Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
44
45 bool clear_status:1;
46};
47
48static inline const
49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
51{
52 return &data->chip->irqs[irq];
53}
54
55static void regmap_irq_lock(struct irq_data *data)
56{
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59 mutex_lock(&d->lock);
60}
61
62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
65{
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
70}
71
72static void regmap_irq_sync_unlock(struct irq_data *data)
73{
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
80
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
86 }
87
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
92
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
97 }
98
99 d->clear_status = false;
100 }
101
102 /*
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
106 */
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
110
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
134 }
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
138
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
154 }
155
156 if (!d->chip->init_ack_masked)
157 continue;
158 /*
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
162 */
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 reg, ret);
174 }
175 }
176
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d->chip->type_in_mask) {
179 for (i = 0; i < d->chip->num_type_reg; i++) {
180 if (!d->type_buf_def[i])
181 continue;
182 reg = d->chip->type_base +
183 (i * map->reg_stride * d->type_reg_stride);
184 if (d->chip->type_invert)
185 ret = regmap_irq_update_bits(d, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_irq_update_bits(d, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
193 }
194 }
195
196 if (d->chip->runtime_pm)
197 pm_runtime_put(map->dev);
198
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d->wake_count < 0)
201 for (i = d->wake_count; i < 0; i++)
202 irq_set_irq_wake(d->irq, 0);
203 else if (d->wake_count > 0)
204 for (i = 0; i < d->wake_count; i++)
205 irq_set_irq_wake(d->irq, 1);
206
207 d->wake_count = 0;
208
209 mutex_unlock(&d->lock);
210}
211
212static void regmap_irq_enable(struct irq_data *data)
213{
214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 struct regmap *map = d->map;
216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 unsigned int mask, type;
218
219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221 /*
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
225 * configurable edge.
226 *
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
231 */
232 if (d->chip->type_in_mask && type)
233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 else
235 mask = irq_data->mask;
236
237 if (d->chip->clear_on_unmask)
238 d->clear_status = true;
239
240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241}
242
243static void regmap_irq_disable(struct irq_data *data)
244{
245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 struct regmap *map = d->map;
247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250}
251
252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253{
254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 struct regmap *map = d->map;
256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 int reg;
258 const struct regmap_irq_type *t = &irq_data->type;
259
260 if ((t->types_supported & type) != type)
261 return 0;
262
263 reg = t->type_reg_offset / map->reg_stride;
264
265 if (t->type_reg_mask)
266 d->type_buf[reg] &= ~t->type_reg_mask;
267 else
268 d->type_buf[reg] &= ~(t->type_falling_val |
269 t->type_rising_val |
270 t->type_level_low_val |
271 t->type_level_high_val);
272 switch (type) {
273 case IRQ_TYPE_EDGE_FALLING:
274 d->type_buf[reg] |= t->type_falling_val;
275 break;
276
277 case IRQ_TYPE_EDGE_RISING:
278 d->type_buf[reg] |= t->type_rising_val;
279 break;
280
281 case IRQ_TYPE_EDGE_BOTH:
282 d->type_buf[reg] |= (t->type_falling_val |
283 t->type_rising_val);
284 break;
285
286 case IRQ_TYPE_LEVEL_HIGH:
287 d->type_buf[reg] |= t->type_level_high_val;
288 break;
289
290 case IRQ_TYPE_LEVEL_LOW:
291 d->type_buf[reg] |= t->type_level_low_val;
292 break;
293 default:
294 return -EINVAL;
295 }
296 return 0;
297}
298
299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300{
301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 struct regmap *map = d->map;
303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305 if (on) {
306 if (d->wake_buf)
307 d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 &= ~irq_data->mask;
309 d->wake_count++;
310 } else {
311 if (d->wake_buf)
312 d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 |= irq_data->mask;
314 d->wake_count--;
315 }
316
317 return 0;
318}
319
320static const struct irq_chip regmap_irq_chip = {
321 .irq_bus_lock = regmap_irq_lock,
322 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
323 .irq_disable = regmap_irq_disable,
324 .irq_enable = regmap_irq_enable,
325 .irq_set_type = regmap_irq_set_type,
326 .irq_set_wake = regmap_irq_set_wake,
327};
328
329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 unsigned int b)
331{
332 const struct regmap_irq_chip *chip = data->chip;
333 struct regmap *map = data->map;
334 struct regmap_irq_sub_irq_map *subreg;
335 int i, ret = 0;
336
337 if (!chip->sub_reg_offsets) {
338 /* Assume linear mapping */
339 ret = regmap_read(map, chip->status_base +
340 (b * map->reg_stride * data->irq_reg_stride),
341 &data->status_buf[b]);
342 } else {
343 subreg = &chip->sub_reg_offsets[b];
344 for (i = 0; i < subreg->num_regs; i++) {
345 unsigned int offset = subreg->offset[i];
346
347 ret = regmap_read(map, chip->status_base + offset,
348 &data->status_buf[offset]);
349 if (ret)
350 break;
351 }
352 }
353 return ret;
354}
355
356static irqreturn_t regmap_irq_thread(int irq, void *d)
357{
358 struct regmap_irq_chip_data *data = d;
359 const struct regmap_irq_chip *chip = data->chip;
360 struct regmap *map = data->map;
361 int ret, i;
362 bool handled = false;
363 u32 reg;
364
365 if (chip->handle_pre_irq)
366 chip->handle_pre_irq(chip->irq_drv_data);
367
368 if (chip->runtime_pm) {
369 ret = pm_runtime_get_sync(map->dev);
370 if (ret < 0) {
371 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 ret);
373 goto exit;
374 }
375 }
376
377 /*
378 * Read only registers with active IRQs if the chip has 'main status
379 * register'. Else read in the statuses, using a single bulk read if
380 * possible in order to reduce the I/O overheads.
381 */
382
383 if (chip->num_main_regs) {
384 unsigned int max_main_bits;
385 unsigned long size;
386
387 size = chip->num_regs * sizeof(unsigned int);
388
389 max_main_bits = (chip->num_main_status_bits) ?
390 chip->num_main_status_bits : chip->num_regs;
391 /* Clear the status buf as we don't read all status regs */
392 memset(data->status_buf, 0, size);
393
394 /* We could support bulk read for main status registers
395 * but I don't expect to see devices with really many main
396 * status registers so let's only support single reads for the
397 * sake of simplicity. and add bulk reads only if needed
398 */
399 for (i = 0; i < chip->num_main_regs; i++) {
400 ret = regmap_read(map, chip->main_status +
401 (i * map->reg_stride
402 * data->irq_reg_stride),
403 &data->main_status_buf[i]);
404 if (ret) {
405 dev_err(map->dev,
406 "Failed to read IRQ status %d\n",
407 ret);
408 goto exit;
409 }
410 }
411
412 /* Read sub registers with active IRQs */
413 for (i = 0; i < chip->num_main_regs; i++) {
414 unsigned int b;
415 const unsigned long mreg = data->main_status_buf[i];
416
417 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 if (i * map->format.val_bytes * 8 + b >
419 max_main_bits)
420 break;
421 ret = read_sub_irq_data(data, b);
422
423 if (ret != 0) {
424 dev_err(map->dev,
425 "Failed to read IRQ status %d\n",
426 ret);
427 goto exit;
428 }
429 }
430
431 }
432 } else if (!map->use_single_read && map->reg_stride == 1 &&
433 data->irq_reg_stride == 1) {
434
435 u8 *buf8 = data->status_reg_buf;
436 u16 *buf16 = data->status_reg_buf;
437 u32 *buf32 = data->status_reg_buf;
438
439 BUG_ON(!data->status_reg_buf);
440
441 ret = regmap_bulk_read(map, chip->status_base,
442 data->status_reg_buf,
443 chip->num_regs);
444 if (ret != 0) {
445 dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 ret);
447 goto exit;
448 }
449
450 for (i = 0; i < data->chip->num_regs; i++) {
451 switch (map->format.val_bytes) {
452 case 1:
453 data->status_buf[i] = buf8[i];
454 break;
455 case 2:
456 data->status_buf[i] = buf16[i];
457 break;
458 case 4:
459 data->status_buf[i] = buf32[i];
460 break;
461 default:
462 BUG();
463 goto exit;
464 }
465 }
466
467 } else {
468 for (i = 0; i < data->chip->num_regs; i++) {
469 ret = regmap_read(map, chip->status_base +
470 (i * map->reg_stride
471 * data->irq_reg_stride),
472 &data->status_buf[i]);
473
474 if (ret != 0) {
475 dev_err(map->dev,
476 "Failed to read IRQ status: %d\n",
477 ret);
478 goto exit;
479 }
480 }
481 }
482
483 /*
484 * Ignore masked IRQs and ack if we need to; we ack early so
485 * there is no race between handling and acknowleding the
486 * interrupt. We assume that typically few of the interrupts
487 * will fire simultaneously so don't worry about overhead from
488 * doing a write per register.
489 */
490 for (i = 0; i < data->chip->num_regs; i++) {
491 data->status_buf[i] &= ~data->mask_buf[i];
492
493 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 reg = chip->ack_base +
495 (i * map->reg_stride * data->irq_reg_stride);
496 ret = regmap_write(map, reg, data->status_buf[i]);
497 if (ret != 0)
498 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 reg, ret);
500 }
501 }
502
503 for (i = 0; i < chip->num_irqs; i++) {
504 if (data->status_buf[chip->irqs[i].reg_offset /
505 map->reg_stride] & chip->irqs[i].mask) {
506 handle_nested_irq(irq_find_mapping(data->domain, i));
507 handled = true;
508 }
509 }
510
511exit:
512 if (chip->runtime_pm)
513 pm_runtime_put(map->dev);
514
515 if (chip->handle_post_irq)
516 chip->handle_post_irq(chip->irq_drv_data);
517
518 if (handled)
519 return IRQ_HANDLED;
520 else
521 return IRQ_NONE;
522}
523
524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 irq_hw_number_t hw)
526{
527 struct regmap_irq_chip_data *data = h->host_data;
528
529 irq_set_chip_data(virq, data);
530 irq_set_chip(virq, &data->irq_chip);
531 irq_set_nested_thread(virq, 1);
532 irq_set_parent(virq, data->irq);
533 irq_set_noprobe(virq);
534
535 return 0;
536}
537
538static const struct irq_domain_ops regmap_domain_ops = {
539 .map = regmap_irq_map,
540 .xlate = irq_domain_xlate_onetwocell,
541};
542
543/**
544 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
545 *
546 * @fwnode: The firmware node where the IRQ domain should be added to.
547 * @map: The regmap for the device.
548 * @irq: The IRQ the device uses to signal interrupts.
549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551 * @chip: Configuration for the interrupt controller.
552 * @data: Runtime data structure for the controller, allocated on success.
553 *
554 * Returns 0 on success or an errno on failure.
555 *
556 * In order for this to be efficient the chip really should use a
557 * register cache. The chip driver is responsible for restoring the
558 * register values used by the IRQ controller over suspend and resume.
559 */
560int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
561 struct regmap *map, int irq,
562 int irq_flags, int irq_base,
563 const struct regmap_irq_chip *chip,
564 struct regmap_irq_chip_data **data)
565{
566 struct regmap_irq_chip_data *d;
567 int i;
568 int ret = -ENOMEM;
569 int num_type_reg;
570 u32 reg;
571 u32 unmask_offset;
572
573 if (chip->num_regs <= 0)
574 return -EINVAL;
575
576 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
577 return -EINVAL;
578
579 for (i = 0; i < chip->num_irqs; i++) {
580 if (chip->irqs[i].reg_offset % map->reg_stride)
581 return -EINVAL;
582 if (chip->irqs[i].reg_offset / map->reg_stride >=
583 chip->num_regs)
584 return -EINVAL;
585 }
586
587 if (irq_base) {
588 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
589 if (irq_base < 0) {
590 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
591 irq_base);
592 return irq_base;
593 }
594 }
595
596 d = kzalloc(sizeof(*d), GFP_KERNEL);
597 if (!d)
598 return -ENOMEM;
599
600 if (chip->num_main_regs) {
601 d->main_status_buf = kcalloc(chip->num_main_regs,
602 sizeof(unsigned int),
603 GFP_KERNEL);
604
605 if (!d->main_status_buf)
606 goto err_alloc;
607 }
608
609 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
610 GFP_KERNEL);
611 if (!d->status_buf)
612 goto err_alloc;
613
614 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
615 GFP_KERNEL);
616 if (!d->mask_buf)
617 goto err_alloc;
618
619 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
620 GFP_KERNEL);
621 if (!d->mask_buf_def)
622 goto err_alloc;
623
624 if (chip->wake_base) {
625 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
626 GFP_KERNEL);
627 if (!d->wake_buf)
628 goto err_alloc;
629 }
630
631 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
632 if (num_type_reg) {
633 d->type_buf_def = kcalloc(num_type_reg,
634 sizeof(unsigned int), GFP_KERNEL);
635 if (!d->type_buf_def)
636 goto err_alloc;
637
638 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
639 GFP_KERNEL);
640 if (!d->type_buf)
641 goto err_alloc;
642 }
643
644 d->irq_chip = regmap_irq_chip;
645 d->irq_chip.name = chip->name;
646 d->irq = irq;
647 d->map = map;
648 d->chip = chip;
649 d->irq_base = irq_base;
650
651 if (chip->irq_reg_stride)
652 d->irq_reg_stride = chip->irq_reg_stride;
653 else
654 d->irq_reg_stride = 1;
655
656 if (chip->type_reg_stride)
657 d->type_reg_stride = chip->type_reg_stride;
658 else
659 d->type_reg_stride = 1;
660
661 if (!map->use_single_read && map->reg_stride == 1 &&
662 d->irq_reg_stride == 1) {
663 d->status_reg_buf = kmalloc_array(chip->num_regs,
664 map->format.val_bytes,
665 GFP_KERNEL);
666 if (!d->status_reg_buf)
667 goto err_alloc;
668 }
669
670 mutex_init(&d->lock);
671
672 for (i = 0; i < chip->num_irqs; i++)
673 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
674 |= chip->irqs[i].mask;
675
676 /* Mask all the interrupts by default */
677 for (i = 0; i < chip->num_regs; i++) {
678 d->mask_buf[i] = d->mask_buf_def[i];
679 if (!chip->mask_base)
680 continue;
681
682 reg = chip->mask_base +
683 (i * map->reg_stride * d->irq_reg_stride);
684 if (chip->mask_invert)
685 ret = regmap_irq_update_bits(d, reg,
686 d->mask_buf[i], ~d->mask_buf[i]);
687 else if (d->chip->unmask_base) {
688 unmask_offset = d->chip->unmask_base -
689 d->chip->mask_base;
690 ret = regmap_irq_update_bits(d,
691 reg + unmask_offset,
692 d->mask_buf[i],
693 d->mask_buf[i]);
694 } else
695 ret = regmap_irq_update_bits(d, reg,
696 d->mask_buf[i], d->mask_buf[i]);
697 if (ret != 0) {
698 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
699 reg, ret);
700 goto err_alloc;
701 }
702
703 if (!chip->init_ack_masked)
704 continue;
705
706 /* Ack masked but set interrupts */
707 reg = chip->status_base +
708 (i * map->reg_stride * d->irq_reg_stride);
709 ret = regmap_read(map, reg, &d->status_buf[i]);
710 if (ret != 0) {
711 dev_err(map->dev, "Failed to read IRQ status: %d\n",
712 ret);
713 goto err_alloc;
714 }
715
716 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
717 reg = chip->ack_base +
718 (i * map->reg_stride * d->irq_reg_stride);
719 if (chip->ack_invert)
720 ret = regmap_write(map, reg,
721 ~(d->status_buf[i] & d->mask_buf[i]));
722 else
723 ret = regmap_write(map, reg,
724 d->status_buf[i] & d->mask_buf[i]);
725 if (ret != 0) {
726 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
727 reg, ret);
728 goto err_alloc;
729 }
730 }
731 }
732
733 /* Wake is disabled by default */
734 if (d->wake_buf) {
735 for (i = 0; i < chip->num_regs; i++) {
736 d->wake_buf[i] = d->mask_buf_def[i];
737 reg = chip->wake_base +
738 (i * map->reg_stride * d->irq_reg_stride);
739
740 if (chip->wake_invert)
741 ret = regmap_irq_update_bits(d, reg,
742 d->mask_buf_def[i],
743 0);
744 else
745 ret = regmap_irq_update_bits(d, reg,
746 d->mask_buf_def[i],
747 d->wake_buf[i]);
748 if (ret != 0) {
749 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
750 reg, ret);
751 goto err_alloc;
752 }
753 }
754 }
755
756 if (chip->num_type_reg && !chip->type_in_mask) {
757 for (i = 0; i < chip->num_type_reg; ++i) {
758 reg = chip->type_base +
759 (i * map->reg_stride * d->type_reg_stride);
760
761 ret = regmap_read(map, reg, &d->type_buf_def[i]);
762
763 if (d->chip->type_invert)
764 d->type_buf_def[i] = ~d->type_buf_def[i];
765
766 if (ret) {
767 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
768 reg, ret);
769 goto err_alloc;
770 }
771 }
772 }
773
774 if (irq_base)
775 d->domain = irq_domain_add_legacy(to_of_node(fwnode),
776 chip->num_irqs, irq_base,
777 0, ®map_domain_ops, d);
778 else
779 d->domain = irq_domain_add_linear(to_of_node(fwnode),
780 chip->num_irqs,
781 ®map_domain_ops, d);
782 if (!d->domain) {
783 dev_err(map->dev, "Failed to create IRQ domain\n");
784 ret = -ENOMEM;
785 goto err_alloc;
786 }
787
788 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
789 irq_flags | IRQF_ONESHOT,
790 chip->name, d);
791 if (ret != 0) {
792 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
793 irq, chip->name, ret);
794 goto err_domain;
795 }
796
797 *data = d;
798
799 return 0;
800
801err_domain:
802 /* Should really dispose of the domain but... */
803err_alloc:
804 kfree(d->type_buf);
805 kfree(d->type_buf_def);
806 kfree(d->wake_buf);
807 kfree(d->mask_buf_def);
808 kfree(d->mask_buf);
809 kfree(d->status_buf);
810 kfree(d->status_reg_buf);
811 kfree(d);
812 return ret;
813}
814EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
815
816/**
817 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
818 *
819 * @map: The regmap for the device.
820 * @irq: The IRQ the device uses to signal interrupts.
821 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
822 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
823 * @chip: Configuration for the interrupt controller.
824 * @data: Runtime data structure for the controller, allocated on success.
825 *
826 * Returns 0 on success or an errno on failure.
827 *
828 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
829 * node of the regmap is used.
830 */
831int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
832 int irq_base, const struct regmap_irq_chip *chip,
833 struct regmap_irq_chip_data **data)
834{
835 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
836 irq_flags, irq_base, chip, data);
837}
838EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
839
840/**
841 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
842 *
843 * @irq: Primary IRQ for the device
844 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
845 *
846 * This function also disposes of all mapped IRQs on the chip.
847 */
848void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
849{
850 unsigned int virq;
851 int hwirq;
852
853 if (!d)
854 return;
855
856 free_irq(irq, d);
857
858 /* Dispose all virtual irq from irq domain before removing it */
859 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
860 /* Ignore hwirq if holes in the IRQ list */
861 if (!d->chip->irqs[hwirq].mask)
862 continue;
863
864 /*
865 * Find the virtual irq of hwirq on chip and if it is
866 * there then dispose it
867 */
868 virq = irq_find_mapping(d->domain, hwirq);
869 if (virq)
870 irq_dispose_mapping(virq);
871 }
872
873 irq_domain_remove(d->domain);
874 kfree(d->type_buf);
875 kfree(d->type_buf_def);
876 kfree(d->wake_buf);
877 kfree(d->mask_buf_def);
878 kfree(d->mask_buf);
879 kfree(d->status_reg_buf);
880 kfree(d->status_buf);
881 kfree(d);
882}
883EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
884
885static void devm_regmap_irq_chip_release(struct device *dev, void *res)
886{
887 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
888
889 regmap_del_irq_chip(d->irq, d);
890}
891
892static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
893
894{
895 struct regmap_irq_chip_data **r = res;
896
897 if (!r || !*r) {
898 WARN_ON(!r || !*r);
899 return 0;
900 }
901 return *r == data;
902}
903
904/**
905 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
906 *
907 * @dev: The device pointer on which irq_chip belongs to.
908 * @fwnode: The firmware node where the IRQ domain should be added to.
909 * @map: The regmap for the device.
910 * @irq: The IRQ the device uses to signal interrupts
911 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
912 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
913 * @chip: Configuration for the interrupt controller.
914 * @data: Runtime data structure for the controller, allocated on success
915 *
916 * Returns 0 on success or an errno on failure.
917 *
918 * The ®map_irq_chip_data will be automatically released when the device is
919 * unbound.
920 */
921int devm_regmap_add_irq_chip_fwnode(struct device *dev,
922 struct fwnode_handle *fwnode,
923 struct regmap *map, int irq,
924 int irq_flags, int irq_base,
925 const struct regmap_irq_chip *chip,
926 struct regmap_irq_chip_data **data)
927{
928 struct regmap_irq_chip_data **ptr, *d;
929 int ret;
930
931 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
932 GFP_KERNEL);
933 if (!ptr)
934 return -ENOMEM;
935
936 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
937 chip, &d);
938 if (ret < 0) {
939 devres_free(ptr);
940 return ret;
941 }
942
943 *ptr = d;
944 devres_add(dev, ptr);
945 *data = d;
946 return 0;
947}
948EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
949
950/**
951 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
952 *
953 * @dev: The device pointer on which irq_chip belongs to.
954 * @map: The regmap for the device.
955 * @irq: The IRQ the device uses to signal interrupts
956 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
957 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
958 * @chip: Configuration for the interrupt controller.
959 * @data: Runtime data structure for the controller, allocated on success
960 *
961 * Returns 0 on success or an errno on failure.
962 *
963 * The ®map_irq_chip_data will be automatically released when the device is
964 * unbound.
965 */
966int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
967 int irq_flags, int irq_base,
968 const struct regmap_irq_chip *chip,
969 struct regmap_irq_chip_data **data)
970{
971 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
972 irq, irq_flags, irq_base, chip,
973 data);
974}
975EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
976
977/**
978 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
979 *
980 * @dev: Device for which which resource was allocated.
981 * @irq: Primary IRQ for the device.
982 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
983 *
984 * A resource managed version of regmap_del_irq_chip().
985 */
986void devm_regmap_del_irq_chip(struct device *dev, int irq,
987 struct regmap_irq_chip_data *data)
988{
989 int rc;
990
991 WARN_ON(irq != data->irq);
992 rc = devres_release(dev, devm_regmap_irq_chip_release,
993 devm_regmap_irq_chip_match, data);
994
995 if (rc != 0)
996 WARN_ON(rc);
997}
998EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
999
1000/**
1001 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1002 *
1003 * @data: regmap irq controller to operate on.
1004 *
1005 * Useful for drivers to request their own IRQs.
1006 */
1007int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1008{
1009 WARN_ON(!data->irq_base);
1010 return data->irq_base;
1011}
1012EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1013
1014/**
1015 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1016 *
1017 * @data: regmap irq controller to operate on.
1018 * @irq: index of the interrupt requested in the chip IRQs.
1019 *
1020 * Useful for drivers to request their own IRQs.
1021 */
1022int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1023{
1024 /* Handle holes in the IRQ list */
1025 if (!data->chip->irqs[irq].mask)
1026 return -EINVAL;
1027
1028 return irq_create_mapping(data->domain, irq);
1029}
1030EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1031
1032/**
1033 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1034 *
1035 * @data: regmap_irq controller to operate on.
1036 *
1037 * Useful for drivers to request their own IRQs and for integration
1038 * with subsystems. For ease of integration NULL is accepted as a
1039 * domain, allowing devices to just call this even if no domain is
1040 * allocated.
1041 */
1042struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1043{
1044 if (data)
1045 return data->domain;
1046 else
1047 return NULL;
1048}
1049EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 unsigned int mask_base;
34 unsigned int unmask_base;
35
36 void *status_reg_buf;
37 unsigned int *main_status_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44 unsigned int **virt_buf;
45 unsigned int **config_buf;
46
47 unsigned int irq_reg_stride;
48
49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 unsigned int base, int index);
51
52 unsigned int clear_status:1;
53};
54
55static inline const
56struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 int irq)
58{
59 return &data->chip->irqs[irq];
60}
61
62static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63{
64 struct regmap *map = data->map;
65
66 /*
67 * While possible that a user-defined ->get_irq_reg() callback might
68 * be linear enough to support bulk reads, most of the time it won't.
69 * Therefore only allow them if the default callback is being used.
70 */
71 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 !map->use_single_read;
74}
75
76static void regmap_irq_lock(struct irq_data *data)
77{
78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79
80 mutex_lock(&d->lock);
81}
82
83static void regmap_irq_sync_unlock(struct irq_data *data)
84{
85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 struct regmap *map = d->map;
87 int i, j, ret;
88 u32 reg;
89 u32 val;
90
91 if (d->chip->runtime_pm) {
92 ret = pm_runtime_get_sync(map->dev);
93 if (ret < 0)
94 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 ret);
96 }
97
98 if (d->clear_status) {
99 for (i = 0; i < d->chip->num_regs; i++) {
100 reg = d->get_irq_reg(d, d->chip->status_base, i);
101
102 ret = regmap_read(map, reg, &val);
103 if (ret)
104 dev_err(d->map->dev,
105 "Failed to clear the interrupt status bits\n");
106 }
107
108 d->clear_status = false;
109 }
110
111 /*
112 * If there's been a change in the mask write it back to the
113 * hardware. We rely on the use of the regmap core cache to
114 * suppress pointless writes.
115 */
116 for (i = 0; i < d->chip->num_regs; i++) {
117 if (d->mask_base) {
118 if (d->chip->handle_mask_sync)
119 d->chip->handle_mask_sync(d->map, i,
120 d->mask_buf_def[i],
121 d->mask_buf[i],
122 d->chip->irq_drv_data);
123 else {
124 reg = d->get_irq_reg(d, d->mask_base, i);
125 ret = regmap_update_bits(d->map, reg,
126 d->mask_buf_def[i],
127 d->mask_buf[i]);
128 if (ret)
129 dev_err(d->map->dev, "Failed to sync masks in %x\n",
130 reg);
131 }
132 }
133
134 if (d->unmask_base) {
135 reg = d->get_irq_reg(d, d->unmask_base, i);
136 ret = regmap_update_bits(d->map, reg,
137 d->mask_buf_def[i], ~d->mask_buf[i]);
138 if (ret)
139 dev_err(d->map->dev, "Failed to sync masks in %x\n",
140 reg);
141 }
142
143 reg = d->get_irq_reg(d, d->chip->wake_base, i);
144 if (d->wake_buf) {
145 if (d->chip->wake_invert)
146 ret = regmap_update_bits(d->map, reg,
147 d->mask_buf_def[i],
148 ~d->wake_buf[i]);
149 else
150 ret = regmap_update_bits(d->map, reg,
151 d->mask_buf_def[i],
152 d->wake_buf[i]);
153 if (ret != 0)
154 dev_err(d->map->dev,
155 "Failed to sync wakes in %x: %d\n",
156 reg, ret);
157 }
158
159 if (!d->chip->init_ack_masked)
160 continue;
161 /*
162 * Ack all the masked interrupts unconditionally,
163 * OR if there is masked interrupt which hasn't been Acked,
164 * it'll be ignored in irq handler, then may introduce irq storm
165 */
166 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167 reg = d->get_irq_reg(d, d->chip->ack_base, i);
168
169 /* some chips ack by write 0 */
170 if (d->chip->ack_invert)
171 ret = regmap_write(map, reg, ~d->mask_buf[i]);
172 else
173 ret = regmap_write(map, reg, d->mask_buf[i]);
174 if (d->chip->clear_ack) {
175 if (d->chip->ack_invert && !ret)
176 ret = regmap_write(map, reg, UINT_MAX);
177 else if (!ret)
178 ret = regmap_write(map, reg, 0);
179 }
180 if (ret != 0)
181 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
182 reg, ret);
183 }
184 }
185
186 /* Don't update the type bits if we're using mask bits for irq type. */
187 if (!d->chip->type_in_mask) {
188 for (i = 0; i < d->chip->num_type_reg; i++) {
189 if (!d->type_buf_def[i])
190 continue;
191 reg = d->get_irq_reg(d, d->chip->type_base, i);
192 if (d->chip->type_invert)
193 ret = regmap_update_bits(d->map, reg,
194 d->type_buf_def[i], ~d->type_buf[i]);
195 else
196 ret = regmap_update_bits(d->map, reg,
197 d->type_buf_def[i], d->type_buf[i]);
198 if (ret != 0)
199 dev_err(d->map->dev, "Failed to sync type in %x\n",
200 reg);
201 }
202 }
203
204 if (d->chip->num_virt_regs) {
205 for (i = 0; i < d->chip->num_virt_regs; i++) {
206 for (j = 0; j < d->chip->num_regs; j++) {
207 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
208 j);
209 ret = regmap_write(map, reg, d->virt_buf[i][j]);
210 if (ret != 0)
211 dev_err(d->map->dev,
212 "Failed to write virt 0x%x: %d\n",
213 reg, ret);
214 }
215 }
216 }
217
218 for (i = 0; i < d->chip->num_config_bases; i++) {
219 for (j = 0; j < d->chip->num_config_regs; j++) {
220 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
221 ret = regmap_write(map, reg, d->config_buf[i][j]);
222 if (ret)
223 dev_err(d->map->dev,
224 "Failed to write config %x: %d\n",
225 reg, ret);
226 }
227 }
228
229 if (d->chip->runtime_pm)
230 pm_runtime_put(map->dev);
231
232 /* If we've changed our wakeup count propagate it to the parent */
233 if (d->wake_count < 0)
234 for (i = d->wake_count; i < 0; i++)
235 irq_set_irq_wake(d->irq, 0);
236 else if (d->wake_count > 0)
237 for (i = 0; i < d->wake_count; i++)
238 irq_set_irq_wake(d->irq, 1);
239
240 d->wake_count = 0;
241
242 mutex_unlock(&d->lock);
243}
244
245static void regmap_irq_enable(struct irq_data *data)
246{
247 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
248 struct regmap *map = d->map;
249 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
250 unsigned int reg = irq_data->reg_offset / map->reg_stride;
251 unsigned int mask;
252
253 /*
254 * The type_in_mask flag means that the underlying hardware uses
255 * separate mask bits for each interrupt trigger type, but we want
256 * to have a single logical interrupt with a configurable type.
257 *
258 * If the interrupt we're enabling defines any supported types
259 * then instead of using the regular mask bits for this interrupt,
260 * use the value previously written to the type buffer at the
261 * corresponding offset in regmap_irq_set_type().
262 */
263 if (d->chip->type_in_mask && irq_data->type.types_supported)
264 mask = d->type_buf[reg] & irq_data->mask;
265 else
266 mask = irq_data->mask;
267
268 if (d->chip->clear_on_unmask)
269 d->clear_status = true;
270
271 d->mask_buf[reg] &= ~mask;
272}
273
274static void regmap_irq_disable(struct irq_data *data)
275{
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
281}
282
283static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
284{
285 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
286 struct regmap *map = d->map;
287 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
288 int reg, ret;
289 const struct regmap_irq_type *t = &irq_data->type;
290
291 if ((t->types_supported & type) != type)
292 return 0;
293
294 reg = t->type_reg_offset / map->reg_stride;
295
296 if (t->type_reg_mask)
297 d->type_buf[reg] &= ~t->type_reg_mask;
298 else
299 d->type_buf[reg] &= ~(t->type_falling_val |
300 t->type_rising_val |
301 t->type_level_low_val |
302 t->type_level_high_val);
303 switch (type) {
304 case IRQ_TYPE_EDGE_FALLING:
305 d->type_buf[reg] |= t->type_falling_val;
306 break;
307
308 case IRQ_TYPE_EDGE_RISING:
309 d->type_buf[reg] |= t->type_rising_val;
310 break;
311
312 case IRQ_TYPE_EDGE_BOTH:
313 d->type_buf[reg] |= (t->type_falling_val |
314 t->type_rising_val);
315 break;
316
317 case IRQ_TYPE_LEVEL_HIGH:
318 d->type_buf[reg] |= t->type_level_high_val;
319 break;
320
321 case IRQ_TYPE_LEVEL_LOW:
322 d->type_buf[reg] |= t->type_level_low_val;
323 break;
324 default:
325 return -EINVAL;
326 }
327
328 if (d->chip->set_type_virt) {
329 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
330 reg);
331 if (ret)
332 return ret;
333 }
334
335 if (d->chip->set_type_config) {
336 ret = d->chip->set_type_config(d->config_buf, type,
337 irq_data, reg);
338 if (ret)
339 return ret;
340 }
341
342 return 0;
343}
344
345static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
346{
347 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
348 struct regmap *map = d->map;
349 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
350
351 if (on) {
352 if (d->wake_buf)
353 d->wake_buf[irq_data->reg_offset / map->reg_stride]
354 &= ~irq_data->mask;
355 d->wake_count++;
356 } else {
357 if (d->wake_buf)
358 d->wake_buf[irq_data->reg_offset / map->reg_stride]
359 |= irq_data->mask;
360 d->wake_count--;
361 }
362
363 return 0;
364}
365
366static const struct irq_chip regmap_irq_chip = {
367 .irq_bus_lock = regmap_irq_lock,
368 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
369 .irq_disable = regmap_irq_disable,
370 .irq_enable = regmap_irq_enable,
371 .irq_set_type = regmap_irq_set_type,
372 .irq_set_wake = regmap_irq_set_wake,
373};
374
375static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
376 unsigned int b)
377{
378 const struct regmap_irq_chip *chip = data->chip;
379 struct regmap *map = data->map;
380 struct regmap_irq_sub_irq_map *subreg;
381 unsigned int reg;
382 int i, ret = 0;
383
384 if (!chip->sub_reg_offsets) {
385 reg = data->get_irq_reg(data, chip->status_base, b);
386 ret = regmap_read(map, reg, &data->status_buf[b]);
387 } else {
388 /*
389 * Note we can't use ->get_irq_reg() here because the offsets
390 * in 'subreg' are *not* interchangeable with indices.
391 */
392 subreg = &chip->sub_reg_offsets[b];
393 for (i = 0; i < subreg->num_regs; i++) {
394 unsigned int offset = subreg->offset[i];
395 unsigned int index = offset / map->reg_stride;
396
397 if (chip->not_fixed_stride)
398 ret = regmap_read(map,
399 chip->status_base + offset,
400 &data->status_buf[b]);
401 else
402 ret = regmap_read(map,
403 chip->status_base + offset,
404 &data->status_buf[index]);
405
406 if (ret)
407 break;
408 }
409 }
410 return ret;
411}
412
413static irqreturn_t regmap_irq_thread(int irq, void *d)
414{
415 struct regmap_irq_chip_data *data = d;
416 const struct regmap_irq_chip *chip = data->chip;
417 struct regmap *map = data->map;
418 int ret, i;
419 bool handled = false;
420 u32 reg;
421
422 if (chip->handle_pre_irq)
423 chip->handle_pre_irq(chip->irq_drv_data);
424
425 if (chip->runtime_pm) {
426 ret = pm_runtime_get_sync(map->dev);
427 if (ret < 0) {
428 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
429 ret);
430 goto exit;
431 }
432 }
433
434 /*
435 * Read only registers with active IRQs if the chip has 'main status
436 * register'. Else read in the statuses, using a single bulk read if
437 * possible in order to reduce the I/O overheads.
438 */
439
440 if (chip->num_main_regs) {
441 unsigned int max_main_bits;
442 unsigned long size;
443
444 size = chip->num_regs * sizeof(unsigned int);
445
446 max_main_bits = (chip->num_main_status_bits) ?
447 chip->num_main_status_bits : chip->num_regs;
448 /* Clear the status buf as we don't read all status regs */
449 memset(data->status_buf, 0, size);
450
451 /* We could support bulk read for main status registers
452 * but I don't expect to see devices with really many main
453 * status registers so let's only support single reads for the
454 * sake of simplicity. and add bulk reads only if needed
455 */
456 for (i = 0; i < chip->num_main_regs; i++) {
457 /*
458 * For not_fixed_stride, don't use ->get_irq_reg().
459 * It would produce an incorrect result.
460 */
461 if (data->chip->not_fixed_stride)
462 reg = chip->main_status +
463 i * map->reg_stride * data->irq_reg_stride;
464 else
465 reg = data->get_irq_reg(data,
466 chip->main_status, i);
467
468 ret = regmap_read(map, reg, &data->main_status_buf[i]);
469 if (ret) {
470 dev_err(map->dev,
471 "Failed to read IRQ status %d\n",
472 ret);
473 goto exit;
474 }
475 }
476
477 /* Read sub registers with active IRQs */
478 for (i = 0; i < chip->num_main_regs; i++) {
479 unsigned int b;
480 const unsigned long mreg = data->main_status_buf[i];
481
482 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
483 if (i * map->format.val_bytes * 8 + b >
484 max_main_bits)
485 break;
486 ret = read_sub_irq_data(data, b);
487
488 if (ret != 0) {
489 dev_err(map->dev,
490 "Failed to read IRQ status %d\n",
491 ret);
492 goto exit;
493 }
494 }
495
496 }
497 } else if (regmap_irq_can_bulk_read_status(data)) {
498
499 u8 *buf8 = data->status_reg_buf;
500 u16 *buf16 = data->status_reg_buf;
501 u32 *buf32 = data->status_reg_buf;
502
503 BUG_ON(!data->status_reg_buf);
504
505 ret = regmap_bulk_read(map, chip->status_base,
506 data->status_reg_buf,
507 chip->num_regs);
508 if (ret != 0) {
509 dev_err(map->dev, "Failed to read IRQ status: %d\n",
510 ret);
511 goto exit;
512 }
513
514 for (i = 0; i < data->chip->num_regs; i++) {
515 switch (map->format.val_bytes) {
516 case 1:
517 data->status_buf[i] = buf8[i];
518 break;
519 case 2:
520 data->status_buf[i] = buf16[i];
521 break;
522 case 4:
523 data->status_buf[i] = buf32[i];
524 break;
525 default:
526 BUG();
527 goto exit;
528 }
529 }
530
531 } else {
532 for (i = 0; i < data->chip->num_regs; i++) {
533 unsigned int reg = data->get_irq_reg(data,
534 data->chip->status_base, i);
535 ret = regmap_read(map, reg, &data->status_buf[i]);
536
537 if (ret != 0) {
538 dev_err(map->dev,
539 "Failed to read IRQ status: %d\n",
540 ret);
541 goto exit;
542 }
543 }
544 }
545
546 if (chip->status_invert)
547 for (i = 0; i < data->chip->num_regs; i++)
548 data->status_buf[i] = ~data->status_buf[i];
549
550 /*
551 * Ignore masked IRQs and ack if we need to; we ack early so
552 * there is no race between handling and acknowledging the
553 * interrupt. We assume that typically few of the interrupts
554 * will fire simultaneously so don't worry about overhead from
555 * doing a write per register.
556 */
557 for (i = 0; i < data->chip->num_regs; i++) {
558 data->status_buf[i] &= ~data->mask_buf[i];
559
560 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
561 reg = data->get_irq_reg(data, data->chip->ack_base, i);
562
563 if (chip->ack_invert)
564 ret = regmap_write(map, reg,
565 ~data->status_buf[i]);
566 else
567 ret = regmap_write(map, reg,
568 data->status_buf[i]);
569 if (chip->clear_ack) {
570 if (chip->ack_invert && !ret)
571 ret = regmap_write(map, reg, UINT_MAX);
572 else if (!ret)
573 ret = regmap_write(map, reg, 0);
574 }
575 if (ret != 0)
576 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
577 reg, ret);
578 }
579 }
580
581 for (i = 0; i < chip->num_irqs; i++) {
582 if (data->status_buf[chip->irqs[i].reg_offset /
583 map->reg_stride] & chip->irqs[i].mask) {
584 handle_nested_irq(irq_find_mapping(data->domain, i));
585 handled = true;
586 }
587 }
588
589exit:
590 if (chip->runtime_pm)
591 pm_runtime_put(map->dev);
592
593 if (chip->handle_post_irq)
594 chip->handle_post_irq(chip->irq_drv_data);
595
596 if (handled)
597 return IRQ_HANDLED;
598 else
599 return IRQ_NONE;
600}
601
602static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
603 irq_hw_number_t hw)
604{
605 struct regmap_irq_chip_data *data = h->host_data;
606
607 irq_set_chip_data(virq, data);
608 irq_set_chip(virq, &data->irq_chip);
609 irq_set_nested_thread(virq, 1);
610 irq_set_parent(virq, data->irq);
611 irq_set_noprobe(virq);
612
613 return 0;
614}
615
616static const struct irq_domain_ops regmap_domain_ops = {
617 .map = regmap_irq_map,
618 .xlate = irq_domain_xlate_onetwocell,
619};
620
621/**
622 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
623 * @data: Data for the &struct regmap_irq_chip
624 * @base: Base register
625 * @index: Register index
626 *
627 * Returns the register address corresponding to the given @base and @index
628 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
629 */
630unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
631 unsigned int base, int index)
632{
633 const struct regmap_irq_chip *chip = data->chip;
634 struct regmap *map = data->map;
635
636 /*
637 * FIXME: This is for backward compatibility and should be removed
638 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
639 */
640 if (chip->not_fixed_stride && chip->sub_reg_offsets) {
641 struct regmap_irq_sub_irq_map *subreg;
642
643 subreg = &chip->sub_reg_offsets[0];
644 return base + subreg->offset[0];
645 }
646
647 return base + index * map->reg_stride * data->irq_reg_stride;
648}
649EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
650
651/**
652 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
653 * @buf: Buffer containing configuration register values, this is a 2D array of
654 * `num_config_bases` rows, each of `num_config_regs` elements.
655 * @type: The requested IRQ type.
656 * @irq_data: The IRQ being configured.
657 * @idx: Index of the irq's config registers within each array `buf[i]`
658 *
659 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
660 * chips with one config register. Register values are updated according to
661 * the &struct regmap_irq_type data associated with an IRQ.
662 */
663int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
664 const struct regmap_irq *irq_data, int idx)
665{
666 const struct regmap_irq_type *t = &irq_data->type;
667
668 if (t->type_reg_mask)
669 buf[0][idx] &= ~t->type_reg_mask;
670 else
671 buf[0][idx] &= ~(t->type_falling_val |
672 t->type_rising_val |
673 t->type_level_low_val |
674 t->type_level_high_val);
675
676 switch (type) {
677 case IRQ_TYPE_EDGE_FALLING:
678 buf[0][idx] |= t->type_falling_val;
679 break;
680
681 case IRQ_TYPE_EDGE_RISING:
682 buf[0][idx] |= t->type_rising_val;
683 break;
684
685 case IRQ_TYPE_EDGE_BOTH:
686 buf[0][idx] |= (t->type_falling_val |
687 t->type_rising_val);
688 break;
689
690 case IRQ_TYPE_LEVEL_HIGH:
691 buf[0][idx] |= t->type_level_high_val;
692 break;
693
694 case IRQ_TYPE_LEVEL_LOW:
695 buf[0][idx] |= t->type_level_low_val;
696 break;
697
698 default:
699 return -EINVAL;
700 }
701
702 return 0;
703}
704EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
705
706/**
707 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
708 *
709 * @fwnode: The firmware node where the IRQ domain should be added to.
710 * @map: The regmap for the device.
711 * @irq: The IRQ the device uses to signal interrupts.
712 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
713 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
714 * @chip: Configuration for the interrupt controller.
715 * @data: Runtime data structure for the controller, allocated on success.
716 *
717 * Returns 0 on success or an errno on failure.
718 *
719 * In order for this to be efficient the chip really should use a
720 * register cache. The chip driver is responsible for restoring the
721 * register values used by the IRQ controller over suspend and resume.
722 */
723int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
724 struct regmap *map, int irq,
725 int irq_flags, int irq_base,
726 const struct regmap_irq_chip *chip,
727 struct regmap_irq_chip_data **data)
728{
729 struct regmap_irq_chip_data *d;
730 int i;
731 int ret = -ENOMEM;
732 int num_type_reg;
733 int num_regs;
734 u32 reg;
735
736 if (chip->num_regs <= 0)
737 return -EINVAL;
738
739 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
740 return -EINVAL;
741
742 for (i = 0; i < chip->num_irqs; i++) {
743 if (chip->irqs[i].reg_offset % map->reg_stride)
744 return -EINVAL;
745 if (chip->irqs[i].reg_offset / map->reg_stride >=
746 chip->num_regs)
747 return -EINVAL;
748 }
749
750 if (chip->not_fixed_stride) {
751 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
752
753 for (i = 0; i < chip->num_regs; i++)
754 if (chip->sub_reg_offsets[i].num_regs != 1)
755 return -EINVAL;
756 }
757
758 if (chip->num_type_reg)
759 dev_warn(map->dev, "type registers are deprecated; use config registers instead");
760
761 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
762 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
763
764 if (irq_base) {
765 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
766 if (irq_base < 0) {
767 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
768 irq_base);
769 return irq_base;
770 }
771 }
772
773 d = kzalloc(sizeof(*d), GFP_KERNEL);
774 if (!d)
775 return -ENOMEM;
776
777 if (chip->num_main_regs) {
778 d->main_status_buf = kcalloc(chip->num_main_regs,
779 sizeof(*d->main_status_buf),
780 GFP_KERNEL);
781
782 if (!d->main_status_buf)
783 goto err_alloc;
784 }
785
786 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
787 GFP_KERNEL);
788 if (!d->status_buf)
789 goto err_alloc;
790
791 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
792 GFP_KERNEL);
793 if (!d->mask_buf)
794 goto err_alloc;
795
796 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
797 GFP_KERNEL);
798 if (!d->mask_buf_def)
799 goto err_alloc;
800
801 if (chip->wake_base) {
802 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
803 GFP_KERNEL);
804 if (!d->wake_buf)
805 goto err_alloc;
806 }
807
808 /*
809 * Use num_config_regs if defined, otherwise fall back to num_type_reg
810 * to maintain backward compatibility.
811 */
812 num_type_reg = chip->num_config_regs ? chip->num_config_regs
813 : chip->num_type_reg;
814 num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
815 if (num_regs) {
816 d->type_buf_def = kcalloc(num_regs,
817 sizeof(*d->type_buf_def), GFP_KERNEL);
818 if (!d->type_buf_def)
819 goto err_alloc;
820
821 d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
822 GFP_KERNEL);
823 if (!d->type_buf)
824 goto err_alloc;
825 }
826
827 if (chip->num_virt_regs) {
828 /*
829 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
830 */
831 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
832 GFP_KERNEL);
833 if (!d->virt_buf)
834 goto err_alloc;
835
836 for (i = 0; i < chip->num_virt_regs; i++) {
837 d->virt_buf[i] = kcalloc(chip->num_regs,
838 sizeof(**d->virt_buf),
839 GFP_KERNEL);
840 if (!d->virt_buf[i])
841 goto err_alloc;
842 }
843 }
844
845 if (chip->num_config_bases && chip->num_config_regs) {
846 /*
847 * Create config_buf[num_config_bases][num_config_regs]
848 */
849 d->config_buf = kcalloc(chip->num_config_bases,
850 sizeof(*d->config_buf), GFP_KERNEL);
851 if (!d->config_buf)
852 goto err_alloc;
853
854 for (i = 0; i < chip->num_config_regs; i++) {
855 d->config_buf[i] = kcalloc(chip->num_config_regs,
856 sizeof(**d->config_buf),
857 GFP_KERNEL);
858 if (!d->config_buf[i])
859 goto err_alloc;
860 }
861 }
862
863 d->irq_chip = regmap_irq_chip;
864 d->irq_chip.name = chip->name;
865 d->irq = irq;
866 d->map = map;
867 d->chip = chip;
868 d->irq_base = irq_base;
869
870 if (chip->mask_base && chip->unmask_base &&
871 !chip->mask_unmask_non_inverted) {
872 /*
873 * Chips that specify both mask_base and unmask_base used to
874 * get inverted mask behavior by default, with no way to ask
875 * for the normal, non-inverted behavior. This "inverted by
876 * default" behavior is deprecated, but we have to support it
877 * until existing drivers have been fixed.
878 *
879 * Existing drivers should be updated by swapping mask_base
880 * and unmask_base and setting mask_unmask_non_inverted=true.
881 * New drivers should always set the flag.
882 */
883 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
884
885 /* Might as well warn about mask_invert while we're at it... */
886 if (chip->mask_invert)
887 dev_warn(map->dev, "mask_invert=true ignored");
888
889 d->mask_base = chip->unmask_base;
890 d->unmask_base = chip->mask_base;
891 } else if (chip->mask_invert) {
892 /*
893 * Swap the roles of mask_base and unmask_base if the bits are
894 * inverted. This is deprecated, drivers should use unmask_base
895 * directly.
896 */
897 dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
898
899 d->mask_base = chip->unmask_base;
900 d->unmask_base = chip->mask_base;
901 } else {
902 d->mask_base = chip->mask_base;
903 d->unmask_base = chip->unmask_base;
904 }
905
906 if (chip->irq_reg_stride)
907 d->irq_reg_stride = chip->irq_reg_stride;
908 else
909 d->irq_reg_stride = 1;
910
911 if (chip->get_irq_reg)
912 d->get_irq_reg = chip->get_irq_reg;
913 else
914 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
915
916 if (regmap_irq_can_bulk_read_status(d)) {
917 d->status_reg_buf = kmalloc_array(chip->num_regs,
918 map->format.val_bytes,
919 GFP_KERNEL);
920 if (!d->status_reg_buf)
921 goto err_alloc;
922 }
923
924 mutex_init(&d->lock);
925
926 for (i = 0; i < chip->num_irqs; i++)
927 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
928 |= chip->irqs[i].mask;
929
930 /* Mask all the interrupts by default */
931 for (i = 0; i < chip->num_regs; i++) {
932 d->mask_buf[i] = d->mask_buf_def[i];
933
934 if (d->mask_base) {
935 if (chip->handle_mask_sync) {
936 ret = chip->handle_mask_sync(d->map, i,
937 d->mask_buf_def[i],
938 d->mask_buf[i],
939 chip->irq_drv_data);
940 if (ret)
941 goto err_alloc;
942 } else {
943 reg = d->get_irq_reg(d, d->mask_base, i);
944 ret = regmap_update_bits(d->map, reg,
945 d->mask_buf_def[i],
946 d->mask_buf[i]);
947 if (ret) {
948 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
949 reg, ret);
950 goto err_alloc;
951 }
952 }
953 }
954
955 if (d->unmask_base) {
956 reg = d->get_irq_reg(d, d->unmask_base, i);
957 ret = regmap_update_bits(d->map, reg,
958 d->mask_buf_def[i], ~d->mask_buf[i]);
959 if (ret) {
960 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
961 reg, ret);
962 goto err_alloc;
963 }
964 }
965
966 if (!chip->init_ack_masked)
967 continue;
968
969 /* Ack masked but set interrupts */
970 reg = d->get_irq_reg(d, d->chip->status_base, i);
971 ret = regmap_read(map, reg, &d->status_buf[i]);
972 if (ret != 0) {
973 dev_err(map->dev, "Failed to read IRQ status: %d\n",
974 ret);
975 goto err_alloc;
976 }
977
978 if (chip->status_invert)
979 d->status_buf[i] = ~d->status_buf[i];
980
981 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
982 reg = d->get_irq_reg(d, d->chip->ack_base, i);
983 if (chip->ack_invert)
984 ret = regmap_write(map, reg,
985 ~(d->status_buf[i] & d->mask_buf[i]));
986 else
987 ret = regmap_write(map, reg,
988 d->status_buf[i] & d->mask_buf[i]);
989 if (chip->clear_ack) {
990 if (chip->ack_invert && !ret)
991 ret = regmap_write(map, reg, UINT_MAX);
992 else if (!ret)
993 ret = regmap_write(map, reg, 0);
994 }
995 if (ret != 0) {
996 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
997 reg, ret);
998 goto err_alloc;
999 }
1000 }
1001 }
1002
1003 /* Wake is disabled by default */
1004 if (d->wake_buf) {
1005 for (i = 0; i < chip->num_regs; i++) {
1006 d->wake_buf[i] = d->mask_buf_def[i];
1007 reg = d->get_irq_reg(d, d->chip->wake_base, i);
1008
1009 if (chip->wake_invert)
1010 ret = regmap_update_bits(d->map, reg,
1011 d->mask_buf_def[i],
1012 0);
1013 else
1014 ret = regmap_update_bits(d->map, reg,
1015 d->mask_buf_def[i],
1016 d->wake_buf[i]);
1017 if (ret != 0) {
1018 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1019 reg, ret);
1020 goto err_alloc;
1021 }
1022 }
1023 }
1024
1025 if (chip->num_type_reg && !chip->type_in_mask) {
1026 for (i = 0; i < chip->num_type_reg; ++i) {
1027 reg = d->get_irq_reg(d, d->chip->type_base, i);
1028
1029 ret = regmap_read(map, reg, &d->type_buf_def[i]);
1030
1031 if (d->chip->type_invert)
1032 d->type_buf_def[i] = ~d->type_buf_def[i];
1033
1034 if (ret) {
1035 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1036 reg, ret);
1037 goto err_alloc;
1038 }
1039 }
1040 }
1041
1042 if (irq_base)
1043 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1044 irq_base, 0,
1045 ®map_domain_ops, d);
1046 else
1047 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1048 ®map_domain_ops, d);
1049 if (!d->domain) {
1050 dev_err(map->dev, "Failed to create IRQ domain\n");
1051 ret = -ENOMEM;
1052 goto err_alloc;
1053 }
1054
1055 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1056 irq_flags | IRQF_ONESHOT,
1057 chip->name, d);
1058 if (ret != 0) {
1059 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1060 irq, chip->name, ret);
1061 goto err_domain;
1062 }
1063
1064 *data = d;
1065
1066 return 0;
1067
1068err_domain:
1069 /* Should really dispose of the domain but... */
1070err_alloc:
1071 kfree(d->type_buf);
1072 kfree(d->type_buf_def);
1073 kfree(d->wake_buf);
1074 kfree(d->mask_buf_def);
1075 kfree(d->mask_buf);
1076 kfree(d->status_buf);
1077 kfree(d->status_reg_buf);
1078 if (d->virt_buf) {
1079 for (i = 0; i < chip->num_virt_regs; i++)
1080 kfree(d->virt_buf[i]);
1081 kfree(d->virt_buf);
1082 }
1083 if (d->config_buf) {
1084 for (i = 0; i < chip->num_config_bases; i++)
1085 kfree(d->config_buf[i]);
1086 kfree(d->config_buf);
1087 }
1088 kfree(d);
1089 return ret;
1090}
1091EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1092
1093/**
1094 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1095 *
1096 * @map: The regmap for the device.
1097 * @irq: The IRQ the device uses to signal interrupts.
1098 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1099 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1100 * @chip: Configuration for the interrupt controller.
1101 * @data: Runtime data structure for the controller, allocated on success.
1102 *
1103 * Returns 0 on success or an errno on failure.
1104 *
1105 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1106 * node of the regmap is used.
1107 */
1108int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1109 int irq_base, const struct regmap_irq_chip *chip,
1110 struct regmap_irq_chip_data **data)
1111{
1112 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1113 irq_flags, irq_base, chip, data);
1114}
1115EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1116
1117/**
1118 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1119 *
1120 * @irq: Primary IRQ for the device
1121 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
1122 *
1123 * This function also disposes of all mapped IRQs on the chip.
1124 */
1125void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1126{
1127 unsigned int virq;
1128 int i, hwirq;
1129
1130 if (!d)
1131 return;
1132
1133 free_irq(irq, d);
1134
1135 /* Dispose all virtual irq from irq domain before removing it */
1136 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1137 /* Ignore hwirq if holes in the IRQ list */
1138 if (!d->chip->irqs[hwirq].mask)
1139 continue;
1140
1141 /*
1142 * Find the virtual irq of hwirq on chip and if it is
1143 * there then dispose it
1144 */
1145 virq = irq_find_mapping(d->domain, hwirq);
1146 if (virq)
1147 irq_dispose_mapping(virq);
1148 }
1149
1150 irq_domain_remove(d->domain);
1151 kfree(d->type_buf);
1152 kfree(d->type_buf_def);
1153 kfree(d->wake_buf);
1154 kfree(d->mask_buf_def);
1155 kfree(d->mask_buf);
1156 kfree(d->status_reg_buf);
1157 kfree(d->status_buf);
1158 if (d->config_buf) {
1159 for (i = 0; i < d->chip->num_config_bases; i++)
1160 kfree(d->config_buf[i]);
1161 kfree(d->config_buf);
1162 }
1163 kfree(d);
1164}
1165EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1166
1167static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1168{
1169 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1170
1171 regmap_del_irq_chip(d->irq, d);
1172}
1173
1174static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1175
1176{
1177 struct regmap_irq_chip_data **r = res;
1178
1179 if (!r || !*r) {
1180 WARN_ON(!r || !*r);
1181 return 0;
1182 }
1183 return *r == data;
1184}
1185
1186/**
1187 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1188 *
1189 * @dev: The device pointer on which irq_chip belongs to.
1190 * @fwnode: The firmware node where the IRQ domain should be added to.
1191 * @map: The regmap for the device.
1192 * @irq: The IRQ the device uses to signal interrupts
1193 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1194 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1195 * @chip: Configuration for the interrupt controller.
1196 * @data: Runtime data structure for the controller, allocated on success
1197 *
1198 * Returns 0 on success or an errno on failure.
1199 *
1200 * The ®map_irq_chip_data will be automatically released when the device is
1201 * unbound.
1202 */
1203int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1204 struct fwnode_handle *fwnode,
1205 struct regmap *map, int irq,
1206 int irq_flags, int irq_base,
1207 const struct regmap_irq_chip *chip,
1208 struct regmap_irq_chip_data **data)
1209{
1210 struct regmap_irq_chip_data **ptr, *d;
1211 int ret;
1212
1213 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1214 GFP_KERNEL);
1215 if (!ptr)
1216 return -ENOMEM;
1217
1218 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1219 chip, &d);
1220 if (ret < 0) {
1221 devres_free(ptr);
1222 return ret;
1223 }
1224
1225 *ptr = d;
1226 devres_add(dev, ptr);
1227 *data = d;
1228 return 0;
1229}
1230EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1231
1232/**
1233 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1234 *
1235 * @dev: The device pointer on which irq_chip belongs to.
1236 * @map: The regmap for the device.
1237 * @irq: The IRQ the device uses to signal interrupts
1238 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1239 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1240 * @chip: Configuration for the interrupt controller.
1241 * @data: Runtime data structure for the controller, allocated on success
1242 *
1243 * Returns 0 on success or an errno on failure.
1244 *
1245 * The ®map_irq_chip_data will be automatically released when the device is
1246 * unbound.
1247 */
1248int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1249 int irq_flags, int irq_base,
1250 const struct regmap_irq_chip *chip,
1251 struct regmap_irq_chip_data **data)
1252{
1253 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1254 irq, irq_flags, irq_base, chip,
1255 data);
1256}
1257EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1258
1259/**
1260 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1261 *
1262 * @dev: Device for which the resource was allocated.
1263 * @irq: Primary IRQ for the device.
1264 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1265 *
1266 * A resource managed version of regmap_del_irq_chip().
1267 */
1268void devm_regmap_del_irq_chip(struct device *dev, int irq,
1269 struct regmap_irq_chip_data *data)
1270{
1271 int rc;
1272
1273 WARN_ON(irq != data->irq);
1274 rc = devres_release(dev, devm_regmap_irq_chip_release,
1275 devm_regmap_irq_chip_match, data);
1276
1277 if (rc != 0)
1278 WARN_ON(rc);
1279}
1280EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1281
1282/**
1283 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1284 *
1285 * @data: regmap irq controller to operate on.
1286 *
1287 * Useful for drivers to request their own IRQs.
1288 */
1289int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1290{
1291 WARN_ON(!data->irq_base);
1292 return data->irq_base;
1293}
1294EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1295
1296/**
1297 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1298 *
1299 * @data: regmap irq controller to operate on.
1300 * @irq: index of the interrupt requested in the chip IRQs.
1301 *
1302 * Useful for drivers to request their own IRQs.
1303 */
1304int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1305{
1306 /* Handle holes in the IRQ list */
1307 if (!data->chip->irqs[irq].mask)
1308 return -EINVAL;
1309
1310 return irq_create_mapping(data->domain, irq);
1311}
1312EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1313
1314/**
1315 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1316 *
1317 * @data: regmap_irq controller to operate on.
1318 *
1319 * Useful for drivers to request their own IRQs and for integration
1320 * with subsystems. For ease of integration NULL is accepted as a
1321 * domain, allowing devices to just call this even if no domain is
1322 * allocated.
1323 */
1324struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1325{
1326 if (data)
1327 return data->domain;
1328 else
1329 return NULL;
1330}
1331EXPORT_SYMBOL_GPL(regmap_irq_get_domain);