem device
 928 *
 929 * @nvmem: pointer to nvmem device that needs to be released.
 930 */
 931void nvmem_device_put(struct nvmem_device *nvmem)
 932{
 933	__nvmem_device_put(nvmem);
 934}
 935EXPORT_SYMBOL_GPL(nvmem_device_put);
 936
 937/**
 938 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
 939 *
 940 * @dev: Device that requests the nvmem device.
 941 * @id: name id for the requested nvmem device.
 942 *
 943 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
 944 * on success.  The nvmem_cell will be freed by the automatically once the
 945 * device is freed.
 946 */
 947struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
 948{
 949	struct nvmem_device **ptr, *nvmem;
 950
 951	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
 952	if (!ptr)
 953		return ERR_PTR(-ENOMEM);
 954
 955	nvmem = nvmem_device_get(dev, id);
 956	if (!IS_ERR(nvmem)) {
 957		*ptr = nvmem;
 958		devres_add(dev, ptr);
 959	} else {
 960		devres_free(ptr);
 961	}
 962
 963	return nvmem;
 964}
 965EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
 966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967static struct nvmem_cell *
 968nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
 969{
 
 970	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
 971	struct nvmem_cell_lookup *lookup;
 972	struct nvmem_device *nvmem;
 973	const char *dev_id;
 974
 975	if (!dev)
 976		return ERR_PTR(-EINVAL);
 977
 978	dev_id = dev_name(dev);
 979
 980	mutex_lock(&nvmem_lookup_mutex);
 981
 982	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
 983		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
 984		    (strcmp(lookup->con_id, con_id) == 0)) {
 985			/* This is the right entry. */
 986			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
 987						   device_match_name);
 988			if (IS_ERR(nvmem)) {
 989				/* Provider may not be registered yet. */
 990				cell = ERR_CAST(nvmem);
 991				break;
 992			}
 993
 994			cell = nvmem_find_cell_by_name(nvmem,
 995						       lookup->cell_name);
 996			if (!cell) {
 997				__nvmem_device_put(nvmem);
 998				cell = ERR_PTR(-ENOENT);
 
 
 
 
 999			}
1000			break;
1001		}
1002	}
1003
1004	mutex_unlock(&nvmem_lookup_mutex);
1005	return cell;
1006}
1007
1008#if IS_ENABLED(CONFIG_OF)
1009static struct nvmem_cell *
1010nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1011{
1012	struct nvmem_cell *iter, *cell = NULL;
1013
1014	mutex_lock(&nvmem_mutex);
1015	list_for_each_entry(iter, &nvmem->cells, node) {
1016		if (np == iter->np) {
1017			cell = iter;
1018			break;
1019		}
1020	}
1021	mutex_unlock(&nvmem_mutex);
1022
1023	return cell;
1024}
1025
1026/**
1027 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1028 *
1029 * @np: Device tree node that uses the nvmem cell.
1030 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1031 *      for the cell at index 0 (the lone cell with no accompanying
1032 *      nvmem-cell-names property).
1033 *
1034 * Return: Will be an ERR_PTR() on error or a valid pointer
1035 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1036 * nvmem_cell_put().
1037 */
1038struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1039{
1040	struct device_node *cell_np, *nvmem_np;
1041	struct nvmem_device *nvmem;
 
1042	struct nvmem_cell *cell;
1043	int index = 0;
1044
1045	/* if cell name exists, find index to the name */
1046	if (id)
1047		index = of_property_match_string(np, "nvmem-cell-names", id);
1048
1049	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1050	if (!cell_np)
1051		return ERR_PTR(-ENOENT);
1052
1053	nvmem_np = of_get_next_parent(cell_np);
1054	if (!nvmem_np)
 
1055		return ERR_PTR(-EINVAL);
 
1056
1057	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1058	of_node_put(nvmem_np);
1059	if (IS_ERR(nvmem))
 
1060		return ERR_CAST(nvmem);
 
1061
1062	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1063	if (!cell) {
 
1064		__nvmem_device_put(nvmem);
1065		return ERR_PTR(-ENOENT);
1066	}
1067
 
 
 
 
1068	return cell;
1069}
1070EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1071#endif
1072
1073/**
1074 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1075 *
1076 * @dev: Device that requests the nvmem cell.
1077 * @id: nvmem cell name to get (this corresponds with the name from the
1078 *      nvmem-cell-names property for DT systems and with the con_id from
1079 *      the lookup entry for non-DT systems).
1080 *
1081 * Return: Will be an ERR_PTR() on error or a valid pointer
1082 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1083 * nvmem_cell_put().
1084 */
1085struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1086{
1087	struct nvmem_cell *cell;
1088
1089	if (dev->of_node) { /* try dt first */
1090		cell = of_nvmem_cell_get(dev->of_node, id);
1091		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1092			return cell;
1093	}
1094
1095	/* NULL cell id only allowed for device tree; invalid otherwise */
1096	if (!id)
1097		return ERR_PTR(-EINVAL);
1098
1099	return nvmem_cell_get_from_lookup(dev, id);
1100}
1101EXPORT_SYMBOL_GPL(nvmem_cell_get);
1102
1103static void devm_nvmem_cell_release(struct device *dev, void *res)
1104{
1105	nvmem_cell_put(*(struct nvmem_cell **)res);
1106}
1107
1108/**
1109 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1110 *
1111 * @dev: Device that requests the nvmem cell.
1112 * @id: nvmem cell name id to get.
1113 *
1114 * Return: Will be an ERR_PTR() on error or a valid pointer
1115 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1116 * automatically once the device is freed.
1117 */
1118struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1119{
1120	struct nvmem_cell **ptr, *cell;
1121
1122	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1123	if (!ptr)
1124		return ERR_PTR(-ENOMEM);
1125
1126	cell = nvmem_cell_get(dev, id);
1127	if (!IS_ERR(cell)) {
1128		*ptr = cell;
1129		devres_add(dev, ptr);
1130	} else {
1131		devres_free(ptr);
1132	}
1133
1134	return cell;
1135}
1136EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1137
1138static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1139{
1140	struct nvmem_cell **c = res;
1141
1142	if (WARN_ON(!c || !*c))
1143		return 0;
1144
1145	return *c == data;
1146}
1147
1148/**
1149 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1150 * from devm_nvmem_cell_get.
1151 *
1152 * @dev: Device that requests the nvmem cell.
1153 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1154 */
1155void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1156{
1157	int ret;
1158
1159	ret = devres_release(dev, devm_nvmem_cell_release,
1160				devm_nvmem_cell_match, cell);
1161
1162	WARN_ON(ret);
1163}
1164EXPORT_SYMBOL(devm_nvmem_cell_put);
1165
1166/**
1167 * nvmem_cell_put() - Release previously allocated nvmem cell.
1168 *
1169 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1170 */
1171void nvmem_cell_put(struct nvmem_cell *cell)
1172{
1173	struct nvmem_device *nvmem = cell->nvmem;
 
 
 
1174
 
1175	__nvmem_device_put(nvmem);
1176}
1177EXPORT_SYMBOL_GPL(nvmem_cell_put);
1178
1179static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1180{
1181	u8 *p, *b;
1182	int i, extra, bit_offset = cell->bit_offset;
1183
1184	p = b = buf;
1185	if (bit_offset) {
1186		/* First shift */
1187		*b++ >>= bit_offset;
1188
1189		/* setup rest of the bytes if any */
1190		for (i = 1; i < cell->bytes; i++) {
1191			/* Get bits from next byte and shift them towards msb */
1192			*p |= *b << (BITS_PER_BYTE - bit_offset);
1193
1194			p = b;
1195			*b++ >>= bit_offset;
1196		}
1197	} else {
1198		/* point to the msb */
1199		p += cell->bytes - 1;
1200	}
1201
1202	/* result fits in less bytes */
1203	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1204	while (--extra >= 0)
1205		*p-- = 0;
1206
1207	/* clear msb bits if any leftover in the last byte */
1208	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
 
1209}
1210
1211static int __nvmem_cell_read(struct nvmem_device *nvmem,
1212		      struct nvmem_cell *cell,
1213		      void *buf, size_t *len)
1214{
1215	int rc;
1216
1217	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1218
1219	if (rc)
1220		return rc;
1221
1222	/* shift bits in-place */
1223	if (cell->bit_offset || cell->nbits)
1224		nvmem_shift_read_buffer_in_place(cell, buf);
1225
 
 
 
 
 
 
 
1226	if (len)
1227		*len = cell->bytes;
1228
1229	return 0;
1230}
1231
1232/**
1233 * nvmem_cell_read() - Read a given nvmem cell
1234 *
1235 * @cell: nvmem cell to be read.
1236 * @len: pointer to length of cell which will be populated on successful read;
1237 *	 can be NULL.
1238 *
1239 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1240 * buffer should be freed by the consumer with a kfree().
1241 */
1242void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1243{
1244	struct nvmem_device *nvmem = cell->nvmem;
1245	u8 *buf;
1246	int rc;
1247
1248	if (!nvmem)
1249		return ERR_PTR(-EINVAL);
1250
1251	buf = kzalloc(cell->bytes, GFP_KERNEL);
1252	if (!buf)
1253		return ERR_PTR(-ENOMEM);
1254
1255	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1256	if (rc) {
1257		kfree(buf);
1258		return ERR_PTR(rc);
1259	}
1260
1261	return buf;
1262}
1263EXPORT_SYMBOL_GPL(nvmem_cell_read);
1264
1265static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1266					     u8 *_buf, int len)
1267{
1268	struct nvmem_device *nvmem = cell->nvmem;
1269	int i, rc, nbits, bit_offset = cell->bit_offset;
1270	u8 v, *p, *buf, *b, pbyte, pbits;
1271
1272	nbits = cell->nbits;
1273	buf = kzalloc(cell->bytes, GFP_KERNEL);
1274	if (!buf)
1275		return ERR_PTR(-ENOMEM);
1276
1277	memcpy(buf, _buf, len);
1278	p = b = buf;
1279
1280	if (bit_offset) {
1281		pbyte = *b;
1282		*b <<= bit_offset;
1283
1284		/* setup the first byte with lsb bits from nvmem */
1285		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1286		if (rc)
1287			goto err;
1288		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1289
1290		/* setup rest of the byte if any */
1291		for (i = 1; i < cell->bytes; i++) {
1292			/* Get last byte bits and shift them towards lsb */
1293			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1294			pbyte = *b;
1295			p = b;
1296			*b <<= bit_offset;
1297			*b++ |= pbits;
1298		}
1299	}
1300
1301	/* if it's not end on byte boundary */
1302	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1303		/* setup the last byte with msb bits from nvmem */
1304		rc = nvmem_reg_read(nvmem,
1305				    cell->offset + cell->bytes - 1, &v, 1);
1306		if (rc)
1307			goto err;
1308		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1309
1310	}
1311
1312	return buf;
1313err:
1314	kfree(buf);
1315	return ERR_PTR(rc);
1316}
1317
1318/**
1319 * nvmem_cell_write() - Write to a given nvmem cell
1320 *
1321 * @cell: nvmem cell to be written.
1322 * @buf: Buffer to be written.
1323 * @len: length of buffer to be written to nvmem cell.
1324 *
1325 * Return: length of bytes written or negative on failure.
1326 */
1327int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1328{
1329	struct nvmem_device *nvmem = cell->nvmem;
1330	int rc;
1331
1332	if (!nvmem || nvmem->read_only ||
1333	    (cell->bit_offset == 0 && len != cell->bytes))
1334		return -EINVAL;
1335
1336	if (cell->bit_offset || cell->nbits) {
1337		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1338		if (IS_ERR(buf))
1339			return PTR_ERR(buf);
1340	}
1341
1342	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1343
1344	/* free the tmp buffer */
1345	if (cell->bit_offset || cell->nbits)
1346		kfree(buf);
1347
1348	if (rc)
1349		return rc;
1350
1351	return len;
1352}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353EXPORT_SYMBOL_GPL(nvmem_cell_write);
1354
1355static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1356				  void *val, size_t count)
1357{
1358	struct nvmem_cell *cell;
1359	void *buf;
1360	size_t len;
1361
1362	cell = nvmem_cell_get(dev, cell_id);
1363	if (IS_ERR(cell))
1364		return PTR_ERR(cell);
1365
1366	buf = nvmem_cell_read(cell, &len);
1367	if (IS_ERR(buf)) {
1368		nvmem_cell_put(cell);
1369		return PTR_ERR(buf);
1370	}
1371	if (len != count) {
1372		kfree(buf);
1373		nvmem_cell_put(cell);
1374		return -EINVAL;
1375	}
1376	memcpy(val, buf, count);
1377	kfree(buf);
1378	nvmem_cell_put(cell);
1379
1380	return 0;
1381}
1382
1383/**
1384 * nvmem_cell_read_u8() - Read a cell value as a u8
1385 *
1386 * @dev: Device that requests the nvmem cell.
1387 * @cell_id: Name of nvmem cell to read.
1388 * @val: pointer to output value.
1389 *
1390 * Return: 0 on success or negative errno.
1391 */
1392int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1393{
1394	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1395}
1396EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1397
1398/**
1399 * nvmem_cell_read_u16() - Read a cell value as a u16
1400 *
1401 * @dev: Device that requests the nvmem cell.
1402 * @cell_id: Name of nvmem cell to read.
1403 * @val: pointer to output value.
1404 *
1405 * Return: 0 on success or negative errno.
1406 */
1407int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1408{
1409	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1410}
1411EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1412
1413/**
1414 * nvmem_cell_read_u32() - Read a cell value as a u32
1415 *
1416 * @dev: Device that requests the nvmem cell.
1417 * @cell_id: Name of nvmem cell to read.
1418 * @val: pointer to output value.
1419 *
1420 * Return: 0 on success or negative errno.
1421 */
1422int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1423{
1424	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1425}
1426EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1427
1428/**
1429 * nvmem_cell_read_u64() - Read a cell value as a u64
1430 *
1431 * @dev: Device that requests the nvmem cell.
1432 * @cell_id: Name of nvmem cell to read.
1433 * @val: pointer to output value.
1434 *
1435 * Return: 0 on success or negative errno.
1436 */
1437int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1438{
1439	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1440}
1441EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443/**
1444 * nvmem_device_cell_read() - Read a given nvmem device and cell
1445 *
1446 * @nvmem: nvmem device to read from.
1447 * @info: nvmem cell info to be read.
1448 * @buf: buffer pointer which will be populated on successful read.
1449 *
1450 * Return: length of successful bytes read on success and negative
1451 * error code on error.
1452 */
1453ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1454			   struct nvmem_cell_info *info, void *buf)
1455{
1456	struct nvmem_cell cell;
1457	int rc;
1458	ssize_t len;
1459
1460	if (!nvmem)
1461		return -EINVAL;
1462
1463	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1464	if (rc)
1465		return rc;
1466
1467	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1468	if (rc)
1469		return rc;
1470
1471	return len;
1472}
1473EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1474
1475/**
1476 * nvmem_device_cell_write() - Write cell to a given nvmem device
1477 *
1478 * @nvmem: nvmem device to be written to.
1479 * @info: nvmem cell info to be written.
1480 * @buf: buffer to be written to cell.
1481 *
1482 * Return: length of bytes written or negative error code on failure.
1483 */
1484int nvmem_device_cell_write(struct nvmem_device *nvmem,
1485			    struct nvmem_cell_info *info, void *buf)
1486{
1487	struct nvmem_cell cell;
1488	int rc;
1489
1490	if (!nvmem)
1491		return -EINVAL;
1492
1493	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1494	if (rc)
1495		return rc;
1496
1497	return nvmem_cell_write(&cell, buf, cell.bytes);
1498}
1499EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1500
1501/**
1502 * nvmem_device_read() - Read from a given nvmem device
1503 *
1504 * @nvmem: nvmem device to read from.
1505 * @offset: offset in nvmem device.
1506 * @bytes: number of bytes to read.
1507 * @buf: buffer pointer which will be populated on successful read.
1508 *
1509 * Return: length of successful bytes read on success and negative
1510 * error code on error.
1511 */
1512int nvmem_device_read(struct nvmem_device *nvmem,
1513		      unsigned int offset,
1514		      size_t bytes, void *buf)
1515{
1516	int rc;
1517
1518	if (!nvmem)
1519		return -EINVAL;
1520
1521	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1522
1523	if (rc)
1524		return rc;
1525
1526	return bytes;
1527}
1528EXPORT_SYMBOL_GPL(nvmem_device_read);
1529
1530/**
1531 * nvmem_device_write() - Write cell to a given nvmem device
1532 *
1533 * @nvmem: nvmem device to be written to.
1534 * @offset: offset in nvmem device.
1535 * @bytes: number of bytes to write.
1536 * @buf: buffer to be written.
1537 *
1538 * Return: length of bytes written or negative error code on failure.
1539 */
1540int nvmem_device_write(struct nvmem_device *nvmem,
1541		       unsigned int offset,
1542		       size_t bytes, void *buf)
1543{
1544	int rc;
1545
1546	if (!nvmem)
1547		return -EINVAL;
1548
1549	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1550
1551	if (rc)
1552		return rc;
1553
1554
1555	return bytes;
1556}
1557EXPORT_SYMBOL_GPL(nvmem_device_write);
1558
1559/**
1560 * nvmem_add_cell_table() - register a table of cell info entries
1561 *
1562 * @table: table of cell info entries
1563 */
1564void nvmem_add_cell_table(struct nvmem_cell_table *table)
1565{
1566	mutex_lock(&nvmem_cell_mutex);
1567	list_add_tail(&table->node, &nvmem_cell_tables);
1568	mutex_unlock(&nvmem_cell_mutex);
1569}
1570EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1571
1572/**
1573 * nvmem_del_cell_table() - remove a previously registered cell info table
1574 *
1575 * @table: table of cell info entries
1576 */
1577void nvmem_del_cell_table(struct nvmem_cell_table *table)
1578{
1579	mutex_lock(&nvmem_cell_mutex);
1580	list_del(&table->node);
1581	mutex_unlock(&nvmem_cell_mutex);
1582}
1583EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1584
1585/**
1586 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1587 *
1588 * @entries: array of cell lookup entries
1589 * @nentries: number of cell lookup entries in the array
1590 */
1591void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1592{
1593	int i;
1594
1595	mutex_lock(&nvmem_lookup_mutex);
1596	for (i = 0; i < nentries; i++)
1597		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1598	mutex_unlock(&nvmem_lookup_mutex);
1599}
1600EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1601
1602/**
1603 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1604 *                            entries
1605 *
1606 * @entries: array of cell lookup entries
1607 * @nentries: number of cell lookup entries in the array
1608 */
1609void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1610{
1611	int i;
1612
1613	mutex_lock(&nvmem_lookup_mutex);
1614	for (i = 0; i < nentries; i++)
1615		list_del(&entries[i].node);
1616	mutex_unlock(&nvmem_lookup_mutex);
1617}
1618EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1619
1620/**
1621 * nvmem_dev_name() - Get the name of a given nvmem device.
1622 *
1623 * @nvmem: nvmem device.
1624 *
1625 * Return: name of the nvmem device.
1626 */
1627const char *nvmem_dev_name(struct nvmem_device *nvmem)
1628{
1629	return dev_name(&nvmem->dev);
1630}
1631EXPORT_SYMBOL_GPL(nvmem_dev_name);
1632
1633static int __init nvmem_init(void)
1634{
1635	return bus_register(&nvmem_bus_type);
1636}
1637
1638static void __exit nvmem_exit(void)
1639{
1640	bus_unregister(&nvmem_bus_type);
1641}
1642
1643subsys_initcall(nvmem_init);
1644module_exit(nvmem_exit);
1645
1646MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1647MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1648MODULE_DESCRIPTION("nvmem Driver Core");
1649MODULE_LICENSE("GPL v2");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23	struct module		*owner;
  24	struct device		dev;
  25	int			stride;
  26	int			word_size;
  27	int			id;
  28	struct kref		refcnt;
  29	size_t			size;
  30	bool			read_only;
  31	bool			root_only;
  32	int			flags;
  33	enum nvmem_type		type;
  34	struct bin_attribute	eeprom;
  35	struct device		*base_dev;
  36	struct list_head	cells;
  37	const struct nvmem_keepout *keepout;
  38	unsigned int		nkeepout;
  39	nvmem_reg_read_t	reg_read;
  40	nvmem_reg_write_t	reg_write;
  41	nvmem_cell_post_process_t cell_post_process;
  42	struct gpio_desc	*wp_gpio;
  43	void *priv;
  44};
  45
  46#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  47
  48#define FLAG_COMPAT		BIT(0)
  49struct nvmem_cell_entry {
 
  50	const char		*name;
  51	int			offset;
  52	int			bytes;
  53	int			bit_offset;
  54	int			nbits;
  55	struct device_node	*np;
  56	struct nvmem_device	*nvmem;
  57	struct list_head	node;
  58};
  59
  60struct nvmem_cell {
  61	struct nvmem_cell_entry *entry;
  62	const char		*id;
  63};
  64
  65static DEFINE_MUTEX(nvmem_mutex);
  66static DEFINE_IDA(nvmem_ida);
  67
  68static DEFINE_MUTEX(nvmem_cell_mutex);
  69static LIST_HEAD(nvmem_cell_tables);
  70
  71static DEFINE_MUTEX(nvmem_lookup_mutex);
  72static LIST_HEAD(nvmem_lookup_list);
  73
  74static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  75
  76static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  77			    void *val, size_t bytes)
  78{
  79	if (nvmem->reg_read)
  80		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  81
  82	return -EINVAL;
  83}
  84
  85static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  86			     void *val, size_t bytes)
  87{
  88	int ret;
  89
  90	if (nvmem->reg_write) {
  91		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  92		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  93		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  94		return ret;
  95	}
  96
  97	return -EINVAL;
  98}
  99
 100static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
 101				      unsigned int offset, void *val,
 102				      size_t bytes, int write)
 103{
 104
 105	unsigned int end = offset + bytes;
 106	unsigned int kend, ksize;
 107	const struct nvmem_keepout *keepout = nvmem->keepout;
 108	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 109	int rc;
 110
 111	/*
 112	 * Skip all keepouts before the range being accessed.
 113	 * Keepouts are sorted.
 114	 */
 115	while ((keepout < keepoutend) && (keepout->end <= offset))
 116		keepout++;
 117
 118	while ((offset < end) && (keepout < keepoutend)) {
 119		/* Access the valid portion before the keepout. */
 120		if (offset < keepout->start) {
 121			kend = min(end, keepout->start);
 122			ksize = kend - offset;
 123			if (write)
 124				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 125			else
 126				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 127
 128			if (rc)
 129				return rc;
 130
 131			offset += ksize;
 132			val += ksize;
 133		}
 134
 135		/*
 136		 * Now we're aligned to the start of this keepout zone. Go
 137		 * through it.
 138		 */
 139		kend = min(end, keepout->end);
 140		ksize = kend - offset;
 141		if (!write)
 142			memset(val, keepout->value, ksize);
 143
 144		val += ksize;
 145		offset += ksize;
 146		keepout++;
 147	}
 148
 149	/*
 150	 * If we ran out of keepouts but there's still stuff to do, send it
 151	 * down directly
 152	 */
 153	if (offset < end) {
 154		ksize = end - offset;
 155		if (write)
 156			return __nvmem_reg_write(nvmem, offset, val, ksize);
 157		else
 158			return __nvmem_reg_read(nvmem, offset, val, ksize);
 159	}
 160
 161	return 0;
 162}
 163
 164static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 165			  void *val, size_t bytes)
 166{
 167	if (!nvmem->nkeepout)
 168		return __nvmem_reg_read(nvmem, offset, val, bytes);
 169
 170	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 171}
 172
 173static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 174			   void *val, size_t bytes)
 175{
 176	if (!nvmem->nkeepout)
 177		return __nvmem_reg_write(nvmem, offset, val, bytes);
 178
 179	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 180}
 181
 182#ifdef CONFIG_NVMEM_SYSFS
 183static const char * const nvmem_type_str[] = {
 184	[NVMEM_TYPE_UNKNOWN] = "Unknown",
 185	[NVMEM_TYPE_EEPROM] = "EEPROM",
 186	[NVMEM_TYPE_OTP] = "OTP",
 187	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 188	[NVMEM_TYPE_FRAM] = "FRAM",
 189};
 190
 191#ifdef CONFIG_DEBUG_LOCK_ALLOC
 192static struct lock_class_key eeprom_lock_key;
 193#endif
 194
 195static ssize_t type_show(struct device *dev,
 196			 struct device_attribute *attr, char *buf)
 197{
 198	struct nvmem_device *nvmem = to_nvmem_device(dev);
 199
 200	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 201}
 202
 203static DEVICE_ATTR_RO(type);
 204
 205static struct attribute *nvmem_attrs[] = {
 206	&dev_attr_type.attr,
 207	NULL,
 208};
 209
 210static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 211				   struct bin_attribute *attr, char *buf,
 212				   loff_t pos, size_t count)
 213{
 214	struct device *dev;
 215	struct nvmem_device *nvmem;
 216	int rc;
 217
 218	if (attr->private)
 219		dev = attr->private;
 220	else
 221		dev = kobj_to_dev(kobj);
 222	nvmem = to_nvmem_device(dev);
 223
 224	/* Stop the user from reading */
 225	if (pos >= nvmem->size)
 226		return 0;
 227
 228	if (!IS_ALIGNED(pos, nvmem->stride))
 229		return -EINVAL;
 230
 231	if (count < nvmem->word_size)
 232		return -EINVAL;
 233
 234	if (pos + count > nvmem->size)
 235		count = nvmem->size - pos;
 236
 237	count = round_down(count, nvmem->word_size);
 238
 239	if (!nvmem->reg_read)
 240		return -EPERM;
 241
 242	rc = nvmem_reg_read(nvmem, pos, buf, count);
 243
 244	if (rc)
 245		return rc;
 246
 247	return count;
 248}
 249
 250static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 251				    struct bin_attribute *attr, char *buf,
 252				    loff_t pos, size_t count)
 253{
 254	struct device *dev;
 255	struct nvmem_device *nvmem;
 256	int rc;
 257
 258	if (attr->private)
 259		dev = attr->private;
 260	else
 261		dev = kobj_to_dev(kobj);
 262	nvmem = to_nvmem_device(dev);
 263
 264	/* Stop the user from writing */
 265	if (pos >= nvmem->size)
 266		return -EFBIG;
 267
 268	if (!IS_ALIGNED(pos, nvmem->stride))
 269		return -EINVAL;
 270
 271	if (count < nvmem->word_size)
 272		return -EINVAL;
 273
 274	if (pos + count > nvmem->size)
 275		count = nvmem->size - pos;
 276
 277	count = round_down(count, nvmem->word_size);
 278
 279	if (!nvmem->reg_write)
 280		return -EPERM;
 281
 282	rc = nvmem_reg_write(nvmem, pos, buf, count);
 283
 284	if (rc)
 285		return rc;
 286
 287	return count;
 288}
 289
 290static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 291{
 292	umode_t mode = 0400;
 293
 294	if (!nvmem->root_only)
 295		mode |= 0044;
 296
 297	if (!nvmem->read_only)
 298		mode |= 0200;
 299
 300	if (!nvmem->reg_write)
 301		mode &= ~0200;
 302
 303	if (!nvmem->reg_read)
 304		mode &= ~0444;
 305
 306	return mode;
 307}
 308
 309static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 310					 struct bin_attribute *attr, int i)
 311{
 312	struct device *dev = kobj_to_dev(kobj);
 313	struct nvmem_device *nvmem = to_nvmem_device(dev);
 314
 315	attr->size = nvmem->size;
 316
 317	return nvmem_bin_attr_get_umode(nvmem);
 318}
 319
 320/* default read/write permissions */
 321static struct bin_attribute bin_attr_rw_nvmem = {
 322	.attr	= {
 323		.name	= "nvmem",
 324		.mode	= 0644,
 325	},
 326	.read	= bin_attr_nvmem_read,
 327	.write	= bin_attr_nvmem_write,
 328};
 329
 330static struct bin_attribute *nvmem_bin_attributes[] = {
 331	&bin_attr_rw_nvmem,
 332	NULL,
 333};
 334
 335static const struct attribute_group nvmem_bin_group = {
 336	.bin_attrs	= nvmem_bin_attributes,
 337	.attrs		= nvmem_attrs,
 338	.is_bin_visible = nvmem_bin_attr_is_visible,
 339};
 340
 341static const struct attribute_group *nvmem_dev_groups[] = {
 342	&nvmem_bin_group,
 343	NULL,
 344};
 345
 346static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 347	.attr	= {
 348		.name	= "eeprom",
 349	},
 350	.read	= bin_attr_nvmem_read,
 351	.write	= bin_attr_nvmem_write,
 352};
 353
 354/*
 355 * nvmem_setup_compat() - Create an additional binary entry in
 356 * drivers sys directory, to be backwards compatible with the older
 357 * drivers/misc/eeprom drivers.
 358 */
 359static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 360				    const struct nvmem_config *config)
 361{
 362	int rval;
 363
 364	if (!config->compat)
 365		return 0;
 366
 367	if (!config->base_dev)
 368		return -EINVAL;
 369
 370	if (config->type == NVMEM_TYPE_FRAM)
 371		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 372
 373	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 374	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 375	nvmem->eeprom.size = nvmem->size;
 376#ifdef CONFIG_DEBUG_LOCK_ALLOC
 377	nvmem->eeprom.attr.key = &eeprom_lock_key;
 378#endif
 379	nvmem->eeprom.private = &nvmem->dev;
 380	nvmem->base_dev = config->base_dev;
 381
 382	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 383	if (rval) {
 384		dev_err(&nvmem->dev,
 385			"Failed to create eeprom binary file %d\n", rval);
 386		return rval;
 387	}
 388
 389	nvmem->flags |= FLAG_COMPAT;
 390
 391	return 0;
 392}
 393
 394static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 395			      const struct nvmem_config *config)
 396{
 397	if (config->compat)
 398		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 399}
 400
 401#else /* CONFIG_NVMEM_SYSFS */
 402
 403static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 404				    const struct nvmem_config *config)
 405{
 406	return -ENOSYS;
 407}
 408static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 409				      const struct nvmem_config *config)
 410{
 411}
 412
 413#endif /* CONFIG_NVMEM_SYSFS */
 414
 415static void nvmem_release(struct device *dev)
 416{
 417	struct nvmem_device *nvmem = to_nvmem_device(dev);
 418
 419	ida_free(&nvmem_ida, nvmem->id);
 420	gpiod_put(nvmem->wp_gpio);
 421	kfree(nvmem);
 422}
 423
 424static const struct device_type nvmem_provider_type = {
 425	.release	= nvmem_release,
 426};
 427
 428static struct bus_type nvmem_bus_type = {
 429	.name		= "nvmem",
 430};
 431
 432static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
 433{
 434	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 435	mutex_lock(&nvmem_mutex);
 436	list_del(&cell->node);
 437	mutex_unlock(&nvmem_mutex);
 438	of_node_put(cell->np);
 439	kfree_const(cell->name);
 440	kfree(cell);
 441}
 442
 443static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 444{
 445	struct nvmem_cell_entry *cell, *p;
 446
 447	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 448		nvmem_cell_entry_drop(cell);
 449}
 450
 451static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
 452{
 453	mutex_lock(&nvmem_mutex);
 454	list_add_tail(&cell->node, &cell->nvmem->cells);
 455	mutex_unlock(&nvmem_mutex);
 456	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 457}
 458
 459static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
 460						     const struct nvmem_cell_info *info,
 461						     struct nvmem_cell_entry *cell)
 462{
 463	cell->nvmem = nvmem;
 464	cell->offset = info->offset;
 465	cell->bytes = info->bytes;
 466	cell->name = info->name;
 
 
 467
 468	cell->bit_offset = info->bit_offset;
 469	cell->nbits = info->nbits;
 470	cell->np = info->np;
 471
 472	if (cell->nbits)
 473		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 474					   BITS_PER_BYTE);
 475
 476	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 477		dev_err(&nvmem->dev,
 478			"cell %s unaligned to nvmem stride %d\n",
 479			cell->name ?: "<unknown>", nvmem->stride);
 480		return -EINVAL;
 481	}
 482
 483	return 0;
 484}
 485
 486static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
 487					       const struct nvmem_cell_info *info,
 488					       struct nvmem_cell_entry *cell)
 489{
 490	int err;
 491
 492	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
 493	if (err)
 494		return err;
 495
 496	cell->name = kstrdup_const(info->name, GFP_KERNEL);
 497	if (!cell->name)
 498		return -ENOMEM;
 499
 500	return 0;
 501}
 502
 503/**
 504 * nvmem_add_cells() - Add cell information to an nvmem device
 505 *
 506 * @nvmem: nvmem device to add cells to.
 507 * @info: nvmem cell info to add to the device
 508 * @ncells: number of cells in info
 509 *
 510 * Return: 0 or negative error code on failure.
 511 */
 512static int nvmem_add_cells(struct nvmem_device *nvmem,
 513		    const struct nvmem_cell_info *info,
 514		    int ncells)
 515{
 516	struct nvmem_cell_entry **cells;
 517	int i, rval;
 518
 519	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 520	if (!cells)
 521		return -ENOMEM;
 522
 523	for (i = 0; i < ncells; i++) {
 524		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 525		if (!cells[i]) {
 526			rval = -ENOMEM;
 527			goto err;
 528		}
 529
 530		rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
 531		if (rval) {
 532			kfree(cells[i]);
 533			goto err;
 534		}
 535
 536		nvmem_cell_entry_add(cells[i]);
 537	}
 538
 539	/* remove tmp array */
 540	kfree(cells);
 541
 542	return 0;
 543err:
 544	while (i--)
 545		nvmem_cell_entry_drop(cells[i]);
 546
 547	kfree(cells);
 548
 549	return rval;
 550}
 551
 552/**
 553 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 554 *
 555 * @nb: notifier block to be called on nvmem events.
 556 *
 557 * Return: 0 on success, negative error number on failure.
 558 */
 559int nvmem_register_notifier(struct notifier_block *nb)
 560{
 561	return blocking_notifier_chain_register(&nvmem_notifier, nb);
 562}
 563EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 564
 565/**
 566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 567 *
 568 * @nb: notifier block to be unregistered.
 569 *
 570 * Return: 0 on success, negative error number on failure.
 571 */
 572int nvmem_unregister_notifier(struct notifier_block *nb)
 573{
 574	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 575}
 576EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 577
 578static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 579{
 580	const struct nvmem_cell_info *info;
 581	struct nvmem_cell_table *table;
 582	struct nvmem_cell_entry *cell;
 583	int rval = 0, i;
 584
 585	mutex_lock(&nvmem_cell_mutex);
 586	list_for_each_entry(table, &nvmem_cell_tables, node) {
 587		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 588			for (i = 0; i < table->ncells; i++) {
 589				info = &table->cells[i];
 590
 591				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 592				if (!cell) {
 593					rval = -ENOMEM;
 594					goto out;
 595				}
 596
 597				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
 
 
 598				if (rval) {
 599					kfree(cell);
 600					goto out;
 601				}
 602
 603				nvmem_cell_entry_add(cell);
 604			}
 605		}
 606	}
 607
 608out:
 609	mutex_unlock(&nvmem_cell_mutex);
 610	return rval;
 611}
 612
 613static struct nvmem_cell_entry *
 614nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
 615{
 616	struct nvmem_cell_entry *iter, *cell = NULL;
 617
 618	mutex_lock(&nvmem_mutex);
 619	list_for_each_entry(iter, &nvmem->cells, node) {
 620		if (strcmp(cell_id, iter->name) == 0) {
 621			cell = iter;
 622			break;
 623		}
 624	}
 625	mutex_unlock(&nvmem_mutex);
 626
 627	return cell;
 628}
 629
 630static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 631{
 632	unsigned int cur = 0;
 633	const struct nvmem_keepout *keepout = nvmem->keepout;
 634	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 635
 636	while (keepout < keepoutend) {
 637		/* Ensure keepouts are sorted and don't overlap. */
 638		if (keepout->start < cur) {
 639			dev_err(&nvmem->dev,
 640				"Keepout regions aren't sorted or overlap.\n");
 641
 642			return -ERANGE;
 643		}
 644
 645		if (keepout->end < keepout->start) {
 646			dev_err(&nvmem->dev,
 647				"Invalid keepout region.\n");
 648
 649			return -EINVAL;
 650		}
 651
 652		/*
 653		 * Validate keepouts (and holes between) don't violate
 654		 * word_size constraints.
 655		 */
 656		if ((keepout->end - keepout->start < nvmem->word_size) ||
 657		    ((keepout->start != cur) &&
 658		     (keepout->start - cur < nvmem->word_size))) {
 659
 660			dev_err(&nvmem->dev,
 661				"Keepout regions violate word_size constraints.\n");
 662
 663			return -ERANGE;
 664		}
 665
 666		/* Validate keepouts don't violate stride (alignment). */
 667		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 668		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 669
 670			dev_err(&nvmem->dev,
 671				"Keepout regions violate stride.\n");
 672
 673			return -EINVAL;
 674		}
 675
 676		cur = keepout->end;
 677		keepout++;
 678	}
 679
 680	return 0;
 681}
 682
 683static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 684{
 685	struct device_node *parent, *child;
 686	struct device *dev = &nvmem->dev;
 687	struct nvmem_cell_entry *cell;
 688	const __be32 *addr;
 689	int len;
 690
 691	parent = dev->of_node;
 692
 693	for_each_child_of_node(parent, child) {
 694		addr = of_get_property(child, "reg", &len);
 695		if (!addr)
 696			continue;
 697		if (len < 2 * sizeof(u32)) {
 698			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 699			of_node_put(child);
 700			return -EINVAL;
 701		}
 702
 703		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 704		if (!cell) {
 705			of_node_put(child);
 706			return -ENOMEM;
 707		}
 708
 709		cell->nvmem = nvmem;
 
 710		cell->offset = be32_to_cpup(addr++);
 711		cell->bytes = be32_to_cpup(addr);
 712		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 713
 714		addr = of_get_property(child, "bits", &len);
 715		if (addr && len == (2 * sizeof(u32))) {
 716			cell->bit_offset = be32_to_cpup(addr++);
 717			cell->nbits = be32_to_cpup(addr);
 718		}
 719
 720		if (cell->nbits)
 721			cell->bytes = DIV_ROUND_UP(
 722					cell->nbits + cell->bit_offset,
 723					BITS_PER_BYTE);
 724
 725		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 726			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 727				cell->name, nvmem->stride);
 728			/* Cells already added will be freed later. */
 729			kfree_const(cell->name);
 730			kfree(cell);
 731			of_node_put(child);
 732			return -EINVAL;
 733		}
 734
 735		cell->np = of_node_get(child);
 736		nvmem_cell_entry_add(cell);
 737	}
 738
 739	return 0;
 740}
 741
 742/**
 743 * nvmem_register() - Register a nvmem device for given nvmem_config.
 744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 745 *
 746 * @config: nvmem device configuration with which nvmem device is created.
 747 *
 748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 749 * on success.
 750 */
 751
 752struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 753{
 754	struct nvmem_device *nvmem;
 755	int rval;
 756
 757	if (!config->dev)
 758		return ERR_PTR(-EINVAL);
 759
 760	if (!config->reg_read && !config->reg_write)
 761		return ERR_PTR(-EINVAL);
 762
 763	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 764	if (!nvmem)
 765		return ERR_PTR(-ENOMEM);
 766
 767	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
 768	if (rval < 0) {
 769		kfree(nvmem);
 770		return ERR_PTR(rval);
 771	}
 772
 773	nvmem->id = rval;
 774
 775	nvmem->dev.type = &nvmem_provider_type;
 776	nvmem->dev.bus = &nvmem_bus_type;
 777	nvmem->dev.parent = config->dev;
 778
 779	device_initialize(&nvmem->dev);
 780
 781	if (!config->ignore_wp)
 782		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 783						    GPIOD_OUT_HIGH);
 784	if (IS_ERR(nvmem->wp_gpio)) {
 
 785		rval = PTR_ERR(nvmem->wp_gpio);
 786		nvmem->wp_gpio = NULL;
 787		goto err_put_device;
 788	}
 789
 790	kref_init(&nvmem->refcnt);
 791	INIT_LIST_HEAD(&nvmem->cells);
 792
 
 793	nvmem->owner = config->owner;
 794	if (!nvmem->owner && config->dev->driver)
 795		nvmem->owner = config->dev->driver->owner;
 796	nvmem->stride = config->stride ?: 1;
 797	nvmem->word_size = config->word_size ?: 1;
 798	nvmem->size = config->size;
 
 
 
 799	nvmem->root_only = config->root_only;
 800	nvmem->priv = config->priv;
 801	nvmem->type = config->type;
 802	nvmem->reg_read = config->reg_read;
 803	nvmem->reg_write = config->reg_write;
 804	nvmem->cell_post_process = config->cell_post_process;
 805	nvmem->keepout = config->keepout;
 806	nvmem->nkeepout = config->nkeepout;
 807	if (config->of_node)
 808		nvmem->dev.of_node = config->of_node;
 809	else if (!config->no_of_node)
 810		nvmem->dev.of_node = config->dev->of_node;
 811
 812	switch (config->id) {
 813	case NVMEM_DEVID_NONE:
 814		rval = dev_set_name(&nvmem->dev, "%s", config->name);
 815		break;
 816	case NVMEM_DEVID_AUTO:
 817		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 818		break;
 819	default:
 820		rval = dev_set_name(&nvmem->dev, "%s%d",
 821			     config->name ? : "nvmem",
 822			     config->name ? config->id : nvmem->id);
 823		break;
 824	}
 825
 826	if (rval)
 827		goto err_put_device;
 828
 829	nvmem->read_only = device_property_present(config->dev, "read-only") ||
 830			   config->read_only || !nvmem->reg_write;
 831
 832#ifdef CONFIG_NVMEM_SYSFS
 833	nvmem->dev.groups = nvmem_dev_groups;
 834#endif
 835
 836	if (nvmem->nkeepout) {
 837		rval = nvmem_validate_keepouts(nvmem);
 838		if (rval)
 839			goto err_put_device;
 840	}
 841
 842	if (config->compat) {
 843		rval = nvmem_sysfs_setup_compat(nvmem, config);
 844		if (rval)
 845			goto err_put_device;
 846	}
 847
 848	if (config->cells) {
 849		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 850		if (rval)
 851			goto err_remove_cells;
 852	}
 853
 854	rval = nvmem_add_cells_from_table(nvmem);
 855	if (rval)
 856		goto err_remove_cells;
 857
 858	rval = nvmem_add_cells_from_of(nvmem);
 859	if (rval)
 860		goto err_remove_cells;
 861
 862	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 863
 864	rval = device_add(&nvmem->dev);
 865	if (rval)
 866		goto err_remove_cells;
 867
 868	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 869
 870	return nvmem;
 871
 872err_remove_cells:
 873	nvmem_device_remove_all_cells(nvmem);
 
 874	if (config->compat)
 875		nvmem_sysfs_remove_compat(nvmem, config);
 
 
 876err_put_device:
 877	put_device(&nvmem->dev);
 878
 879	return ERR_PTR(rval);
 880}
 881EXPORT_SYMBOL_GPL(nvmem_register);
 882
 883static void nvmem_device_release(struct kref *kref)
 884{
 885	struct nvmem_device *nvmem;
 886
 887	nvmem = container_of(kref, struct nvmem_device, refcnt);
 888
 889	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 890
 891	if (nvmem->flags & FLAG_COMPAT)
 892		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 893
 894	nvmem_device_remove_all_cells(nvmem);
 895	device_unregister(&nvmem->dev);
 896}
 897
 898/**
 899 * nvmem_unregister() - Unregister previously registered nvmem device
 900 *
 901 * @nvmem: Pointer to previously registered nvmem device.
 902 */
 903void nvmem_unregister(struct nvmem_device *nvmem)
 904{
 905	if (nvmem)
 906		kref_put(&nvmem->refcnt, nvmem_device_release);
 907}
 908EXPORT_SYMBOL_GPL(nvmem_unregister);
 909
 910static void devm_nvmem_unregister(void *nvmem)
 911{
 912	nvmem_unregister(nvmem);
 913}
 914
 915/**
 916 * devm_nvmem_register() - Register a managed nvmem device for given
 917 * nvmem_config.
 918 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 919 *
 920 * @dev: Device that uses the nvmem device.
 921 * @config: nvmem device configuration with which nvmem device is created.
 922 *
 923 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 924 * on success.
 925 */
 926struct nvmem_device *devm_nvmem_register(struct device *dev,
 927					 const struct nvmem_config *config)
 928{
 929	struct nvmem_device *nvmem;
 930	int ret;
 
 
 
 931
 932	nvmem = nvmem_register(config);
 933	if (IS_ERR(nvmem))
 934		return nvmem;
 935
 936	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
 937	if (ret)
 938		return ERR_PTR(ret);
 
 
 
 939
 940	return nvmem;
 941}
 942EXPORT_SYMBOL_GPL(devm_nvmem_register);
 943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944static struct nvmem_device *__nvmem_device_get(void *data,
 945			int (*match)(struct device *dev, const void *data))
 946{
 947	struct nvmem_device *nvmem = NULL;
 948	struct device *dev;
 949
 950	mutex_lock(&nvmem_mutex);
 951	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 952	if (dev)
 953		nvmem = to_nvmem_device(dev);
 954	mutex_unlock(&nvmem_mutex);
 955	if (!nvmem)
 956		return ERR_PTR(-EPROBE_DEFER);
 957
 958	if (!try_module_get(nvmem->owner)) {
 959		dev_err(&nvmem->dev,
 960			"could not increase module refcount for cell %s\n",
 961			nvmem_dev_name(nvmem));
 962
 963		put_device(&nvmem->dev);
 964		return ERR_PTR(-EINVAL);
 965	}
 966
 967	kref_get(&nvmem->refcnt);
 968
 969	return nvmem;
 970}
 971
 972static void __nvmem_device_put(struct nvmem_device *nvmem)
 973{
 974	put_device(&nvmem->dev);
 975	module_put(nvmem->owner);
 976	kref_put(&nvmem->refcnt, nvmem_device_release);
 977}
 978
 979#if IS_ENABLED(CONFIG_OF)
 980/**
 981 * of_nvmem_device_get() - Get nvmem device from a given id
 982 *
 983 * @np: Device tree node that uses the nvmem device.
 984 * @id: nvmem name from nvmem-names property.
 985 *
 986 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
 987 * on success.
 988 */
 989struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
 990{
 991
 992	struct device_node *nvmem_np;
 993	struct nvmem_device *nvmem;
 994	int index = 0;
 995
 996	if (id)
 997		index = of_property_match_string(np, "nvmem-names", id);
 998
 999	nvmem_np = of_parse_phandle(np, "nvmem", index);
1000	if (!nvmem_np)
1001		return ERR_PTR(-ENOENT);
1002
1003	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1004	of_node_put(nvmem_np);
1005	return nvmem;
1006}
1007EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1008#endif
1009
1010/**
1011 * nvmem_device_get() - Get nvmem device from a given id
1012 *
1013 * @dev: Device that uses the nvmem device.
1014 * @dev_name: name of the requested nvmem device.
1015 *
1016 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1017 * on success.
1018 */
1019struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1020{
1021	if (dev->of_node) { /* try dt first */
1022		struct nvmem_device *nvmem;
1023
1024		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1025
1026		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1027			return nvmem;
1028
1029	}
1030
1031	return __nvmem_device_get((void *)dev_name, device_match_name);
1032}
1033EXPORT_SYMBOL_GPL(nvmem_device_get);
1034
1035/**
1036 * nvmem_device_find() - Find nvmem device with matching function
1037 *
1038 * @data: Data to pass to match function
1039 * @match: Callback function to check device
1040 *
1041 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1042 * on success.
1043 */
1044struct nvmem_device *nvmem_device_find(void *data,
1045			int (*match)(struct device *dev, const void *data))
1046{
1047	return __nvmem_device_get(data, match);
1048}
1049EXPORT_SYMBOL_GPL(nvmem_device_find);
1050
1051static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1052{
1053	struct nvmem_device **nvmem = res;
1054
1055	if (WARN_ON(!nvmem || !*nvmem))
1056		return 0;
1057
1058	return *nvmem == data;
1059}
1060
1061static void devm_nvmem_device_release(struct device *dev, void *res)
1062{
1063	nvmem_device_put(*(struct nvmem_device **)res);
1064}
1065
1066/**
1067 * devm_nvmem_device_put() - put alredy got nvmem device
1068 *
1069 * @dev: Device that uses the nvmem device.
1070 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1071 * that needs to be released.
1072 */
1073void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1074{
1075	int ret;
1076
1077	ret = devres_release(dev, devm_nvmem_device_release,
1078			     devm_nvmem_device_match, nvmem);
1079
1080	WARN_ON(ret);
1081}
1082EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1083
1084/**
1085 * nvmem_device_put() - put alredy got nvmem device
1086 *
1087 * @nvmem: pointer to nvmem device that needs to be released.
1088 */
1089void nvmem_device_put(struct nvmem_device *nvmem)
1090{
1091	__nvmem_device_put(nvmem);
1092}
1093EXPORT_SYMBOL_GPL(nvmem_device_put);
1094
1095/**
1096 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1097 *
1098 * @dev: Device that requests the nvmem device.
1099 * @id: name id for the requested nvmem device.
1100 *
1101 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1102 * on success.  The nvmem_cell will be freed by the automatically once the
1103 * device is freed.
1104 */
1105struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1106{
1107	struct nvmem_device **ptr, *nvmem;
1108
1109	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1110	if (!ptr)
1111		return ERR_PTR(-ENOMEM);
1112
1113	nvmem = nvmem_device_get(dev, id);
1114	if (!IS_ERR(nvmem)) {
1115		*ptr = nvmem;
1116		devres_add(dev, ptr);
1117	} else {
1118		devres_free(ptr);
1119	}
1120
1121	return nvmem;
1122}
1123EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1124
1125static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1126{
1127	struct nvmem_cell *cell;
1128	const char *name = NULL;
1129
1130	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1131	if (!cell)
1132		return ERR_PTR(-ENOMEM);
1133
1134	if (id) {
1135		name = kstrdup_const(id, GFP_KERNEL);
1136		if (!name) {
1137			kfree(cell);
1138			return ERR_PTR(-ENOMEM);
1139		}
1140	}
1141
1142	cell->id = name;
1143	cell->entry = entry;
1144
1145	return cell;
1146}
1147
1148static struct nvmem_cell *
1149nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1150{
1151	struct nvmem_cell_entry *cell_entry;
1152	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1153	struct nvmem_cell_lookup *lookup;
1154	struct nvmem_device *nvmem;
1155	const char *dev_id;
1156
1157	if (!dev)
1158		return ERR_PTR(-EINVAL);
1159
1160	dev_id = dev_name(dev);
1161
1162	mutex_lock(&nvmem_lookup_mutex);
1163
1164	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1165		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1166		    (strcmp(lookup->con_id, con_id) == 0)) {
1167			/* This is the right entry. */
1168			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1169						   device_match_name);
1170			if (IS_ERR(nvmem)) {
1171				/* Provider may not be registered yet. */
1172				cell = ERR_CAST(nvmem);
1173				break;
1174			}
1175
1176			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1177								   lookup->cell_name);
1178			if (!cell_entry) {
1179				__nvmem_device_put(nvmem);
1180				cell = ERR_PTR(-ENOENT);
1181			} else {
1182				cell = nvmem_create_cell(cell_entry, con_id);
1183				if (IS_ERR(cell))
1184					__nvmem_device_put(nvmem);
1185			}
1186			break;
1187		}
1188	}
1189
1190	mutex_unlock(&nvmem_lookup_mutex);
1191	return cell;
1192}
1193
1194#if IS_ENABLED(CONFIG_OF)
1195static struct nvmem_cell_entry *
1196nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1197{
1198	struct nvmem_cell_entry *iter, *cell = NULL;
1199
1200	mutex_lock(&nvmem_mutex);
1201	list_for_each_entry(iter, &nvmem->cells, node) {
1202		if (np == iter->np) {
1203			cell = iter;
1204			break;
1205		}
1206	}
1207	mutex_unlock(&nvmem_mutex);
1208
1209	return cell;
1210}
1211
1212/**
1213 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1214 *
1215 * @np: Device tree node that uses the nvmem cell.
1216 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1217 *      for the cell at index 0 (the lone cell with no accompanying
1218 *      nvmem-cell-names property).
1219 *
1220 * Return: Will be an ERR_PTR() on error or a valid pointer
1221 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1222 * nvmem_cell_put().
1223 */
1224struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1225{
1226	struct device_node *cell_np, *nvmem_np;
1227	struct nvmem_device *nvmem;
1228	struct nvmem_cell_entry *cell_entry;
1229	struct nvmem_cell *cell;
1230	int index = 0;
1231
1232	/* if cell name exists, find index to the name */
1233	if (id)
1234		index = of_property_match_string(np, "nvmem-cell-names", id);
1235
1236	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1237	if (!cell_np)
1238		return ERR_PTR(-ENOENT);
1239
1240	nvmem_np = of_get_parent(cell_np);
1241	if (!nvmem_np) {
1242		of_node_put(cell_np);
1243		return ERR_PTR(-EINVAL);
1244	}
1245
1246	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247	of_node_put(nvmem_np);
1248	if (IS_ERR(nvmem)) {
1249		of_node_put(cell_np);
1250		return ERR_CAST(nvmem);
1251	}
1252
1253	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1254	of_node_put(cell_np);
1255	if (!cell_entry) {
1256		__nvmem_device_put(nvmem);
1257		return ERR_PTR(-ENOENT);
1258	}
1259
1260	cell = nvmem_create_cell(cell_entry, id);
1261	if (IS_ERR(cell))
1262		__nvmem_device_put(nvmem);
1263
1264	return cell;
1265}
1266EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1267#endif
1268
1269/**
1270 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1271 *
1272 * @dev: Device that requests the nvmem cell.
1273 * @id: nvmem cell name to get (this corresponds with the name from the
1274 *      nvmem-cell-names property for DT systems and with the con_id from
1275 *      the lookup entry for non-DT systems).
1276 *
1277 * Return: Will be an ERR_PTR() on error or a valid pointer
1278 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1279 * nvmem_cell_put().
1280 */
1281struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1282{
1283	struct nvmem_cell *cell;
1284
1285	if (dev->of_node) { /* try dt first */
1286		cell = of_nvmem_cell_get(dev->of_node, id);
1287		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1288			return cell;
1289	}
1290
1291	/* NULL cell id only allowed for device tree; invalid otherwise */
1292	if (!id)
1293		return ERR_PTR(-EINVAL);
1294
1295	return nvmem_cell_get_from_lookup(dev, id);
1296}
1297EXPORT_SYMBOL_GPL(nvmem_cell_get);
1298
1299static void devm_nvmem_cell_release(struct device *dev, void *res)
1300{
1301	nvmem_cell_put(*(struct nvmem_cell **)res);
1302}
1303
1304/**
1305 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1306 *
1307 * @dev: Device that requests the nvmem cell.
1308 * @id: nvmem cell name id to get.
1309 *
1310 * Return: Will be an ERR_PTR() on error or a valid pointer
1311 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1312 * automatically once the device is freed.
1313 */
1314struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1315{
1316	struct nvmem_cell **ptr, *cell;
1317
1318	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1319	if (!ptr)
1320		return ERR_PTR(-ENOMEM);
1321
1322	cell = nvmem_cell_get(dev, id);
1323	if (!IS_ERR(cell)) {
1324		*ptr = cell;
1325		devres_add(dev, ptr);
1326	} else {
1327		devres_free(ptr);
1328	}
1329
1330	return cell;
1331}
1332EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1333
1334static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1335{
1336	struct nvmem_cell **c = res;
1337
1338	if (WARN_ON(!c || !*c))
1339		return 0;
1340
1341	return *c == data;
1342}
1343
1344/**
1345 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1346 * from devm_nvmem_cell_get.
1347 *
1348 * @dev: Device that requests the nvmem cell.
1349 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1350 */
1351void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1352{
1353	int ret;
1354
1355	ret = devres_release(dev, devm_nvmem_cell_release,
1356				devm_nvmem_cell_match, cell);
1357
1358	WARN_ON(ret);
1359}
1360EXPORT_SYMBOL(devm_nvmem_cell_put);
1361
1362/**
1363 * nvmem_cell_put() - Release previously allocated nvmem cell.
1364 *
1365 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1366 */
1367void nvmem_cell_put(struct nvmem_cell *cell)
1368{
1369	struct nvmem_device *nvmem = cell->entry->nvmem;
1370
1371	if (cell->id)
1372		kfree_const(cell->id);
1373
1374	kfree(cell);
1375	__nvmem_device_put(nvmem);
1376}
1377EXPORT_SYMBOL_GPL(nvmem_cell_put);
1378
1379static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1380{
1381	u8 *p, *b;
1382	int i, extra, bit_offset = cell->bit_offset;
1383
1384	p = b = buf;
1385	if (bit_offset) {
1386		/* First shift */
1387		*b++ >>= bit_offset;
1388
1389		/* setup rest of the bytes if any */
1390		for (i = 1; i < cell->bytes; i++) {
1391			/* Get bits from next byte and shift them towards msb */
1392			*p |= *b << (BITS_PER_BYTE - bit_offset);
1393
1394			p = b;
1395			*b++ >>= bit_offset;
1396		}
1397	} else {
1398		/* point to the msb */
1399		p += cell->bytes - 1;
1400	}
1401
1402	/* result fits in less bytes */
1403	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1404	while (--extra >= 0)
1405		*p-- = 0;
1406
1407	/* clear msb bits if any leftover in the last byte */
1408	if (cell->nbits % BITS_PER_BYTE)
1409		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1410}
1411
1412static int __nvmem_cell_read(struct nvmem_device *nvmem,
1413		      struct nvmem_cell_entry *cell,
1414		      void *buf, size_t *len, const char *id)
1415{
1416	int rc;
1417
1418	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1419
1420	if (rc)
1421		return rc;
1422
1423	/* shift bits in-place */
1424	if (cell->bit_offset || cell->nbits)
1425		nvmem_shift_read_buffer_in_place(cell, buf);
1426
1427	if (nvmem->cell_post_process) {
1428		rc = nvmem->cell_post_process(nvmem->priv, id,
1429					      cell->offset, buf, cell->bytes);
1430		if (rc)
1431			return rc;
1432	}
1433
1434	if (len)
1435		*len = cell->bytes;
1436
1437	return 0;
1438}
1439
1440/**
1441 * nvmem_cell_read() - Read a given nvmem cell
1442 *
1443 * @cell: nvmem cell to be read.
1444 * @len: pointer to length of cell which will be populated on successful read;
1445 *	 can be NULL.
1446 *
1447 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1448 * buffer should be freed by the consumer with a kfree().
1449 */
1450void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1451{
1452	struct nvmem_device *nvmem = cell->entry->nvmem;
1453	u8 *buf;
1454	int rc;
1455
1456	if (!nvmem)
1457		return ERR_PTR(-EINVAL);
1458
1459	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1460	if (!buf)
1461		return ERR_PTR(-ENOMEM);
1462
1463	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1464	if (rc) {
1465		kfree(buf);
1466		return ERR_PTR(rc);
1467	}
1468
1469	return buf;
1470}
1471EXPORT_SYMBOL_GPL(nvmem_cell_read);
1472
1473static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1474					     u8 *_buf, int len)
1475{
1476	struct nvmem_device *nvmem = cell->nvmem;
1477	int i, rc, nbits, bit_offset = cell->bit_offset;
1478	u8 v, *p, *buf, *b, pbyte, pbits;
1479
1480	nbits = cell->nbits;
1481	buf = kzalloc(cell->bytes, GFP_KERNEL);
1482	if (!buf)
1483		return ERR_PTR(-ENOMEM);
1484
1485	memcpy(buf, _buf, len);
1486	p = b = buf;
1487
1488	if (bit_offset) {
1489		pbyte = *b;
1490		*b <<= bit_offset;
1491
1492		/* setup the first byte with lsb bits from nvmem */
1493		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1494		if (rc)
1495			goto err;
1496		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1497
1498		/* setup rest of the byte if any */
1499		for (i = 1; i < cell->bytes; i++) {
1500			/* Get last byte bits and shift them towards lsb */
1501			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1502			pbyte = *b;
1503			p = b;
1504			*b <<= bit_offset;
1505			*b++ |= pbits;
1506		}
1507	}
1508
1509	/* if it's not end on byte boundary */
1510	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1511		/* setup the last byte with msb bits from nvmem */
1512		rc = nvmem_reg_read(nvmem,
1513				    cell->offset + cell->bytes - 1, &v, 1);
1514		if (rc)
1515			goto err;
1516		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1517
1518	}
1519
1520	return buf;
1521err:
1522	kfree(buf);
1523	return ERR_PTR(rc);
1524}
1525
1526static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
 
 
 
 
 
 
 
 
 
1527{
1528	struct nvmem_device *nvmem = cell->nvmem;
1529	int rc;
1530
1531	if (!nvmem || nvmem->read_only ||
1532	    (cell->bit_offset == 0 && len != cell->bytes))
1533		return -EINVAL;
1534
1535	if (cell->bit_offset || cell->nbits) {
1536		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1537		if (IS_ERR(buf))
1538			return PTR_ERR(buf);
1539	}
1540
1541	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1542
1543	/* free the tmp buffer */
1544	if (cell->bit_offset || cell->nbits)
1545		kfree(buf);
1546
1547	if (rc)
1548		return rc;
1549
1550	return len;
1551}
1552
1553/**
1554 * nvmem_cell_write() - Write to a given nvmem cell
1555 *
1556 * @cell: nvmem cell to be written.
1557 * @buf: Buffer to be written.
1558 * @len: length of buffer to be written to nvmem cell.
1559 *
1560 * Return: length of bytes written or negative on failure.
1561 */
1562int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1563{
1564	return __nvmem_cell_entry_write(cell->entry, buf, len);
1565}
1566
1567EXPORT_SYMBOL_GPL(nvmem_cell_write);
1568
1569static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1570				  void *val, size_t count)
1571{
1572	struct nvmem_cell *cell;
1573	void *buf;
1574	size_t len;
1575
1576	cell = nvmem_cell_get(dev, cell_id);
1577	if (IS_ERR(cell))
1578		return PTR_ERR(cell);
1579
1580	buf = nvmem_cell_read(cell, &len);
1581	if (IS_ERR(buf)) {
1582		nvmem_cell_put(cell);
1583		return PTR_ERR(buf);
1584	}
1585	if (len != count) {
1586		kfree(buf);
1587		nvmem_cell_put(cell);
1588		return -EINVAL;
1589	}
1590	memcpy(val, buf, count);
1591	kfree(buf);
1592	nvmem_cell_put(cell);
1593
1594	return 0;
1595}
1596
1597/**
1598 * nvmem_cell_read_u8() - Read a cell value as a u8
1599 *
1600 * @dev: Device that requests the nvmem cell.
1601 * @cell_id: Name of nvmem cell to read.
1602 * @val: pointer to output value.
1603 *
1604 * Return: 0 on success or negative errno.
1605 */
1606int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1607{
1608	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1609}
1610EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1611
1612/**
1613 * nvmem_cell_read_u16() - Read a cell value as a u16
1614 *
1615 * @dev: Device that requests the nvmem cell.
1616 * @cell_id: Name of nvmem cell to read.
1617 * @val: pointer to output value.
1618 *
1619 * Return: 0 on success or negative errno.
1620 */
1621int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1622{
1623	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1624}
1625EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1626
1627/**
1628 * nvmem_cell_read_u32() - Read a cell value as a u32
1629 *
1630 * @dev: Device that requests the nvmem cell.
1631 * @cell_id: Name of nvmem cell to read.
1632 * @val: pointer to output value.
1633 *
1634 * Return: 0 on success or negative errno.
1635 */
1636int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1637{
1638	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1639}
1640EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1641
1642/**
1643 * nvmem_cell_read_u64() - Read a cell value as a u64
1644 *
1645 * @dev: Device that requests the nvmem cell.
1646 * @cell_id: Name of nvmem cell to read.
1647 * @val: pointer to output value.
1648 *
1649 * Return: 0 on success or negative errno.
1650 */
1651int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1652{
1653	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1654}
1655EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1656
1657static const void *nvmem_cell_read_variable_common(struct device *dev,
1658						   const char *cell_id,
1659						   size_t max_len, size_t *len)
1660{
1661	struct nvmem_cell *cell;
1662	int nbits;
1663	void *buf;
1664
1665	cell = nvmem_cell_get(dev, cell_id);
1666	if (IS_ERR(cell))
1667		return cell;
1668
1669	nbits = cell->entry->nbits;
1670	buf = nvmem_cell_read(cell, len);
1671	nvmem_cell_put(cell);
1672	if (IS_ERR(buf))
1673		return buf;
1674
1675	/*
1676	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1677	 * the length of the real data. Throw away the extra junk.
1678	 */
1679	if (nbits)
1680		*len = DIV_ROUND_UP(nbits, 8);
1681
1682	if (*len > max_len) {
1683		kfree(buf);
1684		return ERR_PTR(-ERANGE);
1685	}
1686
1687	return buf;
1688}
1689
1690/**
1691 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1692 *
1693 * @dev: Device that requests the nvmem cell.
1694 * @cell_id: Name of nvmem cell to read.
1695 * @val: pointer to output value.
1696 *
1697 * Return: 0 on success or negative errno.
1698 */
1699int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1700				    u32 *val)
1701{
1702	size_t len;
1703	const u8 *buf;
1704	int i;
1705
1706	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1707	if (IS_ERR(buf))
1708		return PTR_ERR(buf);
1709
1710	/* Copy w/ implicit endian conversion */
1711	*val = 0;
1712	for (i = 0; i < len; i++)
1713		*val |= buf[i] << (8 * i);
1714
1715	kfree(buf);
1716
1717	return 0;
1718}
1719EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1720
1721/**
1722 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1723 *
1724 * @dev: Device that requests the nvmem cell.
1725 * @cell_id: Name of nvmem cell to read.
1726 * @val: pointer to output value.
1727 *
1728 * Return: 0 on success or negative errno.
1729 */
1730int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1731				    u64 *val)
1732{
1733	size_t len;
1734	const u8 *buf;
1735	int i;
1736
1737	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1738	if (IS_ERR(buf))
1739		return PTR_ERR(buf);
1740
1741	/* Copy w/ implicit endian conversion */
1742	*val = 0;
1743	for (i = 0; i < len; i++)
1744		*val |= (uint64_t)buf[i] << (8 * i);
1745
1746	kfree(buf);
1747
1748	return 0;
1749}
1750EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1751
1752/**
1753 * nvmem_device_cell_read() - Read a given nvmem device and cell
1754 *
1755 * @nvmem: nvmem device to read from.
1756 * @info: nvmem cell info to be read.
1757 * @buf: buffer pointer which will be populated on successful read.
1758 *
1759 * Return: length of successful bytes read on success and negative
1760 * error code on error.
1761 */
1762ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1763			   struct nvmem_cell_info *info, void *buf)
1764{
1765	struct nvmem_cell_entry cell;
1766	int rc;
1767	ssize_t len;
1768
1769	if (!nvmem)
1770		return -EINVAL;
1771
1772	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1773	if (rc)
1774		return rc;
1775
1776	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1777	if (rc)
1778		return rc;
1779
1780	return len;
1781}
1782EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1783
1784/**
1785 * nvmem_device_cell_write() - Write cell to a given nvmem device
1786 *
1787 * @nvmem: nvmem device to be written to.
1788 * @info: nvmem cell info to be written.
1789 * @buf: buffer to be written to cell.
1790 *
1791 * Return: length of bytes written or negative error code on failure.
1792 */
1793int nvmem_device_cell_write(struct nvmem_device *nvmem,
1794			    struct nvmem_cell_info *info, void *buf)
1795{
1796	struct nvmem_cell_entry cell;
1797	int rc;
1798
1799	if (!nvmem)
1800		return -EINVAL;
1801
1802	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1803	if (rc)
1804		return rc;
1805
1806	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1807}
1808EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1809
1810/**
1811 * nvmem_device_read() - Read from a given nvmem device
1812 *
1813 * @nvmem: nvmem device to read from.
1814 * @offset: offset in nvmem device.
1815 * @bytes: number of bytes to read.
1816 * @buf: buffer pointer which will be populated on successful read.
1817 *
1818 * Return: length of successful bytes read on success and negative
1819 * error code on error.
1820 */
1821int nvmem_device_read(struct nvmem_device *nvmem,
1822		      unsigned int offset,
1823		      size_t bytes, void *buf)
1824{
1825	int rc;
1826
1827	if (!nvmem)
1828		return -EINVAL;
1829
1830	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1831
1832	if (rc)
1833		return rc;
1834
1835	return bytes;
1836}
1837EXPORT_SYMBOL_GPL(nvmem_device_read);
1838
1839/**
1840 * nvmem_device_write() - Write cell to a given nvmem device
1841 *
1842 * @nvmem: nvmem device to be written to.
1843 * @offset: offset in nvmem device.
1844 * @bytes: number of bytes to write.
1845 * @buf: buffer to be written.
1846 *
1847 * Return: length of bytes written or negative error code on failure.
1848 */
1849int nvmem_device_write(struct nvmem_device *nvmem,
1850		       unsigned int offset,
1851		       size_t bytes, void *buf)
1852{
1853	int rc;
1854
1855	if (!nvmem)
1856		return -EINVAL;
1857
1858	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1859
1860	if (rc)
1861		return rc;
1862
1863
1864	return bytes;
1865}
1866EXPORT_SYMBOL_GPL(nvmem_device_write);
1867
1868/**
1869 * nvmem_add_cell_table() - register a table of cell info entries
1870 *
1871 * @table: table of cell info entries
1872 */
1873void nvmem_add_cell_table(struct nvmem_cell_table *table)
1874{
1875	mutex_lock(&nvmem_cell_mutex);
1876	list_add_tail(&table->node, &nvmem_cell_tables);
1877	mutex_unlock(&nvmem_cell_mutex);
1878}
1879EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1880
1881/**
1882 * nvmem_del_cell_table() - remove a previously registered cell info table
1883 *
1884 * @table: table of cell info entries
1885 */
1886void nvmem_del_cell_table(struct nvmem_cell_table *table)
1887{
1888	mutex_lock(&nvmem_cell_mutex);
1889	list_del(&table->node);
1890	mutex_unlock(&nvmem_cell_mutex);
1891}
1892EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1893
1894/**
1895 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1896 *
1897 * @entries: array of cell lookup entries
1898 * @nentries: number of cell lookup entries in the array
1899 */
1900void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1901{
1902	int i;
1903
1904	mutex_lock(&nvmem_lookup_mutex);
1905	for (i = 0; i < nentries; i++)
1906		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1907	mutex_unlock(&nvmem_lookup_mutex);
1908}
1909EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1910
1911/**
1912 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1913 *                            entries
1914 *
1915 * @entries: array of cell lookup entries
1916 * @nentries: number of cell lookup entries in the array
1917 */
1918void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1919{
1920	int i;
1921
1922	mutex_lock(&nvmem_lookup_mutex);
1923	for (i = 0; i < nentries; i++)
1924		list_del(&entries[i].node);
1925	mutex_unlock(&nvmem_lookup_mutex);
1926}
1927EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1928
1929/**
1930 * nvmem_dev_name() - Get the name of a given nvmem device.
1931 *
1932 * @nvmem: nvmem device.
1933 *
1934 * Return: name of the nvmem device.
1935 */
1936const char *nvmem_dev_name(struct nvmem_device *nvmem)
1937{
1938	return dev_name(&nvmem->dev);
1939}
1940EXPORT_SYMBOL_GPL(nvmem_dev_name);
1941
1942static int __init nvmem_init(void)
1943{
1944	return bus_register(&nvmem_bus_type);
1945}
1946
1947static void __exit nvmem_exit(void)
1948{
1949	bus_unregister(&nvmem_bus_type);
1950}
1951
1952subsys_initcall(nvmem_init);
1953module_exit(nvmem_exit);
1954
1955MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1956MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1957MODULE_DESCRIPTION("nvmem Driver Core");
1958MODULE_LICENSE("GPL v2");