Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21
22struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 nvmem_reg_read_t reg_read;
38 nvmem_reg_write_t reg_write;
39 struct gpio_desc *wp_gpio;
40 void *priv;
41};
42
43#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45#define FLAG_COMPAT BIT(0)
46
47struct nvmem_cell {
48 const char *name;
49 int offset;
50 int bytes;
51 int bit_offset;
52 int nbits;
53 struct device_node *np;
54 struct nvmem_device *nvmem;
55 struct list_head node;
56};
57
58static DEFINE_MUTEX(nvmem_mutex);
59static DEFINE_IDA(nvmem_ida);
60
61static DEFINE_MUTEX(nvmem_cell_mutex);
62static LIST_HEAD(nvmem_cell_tables);
63
64static DEFINE_MUTEX(nvmem_lookup_mutex);
65static LIST_HEAD(nvmem_lookup_list);
66
67static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 void *val, size_t bytes)
71{
72 if (nvmem->reg_read)
73 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75 return -EINVAL;
76}
77
78static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 void *val, size_t bytes)
80{
81 int ret;
82
83 if (nvmem->reg_write) {
84 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 return ret;
88 }
89
90 return -EINVAL;
91}
92
93#ifdef CONFIG_NVMEM_SYSFS
94static const char * const nvmem_type_str[] = {
95 [NVMEM_TYPE_UNKNOWN] = "Unknown",
96 [NVMEM_TYPE_EEPROM] = "EEPROM",
97 [NVMEM_TYPE_OTP] = "OTP",
98 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99};
100
101#ifdef CONFIG_DEBUG_LOCK_ALLOC
102static struct lock_class_key eeprom_lock_key;
103#endif
104
105static ssize_t type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107{
108 struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111}
112
113static DEVICE_ATTR_RO(type);
114
115static struct attribute *nvmem_attrs[] = {
116 &dev_attr_type.attr,
117 NULL,
118};
119
120static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 struct bin_attribute *attr, char *buf,
122 loff_t pos, size_t count)
123{
124 struct device *dev;
125 struct nvmem_device *nvmem;
126 int rc;
127
128 if (attr->private)
129 dev = attr->private;
130 else
131 dev = container_of(kobj, struct device, kobj);
132 nvmem = to_nvmem_device(dev);
133
134 /* Stop the user from reading */
135 if (pos >= nvmem->size)
136 return 0;
137
138 if (!IS_ALIGNED(pos, nvmem->stride))
139 return -EINVAL;
140
141 if (count < nvmem->word_size)
142 return -EINVAL;
143
144 if (pos + count > nvmem->size)
145 count = nvmem->size - pos;
146
147 count = round_down(count, nvmem->word_size);
148
149 if (!nvmem->reg_read)
150 return -EPERM;
151
152 rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154 if (rc)
155 return rc;
156
157 return count;
158}
159
160static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 struct bin_attribute *attr, char *buf,
162 loff_t pos, size_t count)
163{
164 struct device *dev;
165 struct nvmem_device *nvmem;
166 int rc;
167
168 if (attr->private)
169 dev = attr->private;
170 else
171 dev = container_of(kobj, struct device, kobj);
172 nvmem = to_nvmem_device(dev);
173
174 /* Stop the user from writing */
175 if (pos >= nvmem->size)
176 return -EFBIG;
177
178 if (!IS_ALIGNED(pos, nvmem->stride))
179 return -EINVAL;
180
181 if (count < nvmem->word_size)
182 return -EINVAL;
183
184 if (pos + count > nvmem->size)
185 count = nvmem->size - pos;
186
187 count = round_down(count, nvmem->word_size);
188
189 if (!nvmem->reg_write)
190 return -EPERM;
191
192 rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194 if (rc)
195 return rc;
196
197 return count;
198}
199
200static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201{
202 umode_t mode = 0400;
203
204 if (!nvmem->root_only)
205 mode |= 0044;
206
207 if (!nvmem->read_only)
208 mode |= 0200;
209
210 if (!nvmem->reg_write)
211 mode &= ~0200;
212
213 if (!nvmem->reg_read)
214 mode &= ~0444;
215
216 return mode;
217}
218
219static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 struct bin_attribute *attr, int i)
221{
222 struct device *dev = container_of(kobj, struct device, kobj);
223 struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225 return nvmem_bin_attr_get_umode(nvmem);
226}
227
228/* default read/write permissions */
229static struct bin_attribute bin_attr_rw_nvmem = {
230 .attr = {
231 .name = "nvmem",
232 .mode = 0644,
233 },
234 .read = bin_attr_nvmem_read,
235 .write = bin_attr_nvmem_write,
236};
237
238static struct bin_attribute *nvmem_bin_attributes[] = {
239 &bin_attr_rw_nvmem,
240 NULL,
241};
242
243static const struct attribute_group nvmem_bin_group = {
244 .bin_attrs = nvmem_bin_attributes,
245 .attrs = nvmem_attrs,
246 .is_bin_visible = nvmem_bin_attr_is_visible,
247};
248
249static const struct attribute_group *nvmem_dev_groups[] = {
250 &nvmem_bin_group,
251 NULL,
252};
253
254static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
255 .attr = {
256 .name = "eeprom",
257 },
258 .read = bin_attr_nvmem_read,
259 .write = bin_attr_nvmem_write,
260};
261
262/*
263 * nvmem_setup_compat() - Create an additional binary entry in
264 * drivers sys directory, to be backwards compatible with the older
265 * drivers/misc/eeprom drivers.
266 */
267static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
268 const struct nvmem_config *config)
269{
270 int rval;
271
272 if (!config->compat)
273 return 0;
274
275 if (!config->base_dev)
276 return -EINVAL;
277
278 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
279 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
280 nvmem->eeprom.size = nvmem->size;
281#ifdef CONFIG_DEBUG_LOCK_ALLOC
282 nvmem->eeprom.attr.key = &eeprom_lock_key;
283#endif
284 nvmem->eeprom.private = &nvmem->dev;
285 nvmem->base_dev = config->base_dev;
286
287 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
288 if (rval) {
289 dev_err(&nvmem->dev,
290 "Failed to create eeprom binary file %d\n", rval);
291 return rval;
292 }
293
294 nvmem->flags |= FLAG_COMPAT;
295
296 return 0;
297}
298
299static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
300 const struct nvmem_config *config)
301{
302 if (config->compat)
303 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
304}
305
306#else /* CONFIG_NVMEM_SYSFS */
307
308static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
309 const struct nvmem_config *config)
310{
311 return -ENOSYS;
312}
313static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
314 const struct nvmem_config *config)
315{
316}
317
318#endif /* CONFIG_NVMEM_SYSFS */
319
320static void nvmem_release(struct device *dev)
321{
322 struct nvmem_device *nvmem = to_nvmem_device(dev);
323
324 ida_simple_remove(&nvmem_ida, nvmem->id);
325 gpiod_put(nvmem->wp_gpio);
326 kfree(nvmem);
327}
328
329static const struct device_type nvmem_provider_type = {
330 .release = nvmem_release,
331};
332
333static struct bus_type nvmem_bus_type = {
334 .name = "nvmem",
335};
336
337static void nvmem_cell_drop(struct nvmem_cell *cell)
338{
339 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
340 mutex_lock(&nvmem_mutex);
341 list_del(&cell->node);
342 mutex_unlock(&nvmem_mutex);
343 of_node_put(cell->np);
344 kfree_const(cell->name);
345 kfree(cell);
346}
347
348static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
349{
350 struct nvmem_cell *cell, *p;
351
352 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
353 nvmem_cell_drop(cell);
354}
355
356static void nvmem_cell_add(struct nvmem_cell *cell)
357{
358 mutex_lock(&nvmem_mutex);
359 list_add_tail(&cell->node, &cell->nvmem->cells);
360 mutex_unlock(&nvmem_mutex);
361 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
362}
363
364static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
365 const struct nvmem_cell_info *info,
366 struct nvmem_cell *cell)
367{
368 cell->nvmem = nvmem;
369 cell->offset = info->offset;
370 cell->bytes = info->bytes;
371 cell->name = kstrdup_const(info->name, GFP_KERNEL);
372 if (!cell->name)
373 return -ENOMEM;
374
375 cell->bit_offset = info->bit_offset;
376 cell->nbits = info->nbits;
377
378 if (cell->nbits)
379 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380 BITS_PER_BYTE);
381
382 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383 dev_err(&nvmem->dev,
384 "cell %s unaligned to nvmem stride %d\n",
385 cell->name, nvmem->stride);
386 return -EINVAL;
387 }
388
389 return 0;
390}
391
392/**
393 * nvmem_add_cells() - Add cell information to an nvmem device
394 *
395 * @nvmem: nvmem device to add cells to.
396 * @info: nvmem cell info to add to the device
397 * @ncells: number of cells in info
398 *
399 * Return: 0 or negative error code on failure.
400 */
401static int nvmem_add_cells(struct nvmem_device *nvmem,
402 const struct nvmem_cell_info *info,
403 int ncells)
404{
405 struct nvmem_cell **cells;
406 int i, rval;
407
408 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
409 if (!cells)
410 return -ENOMEM;
411
412 for (i = 0; i < ncells; i++) {
413 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
414 if (!cells[i]) {
415 rval = -ENOMEM;
416 goto err;
417 }
418
419 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
420 if (rval) {
421 kfree(cells[i]);
422 goto err;
423 }
424
425 nvmem_cell_add(cells[i]);
426 }
427
428 /* remove tmp array */
429 kfree(cells);
430
431 return 0;
432err:
433 while (i--)
434 nvmem_cell_drop(cells[i]);
435
436 kfree(cells);
437
438 return rval;
439}
440
441/**
442 * nvmem_register_notifier() - Register a notifier block for nvmem events.
443 *
444 * @nb: notifier block to be called on nvmem events.
445 *
446 * Return: 0 on success, negative error number on failure.
447 */
448int nvmem_register_notifier(struct notifier_block *nb)
449{
450 return blocking_notifier_chain_register(&nvmem_notifier, nb);
451}
452EXPORT_SYMBOL_GPL(nvmem_register_notifier);
453
454/**
455 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
456 *
457 * @nb: notifier block to be unregistered.
458 *
459 * Return: 0 on success, negative error number on failure.
460 */
461int nvmem_unregister_notifier(struct notifier_block *nb)
462{
463 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
464}
465EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
466
467static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
468{
469 const struct nvmem_cell_info *info;
470 struct nvmem_cell_table *table;
471 struct nvmem_cell *cell;
472 int rval = 0, i;
473
474 mutex_lock(&nvmem_cell_mutex);
475 list_for_each_entry(table, &nvmem_cell_tables, node) {
476 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
477 for (i = 0; i < table->ncells; i++) {
478 info = &table->cells[i];
479
480 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
481 if (!cell) {
482 rval = -ENOMEM;
483 goto out;
484 }
485
486 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
487 info,
488 cell);
489 if (rval) {
490 kfree(cell);
491 goto out;
492 }
493
494 nvmem_cell_add(cell);
495 }
496 }
497 }
498
499out:
500 mutex_unlock(&nvmem_cell_mutex);
501 return rval;
502}
503
504static struct nvmem_cell *
505nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
506{
507 struct nvmem_cell *iter, *cell = NULL;
508
509 mutex_lock(&nvmem_mutex);
510 list_for_each_entry(iter, &nvmem->cells, node) {
511 if (strcmp(cell_id, iter->name) == 0) {
512 cell = iter;
513 break;
514 }
515 }
516 mutex_unlock(&nvmem_mutex);
517
518 return cell;
519}
520
521static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
522{
523 struct device_node *parent, *child;
524 struct device *dev = &nvmem->dev;
525 struct nvmem_cell *cell;
526 const __be32 *addr;
527 int len;
528
529 parent = dev->of_node;
530
531 for_each_child_of_node(parent, child) {
532 addr = of_get_property(child, "reg", &len);
533 if (!addr || (len < 2 * sizeof(u32))) {
534 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
535 return -EINVAL;
536 }
537
538 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
539 if (!cell)
540 return -ENOMEM;
541
542 cell->nvmem = nvmem;
543 cell->np = of_node_get(child);
544 cell->offset = be32_to_cpup(addr++);
545 cell->bytes = be32_to_cpup(addr);
546 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
547
548 addr = of_get_property(child, "bits", &len);
549 if (addr && len == (2 * sizeof(u32))) {
550 cell->bit_offset = be32_to_cpup(addr++);
551 cell->nbits = be32_to_cpup(addr);
552 }
553
554 if (cell->nbits)
555 cell->bytes = DIV_ROUND_UP(
556 cell->nbits + cell->bit_offset,
557 BITS_PER_BYTE);
558
559 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
560 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
561 cell->name, nvmem->stride);
562 /* Cells already added will be freed later. */
563 kfree_const(cell->name);
564 kfree(cell);
565 return -EINVAL;
566 }
567
568 nvmem_cell_add(cell);
569 }
570
571 return 0;
572}
573
574/**
575 * nvmem_register() - Register a nvmem device for given nvmem_config.
576 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
577 *
578 * @config: nvmem device configuration with which nvmem device is created.
579 *
580 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
581 * on success.
582 */
583
584struct nvmem_device *nvmem_register(const struct nvmem_config *config)
585{
586 struct nvmem_device *nvmem;
587 int rval;
588
589 if (!config->dev)
590 return ERR_PTR(-EINVAL);
591
592 if (!config->reg_read && !config->reg_write)
593 return ERR_PTR(-EINVAL);
594
595 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
596 if (!nvmem)
597 return ERR_PTR(-ENOMEM);
598
599 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
600 if (rval < 0) {
601 kfree(nvmem);
602 return ERR_PTR(rval);
603 }
604
605 if (config->wp_gpio)
606 nvmem->wp_gpio = config->wp_gpio;
607 else
608 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
609 GPIOD_OUT_HIGH);
610 if (IS_ERR(nvmem->wp_gpio)) {
611 ida_simple_remove(&nvmem_ida, nvmem->id);
612 rval = PTR_ERR(nvmem->wp_gpio);
613 kfree(nvmem);
614 return ERR_PTR(rval);
615 }
616
617 kref_init(&nvmem->refcnt);
618 INIT_LIST_HEAD(&nvmem->cells);
619
620 nvmem->id = rval;
621 nvmem->owner = config->owner;
622 if (!nvmem->owner && config->dev->driver)
623 nvmem->owner = config->dev->driver->owner;
624 nvmem->stride = config->stride ?: 1;
625 nvmem->word_size = config->word_size ?: 1;
626 nvmem->size = config->size;
627 nvmem->dev.type = &nvmem_provider_type;
628 nvmem->dev.bus = &nvmem_bus_type;
629 nvmem->dev.parent = config->dev;
630 nvmem->root_only = config->root_only;
631 nvmem->priv = config->priv;
632 nvmem->type = config->type;
633 nvmem->reg_read = config->reg_read;
634 nvmem->reg_write = config->reg_write;
635 if (!config->no_of_node)
636 nvmem->dev.of_node = config->dev->of_node;
637
638 switch (config->id) {
639 case NVMEM_DEVID_NONE:
640 dev_set_name(&nvmem->dev, "%s", config->name);
641 break;
642 case NVMEM_DEVID_AUTO:
643 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
644 break;
645 default:
646 dev_set_name(&nvmem->dev, "%s%d",
647 config->name ? : "nvmem",
648 config->name ? config->id : nvmem->id);
649 break;
650 }
651
652 nvmem->read_only = device_property_present(config->dev, "read-only") ||
653 config->read_only || !nvmem->reg_write;
654
655#ifdef CONFIG_NVMEM_SYSFS
656 nvmem->dev.groups = nvmem_dev_groups;
657#endif
658
659 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
660
661 rval = device_register(&nvmem->dev);
662 if (rval)
663 goto err_put_device;
664
665 if (config->compat) {
666 rval = nvmem_sysfs_setup_compat(nvmem, config);
667 if (rval)
668 goto err_device_del;
669 }
670
671 if (config->cells) {
672 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
673 if (rval)
674 goto err_teardown_compat;
675 }
676
677 rval = nvmem_add_cells_from_table(nvmem);
678 if (rval)
679 goto err_remove_cells;
680
681 rval = nvmem_add_cells_from_of(nvmem);
682 if (rval)
683 goto err_remove_cells;
684
685 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
686
687 return nvmem;
688
689err_remove_cells:
690 nvmem_device_remove_all_cells(nvmem);
691err_teardown_compat:
692 if (config->compat)
693 nvmem_sysfs_remove_compat(nvmem, config);
694err_device_del:
695 device_del(&nvmem->dev);
696err_put_device:
697 put_device(&nvmem->dev);
698
699 return ERR_PTR(rval);
700}
701EXPORT_SYMBOL_GPL(nvmem_register);
702
703static void nvmem_device_release(struct kref *kref)
704{
705 struct nvmem_device *nvmem;
706
707 nvmem = container_of(kref, struct nvmem_device, refcnt);
708
709 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
710
711 if (nvmem->flags & FLAG_COMPAT)
712 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
713
714 nvmem_device_remove_all_cells(nvmem);
715 device_unregister(&nvmem->dev);
716}
717
718/**
719 * nvmem_unregister() - Unregister previously registered nvmem device
720 *
721 * @nvmem: Pointer to previously registered nvmem device.
722 */
723void nvmem_unregister(struct nvmem_device *nvmem)
724{
725 kref_put(&nvmem->refcnt, nvmem_device_release);
726}
727EXPORT_SYMBOL_GPL(nvmem_unregister);
728
729static void devm_nvmem_release(struct device *dev, void *res)
730{
731 nvmem_unregister(*(struct nvmem_device **)res);
732}
733
734/**
735 * devm_nvmem_register() - Register a managed nvmem device for given
736 * nvmem_config.
737 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
738 *
739 * @dev: Device that uses the nvmem device.
740 * @config: nvmem device configuration with which nvmem device is created.
741 *
742 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743 * on success.
744 */
745struct nvmem_device *devm_nvmem_register(struct device *dev,
746 const struct nvmem_config *config)
747{
748 struct nvmem_device **ptr, *nvmem;
749
750 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
751 if (!ptr)
752 return ERR_PTR(-ENOMEM);
753
754 nvmem = nvmem_register(config);
755
756 if (!IS_ERR(nvmem)) {
757 *ptr = nvmem;
758 devres_add(dev, ptr);
759 } else {
760 devres_free(ptr);
761 }
762
763 return nvmem;
764}
765EXPORT_SYMBOL_GPL(devm_nvmem_register);
766
767static int devm_nvmem_match(struct device *dev, void *res, void *data)
768{
769 struct nvmem_device **r = res;
770
771 return *r == data;
772}
773
774/**
775 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
776 * device.
777 *
778 * @dev: Device that uses the nvmem device.
779 * @nvmem: Pointer to previously registered nvmem device.
780 *
781 * Return: Will be negative on error or zero on success.
782 */
783int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
784{
785 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
786}
787EXPORT_SYMBOL(devm_nvmem_unregister);
788
789static struct nvmem_device *__nvmem_device_get(void *data,
790 int (*match)(struct device *dev, const void *data))
791{
792 struct nvmem_device *nvmem = NULL;
793 struct device *dev;
794
795 mutex_lock(&nvmem_mutex);
796 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
797 if (dev)
798 nvmem = to_nvmem_device(dev);
799 mutex_unlock(&nvmem_mutex);
800 if (!nvmem)
801 return ERR_PTR(-EPROBE_DEFER);
802
803 if (!try_module_get(nvmem->owner)) {
804 dev_err(&nvmem->dev,
805 "could not increase module refcount for cell %s\n",
806 nvmem_dev_name(nvmem));
807
808 put_device(&nvmem->dev);
809 return ERR_PTR(-EINVAL);
810 }
811
812 kref_get(&nvmem->refcnt);
813
814 return nvmem;
815}
816
817static void __nvmem_device_put(struct nvmem_device *nvmem)
818{
819 put_device(&nvmem->dev);
820 module_put(nvmem->owner);
821 kref_put(&nvmem->refcnt, nvmem_device_release);
822}
823
824#if IS_ENABLED(CONFIG_OF)
825/**
826 * of_nvmem_device_get() - Get nvmem device from a given id
827 *
828 * @np: Device tree node that uses the nvmem device.
829 * @id: nvmem name from nvmem-names property.
830 *
831 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
832 * on success.
833 */
834struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
835{
836
837 struct device_node *nvmem_np;
838 int index = 0;
839
840 if (id)
841 index = of_property_match_string(np, "nvmem-names", id);
842
843 nvmem_np = of_parse_phandle(np, "nvmem", index);
844 if (!nvmem_np)
845 return ERR_PTR(-ENOENT);
846
847 return __nvmem_device_get(nvmem_np, device_match_of_node);
848}
849EXPORT_SYMBOL_GPL(of_nvmem_device_get);
850#endif
851
852/**
853 * nvmem_device_get() - Get nvmem device from a given id
854 *
855 * @dev: Device that uses the nvmem device.
856 * @dev_name: name of the requested nvmem device.
857 *
858 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
859 * on success.
860 */
861struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
862{
863 if (dev->of_node) { /* try dt first */
864 struct nvmem_device *nvmem;
865
866 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
867
868 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
869 return nvmem;
870
871 }
872
873 return __nvmem_device_get((void *)dev_name, device_match_name);
874}
875EXPORT_SYMBOL_GPL(nvmem_device_get);
876
877/**
878 * nvmem_device_find() - Find nvmem device with matching function
879 *
880 * @data: Data to pass to match function
881 * @match: Callback function to check device
882 *
883 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
884 * on success.
885 */
886struct nvmem_device *nvmem_device_find(void *data,
887 int (*match)(struct device *dev, const void *data))
888{
889 return __nvmem_device_get(data, match);
890}
891EXPORT_SYMBOL_GPL(nvmem_device_find);
892
893static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
894{
895 struct nvmem_device **nvmem = res;
896
897 if (WARN_ON(!nvmem || !*nvmem))
898 return 0;
899
900 return *nvmem == data;
901}
902
903static void devm_nvmem_device_release(struct device *dev, void *res)
904{
905 nvmem_device_put(*(struct nvmem_device **)res);
906}
907
908/**
909 * devm_nvmem_device_put() - put alredy got nvmem device
910 *
911 * @dev: Device that uses the nvmem device.
912 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
913 * that needs to be released.
914 */
915void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
916{
917 int ret;
918
919 ret = devres_release(dev, devm_nvmem_device_release,
920 devm_nvmem_device_match, nvmem);
921
922 WARN_ON(ret);
923}
924EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
925
926/**
927 * nvmem_device_put() - put alredy got nvmem device
928 *
929 * @nvmem: pointer to nvmem device that needs to be released.
930 */
931void nvmem_device_put(struct nvmem_device *nvmem)
932{
933 __nvmem_device_put(nvmem);
934}
935EXPORT_SYMBOL_GPL(nvmem_device_put);
936
937/**
938 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
939 *
940 * @dev: Device that requests the nvmem device.
941 * @id: name id for the requested nvmem device.
942 *
943 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
944 * on success. The nvmem_cell will be freed by the automatically once the
945 * device is freed.
946 */
947struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
948{
949 struct nvmem_device **ptr, *nvmem;
950
951 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
952 if (!ptr)
953 return ERR_PTR(-ENOMEM);
954
955 nvmem = nvmem_device_get(dev, id);
956 if (!IS_ERR(nvmem)) {
957 *ptr = nvmem;
958 devres_add(dev, ptr);
959 } else {
960 devres_free(ptr);
961 }
962
963 return nvmem;
964}
965EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
966
967static struct nvmem_cell *
968nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
969{
970 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
971 struct nvmem_cell_lookup *lookup;
972 struct nvmem_device *nvmem;
973 const char *dev_id;
974
975 if (!dev)
976 return ERR_PTR(-EINVAL);
977
978 dev_id = dev_name(dev);
979
980 mutex_lock(&nvmem_lookup_mutex);
981
982 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
983 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
984 (strcmp(lookup->con_id, con_id) == 0)) {
985 /* This is the right entry. */
986 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
987 device_match_name);
988 if (IS_ERR(nvmem)) {
989 /* Provider may not be registered yet. */
990 cell = ERR_CAST(nvmem);
991 break;
992 }
993
994 cell = nvmem_find_cell_by_name(nvmem,
995 lookup->cell_name);
996 if (!cell) {
997 __nvmem_device_put(nvmem);
998 cell = ERR_PTR(-ENOENT);
999 }
1000 break;
1001 }
1002 }
1003
1004 mutex_unlock(&nvmem_lookup_mutex);
1005 return cell;
1006}
1007
1008#if IS_ENABLED(CONFIG_OF)
1009static struct nvmem_cell *
1010nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1011{
1012 struct nvmem_cell *iter, *cell = NULL;
1013
1014 mutex_lock(&nvmem_mutex);
1015 list_for_each_entry(iter, &nvmem->cells, node) {
1016 if (np == iter->np) {
1017 cell = iter;
1018 break;
1019 }
1020 }
1021 mutex_unlock(&nvmem_mutex);
1022
1023 return cell;
1024}
1025
1026/**
1027 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1028 *
1029 * @np: Device tree node that uses the nvmem cell.
1030 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1031 * for the cell at index 0 (the lone cell with no accompanying
1032 * nvmem-cell-names property).
1033 *
1034 * Return: Will be an ERR_PTR() on error or a valid pointer
1035 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1036 * nvmem_cell_put().
1037 */
1038struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1039{
1040 struct device_node *cell_np, *nvmem_np;
1041 struct nvmem_device *nvmem;
1042 struct nvmem_cell *cell;
1043 int index = 0;
1044
1045 /* if cell name exists, find index to the name */
1046 if (id)
1047 index = of_property_match_string(np, "nvmem-cell-names", id);
1048
1049 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1050 if (!cell_np)
1051 return ERR_PTR(-ENOENT);
1052
1053 nvmem_np = of_get_next_parent(cell_np);
1054 if (!nvmem_np)
1055 return ERR_PTR(-EINVAL);
1056
1057 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1058 of_node_put(nvmem_np);
1059 if (IS_ERR(nvmem))
1060 return ERR_CAST(nvmem);
1061
1062 cell = nvmem_find_cell_by_node(nvmem, cell_np);
1063 if (!cell) {
1064 __nvmem_device_put(nvmem);
1065 return ERR_PTR(-ENOENT);
1066 }
1067
1068 return cell;
1069}
1070EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1071#endif
1072
1073/**
1074 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1075 *
1076 * @dev: Device that requests the nvmem cell.
1077 * @id: nvmem cell name to get (this corresponds with the name from the
1078 * nvmem-cell-names property for DT systems and with the con_id from
1079 * the lookup entry for non-DT systems).
1080 *
1081 * Return: Will be an ERR_PTR() on error or a valid pointer
1082 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1083 * nvmem_cell_put().
1084 */
1085struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1086{
1087 struct nvmem_cell *cell;
1088
1089 if (dev->of_node) { /* try dt first */
1090 cell = of_nvmem_cell_get(dev->of_node, id);
1091 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1092 return cell;
1093 }
1094
1095 /* NULL cell id only allowed for device tree; invalid otherwise */
1096 if (!id)
1097 return ERR_PTR(-EINVAL);
1098
1099 return nvmem_cell_get_from_lookup(dev, id);
1100}
1101EXPORT_SYMBOL_GPL(nvmem_cell_get);
1102
1103static void devm_nvmem_cell_release(struct device *dev, void *res)
1104{
1105 nvmem_cell_put(*(struct nvmem_cell **)res);
1106}
1107
1108/**
1109 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1110 *
1111 * @dev: Device that requests the nvmem cell.
1112 * @id: nvmem cell name id to get.
1113 *
1114 * Return: Will be an ERR_PTR() on error or a valid pointer
1115 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1116 * automatically once the device is freed.
1117 */
1118struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1119{
1120 struct nvmem_cell **ptr, *cell;
1121
1122 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1123 if (!ptr)
1124 return ERR_PTR(-ENOMEM);
1125
1126 cell = nvmem_cell_get(dev, id);
1127 if (!IS_ERR(cell)) {
1128 *ptr = cell;
1129 devres_add(dev, ptr);
1130 } else {
1131 devres_free(ptr);
1132 }
1133
1134 return cell;
1135}
1136EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1137
1138static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1139{
1140 struct nvmem_cell **c = res;
1141
1142 if (WARN_ON(!c || !*c))
1143 return 0;
1144
1145 return *c == data;
1146}
1147
1148/**
1149 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1150 * from devm_nvmem_cell_get.
1151 *
1152 * @dev: Device that requests the nvmem cell.
1153 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1154 */
1155void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1156{
1157 int ret;
1158
1159 ret = devres_release(dev, devm_nvmem_cell_release,
1160 devm_nvmem_cell_match, cell);
1161
1162 WARN_ON(ret);
1163}
1164EXPORT_SYMBOL(devm_nvmem_cell_put);
1165
1166/**
1167 * nvmem_cell_put() - Release previously allocated nvmem cell.
1168 *
1169 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1170 */
1171void nvmem_cell_put(struct nvmem_cell *cell)
1172{
1173 struct nvmem_device *nvmem = cell->nvmem;
1174
1175 __nvmem_device_put(nvmem);
1176}
1177EXPORT_SYMBOL_GPL(nvmem_cell_put);
1178
1179static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1180{
1181 u8 *p, *b;
1182 int i, extra, bit_offset = cell->bit_offset;
1183
1184 p = b = buf;
1185 if (bit_offset) {
1186 /* First shift */
1187 *b++ >>= bit_offset;
1188
1189 /* setup rest of the bytes if any */
1190 for (i = 1; i < cell->bytes; i++) {
1191 /* Get bits from next byte and shift them towards msb */
1192 *p |= *b << (BITS_PER_BYTE - bit_offset);
1193
1194 p = b;
1195 *b++ >>= bit_offset;
1196 }
1197 } else {
1198 /* point to the msb */
1199 p += cell->bytes - 1;
1200 }
1201
1202 /* result fits in less bytes */
1203 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1204 while (--extra >= 0)
1205 *p-- = 0;
1206
1207 /* clear msb bits if any leftover in the last byte */
1208 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1209}
1210
1211static int __nvmem_cell_read(struct nvmem_device *nvmem,
1212 struct nvmem_cell *cell,
1213 void *buf, size_t *len)
1214{
1215 int rc;
1216
1217 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1218
1219 if (rc)
1220 return rc;
1221
1222 /* shift bits in-place */
1223 if (cell->bit_offset || cell->nbits)
1224 nvmem_shift_read_buffer_in_place(cell, buf);
1225
1226 if (len)
1227 *len = cell->bytes;
1228
1229 return 0;
1230}
1231
1232/**
1233 * nvmem_cell_read() - Read a given nvmem cell
1234 *
1235 * @cell: nvmem cell to be read.
1236 * @len: pointer to length of cell which will be populated on successful read;
1237 * can be NULL.
1238 *
1239 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1240 * buffer should be freed by the consumer with a kfree().
1241 */
1242void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1243{
1244 struct nvmem_device *nvmem = cell->nvmem;
1245 u8 *buf;
1246 int rc;
1247
1248 if (!nvmem)
1249 return ERR_PTR(-EINVAL);
1250
1251 buf = kzalloc(cell->bytes, GFP_KERNEL);
1252 if (!buf)
1253 return ERR_PTR(-ENOMEM);
1254
1255 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1256 if (rc) {
1257 kfree(buf);
1258 return ERR_PTR(rc);
1259 }
1260
1261 return buf;
1262}
1263EXPORT_SYMBOL_GPL(nvmem_cell_read);
1264
1265static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1266 u8 *_buf, int len)
1267{
1268 struct nvmem_device *nvmem = cell->nvmem;
1269 int i, rc, nbits, bit_offset = cell->bit_offset;
1270 u8 v, *p, *buf, *b, pbyte, pbits;
1271
1272 nbits = cell->nbits;
1273 buf = kzalloc(cell->bytes, GFP_KERNEL);
1274 if (!buf)
1275 return ERR_PTR(-ENOMEM);
1276
1277 memcpy(buf, _buf, len);
1278 p = b = buf;
1279
1280 if (bit_offset) {
1281 pbyte = *b;
1282 *b <<= bit_offset;
1283
1284 /* setup the first byte with lsb bits from nvmem */
1285 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1286 if (rc)
1287 goto err;
1288 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1289
1290 /* setup rest of the byte if any */
1291 for (i = 1; i < cell->bytes; i++) {
1292 /* Get last byte bits and shift them towards lsb */
1293 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1294 pbyte = *b;
1295 p = b;
1296 *b <<= bit_offset;
1297 *b++ |= pbits;
1298 }
1299 }
1300
1301 /* if it's not end on byte boundary */
1302 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1303 /* setup the last byte with msb bits from nvmem */
1304 rc = nvmem_reg_read(nvmem,
1305 cell->offset + cell->bytes - 1, &v, 1);
1306 if (rc)
1307 goto err;
1308 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1309
1310 }
1311
1312 return buf;
1313err:
1314 kfree(buf);
1315 return ERR_PTR(rc);
1316}
1317
1318/**
1319 * nvmem_cell_write() - Write to a given nvmem cell
1320 *
1321 * @cell: nvmem cell to be written.
1322 * @buf: Buffer to be written.
1323 * @len: length of buffer to be written to nvmem cell.
1324 *
1325 * Return: length of bytes written or negative on failure.
1326 */
1327int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1328{
1329 struct nvmem_device *nvmem = cell->nvmem;
1330 int rc;
1331
1332 if (!nvmem || nvmem->read_only ||
1333 (cell->bit_offset == 0 && len != cell->bytes))
1334 return -EINVAL;
1335
1336 if (cell->bit_offset || cell->nbits) {
1337 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1338 if (IS_ERR(buf))
1339 return PTR_ERR(buf);
1340 }
1341
1342 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1343
1344 /* free the tmp buffer */
1345 if (cell->bit_offset || cell->nbits)
1346 kfree(buf);
1347
1348 if (rc)
1349 return rc;
1350
1351 return len;
1352}
1353EXPORT_SYMBOL_GPL(nvmem_cell_write);
1354
1355static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1356 void *val, size_t count)
1357{
1358 struct nvmem_cell *cell;
1359 void *buf;
1360 size_t len;
1361
1362 cell = nvmem_cell_get(dev, cell_id);
1363 if (IS_ERR(cell))
1364 return PTR_ERR(cell);
1365
1366 buf = nvmem_cell_read(cell, &len);
1367 if (IS_ERR(buf)) {
1368 nvmem_cell_put(cell);
1369 return PTR_ERR(buf);
1370 }
1371 if (len != count) {
1372 kfree(buf);
1373 nvmem_cell_put(cell);
1374 return -EINVAL;
1375 }
1376 memcpy(val, buf, count);
1377 kfree(buf);
1378 nvmem_cell_put(cell);
1379
1380 return 0;
1381}
1382
1383/**
1384 * nvmem_cell_read_u8() - Read a cell value as a u8
1385 *
1386 * @dev: Device that requests the nvmem cell.
1387 * @cell_id: Name of nvmem cell to read.
1388 * @val: pointer to output value.
1389 *
1390 * Return: 0 on success or negative errno.
1391 */
1392int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1393{
1394 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1395}
1396EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1397
1398/**
1399 * nvmem_cell_read_u16() - Read a cell value as a u16
1400 *
1401 * @dev: Device that requests the nvmem cell.
1402 * @cell_id: Name of nvmem cell to read.
1403 * @val: pointer to output value.
1404 *
1405 * Return: 0 on success or negative errno.
1406 */
1407int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1408{
1409 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1410}
1411EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1412
1413/**
1414 * nvmem_cell_read_u32() - Read a cell value as a u32
1415 *
1416 * @dev: Device that requests the nvmem cell.
1417 * @cell_id: Name of nvmem cell to read.
1418 * @val: pointer to output value.
1419 *
1420 * Return: 0 on success or negative errno.
1421 */
1422int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1423{
1424 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1425}
1426EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1427
1428/**
1429 * nvmem_cell_read_u64() - Read a cell value as a u64
1430 *
1431 * @dev: Device that requests the nvmem cell.
1432 * @cell_id: Name of nvmem cell to read.
1433 * @val: pointer to output value.
1434 *
1435 * Return: 0 on success or negative errno.
1436 */
1437int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1438{
1439 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1440}
1441EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1442
1443/**
1444 * nvmem_device_cell_read() - Read a given nvmem device and cell
1445 *
1446 * @nvmem: nvmem device to read from.
1447 * @info: nvmem cell info to be read.
1448 * @buf: buffer pointer which will be populated on successful read.
1449 *
1450 * Return: length of successful bytes read on success and negative
1451 * error code on error.
1452 */
1453ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1454 struct nvmem_cell_info *info, void *buf)
1455{
1456 struct nvmem_cell cell;
1457 int rc;
1458 ssize_t len;
1459
1460 if (!nvmem)
1461 return -EINVAL;
1462
1463 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1464 if (rc)
1465 return rc;
1466
1467 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1468 if (rc)
1469 return rc;
1470
1471 return len;
1472}
1473EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1474
1475/**
1476 * nvmem_device_cell_write() - Write cell to a given nvmem device
1477 *
1478 * @nvmem: nvmem device to be written to.
1479 * @info: nvmem cell info to be written.
1480 * @buf: buffer to be written to cell.
1481 *
1482 * Return: length of bytes written or negative error code on failure.
1483 */
1484int nvmem_device_cell_write(struct nvmem_device *nvmem,
1485 struct nvmem_cell_info *info, void *buf)
1486{
1487 struct nvmem_cell cell;
1488 int rc;
1489
1490 if (!nvmem)
1491 return -EINVAL;
1492
1493 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1494 if (rc)
1495 return rc;
1496
1497 return nvmem_cell_write(&cell, buf, cell.bytes);
1498}
1499EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1500
1501/**
1502 * nvmem_device_read() - Read from a given nvmem device
1503 *
1504 * @nvmem: nvmem device to read from.
1505 * @offset: offset in nvmem device.
1506 * @bytes: number of bytes to read.
1507 * @buf: buffer pointer which will be populated on successful read.
1508 *
1509 * Return: length of successful bytes read on success and negative
1510 * error code on error.
1511 */
1512int nvmem_device_read(struct nvmem_device *nvmem,
1513 unsigned int offset,
1514 size_t bytes, void *buf)
1515{
1516 int rc;
1517
1518 if (!nvmem)
1519 return -EINVAL;
1520
1521 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1522
1523 if (rc)
1524 return rc;
1525
1526 return bytes;
1527}
1528EXPORT_SYMBOL_GPL(nvmem_device_read);
1529
1530/**
1531 * nvmem_device_write() - Write cell to a given nvmem device
1532 *
1533 * @nvmem: nvmem device to be written to.
1534 * @offset: offset in nvmem device.
1535 * @bytes: number of bytes to write.
1536 * @buf: buffer to be written.
1537 *
1538 * Return: length of bytes written or negative error code on failure.
1539 */
1540int nvmem_device_write(struct nvmem_device *nvmem,
1541 unsigned int offset,
1542 size_t bytes, void *buf)
1543{
1544 int rc;
1545
1546 if (!nvmem)
1547 return -EINVAL;
1548
1549 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1550
1551 if (rc)
1552 return rc;
1553
1554
1555 return bytes;
1556}
1557EXPORT_SYMBOL_GPL(nvmem_device_write);
1558
1559/**
1560 * nvmem_add_cell_table() - register a table of cell info entries
1561 *
1562 * @table: table of cell info entries
1563 */
1564void nvmem_add_cell_table(struct nvmem_cell_table *table)
1565{
1566 mutex_lock(&nvmem_cell_mutex);
1567 list_add_tail(&table->node, &nvmem_cell_tables);
1568 mutex_unlock(&nvmem_cell_mutex);
1569}
1570EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1571
1572/**
1573 * nvmem_del_cell_table() - remove a previously registered cell info table
1574 *
1575 * @table: table of cell info entries
1576 */
1577void nvmem_del_cell_table(struct nvmem_cell_table *table)
1578{
1579 mutex_lock(&nvmem_cell_mutex);
1580 list_del(&table->node);
1581 mutex_unlock(&nvmem_cell_mutex);
1582}
1583EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1584
1585/**
1586 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1587 *
1588 * @entries: array of cell lookup entries
1589 * @nentries: number of cell lookup entries in the array
1590 */
1591void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1592{
1593 int i;
1594
1595 mutex_lock(&nvmem_lookup_mutex);
1596 for (i = 0; i < nentries; i++)
1597 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1598 mutex_unlock(&nvmem_lookup_mutex);
1599}
1600EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1601
1602/**
1603 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1604 * entries
1605 *
1606 * @entries: array of cell lookup entries
1607 * @nentries: number of cell lookup entries in the array
1608 */
1609void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1610{
1611 int i;
1612
1613 mutex_lock(&nvmem_lookup_mutex);
1614 for (i = 0; i < nentries; i++)
1615 list_del(&entries[i].node);
1616 mutex_unlock(&nvmem_lookup_mutex);
1617}
1618EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1619
1620/**
1621 * nvmem_dev_name() - Get the name of a given nvmem device.
1622 *
1623 * @nvmem: nvmem device.
1624 *
1625 * Return: name of the nvmem device.
1626 */
1627const char *nvmem_dev_name(struct nvmem_device *nvmem)
1628{
1629 return dev_name(&nvmem->dev);
1630}
1631EXPORT_SYMBOL_GPL(nvmem_dev_name);
1632
1633static int __init nvmem_init(void)
1634{
1635 return bus_register(&nvmem_bus_type);
1636}
1637
1638static void __exit nvmem_exit(void)
1639{
1640 bus_unregister(&nvmem_bus_type);
1641}
1642
1643subsys_initcall(nvmem_init);
1644module_exit(nvmem_exit);
1645
1646MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1647MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1648MODULE_DESCRIPTION("nvmem Driver Core");
1649MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/of.h>
19#include <linux/slab.h>
20#include "nvmem.h"
21
22struct nvmem_cell {
23 const char *name;
24 int offset;
25 int bytes;
26 int bit_offset;
27 int nbits;
28 struct device_node *np;
29 struct nvmem_device *nvmem;
30 struct list_head node;
31};
32
33static DEFINE_MUTEX(nvmem_mutex);
34static DEFINE_IDA(nvmem_ida);
35
36static DEFINE_MUTEX(nvmem_cell_mutex);
37static LIST_HEAD(nvmem_cell_tables);
38
39static DEFINE_MUTEX(nvmem_lookup_mutex);
40static LIST_HEAD(nvmem_lookup_list);
41
42static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
43
44
45static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
46 void *val, size_t bytes)
47{
48 if (nvmem->reg_read)
49 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
50
51 return -EINVAL;
52}
53
54static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
55 void *val, size_t bytes)
56{
57 if (nvmem->reg_write)
58 return nvmem->reg_write(nvmem->priv, offset, val, bytes);
59
60 return -EINVAL;
61}
62
63static void nvmem_release(struct device *dev)
64{
65 struct nvmem_device *nvmem = to_nvmem_device(dev);
66
67 ida_simple_remove(&nvmem_ida, nvmem->id);
68 kfree(nvmem);
69}
70
71static const struct device_type nvmem_provider_type = {
72 .release = nvmem_release,
73};
74
75static struct bus_type nvmem_bus_type = {
76 .name = "nvmem",
77};
78
79static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
80{
81 struct device *d;
82
83 if (!nvmem_np)
84 return NULL;
85
86 d = bus_find_device_by_of_node(&nvmem_bus_type, nvmem_np);
87
88 if (!d)
89 return NULL;
90
91 return to_nvmem_device(d);
92}
93
94static struct nvmem_device *nvmem_find(const char *name)
95{
96 struct device *d;
97
98 d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
99
100 if (!d)
101 return NULL;
102
103 return to_nvmem_device(d);
104}
105
106static void nvmem_cell_drop(struct nvmem_cell *cell)
107{
108 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
109 mutex_lock(&nvmem_mutex);
110 list_del(&cell->node);
111 mutex_unlock(&nvmem_mutex);
112 of_node_put(cell->np);
113 kfree(cell->name);
114 kfree(cell);
115}
116
117static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
118{
119 struct nvmem_cell *cell, *p;
120
121 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
122 nvmem_cell_drop(cell);
123}
124
125static void nvmem_cell_add(struct nvmem_cell *cell)
126{
127 mutex_lock(&nvmem_mutex);
128 list_add_tail(&cell->node, &cell->nvmem->cells);
129 mutex_unlock(&nvmem_mutex);
130 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
131}
132
133static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
134 const struct nvmem_cell_info *info,
135 struct nvmem_cell *cell)
136{
137 cell->nvmem = nvmem;
138 cell->offset = info->offset;
139 cell->bytes = info->bytes;
140 cell->name = info->name;
141
142 cell->bit_offset = info->bit_offset;
143 cell->nbits = info->nbits;
144
145 if (cell->nbits)
146 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
147 BITS_PER_BYTE);
148
149 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
150 dev_err(&nvmem->dev,
151 "cell %s unaligned to nvmem stride %d\n",
152 cell->name, nvmem->stride);
153 return -EINVAL;
154 }
155
156 return 0;
157}
158
159/**
160 * nvmem_add_cells() - Add cell information to an nvmem device
161 *
162 * @nvmem: nvmem device to add cells to.
163 * @info: nvmem cell info to add to the device
164 * @ncells: number of cells in info
165 *
166 * Return: 0 or negative error code on failure.
167 */
168static int nvmem_add_cells(struct nvmem_device *nvmem,
169 const struct nvmem_cell_info *info,
170 int ncells)
171{
172 struct nvmem_cell **cells;
173 int i, rval;
174
175 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
176 if (!cells)
177 return -ENOMEM;
178
179 for (i = 0; i < ncells; i++) {
180 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
181 if (!cells[i]) {
182 rval = -ENOMEM;
183 goto err;
184 }
185
186 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
187 if (rval) {
188 kfree(cells[i]);
189 goto err;
190 }
191
192 nvmem_cell_add(cells[i]);
193 }
194
195 /* remove tmp array */
196 kfree(cells);
197
198 return 0;
199err:
200 while (i--)
201 nvmem_cell_drop(cells[i]);
202
203 kfree(cells);
204
205 return rval;
206}
207
208/**
209 * nvmem_register_notifier() - Register a notifier block for nvmem events.
210 *
211 * @nb: notifier block to be called on nvmem events.
212 *
213 * Return: 0 on success, negative error number on failure.
214 */
215int nvmem_register_notifier(struct notifier_block *nb)
216{
217 return blocking_notifier_chain_register(&nvmem_notifier, nb);
218}
219EXPORT_SYMBOL_GPL(nvmem_register_notifier);
220
221/**
222 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
223 *
224 * @nb: notifier block to be unregistered.
225 *
226 * Return: 0 on success, negative error number on failure.
227 */
228int nvmem_unregister_notifier(struct notifier_block *nb)
229{
230 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
231}
232EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
233
234static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
235{
236 const struct nvmem_cell_info *info;
237 struct nvmem_cell_table *table;
238 struct nvmem_cell *cell;
239 int rval = 0, i;
240
241 mutex_lock(&nvmem_cell_mutex);
242 list_for_each_entry(table, &nvmem_cell_tables, node) {
243 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
244 for (i = 0; i < table->ncells; i++) {
245 info = &table->cells[i];
246
247 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
248 if (!cell) {
249 rval = -ENOMEM;
250 goto out;
251 }
252
253 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
254 info,
255 cell);
256 if (rval) {
257 kfree(cell);
258 goto out;
259 }
260
261 nvmem_cell_add(cell);
262 }
263 }
264 }
265
266out:
267 mutex_unlock(&nvmem_cell_mutex);
268 return rval;
269}
270
271static struct nvmem_cell *
272nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
273{
274 struct nvmem_cell *iter, *cell = NULL;
275
276 mutex_lock(&nvmem_mutex);
277 list_for_each_entry(iter, &nvmem->cells, node) {
278 if (strcmp(cell_id, iter->name) == 0) {
279 cell = iter;
280 break;
281 }
282 }
283 mutex_unlock(&nvmem_mutex);
284
285 return cell;
286}
287
288static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
289{
290 struct device_node *parent, *child;
291 struct device *dev = &nvmem->dev;
292 struct nvmem_cell *cell;
293 const __be32 *addr;
294 int len;
295
296 parent = dev->of_node;
297
298 for_each_child_of_node(parent, child) {
299 addr = of_get_property(child, "reg", &len);
300 if (!addr || (len < 2 * sizeof(u32))) {
301 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
302 return -EINVAL;
303 }
304
305 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
306 if (!cell)
307 return -ENOMEM;
308
309 cell->nvmem = nvmem;
310 cell->np = of_node_get(child);
311 cell->offset = be32_to_cpup(addr++);
312 cell->bytes = be32_to_cpup(addr);
313 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
314
315 addr = of_get_property(child, "bits", &len);
316 if (addr && len == (2 * sizeof(u32))) {
317 cell->bit_offset = be32_to_cpup(addr++);
318 cell->nbits = be32_to_cpup(addr);
319 }
320
321 if (cell->nbits)
322 cell->bytes = DIV_ROUND_UP(
323 cell->nbits + cell->bit_offset,
324 BITS_PER_BYTE);
325
326 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
327 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
328 cell->name, nvmem->stride);
329 /* Cells already added will be freed later. */
330 kfree(cell->name);
331 kfree(cell);
332 return -EINVAL;
333 }
334
335 nvmem_cell_add(cell);
336 }
337
338 return 0;
339}
340
341/**
342 * nvmem_register() - Register a nvmem device for given nvmem_config.
343 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
344 *
345 * @config: nvmem device configuration with which nvmem device is created.
346 *
347 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
348 * on success.
349 */
350
351struct nvmem_device *nvmem_register(const struct nvmem_config *config)
352{
353 struct nvmem_device *nvmem;
354 int rval;
355
356 if (!config->dev)
357 return ERR_PTR(-EINVAL);
358
359 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
360 if (!nvmem)
361 return ERR_PTR(-ENOMEM);
362
363 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
364 if (rval < 0) {
365 kfree(nvmem);
366 return ERR_PTR(rval);
367 }
368
369 kref_init(&nvmem->refcnt);
370 INIT_LIST_HEAD(&nvmem->cells);
371
372 nvmem->id = rval;
373 nvmem->owner = config->owner;
374 if (!nvmem->owner && config->dev->driver)
375 nvmem->owner = config->dev->driver->owner;
376 nvmem->stride = config->stride ?: 1;
377 nvmem->word_size = config->word_size ?: 1;
378 nvmem->size = config->size;
379 nvmem->dev.type = &nvmem_provider_type;
380 nvmem->dev.bus = &nvmem_bus_type;
381 nvmem->dev.parent = config->dev;
382 nvmem->priv = config->priv;
383 nvmem->type = config->type;
384 nvmem->reg_read = config->reg_read;
385 nvmem->reg_write = config->reg_write;
386 if (!config->no_of_node)
387 nvmem->dev.of_node = config->dev->of_node;
388
389 if (config->id == -1 && config->name) {
390 dev_set_name(&nvmem->dev, "%s", config->name);
391 } else {
392 dev_set_name(&nvmem->dev, "%s%d",
393 config->name ? : "nvmem",
394 config->name ? config->id : nvmem->id);
395 }
396
397 nvmem->read_only = device_property_present(config->dev, "read-only") ||
398 config->read_only || !nvmem->reg_write;
399
400 nvmem->dev.groups = nvmem_sysfs_get_groups(nvmem, config);
401
402 device_initialize(&nvmem->dev);
403
404 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
405
406 rval = device_add(&nvmem->dev);
407 if (rval)
408 goto err_put_device;
409
410 if (config->compat) {
411 rval = nvmem_sysfs_setup_compat(nvmem, config);
412 if (rval)
413 goto err_device_del;
414 }
415
416 if (config->cells) {
417 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
418 if (rval)
419 goto err_teardown_compat;
420 }
421
422 rval = nvmem_add_cells_from_table(nvmem);
423 if (rval)
424 goto err_remove_cells;
425
426 rval = nvmem_add_cells_from_of(nvmem);
427 if (rval)
428 goto err_remove_cells;
429
430 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
431
432 return nvmem;
433
434err_remove_cells:
435 nvmem_device_remove_all_cells(nvmem);
436err_teardown_compat:
437 if (config->compat)
438 nvmem_sysfs_remove_compat(nvmem, config);
439err_device_del:
440 device_del(&nvmem->dev);
441err_put_device:
442 put_device(&nvmem->dev);
443
444 return ERR_PTR(rval);
445}
446EXPORT_SYMBOL_GPL(nvmem_register);
447
448static void nvmem_device_release(struct kref *kref)
449{
450 struct nvmem_device *nvmem;
451
452 nvmem = container_of(kref, struct nvmem_device, refcnt);
453
454 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
455
456 if (nvmem->flags & FLAG_COMPAT)
457 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
458
459 nvmem_device_remove_all_cells(nvmem);
460 device_del(&nvmem->dev);
461 put_device(&nvmem->dev);
462}
463
464/**
465 * nvmem_unregister() - Unregister previously registered nvmem device
466 *
467 * @nvmem: Pointer to previously registered nvmem device.
468 */
469void nvmem_unregister(struct nvmem_device *nvmem)
470{
471 kref_put(&nvmem->refcnt, nvmem_device_release);
472}
473EXPORT_SYMBOL_GPL(nvmem_unregister);
474
475static void devm_nvmem_release(struct device *dev, void *res)
476{
477 nvmem_unregister(*(struct nvmem_device **)res);
478}
479
480/**
481 * devm_nvmem_register() - Register a managed nvmem device for given
482 * nvmem_config.
483 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
484 *
485 * @dev: Device that uses the nvmem device.
486 * @config: nvmem device configuration with which nvmem device is created.
487 *
488 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
489 * on success.
490 */
491struct nvmem_device *devm_nvmem_register(struct device *dev,
492 const struct nvmem_config *config)
493{
494 struct nvmem_device **ptr, *nvmem;
495
496 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
497 if (!ptr)
498 return ERR_PTR(-ENOMEM);
499
500 nvmem = nvmem_register(config);
501
502 if (!IS_ERR(nvmem)) {
503 *ptr = nvmem;
504 devres_add(dev, ptr);
505 } else {
506 devres_free(ptr);
507 }
508
509 return nvmem;
510}
511EXPORT_SYMBOL_GPL(devm_nvmem_register);
512
513static int devm_nvmem_match(struct device *dev, void *res, void *data)
514{
515 struct nvmem_device **r = res;
516
517 return *r == data;
518}
519
520/**
521 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
522 * device.
523 *
524 * @dev: Device that uses the nvmem device.
525 * @nvmem: Pointer to previously registered nvmem device.
526 *
527 * Return: Will be an negative on error or a zero on success.
528 */
529int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
530{
531 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
532}
533EXPORT_SYMBOL(devm_nvmem_unregister);
534
535static struct nvmem_device *__nvmem_device_get(struct device_node *np,
536 const char *nvmem_name)
537{
538 struct nvmem_device *nvmem = NULL;
539
540 mutex_lock(&nvmem_mutex);
541 nvmem = np ? of_nvmem_find(np) : nvmem_find(nvmem_name);
542 mutex_unlock(&nvmem_mutex);
543 if (!nvmem)
544 return ERR_PTR(-EPROBE_DEFER);
545
546 if (!try_module_get(nvmem->owner)) {
547 dev_err(&nvmem->dev,
548 "could not increase module refcount for cell %s\n",
549 nvmem_dev_name(nvmem));
550
551 put_device(&nvmem->dev);
552 return ERR_PTR(-EINVAL);
553 }
554
555 kref_get(&nvmem->refcnt);
556
557 return nvmem;
558}
559
560static void __nvmem_device_put(struct nvmem_device *nvmem)
561{
562 put_device(&nvmem->dev);
563 module_put(nvmem->owner);
564 kref_put(&nvmem->refcnt, nvmem_device_release);
565}
566
567#if IS_ENABLED(CONFIG_OF)
568/**
569 * of_nvmem_device_get() - Get nvmem device from a given id
570 *
571 * @np: Device tree node that uses the nvmem device.
572 * @id: nvmem name from nvmem-names property.
573 *
574 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
575 * on success.
576 */
577struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
578{
579
580 struct device_node *nvmem_np;
581 int index = 0;
582
583 if (id)
584 index = of_property_match_string(np, "nvmem-names", id);
585
586 nvmem_np = of_parse_phandle(np, "nvmem", index);
587 if (!nvmem_np)
588 return ERR_PTR(-ENOENT);
589
590 return __nvmem_device_get(nvmem_np, NULL);
591}
592EXPORT_SYMBOL_GPL(of_nvmem_device_get);
593#endif
594
595/**
596 * nvmem_device_get() - Get nvmem device from a given id
597 *
598 * @dev: Device that uses the nvmem device.
599 * @dev_name: name of the requested nvmem device.
600 *
601 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
602 * on success.
603 */
604struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
605{
606 if (dev->of_node) { /* try dt first */
607 struct nvmem_device *nvmem;
608
609 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
610
611 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
612 return nvmem;
613
614 }
615
616 return __nvmem_device_get(NULL, dev_name);
617}
618EXPORT_SYMBOL_GPL(nvmem_device_get);
619
620static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
621{
622 struct nvmem_device **nvmem = res;
623
624 if (WARN_ON(!nvmem || !*nvmem))
625 return 0;
626
627 return *nvmem == data;
628}
629
630static void devm_nvmem_device_release(struct device *dev, void *res)
631{
632 nvmem_device_put(*(struct nvmem_device **)res);
633}
634
635/**
636 * devm_nvmem_device_put() - put alredy got nvmem device
637 *
638 * @dev: Device that uses the nvmem device.
639 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
640 * that needs to be released.
641 */
642void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
643{
644 int ret;
645
646 ret = devres_release(dev, devm_nvmem_device_release,
647 devm_nvmem_device_match, nvmem);
648
649 WARN_ON(ret);
650}
651EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
652
653/**
654 * nvmem_device_put() - put alredy got nvmem device
655 *
656 * @nvmem: pointer to nvmem device that needs to be released.
657 */
658void nvmem_device_put(struct nvmem_device *nvmem)
659{
660 __nvmem_device_put(nvmem);
661}
662EXPORT_SYMBOL_GPL(nvmem_device_put);
663
664/**
665 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
666 *
667 * @dev: Device that requests the nvmem device.
668 * @id: name id for the requested nvmem device.
669 *
670 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
671 * on success. The nvmem_cell will be freed by the automatically once the
672 * device is freed.
673 */
674struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
675{
676 struct nvmem_device **ptr, *nvmem;
677
678 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
679 if (!ptr)
680 return ERR_PTR(-ENOMEM);
681
682 nvmem = nvmem_device_get(dev, id);
683 if (!IS_ERR(nvmem)) {
684 *ptr = nvmem;
685 devres_add(dev, ptr);
686 } else {
687 devres_free(ptr);
688 }
689
690 return nvmem;
691}
692EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
693
694static struct nvmem_cell *
695nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
696{
697 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
698 struct nvmem_cell_lookup *lookup;
699 struct nvmem_device *nvmem;
700 const char *dev_id;
701
702 if (!dev)
703 return ERR_PTR(-EINVAL);
704
705 dev_id = dev_name(dev);
706
707 mutex_lock(&nvmem_lookup_mutex);
708
709 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
710 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
711 (strcmp(lookup->con_id, con_id) == 0)) {
712 /* This is the right entry. */
713 nvmem = __nvmem_device_get(NULL, lookup->nvmem_name);
714 if (IS_ERR(nvmem)) {
715 /* Provider may not be registered yet. */
716 cell = ERR_CAST(nvmem);
717 break;
718 }
719
720 cell = nvmem_find_cell_by_name(nvmem,
721 lookup->cell_name);
722 if (!cell) {
723 __nvmem_device_put(nvmem);
724 cell = ERR_PTR(-ENOENT);
725 }
726 break;
727 }
728 }
729
730 mutex_unlock(&nvmem_lookup_mutex);
731 return cell;
732}
733
734#if IS_ENABLED(CONFIG_OF)
735static struct nvmem_cell *
736nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
737{
738 struct nvmem_cell *iter, *cell = NULL;
739
740 mutex_lock(&nvmem_mutex);
741 list_for_each_entry(iter, &nvmem->cells, node) {
742 if (np == iter->np) {
743 cell = iter;
744 break;
745 }
746 }
747 mutex_unlock(&nvmem_mutex);
748
749 return cell;
750}
751
752/**
753 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
754 *
755 * @np: Device tree node that uses the nvmem cell.
756 * @id: nvmem cell name from nvmem-cell-names property, or NULL
757 * for the cell at index 0 (the lone cell with no accompanying
758 * nvmem-cell-names property).
759 *
760 * Return: Will be an ERR_PTR() on error or a valid pointer
761 * to a struct nvmem_cell. The nvmem_cell will be freed by the
762 * nvmem_cell_put().
763 */
764struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
765{
766 struct device_node *cell_np, *nvmem_np;
767 struct nvmem_device *nvmem;
768 struct nvmem_cell *cell;
769 int index = 0;
770
771 /* if cell name exists, find index to the name */
772 if (id)
773 index = of_property_match_string(np, "nvmem-cell-names", id);
774
775 cell_np = of_parse_phandle(np, "nvmem-cells", index);
776 if (!cell_np)
777 return ERR_PTR(-ENOENT);
778
779 nvmem_np = of_get_next_parent(cell_np);
780 if (!nvmem_np)
781 return ERR_PTR(-EINVAL);
782
783 nvmem = __nvmem_device_get(nvmem_np, NULL);
784 of_node_put(nvmem_np);
785 if (IS_ERR(nvmem))
786 return ERR_CAST(nvmem);
787
788 cell = nvmem_find_cell_by_node(nvmem, cell_np);
789 if (!cell) {
790 __nvmem_device_put(nvmem);
791 return ERR_PTR(-ENOENT);
792 }
793
794 return cell;
795}
796EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
797#endif
798
799/**
800 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
801 *
802 * @dev: Device that requests the nvmem cell.
803 * @id: nvmem cell name to get (this corresponds with the name from the
804 * nvmem-cell-names property for DT systems and with the con_id from
805 * the lookup entry for non-DT systems).
806 *
807 * Return: Will be an ERR_PTR() on error or a valid pointer
808 * to a struct nvmem_cell. The nvmem_cell will be freed by the
809 * nvmem_cell_put().
810 */
811struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
812{
813 struct nvmem_cell *cell;
814
815 if (dev->of_node) { /* try dt first */
816 cell = of_nvmem_cell_get(dev->of_node, id);
817 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
818 return cell;
819 }
820
821 /* NULL cell id only allowed for device tree; invalid otherwise */
822 if (!id)
823 return ERR_PTR(-EINVAL);
824
825 return nvmem_cell_get_from_lookup(dev, id);
826}
827EXPORT_SYMBOL_GPL(nvmem_cell_get);
828
829static void devm_nvmem_cell_release(struct device *dev, void *res)
830{
831 nvmem_cell_put(*(struct nvmem_cell **)res);
832}
833
834/**
835 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
836 *
837 * @dev: Device that requests the nvmem cell.
838 * @id: nvmem cell name id to get.
839 *
840 * Return: Will be an ERR_PTR() on error or a valid pointer
841 * to a struct nvmem_cell. The nvmem_cell will be freed by the
842 * automatically once the device is freed.
843 */
844struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
845{
846 struct nvmem_cell **ptr, *cell;
847
848 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
849 if (!ptr)
850 return ERR_PTR(-ENOMEM);
851
852 cell = nvmem_cell_get(dev, id);
853 if (!IS_ERR(cell)) {
854 *ptr = cell;
855 devres_add(dev, ptr);
856 } else {
857 devres_free(ptr);
858 }
859
860 return cell;
861}
862EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
863
864static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
865{
866 struct nvmem_cell **c = res;
867
868 if (WARN_ON(!c || !*c))
869 return 0;
870
871 return *c == data;
872}
873
874/**
875 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
876 * from devm_nvmem_cell_get.
877 *
878 * @dev: Device that requests the nvmem cell.
879 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
880 */
881void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
882{
883 int ret;
884
885 ret = devres_release(dev, devm_nvmem_cell_release,
886 devm_nvmem_cell_match, cell);
887
888 WARN_ON(ret);
889}
890EXPORT_SYMBOL(devm_nvmem_cell_put);
891
892/**
893 * nvmem_cell_put() - Release previously allocated nvmem cell.
894 *
895 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
896 */
897void nvmem_cell_put(struct nvmem_cell *cell)
898{
899 struct nvmem_device *nvmem = cell->nvmem;
900
901 __nvmem_device_put(nvmem);
902}
903EXPORT_SYMBOL_GPL(nvmem_cell_put);
904
905static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
906{
907 u8 *p, *b;
908 int i, extra, bit_offset = cell->bit_offset;
909
910 p = b = buf;
911 if (bit_offset) {
912 /* First shift */
913 *b++ >>= bit_offset;
914
915 /* setup rest of the bytes if any */
916 for (i = 1; i < cell->bytes; i++) {
917 /* Get bits from next byte and shift them towards msb */
918 *p |= *b << (BITS_PER_BYTE - bit_offset);
919
920 p = b;
921 *b++ >>= bit_offset;
922 }
923 } else {
924 /* point to the msb */
925 p += cell->bytes - 1;
926 }
927
928 /* result fits in less bytes */
929 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
930 while (--extra >= 0)
931 *p-- = 0;
932
933 /* clear msb bits if any leftover in the last byte */
934 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
935}
936
937static int __nvmem_cell_read(struct nvmem_device *nvmem,
938 struct nvmem_cell *cell,
939 void *buf, size_t *len)
940{
941 int rc;
942
943 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
944
945 if (rc)
946 return rc;
947
948 /* shift bits in-place */
949 if (cell->bit_offset || cell->nbits)
950 nvmem_shift_read_buffer_in_place(cell, buf);
951
952 if (len)
953 *len = cell->bytes;
954
955 return 0;
956}
957
958/**
959 * nvmem_cell_read() - Read a given nvmem cell
960 *
961 * @cell: nvmem cell to be read.
962 * @len: pointer to length of cell which will be populated on successful read;
963 * can be NULL.
964 *
965 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
966 * buffer should be freed by the consumer with a kfree().
967 */
968void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
969{
970 struct nvmem_device *nvmem = cell->nvmem;
971 u8 *buf;
972 int rc;
973
974 if (!nvmem)
975 return ERR_PTR(-EINVAL);
976
977 buf = kzalloc(cell->bytes, GFP_KERNEL);
978 if (!buf)
979 return ERR_PTR(-ENOMEM);
980
981 rc = __nvmem_cell_read(nvmem, cell, buf, len);
982 if (rc) {
983 kfree(buf);
984 return ERR_PTR(rc);
985 }
986
987 return buf;
988}
989EXPORT_SYMBOL_GPL(nvmem_cell_read);
990
991static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
992 u8 *_buf, int len)
993{
994 struct nvmem_device *nvmem = cell->nvmem;
995 int i, rc, nbits, bit_offset = cell->bit_offset;
996 u8 v, *p, *buf, *b, pbyte, pbits;
997
998 nbits = cell->nbits;
999 buf = kzalloc(cell->bytes, GFP_KERNEL);
1000 if (!buf)
1001 return ERR_PTR(-ENOMEM);
1002
1003 memcpy(buf, _buf, len);
1004 p = b = buf;
1005
1006 if (bit_offset) {
1007 pbyte = *b;
1008 *b <<= bit_offset;
1009
1010 /* setup the first byte with lsb bits from nvmem */
1011 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1012 if (rc)
1013 goto err;
1014 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1015
1016 /* setup rest of the byte if any */
1017 for (i = 1; i < cell->bytes; i++) {
1018 /* Get last byte bits and shift them towards lsb */
1019 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1020 pbyte = *b;
1021 p = b;
1022 *b <<= bit_offset;
1023 *b++ |= pbits;
1024 }
1025 }
1026
1027 /* if it's not end on byte boundary */
1028 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1029 /* setup the last byte with msb bits from nvmem */
1030 rc = nvmem_reg_read(nvmem,
1031 cell->offset + cell->bytes - 1, &v, 1);
1032 if (rc)
1033 goto err;
1034 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1035
1036 }
1037
1038 return buf;
1039err:
1040 kfree(buf);
1041 return ERR_PTR(rc);
1042}
1043
1044/**
1045 * nvmem_cell_write() - Write to a given nvmem cell
1046 *
1047 * @cell: nvmem cell to be written.
1048 * @buf: Buffer to be written.
1049 * @len: length of buffer to be written to nvmem cell.
1050 *
1051 * Return: length of bytes written or negative on failure.
1052 */
1053int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1054{
1055 struct nvmem_device *nvmem = cell->nvmem;
1056 int rc;
1057
1058 if (!nvmem || nvmem->read_only ||
1059 (cell->bit_offset == 0 && len != cell->bytes))
1060 return -EINVAL;
1061
1062 if (cell->bit_offset || cell->nbits) {
1063 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1064 if (IS_ERR(buf))
1065 return PTR_ERR(buf);
1066 }
1067
1068 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1069
1070 /* free the tmp buffer */
1071 if (cell->bit_offset || cell->nbits)
1072 kfree(buf);
1073
1074 if (rc)
1075 return rc;
1076
1077 return len;
1078}
1079EXPORT_SYMBOL_GPL(nvmem_cell_write);
1080
1081/**
1082 * nvmem_cell_read_u16() - Read a cell value as an u16
1083 *
1084 * @dev: Device that requests the nvmem cell.
1085 * @cell_id: Name of nvmem cell to read.
1086 * @val: pointer to output value.
1087 *
1088 * Return: 0 on success or negative errno.
1089 */
1090int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1091{
1092 struct nvmem_cell *cell;
1093 void *buf;
1094 size_t len;
1095
1096 cell = nvmem_cell_get(dev, cell_id);
1097 if (IS_ERR(cell))
1098 return PTR_ERR(cell);
1099
1100 buf = nvmem_cell_read(cell, &len);
1101 if (IS_ERR(buf)) {
1102 nvmem_cell_put(cell);
1103 return PTR_ERR(buf);
1104 }
1105 if (len != sizeof(*val)) {
1106 kfree(buf);
1107 nvmem_cell_put(cell);
1108 return -EINVAL;
1109 }
1110 memcpy(val, buf, sizeof(*val));
1111 kfree(buf);
1112 nvmem_cell_put(cell);
1113
1114 return 0;
1115}
1116EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1117
1118/**
1119 * nvmem_cell_read_u32() - Read a cell value as an u32
1120 *
1121 * @dev: Device that requests the nvmem cell.
1122 * @cell_id: Name of nvmem cell to read.
1123 * @val: pointer to output value.
1124 *
1125 * Return: 0 on success or negative errno.
1126 */
1127int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1128{
1129 struct nvmem_cell *cell;
1130 void *buf;
1131 size_t len;
1132
1133 cell = nvmem_cell_get(dev, cell_id);
1134 if (IS_ERR(cell))
1135 return PTR_ERR(cell);
1136
1137 buf = nvmem_cell_read(cell, &len);
1138 if (IS_ERR(buf)) {
1139 nvmem_cell_put(cell);
1140 return PTR_ERR(buf);
1141 }
1142 if (len != sizeof(*val)) {
1143 kfree(buf);
1144 nvmem_cell_put(cell);
1145 return -EINVAL;
1146 }
1147 memcpy(val, buf, sizeof(*val));
1148
1149 kfree(buf);
1150 nvmem_cell_put(cell);
1151 return 0;
1152}
1153EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1154
1155/**
1156 * nvmem_device_cell_read() - Read a given nvmem device and cell
1157 *
1158 * @nvmem: nvmem device to read from.
1159 * @info: nvmem cell info to be read.
1160 * @buf: buffer pointer which will be populated on successful read.
1161 *
1162 * Return: length of successful bytes read on success and negative
1163 * error code on error.
1164 */
1165ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1166 struct nvmem_cell_info *info, void *buf)
1167{
1168 struct nvmem_cell cell;
1169 int rc;
1170 ssize_t len;
1171
1172 if (!nvmem)
1173 return -EINVAL;
1174
1175 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1176 if (rc)
1177 return rc;
1178
1179 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1180 if (rc)
1181 return rc;
1182
1183 return len;
1184}
1185EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1186
1187/**
1188 * nvmem_device_cell_write() - Write cell to a given nvmem device
1189 *
1190 * @nvmem: nvmem device to be written to.
1191 * @info: nvmem cell info to be written.
1192 * @buf: buffer to be written to cell.
1193 *
1194 * Return: length of bytes written or negative error code on failure.
1195 */
1196int nvmem_device_cell_write(struct nvmem_device *nvmem,
1197 struct nvmem_cell_info *info, void *buf)
1198{
1199 struct nvmem_cell cell;
1200 int rc;
1201
1202 if (!nvmem)
1203 return -EINVAL;
1204
1205 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1206 if (rc)
1207 return rc;
1208
1209 return nvmem_cell_write(&cell, buf, cell.bytes);
1210}
1211EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1212
1213/**
1214 * nvmem_device_read() - Read from a given nvmem device
1215 *
1216 * @nvmem: nvmem device to read from.
1217 * @offset: offset in nvmem device.
1218 * @bytes: number of bytes to read.
1219 * @buf: buffer pointer which will be populated on successful read.
1220 *
1221 * Return: length of successful bytes read on success and negative
1222 * error code on error.
1223 */
1224int nvmem_device_read(struct nvmem_device *nvmem,
1225 unsigned int offset,
1226 size_t bytes, void *buf)
1227{
1228 int rc;
1229
1230 if (!nvmem)
1231 return -EINVAL;
1232
1233 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1234
1235 if (rc)
1236 return rc;
1237
1238 return bytes;
1239}
1240EXPORT_SYMBOL_GPL(nvmem_device_read);
1241
1242/**
1243 * nvmem_device_write() - Write cell to a given nvmem device
1244 *
1245 * @nvmem: nvmem device to be written to.
1246 * @offset: offset in nvmem device.
1247 * @bytes: number of bytes to write.
1248 * @buf: buffer to be written.
1249 *
1250 * Return: length of bytes written or negative error code on failure.
1251 */
1252int nvmem_device_write(struct nvmem_device *nvmem,
1253 unsigned int offset,
1254 size_t bytes, void *buf)
1255{
1256 int rc;
1257
1258 if (!nvmem)
1259 return -EINVAL;
1260
1261 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1262
1263 if (rc)
1264 return rc;
1265
1266
1267 return bytes;
1268}
1269EXPORT_SYMBOL_GPL(nvmem_device_write);
1270
1271/**
1272 * nvmem_add_cell_table() - register a table of cell info entries
1273 *
1274 * @table: table of cell info entries
1275 */
1276void nvmem_add_cell_table(struct nvmem_cell_table *table)
1277{
1278 mutex_lock(&nvmem_cell_mutex);
1279 list_add_tail(&table->node, &nvmem_cell_tables);
1280 mutex_unlock(&nvmem_cell_mutex);
1281}
1282EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1283
1284/**
1285 * nvmem_del_cell_table() - remove a previously registered cell info table
1286 *
1287 * @table: table of cell info entries
1288 */
1289void nvmem_del_cell_table(struct nvmem_cell_table *table)
1290{
1291 mutex_lock(&nvmem_cell_mutex);
1292 list_del(&table->node);
1293 mutex_unlock(&nvmem_cell_mutex);
1294}
1295EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1296
1297/**
1298 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1299 *
1300 * @entries: array of cell lookup entries
1301 * @nentries: number of cell lookup entries in the array
1302 */
1303void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1304{
1305 int i;
1306
1307 mutex_lock(&nvmem_lookup_mutex);
1308 for (i = 0; i < nentries; i++)
1309 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1310 mutex_unlock(&nvmem_lookup_mutex);
1311}
1312EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1313
1314/**
1315 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1316 * entries
1317 *
1318 * @entries: array of cell lookup entries
1319 * @nentries: number of cell lookup entries in the array
1320 */
1321void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1322{
1323 int i;
1324
1325 mutex_lock(&nvmem_lookup_mutex);
1326 for (i = 0; i < nentries; i++)
1327 list_del(&entries[i].node);
1328 mutex_unlock(&nvmem_lookup_mutex);
1329}
1330EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1331
1332/**
1333 * nvmem_dev_name() - Get the name of a given nvmem device.
1334 *
1335 * @nvmem: nvmem device.
1336 *
1337 * Return: name of the nvmem device.
1338 */
1339const char *nvmem_dev_name(struct nvmem_device *nvmem)
1340{
1341 return dev_name(&nvmem->dev);
1342}
1343EXPORT_SYMBOL_GPL(nvmem_dev_name);
1344
1345static int __init nvmem_init(void)
1346{
1347 return bus_register(&nvmem_bus_type);
1348}
1349
1350static void __exit nvmem_exit(void)
1351{
1352 bus_unregister(&nvmem_bus_type);
1353}
1354
1355subsys_initcall(nvmem_init);
1356module_exit(nvmem_exit);
1357
1358MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1359MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1360MODULE_DESCRIPTION("nvmem Driver Core");
1361MODULE_LICENSE("GPL v2");